Science.gov

Sample records for integrated modeling system

  1. Optical systems integrated modeling

    NASA Technical Reports Server (NTRS)

    Shannon, Robert R.; Laskin, Robert A.; Brewer, SI; Burrows, Chris; Epps, Harlan; Illingworth, Garth; Korsch, Dietrich; Levine, B. Martin; Mahajan, Vini; Rimmer, Chuck

    1992-01-01

    An integrated modeling capability that provides the tools by which entire optical systems and instruments can be simulated and optimized is a key technology development, applicable to all mission classes, especially astrophysics. Many of the future missions require optical systems that are physically much larger than anything flown before and yet must retain the characteristic sub-micron diffraction limited wavefront accuracy of their smaller precursors. It is no longer feasible to follow the path of 'cut and test' development; the sheer scale of these systems precludes many of the older techniques that rely upon ground evaluation of full size engineering units. The ability to accurately model (by computer) and optimize the entire flight system's integrated structural, thermal, and dynamic characteristics is essential. Two distinct integrated modeling capabilities are required. These are an initial design capability and a detailed design and optimization system. The content of an initial design package is shown. It would be a modular, workstation based code which allows preliminary integrated system analysis and trade studies to be carried out quickly by a single engineer or a small design team. A simple concept for a detailed design and optimization system is shown. This is a linkage of interface architecture that allows efficient interchange of information between existing large specialized optical, control, thermal, and structural design codes. The computing environment would be a network of large mainframe machines and its users would be project level design teams. More advanced concepts for detailed design systems would support interaction between modules and automated optimization of the entire system. Technology assessment and development plans for integrated package for initial design, interface development for detailed optimization, validation, and modeling research are presented.

  2. Integrated Workforce Modeling System

    NASA Technical Reports Server (NTRS)

    Moynihan, Gary P.

    2000-01-01

    There are several computer-based systems, currently in various phases of development at KSC, which encompass some component, aspect, or function of workforce modeling. These systems may offer redundant capabilities and/or incompatible interfaces. A systems approach to workforce modeling is necessary in order to identify and better address user requirements. This research has consisted of two primary tasks. Task 1 provided an assessment of existing and proposed KSC workforce modeling systems for their functionality and applicability to the workforce planning function. Task 2 resulted in the development of a proof-of-concept design for a systems approach to workforce modeling. The model incorporates critical aspects of workforce planning, including hires, attrition, and employee development.

  3. INTEGRATED HYDROGEN STORAGE SYSTEM MODEL

    SciTech Connect

    Hardy, B

    2007-11-16

    Hydrogen storage is recognized as a key technical hurdle that must be overcome for the realization of hydrogen powered vehicles. Metal hydrides and their doped variants have shown great promise as a storage material and significant advances have been made with this technology. In any practical storage system the rate of H2 uptake will be governed by all processes that affect the rate of mass transport through the bed and into the particles. These coupled processes include heat and mass transfer as well as chemical kinetics and equilibrium. However, with few exceptions, studies of metal hydrides have focused primarily on fundamental properties associated with hydrogen storage capacity and kinetics. A full understanding of the complex interplay of physical processes that occur during the charging and discharging of a practical storage system requires models that integrate the salient phenomena. For example, in the case of sodium alanate, the size of NaAlH4 crystals is on the order of 300nm and the size of polycrystalline particles may be approximately 10 times larger ({approx}3,000nm). For the bed volume to be as small as possible, it is necessary to densely pack the hydride particles. Even so, in packed beds composed of NaAlH{sub 4} particles alone, it has been observed that the void fraction is still approximately 50-60%. Because of the large void fraction and particle to particle thermal contact resistance, the thermal conductivity of the hydride is very low, on the order of 0.2 W/m-{sup o}C, Gross, Majzoub, Thomas and Sandrock [2002]. The chemical reaction for hydrogen loading is exothermic. Based on the data in Gross [2003], on the order of 10{sup 8}J of heat of is released for the uptake of 5 kg of H{sub 2}2 and complete conversion of NaH to NaAlH{sub 4}. Since the hydride reaction transitions from hydrogen loading to discharge at elevated temperatures, it is essential to control the temperature of the bed. However, the low thermal conductivity of the hydride

  4. CTBT integrated verification system evaluation model supplement

    SciTech Connect

    EDENBURN,MICHAEL W.; BUNTING,MARCUS; PAYNE JR.,ARTHUR C.; TROST,LAWRENCE C.

    2000-03-02

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0.

  5. CTBT Integrated Verification System Evaluation Model

    SciTech Connect

    Edenburn, M.W.; Bunting, M.L.; Payne, A.C. Jr.

    1997-10-01

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia`s Monitoring Systems and Technology Center and has been funded by the US Department of Energy`s Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, top-level, modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM`s unique features is that it integrates results from the various CTBT sensor technologies (seismic, infrasound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection) and location accuracy of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system`s performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. This report describes version 1.2 of IVSEM.

  6. Which coordinate system for modelling path integration?

    PubMed

    Vickerstaff, Robert J; Cheung, Allen

    2010-03-21

    Path integration is a navigation strategy widely observed in nature where an animal maintains a running estimate, called the home vector, of its location during an excursion. Evidence suggests it is both ancient and ubiquitous in nature, and has been studied for over a century. In that time, canonical and neural network models have flourished, based on a wide range of assumptions, justifications and supporting data. Despite the importance of the phenomenon, consensus and unifying principles appear lacking. A fundamental issue is the neural representation of space needed for biological path integration. This paper presents a scheme to classify path integration systems on the basis of the way the home vector records and updates the spatial relationship between the animal and its home location. Four extended classes of coordinate systems are used to unify and review both canonical and neural network models of path integration, from the arthropod and mammalian literature. This scheme demonstrates analytical equivalence between models which may otherwise appear unrelated, and distinguishes between models which may superficially appear similar. A thorough analysis is carried out of the equational forms of important facets of path integration including updating, steering, searching and systematic errors, using each of the four coordinate systems. The type of available directional cue, namely allothetic or idiothetic, is also considered. It is shown that on balance, the class of home vectors which includes the geocentric Cartesian coordinate system, appears to be the most robust for biological systems. A key conclusion is that deducing computational structure from behavioural data alone will be difficult or impossible, at least in the absence of an analysis of random errors. Consequently it is likely that further theoretical insights into path integration will require an in-depth study of the effect of noise on the four classes of home vectors. PMID:19962387

  7. [Integrated model system for environmental policy analysis].

    PubMed

    Jiang, Lin

    2006-05-01

    An integrated model system for environmental policy analysis is built up with a Computable General Equilibrium (CGE) model as a core model, which is linked with an environmental model, air dispersion model, and health effect model (exposure-response functions) in an explicit way, therefore the model system is capable of evaluating the effects of policies on environment, health and economy and their interactions comprehensively. This method is used to analyze the effects of Beijing presumptive (energy) taxes on air quality, health, welfare and economic growth, and the conclusion is that sole presumptive taxes may slow down the economic growth, but the presumptive taxes with green tax reform can promote Beijing sustainable development. PMID:16850855

  8. Integrated modeling of advanced optical systems

    NASA Astrophysics Data System (ADS)

    Briggs, Hugh C.; Needels, Laura; Levine, B. Martin

    1993-02-01

    This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.

  9. Integrated Modeling of Complex Optomechanical Systems

    NASA Astrophysics Data System (ADS)

    Andersen, Torben; Enmark, Anita

    2011-09-01

    Mathematical modeling and performance simulation are playing an increasing role in large, high-technology projects. There are two reasons; first, projects are now larger than they were before, and the high cost calls for detailed performance prediction before construction. Second, in particular for space-related designs, it is often difficult to test systems under realistic conditions beforehand, and mathematical modeling is then needed to verify in advance that a system will work as planned. Computers have become much more powerful, permitting calculations that were not possible before. At the same time mathematical tools have been further developed and found acceptance in the community. Particular progress has been made in the fields of structural mechanics, optics and control engineering, where new methods have gained importance over the last few decades. Also, methods for combining optical, structural and control system models into global models have found widespread use. Such combined models are usually called integrated models and were the subject of this symposium. The objective was to bring together people working in the fields of groundbased optical telescopes, ground-based radio telescopes, and space telescopes. We succeeded in doing so and had 39 interesting presentations and many fruitful discussions during coffee and lunch breaks and social arrangements. We are grateful that so many top ranked specialists found their way to Kiruna and we believe that these proceedings will prove valuable during much future work.

  10. EPA EXPOSURE MODELS LIBRARY AND INTEGRATED MODEL EVALUATION SYSTEM

    EPA Science Inventory

    The third edition of the U.S. Environmental Protection Agencys (EPA) EML/IMES (Exposure Models Library and Integrated Model Evaluation System) on CD-ROM is now available. The purpose of the disc is to provide a compact and efficient means to distribute exposure models, documentat...

  11. [A research on healthcare integrating model of medical information system].

    PubMed

    Lü, Xudong; Duan, Huilong

    2005-02-01

    System integration is inevitable since there are lots of heterogeneous medical information systems in the complicated medical environment. The current medical communication standards often focus on one aspect of the integration and do not provide a general scheme. Based on the analysis of the application of medical integration, the medical integration model HIM (Healthcare integrating model) is put forward, and the dataflow integration framework, function integration framework and interface integration framework in the HIM are designed subsequently. HIM provides a 3-D scheme for the integration of medical information systems, which not only contains the three aspects of integration application vertically, but covers the whole medical area horizontally. PMID:15762128

  12. Developing Metrics in Systems Integration (ISS Program COTS Integration Model)

    NASA Technical Reports Server (NTRS)

    Lueders, Kathryn

    2007-01-01

    This viewgraph presentation reviews some of the complications in developing metrics for systems integration. Specifically it reviews a case study of how two programs within NASA try to develop and measure performance while meeting the encompassing organizational goals.

  13. Modeling for System Integration Studies (Presentation)

    SciTech Connect

    Orwig, K. D.

    2012-05-01

    This presentation describes some the data requirements needed for grid integration modeling and provides real-world examples of such data and its format. Renewable energy integration studies evaluate the operational impacts of variable generation. Transmission planning studies investigate where new transmission is needed to transfer energy from generation sources to load centers. Both use time-synchronized wind and solar energy production and load as inputs. Both examine high renewable energy penetration scenarios in the future.

  14. Development and Integration of Control System Models

    NASA Technical Reports Server (NTRS)

    Kim, Young K.

    1998-01-01

    The computer simulation tool, TREETOPS, has been upgraded and used at NASA/MSFC to model various complicated mechanical systems and to perform their dynamics and control analysis with pointing control systems. A TREETOPS model of Advanced X-ray Astrophysics Facility - Imaging (AXAF-1) dynamics and control system was developed to evaluate the AXAF-I pointing performance for Normal Pointing Mode. An optical model of Shooting Star Experiment (SSE) was also developed and its optical performance analysis was done using the MACOS software.

  15. THE EPA MULTIMEDIA INTEGRATED MODELING SYSTEM SOFTWARE SUITE

    EPA Science Inventory

    The U.S. EPA is developing a Multimedia Integrated Modeling System (MIMS) framework that will provide a software infrastructure or environment to support constructing, composing, executing, and evaluating complex modeling studies. The framework will include (1) common software ...

  16. Integrated Main Propulsion System Performance Reconstruction Process/Models

    NASA Technical Reports Server (NTRS)

    Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael

    2013-01-01

    The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.

  17. Computer Integrated Manufacturing: Physical Modelling Systems Design. A Personal View.

    ERIC Educational Resources Information Center

    Baker, Richard

    A computer-integrated manufacturing (CIM) Physical Modeling Systems Design project was undertaken in a time of rapid change in the industrial, business, technological, training, and educational areas in Australia. A specification of a manufacturing physical modeling system was drawn up. Physical modeling provides a flexibility and configurability…

  18. Integrative systems modeling and multi-objective optimization

    EPA Science Inventory

    This presentation presents a number of algorithms, tools, and methods for utilizing multi-objective optimization within integrated systems modeling frameworks. We first present innovative methods using a genetic algorithm to optimally calibrate the VELMA and SWAT ecohydrological ...

  19. Process modeling for the Integrated Nonthermal Treatment System (INTS) study

    SciTech Connect

    Brown, B.W.

    1997-04-01

    This report describes the process modeling done in support of the Integrated Nonthermal Treatment System (INTS) study. This study was performed to supplement the Integrated Thermal Treatment System (ITTS) study and comprises five conceptual treatment systems that treat DOE contract-handled mixed low-level wastes (MLLW) at temperatures of less than 350{degrees}F. ASPEN PLUS, a chemical process simulator, was used to model the systems. Nonthermal treatment systems were developed as part of the INTS study and include sufficient processing steps to treat the entire inventory of MLLW. The final result of the modeling is a process flowsheet with a detailed mass and energy balance. In contrast to the ITTS study, which modeled only the main treatment system, the INTS study modeled each of the various processing steps with ASPEN PLUS, release 9.1-1. Trace constituents, such as radionuclides and minor pollutant species, were not included in the calculations.

  20. Multiscale modeling of integrated CCS systems

    NASA Astrophysics Data System (ADS)

    Alhajaj, Ahmed; Shah, Nilay

    2015-01-01

    The world will continue consuming fossil fuel within the coming decades to meet its growing energy demand; however, this source must be cleaner through implementation of carbon capture, transport and storage (CCTS). This process is complex and involves multiple phases, owned by different operational companies and stakeholders with different business models and regulatory framework. The objective of this work is to develop a multiscale modeling approach to link process models, post-combustion capture plant model and network design models under an optimization framework in order to design and analyse the cost optimal CO2 infrastructure that match CO2 sources and sinks in capacity and time. The network comprises a number of CO2 sources at fixed locations and a number of potential CO2 storage sites. The decisions to be determined include from which sources it is appropriate to capture CO2 and the cost-optimal degree-of-capture (DOC) for a given source and the infrastructural layout of the CO2 transmission network.

  1. Integrated Control Modeling for Propulsion Systems Using NPSS

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Felder, James L.; Lavelle, Thomas M.; Withrow, Colleen A.; Yu, Albert Y.; Lehmann, William V. A.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS), an advanced engineering simulation environment used to design and analyze aircraft engines, has been enhanced by integrating control development tools into it. One of these tools is a generic controller interface that allows NPSS to communicate with control development software environments such as MATLAB and EASY5. The other tool is a linear model generator (LMG) that gives NPSS the ability to generate linear, time-invariant state-space models. Integrating these tools into NPSS enables it to be used for control system development. This paper will discuss the development and integration of these tools into NPSS. In addition, it will show a comparison of transient model results of a generic, dual-spool, military-type engine model that has been implemented in NPSS and Simulink. It will also show the linear model generator s ability to approximate the dynamics of a nonlinear NPSS engine model.

  2. Thermal hydraulic modeling of integrated cooling water systems

    SciTech Connect

    Niyogi, K.K.; Rathi, J.S.; Phan, T.Q.; Chaudhary, A.

    1994-12-31

    Thermal hydraulic modeling of cooling water systems has been extended to multiple system configurations with heat exchangers as interface components between systems. The computer program PC-TRAX has been used as the basic tool for the system simulation. Additional heat exchanger modules have been incorporated to accurately predict the thermal performance of systems for the design as well as off-design conditions. The modeling accommodates time-dependent changes in conditions, temperature and pressure controllers, and detailed physical parameters of the heat exchangers. The modeling has been illustrated with examples from actual plant systems. An integrated system consisting of Spent Fuel Pool, Primary Component Cooling Water, and Service Water System has been successfully modeled to predict their performance under normal operations and emergency conditions. System configurations are changed from the base model by using a command module.

  3. An Integrated Simulation Tool for Modeling the Human Circulatory System

    NASA Astrophysics Data System (ADS)

    Asami, Ken'ichi; Kitamura, Tadashi

    This paper presents an integrated simulation of the circulatory system in physiological movement. The large circulatory system model includes principal organs and functional units in modules in which comprehensive physiological changes such as nerve reflexes, temperature regulation, acid/base balance, O2/CO2 balance, and exercise are simulated. A beat-by-beat heart model, in which the corresponding electrical circuit problems are solved by a numerical analytic method, enables calculation of pulsatile blood flow to the major organs. The integration of different perspectives on physiological changes makes this simulation model applicable for the microscopic evaluation of blood flow under various conditions in the human body.

  4. APPCD - INTEGRATED AIR POLLUTION CONTROL SYSTEM (IAPCS)COST MODEL

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS)Cost Model is a compiled model written in FORTRAN and C language which is designed to be used on an IBM or compatible PC with 640K or lower RAM and at least 1.5 Mb of hard drive space. It was developed over the past several years...

  5. Integrated modeling and systems engineering for the Thirty Meter Telescope

    NASA Astrophysics Data System (ADS)

    Angeli, George Z.; Vogiatzis, Konstantinos; MacMynowski, Doug; Seo, Byoung-Joon; Nissly, Carl; Troy, Mitchell; Cho, Myung

    2011-09-01

    Modeling is an integral part of systems engineering. It is utilized in requirement validation, system verification, as well as for supporting design trade studies. Modeling highly complex systems poses particular challenges, including the definition and interpretation of system performance, and the combined evaluation of physical processes spanning a wide range of time frames. Our solution is based on statistical interpretation of system performance and a unique image quality metric developed by TMT. The Stochastic Framework and Point Source Sensitivity allow us to properly estimate and combine the optical effects of various disturbances and telescope imperfections.

  6. Systems Modeling to Implement Integrated System Health Management Capability

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge F.; Walker, Mark; Morris, Jonathan; Smith, Harvey; Schmalzel, John

    2007-01-01

    ISHM capability includes: detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, and user interfaces that enable integrated awareness (past, present, and future) by users. This is achieved by focused management of data, information and knowledge (DIaK) that will likely be distributed across networks. Management of DIaK implies storage, sharing (timely availability), maintaining, evolving, and processing. Processing of DIaK encapsulates strategies, methodologies, algorithms, etc. focused on achieving high ISHM Functional Capability Level (FCL). High FCL means a high degree of success in detecting anomalies, diagnosing causes, predicting future anomalies, and enabling health integrated awareness by the user. A model that enables ISHM capability, and hence, DIaK management, is denominated the ISHM Model of the System (IMS). We describe aspects of the IMS that focus on processing of DIaK. Strategies, methodologies, and algorithms require proper context. We describe an approach to define and use contexts, implementation in an object-oriented software environment (G2), and validation using actual test data from a methane thruster test program at NASA SSC. Context is linked to existence of relationships among elements of a system. For example, the context to use a strategy to detect leak is to identify closed subsystems (e.g. bounded by closed valves and by tanks) that include pressure sensors, and check if the pressure is changing. We call these subsystems Pressurizable Subsystems. If pressure changes are detected, then all members of the closed subsystem become suspect of leakage. In this case, the context is defined by identifying a subsystem that is suitable for applying a strategy. Contexts are defined in many ways. Often, a context is defined by relationships of function (e.g. liquid flow, maintaining pressure, etc.), form (e.g. part of the same component, connected to other components, etc.), or space (e.g. physically close

  7. Integrated Baseline System (IBS) Version 2.0: Models guide

    SciTech Connect

    Not Available

    1994-03-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool being developed under the direction of the US Army Nuclear and Chemical Agency. This Models Guide summarizes the IBS use of several computer models for predicting the results of emergency situations. These include models for predicting dispersion/doses of airborne contaminants, traffic evacuation, explosion effects, heat radiation from a fire, and siren sound transmission. The guide references additional technical documentation on the models when such documentation is available from other sources. The audience for this manual is chiefly emergency management planners and analysts, but also data managers and system managers.

  8. Integrated Farm System Model: Reference Manual, Version 2.1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Integrated Farm System Model simulates the major biological and physical processes of a crop, beef, or dairy farm. Crop production, feed use, and the return of manure nutrients back to the land are simulated over each of 25 years of weather. Growth and development of alfalfa, grass, corn, soybea...

  9. WFIRST Science Requirements Flowdown and Integrated System Modeling

    NASA Astrophysics Data System (ADS)

    Seiffert, Michael D.

    2012-05-01

    The Wide Field Infrared Survey Telescope (WFIRST) comprises hardware that will perform imaging and spectroscopic near-infrared sky surveys. The surveys will be applicable to a wide range of astrophysical problems; the most challenging performance requirements come from the dark energy and exoplanet observing programs. I will describe the connection between WFIRST scientific requirements and the resulting requirements on the system hardware. In the course of the definition phase, the WFIRST hardware has been the subject of an extensive design and integrated modeling effort. I will describe the integrated modeling effort as an illustration of the design considerations and tradeoffs necessary to reach the ambitious science survey goals.

  10. The integrated Earth System Model Version 1: formulation and functionality

    SciTech Connect

    Collins, William D.; Craig, Anthony P.; Truesdale, John E.; Di Vittorio, Alan; Jones, Andrew D.; Bond-Lamberty, Benjamin; Calvin, Katherine V.; Edmonds, James A.; Kim, Son H.; Thomson, Allison M.; Patel, Pralit L.; Zhou, Yuyu; Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E.; Chini, Louise M.; Hurtt, George C.

    2015-07-23

    The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling in- frastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM project integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a sin- gle simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore- omitted feedbacks between natural and societal drivers, we can improve scientific under- standing of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper de- scribes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.

  11. The integrated Earth system model version 1: formulation and functionality

    DOE PAGESBeta

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; Di Vittorio, A. V.; Jones, A. D.; Bond-Lamberty, B.; Calvin, K. V.; Edmonds, J. A.; Kim, S. H.; Thomson, A. M.; et al

    2015-07-23

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  12. The integrated Earth system model version 1: formulation and functionality

    NASA Astrophysics Data System (ADS)

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; Di Vittorio, A. V.; Jones, A. D.; Bond-Lamberty, B.; Calvin, K. V.; Edmonds, J. A.; Kim, S. H.; Thomson, A. M.; Patel, P.; Zhou, Y.; Mao, J.; Shi, X.; Thornton, P. E.; Chini, L. P.; Hurtt, G. C.

    2015-07-01

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human-Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human-Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.

  13. System performance evaluation of the MAXIM concept with integrated modeling

    NASA Astrophysics Data System (ADS)

    Lieber, Michael D.; Gallagher, Dennis J.; Cash, Webster C.; Shipley, Ann F.

    2003-03-01

    The MAXIM (Mico-Arcsecond X-Ray Imaging Mission) and MAXIM Pathfinder, a technology precursor mission, is considered by NASA as 'visionary missions' in space astronomy. Currently the MAXIM mission design would fly multiple spacecraft in formation, each carrying precision optics, to direct x-rays from an astronomical source to collector and imaging spacecrafts. The mission architecture is complex and provides technical challenges in formaiton flying and external metrology, and target acquisition. To further develop the concept, an integrated model (IM) of the MAXIM and MAXIM Pathfinder was developed. Individual subsystem models from disciplines in structural dynamics, optics, controls, signal processing, detector physics and disturbance modelign are seamlessly integrated into one cohesive model to efficiently support system level trades and analysis. The optical system design is a unique combination of optical concepts and therefore results from the IM were extensively compared with ASAP optical software.

  14. Modeling for Integrated Science Management and Resilient Systems Development

    NASA Technical Reports Server (NTRS)

    Shelhamer, M.; Mindock, J.; Lumpkins, S.

    2014-01-01

    Many physiological, environmental, and operational risks exist for crewmembers during spaceflight. An understanding of these risks from an integrated perspective is required to provide effective and efficient mitigations during future exploration missions that typically have stringent limitations on resources available, such as mass, power, and crew time. The Human Research Program (HRP) is in the early stages of developing collaborative modeling approaches for the purposes of managing its science portfolio in an integrated manner to support cross-disciplinary risk mitigation strategies and to enable resilient human and engineered systems in the spaceflight environment. In this talk, we will share ideas being explored from fields such as network science, complexity theory, and system-of-systems modeling. Initial work on tools to support these explorations will be discussed briefly, along with ideas for future efforts.

  15. A Terrestrial Integrated Modeling System (TIMS) at a catchment scale - implications for Earth System Modeling

    NASA Astrophysics Data System (ADS)

    Niu, G. Y.; Fang, Y.; Wu, R.; Mathias, A.; Paniconi, C.; Troch, P. A. A.; Zeng, X.; Chorover, J.; Monson, R. K.

    2014-12-01

    To enhance our predictive understandings of the interactions between the soil, plants, and air and their integrated behavior at hillslope and catchment scales, we have been developing a Terrestrial Integrated Modeling System (TIMS). TIMS aims to numerically simulate various physical and chemical processes that occur over the Earth's terrestrial surface, e.g., exchanges and flows of energy, water, carbon and other chemicals between and within the soil, plants, and air. TIMS is being compiled from existing models that have arisen from individual scientific communities, including 1) a surface energy, water, and carbon exchange scheme (NoahMP), 2) a 3-dimensional physically-based hydrological model (CATHY), 3) a reactive transport model (CrunchFlow), and 4) an individual-based vegetation dynamics model (ECOTONE). TIMS also integrates newly developed components, e.g., a microbial enzyme based soil organic carbon decomposition model and a solar radiation correction scheme accounting for the effects of terrain shading and slope angle and aspect. We will present the current state of TIMS development and some validations against measurements at various scales, the challenges for developing and evaluating such a complex modeling system, and implications for scaling-up plot-scale processes (e.g., AmeriFlux) to global-scale land surface models for use in Earth System Models (ESMs).

  16. An integrated mathematical model of the cardiovascular and respiratory systems.

    PubMed

    Trenhago, Paulo Roberto; Fernandes, Luciano Gonçalves; Müller, Lucas Omar; Blanco, Pablo Javier; Feijóo, Raúl Antonino

    2016-01-01

    This study presents a lumped model for the human cardiorespiratory system. Specifically, we incorporate a sophisticated gas dissociation and transport system to a fully integrated cardiovascular and pulmonary model. The model provides physiologically consistent predictions in terms of hemodynamic variables such as pressure, flow rate, gas partial pressures, and pH. We perform numerical simulations to evaluate the behavior of the partial pressures of oxygen and carbon dioxide in different vascular and pulmonary compartments. For this, we design the rest condition with low oxygen requirements and carbon dioxide production and exercise conditions with high oxygen demand and carbon dioxide production. Furthermore, model sensitivity to more relevant model parameters is studied. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26198626

  17. Integrated modelling of ecosystem services and energy systems research

    NASA Astrophysics Data System (ADS)

    Agarwala, Matthew; Lovett, Andrew; Bateman, Ian; Day, Brett; Agnolucci, Paolo; Ziv, Guy

    2016-04-01

    The UK Government is formally committed to reducing carbon emissions and protecting and improving natural capital and the environment. However, actually delivering on these objectives requires an integrated approach to addressing two parallel challenges: de-carbonising future energy system pathways; and safeguarding natural capital to ensure the continued flow of ecosystem services. Although both emphasise benefiting from natural resources, efforts to connect natural capital and energy systems research have been limited, meaning opportunities to improve management of natural resources and meet society's energy needs could be missed. The ecosystem services paradigm provides a consistent conceptual framework that applies in multiple disciplines across the natural and economic sciences, and facilitates collaboration between them. At the forefront of the field, integrated ecosystem service - economy models have guided public- and private-sector decision making at all levels. Models vary in sophistication from simple spreadsheet tools to complex software packages integrating biophysical, GIS and economic models and draw upon many fields, including ecology, hydrology, geography, systems theory, economics and the social sciences. They also differ in their ability to value changes in natural capital and ecosystem services at various spatial and temporal scales. Despite these differences, current models share a common feature: their treatment of energy systems is superficial at best. In contrast, energy systems research has no widely adopted, unifying conceptual framework that organises thinking about key system components and interactions. Instead, the literature is organised around modelling approaches, including life cycle analyses, econometric investigations, linear programming and computable general equilibrium models. However, some consistencies do emerge. First, often contain a linear set of steps, from exploration to resource supply, fuel processing, conversion

  18. Integration of a three-dimensional process-based hydrological model into the Object Modeling System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The integration of a spatial process model into an environmental modelling framework can enhance the model’s capabilities. We present the integration of the GEOtop model into the Object Modeling System (OMS) version 3.0 and illustrate its application in a small watershed. GEOtop is a physically base...

  19. Integrating Numerical Groundwater Modeling Results With Geographic Information Systems

    NASA Astrophysics Data System (ADS)

    Witkowski, M. S.; Robinson, B. A.; Linger, S. P.

    2001-12-01

    Many different types of data are used to create numerical models of flow and transport of groundwater in the vadose zone. Results from water balance studies, infiltration models, hydrologic properties, and digital elevation models (DEMs) are examples of such data. Because input data comes in a variety of formats, for consistency the data need to be assembled in a coherent fashion on a single platform. Through the use of a geographic information system (GIS), all data sources can effectively be integrated on one platform to store, retrieve, query, and display data. In our vadoze zone modeling studies in support of Los Alamos National Laboratory's Environmental Restoration Project, we employ a GIS comprised of a Raid storage device, an Oracle database, ESRI's spatial database engine (SDE), ArcView GIS, and custom GIS tools for three-dimensional (3D) analysis. We store traditional GIS data, such as, contours, historical building footprints, and study area locations, as points, lines, and polygons with attributes. Numerical flow and transport model results from the Finite Element Heat and Mass Transfer Code (FEHM) are stored as points with attributes, such as fluid saturation, or pressure, or contaminant concentration at a given location. We overlay traditional types of GIS data with numerical model results, thereby allowing us to better build conceptual models and perform spatial analyses. We have also developed specialized analysis tools to assist in the data and model analysis process. This approach provides an integrated framework for performing tasks such as comparing the model to data and understanding the relationship of model predictions to existing contaminant source locations and water supply wells. Our process of integrating GIS and numerical modeling results allows us to answer a wide variety of questions about our conceptual model design: - Which set of locations should be identified as contaminant sources based on known historical building operations

  20. Integrated modeling of the GMT laser tomography adaptive optics system

    NASA Astrophysics Data System (ADS)

    Piatrou, Piotr

    2014-08-01

    Laser Tomography Adaptive Optics (LTAO) is one of adaptive optics systems planned for the Giant Magellan Telescope (GMT). End-to-end simulation tools that are able to cope with the complexity and computational burden of the AO systems to be installed on the extremely large telescopes such as GMT prove to be an integral part of the GMT LTAO system development endeavors. SL95, the Fortran 95 Simulation Library, is one of the software tools successfully used for the LTAO system end-to-end simulations. The goal of SL95 project is to provide a complete set of generic, richly parameterized mathematical models for key elements of the segmented telescope wavefront control systems including both active and adaptive optics as well as the models for atmospheric turbulence, extended light sources like Laser Guide Stars (LGS), light propagation engines and closed-loop controllers. The library is implemented as a hierarchical collection of classes capable of mutual interaction, which allows one to assemble complex wavefront control system configurations with multiple interacting control channels. In this paper we demonstrate the SL95 capabilities by building an integrated end-to-end model of the GMT LTAO system with 7 control channels: LGS tomography with Adaptive Secondary and on-instrument deformable mirrors, tip-tilt and vibration control, LGS stabilization, LGS focus control, truth sensor-based dynamic noncommon path aberration rejection, pupil position control, SLODAR-like embedded turbulence profiler. The rich parameterization of the SL95 classes allows to build detailed error budgets propagating through the system multiple errors and perturbations such as turbulence-, telescope-, telescope misalignment-, segment phasing error-, non-common path-induced aberrations, sensor noises, deformable mirror-to-sensor mis-registration, vibration, temporal errors, etc. We will present a short description of the SL95 architecture, as well as the sample GMT LTAO system simulation

  1. Pathological gambling and couple: towards an integrative systemic model.

    PubMed

    Cunha, Diana; Relvas, Ana Paula

    2014-06-01

    This article is a critical literature review of pathological gambling focused in the family factors, particularly in the couple dynamics. Its main goal is to develop an explicative integrative systemic model of pathological gambling, based in these couple dynamics. To achieve that aim, a bibliography search was made, using on-line data bases (e.g., EBSCO Host) and recognized books in pathological gambling subject, as well as in the systemic approach in general. This process privileged the recent works (about 70 % of the reviewed literature was published in the last decade), however, also considered some classic works (the oldest one dates back to 1970). The guiding focus of this literature search evolves according to the following steps: (1) search of general comprehension of pathological gambling (19 references), (2) search specification to the subject "pathological gambling and family" (24 references), (3) search specification to the subject "pathological gambling and couple"(11 references), (4) search of systemic information which integrates the evidence resulted in the previous steps (4 references). The developed model is constituted by different levels of systemic complexity (social context, family of origin, couple and individual) and explains the problem as a signal of perturbation in the marital subsystem vital functions (e.g., power and control) though the regularities of marital dynamics of pathological gamblers. Furthermore, it gives theoretical evidence of the systemic familiar intervention in the pathological gambling. PMID:23423730

  2. Advancing coupled human-earth system models: The integrated Earth System Model Project

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Edmonds, J. A.; Collins, W.; Thornton, P. E.; Hurtt, G. C.; Janetos, A. C.; Jones, A.; Mao, J.; Chini, L. P.; Calvin, K. V.; Bond-Lamberty, B. P.; Shi, X.

    2012-12-01

    As human and biogeophysical models develop, opportunities for connections between them evolve and can be used to advance our understanding of human-earth systems interaction in the context of a changing climate. One such integration is taking place with the Community Earth System Model (CESM) and the Global Change Assessment Model (GCAM). A multi-disciplinary, multi-institution team has succeeded in integrating the GCAM integrated assessment model of human activity into CESM to dynamically represent the feedbacks between changing climate and human decision making, in the context of greenhouse gas mitigation policies. The first applications of this capability have focused on the feedbacks between climate change impacts on terrestrial ecosystem productivity and human decisions affecting future land use change, which are in turn connected to human decisions about energy systems and bioenergy production. These experiments have been conducted in the context of the RCP4.5 scenario, one of four pathways of future radiative forcing being used in CMIP5, which constrains future human-induced greenhouse gas emissions from energy and land activities to stabilize radiative forcing at 4.5 W/m2 (~650 ppm CO2 -eq) by 2100. When this pathway is run in GCAM with the climate feedback on terrestrial productivity from CESM, there are implications for both the land use and energy system changes required for stabilization. Early findings indicate that traditional definitions of radiative forcing used in scenario development are missing a critical component of the biogeophysical consequences of land use change and their contribution to effective radiative forcing. Initial full coupling of the two global models has important implications for how climate impacts on terrestrial ecosystems changes the dynamics of future land use change for agriculture and forestry, particularly in the context of a climate mitigation policy designed to reduce emissions from land use as well as energy systems

  3. An integrated model-based neurosurgical guidance system

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Fontaine, Kathryn; Hartov, Alex; Roberts, David; Paulsen, Keith

    2010-02-01

    Maximal tumor resection without damaging healthy tissue in open cranial surgeries is critical to the prognosis for patients with brain cancers. Preoperative images (e.g., preoperative magnetic resonance images (pMR)) are typically used for surgical planning as well as for intraoperative image-guidance. However, brain shift even at the start of surgery significantly compromises the accuracy of neuronavigation, if the deformation is not compensated for. Compensating for brain shift during surgical operation is, therefore, critical for improving the accuracy of image-guidance and ultimately, the accuracy of surgery. To this end, we have developed an integrated neurosurgical guidance system that incorporates intraoperative three-dimensional (3D) tracking, acquisition of volumetric true 3D ultrasound (iUS), stereovision (iSV) and computational modeling to efficiently generate model-updated MR image volumes for neurosurgical guidance. The system is implemented with real-time Labview to provide high efficiency in data acquisition as well as with Matlab to offer computational convenience in data processing and development of graphical user interfaces related to computational modeling. In a typical patient case, the patient in the operating room (OR) is first registered to pMR image volume. Sparse displacement data extracted from coregistered intraoperative US and/or stereovision images are employed to guide a computational model that is based on consolidation theory. Computed whole-brain deformation is then used to generate a model-updated MR image volume for subsequent surgical guidance. In this paper, we present the key modular components of our integrated, model-based neurosurgical guidance system.

  4. Integrated modeling tool for performance engineering of complex computer systems

    NASA Technical Reports Server (NTRS)

    Wright, Gary; Ball, Duane; Hoyt, Susan; Steele, Oscar

    1989-01-01

    This report summarizes Advanced System Technologies' accomplishments on the Phase 2 SBIR contract NAS7-995. The technical objectives of the report are: (1) to develop an evaluation version of a graphical, integrated modeling language according to the specification resulting from the Phase 2 research; and (2) to determine the degree to which the language meets its objectives by evaluating ease of use, utility of two sets of performance predictions, and the power of the language constructs. The technical approach followed to meet these objectives was to design, develop, and test an evaluation prototype of a graphical, performance prediction tool. The utility of the prototype was then evaluated by applying it to a variety of test cases found in the literature and in AST case histories. Numerous models were constructed and successfully tested. The major conclusion of this Phase 2 SBIR research and development effort is that complex, real-time computer systems can be specified in a non-procedural manner using combinations of icons, windows, menus, and dialogs. Such a specification technique provides an interface that system designers and architects find natural and easy to use. In addition, PEDESTAL's multiview approach provides system engineers with the capability to perform the trade-offs necessary to produce a design that meets timing performance requirements. Sample system designs analyzed during the development effort showed that models could be constructed in a fraction of the time required by non-visual system design capture tools.

  5. Short-Termed Integrated Forecasting System: 1993 Model documentation report

    SciTech Connect

    Not Available

    1993-05-01

    The purpose of this report is to define the Short-Term Integrated Forecasting System (STIFS) and describe its basic properties. The Energy Information Administration (EIA) of the US Energy Department (DOE) developed the STIFS model to generate short-term (up to 8 quarters), monthly forecasts of US supplies, demands, imports exports, stocks, and prices of various forms of energy. The models that constitute STIFS generate forecasts for a wide range of possible scenarios, including the following ones done routinely on a quarterly basis: A base (mid) world oil price and medium economic growth. A low world oil price and high economic growth. A high world oil price and low economic growth. This report is written for persons who want to know how short-term energy markets forecasts are produced by EIA. The report is intended as a reference document for model analysts, users, and the public.

  6. Integrating sensorimotor systems in a robot model of cricket behavior

    NASA Astrophysics Data System (ADS)

    Webb, Barbara H.; Harrison, Reid R.

    2000-10-01

    The mechanisms by which animals manage sensorimotor integration and coordination of different behaviors can be investigated in robot models. In previous work the first author has build a robot that localizes sound based on close modeling of the auditory and neural system in the cricket. It is known that the cricket combines its response to sound with other sensorimotor activities such as an optomotor reflex and reactions to mechanical stimulation for the antennae and cerci. Behavioral evidence suggests some ways these behaviors may be integrated. We have tested the addition of an optomotor response, using an analog VLSI circuit developed by the second author, to the sound localizing behavior and have shown that it can, as in the cricket, improve the directness of the robot's path to sound. In particular it substantially improves behavior when the robot is subject to a motor disturbance. Our aim is to better understand how the insect brain functions in controlling complex combinations of behavior, with the hope that this will also suggest novel mechanisms for sensory integration on robots.

  7. Multiscale mechanobiology: computational models for integrating molecules to multicellular systems

    PubMed Central

    Mak, Michael; Kim, Taeyoon

    2015-01-01

    Mechanical signals exist throughout the biological landscape. Across all scales, these signals, in the form of force, stiffness, and deformations, are generated and processed, resulting in an active mechanobiological circuit that controls many fundamental aspects of life, from protein unfolding and cytoskeletal remodeling to collective cell motions. The multiple scales and complex feedback involved present a challenge for fully understanding the nature of this circuit, particularly in development and disease in which it has been implicated. Computational models that accurately predict and are based on experimental data enable a means to integrate basic principles and explore fine details of mechanosensing and mechanotransduction in and across all levels of biological systems. Here we review recent advances in these models along with supporting and emerging experimental findings. PMID:26019013

  8. Research on models of biological systems that can be integrated into mechatronic systems

    NASA Astrophysics Data System (ADS)

    Pop, P. P.; Pop-Vadean, A.; Barz, C.; Latinovic, T.; Chiver, O.

    2016-02-01

    The models of biological systems that we find on Earth can be the subject of research to develop a few mechatronic systems. Such models are offered by bees, ants, crows, cranes, etc. Article aims to investigate these models and their manifestations. Imitating this behavior and studied him offer ideas for develop models that can be integrated into mechatronic systems. They can be integrated into mechatronic system as algorithms for finding local optimum, to search, to detect an optimal way travel on a network, to find best decision, etc.

  9. Applying an integrated neuro-expert system model in a real-time alarm processing system

    NASA Astrophysics Data System (ADS)

    Khosla, Rajiv; Dillon, Tharam S.

    1993-03-01

    In this paper we propose an integrated model which is derived from the combination of a generic neuro-expert system model, an object model, and unix operating system process (UOSP) model. This integrated model reflects the strengths of both artificial neural nets (ANNs) and expert systems (ESs). A formalism of ES object, ANN object, UOSP object, and problem domain object is used for developing a set of generic data structures and methods. These generic data structures and methods help us to build heterogeneous ES-ANN objects with uniform communication interface. The integrated model is applied in a real-time alarm processing system for a non-trivial terminal power station. It is shown how features like hierarchical/distributed ES/ANN objects, inter process communication, and fast concurrent execution help to cope with real-time system constraints like, continuity, data variability, and fast response time.

  10. Tunable neuromimetic integrated system for emulating cortical neuron models.

    PubMed

    Grassia, Filippo; Buhry, Laure; Lévi, Timothée; Tomas, Jean; Destexhe, Alain; Saïghi, Sylvain

    2011-01-01

    Nowadays, many software solutions are currently available for simulating neuron models. Less conventional than software-based systems, hardware-based solutions generally combine digital and analog forms of computation. In previous work, we designed several neuromimetic chips, including the Galway chip that we used for this paper. These silicon neurons are based on the Hodgkin-Huxley formalism and they are optimized for reproducing a large variety of neuron behaviors thanks to tunable parameters. Due to process variation and device mismatch in analog chips, we use a full-custom fitting method in voltage-clamp mode to tune our neuromimetic integrated circuits. By comparing them with experimental electrophysiological data of these cells, we show that the circuits can reproduce the main firing features of cortical cell types. In this paper, we present the experimental measurements of our system which mimic the four most prominent biological cells: fast spiking, regular spiking, intrinsically bursting, and low-threshold spiking neurons into analog neuromimetic integrated circuit dedicated to cortical neuron simulations. This hardware and software platform will allow to improve the hybrid technique, also called "dynamic-clamp," that consists of connecting artificial and biological neurons to study the function of neuronal circuits. PMID:22163213

  11. NREL Wind Integrated System Design and Engineering Model

    SciTech Connect

    Ning, S. Andrew; Scott, George; Graf, Peter

    2013-09-30

    NREL_WISDEM is an integrated model for wind turbines and plants developed In python based on the open source software OpenMDAO. NREL_WISDEM is a set of wrappers for various wind turbine and models that integrate pre-existing models together into OpenMDAO. It is organized into groups each with their own repositories including Plant_CostSE. Plant_EnergySE, Turbine_CostSE and TurbineSE. The wrappers are designed for licensed and non-licensed models though in both cases, one has to have access to and install the individual models themselves before using them in the overall software platform.

  12. Integrating a geographic information system, a scientific visualization system, and a precipitation model

    USGS Publications Warehouse

    Hay, L.E.; Knapp, L.K.

    1996-01-01

    Investigating natural, potential, and human-induced impacts on hydrologic systems commonly requires complex modeling with overlapping data requirements, plus massive amounts of one- to four-dimensional data at multiple scales and formats. Given the complexity of most hydrologic studies, the requisite software infrastructure must incorporate many components including simulation modeling and spatial analysis with a flexible, intuitive display. Integrating geographic information systems (GIS) and scientific visualization systems (SVS) provides such an infrastructure. This paper describes an integrated system consisting of an orographic precipitation model, a GIS, and an SVS. The results of this study provide a basis for improving the understanding of hydro-climatic processes in mountainous regions. An additional benefit of the integrated system, the value of which is often underestimated, is the improved ability to communicate model results, leading to a broader understanding of the model assumptions, sensitivities, and conclusions at a management level.Investigating natural, potential, and human-induced impacts on hydrologic systems commonly requires complex modeling with overlapping data requirements, plus massive amounts of one- to four-dimensional data at multiple scales and formats. Given the complexity of most hydrologic studies, the requisite software infrastructure must incorporate many components including simulation modeling and spatial analysis with a flexible, intuitive display. Integrating geographic information systems (GIS) and scientific visualization systems (SVS) provides such an infrastructure. This paper describes an integrated system consisting of an orographic precipitation model, a GIS, and an SVS. The results of this study provide a basis for improving the understanding of hydro-climatic processes in mountainous regions. An additional benefit of the integrated system, the value of which is often underestimated, is the improved ability to

  13. Nuclear Thermal Rocket - Arc Jet Integrated System Model

    NASA Technical Reports Server (NTRS)

    Taylor, Brian D.; Emrich, William

    2016-01-01

    In the post-shuttle era, space exploration is moving into a new regime. Commercial space flight is in development and is planned to take on much of the low earth orbit space flight missions. With the development of a heavy lift launch vehicle, the Space Launch, System, NASA has become focused on deep space exploration. Exploration into deep space has traditionally been done with robotic probes. More ambitious missions such as manned missions to asteroids and Mars will require significant technology development. Propulsion system performance is tied to the achievability of these missions and the requirements of other developing technologies that will be required. Nuclear thermal propulsion offers a significant improvement over chemical propulsion while still achieving high levels of thrust. Opportunities exist; however, to build upon what would be considered a standard nuclear thermal engine to attain improved performance, thus further enabling deep space missions. This paper discuss the modeling of a nuclear thermal system integrated with an arc jet to further augment performance. The performance predictions and systems impacts are discussed.

  14. Integrated modeling of natural and human systems - problems and initiatives

    NASA Astrophysics Data System (ADS)

    Kessler, H.; Giles, J.; Gunnink, J.; Hughes, A.; Moore, R. V.; Peach, D.

    2009-12-01

    's system, e.g. the flow of groundwater to an abstraction borehole or the availability of water for irrigation. Particular problems arise when model data from two or more disciplines are incompatible in terms of data formats, scientific concepts or language. Other barriers include the cultural segregation within and between science disciplines as well as impediments to data exchange due to ownership and copyright restrictions. OpenMI and GeoSciML are initiatives that are trying to overcome these barriers by building international communities that share vocabularies and data formats. This paper will give examples of the successful merging of geological and hydrological models from the UK and the Netherlands and will introduce the vision of an open Environmental Modelling Platform which aims to link data, knowledge and concepts seamlessly to numerical process models. Last but not least there is an urgent need to create a Subsurface Management System akin to a Geographic Information System in which all results of subsurface modelling can be visualised and analysed in an integrated manner.

  15. Systems integrity in health and aging - an animal model approach

    PubMed Central

    2013-01-01

    Human lifespan is positively correlated with childhood intelligence, as measured by psychometric (IQ) tests. The strength of this correlation is similar to the negative effect that smoking has on the life course. This result suggests that people who perform well on psychometric tests in childhood may remain healthier and live longer. The correlation, however, is debated: is it caused exclusively by social-environmental factors or could it also have a biological component? Biological traits of systems integrity that might result in correlations between brain function and lifespan have been suggested but are not well-established, and it is questioned what useful knowledge can come from understanding such mechanisms. In a recent study, we found a positive correlation between brain function and longevity in honey bees. Honey bees are highly social, but relevant social-environmental factors that contribute to cognition-survival correlations in humans are largely absent from insect colonies. Our results, therefore, suggest a biological explanation for the correlation in the bee. Here, we argue that individual differences in stress handling (coping) mechanisms, which both affect the bees’ performance in tests of brain function and their survival could be a trait of systems integrity. Individual differences in coping are much studied in vertebrates, and several species provide attractive models. Here, we discuss how pigs are an interesting model for studying behavioural, physiological and molecular mechanisms that are recruited during stress and that can drive correlations between health, cognition and longevity traits. By revealing biological factors that make individuals susceptible to stress, it might be possible to alleviate health and longevity disparities in people. PMID:24472488

  16. Systems integrity in health and aging - an animal model approach.

    PubMed

    Oostindjer, Marije; Amdam, Gro V

    2013-01-01

    Human lifespan is positively correlated with childhood intelligence, as measured by psychometric (IQ) tests. The strength of this correlation is similar to the negative effect that smoking has on the life course. This result suggests that people who perform well on psychometric tests in childhood may remain healthier and live longer. The correlation, however, is debated: is it caused exclusively by social-environmental factors or could it also have a biological component? Biological traits of systems integrity that might result in correlations between brain function and lifespan have been suggested but are not well-established, and it is questioned what useful knowledge can come from understanding such mechanisms. In a recent study, we found a positive correlation between brain function and longevity in honey bees. Honey bees are highly social, but relevant social-environmental factors that contribute to cognition-survival correlations in humans are largely absent from insect colonies. Our results, therefore, suggest a biological explanation for the correlation in the bee. Here, we argue that individual differences in stress handling (coping) mechanisms, which both affect the bees' performance in tests of brain function and their survival could be a trait of systems integrity. Individual differences in coping are much studied in vertebrates, and several species provide attractive models. Here, we discuss how pigs are an interesting model for studying behavioural, physiological and molecular mechanisms that are recruited during stress and that can drive correlations between health, cognition and longevity traits. By revealing biological factors that make individuals susceptible to stress, it might be possible to alleviate health and longevity disparities in people. PMID:24472488

  17. Modeling Integrated Farm Systems: A Tool for Developing more Economically and Environmentally Sustainable Farming Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of models have been developed to represent farm systems, but only a few actually integrate all or most of the major biological, physical, and economic processes of a farm. Farm system models are used for decision support, education, and research purposes. Because of differences in the type ...

  18. Integrated dynamic landscape analysis and modeling system (IDLAMS) : programmer's manual.

    SciTech Connect

    Klaus, C. M.; Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

    1999-02-24

    The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

  19. Integrated dynamic landscape analysis and modeling system (IDLAMS) : installation manual.

    SciTech Connect

    Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

    1999-02-24

    The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

  20. Integrated System Modeling for Nuclear Thermal Propulsion (NTP)

    NASA Technical Reports Server (NTRS)

    Ryan, Stephen W.; Borowski, Stanley K.

    2014-01-01

    Nuclear thermal propulsion (NTP) has long been identified as a key enabling technology for space exploration beyond LEO. From Wernher Von Braun's early concepts for crewed missions to the Moon and Mars to the current Mars Design Reference Architecture (DRA) 5.0 and recent lunar and asteroid mission studies, the high thrust and specific impulse of NTP opens up possibilities such as reusability that are just not feasible with competing approaches. Although NTP technology was proven in the Rover / NERVA projects in the early days of the space program, an integrated spacecraft using NTP has never been developed. Such a spacecraft presents a challenging multidisciplinary systems integration problem. The disciplines that must come together include not only nuclear propulsion and power, but also thermal management, power, structures, orbital dynamics, etc. Some of this integration logic was incorporated into a vehicle sizing code developed at NASA's Glenn Research Center (GRC) in the early 1990s called MOMMA, and later into an Excel-based tool called SIZER. Recently, a team at GRC has developed an open source framework for solving Multidisciplinary Design, Analysis and Optimization (MDAO) problems called OpenMDAO. A modeling approach is presented that builds on previous work in NTP vehicle sizing and mission analysis by making use of the OpenMDAO framework to enable modular and reconfigurable representations of various NTP vehicle configurations and mission scenarios. This approach is currently applied to vehicle sizing, but is extensible to optimization of vehicle and mission designs. The key features of the code will be discussed and examples of NTP transfer vehicles and candidate missions will be presented.

  1. Solving system integration and interoperability problems using a model reference systems engineering framework

    NASA Astrophysics Data System (ADS)

    Makhlouf, Mahmoud A.

    2001-09-01

    This paper presents a model-reference systems engineering framework, which is applied on a number of ESC projects. This framework provides an architecture-driven system engineering process supported by a tool kit. This kit is built incrementally using an integrated set of commercial and government developed tools. These tools include project management, systems engineering, military worth-analysis and enterprise collaboration tools. Products developed using these tools enable the specification and visualization of an executable model of the integrated system architecture as it evolves from a low fidelity concept into a high fidelity system model. This enables end users of system products, system designers, and decision-makers; to perform what if analyses on system design alternatives before making costly final system acquisition decisions.

  2. NREL Wind Integrated System Design and Engineering Model

    Energy Science and Technology Software Center (ESTSC)

    2013-09-30

    NREL_WISDEM is an integrated model for wind turbines and plants developed In python based on the open source software OpenMDAO. NREL_WISDEM is a set of wrappers for various wind turbine and models that integrate pre-existing models together into OpenMDAO. It is organized into groups each with their own repositories including Plant_CostSE. Plant_EnergySE, Turbine_CostSE and TurbineSE. The wrappers are designed for licensed and non-licensed models though in both cases, one has to have access to andmore » install the individual models themselves before using them in the overall software platform.« less

  3. Integrating a geographic information system, a scientific visualization system and an orographic precipitation model

    USGS Publications Warehouse

    Hay, L.; Knapp, L.

    1996-01-01

    Investigating natural, potential, and man-induced impacts on hydrological systems commonly requires complex modelling with overlapping data requirements, and massive amounts of one- to four-dimensional data at multiple scales and formats. Given the complexity of most hydrological studies, the requisite software infrastructure must incorporate many components including simulation modelling, spatial analysis and flexible, intuitive displays. There is a general requirement for a set of capabilities to support scientific analysis which, at this time, can only come from an integration of several software components. Integration of geographic information systems (GISs) and scientific visualization systems (SVSs) is a powerful technique for developing and analysing complex models. This paper describes the integration of an orographic precipitation model, a GIS and a SVS. The combination of these individual components provides a robust infrastructure which allows the scientist to work with the full dimensionality of the data and to examine the data in a more intuitive manner.

  4. Integration of Earth System Models and Workflow Management under iRODS for the Northeast Regional Earth System Modeling Project

    NASA Astrophysics Data System (ADS)

    Lengyel, F.; Yang, P.; Rosenzweig, B.; Vorosmarty, C. J.

    2012-12-01

    The Northeast Regional Earth System Model (NE-RESM, NSF Award #1049181) integrates weather research and forecasting models, terrestrial and aquatic ecosystem models, a water balance/transport model, and mesoscale and energy systems input-out economic models developed by interdisciplinary research team from academia and government with expertise in physics, biogeochemistry, engineering, energy, economics, and policy. NE-RESM is intended to forecast the implications of planning decisions on the region's environment, ecosystem services, energy systems and economy through the 21st century. Integration of model components and the development of cyberinfrastructure for interacting with the system is facilitated with the integrated Rule Oriented Data System (iRODS), a distributed data grid that provides archival storage with metadata facilities and a rule-based workflow engine for automating and auditing scientific workflows.

  5. SUSTAIN:Urban Modeling Systems Integrating Optimization and Economics

    EPA Science Inventory

    The System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN) was developed by the U.S. Environmental Protection Agency to support practitioners in developing cost-effective management plans for municipal storm water programs and evaluating and selecting Best Manag...

  6. Integrated model development for liquid fueled rocket propulsion systems

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1993-01-01

    As detailed in the original statement of work, the objective of phase two of this research effort was to develop a general framework for rocket engine performance prediction that integrates physical principles, a rigorous mathematical formalism, component level test data, system level test data, and theory-observation reconciliation. Specific phase two development tasks are defined.

  7. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    SciTech Connect

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  8. Experimental Investigation and Modeling of Integrated Tri-generation Systems

    NASA Astrophysics Data System (ADS)

    Cetinkaya, Eda

    Energy demand in the world is increasing with population growth and higher living standards. Today, the need for energy requires a focus on renewable sources without abandoning fossil fuels. Efficient use of energy is one of the most important tasks in modern energy systems to achieve. In addition to the energy need, growing environmental concerns are linked with energy is emerged. Multi-purpose energy generation allows a higher efficiency by generating more outputs with the same input in the same system. Tri-generation systems are expected to provide at least three commodities, such as heating, cooling, desalination, storable fuel production and some other useful outputs, in addition to power generation. In this study, an experimental investigation of gasification is presented and two integrated tri-generation systems are proposed. The first integrated tri-generation system (System 1) utilizes solar energy as input and the outputs are power, fresh water and hot water. It consists of four sub-systems, namely solar power tower system, desalination system, Rankine cycle and organic Rankine cycle (ORC). The second integrated tri-generation system (System 2) utilizes coal and biomass as input and the outputs are power, fuel and hot water. It consists of five sub-systems: gasification plant, Brayton cycle, Rankine cycle, Fischer-Tropsch synthesis plant and an organic Rankine cycle (ORC). Experimental investigation includes coal and biomass gasification, where the experimental results of synthesis gas compositions are utilized in the analysis of the second systems. To maximize efficiency, heat losses from the system should be minimized through a recovery system to make the heat a useful commodity for other systems, such as ORCs which can utilize the low-grade heat. In this respect, ORCs are first analyzed for three different configurations in terms of energy and exergy efficiencies altering working fluids to increase the power output. Among two types of coal and one type

  9. System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation: Preprint

    SciTech Connect

    Mittal, Saurabh; Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Krishnamurthy, Dheepak; Jones, Wesley

    2015-08-21

    Today’s electricity grid is the most complex system ever built—and the future grid is likely to be even more complex because it will incorporate distributed energy resources (DERs) such as wind, solar, and various other sources of generation and energy storage. The complexity is further augmented by the possible evolution to new retail market structures that provide incentives to owners of DERs to support the grid. To understand and test new retail market structures and technologies such as DERs, demand-response equipment, and energy management systems while providing reliable electricity to all customers, an Integrated Energy System Model (IESM) is being developed at NREL. The IESM is composed of a power flow simulator (GridLAB-D), home energy management systems implemented using GAMS/Pyomo, a market layer, and hardware-in-the-loop simulation (testing appliances such as HVAC, dishwasher, etc.). The IESM is a system-of-systems (SoS) simulator wherein the constituent systems are brought together in a virtual testbed. We will describe an SoS approach for developing a distributed simulation environment. We will elaborate on the methodology and the control mechanisms used in the co-simulation illustrated by a case study.

  10. Enhancement of Integrated Power System Analysis Package Capability by Integration of Object-Oriented Physical System Modeling Language

    NASA Astrophysics Data System (ADS)

    Hongesombut, Komsan; Takazawa, Tsuyoshi; Tada, Yasuyuki; Mitani, Yasunori

    There are many commercial power system analysis packages available on the market. Although most of these tools are typically computationally efficient, they do not provide the flexibility and ability to simulate generic models of generators or networks. This is cumbersome for research and development purposes. The development of power system models of appropriate fidelity is a key aspect of power system simulation processes. The models must allow all relevant multi-disciplinary modeling criteria, e.g. model structure and data handling, to be computed efficiently, easily, and with sufficient accuracy. This paper presents how the adoption of recent technology on object-oriented physical systems modeling can be implemented with an integrated power system analysis package MidFielder. Used in combination with MidFielder, this can provide the completeness of power system analysis package for industrial, educational and research purposes. In order to realize the proposed interface system, this paper also discusses about methods to manage a large set of power system data by using database technology and means of graphical user interface (GUI).

  11. A Model for Integration and Interlinking of Idea Management Systems

    NASA Astrophysics Data System (ADS)

    Westerski, Adam; Iglesias, Carlos A.; Rico, Fernando Tapia

    This paper introduces the use of Semantic Web technologies for the Idea Management Systems as a gap closer between heterogeneous software and achieving interoperability. We present a model that proposes how and what kind of rich metadata annotations to apply in the domain of Idea Management Systems. In addition, as a part of our model, we present a Generic Idea and Innovation Management Ontology (GI2MO). The described model is backed by a set of use cases followed by evaluations that prove how Semantic Web can work as tool to create new opportunities and leverage the contemporary Idea Management legacy systems into the next level.

  12. Combining multimedia models with integrated urban water system models for micropollutants.

    PubMed

    De Keyser, W; Gevaert, V; Verdonck, F; Nopens, I; De Baets, B; Vanrolleghem, P A; Mikkelsen, P S; Benedetti, L

    2010-01-01

    Integrated urban water system (IUWS) modeling aims at assessing the quality of the surface water receiving the urban emissions through sewage treatment plants, combined sewer overflows (CSOs) and stormwater drainage systems. However, some micropollutants tend to appear in more than one environmental medium (air, water, sediment, soil, groundwater, etc.). In this work, a multimedia fate and transport model (MFTM) is "wrapped around" a dynamic IUWS model for organic micropollutants to enable integrated environmental assessment. The combined model was tested on a hypothetical catchment using two scenarios: on the one hand a reference scenario with a combined sewerage system and on the other hand a stormwater infiltration pond scenario, as an example of a sustainable urban drainage system (SUDS). A case for Bis(2-ethylhexyl) phthalate (DEHP) was simulated and resulted in reduced surface water concentrations for the latter scenario. However, the model also showed that this was at the expense of increased fluxes to air, groundwater and infiltration pond soil. The latter effects are generally not included in IUWS models, whereas MTFMs usually do not consider dynamic surface water concentrations,; hence the combined model approach provides a better basis for integrated environmental assessment of micropollutants' fate in urban environments. PMID:20935380

  13. The Integrated WRF/Urban Modeling System: Development, Evaluation, and Applications to Urban Environmental Problems

    EPA Science Inventory

    To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and fore...

  14. Interactive Schematic Integration Within the Propellant System Modeling Environment

    NASA Technical Reports Server (NTRS)

    Coote, David; Ryan, Harry; Burton, Kenneth; McKinney, Lee; Woodman, Don

    2012-01-01

    Task requirements for rocket propulsion test preparations of the test stand facilities drive the need to model the test facility propellant systems prior to constructing physical modifications. The Propellant System Modeling Environment (PSME) is an initiative designed to enable increased efficiency and expanded capabilities to a broader base of NASA engineers in the use of modeling and simulation (M&S) technologies for rocket propulsion test and launch mission requirements. PSME will enable a wider scope of users to utilize M&S of propulsion test and launch facilities for predictive and post-analysis functionality by offering a clean, easy-to-use, high-performance application environment.

  15. An integrated mathematical model of the human cardiopulmonary system: model development.

    PubMed

    Albanese, Antonio; Cheng, Limei; Ursino, Mauro; Chbat, Nicolas W

    2016-04-01

    Several cardiovascular and pulmonary models have been proposed in the last few decades. However, very few have addressed the interactions between these two systems. Our group has developed an integrated cardiopulmonary model (CP Model) that mathematically describes the interactions between the cardiovascular and respiratory systems, along with their main short-term control mechanisms. The model has been compared with human and animal data taken from published literature. Due to the volume of the work, the paper is divided in two parts. The present paper is on model development and normophysiology, whereas the second is on the model's validation on hypoxic and hypercapnic conditions. The CP Model incorporates cardiovascular circulation, respiratory mechanics, tissue and alveolar gas exchange, as well as short-term neural control mechanisms acting on both the cardiovascular and the respiratory functions. The model is able to simulate physiological variables typically observed in adult humans under normal and pathological conditions and to explain the underlying mechanisms and dynamics. PMID:26683899

  16. HyPEP FY-07 Report: System Integration Model Development

    SciTech Connect

    C. H. Oh; E. S. Kim; S. R. Sherman; R. Vilim

    2007-04-01

    The integrated system of a Very High Temperature Gas-Cooled Reactor (VHTR) and a High Temperature Steam Electrolysis (HTSE) process is one of systems being investigated by the U.S. Department of Energy and Idaho National Laboratory. This system will produce hydrogen by utilizing a highly efficient VHTR with an outlet temperature of 900 °C and supplying necessary energy and electricity to the HTSE process for electrolysis of high temperature steam. This report includes a description of five configurations including an indirect parallel cycle, an indirect serial cycle, a direct serial cycle, a steam combined cycle, and a reheat cycle. HYSYS simulations were performed for each of these configurations coupled to a HTSE process. Final results are presented along with parametric studies and process optimization.

  17. Mussels as a model system for integrative ecomechanics.

    PubMed

    Carrington, Emily; Waite, J Herbert; Sarà, Gianluca; Sebens, Kenneth P

    2015-01-01

    Mussels form dense aggregations that dominate temperate rocky shores, and they are key aquaculture species worldwide. Coastal environments are dynamic across a broad range of spatial and temporal scales, and their changing abiotic conditions affect mussel populations in a variety of ways, including altering their investments in structures, physiological processes, growth, and reproduction. Here, we describe four categories of ecomechanical models (biochemical, mechanical, energetic, and population) that we have developed to describe specific aspects of mussel biology, ranging from byssal attachment to energetics, population growth, and fitness. This review highlights how recent advances in these mechanistic models now allow us to link them together across molecular, material, organismal, and population scales of organization. This integrated ecomechanical approach provides explicit and sometimes novel predictions about how natural and farmed mussel populations will fare in changing climatic conditions. PMID:25195867

  18. Mussels as a Model System for Integrative Ecomechanics

    NASA Astrophysics Data System (ADS)

    Carrington, Emily; Waite, J. Herbert; Sarà, Gianluca; Sebens, Kenneth P.

    2015-01-01

    Mussels form dense aggregations that dominate temperate rocky shores, and they are key aquaculture species worldwide. Coastal environments are dynamic across a broad range of spatial and temporal scales, and their changing abiotic conditions affect mussel populations in a variety of ways, including altering their investments in structures, physiological processes, growth, and reproduction. Here, we describe four categories of ecomechanical models (biochemical, mechanical, energetic, and population) that we have developed to describe specific aspects of mussel biology, ranging from byssal attachment to energetics, population growth, and fitness. This review highlights how recent advances in these mechanistic models now allow us to link them together across molecular, material, organismal, and population scales of organization. This integrated ecomechanical approach provides explicit and sometimes novel predictions about how natural and farmed mussel populations will fare in changing climatic conditions.

  19. System model of a natural circulation integral test facility

    NASA Astrophysics Data System (ADS)

    Galvin, Mark R.

    The Department of Nuclear Engineering and Radiation Health Physics (NE/RHP) at Oregon State University (OSU) has been developing an innovative modular reactor plant concept since being initiated with a Department of Energy (DoE) grant in 1999. This concept, the Multi-Application Small Light Water Reactor (MASLWR), is an integral pressurized water reactor (PWR) plant that utilizes natural circulation flow in the primary and employs advanced passive safety features. The OSU MASLWR test facility is an electrically heated integral effects facility, scaled from the MASLWR concept design, that has been previously used to assess the feasibility of the concept design safety approach. To assist in evaluating operational scenarios, a simulation tool that models the test facility and is based on both test facility experimental data and analytical methods has been developed. The tool models both the test facility electric core and a simulated nuclear core, allowing evaluation of a broad spectrum of operational scenarios to identify those scenarios that should be explored experimentally using the test facility or design-quality multi-physics tools. Using the simulation tool, the total cost of experimentation and analysis can be reduced by directing time and resources towards the operational scenarios of interest.

  20. Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling

    NASA Astrophysics Data System (ADS)

    Thakur, Jay Krishna; Singh, Sudhir Kumar; Ekanthalu, Vicky Shettigondahalli

    2016-03-01

    Integration of remote sensing (RS), geographic information systems (GIS) and global positioning system (GPS) are emerging research areas in the field of groundwater hydrology, resource management, environmental monitoring and during emergency response. Recent advancements in the fields of RS, GIS, GPS and higher level of computation will help in providing and handling a range of data simultaneously in a time- and cost-efficient manner. This review paper deals with hydrological modeling, uses of remote sensing and GIS in hydrological modeling, models of integrations and their need and in last the conclusion. After dealing with these issues conceptually and technically, we can develop better methods and novel approaches to handle large data sets and in a better way to communicate information related with rapidly decreasing societal resources, i.e. groundwater.

  1. A coupled and workflow integrated modeling system applications for earth system science

    NASA Astrophysics Data System (ADS)

    Utku Turuncoglu, Ufuk; Dalfes, Nuzhet; Murphy, Sylvia; Deluca, Cecelia

    2010-05-01

    The complexity of earth system models and their applications are getting increase because of the continued development of computational resources, storage systems and distributed high-resolution observation networks. Therefore, the multi component earth system models that are used to develop these applications need to be designed in a new programming approach to make easy interaction among those model components and in between other third party applications. For this purpose, the common interfaces of earth system models can be standardized and also self-describing modeling systems can be built to increase interoperability between models and third party applications such as workflow systems, metadata/data portals, web services and scientific gateways. Fortunately, many efforts are currently underway to create standardized and easy to use multi-component earth system models and their applications such as Earth System Curator and Earth System Framework (ESMF). In this study, it is presented and analyzed a new methodology to combine scientific workflow and modeling framework approach together to create a standardized work environment. The methodology uses the ESMF library to create and self-describing and standardized coupled modeling systems and Kepler scientific workflow application to integrate modeling system to a workflow environment. The proposed methodology is tested using two typical and realistic earth system modeling application. The results of example workflows that are based on the proposed methodology are a part of this study. The first example allows running and analyzing a global circulation model on both a grid computing environment (TeraGrid) and a cluster system with meaningful abstraction of used model and computing environment. The development version of NCAR Community Climate System Model (CCSM4) model is used for this purpose. In this application example, the collection of provenance information has the added benefit of documenting a run in far

  2. Integrated Multimedia Modeling System Response to Regional Land Management Change

    EPA Science Inventory

    A multi-media system of nitrogen and co-pollutant models describing critical physical and chemical processes that cascade synergistically and competitively through the environment, the economy and society has been developed at the USEPA Office of research and development. It is ...

  3. Laboratory-Model Integrated-System FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K.A.; Best, S.; Miller, R.; Rose, M.F.; Owens, T.

    2008-01-01

    Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a plasma current sheet in propellant located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current with an induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster [1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism in this manner allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those found in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). In a previous paper [3], the authors presented a basic design for a 100 J/pulse FARAD laboratory-version thruster. The design was based upon guidelines and performance scaling parameters presented in Refs. [4, 5]. In this paper, we expand upon the design presented in Ref. [3] by presenting a fully-assembled and operational FARAD laboratory-model thruster and addressing system and subsystem-integration issues (concerning mass injection, preionization, and acceleration) that arose during assembly. Experimental data quantifying the operation of this thruster, including detailed internal plasma measurements, are presented by the authors in a companion paper [6]. The thruster operates by first injecting neutral gas over the face of a flat, inductive acceleration coil and at some later time preionizing the gas. Once the gas is preionized current is passed through the acceleration coil, inducing a plasma current sheet in the propellant that is accelerated away from the coil through electromagnetic interaction with the time-varying magnetic field

  4. Computer-aided operations engineering with integrated models of systems and operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.

  5. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    SciTech Connect

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  6. Modelling Complex Systems by Integration of Agent-Based and Dynamical Systems Models

    NASA Astrophysics Data System (ADS)

    Bosse, Tibor; Sharpanskykh, Alexei; Treur, Jan

    Existing models for complex systems are often based on quantitative, numerical methods such as Dynamical Systems Theory (DST) [Port and Gelder 1995]. Such approaches often use numerical variables to describe global aspects and specify how they affect each other over time. An advantage of such approaches is that numerical approximation methods and software are available for simulation.

  7. Integrating Geohydrological Models In ATES-Systems Control

    NASA Astrophysics Data System (ADS)

    Bloemendal, Martin

    2015-04-01

    1) Purpose. Accomplish optimal and sustainable use of subsurface for Aquifer Thermal Energy Storage (ATES). 2) Scope. A heat pump in combination with an ATES system can efficiently and sustainably provide heating and cooling for user comfort within buildings. ATES systems are popular in moderate climate in which ATES systems are exploited as they are able to save primary energy. While storing warm and cold groundwater, ATES systems occupy a significant amount of the subsurface space, making that the space in the aquifers below cities is becoming scarce [1]. With the rapid growth of the number of ATES systems, the use of the subsurface intensifies, which raises additional questions regarding its sustainability and the long term profitability of the individual systems. In practice considerable difficulties regarding A) the performance of these installations and B) optimal and sustainable use of the subsurface are met. 3) Approach. Recently it was confirmed [2] that ATES systems can be placed closer to each other with limited effect on their energy efficiency. By placing them closer together we introduce the risk of a tragedy of the commons [3]. Therefore it is of importance to know where the warm and cold zones are over time and enable ATES-controllers to use the subsurface optimal and sustainably. From the field of multi agent systems and complex adaptive systems we use approaches and techniques to make an operation and control system that enables to adapt their control not only based on current demand, but also on current aquifer status and expected future demand. We are developing a numerical groundwater model structure which is fed with operational data of different ATES-systems. While doing this we run into challenges and opportunities like; spatial and temporal scale issues, sustaining the storage with balancing thermal storage and extraction at area level, dynamics and relation between hydrological and thermal influence and consequences for spreading of

  8. ENEL overall PWR plant models and neutronic integrated computing systems

    SciTech Connect

    Pedroni, G.; Pollachini, L.; Vimercati, G.; Cori, R.; Pretolani, F.; Spelta, S.

    1987-01-01

    To support the design activity of the Italian nuclear energy program for the construction of pressurized water reactors, the Italian Electricity Board (ENEL) needs to verify the design as a whole (that is, the nuclear steam supply system and balance of plant) both in steady-state operation and in transient. The ENEL has therefore developed two computer models to analyze both operational and incidental transients. The models, named STRIP and SFINCS, perform the analysis of the nuclear as well as the conventional part of the plant (the control system being properly taken into account). The STRIP model has been developed by means of the French (Electricite de France) modular code SICLE, while SFINCS is based on the Italian (ENEL) modular code LEGO. STRIP validation was performed with respect to Fessenheim French power plant experimental data. Two significant transients were chosen: load step and total load rejection. SFINCS validation was performed with respect to Saint-Laurent French power plant experimental data and also by comparing the SFINCS-STRIP responses.

  9. Integrated wetland management: an analysis with group model building based on system dynamics model.

    PubMed

    Chen, Hsin; Chang, Yang-Chi; Chen, Kung-Chen

    2014-12-15

    The wetland system possesses diverse functions such as preserving water sources, mediating flooding, providing habitats for wildlife and stabilizing coastlines. Nonetheless, rapid economic growth and the increasing population have significantly deteriorated the wetland environment. To secure the sustainability of the wetland, it is essential to introduce integrated and systematic management. This paper examines the resource management of the Jiading Wetland by applying group model building (GMB) and system dynamics (SD). We systematically identify local stakeholders' mental model regarding the impact brought by the yacht industry, and further establish a SD model to simulate the dynamic wetland environment. The GMB process improves the stakeholders' understanding about the interaction between the wetland environment and management policies. Differences between the stakeholders' perceptions and the behaviors shown by the SD model also suggest that our analysis would facilitate the stakeholders to broaden their horizons and achieve consensus on the wetland resource management. PMID:25194518

  10. Improving reservoir operations modeling for integration in a regional Earth system model

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Li, H.; Ward, D. L.; Huang, M.; Leung, L.; Wigmosta, M. S.

    2012-12-01

    In integrated Earth system models (EaSMs), accurate hydrologic information in all of its components including socio-economy, atmosphere, land, and energy infrastructure is needed to represent the interactions between human and Earth system processes. The hydrology processes regulate the water, energy and carbon fluxes in this integrated framework. Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of EaSMs in hydrologic and climate predictions, as well as impact studies such as integrated assessment activities at regional to global scales. Dynamic programming approaches to optimize operations of reservoir systems have been widely used for water resources management planning at local and regional scales and recently have emerged in global-scale applications; albeit they are performed offline from the EaSMs , and require accurate knowledge of future flow for the upcoming water year. Other emerging large-scale research reservoir models use generic operating rules that are more flexible for coupling with EaSMs. Those generic operating rules have been successful in reproducing overall regulated flow at large basin scales. Improved generic operating rules are presented and evaluated across multiple spatial scales and objectives (flow but also storage and supply) over the complex multi-objective Columbia River Regulation System, which is representative of large river systems with increasing competitive reservoir purposes in the future. Challenges due to the difference in time and spatial scales between the physical processes versus reservoir operations and targets (irrigation, flood control, hydropower, environmental flow, navigation) are then discussed in the context of improving hydrology and evapotranspiration fluxes within an integrated EaSM.

  11. High-resolution modelling of health impacts from air pollution using the integrated model system EVA

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Jensen, Steen S.; Ketzel, Matthias; Plejdrup, Marlene S.; Sigsgaard, Torben; Silver, Jeremy D.

    2014-05-01

    A high-resolution assessment of health impacts from air pollution and related external cost has been conducted for Denmark using the integrated EVA model system. The EVA system has been further developed by implementing an air quality model with a 1 km x 1 km resolution covering the whole of Denmark. New developments of the integrated model system will be presented as well as results for health impacts and related external costs over several decades. Furthermore, the sensitivity of health impacts to model resolution will be studied. We have developed an integrated model system EVA (Economic Valuation of Air pollution), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. In Brandt et al. (2013a; 2013b), the EVA system was used to assess the impacts in Europe and Denmark from the past, present and future total air pollution levels as well as the contribution from the major anthropogenic emission sectors. The EVA system was applied using the hemispheric chemistry-transport model, the Danish Eulerian Hemispheric Model (DEHM), with nesting capability for higher resolution over Europe (50 km x 50 km) and Northern Europe (16.7 km x 16.7 km). In this study an Urban Background Model (UBM) has been further developed to cover the whole of Denmark with a 1 km x 1 km resolution and the model has been implemented as a part of the integrated model system, EVA. The EVA system is based on the impact-pathway methodology. The site-specific emissions will result (via atmospheric transport and chemistry) in a concentration distribution, which together with detailed population data, are used to estimate the population-level exposure. Using exposure-response functions and economic valuations, the exposure is transformed into impacts on human health and related external costs. In this study

  12. Global water resources modeling with an integrated model of the social-economic-environmental system

    NASA Astrophysics Data System (ADS)

    Davies, Evan G. R.; Simonovic, Slobodan P.

    2011-06-01

    Awareness of increasing water scarcity has driven efforts to model global water resources for improved insight into water resources infrastructure and management strategies. Most water resources models focus explicitly on water systems and represent socio-economic and environmental change as external drivers. In contrast, the system dynamics-based integrated assessment model employed here, ANEMI, incorporates dynamic representations of these systems, so that their broader changes affect and are affected by water resources systems through feedbacks. Sectors in ANEMI therefore include the global climate system, carbon cycle, economy, population, land use and agriculture, and novel versions of the hydrological cycle, global water use and water quality. Since the model focus is on their interconnections through explicit nonlinear feedbacks, simulations with ANEMI provide insight into the nature and structure of connections between water resources and socio-economic and environmental change. Of particular interest to water resources researchers and modelers will be the simulated effects of a new water stress definition that incorporates both water quality and water quantity effects into the measurement of water scarcity. Five simulation runs demonstrate the value of wastewater treatment and reuse programs and the feedback-effects of irrigated agriculture and greater consumption of animal products.

  13. Model documentation report: Short-term Integrated Forecasting System demand model 1985. [(STIFS)

    SciTech Connect

    Not Available

    1985-07-01

    The Short-Term Integrated Forecasting System (STIFS) Demand Model consists of a set of energy demand and price models that are used to forecast monthly demand and prices of various energy products up to eight quarters in the future. The STIFS demand model is based on monthly data (unless otherwise noted), but the forecast is published on a quarterly basis. All of the forecasts are presented at the national level, and no regional detail is available. The model discussed in this report is the April 1985 version of the STIFS demand model. The relationships described by this model include: the specification of retail energy prices as a function of input prices, seasonal factors, and other significant variables; and the specification of energy demand by product as a function of price, a measure of economic activity, and other appropriate variables. The STIFS demand model is actually a collection of 18 individual models representing the demand for each type of fuel. The individual fuel models are listed below: motor gasoline; nonutility distillate fuel oil, (a) diesel, (b) nondiesel; nonutility residual fuel oil; jet fuel, kerosene-type and naphtha-type; liquefied petroleum gases; petrochemical feedstocks and ethane; kerosene; road oil and asphalt; still gas; petroleum coke; miscellaneous products; coking coal; electric utility coal; retail and general industry coal; electricity generation; nonutility natural gas; and utility petroleum. The demand estimates produced by these models are used in the STIFS integrating model to produce a full energy balance of energy supply, demand, and stock change. These forecasts are published quarterly in the Outlook. Details of the major changes in the forecasting methodology and an evaluation of previous forecast errors are presented once a year in Volume 2 of the Outlook, the Methodology publication.

  14. MODEL ENGINEERING CONCEPTS FOR AIR QUALITY MODELS IN AN INTEGRATED ENVIRONMENTAL MODELING SYSTEM

    EPA Science Inventory

    Models 3 is an extensible environmental modeling system designed to meet the research and regulatory needs of the EPA and other users into the twenty-first century. s such, it must deal with a number of problems. hese problems include (1) the scientific correctness, flexibility, ...

  15. An integrated model of the Space Station Freedom active thermal control system

    NASA Technical Reports Server (NTRS)

    Tandler, John J.; Bilardo, Vincent J., Jr.

    1989-01-01

    A flexible, generic model of the Space Station Freedom active thermal control system has been developed which is designed to analyze dynamic interactions of the major subsystems of the ATCS. Models are described for the components of the central thermal bus, the radiator external thermal environment, and the internal thermal control system. Two programs are described which facilitate the development of the integrated ATCS model. The first, SIMRAD, simplifies an external thermal environment model given a desired level of accuracy in integrated model performance. The model reduction technique is shown to reduce model execution time significantly while maintaining the desired accuracy. The second, GENFLU, generates SINDA/FLUINT input code for the evaporator and load interface models and automates the integration of load submodels. The component submodels and integration techniques were used to create an integrated model of the thermal control system for an early assembly flight configuration. The results demonstrate the utility of the integrated model in studying dynamic interactions of the ATCS subsystems.

  16. Integrating Safety and Mission Assurance into Systems Engineering Modeling Practices

    NASA Technical Reports Server (NTRS)

    Beckman, Sean; Darpel, Scott

    2015-01-01

    During the early development of products, flight, or experimental hardware, emphasis is often given to the identification of technical requirements, utilizing such tools as use case and activity diagrams. Designers and project teams focus on understanding physical and performance demands and challenges. It is typically only later, during the evaluation of preliminary designs that a first pass, if performed, is made to determine the process, safety, and mission quality assurance requirements. Evaluation early in the life cycle, though, can yield requirements that force a fundamental change in design. This paper discusses an alternate paradigm for using the concepts of use case or activity diagrams to identify safety hazard and mission quality assurance risks and concerns using the same systems engineering modeling tools being used to identify technical requirements. It contains two examples of how this process might be used in the development of a space flight experiment, and the design of a Human Powered Pizza Delivery Vehicle, along with the potential benefits to decrease development time, and provide stronger budget estimates.

  17. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  18. Health Promotion Dissemination and Systems Thinking: Towards an Integrative Model

    ERIC Educational Resources Information Center

    Best, Allan; Moor, Gregg; Holmes, Bev; Clark, Pamela I.; Bruce, Ted; Leischow, Scott; Buchholz, Kaye; Krajnak, Judith

    2003-01-01

    Objective:: To help close the gap between health promotion research and practice by using systems thinking. Methods: We review 3 national US tobacco control initiatives and a project (ISIS) that has introduced systems thinking to tobacco control, speculating on ways in which systems thinking may add value to health promotion dissemination and…

  19. Computer-aided-engineering system for modeling and analysis of ECLSS integration testing

    NASA Technical Reports Server (NTRS)

    Sepahban, Sonbol

    1987-01-01

    The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.

  20. Stochastic modeling of coal gasification combined cycle systems: Cost models for selected integrated gasification combined cycle (IGCC) systems

    SciTech Connect

    Frey, H.C.; Rubin, E.S.

    1990-06-01

    This report documents cost models developed for selected integrated gasification combined cycle (IGCC) systems. The objective is to obtain a series of capital and operating cost models that can be integrated with an existing set of IGCC process performance models developed at the US Department of Energy Morgantown Energy Technology Center. These models are implemented in ASPEN, a Fortran-based process simulator. Under a separate task, a probabilistic modeling capability has been added to the ASPEN simulator, facilitating analysis of uncertainties in new process performance and cost (Diwekar and Rubin, 1989). One application of the cost models presented here is to explicitly characterize uncertainties in capital and annual costs, supplanting the traditional approach of incorporating uncertainty via a contingency factor. The IGCC systems selected by DOE/METC for cost model development include the following: KRW gasifier with cold gas cleanup; KRW gasifier with hot gas cleanup; and Lurgi gasifier with hot gas cleanup. For each technology, the cost model includes both capital and annual costs. The capital cost models estimate the costs of each major plant section as a function of key performance and design parameters. A standard cost method based on the Electric Power Research Institute (EPRI) Technical Assessment Guide (1986) was adopted. The annual cost models are based on operating and maintenance labor requirements, maintenance material requirements, the costs of utilities and reagent consumption, and credits from byproduct sales. Uncertainties in cost parameters are identified for both capital and operating cost models. Appendices contain cost models for the above three IGCC systems, a number of operating trains subroutines, range checking subroutines, and financial subroutines. 88 refs., 69 figs., 21 tabs.

  1. Integration of agricultural and energy system models for biofuel assessment

    EPA Science Inventory

    This paper presents a coupled modeling framework to capture the dynamic linkages between agricultural and energy markets that have been enhanced through the expansion of biofuel production, as well as the environmental impacts resulting from this expansion. The framework incorpor...

  2. Integrated Thermal Response Modeling System For Hypersonic Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Milos, F. S.; Partridge, Harry (Technical Monitor)

    2000-01-01

    We describe all extension of the Markov decision process model in which a continuous time dimension is included ill the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.

  3. Modeling water resource systems within the framework of the MIT Integrated Global System Model: IGSM-WRS

    NASA Astrophysics Data System (ADS)

    Strzepek, Kenneth; Schlosser, Adam; Gueneau, Arthur; Gao, Xiang; Blanc, Élodie; Fant, Charles; Rasheed, Bilhuda; Jacoby, Henry D.

    2013-07-01

    Through the integration of a water resource system (WRS) component, the MIT Integrated Global System Model (IGSM) framework has been enhanced to study the effects of climate change on managed water-resource systems. Development of the WRS involves the downscaling of temperature and precipitation from the zonal representation of the IGSM to regional (latitude-longitude) scale, and the translation of the resulting surface hydrology to runoff at the scale of river basins, referred to as assessment subregions (ASRs). The model of water supply is combined with analysis of water use in agricultural and nonagricultural sectors and with a model of water system management that allocates water among uses and over time and routes water among ASRs. Results of the IGSM-WRS framework include measures of water adequacy and ways it is influenced by climate change. Here we document the design of WRS and its linkage to other components of the IGSM and present tests of consistency of model simulation with the historical record.

  4. Integrated cumulus ensemble and turbulence (ICET): An integrated parameterization system for general circulation models (GCMs)

    SciTech Connect

    Evans, J.L.; Frank, W.M.; Young, G.S.

    1996-04-01

    Successful simulations of the global circulation and climate require accurate representation of the properties of shallow and deep convective clouds, stable-layer clouds, and the interactions between various cloud types, the boundary layer, and the radiative fluxes. Each of these phenomena play an important role in the global energy balance, and each must be parameterized in a global climate model. These processes are highly interactive. One major problem limiting the accuracy of parameterizations of clouds and other processes in general circulation models (GCMs) is that most of the parameterization packages are not linked with a common physical basis. Further, these schemes have not, in general, been rigorously verified against observations adequate to the task of resolving subgrid-scale effects. To address these problems, we are designing a new Integrated Cumulus Ensemble and Turbulence (ICET) parameterization scheme, installing it in a climate model (CCM2), and evaluating the performance of the new scheme using data from Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Testbed (CART) sites.

  5. The LISA Integrated Model

    NASA Technical Reports Server (NTRS)

    Merkowitz, Stephen M.

    2002-01-01

    The Laser Interferometer Space Antenna (LISA) space mission has unique needs that argue for an aggressive modeling effort. These models ultimately need to forecast and interrelate the behavior of the science input, structure, optics, control systems, and many other factors that affect the performance of the flight hardware. In addition, many components of these integrated models will also be used separately for the evaluation and investigation of design choices, technology development and integration and test. This article presents an overview of the LISA integrated modeling effort.

  6. Limitations of Western Medicine and Models of Integration Between Medical Systems.

    PubMed

    Attena, Francesco

    2016-05-01

    This article analyzes two major limitations of Western medicine: maturity and incompleteness. From this viewpoint, Western medicine is considered an incomplete system for the explanation of living matter. Therefore, through appropriate integration with other medical systems, in particular nonconventional approaches, its knowledge base and interpretations may be widened. This article presents possible models of integration of Western medicine with homeopathy, the latter being viewed as representative of all complementary and alternative medicine. To compare the two, a medical system was classified into three levels through which it is possible to distinguish between different medical systems: epistemological (first level), theoretical (second level), and operational (third level). These levels are based on the characterization of any medical system according to, respectively, a reference paradigm, a theory on the functioning of living matter, and clinical practice. The three levels are consistent and closely consequential in the sense that from epistemology derives theory, and from theory derives clinical practice. Within operational integration, four models were identified: contemporary, alternative, sequential, and opportunistic. Theoretical integration involves an explanation of living systems covering simultaneously the molecular and physical mechanisms of functioning living matter. Epistemological integration provides a more thorough and comprehensive explanation of the epistemic concepts of indeterminism, holism, and vitalism to complement the reductionist approach of Western medicine; concepts much discussed by Western medicine while lacking the epistemologic basis for their emplacement. Epistemologic integration could be reached with or without a true paradigm shift and, in the latter, through a model of fusion or subsumption. PMID:27070976

  7. Integrated agricultural system modeling using OMS3: component driven runoff and nutrient dynamics simulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Challenges in agro-ecosystem conservation management have created demand for state-of-the-art, integrated, and flexible modeling tools. For example, agricultural system modeling tools are needed which are robust and fast enough to be applied on large watershed scales, but which are also able to simu...

  8. Predicting carbon dynamics in integrated production systems in Brazil using the CQESTR model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Process-based carbon models are research tools to predict management impact on soil organic carbon (SOC) and options to increase SOC stocks and reduce CO2. The CQESTR model was used to examine the effect of soil management practices, including integrated crop-livestock system (iCLS), and various sc...

  9. Social Factors in Creating an Integrated Capability for Health System Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Maglio, Paul P.; Cefkin, Melissa; Haas, Peter J.; Selinger, Pat

    The health system is a complex system of systems - changes in agriculture, transportation, economics, family life, medical practices, and many other things can have a profound influence on health and health costs. Yet today, policy-level investment decisions are frequently made by modeling individual systems in isolation. We describe two sets of issues that we face in trying to develop a platform, method, and service for integrating expert models from different domains to support health policy and investment decisions. The first set of questions concerns how to develop accurate social and behavioral health models and integrate them with engineering models of transportation, clinic operations, and so forth. The second set of questions concerns the design of an environment that will encourage and facilitate collaboration between the health modelers themselves, who come from a wide variety of disciplines.

  10. The treatment of climate science in Integrated Assessment Modelling: integration of climate step function response in an energy system integrated assessment model.

    NASA Astrophysics Data System (ADS)

    Dessens, Olivier

    2016-04-01

    Integrated Assessment Models (IAMs) are used as crucial inputs to policy-making on climate change. These models simulate aspect of the economy and climate system to deliver future projections and to explore the impact of mitigation and adaptation policies. The IAMs' climate representation is extremely important as it can have great influence on future political action. The step-function-response is a simple climate model recently developed by the UK Met Office and is an alternate method of estimating the climate response to an emission trajectory directly from global climate model step simulations. Good et al., (2013) have formulated a method of reconstructing general circulation models (GCMs) climate response to emission trajectories through an idealized experiment. This method is called the "step-response approach" after and is based on an idealized abrupt CO2 step experiment results. TIAM-UCL is a technology-rich model that belongs to the family of, partial-equilibrium, bottom-up models, developed at University College London to represent a wide spectrum of energy systems in 16 regions of the globe (Anandarajah et al. 2011). The model uses optimisation functions to obtain cost-efficient solutions, in meeting an exogenously defined set of energy-service demands, given certain technological and environmental constraints. Furthermore, it employs linear programming techniques making the step function representation of the climate change response adapted to the model mathematical formulation. For the first time, we have introduced the "step-response approach" method developed at the UK Met Office in an IAM, the TIAM-UCL energy system, and we investigate the main consequences of this modification on the results of the model in term of climate and energy system responses. The main advantage of this approach (apart from the low computational cost it entails) is that its results are directly traceable to the GCM involved and closely connected to well-known methods of

  11. Bioinformatics for transporter pharmacogenomics and systems biology: data integration and modeling with UML.

    PubMed

    Yan, Qing

    2010-01-01

    Bioinformatics is the rational study at an abstract level that can influence the way we understand biomedical facts and the way we apply the biomedical knowledge. Bioinformatics is facing challenges in helping with finding the relationships between genetic structures and functions, analyzing genotype-phenotype associations, and understanding gene-environment interactions at the systems level. One of the most important issues in bioinformatics is data integration. The data integration methods introduced here can be used to organize and integrate both public and in-house data. With the volume of data and the high complexity, computational decision support is essential for integrative transporter studies in pharmacogenomics, nutrigenomics, epigenetics, and systems biology. For the development of such a decision support system, object-oriented (OO) models can be constructed using the Unified Modeling Language (UML). A methodology is developed to build biomedical models at different system levels and construct corresponding UML diagrams, including use case diagrams, class diagrams, and sequence diagrams. By OO modeling using UML, the problems of transporter pharmacogenomics and systems biology can be approached from different angles with a more complete view, which may greatly enhance the efforts in effective drug discovery and development. Bioinformatics resources of membrane transporters and general bioinformatics databases and tools that are frequently used in transporter studies are also collected here. An informatics decision support system based on the models presented here is available at http://www.pharmtao.com/transporter . The methodology developed here can also be used for other biomedical fields. PMID:20419428

  12. A comparison of evaporation duct models for IREPS (Integrated Refractive Effects Prediction System)

    NASA Astrophysics Data System (ADS)

    Patterson, W.

    1984-06-01

    An evaluation of current meteorological measurement techniques to determine adequate description of the surface meteorological processes used to infer evaporation duct height includes a comparison of relative performance, sensitivities to meteorological inputs, and ease of computation for several standard evaporation duct height models. EM wave propagation pathloss models are compared and evaluated, and a maximum range of detection error is determined for the modified NOSC propagation model employed by the Integrated Refractive Effects Prediction System (IREPS).

  13. State-Based Behavior Modeling of the Integrated SLS-MPCV System

    NASA Technical Reports Server (NTRS)

    Bonanne, Kevin H.

    2012-01-01

    In NASA's effort to foster a human spaceflight capability beyond Earth's orbit, two space systems are being developed - the Space Launch System (SLS) and the Multi-Purpose Crew Vehicle (MPCV). As of this time, the interactions between the two systems during launch are not fully detailed. To remedy this situation, a Systems Engineering approach utilizing models was developed to investigate the behavior of the integrated SLS-MPCV stack during ascent and abort situations. Specifically, this innovative approach combines aspects of Model-Based Systems Engineering (MBSE) and state analysis to simultaneously model the physical, functional, and behavioral aspects of systems. This approach focuses solely on the interactions between the systems, leaving much of the internal workings of either system at a logical level (i.e., black box). By utilizing this newly defined approach, a behavior model for the integrated SLS-MPCV stack was developed, emphasizing only the subset of interactions between the systems that impact behavior. Finally, analysis is performed within the model to investigate requirements gaps and examine the execution times of key behaviors related to various ascent phases and abort scenarios. The work described in this paper is merely a portion of the outlined effort being undertaken for this project; only a segment of the SLS-MPCV system behavior will be described.

  14. Development Of An Open System For Integration Of Heterogeneous Models For Flood Forecasting And Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Chang, W.; Tsai, W.; Lin, F.; Lin, S.; Lien, H.; Chung, T.; Huang, L.; Lee, K.; Chang, C.

    2008-12-01

    During a typhoon or a heavy storm event, using various forecasting models to predict rainfall intensity, and water level variation in rivers and flood situation in the urban area is able to reveal its capability technically. However, in practice, the following two causes tend to restrain the further application of these models as a decision support system (DSS) for the hazard mitigation. The first one is due to the difficulty of integration of heterogeneous models. One has to take into consideration the different using format of models, such as input files, output files, computational requirements, and so on. The second one is that the development of DSS requires, due to the heterogeneity of models and systems, a friendly user interface or platform to hide the complexity of various tools from users. It is expected that users can be governmental officials rather than professional experts, therefore the complicated interface of DSS is not acceptable. Based on the above considerations, in the present study, we develop an open system for integration of several simulation models for flood forecasting by adopting the FEWS (Flood Early Warning System) platform developed by WL | Delft Hydraulics. It allows us to link heterogeneous models effectively and provides suitable display modules. In addition, FEWS also has been adopted by Water Resource Agency (WRA), Taiwan as the standard operational system for river flooding management. That means this work can be much easily integrated with the use of practical cases. In the present study, based on FEWS platform, the basin rainfall-runoff model, SOBEK channel-routing model, and estuary tide forecasting model are linked and integrated through the physical connection of model initial and boundary definitions. The work flow of the integrated processes of models is shown in Fig. 1. This differs from the typical single model linking used in FEWS, which only aims at data exchange but without much physical consideration. So it really

  15. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling

    EPA Science Inventory

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  16. PATHWAYS: A Human Support System Model for Integrated Handicapped Children and Their Families. Final Report.

    ERIC Educational Resources Information Center

    Carlson, Nancy A., Ed.

    The final report discusses achievements of a 3 year project to demonstrate the feasibility and effectiveness of integrating young handicapped children into existing early childhood programs. The project is conceptualized from a socioecological model, operationalized as a technical assistance support system, and located within an interdisciplinary…

  17. Options of system integrated environment modelling in the predicated dynamic cyberspace

    SciTech Connect

    Janková, Martina; Dvořák, Jiří

    2015-03-10

    In this article there are briefly mentioned some selected options of contemporary conception of cybernetic system models in the corresponding and possible integratable environment with modern system dynamics thinking and all this in the cyberspace of possible projecting of predicted system characteristics. The key to new capabilities of system integration modelling in the considered cyberspace is mainly the ability to improve the environment and the system integration options, all this with the aim of modern control in the hierarchically arranged dynamic cyberspace, e.g. in the currently desired electronic business with information. The aim of this article is to assess generally the trends in the use of modern modelling methods considering the cybernetics applications verified in practice, modern concept of project management and also the potential integration of artificial intelligence in the new projecting and project management of integratable and intelligent models, e.g. with the optimal structures and adaptable behaviour.The article results from the solution of a specific research partial task at the faculty; especially the moments proving that the new economics will be based more and more on information, knowledge system defined cyberspace of modern management, are stressed in the text.

  18. Research on the error model of airborne celestial/inertial integrated navigation system

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang

    2015-02-01

    Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.

  19. The Integrated Farm System Model: software for evaluating the performance, environmental impact and economics of farming systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Integrated Farm System Model (IFSM) is a process level simulation of the performance of crop, beef and dairy farming systems that estimates major environmental impacts, production costs, and farm profitability. The IFSM simulates all major farm components on a process level. This enables the int...

  20. Coupling earth system and integrated assessment models: the problem of steady state

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B.; Calvin, K.; Jones, A. D.; Mao, J.; Patel, P.; Shi, X.; Thomson, A.; Thornton, P.; Zhou, Y.

    2014-02-01

    Human activities are significantly altering biogeochemical cycles at the global scale, posing a significant problem for earth system models (ESMs), which may incorporate static land-use change inputs but do not actively simulate policy or economic forces. One option to address this problem is to couple an ESM with an economically oriented integrated assessment model. Here we have implemented and tested a coupling mechanism between the carbon cycles of an ESM (CESM, the Community Earth System Model) and an integrated assessment (GCAM) model, examining the best proxy variables to share between the models, and quantifying our ability to distinguish climate- and land-use-driven flux changes. The net primary production and heterotrophic respiration outputs of the Community Land Model (CLM), the land component of CESM, were found to be the most robust proxy variables by which to manipulate GCAM's assumptions of long-term ecosystem steady state carbon, with short-term forest production strongly correlated with long-term biomass changes in climate-change model runs. Carbon-cycle effects of anthropogenic land-use change are short-term and spatially limited relative to widely distributed climate effects, and as a result we were able to distinguish these effects successfully in the model coupling, passing only the latter to GCAM. By allowing climate effects from a full earth system model to dynamically modulate the economic and policy decisions of an integrated assessment model, this work provides a foundation for linking these models in a robust and flexible framework capable of examining two-way interactions between human and earth system processes.

  1. Cantera Integration with the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas M.; Chapman, Jeffryes W.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    NASA Glenn Research Center (GRC) has recently developed a software package for modeling generic thermodynamic systems called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a library of building blocks that can be assembled to represent any thermodynamic system in the Simulink(Registered TradeMark) (The MathWorks, Inc.) environment. These elements, along with a Newton Raphson solver (also provided as part of the T-MATS package), enable users to create models of a wide variety of systems. The current version of T-MATS (v1.0.1) uses tabular data for providing information about a specific mixture of air, water (humidity), and hydrocarbon fuel in calculations of thermodynamic properties. The capabilities of T-MATS can be expanded by integrating it with the Cantera thermodynamic package. Cantera is an object-oriented analysis package that calculates thermodynamic solutions for any mixture defined by the user. Integration of Cantera with T-MATS extends the range of systems that may be modeled using the toolbox. In addition, the library of elements released with Cantera were developed using MATLAB native M-files, allowing for quicker prototyping of elements. This paper discusses how the new Cantera-based elements are created and provides examples for using T-MATS integrated with Cantera.

  2. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    SciTech Connect

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

    2014-01-31

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

  3. Cantera Integration with the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas M.; Chapman, Jeffryes W.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    NASA Glenn Research Center (GRC) has recently developed a software package for modeling generic thermodynamic systems called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a library of building blocks that can be assembled to represent any thermodynamic system in the Simulink (The MathWorks, Inc.) environment. These elements, along with a Newton Raphson solver (also provided as part of the T-MATS package), enable users to create models of a wide variety of systems. The current version of T-MATS (v1.0.1) uses tabular data for providing information about a specific mixture of air, water (humidity), and hydrocarbon fuel in calculations of thermodynamic properties. The capabilities of T-MATS can be expanded by integrating it with the Cantera thermodynamic package. Cantera is an object-oriented analysis package that calculates thermodynamic solutions for any mixture defined by the user. Integration of Cantera with T-MATS extends the range of systems that may be modeled using the toolbox. In addition, the library of elements released with Cantera were developed using MATLAB native M-files, allowing for quicker prototyping of elements. This paper discusses how the new Cantera-based elements are created and provides examples for using T-MATS integrated with Cantera.

  4. Modeling integrated urban water systems in developing countries: case study of Port Vila, Vanuatu.

    PubMed

    Poustie, Michael S; Deletic, Ana

    2014-12-01

    Developing countries struggle to provide adequate urban water services, failing to match infrastructure with urban expansion. Despite requiring an improved understanding of alternative infrastructure performance when considering future investments, integrated modeling of urban water systems is infrequent in developing contexts. This paper presents an integrated modeling methodology that can assist strategic planning processes, using Port Vila, Vanuatu, as a case study. 49 future model scenarios designed for the year 2050, developed through extensive stakeholder participation, were modeled with UVQ (Urban Volume and Quality). The results were contrasted with a 2015 model based on current infrastructure, climate, and water demand patterns. Analysis demonstrated that alternative water servicing approaches can reduce Port Vila's water demand by 35 %, stormwater generation by 38 %, and nutrient release by 80 % in comparison to providing no infrastructural development. This paper demonstrates that traditional centralized infrastructure will not solve the wastewater and stormwater challenges facing rapidly growing urban cities in developing countries. PMID:24973053

  5. The integrated Earth System Model (iESM): formulation and functionality

    DOE PAGESBeta

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; Di Vittorio, A. V.; Jones, A. D.; Bond-Lamberty, B.; Calvin, K. V.; Edmonds, J. A.; Kim, S. H.; Thomson, A. M.; et al

    2015-01-21

    The integrated Earth System Model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM projectmore » integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  6. The integrated Earth System Model (iESM): formulation and functionality

    NASA Astrophysics Data System (ADS)

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; Di Vittorio, A. V.; Jones, A. D.; Bond-Lamberty, B.; Calvin, K. V.; Edmonds, J. A.; Kim, S. H.; Thomson, A. M.; Patel, P.; Zhou, Y.; Mao, J.; Shi, X.; Thornton, P. E.; Chini, L. P.; Hurtt, G. C.

    2015-01-01

    The integrated Earth System Model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human-Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM project integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human-Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.

  7. Integration of Biogeochemistry and Marine Ecosystem Model in Mercator-Ocean Systems

    NASA Astrophysics Data System (ADS)

    El Moussaoui, Abdelali; Dombrowsky, Eric; Moulin, Cyril; Bopp, Laurent; Aumont, Olivier

    2010-05-01

    Accounting for ocean biogeochemistry and marine ecosystem dynamic is of strong interest in the context of Earth System modelling to better represent the marine component to the global atmospheric cycle of greenhouse gazes that influence climate as CO2. Furthermore, treating the ocean as a whole is also the way to address large anthropogenic impacts on marine systems as climate change, nutrients loading, acidification, and eventually overfishing and habitat destructuring. To forecast how interactions between marine biogeochemical cycles and ecosystems respond to and force global change, several efforts have been promoted on biogeochemical integration into operational Mercator Ocean systems. The aim of this work is to implement a marine biogeochemical and ecosystem component at global scale into the MERCATOR operational system, using first PSY3 analysis at 1/4° then PSY4 at 1/12°. Previous works have conducted successfully the integration of a multi-nutrient and multi-plankton biogeochemical model (PISCES, N5P2Z2D2 type) into MERCATOR system. This allowed the use of MERCATOR operational analyses to drive near real time forecast of marine primary production. Results will be shown and advances on biogeochemical model integration within Mercator Systems will be discussed.

  8. The blackboard model - A framework for integrating multiple cooperating expert systems

    NASA Technical Reports Server (NTRS)

    Erickson, W. K.

    1985-01-01

    The use of an artificial intelligence (AI) architecture known as the blackboard model is examined as a framework for designing and building distributed systems requiring the integration of multiple cooperating expert systems (MCXS). Aerospace vehicles provide many examples of potential systems, ranging from commercial and military aircraft to spacecraft such as satellites, the Space Shuttle, and the Space Station. One such system, free-flying, spaceborne telerobots to be used in construction, servicing, inspection, and repair tasks around NASA's Space Station, is examined. The major difficulties found in designing and integrating the individual expert system components necessary to implement such a robot are outlined. The blackboard model, a general expert system architecture which seems to address many of the problems found in designing and building such a system, is discussed. A progress report on a prototype system under development called DBB (Distributed BlackBoard model) is given. The prototype will act as a testbed for investigating the feasibility, utility, and efficiency of MCXS-based designs developed under the blackboard model.

  9. Developing a Fundamental Model for an Integrated GPS/INS State Estimation System with Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen

    1999-01-01

    This work will demonstrate the integration of sensor and system dynamic data and their appropriate models using an optimal filter to create a robust, adaptable, easily reconfigurable state (motion) estimation system. This state estimation system will clearly show the application of fundamental modeling and filtering techniques. These techniques are presented at a general, first principles level, that can easily be adapted to specific applications. An example of such an application is demonstrated through the development of an integrated GPS/INS navigation system. This system acquires both global position data and inertial body data, to provide optimal estimates of current position and attitude states. The optimal states are estimated using a Kalman filter. The state estimation system will include appropriate error models for the measurement hardware. The results of this work will lead to the development of a "black-box" state estimation system that supplies current motion information (position and attitude states) that can be used to carry out guidance and control strategies. This black-box state estimation system is developed independent of the vehicle dynamics and therefore is directly applicable to a variety of vehicles. Issues in system modeling and application of Kalman filtering techniques are investigated and presented. These issues include linearized models of equations of state, models of the measurement sensors, and appropriate application and parameter setting (tuning) of the Kalman filter. The general model and subsequent algorithm is developed in Matlab for numerical testing. The results of this system are demonstrated through application to data from the X-33 Michael's 9A8 mission and are presented in plots and simple animations.

  10. Integrated systemic inflammatory response syndrome epidemic model in scale-free networks

    NASA Astrophysics Data System (ADS)

    Cai, Shao-Hong; Zhang, Da-Min; Gong, Guang-Wu; Guo, Chang-Rui

    2011-09-01

    Based on the scale-free network, an integrated systemic inflammatory response syndrome model with artificial immunity, a feedback mechanism, crowd density and the moving activities of an individual can be built. The effects of these factors on the spreading process are investigated through the model. The research results show that the artificial immunity can reduce the stable infection ratio and enhance the spreading threshold of the system. The feedback mechanism can only reduce the stable infection ratio of system, but cannot affect the spreading threshold of the system. The bigger the crowd density is, the higher the infection ratio of the system is and the smaller the spreading threshold is. In addition, the simulations show that the individual movement can enhance the stable infection ratio of the system only under the condition that the spreading rate is high, however, individual movement will reduce the stable infection ratio of the system.

  11. Modeling, control and integration of a portable solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Adhikari, Puran

    This thesis presents an innovative method for the modeling, control and integration of a portable hybrid solid oxide fuel cell system. The control and integration of the fuel cell system is important not only for its efficient operation, but also for issues related to safety and reliability. System modeling is needed in order to facilitate the controller design. Mathematical models of the various components of the system are built in the matlab/simulink environment. Dynamic modeling of the fuel cell stack, catalytic partial oxidation (CPOX) reformer, heat exchanger, tail gas combustor and tail gas splitter of the balance of plant system is performed first. Followed by, modeling of the three input DC/DC converter and energy storage devices (battery and supercapacitor). A two-level control approach, higher level and lower level, is adopted in this research. Each of the two major subsystems, balance of plant subsystem and power electronics subsystem, has its own local level controller (called lower level controller) that are designed such that they follow exactly the command reference from a higher level controller. The higher level controller is an intelligent controller that makes decisions about how the lower level or local controllers should perform based on the status of fuel cell, energy storage device and external load demand. Linear analysis has been done for the design and development of the local controllers as appropriate. For the higher level controller, a finite state machine model is developed and implemented using stateflow and fuzzy logic toolboxes of matlab. Simulations are carried out for the integrated system. The simulation results verify that the controllers are robust in performance during the transient condition when the energy storage devices supplement fuel cells. The temperature and flow rates of the fuel and air are controlled as desired. The output from the designed fuel cell system is a regulated DC voltage, which verifies the overall

  12. Integrated risk/cost planning models for the US Air Traffic system

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.; Zenios, S. A.

    1985-01-01

    A prototype network planning model for the U.S. Air Traffic control system is described. The model encompasses the dual objectives of managing collision risks and transportation costs where traffic flows can be related to these objectives. The underlying structure is a network graph with nonseparable convex costs; the model is solved efficiently by capitalizing on its intrinsic characteristics. Two specialized algorithms for solving the resulting problems are described: (1) truncated Newton, and (2) simplicial decomposition. The feasibility of the approach is demonstrated using data collected from a control center in the Midwest. Computational results with different computer systems are presented, including a vector supercomputer (CRAY-XMP). The risk/cost model has two primary uses: (1) as a strategic planning tool using aggregate flight information, and (2) as an integrated operational system for forecasting congestion and monitoring (controlling) flow throughout the U.S. In the latter case, access to a supercomputer is required due to the model's enormous size.

  13. Flexible Approximation Model Approach for Bi-Level Integrated System Synthesis

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Kim, Hongman; Ragon, Scott; Soremekun, Grant; Malone, Brett

    2004-01-01

    Bi-Level Integrated System Synthesis (BLISS) is an approach that allows design problems to be naturally decomposed into a set of subsystem optimizations and a single system optimization. In the BLISS approach, approximate mathematical models are used to transfer information from the subsystem optimizations to the system optimization. Accurate approximation models are therefore critical to the success of the BLISS procedure. In this paper, new capabilities that are being developed to generate accurate approximation models for BLISS procedure will be described. The benefits of using flexible approximation models such as Kriging will be demonstrated in terms of convergence characteristics and computational cost. An approach of dealing with cases where subsystem optimization cannot find a feasible design will be investigated by using the new flexible approximation models for the violated local constraints.

  14. Collaborative modelling and integrated decision support system analysis of a developed terminal lake basin

    NASA Astrophysics Data System (ADS)

    Niswonger, Richard G.; Allander, Kip K.; Jeton, Anne E.

    2014-09-01

    A terminal lake basin in west-central Nevada, Walker Lake, has undergone drastic change over the past 90 yrs due to upstream water use for agriculture. Decreased inflows to the lake have resulted in 100 km2 decrease in lake surface area and a total loss of fisheries due to salinization. The ecologic health of Walker Lake is of great concern as the lake is a stopover point on the Pacific route for migratory birds from within and outside the United States. Stakeholders, water institutions, and scientists have engaged in collaborative modeling and the development of a decision support system that is being used to develop and analyze management change options to restore the lake. Here we use an integrated management and hydrologic model that relies on state-of-the-art simulation capabilities to evaluate the benefits of using integrated hydrologic models as components of a decision support system. Nonlinear feedbacks among climate, surface-water and groundwater exchanges, and water use present challenges for simulating realistic outcomes associated with management change. Integrated management and hydrologic modeling provides a means of simulating benefits associated with management change in the Walker River basin where drastic changes in the hydrologic landscape have taken place over the last century. Through the collaborative modeling process, stakeholder support is increasing and possibly leading to management change options that result in reductions in Walker Lake salt concentrations, as simulated by the decision support system.

  15. Collaborative modelling and integrated decision support system analysis of a developed terminal lake basin

    USGS Publications Warehouse

    Niswonger, Richard; Allander, Kip K.; Jeton, Anne E.

    2014-01-01

    A terminal lake basin in west-central Nevada, Walker Lake, has undergone drastic change over the past 90 yrs due to upstream water use for agriculture. Decreased inflows to the lake have resulted in 100 km2 decrease in lake surface area and a total loss of fisheries due to salinization. The ecologic health of Walker Lake is of great concern as the lake is a stopover point on the Pacific route for migratory birds from within and outside the United States. Stakeholders, water institutions, and scientists have engaged in collaborative modeling and the development of a decision support system that is being used to develop and analyze management change options to restore the lake. Here we use an integrated management and hydrologic model that relies on state-of-the-art simulation capabilities to evaluate the benefits of using integrated hydrologic models as components of a decision support system. Nonlinear feedbacks among climate, surface-water and groundwater exchanges, and water use present challenges for simulating realistic outcomes associated with management change. Integrated management and hydrologic modeling provides a means of simulating benefits associated with management change in the Walker River basin where drastic changes in the hydrologic landscape have taken place over the last century. Through the collaborative modeling process, stakeholder support is increasing and possibly leading to management change options that result in reductions in Walker Lake salt concentrations, as simulated by the decision support system.

  16. The Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Butler, Douglas J.; Kerstman, Eric

    2010-01-01

    This slide presentation reviews the goals and approach for the Integrated Medical Model (IMM). The IMM is a software decision support tool that forecasts medical events during spaceflight and optimizes medical systems during simulations. It includes information on the software capabilities, program stakeholders, use history, and the software logic.

  17. Integrating the Advanced Human Eye Model (AHEM) and optical instrument models to model complete visual optical systems inclusive of the typical or atypical eye

    NASA Astrophysics Data System (ADS)

    Donnelly, William J., III

    2012-06-01

    PURPOSE: To present a commercially available optical modeling software tool to assist the development of optical instrumentation and systems that utilize and/or integrate with the human eye. METHODS: A commercially available flexible eye modeling system is presented, the Advanced Human Eye Model (AHEM). AHEM is a module that the engineer can use to perform rapid development and test scenarios on systems that integrate with the eye. Methods include merging modeled systems initially developed outside of AHEM and performing a series of wizard-type operations that relieve the user from requiring an optometric or ophthalmic background to produce a complete eye inclusive system. Scenarios consist of retinal imaging of targets and sources through integrated systems. Uses include, but are not limited to, optimization, telescopes, microscopes, spectacles, contact and intraocular lenses, ocular aberrations, cataract simulation and scattering, and twin eye model (binocular) systems. RESULTS: Metrics, graphical data, and exportable CAD geometry are generated from the various modeling scenarios.

  18. Integrating 3D geological information with a national physically-based hydrological modelling system

    NASA Astrophysics Data System (ADS)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE < 0.5) are located in the chalk in the south east of England. As such, the British Geological Survey 3D geology model for Great Britain (GB3D) has been incorporated, for the first time in any hydrological model, to pave the way for improvements to be made to simulations of catchments with important groundwater regimes. This coupling has involved

  19. Integrated optimal allocation model for complex adaptive system of water resources management (I): Methodologies

    NASA Astrophysics Data System (ADS)

    Zhou, Yanlai; Guo, Shenglian; Xu, Chong-Yu; Liu, Dedi; Chen, Lu; Ye, Yushi

    2015-12-01

    Due to the adaption, dynamic and multi-objective characteristics of complex water resources system, it is a considerable challenge to manage water resources in an efficient, equitable and sustainable way. An integrated optimal allocation model is proposed for complex adaptive system of water resources management. The model consists of three modules: (1) an agent-based module for revealing evolution mechanism of complex adaptive system using agent-based, system dynamic and non-dominated sorting genetic algorithm II methods, (2) an optimal module for deriving decision set of water resources allocation using multi-objective genetic algorithm, and (3) a multi-objective evaluation module for evaluating the efficiency of the optimal module and selecting the optimal water resources allocation scheme using project pursuit method. This study has provided a theoretical framework for adaptive allocation, dynamic allocation and multi-objective optimization for a complex adaptive system of water resources management.

  20. Space station ECLSS integration analysis: Simplified General Cluster Systems Model, ECLS System Assessment Program enhancements

    NASA Technical Reports Server (NTRS)

    Ferguson, R. E.

    1985-01-01

    The data base verification of the ECLS Systems Assessment Program (ESAP) was documented and changes made to enhance the flexibility of the water recovery subsystem simulations are given. All changes which were made to the data base values are described and the software enhancements performed. The refined model documented herein constitutes the submittal of the General Cluster Systems Model. A source listing of the current version of ESAP is provided in Appendix A.

  1. An integrated water system model considering hydrological and biogeochemical processes at basin scale: model construction and application

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.

    2014-08-01

    Integrated water system modeling is a reasonable approach to provide scientific understanding and possible solutions to tackle the severe water crisis faced over the world and to promote the implementation of integrated river basin management. Such a modeling practice becomes more feasible nowadays due to better computing facilities and available data sources. In this study, the process-oriented water system model (HEXM) is developed by integrating multiple water related processes including hydrology, biogeochemistry, environment and ecology, as well as the interference of human activities. The model was tested in the Shaying River Catchment, the largest, highly regulated and heavily polluted tributary of Huai River Basin in China. The results show that: HEXM is well integrated with good performance on the key water related components in the complex catchments. The simulated daily runoff series at all the regulated and less-regulated stations matches observations, especially for the high and low flow events. The average values of correlation coefficient and coefficient of efficiency are 0.81 and 0.63, respectively. The dynamics of observed daily ammonia-nitrogen (NH4N) concentration, as an important index to assess water environmental quality in China, are well captured with average correlation coefficient of 0.66. Furthermore, the spatial patterns of nonpoint source pollutant load and grain yield are also simulated properly, and the outputs have good agreements with the statistics at city scale. Our model shows clear superior performance in both calibration and validation in comparison with the widely used SWAT model. This model is expected to give a strong reference for water system modeling in complex basins, and provide the scientific foundation for the implementation of integrated river basin management all over the world as well as the technical guide for the reasonable regulation of dams and sluices and environmental improvement in river basins.

  2. GOLD: Integration of model-based control systems with artificial intelligence and workstations

    SciTech Connect

    Lee, M.; Clearwater, S.

    1987-08-01

    Our experience with model based accelerator control started at SPEAR. Since that time nearly all accelerator beam lines have been controlled using model-based application programs, for example, PEP and SLC at SLAC. In order to take advantage of state-of-the-art hardware and software technology, the design and implementation of the accelerator control programs have undergone radical change with time. Consequently, SPEAR, PEP, and SLC all use different control programs. Since many of these application programs are imbedded deep into the control system, they had to be rewritten each time. Each time this rewriting has occurred a great deal of time and effort has been spent on training physicists and programmers to do the job. Now, we have developed these application programs for a fourth time. This time, however, the programs we are developing are generic so that we will not have to do it again. We have developed an integrated system called GOLD (Generic Orbit and Lattice Debugger) for debugging and correcting trajectory errors in accelerator lattices. The system consists of a lattice modeling program (COMFORT), a beam simulator (PLUS), a graphical workstation environment (micro-VAX) and an expert system (ABLE). This paper will describe some of the features and applications of our integrated system with emphasis on the automation offered by expert systems. 5 refs.

  3. GOLD: Integration of model-based control systems with artificial intelligence and workstations

    SciTech Connect

    Lee, M.; Clearwater, S.

    1987-08-01

    Our experience with model-based accelerator control started at SPEAR. Since that time nearly all accelerator beamlines have been controlled using model-based application programs, for example, PEP and SLC at SLAC. In order to take advantage of state-of-the-art hardware and software technology, the design and implementation of the accelerator control programs have undergone radical changes with time. Consequently, SPEAR, PEP and SLC all use different control programs. Since many of these application programs are embedded deep into the control system, they had to be rewritten each time. Each time this rewriting has occurred a great deal of time and effort has been spent on training physicists and programmers to do the job. Now, we have developed an integrated system called GOLD (Genetic Orbit and Lattice Debugger) for debugging and correcting trajectory errors in accelerator lattices. The system consists of a lattice modeling program (COMFORT), a beam simulator (PLUS), a graphical workstation environment (micro-VAX) and an expert system (ABLE). This paper will describe some of the features and applications of our integrated system with emphasis on the automation offered by expert systems. 5 refs.

  4. An integrated soil-crop system model for water and nitrogen management in North China

    PubMed Central

    Liang, Hao; Hu, Kelin; Batchelor, William D.; Qi, Zhiming; Li, Baoguo

    2016-01-01

    An integrated model WHCNS (soil Water Heat Carbon Nitrogen Simulator) was developed to assess water and nitrogen (N) management in North China. It included five main modules: soil water, soil temperature, soil carbon (C), soil N, and crop growth. The model integrated some features of several widely used crop and soil models, and some modifications were made in order to apply the WHCNS model under the complex conditions of intensive cropping systems in North China. The WHCNS model was evaluated using an open access dataset from the European International Conference on Modeling Soil Water and N Dynamics. WHCNS gave better estimations of soil water and N dynamics, dry matter accumulation and N uptake than 14 other models. The model was tested against data from four experimental sites in North China under various soil, crop, climate, and management practices. Simulated soil water content, soil nitrate concentrations, crop dry matter, leaf area index and grain yields all agreed well with measured values. This study indicates that the WHCNS model can be used to analyze and evaluate the effects of various field management practices on crop yield, fate of N, and water and N use efficiencies in North China. PMID:27181364

  5. An integrated soil-crop system model for water and nitrogen management in North China.

    PubMed

    Liang, Hao; Hu, Kelin; Batchelor, William D; Qi, Zhiming; Li, Baoguo

    2016-01-01

    An integrated model WHCNS (soil Water Heat Carbon Nitrogen Simulator) was developed to assess water and nitrogen (N) management in North China. It included five main modules: soil water, soil temperature, soil carbon (C), soil N, and crop growth. The model integrated some features of several widely used crop and soil models, and some modifications were made in order to apply the WHCNS model under the complex conditions of intensive cropping systems in North China. The WHCNS model was evaluated using an open access dataset from the European International Conference on Modeling Soil Water and N Dynamics. WHCNS gave better estimations of soil water and N dynamics, dry matter accumulation and N uptake than 14 other models. The model was tested against data from four experimental sites in North China under various soil, crop, climate, and management practices. Simulated soil water content, soil nitrate concentrations, crop dry matter, leaf area index and grain yields all agreed well with measured values. This study indicates that the WHCNS model can be used to analyze and evaluate the effects of various field management practices on crop yield, fate of N, and water and N use efficiencies in North China. PMID:27181364

  6. Integrated System-Level Optimization for Concurrent Engineering With Parametric Subsystem Modeling

    NASA Technical Reports Server (NTRS)

    Schuman, Todd; DeWeck, Oliver L.; Sobieski, Jaroslaw

    2005-01-01

    The introduction of concurrent design practices to the aerospace industry has greatly increased the productivity of engineers and teams during design sessions as demonstrated by JPL's Team X. Simultaneously, advances in computing power have given rise to a host of potent numerical optimization methods capable of solving complex multidisciplinary optimization problems containing hundreds of variables, constraints, and governing equations. Unfortunately, such methods are tedious to set up and require significant amounts of time and processor power to execute, thus making them unsuitable for rapid concurrent engineering use. This paper proposes a framework for Integration of System-Level Optimization with Concurrent Engineering (ISLOCE). It uses parametric neural-network approximations of the subsystem models. These approximations are then linked to a system-level optimizer that is capable of reaching a solution quickly due to the reduced complexity of the approximations. The integration structure is described in detail and applied to the multiobjective design of a simplified Space Shuttle external fuel tank model. Further, a comparison is made between the new framework and traditional concurrent engineering (without system optimization) through an experimental trial with two groups of engineers. Each method is evaluated in terms of optimizer accuracy, time to solution, and ease of use. The results suggest that system-level optimization, running as a background process during integrated concurrent engineering sessions, is potentially advantageous as long as it is judiciously implemented.

  7. Modeling systems-level dynamics: Understanding without mechanistic explanation in integrative systems biology.

    PubMed

    MacLeod, Miles; Nersessian, Nancy J

    2015-02-01

    In this paper we draw upon rich ethnographic data of two systems biology labs to explore the roles of explanation and understanding in large-scale systems modeling. We illustrate practices that depart from the goal of dynamic mechanistic explanation for the sake of more limited modeling goals. These processes use abstract mathematical formulations of bio-molecular interactions and data fitting techniques which we call top-down abstraction to trade away accurate mechanistic accounts of large-scale systems for specific information about aspects of those systems. We characterize these practices as pragmatic responses to the constraints many modelers of large-scale systems face, which in turn generate more limited pragmatic non-mechanistic forms of understanding of systems. These forms aim at knowledge of how to predict system responses in order to manipulate and control some aspects of them. We propose that this analysis of understanding provides a way to interpret what many systems biologists are aiming for in practice when they talk about the objective of a "systems-level understanding." PMID:25462871

  8. Integration of the virtual 3D model of a control system with the virtual controller

    NASA Astrophysics Data System (ADS)

    Herbuś, K.; Ociepka, P.

    2015-11-01

    Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the

  9. Modeling and simulation for small system integration of military and homeland security applications

    NASA Astrophysics Data System (ADS)

    Bennahmias, Mark; Esterkin, Vladimir; Lee, Kang; Koziol, Richard; Kostrzewski, Andrew; Savant, Gajendra; Jannson, Tomasz

    2007-04-01

    A highly productive approach to small systems design and integration (SSDI), and modeling and simulation (M&S), based on rapid/interactive prototyping has been effectively used at Physical Optics Corporation (POC) to support small system development of "intellectual products" that cover a broad range of electromagnetic spectra (X-ray, optical, infrared, and microwave). In particular, the implementation of an accelerated interactive modeling (AIM) environment produces effective engineering solutions for tackling difficult and complex technical issues for combining 3D mechanical design and microwave engineering. In addition, using established small systems engineering principles and the effective use of collaborative input at the start of a development effort that incorporates a diverse range of areas like optics, mechanics, electronics, software, thermal modeling, electromagnetism, surface chemistry, and manufacturing plays an important role in the success of future military and homeland security applications.

  10. Complete Atomistic Model of a Bacterial Cytoplasm for Integrating Physics, Biochemistry, and Systems Biology

    PubMed Central

    Feig, Michael; Harada, Ryuhei; Mori, Takaharu; Yu, Isseki; Takahashi, Koichi; Sugita, Yuji

    2015-01-01

    A model for the cytoplasm of Mycoplasma genitalium is presented that integrates data from a variety of sources into a physically and biochemically consistent model. Based on gene annotations, core genes expected to be present in the cytoplasm were determined and a metabolic reaction network was reconstructed. The set of cytoplasmic genes and metabolites from the predicted reactions were assembled into a comprehensive atomistic model consisting of proteins with predicted structures, RNA, protein/RNA complexes, metabolites, ions, and solvent. The resulting model bridges between atomistic and cellular scales, between physical and biochemical aspects, and between structural and systems views of cellular systems and is meant as a starting point for a variety of simulation studies. PMID:25765281

  11. The Proposal of the Model for Developing Dispatch System for Nationwide One-Day Integrative Planning

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Soo; Choi, Hyung Rim; Park, Byung Kwon; Jung, Jae Un; Lee, Jin Wook

    The problems of dispatch planning for container truck are classified as the pickup and delivery problems, which are highly complex issues that consider various constraints in the real world. However, in case of the current situation, it is developed by the control system so that it requires the automated planning system under the view of nationwide integrative planning. Therefore, the purpose of this study is to suggest model to develop the automated dispatch system through the constraint satisfaction problem and meta-heuristic technique-based algorithm. In the further study, the practical system is developed and evaluation is performed in aspect of various results. This study suggests model to undergo the study which promoted the complexity of the problems by considering the various constraints which were not considered in the early study. However, it is suggested that it is necessary to add the study which includes the real-time monitoring function for vehicles and cargos based on the information technology.

  12. Tav4SB: integrating tools for analysis of kinetic models of biological systems

    PubMed Central

    2012-01-01

    Background Progress in the modeling of biological systems strongly relies on the availability of specialized computer-aided tools. To that end, the Taverna Workbench eases integration of software tools for life science research and provides a common workflow-based framework for computational experiments in Biology. Results The Taverna services for Systems Biology (Tav4SB) project provides a set of new Web service operations, which extend the functionality of the Taverna Workbench in a domain of systems biology. Tav4SB operations allow you to perform numerical simulations or model checking of, respectively, deterministic or stochastic semantics of biological models. On top of this functionality, Tav4SB enables the construction of high-level experiments. As an illustration of possibilities offered by our project we apply the multi-parameter sensitivity analysis. To visualize the results of model analysis a flexible plotting operation is provided as well. Tav4SB operations are executed in a simple grid environment, integrating heterogeneous software such as Mathematica, PRISM and SBML ODE Solver. The user guide, contact information, full documentation of available Web service operations, workflows and other additional resources can be found at the Tav4SB project’s Web page: http://bioputer.mimuw.edu.pl/tav4sb/. Conclusions The Tav4SB Web service provides a set of integrated tools in the domain for which Web-based applications are still not as widely available as for other areas of computational biology. Moreover, we extend the dedicated hardware base for computationally expensive task of simulating cellular models. Finally, we promote the standardization of models and experiments as well as accessibility and usability of remote services. PMID:22480273

  13. An integrated logit model for contamination event detection in water distribution systems.

    PubMed

    Housh, Mashor; Ostfeld, Avi

    2015-05-15

    The problem of contamination event detection in water distribution systems has become one of the most challenging research topics in water distribution systems analysis. Current attempts for event detection utilize a variety of approaches including statistical, heuristics, machine learning, and optimization methods. Several existing event detection systems share a common feature in which alarms are obtained separately for each of the water quality indicators. Unifying those single alarms from different indicators is usually performed by means of simple heuristics. A salient feature of the current developed approach is using a statistically oriented model for discrete choice prediction which is estimated using the maximum likelihood method for integrating the single alarms. The discrete choice model is jointly calibrated with other components of the event detection system framework in a training data set using genetic algorithms. The fusing process of each indicator probabilities, which is left out of focus in many existing event detection system models, is confirmed to be a crucial part of the system which could be modelled by exploiting a discrete choice model for improving its performance. The developed methodology is tested on real water quality data, showing improved performances in decreasing the number of false positive alarms and in its ability to detect events with higher probabilities, compared to previous studies. PMID:25770443

  14. Integrated Watershed Modeling

    NASA Astrophysics Data System (ADS)

    Bagulho Galvão, P.; Neves, R.; Silva, A.; Chambel Leitão, P.; Braunchweig, F.

    2004-05-01

    Integrated systems that bring together EO data, local measurements and modeling tools, are a fundamental instrument to help decision making in watershed and land use management. The BASINS system (EPA http://www.epa.gov/OST/BASINS/) follows this philosophy, merging data from local measurement with modeling tools (HSPF, SWAT, PLOAD, QUAL2E). However, remote sensed data is still used in a very static way (usually to define land cover, see corine land cover project). This approach is being replaced with operational methods that use EO data (such as land surface temperature, vegetation state, soil moisture, surface roughness) for both inputs and validation. The development of integrated watershed models that dynamically interact with remote sensed data opens interesting prospective to the validation and improvement of such models. This paper describes the possible data contribution of remote sensing to the needs associated with state of the art watershed models, including well know systems (such as SWAT or HSPF) and a system still under development (MOHID LAND). Application of such models is shown at two pilot sites, which were selected under EU projects, TempQsim and Interreg II B - ICRW.

  15. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    NASA Astrophysics Data System (ADS)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for

  16. Integrated process modeling for the laser inertial fusion Energy (LIFE) generation system

    SciTech Connect

    Meier, W R; Anklam, T M; Erlandson, A C; Miles, R R; Simon, A J; Sawicki, R; Storm, E

    2009-10-22

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to 'burn' spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

  17. Integrated process modeling for the laser inertial fusion energy (LIFE) generation system

    NASA Astrophysics Data System (ADS)

    Meier, W. R.; Anklam, T. M.; Erlandson, A. C.; Miles, R. R.; Simon, A. J.; Sawicki, R.; Storm, E.

    2010-08-01

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to "burn" spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

  18. System architecture and information model for integrated access to distributed biomedical information

    NASA Astrophysics Data System (ADS)

    Kim, Dongkyu; Alaoui, Adil; Levine, Betty; Leondaridis, Leonidas; Shields, Peter; Byers, Steve; Cleary, Kevin

    2009-02-01

    The current trend towards systems medicine will rely heavily on computational and bioinformatics capabilities to collect, integrate, and analyze massive amounts of data from disparate sources. The objective is to use this information to make medical decisions that improve patient care. At Georgetown University Medical Center, we are developing an informatics capability to integrate several research and clinical databases. Our long term goal is to provide researchers at Georgetown's Lombardi Comprehensive Cancer Center better access to aggregated molecular and clinical information facilitating the investigation of new hypotheses that impact patient care. We also recognize the need for data mining tools and intelligent agents to help researchers in these efforts. This paper describes our initial work to create a flexible platform for researchers and physicians that provides access to information sources including clinical records, medical images, genomic, epigenomic, proteomic and metabolomic data. This paper describes the data sources selected for this pilot project and possible approaches to integrating these databases. We present the different database integration models that we considered. We conclude by outlining the proposed Information Model for the project.

  19. Browsing Space Weather Data and Models with the Integrated Space Weather Analysis (iSWA) System

    NASA Technical Reports Server (NTRS)

    Maddox, Marlo M.; Mullinix, Richard E.; Berrios, David H.; Hesse, Michael; Rastaetter, Lutz; Pulkkinen, Antti; Hourcle, Joseph A.; Thompson, Barbara J.

    2011-01-01

    The Integrated Space Weather Analysis (iSWA) System is a comprehensive web-based platform for space weather information that combines data from solar, heliospheric and geospace observatories with forecasts based on the most advanced space weather models. The iSWA system collects, generates, and presents a wide array of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. iSWA currently provides over 200 data and modeling products, and features a variety of tools that allow the user to browse, combine, and examine data and models from various sources. This presentation will consist of a summary of the iSWA products and an overview of the customizable user interfaces, and will feature several tutorial demonstrations highlighting the interactive tools and advanced capabilities.

  20. Integrated Assessment Modeling

    SciTech Connect

    Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Janetos, Anthony C.; Kim, Son H.; Wise, Marshall A.; McJeon, Haewon C.

    2012-10-31

    This paper discusses the role of Integrated Assessment models (IAMs) in climate change research. IAMs are an interdisciplinary research platform, which constitutes a consistent scientific framework in which the large-scale interactions between human and natural Earth systems can be examined. In so doing, IAMs provide insights that would otherwise be unavailable from traditional single-discipline research. By providing a broader view of the issue, IAMs constitute an important tool for decision support. IAMs are also a home of human Earth system research and provide natural Earth system scientists information about the nature of human intervention in global biogeophysical and geochemical processes.

  1. Integrability of the Rabi Model

    SciTech Connect

    Braak, D.

    2011-09-02

    The Rabi model is a paradigm for interacting quantum systems. It couples a bosonic mode to the smallest possible quantum model, a two-level system. I present the analytical solution which allows us to consider the question of integrability for quantum systems that do not possess a classical limit. A criterion for quantum integrability is proposed which shows that the Rabi model is integrable due to the presence of a discrete symmetry. Moreover, I introduce a generalization with no symmetries; the generalized Rabi model is the first example of a nonintegrable but exactly solvable system.

  2. Integrated Data-Archive and Distributed Hydrological Modelling System for Optimized Dam Operation

    NASA Astrophysics Data System (ADS)

    Shibuo, Yoshihiro; Jaranilla-Sanchez, Patricia Ann; Koike, Toshio

    2013-04-01

    In 2012, typhoon Bopha, which passed through the southern part of the Philippines, devastated the nation leaving hundreds of death tolls and significant destruction of the country. Indeed the deadly events related to cyclones occur almost every year in the region. Such extremes are expected to increase both in frequency and magnitude around Southeast Asia, during the course of global climate change. Our ability to confront such hazardous events is limited by the best available engineering infrastructure and performance of weather prediction. An example of the countermeasure strategy is, for instance, early release of reservoir water (lowering the dam water level) during the flood season to protect the downstream region of impending flood. However, over release of reservoir water affect the regional economy adversely by losing water resources, which still have value for power generation, agricultural and industrial water use. Furthermore, accurate precipitation forecast itself is conundrum task, due to the chaotic nature of the atmosphere yielding uncertainty in model prediction over time. Under these circumstances we present a novel approach to optimize contradicting objectives of: preventing flood damage via priori dam release; while sustaining sufficient water supply, during the predicted storm events. By evaluating forecast performance of Meso-Scale Model Grid Point Value against observed rainfall, uncertainty in model prediction is probabilistically taken into account, and it is then applied to the next GPV issuance for generating ensemble rainfalls. The ensemble rainfalls drive the coupled land-surface- and distributed-hydrological model to derive the ensemble flood forecast. Together with dam status information taken into account, our integrated system estimates the most desirable priori dam release through the shuffled complex evolution algorithm. The strength of the optimization system is further magnified by the online link to the Data Integration and

  3. Development of a data assimilation system for the integrated terrestrial system modelling platform TerrSysMP

    NASA Astrophysics Data System (ADS)

    Kurtz, Wolfgang; He, Guowei; Kollet, Stefan; Vereecken, Harry; Hendricks Franssen, Harrie-Jan

    2015-04-01

    Integrated hydrological models are increasingly applied in hydrological studies because they allow a better physical representation of processes and feedbacks across compartments and a more integrated view of the hydrological cycle. An example of such an integrated modeling approach is the recently established integrated modeling platform TerrSysMP consisting of individual component models for variably saturated subsurface flow (ParFlow), land surface processes (CLM3.5) and weather forecast (COSMO). The component models are dynamically linked by the exchange of state variables and fluxes with the coupling software OASIS-MCT in a scale-consistent, modular manner. While integrated models may provide better estimates of state and flux variables, model predictions remain to be impacted by a considerable degree of uncertainty due to uncertain initial conditions and forcings, and the poorly known subsurface and vegetation properties. Data assimilation methods allow to better constrain the model predictions and parameters and the associated uncertainties. In a first step, we constructed a data assimilation framework for the land surface-subsurface part of TerrSysMP (CLM and ParFlow) by linking TerrSysMP with the PDAF (Parallel Data Assimilation Framework) software which is specifically designed for parallel simulation models and provides several global and local filter algorithms (e.g., EnKF, LETKF). The data assimilation framework uses a memory based communication between model and data assimilation routines and avoids frequent re-initializations of the model and is thus highly scalable and applicable to large scale hydrological systems. Currently, data assimilation is restricted to the subsurface part of TerrSysMP (i.e. ParFlow) in which pressure (or soil moisture) data can be assimilated. The feasibility of this approach is demonstrated with a synthetic model setup where groundwater levels and soil moisture data are assimilated with the ensemble Kalman filter into a

  4. Integrated defense system overlaps as a disease model: with examples for multiple chemical sensitivity.

    PubMed Central

    Rowat, S C

    1998-01-01

    The central nervous, immune, and endocrine systems communicate through multiple common messengers. Over evolutionary time, what may be termed integrated defense system(s) (IDS) have developed to coordinate these communications for specific contexts; these include the stress response, acute-phase response, nonspecific immune response, immune response to antigen, kindling, tolerance, time-dependent sensitization, neurogenic switching, and traumatic dissociation (TD). These IDSs are described and their overlap is examined. Three models of disease production are generated: damage, in which IDSs function incorrectly; inadequate/inappropriate, in which IDS response is outstripped by a changing context; and evolving/learning, in which the IDS learned response to a context is deemed pathologic. Mechanisms of multiple chemical sensitivity (MCS) are developed from several IDS disease models. Model 1A is pesticide damage to the central nervous system, overlapping with body chemical burdens, TD, and chronic zinc deficiency; model 1B is benzene disruption of interleukin-1, overlapping with childhood developmental windows and hapten-antigenic spreading; and model 1C is autoimmunity to immunoglobulin-G (IgG), overlapping with spreading to other IgG-inducers, sudden spreading of inciters, and food-contaminating chemicals. Model 2A is chemical and stress overload, including comparison with the susceptibility/sensitization/triggering/spreading model; model 2B is genetic mercury allergy, overlapping with: heavy metals/zinc displacement and childhood/gestational mercury exposures; and model 3 is MCS as evolution and learning. Remarks are offered on current MCS research. Problems with clinical measurement are suggested on the basis of IDS models. Large-sample patient self-report epidemiology is described as an alternative or addition to clinical biomarker and animal testing. Images Figure 1 Figure 2 Figure 3 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9539008

  5. Evaluating and improving CLM hydrologic processes for integrated earth system modeling at regional scales

    NASA Astrophysics Data System (ADS)

    Huang, M.; Leung, L.; Wigmosta, M. S.; Coleman, A. M.; Ke, Y.; Tesfa, T. K.; Li, H.

    2010-12-01

    The community land model (CLM) was designed for coupling with atmospheric models to simulate water, energy, and carbon fluxes between the land surface and atmosphere. These fluxes are regulated in various degrees by its hydrologic processes, which have not been vigorously evaluated for applications at watershed or regional scales. In the framework of an integrated regional earth system model being developed, accurate hydrologic information in all of its components including socio-economy, atmosphere, land, and energy infrastructure is needed to represent the interactions between human and earth system processes. Applying CLM in this framework requires evaluation and model improvement so that CLM could be used to represent hydrology, soil, managed and unmanaged ecosystems, and biogeochemical processes across scales in a single modeling framework. In this presentation, we will report preliminary results on the development of CLM featuring: (1) improved land surface hydrology that incorporates hydrologic processes from the Variable Infiltration Capacity (VIC) land surface model, including the parameterizations of subgrid variability, dynamic surface- and groundwater interactions, and hydraulic redistribution; (2) a semi-distributed extension of CLM (DCLM) for more spatially-explicit hydrologic modeling, which is critical for regional land and water management decisions under climate change mitigation and adaptation scenarios. The model development will be evaluated at flux towers and watersheds at various scales.

  6. WAAS error, integrity and availability modeling for GPS based aircraft landing system

    NASA Astrophysics Data System (ADS)

    Mu, Guangwei

    From its initial conception to deployment, the Wide Area Augmentation System (WAAS) was hailed as revolutionary for the navigation industry. However, the WAAS deployment effort has suffered significant delays and budget overruns. The reason for these misfortunes lies in the demanding mandates on the performance of the WAAS system. In the long process of getting WAAS commissioned, availability has always been the metric that holds the system back from achieving the promised capability. The inherent tradeoff between integrity and availability is the major reason that the VPL and HPL algorithms need to be improved. The integrity algorithms are well defined in the WAAS Minimum Operational Performance Standards (MOPS). However, our experimental data clearly indicate that the MOPS VPL and HPL algorithms are over-conservative. This lack of compactness from the MOPS introduces unnecessary epochs of the system being unavailable. To improve the system performance, the intuitive approach is through the range/correction domain since these factors can be observed, controlled and manipulated to improve the system performance in individual cases. However, we need a better error model and better understanding of the threat model, i.e. we need to know more about the nature of all error sources and the threats the WAAS faces, which is very difficult to accomplish due to the stochastic natures of these sources. Therefore, it is unlikely that a range/correction domain solution can be applied to a wide range of applications while having significant improvement for the system performance. Besides, it is still subject to the hindrance that the WAAS message structure might need to be changed or adjusted to take advantage of the new development. In this dissertation, a new position domain algorithm is presented to improve the MOPS integrity methodology in hopes of improving the overall system performance. The information needed to do this is already in the WAAS messages. Therefore, this

  7. A comprehensive view on climate change: coupling of earth system and integrated assessment models

    NASA Astrophysics Data System (ADS)

    van Vuuren, Detlef P.; Batlle Bayer, Laura; Chuwah, Clifford; Ganzeveld, Laurens; Hazeleger, Wilco; van den Hurk, Bart; van Noije, Twan; O'Neill, Brian; Strengers, Bart J.

    2012-06-01

    There are several reasons to strengthen the cooperation between the integrated assessment (IA) and earth system (ES) modeling teams in order to better understand the joint development of environmental and human systems. This cooperation can take many different forms, ranging from information exchange between research communities to fully coupled modeling approaches. Here, we discuss the strengths and weaknesses of different approaches and try to establish some guidelines for their applicability, based mainly on the type of interaction between the model components (including the role of feedback), possibilities for simplification and the importance of uncertainty. We also discuss several important areas of joint IA-ES research, such as land use/land cover dynamics and the interaction between climate change and air pollution, and indicate the type of collaboration that seems to be most appropriate in each case. We find that full coupling of IA-ES models might not always be the most desirable form of cooperation, since in some cases the direct feedbacks between IA and ES may be too weak or subject to considerable process or scenario uncertainty. However, when local processes are important, it could be important to consider full integration. By encouraging cooperation between the IA and ES communities in the future more consistent insights can be developed.

  8. A Decision Support Systems Using A Combined Dynamic Model For Integrated Watershed Management

    NASA Astrophysics Data System (ADS)

    Kudo, E.; Ostrowski, M.

    In this context A Decision Support System (DSS) is presented using a combined dy- namic model for Integrated Watershed Management (IWM) in a small urbanized basin in Japan. In order to improve today's often unsustainable watershed management, the causes of water problems, which interact with each other, must be identified and adequate actions must be chosen to solve the problems. To achieve the ultimate goal of sustain- able development (SD) for water it is essential to develop and apply generic DSSs. A DSS is frequently defined as a combination of a management information system, a model base and an evaluation / assessment module. The EU Water Framework Di- rectives recently established have a narrow time schedule requiring fast action into this direction, which does hardly allow to develop completely new tolls. Thus we are trying to combine different existing dynamic models that incorporate an urban man- agement model, a water quality analysis model, a groundwater analysis model and a water supply model including geographical information system data. With this com- bined model, the most appropriate and sustainable water management plan in an urban area will be developed while considering land use, ground water level, allocation of drainage system, sewerage, water supply works, water quality, and quantity. Because of sharing input data, using this combined model requires less data than using sev- eral separate models. The DSS can also be used to determine the optimum location of gages and monitoring sites. As a case study, the research will deal with the Taguri-river basin in Japan. This basin is located near Tokyo. Although the area in this basin has about 8 km2 only, there are densely build-up areas, paddy fields, and non-developed areas. The river is polluted due to wastewater from point resources: households, and non-point resources: roads and fields, etc. Overpumping of aquifers results in sinking groundwater tables and land subsidence. Moreover, a decrease

  9. Modeling the Arctic freshwater system and its integration in the global system: Lessons learned and future challenges

    NASA Astrophysics Data System (ADS)

    Lique, Camille; Holland, Marika M.; Dibike, Yonas B.; Lawrence, David M.; Screen, James A.

    2016-03-01

    Numerous components of the Arctic freshwater system (atmosphere, ocean, cryosphere, and terrestrial hydrology) have experienced large changes over the past few decades, and these changes are projected to amplify further in the future. Observations are particularly sparse, in both time and space, in the polar regions. Hence, modeling systems have been widely used and are a powerful tool to gain understanding on the functioning of the Arctic freshwater system and its integration within the global Earth system and climate. Here we present a review of modeling studies addressing some aspect of the Arctic freshwater system. Through illustrative examples, we point out the value of using a hierarchy of models with increasing complexity and component interactions, in order to dismantle the important processes at play for the variability and changes of the different components of the Arctic freshwater system and the interplay between them. We discuss past and projected changes for the Arctic freshwater system and explore the sources of uncertainty associated with these model results. We further elaborate on some missing processes that should be included in future generations of Earth system models and highlight the importance of better quantification and understanding of natural variability, among other factors, for improved predictions of Arctic freshwater system change.

  10. A comparison between different error modeling of MEMS applied to GPS/INS integrated systems.

    PubMed

    Quinchia, Alex G; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles

    2013-01-01

    Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways. PMID:23887084

  11. An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems

    SciTech Connect

    Zhang, X; Izaurralde, R. C.; Manowitz, D.; West, T. O.; Thomson, A. M.; Post, Wilfred M; Bandaru, Vara Prasad; Nichols, Jeff; Williams, J.

    2010-10-01

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine-county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  12. An Integrative Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production Systems

    SciTech Connect

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; West, T. O.; Post, W. M.; Thomson, Allison M.; Bandaru, V. P.; Nichols, J.; Williams, J.R.

    2010-09-08

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially-explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: 1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, 2) the biophysical and biogeochemical model EPIC (Environmental Policy Integrated Climate) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and 3) an evolutionary multi-objective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a 9-county Regional Intensive Modeling Area (RIMA) in SW Michigan to 1) simulate biofuel crop production, 2) compare impacts of management practices and local ecosystem settings, and 3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  13. A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems

    PubMed Central

    Quinchia, Alex G.; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles

    2013-01-01

    Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways. PMID:23887084

  14. Automated model integration at source code level: An approach for implementing models into the NASA Land Information System

    NASA Astrophysics Data System (ADS)

    Wang, S.; Peters-Lidard, C. D.; Mocko, D. M.; Kumar, S.; Nearing, G. S.; Arsenault, K. R.; Geiger, J. V.

    2014-12-01

    Model integration bridges the data flow between modeling frameworks and models. However, models usually do not fit directly into a particular modeling environment, if not designed for it. An example includes implementing different types of models into the NASA Land Information System (LIS), a software framework for land-surface modeling and data assimilation. Model implementation requires scientific knowledge and software expertise and may take a developer months to learn LIS and model software structure. Debugging and testing of the model implementation is also time-consuming due to not fully understanding LIS or the model. This time spent is costly for research and operational projects. To address this issue, an approach has been developed to automate model integration into LIS. With this in mind, a general model interface was designed to retrieve forcing inputs, parameters, and state variables needed by the model and to provide as state variables and outputs to LIS. Every model can be wrapped to comply with the interface, usually with a FORTRAN 90 subroutine. Development efforts need only knowledge of the model and basic programming skills. With such wrappers, the logic is the same for implementing all models. Code templates defined for this general model interface could be re-used with any specific model. Therefore, the model implementation can be done automatically. An automated model implementation toolkit was developed with Microsoft Excel and its built-in VBA language. It allows model specifications in three worksheets and contains FORTRAN 90 code templates in VBA programs. According to the model specification, the toolkit generates data structures and procedures within FORTRAN modules and subroutines, which transfer data between LIS and the model wrapper. Model implementation is standardized, and about 80 - 90% of the development load is reduced. In this presentation, the automated model implementation approach is described along with LIS programming

  15. Integrating Social Capital Theory, Social Cognitive Theory, and the Technology Acceptance Model to Explore a Behavioral Model of Telehealth Systems

    PubMed Central

    Tsai, Chung-Hung

    2014-01-01

    Telehealth has become an increasingly applied solution to delivering health care to rural and underserved areas by remote health care professionals. This study integrated social capital theory, social cognitive theory, and the technology acceptance model (TAM) to develop a comprehensive behavioral model for analyzing the relationships among social capital factors (social capital theory), technological factors (TAM), and system self-efficacy (social cognitive theory) in telehealth. The proposed framework was validated with 365 respondents from Nantou County, located in Central Taiwan. Structural equation modeling (SEM) was used to assess the causal relationships that were hypothesized in the proposed model. The finding indicates that elderly residents generally reported positive perceptions toward the telehealth system. Generally, the findings show that social capital factors (social trust, institutional trust, and social participation) significantly positively affect the technological factors (perceived ease of use and perceived usefulness respectively), which influenced usage intention. This study also confirmed that system self-efficacy was the salient antecedent of perceived ease of use. In addition, regarding the samples, the proposed model fitted considerably well. The proposed integrative psychosocial-technological model may serve as a theoretical basis for future research and can also offer empirical foresight to practitioners and researchers in the health departments of governments, hospitals, and rural communities. PMID:24810577

  16. Integrated Modeling of the Human-Natural System to Improve Local Water Management and Planning

    NASA Astrophysics Data System (ADS)

    Gutowski, W. J., Jr.; Dziubanski, D.; Franz, K.; Goodwin, J.; Rehmann, C. R.; Simpkins, W. W.; Tesfastion, L.; Wanamaker, A. D.; Jie, Y.

    2015-12-01

    Communities across the world are experiencing the effects of unsustainable water management practices. Whether the problem is a lack of water, too much water, or water of degraded quality, finding acceptable solutions requires community-level efforts that integrate sound science with local needs and values. Our project develops both a software technology (agent-based hydrological modeling) and a social technology (a participatory approach to model development) that will allow communities to comprehensively address local water challenges. Using agent-based modeling (ABM), we are building a modeling system that includes a semi-distributed hydrologic process model coupled with agent (stakeholder) models. Information from the hydrologic model is conveyed to the agent models, which, along with economic information, determine appropriate agent actions that subsequently affect hydrology within the model. The iterative participatory modeling (IPM) process will assist with the continual development of the agent models. Further, IPM creates a learning environment in which all participants, including researchers, are co-exploring relevant data, possible scenarios and solutions, and viewpoints through continuous interactions. Our initial work focuses on the impact of flood mitigation and conservation efforts on reducing flooding in an urban area. We are applying all research elements above to the Squaw Creek watershed that flows through parts of four counties in central Iowa. The watershed offers many of the typical tensions encountered in Iowa, such as different perspectives on water management between upstream farmers and downstream urban areas, competition for various types of recreational services, and increasing absentee land ownership that may conflict with community values. Ultimately, climate change scenarios will be incorporated into the model to determine long term patterns that may develop within the social or natural system.

  17. Development and Calibration of a System-Integrated Rotorcraft Finite Element Model for Impact Scenarios

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta, Lucas G.; Jackson, Karen E.; Polanco, Michael A.; Littell, Justin D.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber (DEA) under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. The presence of this energy absorbing device reduced the peak impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to a system-integrated finite element model of the test article developed in parallel with the test program. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests were conducted to evaluate the impact performances of various components and subsystems, including new crush tubes and the DEA blocks. Parameters defined for the system-integrated finite element model were determined from these tests. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the full-scale crash test without the DEA. This combination of heuristic and quantitative methods identified modeling deficiencies, evaluated parameter importance, and proposed required model changes. The multidimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were

  18. Toward an Integrated Competence-Based System Supporting Lifelong Learning and Employability: Concepts, Model, and Challenges

    NASA Astrophysics Data System (ADS)

    Miao, Yongwu; van der Klink, Marcel; Boon, Jo; Sloep, Peter; Koper, Rob

    Efficient and effective lifelong learning requires that people can make informed decisions about their continuous personal development in the different stages of their life. In this paper we state that lifelong learners need to be characterized as decision-makers. In order to improve the quality of their decisions, we propose the development of an integrated lifelong learning and employment support system, which traces learners’ competence development and provides a decision support environment. An abstract conceptual model has been developed and the main design ideas have been documented using Z notation. Moreover, we analyzed the main technical challenges for the realization of the target system: competence information fusion, decision analysis models, spatial indexing structures and browsing structures and visualization of competence-related information objects.

  19. Global search tool for the Advanced Photon Source Integrated Relational Model of Installed Systems (IRMIS) database.

    SciTech Connect

    Quock, D. E. R.; Cianciarulo, M. B.; APS Engineering Support Division; Purdue Univ.

    2007-01-01

    The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, the necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.

  20. Designing a mathematical model for integrating dynamic cellular manufacturing into supply chain system

    NASA Astrophysics Data System (ADS)

    Aalaei, Amin; Davoudpour, Hamid

    2012-11-01

    This article presents designing a new mathematical model for integrating dynamic cellular manufacturing into supply chain system with an extensive coverage of important manufacturing features consideration of multiple plants location, multi-markets allocation, multi-period planning horizons with demand and part mix variation, machine capacity, and the main constraints are demand of markets satisfaction in each period, machine availability, machine time-capacity, worker assignment, available time of worker, production volume for each plant and the amounts allocated to each market. The aim of the proposed model is to minimize holding and outsourcing costs, inter-cell material handling cost, external transportation cost, procurement & maintenance and overhead cost of machines, setup cost, reconfiguration cost of machines installation and removal, hiring, firing and salary worker costs. Aimed to prove the potential benefits of such a design, presented an example is shown using a proposed model.

  1. The Anthropology of Science Education Reform: An Alabama Model for Building an Integrated Stakeholder Systems Approach

    NASA Astrophysics Data System (ADS)

    Denson, R. L.; Cox, G. N.

    2004-12-01

    Anthropologists are concerned with every aspect of the culture they are investigating. One of the five main branches of anthropology, socio-cultural anthropology, concerns itself with studying the relationship between behavior and culture. This paper explores the concept that changing the behavior of our culture - its beliefs and values - towards science is at the heart of science education reform. There are five institutions that socio-cultural anthropologists use to study the social organization of cultures: the educational system is only one of them. Its function - across all cultures - is to serve as a mechanism for implementing change in cultural beliefs and values. As leaders of science education reform, the Alabama model contends that we must stop the struggle with our purpose and get on with the business of leading culture change through an integrated stakeholder systems approach. This model stresses the need for the interaction of agencies other than education - including government, industry, the media and our health communities to operate in an integrated and systemic fashion to address the issues of living among a technically literate society. Twenty-five years of science education reform needs being voiced and programs being developed has not produced the desired results from within the educational system. This is too limited a focus to affect any real cultural change. It is when we acknowledge that students spend only an average of 12 percent of their life time in schools, that we can begin to ask ourselves what are our students learning the other 88 percent of their time - from their peers, their parents and the media - and what should we be doing to address this cultural crisis in these other arenas in addition to the educational system? The Alabama Math, Science and Technology Education Coalition (AMSTEC) is a non-profit 501c(3) organization operating in the state of Alabama to provide leadership in improving mathematics, science, and technology

  2. Integrated systems optimization model for biofuel development: The influence of environmental constraints

    NASA Astrophysics Data System (ADS)

    Housh, M.; Ng, T.; Cai, X.

    2012-12-01

    The environmental impact is one of the major concerns of biofuel development. While many other studies have examined the impact of biofuel expansion on stream flow and water quality, this study examines the problem from the other side - will and how a biofuel production target be affected by given environmental constraints. For this purpose, an integrated model comprises of different sub-systems of biofuel refineries, transportation, agriculture, water resources and crops/ethanol market has been developed. The sub-systems are integrated into one large-scale model to guide the optimal development plan considering the interdependency between the subsystems. The optimal development plan includes biofuel refineries location and capacity, refinery operation, land allocation between biofuel and food crops, and the corresponding stream flow and nitrate load in the watershed. The watershed is modeled as a network flow, in which the nodes represent sub-watersheds and the arcs are defined as the linkage between the sub-watersheds. The runoff contribution of each sub-watershed is determined based on the land cover and the water uses in that sub-watershed. Thus, decisions of other sub-systems such as the land allocation in the land use sub-system and the water use in the refinery sub-system define the sources and the sinks of the network. Environmental policies will be addressed in the integrated model by imposing stream flow and nitrate load constraints. These constraints can be specified by location and time in the watershed to reflect the spatial and temporal variation of the regulations. Preliminary results show that imposing monthly water flow constraints and yearly nitrate load constraints will change the biofuel development plan dramatically. Sensitivity analysis is performed to examine how the environmental constraints and their spatial and the temporal distribution influence the overall biofuel development plan and the performance of each of the sub-systems

  3. High-Resolution Modelling of Health Impacts from Air Pollution for Denmark using the Integrated Model System EVA

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Hansen, Kaj M.; Hertel, Ole; Im, Ulas; Jensen, Steen S.; Ketzel, Matthias; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Sigsgaard, Torben; Geels, Camilla

    2015-04-01

    We have developed an integrated health impact assessment system EVA (Economic Valuation of Air pollution; Brandt et al., 2013a; 2013b), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. The EVA system has previously been used to assess the health impacts based on results from a regional model DEHM (the Danish Eulerian Hemispheric Model; Brandt et al., 2012). In this study we have used a coupling of two chemistry transport models to calculate the air pollution concentration at different scales; the DEHM model to calculate the air pollution levels with a resolution down to 5.6 km x 5.6 km and the UBM model (Urban Background Model ; Berkowicz, 2000; Brandt et al., 2001) to further calculate the air pollution at 1 km x 1 km resolution for Denmark using results from DEHM as boundary conditions. Both the emission data based on the SPREAD model (Plejdrup and Gyldenkærne, 2011) as well as the population density has been represented in the model system with the same high resolution. The new developments of the integrated model system will be presented as well as results for health impacts and related external costs over the years 2006-2014 for Denmark. Furthermore, a sensitivity study of the health impact using coarse and fine resolutions in the model system has been carried out to evaluate the effect of improved description of the geographical population distribution with respect to location of local emissions. References Berkowicz, R., 2000. A Simple Model for Urban Background Pollution. Environmental Monitoring and Assessment, 65, 1/2, 259-267. Brandt, J., J. H. Christensen, L. M. Frohn, F. Palmgren, R. Berkowicz and Z. Zlatev, 2001: "Operational air pollution forecasts from European to local scale". Atmospheric Environment, Vol. 35, Sup. No. 1, pp. S91-S98, 2001 Brandt

  4. An Integrated Model for Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect

    D. Muth; K. M. Bryden

    2003-12-01

    Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion from wind and water and in maintaining soil organic carbon. Because of this, multiple factors must be considered when assessing sustainable residue harvest limits. Validated and accepted modeling tools for assessing these impacts include the Revised Universal Soil Loss Equation Version 2 (RUSLE2), the Wind Erosion Prediction System (WEPS), and the Soil Conditioning Index. Currently, these models do not work together as a single integrated model. Rather, use of these models requires manual interaction and data transfer. As a result, it is currently not feasible to use these computational tools to perform detailed sustainable agricultural residue availability assessments across large spatial domains or to consider a broad range of land management practices. This paper presents an integrated modeling strategy that couples existing datasets with the RUSLE2 water erosion, WEPS wind erosion, and Soil Conditioning Index soil carbon modeling tools to create a single integrated residue removal modeling system. This enables the exploration of the detailed sustainable residue harvest scenarios needed to establish sustainable residue availability. Using this computational tool, an assessment study of residue availability for the state of Iowa was performed. This study included all soil types in the state of Iowa, four representative crop rotation schemes, variable crop yields, three tillage management methods, and five residue removal methods. The key conclusions of this study are that under current management practices and crop yields nearly 26.5 million Mg of agricultural residue are sustainably accessible in the state of Iowa, and that through the adoption of no till practices residue removal could sustainably approach 40

  5. Integrated system modeling analysis of a cryogenic multi-cell deflecting-mode cavity resonator

    SciTech Connect

    Shin, Young-Min; Church, Michael

    2013-09-15

    A deflecting mode cavity is the integral element for six-dimensional phase-space beam control in bunch compressors and emittance transformers at high energy beam test facilities. RF performance of a high-Q device is, however, highly sensitive to operational conditions, in particular in a cryo-cooling environment. Using analytic calculations and RF simulations, we examined cavity parameters and deflecting characteristics of TM{sub 110,π} mode of a 5 cell resonator in a liquid nitrogen cryostat, which has long been used at the Fermilab A0 Photoinjector (A0PI). The sensitivity analysis indicated that the cavity could lose 30%–40% of deflecting force due to defective input power coupling accompanying non-uniform field distribution across the cells with 40 ∼ 50 MeV electron beam and 70–80 kW klystron power. Vacuum-cryomodules of the 5 cell cavity are planned to be installed at the Fermilab Advanced Superconducting Test Accelerator facility. Comprehensive modeling analysis integrated with multi-physics simulation tools showed that RF loading of 1 ms can cause a ∼5 K maximum temperature increase, corresponding to a ∼4.3 μm/ms deformation and a 1.32 MHz/K maximum frequency shift. The integrated system modeling analysis will improve design process of a high-Q cavity with more accurate prediction of cryogenic RF performance under a high power pulse operation.

  6. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services.

    PubMed

    Arbault, Damien; Rivière, Mylène; Rugani, Benedetto; Benetto, Enrico; Tiruta-Barna, Ligia

    2014-02-15

    Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable. This paper takes a step forward and is aimed at demonstrating the feasibility of using an integrated earth system dynamic modeling perspective to retrieve time- and scenario-dependent CFs that consider the complex interlinkages between natural processes delivering ES. The GUMBO (Global Unified Metamodel of the Biosphere) model is used to quantify changes in ES production in physical terms - leading to midpoint CFs - and changes in human welfare indicators, which are considered here as endpoint CFs. The interpretation of the obtained results highlights the key methodological challenges to be solved to consider this approach as a robust alternative to the mainstream rationale currently adopted in LCIA. Further research should focus on increasing the granularity of environmental interventions in the modeling tools to match current standards in LCA and on adapting the conceptual approach to a spatially-explicit integrated model. PMID:24291626

  7. Intelligent test integration system

    NASA Technical Reports Server (NTRS)

    Sztipanovits, J.; Padalkar, S.; Rodriguez-Moscoso, J.; Kawamura, K.; Purves, B.; Williams, R.; Biglari, H.

    1988-01-01

    A new test technology is described which was developed for space system integration. The ultimate purpose of the system is to support the automatic generation of test systems in real time, distributed computing environments. The Intelligent Test Integration System (ITIS) is a knowledge based layer above the traditional test system components which can generate complex test configurations from the specification of test scenarios.

  8. Integrated Assessment Model Evaluation

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; Clarke, L.; Edmonds, J. A.; Weyant, J. P.

    2012-12-01

    Integrated assessment models of climate change (IAMs) are widely used to provide insights into the dynamics of the coupled human and socio-economic system, including emission mitigation analysis and the generation of future emission scenarios. Similar to the climate modeling community, the integrated assessment community has a two decade history of model inter-comparison, which has served as one of the primary venues for model evaluation and confirmation. While analysis of historical trends in the socio-economic system has long played a key role in diagnostics of future scenarios from IAMs, formal hindcast experiments are just now being contemplated as evaluation exercises. Some initial thoughts on setting up such IAM evaluation experiments are discussed. Socio-economic systems do not follow strict physical laws, which means that evaluation needs to take place in a context, unlike that of physical system models, in which there are few fixed, unchanging relationships. Of course strict validation of even earth system models is not possible (Oreskes etal 2004), a fact borne out by the inability of models to constrain the climate sensitivity. Energy-system models have also been grappling with some of the same questions over the last quarter century. For example, one of "the many questions in the energy field that are waiting for answers in the next 20 years" identified by Hans Landsberg in 1985 was "Will the price of oil resume its upward movement?" Of course we are still asking this question today. While, arguably, even fewer constraints apply to socio-economic systems, numerous historical trends and patterns have been identified, although often only in broad terms, that are used to guide the development of model components, parameter ranges, and scenario assumptions. IAM evaluation exercises are expected to provide useful information for interpreting model results and improving model behavior. A key step is the recognition of model boundaries, that is, what is inside

  9. Grambling State University's Planning/Budgeting Model: An Integral Component of a Decision Support System. SAIR Conference Paper.

    ERIC Educational Resources Information Center

    Lundy, Harold W.

    The development of a planning/budgeting model as an integral component of a decision support system is described. The case study approach is used to describe how Grambling State University (GSU) developed the model to improve its financial planning and budgeting processes. The model can be used for tactical and/or strategic planning. The model is…

  10. The Digital Astronaut: An integrated modeling and database system for space biomedical research and operations

    NASA Astrophysics Data System (ADS)

    White, Ronald J.; McPhee, Jancy C.

    2007-02-01

    The Digital Astronaut is an integrated, modular modeling and database system that will support space biomedical research and operations in a variety of fundamental ways. This system will enable the identification and meaningful interpretation of the medical and physiological research required for human space exploration, a determination of the effectiveness of specific individual human countermeasures in reducing risk and meeting health and performance goals on challenging exploration missions and an evaluation of the appropriateness of various medical interventions during mission emergencies, accidents and illnesses. Such a computer-based, decision support system will enable the construction, validation and utilization of important predictive simulations of the responses of the whole human body to the types of stresses experienced during space flight and low-gravity environments. These simulations will be essential for direct, real-time analysis and maintenance of astronaut health and performance capabilities. The Digital Astronaut will collect and integrate past and current human data across many physiological disciplines and simulations into an operationally useful form that will not only summarize knowledge in a convenient and novel way but also reveal gaps that must be filled via new research in order to effectively ameliorate biomedical risks. Initial phases of system development will focus on simulating ground-based analog systems that are just beginning to collect multidisciplinary data in a standardized way (e.g., the International Multidisciplinary Artificial Gravity Project). During later phases, the focus will shift to development and planning for missions and to exploration mission operations. Then, the Digital Astronaut system will enable evaluation of the effectiveness of multiple, simultaneously applied countermeasures (a task made difficult by the many-system physiological effects of individual countermeasures) and allow for the prescription of

  11. Assessment of urban stream morphology: an integrated index and modelling system.

    PubMed

    Xia, Ting; Zhu, Wei; Xin, Pei; Li, Lei

    2010-08-01

    Physical morphology is an important attribute of a stream system. The morphological state of a natural pristine stream often reflects its biological condition because of their close links. In contrast, the morphology of an urban stream may exhibit different behaviours due to serious human disturbances. For an urban stream system, the morphological condition not only determines the in-stream habitat quality but also provides the physical basis for the stream's municipal functionalities. By comparing the morphological characters of urban and natural streams, this paper develops an integrated index system and model for the assessment of urban stream morphology. The model is applied to the Ancient Canal (Zhenjiang, China) with the aim of comparing the morphological conditions of reaches with and without ongoing restoration programs and further of assessing the effectiveness of the restoration methods and techniques. The results indicate that the water security and the landscape functionality of the canal have been upgraded. However, the quality of the in-stream habitat has been degraded as a result of the restoration. Based on the modelled results, recommendations are given for improving the effects of the next-phase restoration. The assessment system and findings from the application presented here are expected to have important implications for the restoration of disturbed urban streams in many other cities in China and elsewhere in the world. PMID:19609699

  12. The impact of new developments on river water quality from an integrated system modelling perspective.

    PubMed

    Fu, Guangtao; Butler, David; Khu, Soon-Thiam

    2009-02-01

    New housing areas are a ubiquitous feature of modern life in the developing and developed world alike built in response to rising social, demographic and economic pressures. Inevitably, these new developments will have an impact on the environment around them. Empirical evidence confirms the close relationship between urbanisation and ambient water quality. However, what is lacking so far is a detailed and more generalised analysis of environmental impact at a relatively small scale. The aim of this paper is to quantify the impact of new developments on river water quality within an integrated system modelling perspective. To conduct the impact analyses, an existing integrated urban wastewater model was used to predict water flow and quality in the sewer system, treatment plant and receiving water body. The impact on combined sewer overflow (CSO) discharges, treatment plant effluent, and within the river at various reaches is analysed by 'locating' a new development on a semi-hypothetical urban catchment. River water quality is used as feedback to constrain the scale of the new development within different thresholds in compliance with water quality standards. Further, the regional sensitivity analysis (RSA) method is applied to reveal the parameters with the greatest impact on water quality. These analyses will help to inform town planners and water specialists who advise them, how to minimise the impact of such developments given the specific context. PMID:19036407

  13. Integrated model of G189A and Aspen-plus for the transient modeling of extravehicular activity atmospheric control systems

    NASA Technical Reports Server (NTRS)

    Kolodney, Matthew; Conger, Bruce C.

    1990-01-01

    A computerized modeling tool, under development for the transient modeling of an extravehicular activity atmospheric control subsystem is described. This subsystem includes the astronaut, temperature control, moisture control, CO2 removal, and oxygen make-up components. Trade studies evaluating competing components and subsystems to guide the selection and development of hardware for lunar and Martian missions will use this modeling tool. The integrated modeling tool uses the Advanced System for Process Engineering (ASPEN) to accomplish pseudosteady-state simulations, and the general environmental thermal control and life support program (G189A) to manage overall control of the run and transient input output, as well as transient modeling computations and database functions. Flow charts and flow diagrams are included.

  14. CAI: A Model for the Comparison and Selection of Integrated Learning Systems in Large School Districts.

    ERIC Educational Resources Information Center

    Resta, Paul E.; Rost, Paul

    The Albuquerque (New Mexico) Public Schools conducted a three-year study of integrated computer-based learning systems, including WICAT, Dolphin, PLATO, CCC, and DEGEM. Through cooperation with the Education Consolidation Improvement Act Chapter 1 program, four large integrated learning systems (ILS) were purchased and studied. They were installed…

  15. An Integrated Model for a Water Leasing System on the Middle Rio Grand, New Mexico

    NASA Astrophysics Data System (ADS)

    Brookshire, D. S.; Coursey, D. L.; Tidwell, V. C.; Broadbent, C. D.

    2006-12-01

    Since 1950 demand for water has more than doubled in the United States. Virtually all water supplies are allocated, leading to the question, where will water come from? The concept of water leasing has gained considerable attention as a volunteer, market-mediated system for transferring water between competing uses. For a water leasing system to be truly effective, detailed knowledge of the available water supply and the factors that affect water demand is critical. Improving understating of the factors that determine residential, industrial, and agricultural demand for water using experimental economics and then integrating with a hydrological model will allow for better understanding of market-based mechanisms potential to allocate water resources effectively. Currently we have three case studies underway, a generalized water leasing system on the Middle Rio Grande, a sophisticated farmer decision process and a study in the Mimbres basin in southern New Mexico. The developed market model utilizes an open market trading system known as a double auction, where buyers and sellers declare their bids and offers to the market. The developed hydrological model utilizes the Upper Rio Grande Water Operations Model (URGWOM) system structure and data for the generalized water leasing system and the farmer decision process, with a different hydrological model being developed for the Mimbres basin. A key coupling between the hydrologic and market models involves tracking the difference in river losses for trades that move water up or down the river. In the experiments the hydrological model runs before the market-trading period to establish water rights, the trading period occurs and the hydrological model then runs a second time to report flows to each reach of the river. Participants in the experiment represent the interests of specific users, including farmers, Native American interests, urban interests and environmental interests. Participants in the experiments are

  16. Integration of environmental simulation models with satellite remote sensing and geographic information systems technologies: case studies

    USGS Publications Warehouse

    Steyaert, Louis T.; Loveland, Thomas R.; Brown, Jesslyn F.; Reed, Bradley C.

    1993-01-01

    Environmental modelers are testing and evaluating a prototype land cover characteristics database for the conterminous United States developed by the EROS Data Center of the U.S. Geological Survey and the University of Nebraska Center for Advanced Land Management Information Technologies. This database was developed from multi temporal, 1-kilometer advanced very high resolution radiometer (AVHRR) data for 1990 and various ancillary data sets such as elevation, ecological regions, and selected climatic normals. Several case studies using this database were analyzed to illustrate the integration of satellite remote sensing and geographic information systems technologies with land-atmosphere interactions models at a variety of spatial and temporal scales. The case studies are representative of contemporary environmental simulation modeling at local to regional levels in global change research, land and water resource management, and environmental simulation modeling at local to regional levels in global change research, land and water resource management and environmental risk assessment. The case studies feature land surface parameterizations for atmospheric mesoscale and global climate models; biogenic-hydrocarbons emissions models; distributed parameter watershed and other hydrological models; and various ecological models such as ecosystem, dynamics, biogeochemical cycles, ecotone variability, and equilibrium vegetation models. The case studies demonstrate the important of multi temporal AVHRR data to develop to develop and maintain a flexible, near-realtime land cover characteristics database. Moreover, such a flexible database is needed to derive various vegetation classification schemes, to aggregate data for nested models, to develop remote sensing algorithms, and to provide data on dynamic landscape characteristics. The case studies illustrate how such a database supports research on spatial heterogeneity, land use, sensitivity analysis, and scaling issues

  17. Modeling and Detecting Feature Interactions among Integrated Services of Home Network Systems

    NASA Astrophysics Data System (ADS)

    Igaki, Hiroshi; Nakamura, Masahide

    This paper presents a framework for formalizing and detecting feature interactions (FIs) in the emerging smart home domain. We first establish a model of home network system (HNS), where every networked appliance (or the HNS environment) is characterized as an object consisting of properties and methods. Then, every HNS service is defined as a sequence of method invocations of the appliances. Within the model, we next formalize two kinds of FIs: (a) appliance interactions and (b) environment interactions. An appliance interaction occurs when two method invocations conflict on the same appliance, whereas an environment interaction arises when two method invocations conflict indirectly via the environment. Finally, we propose offline and online methods that detect FIs before service deployment and during execution, respectively. Through a case study with seven practical services, it is shown that the proposed framework is generic enough to capture feature interactions in HNS integrated services. We also discuss several FI resolution schemes within the proposed framework.

  18. Integrated optimal allocation model for complex adaptive system of water resources management (II): Case study

    NASA Astrophysics Data System (ADS)

    Zhou, Yanlai; Guo, Shenglian; Xu, Chong-Yu; Liu, Dedi; Chen, Lu; Wang, Dong

    2015-12-01

    Climate change, rapid economic development and increase of the human population are considered as the major triggers of increasing challenges for water resources management. This proposed integrated optimal allocation model (IOAM) for complex adaptive system of water resources management is applied in Dongjiang River basin located in the Guangdong Province of China. The IOAM is calibrated and validated under baseline period 2010 year and future period 2011-2030 year, respectively. The simulation results indicate that the proposed model can make a trade-off between demand and supply for sustainable development of society, economy, ecology and environment and achieve adaptive management of water resources allocation. The optimal scheme derived by multi-objective evaluation is recommended for decision-makers in order to maximize the comprehensive benefits of water resources management.

  19. Integrated Standardized Database/Model Management System: Study management concepts and requirements

    SciTech Connect

    Baker, R.; Swerdlow, S.; Schultz, R.; Tolchin, R.

    1994-02-01

    Data-sharing among planners and planning software for utility companies is the motivation for creating the Integrated Standardized Database (ISD) and Model Management System (MMS). The purpose of this document is to define the requirements for the ISD/MMS study management component in a manner that will enhance the use of the ISD. After an analysis period which involved EPRI member utilities across the United States, the study concept was formulated. It is defined in terms of its entities, relationships and its support processes, specifically for implementation as the key component of the MMS. From the study concept definition, requirements are derived. There are unique requirements, such as the necessity to interface with DSManager, EGEAS, IRPManager, MIDAS and UPM and there are standard information systems requirements, such as create, modify, delete and browse data. An initial ordering of the requirements is established, with a section devoted to future enhancements.

  20. Model predictive control system and method for integrated gasification combined cycle power generation

    DOEpatents

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  1. Global/Regional Integrated Model System (GRIMs): Double Fourier Series (DFS) Dynamical Core

    NASA Astrophysics Data System (ADS)

    Koo, M.; Hong, S.

    2013-12-01

    A multi-scale atmospheric/oceanic model system with unified physics, the Global/Regional Integrated Model system (GRIMs) has been created for use in numerical weather prediction, seasonal simulations, and climate research projects, from global to regional scales. It includes not only the model code, but also the test cases and scripts. The model system is developed and practiced by taking advantage of both operational and research applications. We outlines the history of GRIMs, its current applications, and plans for future development, providing a summary useful to present and future users. In addition to the traditional spherical harmonics (SPH) dynamical core, a new spectral method with a double Fourier series (DFS) is available in the GRIMs (Table 1). The new DFS dynamical core with full physics is evaluated against the SPH dynamical core in terms of short-range forecast capability for a heavy rainfall event and seasonal simulation framework. Comparison of the two dynamical cores demonstrates that the new DFS dynamical core exhibits performance comparable to the SPH in terms of simulated climatology accuracy and the forecast of a heavy rainfall event. Most importantly, the DFS algorithm guarantees improved computational efficiency in the cluster computer as the model resolution increases, which is consistent with theoretical values computed from the dry primitive equation model framework of Cheong (Fig. 1). The current study shows that, at higher resolutions, the DFS approach can be a competitive dynamical core because the DFS algorithm provides the advantages of both the spectral method for high numerical accuracy and the grid-point method for high performance computing in the aspect of computational cost. GRIMs dynamical cores

  2. ProcessGene-Connect: SOA Integration between Business Process Models and Enactment Transactions of Enterprise Software Systems

    NASA Astrophysics Data System (ADS)

    Wasser, Avi; Lincoln, Maya

    In recent years, both practitioners and applied researchers have become increasingly interested in methods for integrating business process models and enterprise software systems through the deployment of enabling middleware. Integrative BPM research has been mainly focusing on the conversion of workflow notations into enacted application procedures, and less effort has been invested in enhancing the connectivity between design level, non-workflow business process models and related enactment systems such as: ERP, SCM and CRM. This type of integration is useful at several stages of an IT system lifecycle, from design and implementation through change management, upgrades and rollout. The paper presents an integration method that utilizes SOA for connecting business process models with corresponding enterprise software systems. The method is then demonstrated through an Oracle E-Business Suite procurement process and its ERP transactions.

  3. Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51

    NASA Astrophysics Data System (ADS)

    Jöckel, Patrick; Tost, Holger; Pozzer, Andrea; Kunze, Markus; Kirner, Oliver; Brenninkmeijer, Carl A. M.; Brinkop, Sabine; Cai, Duy S.; Dyroff, Christoph; Eckstein, Johannes; Frank, Franziska; Garny, Hella; Gottschaldt, Klaus-Dirk; Graf, Phoebe; Grewe, Volker; Kerkweg, Astrid; Kern, Bastian; Matthes, Sigrun; Mertens, Mariano; Meul, Stefanie; Neumaier, Marco; Nützel, Matthias; Oberländer-Hayn, Sophie; Ruhnke, Roland; Runde, Theresa; Sander, Rolf; Scharffe, Dieter; Zahn, Andreas

    2016-03-01

    Three types of reference simulations, as recommended by the Chemistry-Climate Model Initiative (CCMI), have been performed with version 2.51 of the European Centre for Medium-Range Weather Forecasts - Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model: hindcast simulations (1950-2011), hindcast simulations with specified dynamics (1979-2013), i.e. nudged towards ERA-Interim reanalysis data, and combined hindcast and projection simulations (1950-2100). The manuscript summarizes the updates of the model system and details the different model set-ups used, including the on-line calculated diagnostics. Simulations have been performed with two different nudging set-ups, with and without interactive tropospheric aerosol, and with and without a coupled ocean model. Two different vertical resolutions have been applied. The on-line calculated sources and sinks of reactive species are quantified and a first evaluation of the simulation results from a global perspective is provided as a quality check of the data. The focus is on the intercomparison of the different model set-ups. The simulation data will become publicly available via CCMI and the Climate and Environmental Retrieval and Archive (CERA) database of the German Climate Computing Centre (DKRZ). This manuscript is intended to serve as an extensive reference for further analyses of the Earth System Chemistry integrated Modelling (ESCiMo) simulations.

  4. The MIT Integrated Global System Model: A facility for Assessing and Communicating Climate Change Uncertainty (Invited)

    NASA Astrophysics Data System (ADS)

    Prinn, R. G.

    2013-12-01

    The world is facing major challenges that create tensions between human development and environmental sustenance. In facing these challenges, computer models are invaluable tools for addressing the need for probabilistic approaches to forecasting. To illustrate this, I use the MIT Integrated Global System Model framework (IGSM; http://globalchange.mit.edu ). The IGSM consists of a set of coupled sub-models of global economic and technological development and resultant emissions, and physical, dynamical and chemical processes in the atmosphere, land, ocean and ecosystems (natural and managed). Some of the sub-models have both complex and simplified versions available, with the choice of which version to use being guided by the questions being addressed. Some sub-models (e.g.urban air pollution) are reduced forms of complex ones created by probabilistic collocation with polynomial chaos bases. Given the significant uncertainties in the model components, it is highly desirable that forecasts be probabilistic. We achieve this by running 400-member ensembles (Latin hypercube sampling) with different choices for key uncertain variables and processes within the human and natural system model components (pdfs of inputs estimated by model-observation comparisons, literature surveys, or expert elicitation). The IGSM has recently been used for probabilistic forecasts of climate, each using 400-member ensembles: one ensemble assumes no explicit climate mitigation policy and others assume increasingly stringent policies involving stabilization of greenhouse gases at various levels. These forecasts indicate clearly that the greatest effect of these policies is to lower the probability of extreme changes. The value of such probability analyses for policy decision-making lies in their ability to compare relative (not just absolute) risks of various policies, which are less affected by the earth system model uncertainties. Given the uncertainties in forecasts, it is also clear that

  5. Mercury Lightcraft Project Update: 3-D Modeling, Systems Analysis and Integration

    NASA Astrophysics Data System (ADS)

    Buckton, Thomas W.; Myrabo, Leik N.

    2005-04-01

    This paper is a progress report on the laser-propelled Mercury Lightcraft Project at Rensselaer Polytechnic Institute. The laser-propelled, 1-person craft has a diameter of 252-cm, height of 217-cm, internal volume of 3 m3, `dry' mass of 700 kg, and gross liftoff mass of 1 metric ton. Expendable liquids including 70 kg of liquid hydrogen, and an equivalent mass (at least) of de-ionized water serves as open-cycle coolants for the 520 MWe laser/electric power conversion system. Its hyper-energetic airbreathing engine can easily accelerate the vehicle at 10 Gs or more. The tractor-beam lightcraft is intended as a prototype for use in a future global aerospace transportation system based on a constellation of satellite solar power stations in geostationary orbit, with laser relay stations in low Earth orbit. Using SolidWorks® 3-D modeling software, several important features were successfully integrated into the Mercury lightcraft model - principally: a rotating shroud (for spin stabilization) simple actuation system for a new variable-geometry air inlet; refined optical train for the laser-heated H2 plasma generators; pneumatically deployed, robotic quadra-pod landing gear; ejection seat/pod/hatch system; and a more detailed airframe structural concept. The CAD effort has brought the Mercury Lightcraft concept one significant step closer to reality.

  6. An integrated material metabolism model for stocks of urban road system in Beijing, China.

    PubMed

    Guo, Zhen; Hu, Dan; Zhang, Fuhua; Huang, Guolong; Xiao, Qiang

    2014-02-01

    Rapid urbanization has greatly altered the urban metabolism of material and energy. As a significant part of the infrastructure, urban roads are being rapidly developed worldwide. Quantitative analysis of metabolic processes on urban road systems, especially the scale, composition and spatial distribution of their stocks, could help to assess the resource appropriation and potential environmental impacts, as well as improve urban metabolism models. In this paper, an integrated model, which covered all types of roads, intersection structures and ancillary facilities, was built for calculating the material stocks of urban road systems. Based on a bottom-up method, the total stocks were disassembled into a number of stock parts rather than obtained by input-output data, which provided an approach promoting data availability and inner structure understanding. The combination with GIS enabled the model to tackle the complex structures of road networks and avoid double counting. In the case study of Beijing, the following results are shown: 1) The total stocks for the entire road system reached 159 million tons, of which nearly 80% was stored in roads, and 20% in ancillary facilities. 2) Macadam was the largest stock (111 million tons), while stone mastic asphalt, polyurethane plastics, and atactic polypropylene accounted for smaller components of the overall system. 3) The stock per unit area of pedestrian overcrossing was higher than that of the other stock units in the entire system, and its steel stocks reached 0.49 t/m(2), which was 10 times as high as that in interchanges. 4) The high stock areas were mainly distributed in ring-shaped and radial expressways, as well as in major interchanges. 5) Expressways and arterials were excessively emphasized, while minor roads were relatively ignored. However, the variation of cross-sectional thickness in branches and neighborhood roads will have a significant impact on the scale of material stocks in the entire road system

  7. Simulation of recharge for the Death Valley regional groundwater flow system using an integrated hydrologic model

    NASA Astrophysics Data System (ADS)

    Hevesi, J. A.; Regan, R. S.; Hill, M. C.; Heywood, C.; Kohn, M. S.

    2012-12-01

    A proof-of-concept study was conducted using the integrated hydrologic model, GSFLOW, to simulate spatially and temporally distributed recharge for the Death Valley regional groundwater flow system (DVRFS). GSFLOW is an integrated groundwater - surface water flow model that combines two modeling applications: the Precipitation-Runoff-Modeling-System (PRMS) and MODFLOW. Previous methods used to estimate recharge for the DVRFS include empirical models based on precipitation, applications of the chloride mass-balance method, and applications of a precipitation-runoff model, INFIL, which used a daily time step to simulate recharge as net infiltration through the root zone. The GSFLOW model offers several potential advantages compared to the previous methods including (1) the ability to simulate complex flow through a thick unsaturated zone (UZ), allowing for the dampening and time delay of recharge relative to the infiltration signal at the top of the UZ and also allowing for the redistribution of flow within the UZ, as enabled by the MODFLOW-NWT and UZF capabilities, (2) the simulation of rejected recharge in response to the dynamics of groundwater discharge and low permeability zones in the UZ, (3) a more explicit representation of streamflow and recharge processes in the mostly ephemeral stream channels that characterize the DVRFS, and (4) the ability to simulate complex flow paths for runoff occurring as both overland flow and shallow subsurface flow (interflow) in the soil zone using a network of cascades connecting hydrologic response units (HRUs). Simulations were done using a daily time step for water years 1980-2010. Preliminary estimates of recharge using GSFLOW indicate that the distribution of recharge is highly variable both spatially and temporally due to variability in precipitation, snowmelt, evapotranspiration, runoff, and the permeability of bedrock and alluvium underlying the root zone. Results averaged over the areas of subbasins were similar to

  8. Integrating Soft Set Theory and Fuzzy Linguistic Model to Evaluate the Performance of Training Simulation Systems.

    PubMed

    Chang, Kuei-Hu; Chang, Yung-Chia; Chain, Kai; Chung, Hsiang-Yu

    2016-01-01

    The advancement of high technologies and the arrival of the information age have caused changes to the modern warfare. The military forces of many countries have replaced partially real training drills with training simulation systems to achieve combat readiness. However, considerable types of training simulation systems are used in military settings. In addition, differences in system set up time, functions, the environment, and the competency of system operators, as well as incomplete information have made it difficult to evaluate the performance of training simulation systems. To address the aforementioned problems, this study integrated analytic hierarchy process, soft set theory, and the fuzzy linguistic representation model to evaluate the performance of various training simulation systems. Furthermore, importance-performance analysis was adopted to examine the influence of saving costs and training safety of training simulation systems. The findings of this study are expected to facilitate applying military training simulation systems, avoiding wasting of resources (e.g., low utility and idle time), and providing data for subsequent applications and analysis. To verify the method proposed in this study, the numerical examples of the performance evaluation of training simulation systems were adopted and compared with the numerical results of an AHP and a novel AHP-based ranking technique. The results verified that not only could expert-provided questionnaire information be fully considered to lower the repetition rate of performance ranking, but a two-dimensional graph could also be used to help administrators allocate limited resources, thereby enhancing the investment benefits and training effectiveness of a training simulation system. PMID:27598390

  9. Computational modelling of placental amino acid transfer as an integrated system.

    PubMed

    Panitchob, N; Widdows, K L; Crocker, I P; Johnstone, E D; Please, C P; Sibley, C P; Glazier, J D; Lewis, R M; Sengers, B G

    2016-07-01

    Placental amino acid transfer is essential for fetal development and its impairment is associated with poor fetal growth. Amino acid transfer is mediated by a broad array of specific plasma membrane transporters with overlapping substrate specificity. However, it is not fully understood how these different transporters work together to mediate net flux across the placenta. Therefore the aim of this study was to develop a new computational model to describe how human placental amino acid transfer functions as an integrated system. Amino acid transfer from mother to fetus requires transport across the two plasma membranes of the placental syncytiotrophoblast, each of which contains a distinct complement of transporter proteins. A compartmental modelling approach was combined with a carrier based modelling framework to represent the kinetics of the individual accumulative, exchange and facilitative classes of transporters on each plasma membrane. The model successfully captured the principal features of transplacental transfer. Modelling results clearly demonstrate how modulating transporter activity and conditions such as phenylketonuria, can increase the transfer of certain groups of amino acids, but that this comes at the cost of decreasing the transfer of others, which has implications for developing clinical treatment options in the placenta and other transporting epithelia. PMID:27045077

  10. Integration of Geographic Information System frameworks into domain discretisation and meshing processes for geophysical models

    NASA Astrophysics Data System (ADS)

    Candy, A. S.; Avdis, A.; Hill, J.; Gorman, G. J.; Piggott, M. D.

    2014-09-01

    Computational simulations of physical phenomena rely on an accurate discretisation of the model domain. Numerical models have increased in sophistication to a level where it is possible to support terrain-following boundaries that conform accurately to real physical interfaces, and resolve a multiscale of spatial resolutions. Whilst simulation codes are maturing in this area, pre-processing tools have not developed significantly enough to competently initialise these problems in a rigorous, efficient and recomputable manner. In the relatively disjoint field of Geographic Information Systems (GIS) however, techniques and tools for mapping and analysis of geographical data have matured significantly. If data provenance and recomputability are to be achieved, the manipulation and agglomeration of data in the pre-processing of numerical simulation initialisation data for geophysical models should be integrated into GIS. A new approach to the discretisation of geophysical domains is presented, and introduced with a verified implementation. This brings together the technologies of geospatial analysis, meshing and numerical simulation models. This platform enables us to combine and build up features, quickly drafting and updating mesh descriptions with the rigour that established GIS tools provide. This, combined with the systematic workflow, supports a strong provenance for model initialisation and encourages the convergence of standards.

  11. The Parallel System for Integrating Impact Models and Sectors (pSIMS)

    NASA Technical Reports Server (NTRS)

    Elliott, Joshua; Kelly, David; Chryssanthacopoulos, James; Glotter, Michael; Jhunjhnuwala, Kanika; Best, Neil; Wilde, Michael; Foster, Ian

    2014-01-01

    We present a framework for massively parallel climate impact simulations: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for translating this datatype into custom formats for site-based models; c) a scalable parallel framework for performing large ensemble simulations, using any one of a number of different impacts models, on clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By automating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS accelerates computational research, encourages model intercomparison, and enhances reproducibility of simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-model, multi-scale, and multi-sector versatility.

  12. Integrated analysis environment for high impact systems

    SciTech Connect

    Martinez, M.; Davis, J.; Scott, J.; Sztipanovits, J.; Karsai, G.

    1998-02-01

    Modeling and analysis of high consequence, high assurance systems requires special modeling considerations. System safety and reliability information must be captured in the models. Previously, high consequence systems were modeled using separate, disjoint models for safety, reliability, and security. The MultiGraph Architecture facilitates the implementation of a model integrated system for modeling and analysis of high assurance systems. Model integrated computing allows an integrated modeling technique to be applied to high consequence systems. Among the tools used for analyzing safety and reliability are a behavioral simulator and an automatic fault tree generation and analysis tool. Symbolic model checking techniques are used to efficiently investigate the system models. A method for converting finite state machine models to ordered binary decision diagrams allows the application of symbolic model checking routines to the integrated system models. This integrated approach to modeling and analysis of high consequence systems ensures consistency between the models and the different analysis tools.

  13. GIBSI: an integrated modelling system for watershed management - sample applications and current developments

    NASA Astrophysics Data System (ADS)

    Quilbé, R.; Rousseau, A. N.

    2007-06-01

    Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS). GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution) on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada). They include impact assessments of: (i) timber harvesting; (ii) municipal clean water program; (iii) agricultural nutrient management scenarios; (iv) past land use evolution; (v) possible future agricultural land use evolution under climate change, as well as (vi) determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  14. GIBSI: an integrated modelling system for watershed management - sample applications and current developments

    NASA Astrophysics Data System (ADS)

    Quilbé, R.; Rousseau, A. N.

    2007-11-01

    Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS). GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes such as evapotranspiration, runoff, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution) on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada). They include impact assessments of: (i) municipal clean water program; (ii) agricultural nutrient management scenarios; (iii) past and future land use changes, as well as (iv) determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  15. Holistic Modeling, Design & Analysis of Integrated Stirling and Auxiliary Clean Energy Systems for Combined Heat and Power Applications

    NASA Astrophysics Data System (ADS)

    Nayak, Amrit Om

    The research revolves around the development of a model to design and analyze Stirling systems. Lack of a standard approach to study Stirling systems and difficulty in generalizing existing approaches pose stiff challenges. A stable mathematical model (integrated second order adiabatic and dynamic model) is devised and validated for general use. The research attempts to design compact combined heat and power (CHP) system to run on multiple biomass fuels and solar energy. Analysis is also carried out regarding the design of suitable auxiliary systems like thermal energy storage system, biomass moisture removal system and Fresnel solar collector for the CHP Stirling system.

  16. System integration report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Korein, J. D.; Meyer, C.; Manoochehri, K.; Rovins, J.; Beale, J.; Barr, B.

    1985-01-01

    Several areas that arise from the system integration issue were examined. Intersystem analysis is discussed as it relates to software development, shared data bases and interfaces between TEMPUS and PLAID, shaded graphics rendering systems, object design (BUILD), the TEMPUS animation system, anthropometric lab integration, ongoing TEMPUS support and maintenance, and the impact of UNIX and local workstations on the OSDS environment.

  17. Integrated modeling for the VLTI

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Wilhelm, Rainer; Baier, Horst; Koehler, Bertrand

    2003-02-01

    Within the scope of the Very Large Telescope Interferometer (VLTI) project, a set of software tools for integrated modeling of ground- and space-based stellar interferometers has been developed. Integrated modeling aims at time-dependent system analysis combining different technical disciplines (optics, mechanical structure, control system with sensors and actuators, environmental disturbances). The main components of the software are BeamWarrior, a tool for creation of dynamic optical models, and SMI (Structural Modeling Interface), which generates linear state-space models from finite element models of a mechanical structure. Based on these tools, models of the various subsystems (e.g. telescope, delay line, beam combiner) can be created in the relevant technical disciplines (e.g. optics, structure). All subsystem models are integrated into the Matlab/Simulink environment for dynamic control system simulations. The output of the dynamic model is a complete description of the time-dependent electromagnetic field in each interferometer arm. This output serves as input to an instrument model simulating the creation of interference fringes. This paper shows the application of the integrated modeling concept to the VLTI. The architecture of a Simulink-based integrated model with its main components, telescope structures, optics and control loops, is presented. Disturbance models for wind load, seismic ground excitation and atmospheric turbulence are included. Beam combination is performed using a simplified model of the VINCI instrument. Results of closed-loop dynamic simulations are presented.

  18. Evaluation of medium-range weather forecasts about Korea Institute of Atmospheric Prediction Systems (KIAPS) Integrated Model System (KIM)

    NASA Astrophysics Data System (ADS)

    Lee, J.; Seol, K. H.

    2015-12-01

    The Korea Institute of Atmospheric Prediction Systems (KIAPS) is a government funded non-profit research and development institute located in Seoul, South Korea. KIAPS was established in 2011 by the Korea Meteorological Administration, KIAPS' primary sponsor. KIAPS is developing the KIAPS Integrated Model System (KIM), a backbone for the next-generation operational global numerical weather prediction (NWP) system. The KIM will be a unified model that can be used for global modeling as well as local areas, particularly optimized to topographic and meteorological features of the Korean Peninsula. We have been completed developing major model components based on KIAPS own research and release the KIAPS beta version model on September 2014. We evaluated the results of KIM by using verification system developed KIAPS, it is composed of standard verification score based on WMO report. The system consists of four parts: verification against analysis, observations, vertical verification and quantitative precipitation forecasts. The results of verification against analysis, we found that increase of error for temperature under 700 hPa. In case of MSLP, poor performance except for tropical region is represented, and the increase of error for geopotential height is shown in tropical region. For verification against observations, positive bias is represented for upper level geopotential height, for low level wind speed in tropical region in summer, for all level wind speed in Northern Hemisphere in winter, and for specific humidity in Northern Hemisphere in summer. As previously stated about the result against analysis, cold bias for low level temperature is shown in Northern Hemisphere in summer. In case of verification for rain about KIM, the model value is underestimated in heavy rain category in summer, on the contrary, that is overestimated in heavy rain category in winter. Overall, there is overestimation in ocean for all models. Our findings indicate that continuing

  19. Integrated System Dynamics Modelling for water scarcity assessment: case study of the Kairouan region.

    PubMed

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia S; Savić, Dragan A; Kapelan, Zoran

    2012-12-01

    A System Dynamics Model (SDM) assessing water scarcity and potential impacts of socio-economic policies in a complex hydrological system is developed. The model, simulating water resources deriving from numerous catchment sources and demand from four sectors (domestic, industrial, agricultural, external pumping), contains multiple feedback loops and sub-models. The SDM is applied to the Merguellil catchment, Tunisia; the first time such an integrated model has been developed for the water scarce Kairouan region. The application represents an early step in filling a critical research gap. The focus of this paper is to a) assess the applicability of SDM for assessment of the evolution of a water-scarce catchment and b) to analyse the current and future behaviour of the catchment to evaluate water scarcity, focusing on understanding trends to inform policy. Baseline results indicate aquifer over-exploitation, agreeing with observed trends. If current policy and social behaviour continue, serious aquifer depletion is possible in the not too distant future, with implications for the economy and environment. This is unlikely to occur because policies preventing depletion will be implemented. Sensitivity tests were carried out to show which parameters most impacted aquifer behaviour. Results show non-linear model behaviour. Some tests showed negligible change in behaviour. Others showed unrealistic exponential changes in demand, revenue and aquifer water volume. Policy-realistic parameters giving the greatest positive impact on model behaviour were those controlling per-capita domestic water demand and the pumped volume to coastal cities. All potentially beneficial policy options should be considered, giving the best opportunity for preservation of Kairouan aquifer water quantity/quality, ecologically important habitats and the agricultural socio-economic driver of regional development. SDM is a useful tool for assessing the potential impacts of possible policy measures

  20. Integrated Modeling and Simulation Verification, Validation, and Accreditation Strategy for Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    2006-01-01

    Models and simulations (M&S) are critical resources in the exploration of space. They support program management, systems engineering, integration, analysis, test, and operations and provide critical information and data supporting key analyses and decisions (technical, cost and schedule). Consequently, there is a clear need to establish a solid understanding of M&S strengths and weaknesses, and the bounds within which they can credibly support decision-making. Their usage requires the implementation of a rigorous approach to verification, validation and accreditation (W&A) and establishment of formal process and practices associated with their application. To ensure decision-making is suitably supported by information (data, models, test beds) from activities (studies, exercises) from M&S applications that are understood and characterized, ESMD is establishing formal, tailored W&A processes and practices. In addition, to ensure the successful application of M&S within ESMD, a formal process for the certification of analysts that use M&S is being implemented. This presentation will highlight NASA's Exploration Systems Mission Directorate (ESMD) management approach for M&S W&A to ensure decision-makers receive timely information on the model's fidelity, credibility, and quality.

  1. Avionics systems integration technology

    NASA Technical Reports Server (NTRS)

    Stech, George; Williams, James R.

    1988-01-01

    A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context.

  2. A fast version of LASG/IAP climate system model and its 1000-year control integration

    NASA Astrophysics Data System (ADS)

    Zhou, Tianjun; Wu, Bo; Wen, Xinyu; Li, Lijuan; Wang, Bin

    2008-07-01

    A fast version of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)/Institute of Atmospheric Physics (IAP) climate system model is briefly documented. The fast coupled model employs a low resolution version of the atmospheric component Grid Atmospheric Model of IAP/LASG (GAMIL), with the other parts of the model, namely an oceanic component LASG/IAP Climate Ocean Model (LICOM), land component Common Land Model (CLM), and sea ice component from National Center for Atmospheric Research Community Climate System Model (NCAR CCSM2), as the same as in the standard version of LASG/IAP Flexible Global Ocean Atmosphere Land System model (FGOALS g). The parameterizations of physical and dynamical processes of the atmospheric component in the fast version are identical to the standard version, although some parameter values are different. However, by virtue of reduced horizontal resolution and increased time-step of the most time-consuming atmospheric component, it runs faster by a factor of 3 and can serve as a useful tool for longterm and large-ensemble integrations. A 1000-year control simulation of the present-day climate has been completed without flux adjustments. The final 600 years of this simulation has virtually no trends in global mean sea surface temperatures and is recommended for internal variability studies. Several aspects of the control simulation’s mean climate and variability are evaluated against the observational or reanalysis data. The strengths and weaknesses of the control simulation are evaluated. The mean atmospheric circulation is well simulated, except in high latitudes. The Asian-Australian monsoonal meridional cell shows realistic features, however, an artificial rainfall center is located to the eastern periphery of the Tibetan Plateau persists throughout the year. The mean bias of SST resembles that of the standard version, appearing as a “double ITCZ” (Inter-Tropical Convergence

  3. Integrating water data, models and forecasts - the Australian Water Resources Information System (Invited)

    NASA Astrophysics Data System (ADS)

    Argent, R.; Sheahan, P.; Plummer, N.

    2010-12-01

    working with the OGC’s Hydrology Domain Working Group on the development of WaterML 2, which will provide an international standard applicable to a sub-set of the information handled by WDTF. Making water data accessible for multiple uses, such as for predictive models and external products, has required the development of consistent data models for describing the relationships between the various data elements. Early development of the AWRIS data model has utilised a model-driven architecture approach, the benefits of which are likely to accrue in the long term, as more products and services are developed from the common core. Moving on from our initial focus on data organisation and management, the Bureau is in the early stages of developing an integrated modelling suite (the Bureau Hydrological Modelling System - BHMS) which will encompass the variety of hydrological modelling needs of the Bureau, ranging from water balances, assessments and accounts, to streamflow and hydrological forecasting over scales from hours and days to years and decades. It is envisaged that this modelling suite will also be developed, as far as possible, using standardised, discoverable services to enhance data-model and model-model integration.

  4. Modeling of integrated environmental control systems for coal-fired power plants. Final report

    SciTech Connect

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  5. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to conventional'' technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  6. FUNCTIONALITY OF AN INTEGRATED EMISSION PREPROCESSING SYSTEM FOR AIR QUALITY MODELING: THE MODELS-3 EMISSION PREPROCESSOR

    EPA Science Inventory

    Conventional preparation of emission inventories for air quality modeling is typically an extended process using computer routines to reformat, quality check, chemically speciate, and temporally and spatially allocate data. rocessing of emission inventories for regional modeling ...

  7. Incorporating Stakeholder Decision Support Needs into an Integrated Regional Earth System Model

    SciTech Connect

    Rice, Jennie S.; Moss, Richard H.; Runci, Paul J.; Anderson, K. L.; Malone, Elizabeth L.

    2012-03-21

    A new modeling effort exploring the opportunities, constraints, and interactions between mitigation and adaptation at regional scale is utilizing stakeholder engagement in an innovative approach to guide model development and demonstration, including uncertainty characterization, to effectively inform regional decision making. This project, the integrated Regional Earth System Model (iRESM), employs structured stakeholder interactions and literature reviews to identify the most relevant adaptation and mitigation alternatives and decision criteria for each regional application of the framework. The information is used to identify important model capabilities and to provide a focus for numerical experiments. This paper presents the stakeholder research results from the first iRESM pilot region. The pilot region includes the Great Lakes Basin in the Midwest portion of the United States as well as other contiguous states. This geographic area (14 states in total) permits cohesive modeling of hydrologic systems while also providing gradients in climate, demography, land cover/land use, and energy supply and demand. The results from the stakeholder research indicate that iRESM should prioritize addressing adaptation alternatives in the water resources, urban infrastructure, and agriculture sectors, such as water conservation, expanded water quality monitoring, altered reservoir releases, lowered water intakes, urban infrastructure upgrades, increased electric power reserves in urban areas, and land use management/crop selection changes. Regarding mitigation alternatives, the stakeholder research shows a need for iRESM to focus on policies affecting the penetration of renewable energy technologies, and the costs and effectiveness of energy efficiency, bioenergy production, wind energy, and carbon capture and sequestration.

  8. Power system modeling and optimization methods vis-a-vis integrated resource planning (IRP)

    NASA Astrophysics Data System (ADS)

    Arsali, Mohammad H.

    1998-12-01

    The state-of-the-art restructuring of power industries is changing the fundamental nature of retail electricity business. As a result, the so-called Integrated Resource Planning (IRP) strategies implemented on electric utilities are also undergoing modifications. Such modifications evolve from the imminent considerations to minimize the revenue requirements and maximize electrical system reliability vis-a-vis capacity-additions (viewed as potential investments). IRP modifications also provide service-design bases to meet the customer needs towards profitability. The purpose of this research as deliberated in this dissertation is to propose procedures for optimal IRP intended to expand generation facilities of a power system over a stretched period of time. Relevant topics addressed in this research towards IRP optimization are as follows: (1) Historical prospective and evolutionary aspects of power system production-costing models and optimization techniques; (2) A survey of major U.S. electric utilities adopting IRP under changing socioeconomic environment; (3) A new technique designated as the Segmentation Method for production-costing via IRP optimization; (4) Construction of a fuzzy relational database of a typical electric power utility system for IRP purposes; (5) A genetic algorithm based approach for IRP optimization using the fuzzy relational database.

  9. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Space Flight Medical Systems

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; deCarvalho, Mary Freire; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to mission planners and medical system designers in assessing risks and designing medical systems for space flight missions. The IMM provides an evidence based approach for optimizing medical resources and minimizing risks within space flight operational constraints. The mathematical relationships among mission and crew profiles, medical condition incidence data, in-flight medical resources, potential crew functional impairments, and clinical end-states are established to determine probable mission outcomes. Stochastic computational methods are used to forecast probability distributions of crew health and medical resource utilization, as well as estimates of medical evacuation and loss of crew life. The IMM has been used in support of the International Space Station (ISS) medical kit redesign, the medical component of the ISS Probabilistic Risk Assessment, and the development of the Constellation Medical Conditions List. The IMM also will be used to refine medical requirements for the Constellation program. The IMM outputs for ISS and Constellation design reference missions will be presented to demonstrate the potential of the IMM in assessing risks, planning missions, and designing medical systems. The implementation of the IMM verification and validation plan will be reviewed. Additional planned capabilities of the IMM, including optimization techniques and the inclusion of a mission timeline, will be discussed. Given the space flight constraints of mass, volume, and crew medical training, the IMM is a valuable risk assessment and decision support tool for medical system design and mission planning.

  10. A Logical Model of Conceptual Integrity in Data Integration

    PubMed Central

    Flater, David

    2003-01-01

    Conceptual integrity is required for the result of data integration to be cohesive and sensible. Compromised conceptual integrity results in “semantic faults,” which are commonly blamed for latent integration bugs. A logical model of conceptual integrity in data integration and a simple example application are presented. Unlike constructive models that attempt to prevent semantic faults, this model allows both correct and incorrect integrations to be described. Imperfect legacy systems can therefore be modeled, allowing a more formal analysis of their flaws and the possible remedies.

  11. Systems Integration, Analysis and Modeling Support to the HEDS Technology/Commercialization Initiative (HTCI)

    NASA Technical Reports Server (NTRS)

    Feingold, Harvey; ONeil, Dan (Technical Monitor)

    2002-01-01

    In response to a recommendation from OMB, NASA's Fiscal Year 2001 budget included a new program within the HEDS (Human Exploration and Development of Space) Enterprise called HEDS Technology/ Commercialization Initiative (HTCI). HTCI had three overarching goals: to support REDS analysis and planning for safe, affordable and effective future programs and projects that advance human exploration, scientific discovery, and the commercial development of space; to pursue research, development, and validation of breakthrough technologies and highly innovative systems concepts; and to advance die creation of strong partnerships within NASA, with U.S. industry and universities, and internationally. As part of its contracted effort, SAIC was to write a report contribution, describing die results of its task activities, to a final HTCI report prepared by MSFC. Unfortunately, government cancellation of the HTCI program in the summer of 2001 curtailed all efforts on the program including die Final HTCI report. In the absence of that report, SAIC has issued this final report in an attempt to document some of the technical material it produced. The report contains SAIC presentations for both HTCI workshops; a set of roadmap charts for the Systems Analysis, Integration and Modeling; and charts showing the evolution of the current TITAN modeling architecture.

  12. Coupling methodology and application of a fully integrated model for contaminant transport in the subsurface system

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Shi, Liangsheng; Yang, Jinzhong; Wu, Jingwei; Mao, Deqiang

    2013-09-01

    An efficient integrated modeling approach is developed to simulate the contaminant transport in the subsurface system. The unsaturated zone is divided into a number of horizontal sub-areas according to the atmospheric boundary conditions, land use types and hydrological conditions. Solute migration through the unsaturated zone of each sub-area is assumed to be vertical and can be represented by the one-dimensional advection-dispersion equation, which is then coupled to the three-dimensional advection-dispersion equation representing the subsequent groundwater transport. The finite element method is adopted to discretize the vertical solute equation, while the hybrid finite element and finite difference method is used to discretize the three-dimensional saturated solute transport equation, which is split into the horizontal and vertical equations based on the concept of the horizontal/vertical splitting. The unsaturated and saturated solute transport equations are combined into a unified matrix by the mass balance analysis for the adjacent nodes located at the one-dimensional soil column and at the water table. Two hypothetical cases and two field cases are simulated to test the validity of the model with the results compared with those from HYDRUS-1D, SWMS2D and the measured data. The limitations of the model are discussed as well. The analysis of the four cases demonstrates that the proposed model can calculate the water flow and solute transport reasonably even with complex boundary and variable topography conditions. It also shows that the model is efficient to simulate the water flow and solute transport in regional-scale areas with small computational costs. However, the model will lose accuracy when the lateral dispersion effect is dominant in the unsaturated zone.

  13. Systems Integration (Fact Sheet)

    SciTech Connect

    DOE Solar Energy Technologies Program

    2011-10-13

    The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

  14. Systems Integration (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

  15. Academic Research Integration System

    ERIC Educational Resources Information Center

    Surugiu, Iula; Velicano, Manole

    2008-01-01

    This paper comprises results concluding the research activity done so far regarding enhanced web services and system integration. The objective of the paper is to define the software architecture for a coherent framework and methodology for enhancing existing web services into an integrated system. This document presents the research work that has…

  16. Modeling of an Integrated Renewable Energy System (IRES) with hydrogen storage

    NASA Astrophysics Data System (ADS)

    Shenoy, Navin Kodange

    2010-12-01

    Scope and Method of Study. The purpose of the study was to consider the integration of hydrogen storage technology as means of energy storage with renewable sources of energy. Hydrogen storage technology consists of an alkaline electrolyzer, gas storage tank and a fuel cell. The Integrated Renewable Energy System (IRES) under consideration includes wind energy, solar energy from photovoltaics, solar thermal energy and biomass energy in the form of biogas. Energy needs are categorized depending on the type and quality of the energy requirements. After meeting all the energy needs, any excess energy available from wind and PVs is converted into hydrogen using an electrolyzer for later use in a fuel cell. Similarly, when renewable energy generation is not able to supply the actual load demand, the stored hydrogen is utilized through fuel cell to fulfill load demand. Analysis of how IRES operates in order to satisfy different types of energy needs is discussed. Findings and Conclusions. All simulations are performed using MATLAB software. Hydrogen storage technology consisting of an electrolyzer, gas storage tank and a fuel cell is incorporated in the IRES design process for a hypothetical remote community. Results show that whenever renewable energy generated is greater than the electrical demand, excess energy is stored in the form of hydrogen and in case of energy shortfall, the stored hydrogen is utilized through the fuel cell to supply to excess power demand. The overall operation of IRES is enhanced as a result of energy storage in the form of hydrogen. Hydrogen has immense potential to be the energy carrier of the future because of its clean character and the model of hydrogen storage discussed here can form an integral part of IRES for remote area applications.

  17. Integration of modeling and simulation of warm pressurization and feed systems of liquid propulsion systems

    NASA Astrophysics Data System (ADS)

    Karimi, Hassan; Nassirharand, Amir; Zanj, Amir

    2011-09-01

    In this paper, a new approach for simultaneous simulation of warm pressurization systems and an engine feed system is developed. The governing equations of the pressurization system are also derived. The simulation results of gas generator pressure, ullage pressure, and pressure at the inlet of the fuel and oxidizer pumps are compared with experimental results. This comparison reveals that the developed approach may successfully be used to determine the interaction effects of an engine feed system and an engine pressurization system. At present, the approach and results are limited to single stage to orbit liquid engines that use the gas generator gases for pressurization.

  18. Glacial integrative modelling.

    PubMed

    Ganopolski, Andrey

    2003-09-15

    Understanding the mechanisms of past climate changes requires modelling of the complex interaction between all major components of the Earth system: atmosphere, ocean, cryosphere, lithosphere and biosphere. This paper reviews attempts at such an integrative approach to modelling climate changes during the glacial age. In particular, the roles of different factors in shaping glacial climate are compared based on the results of simulations with an Earth-system model of intermediate complexity, CLIMBER-2. It is shown that ice sheets, changes in atmospheric compositions, vegetation cover, and reorganization of the ocean thermohaline circulation play important roles in glacial climate changes. Another example of this approach is the modelling of two major types of abrupt glacial climate changes: Dansgaard-Oeschger and Heinrich events. Our results corroborate some of the early proposed mechanisms, which relate abrupt climate changes to the internal instability of the ocean thermohaline circulation and ice sheets. At the same time, it is shown that realistic representation of the temporal evolution of the palaeoclimatic background is crucial to simulate observed features of the glacial abrupt climate changes. PMID:14558899

  19. The Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; Freiere deCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2010-01-01

    The goals of the Integrated Medical Model (IMM) are to develop an integrated, quantified, evidence-based decision support tool useful to crew health and mission planners and to help align science, technology, and operational activities intended to optimize crew health, safety, and mission success. Presentation slides address scope and approach, beneficiaries of IMM capabilities, history, risk components, conceptual models, development steps, and the evidence base. Space adaptation syndrome is used to demonstrate the model's capabilities.

  20. Dynamic modeling, experimental evaluation, optimal design and control of integrated fuel cell system and hybrid energy systems for building demands

    NASA Astrophysics Data System (ADS)

    Nguyen, Gia Luong Huu

    Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the

  1. INTEGRATED AIR POLLUTION CONTROL SYSTEM (IAPCS) COST MODEL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch's (APPCD, NRMRL) Integrated Air Pollution Control System Cost Model is a compiled model written in FORTRAN and C language that is designed to be used on an IBM or compatible PC with 640K or lower RAM and at least 1.5 Mb of hard drive space. It ...

  2. An Integrated Model of the Cardiovascular and Central Nervous Systems for Analysis of Microgravity Induced Fluid Redistribution

    NASA Technical Reports Server (NTRS)

    Price, R.; Gady, S.; Heinemann, K.; Nelson, E. S.; Mulugeta, L.; Ethier, C. R.; Samuels, B. C.; Feola, A.; Vera, J.; Myers, J. G.

    2015-01-01

    A recognized side effect of prolonged microgravity exposure is visual impairment and intracranial pressure (VIIP) syndrome. The medical understanding of this phenomenon is at present preliminary, although it is hypothesized that the headward shift of bodily fluids in microgravity may be a contributor. Computational models can be used to provide insight into the origins of VIIP. In order to further investigate this phenomenon, NASAs Digital Astronaut Project (DAP) is developing an integrated computational model of the human body which is divided into the eye, the cerebrovascular system, and the cardiovascular system. This presentation will focus on the development and testing of the computational model of an integrated model of the cardiovascular system (CVS) and central nervous system (CNS) that simulates the behavior of pressures, volumes, and flows within these two physiological systems.

  3. Hybrid Environmental Control System Integrated Modeling Trade Study Analysis for Commercial Aviation

    NASA Astrophysics Data System (ADS)

    Parrilla, Javier

    Current industry trends demonstrate aircraft electrification will be part of future platforms in order to achieve higher levels of efficiency in various vehicle level sub-systems. However electrification requires a substantial change in aircraft design that is not suitable for re-winged or re-engined applications as some aircraft manufacturers are opting for today. Thermal limits arise as engine cores progressively get smaller and hotter to improve overall engine efficiency, while legacy systems still demand a substantial amount of pneumatic, hydraulic and electric power extraction. The environmental control system (ECS) provides pressurization, ventilation and air conditioning in commercial aircraft, making it the main heat sink for all aircraft loads with exception of the engine. To mitigate the architecture thermal limits in an efficient manner, the form in which the ECS interacts with the engine will have to be enhanced as to reduce the overall energy consumed and achieve an energy optimized solution. This study examines a tradeoff analysis of an electric ECS by use of a fully integrated Numerical Propulsion Simulation System (NPSS) model that is capable of studying the interaction between the ECS and the engine cycle deck. It was found that a peak solution lays in a hybrid ECS where it utilizes the correct balance between a traditional pneumatic and a fully electric system. This intermediate architecture offers a substantial improvement in aircraft fuel consumptions due to a reduced amount of waste heat and customer bleed in exchange for partial electrification of the air-conditions pack which is a viable option for re-winged applications.

  4. Intelligent Integrated System Health Management

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    2012-01-01

    Intelligent Integrated System Health Management (ISHM) is the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system (Management: storage, distribution, sharing, maintenance, processing, reasoning, and presentation). Presentation discusses: (1) ISHM Capability Development. (1a) ISHM Knowledge Model. (1b) Standards for ISHM Implementation. (1c) ISHM Domain Models (ISHM-DM's). (1d) Intelligent Sensors and Components. (2) ISHM in Systems Design, Engineering, and Integration. (3) Intelligent Control for ISHM-Enabled Systems

  5. Process-based Modeling of Ammonia Emission from Beef Cattle Feedyards with the Integrated Farm Systems Model.

    PubMed

    Waldrip, Heidi M; Rotz, C Alan; Hafner, Sasha D; Todd, Richard W; Cole, N Andy

    2014-07-01

    Ammonia (NH) volatilization from manure in beef cattle feedyards results in loss of agronomically important nitrogen (N) and potentially leads to overfertilization and acidification of aquatic and terrestrial ecosystems. In addition, NH is involved in the formation of atmospheric fine particulate matter (PM), which can affect human health. Process-based models have been developed to estimate NH emissions from various livestock production systems; however, little work has been conducted to assess their accuracy for large, open-lot beef cattle feedyards. This work describes the extension of an existing process-based model, the Integrated Farm Systems Model (IFSM), to include simulation of N dynamics in this type of system. To evaluate the model, IFSM-simulated daily per capita NH emission rates were compared with emissions data collected from two commercial feedyards in the Texas High Plains from 2007 to 2009. Model predictions were in good agreement with observations and were sensitive to variations in air temperature and dietary crude protein concentration. Predicted mean daily NH emission rates for the two feedyards had 71 to 81% agreement with observations. In addition, IFSM estimates of annual feedyard emissions were within 11 to 24% of observations, whereas a constant emission factor currently in use by the USEPA underestimated feedyard emissions by as much as 79%. The results from this study indicate that IFSM can quantify average feedyard NH emissions, assist with emissions reporting, provide accurate information for legislators and policymakers, investigate methods to mitigate NH losses, and evaluate the effects of specific management practices on farm nutrient balances. PMID:25603064

  6. An integrated modelling concept for immission-based management of sewer system, wastewater treatment plant and river.

    PubMed

    Erbe, V; Schütze, M

    2005-01-01

    Today's planning standards deal with the individual urban drainage components (sewer system, wastewater treatment plant and receiving water) separately, i.e. they are often designed and operated as single components. As opposed to this, an integral handling considers the drainage components jointly. This novel approach allows a holistic and more sustainable planning of urban drainage systems. This paper presents an integrated modelling concept. The aim is to analyse fluxes through the total wastewater system and to integrate pollution-based control in the upstream direction, that is, e.g., managing the combined water retention tanks as a function of state variables in the WWTP or the receiving water. All models of the different subsystems are based on the Activated Sludge Model (ASM) concept of IWA, including River Water Quality Model No. 1 (RWOM). Simulations can be done in truly parallel mode using the simulation environment SIMBA. The integrated modelling concept is applied to the river Dhuenn and the urban wastewater system of the municipality of Odenthal (Germany). An optimised operation of the system using RTC proves to be a very effective measure. PMID:16248185

  7. Human Systems Integration Introduction

    NASA Video Gallery

    This lecture provides an overview of Human Systems Integration (HSI), its implementation cost and return on investment, HSI domains, how HSI fits into the NASA organization structure, HSI roles and...

  8. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  9. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  10. Integrated modeling for the VLTI

    NASA Astrophysics Data System (ADS)

    Muller, Michael; Wilhelm, Rainer C.; Baier, Horst J.; Koch, Franz

    2004-07-01

    Within the scope of the Very Large Telescope Interferometer (VLTI) project, ESO has developed a software package for integrated modeling of single- and multi-aperture optical telescopes. Integrated modeling is aiming at time-dependent system analysis combining different technical disciplines (optics, mechanical structure, control system with sensors and actuators, environmental disturbances). This allows multi-disciplinary analysis and gives information about cross-coupling effects for system engineering of complex stellar interferometers and telescopes. At the moment the main components of the Integrated Modeling Toolbox are BeamWarrior, a numerical tool for optical analysis of single- and multi-aperture telescopes, and the Structural Modeling Interface, which allows to generate Simulink blocks with reduced size from Finite Element Models of a telescope structure. Based on these tools, models of the various subsystems (e.g. telescope, delay line, beam combiner, atmosphere) can be created in the appropriate disciplines (e.g. optics, structure, disturbance). All subsystem models are integrated into the Matlab/Simulink environment for dynamic control system simulations. The basic output of the model is a complete description of the time-dependent electromagnetic field in each interferometer arm. Alternatively, a more elaborated output can be created, such as an interference fringe pattern at the focus of a beam combining instrument. The concern of this paper is the application of the modeling concept to large complex telescope systems. The concept of the Simulink-based integrated model with the main components telescope structure, optics and control loops is presented. The models for wind loads and atmospheric turbulence are explained. Especially the extension of the modeling approach to a 50 - 100 m class telescope is discussed.

  11. An integrated prediction and optimization model of biogas production system at a wastewater treatment facility.

    PubMed

    Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih

    2015-11-01

    This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility. PMID:26295443

  12. An approach to modeling and optimization of integrated renewable energy system (ires)

    NASA Astrophysics Data System (ADS)

    Maheshwari, Zeel

    The purpose of this study was to cost optimize electrical part of IRES (Integrated Renewable Energy Systems) using HOMER and maximize the utilization of resources using MATLAB programming. IRES is an effective and a viable strategy that can be employed to harness renewable energy resources to energize remote rural areas of developing countries. The resource- need matching, which is the basis for IRES makes it possible to provide energy in an efficient and cost effective manner. Modeling and optimization of IRES for a selected study area makes IRES more advantageous when compared to hybrid concepts. A remote rural area with a population of 700 in 120 households and 450 cattle is considered as an example for cost analysis and optimization. Mathematical models for key components of IRES such as biogas generator, hydropower generator, wind turbine, PV system and battery banks are developed. A discussion of the size of water reservoir required is also presented. Modeling of IRES on the basis of need to resource and resource to need matching is pursued to help in optimum use of resources for the needs. Fixed resources such as biogas and water are used in prioritized order whereas movable resources such as wind and solar can be used simultaneously for different priorities. IRES is cost optimized for electricity demand using HOMER software that is developed by the NREL (National Renewable Energy Laboratory). HOMER optimizes configuration for electrical demand only and does not consider other demands such as biogas for cooking and water for domestic and irrigation purposes. Hence an optimization program based on the need-resource modeling of IRES is performed in MATLAB. Optimization of the utilization of resources for several needs is performed. Results obtained from MATLAB clearly show that the available resources can fulfill the demand of the rural areas. Introduction of IRES in rural communities has many socio-economic implications. It brings about improvement in living

  13. On integrating modeling software for application to total-system performance assessment

    SciTech Connect

    Lewis, L.C.; Wilson, M.L.

    1994-05-01

    We examine the processes and methods used to facilitate collaboration in software development between two organizations at separate locations -- Lawrence Livermore National Laboratory (LLNL) in California and Sandia National Laboratories (SNL) in New Mexico. Our software development process integrated the efforts of these two laboratories. Software developed at LLNL to model corrosion and failure of waste packages and subsequent releases of radionuclides was incorporated as a source term into SNLs computer models for fluid flow and radionuclide transport through the geosphere.

  14. Integrative approaches for modeling regulation and function of the respiratory system

    PubMed Central

    Ben-Tal, Alona

    2013-01-01

    Mathematical models have been central to understanding the interaction between neural control and breathing. Models of the entire respiratory system – which comprises the lungs and the neural circuitry that controls their ventilation - have been derived using simplifying assumptions to compartmentalise each component of the system and to define the interactions between components. These full system models often rely – through necessity - on empirically derived relationships or parameters, in addition to physiological values. In parallel with the development of whole respiratory system models are mathematical models that focus on furthering a detailed understanding of the neural control network, or of the several functions that contribute to gas exchange within the lung. These models are biophysically based, and rely on physiological parameters. They include single-unit models for a breathing lung or neural circuit, through to spatially-distributed models of ventilation and perfusion, or multi-circuit models for neural control. The challenge is to bring together these more recent advances in models of neural control with models of lung function, into a full simulation for the respiratory system that builds upon the more detailed models but remains computationally tractable. This requires first understanding the mathematical models that have been developed for the respiratory system at different levels, and which could be used to study how physiological levels of O2 and CO2 in the blood are maintained. PMID:24591490

  15. Arcjet system integration development

    NASA Technical Reports Server (NTRS)

    Zafran, Sidney

    1994-01-01

    Compatibility between an arcjet propulsion system and a communications satellite was verified by testing a Government-furnished, 1.4 kW hydrazine arcjet system with the FLTSATCOM qualification model satellite in a 9.1-meter (30-foot) diameter thermal-vacuum test chamber. Background pressure was maintained at 10(exp -5) torr during arcjet operation by cryopumping the thruster exhaust with an array of 5 K liquid helium cooled panels. Power for the arcjet system was obtained from the FLTSATCOM battery simulator. Spacecraft telemetry was monitored during each thruster firing period. No changes in telemetry data attributable to arcjet operation were detected in any of the tests. Electromagnetic compatibility data obtained included radiated emission measurements, conducted emission measurements, and cable coupling measurements. Significant noise was observed at lower frequencies. Above 500 MHz, radiated emissions were generally within limits, indicating that communication links at S-band and higher frequencies will not be affected. Other test data taken with a diagnostic array of calorimeters, radiometers, witness plates, and a residual gas analyzer evidenced compatible operation, and added to the data base for arcjet system integration. Two test series were conducted. The first series only included the arcjet and diagnostic array operating at approximately 0.1 torr background pressure. The second series added the qualification model spacecraft, a solar panel, and the helium cryopanels. Tests were conducted at 0.1 torr and 10(exp-5) torr. The arcjet thruster was canted 20 degrees relative to the solar panel axis, typical of the configuration used for stationkeeping thrusters on geosynchronous communications satellites.

  16. Arcjet system integration development

    NASA Astrophysics Data System (ADS)

    Zafran, Sidney

    1994-03-01

    Compatibility between an arcjet propulsion system and a communications satellite was verified by testing a Government-furnished, 1.4 kW hydrazine arcjet system with the FLTSATCOM qualification model satellite in a 9.1-meter (30-foot) diameter thermal-vacuum test chamber. Background pressure was maintained at 10(exp -5) torr during arcjet operation by cryopumping the thruster exhaust with an array of 5 K liquid helium cooled panels. Power for the arcjet system was obtained from the FLTSATCOM battery simulator. Spacecraft telemetry was monitored during each thruster firing period. No changes in telemetry data attributable to arcjet operation were detected in any of the tests. Electromagnetic compatibility data obtained included radiated emission measurements, conducted emission measurements, and cable coupling measurements. Significant noise was observed at lower frequencies. Above 500 MHz, radiated emissions were generally within limits, indicating that communication links at S-band and higher frequencies will not be affected. Other test data taken with a diagnostic array of calorimeters, radiometers, witness plates, and a residual gas analyzer evidenced compatible operation, and added to the data base for arcjet system integration. Two test series were conducted. The first series only included the arcjet and diagnostic array operating at approximately 0.1 torr background pressure. The second series added the qualification model spacecraft, a solar panel, and the helium cryopanels. Tests were conducted at 0.1 torr and 10(exp-5) torr. The arcjet thruster was canted 20 degrees relative to the solar panel axis, typical of the configuration used for stationkeeping thrusters on geosynchronous communications satellites.

  17. Integrated Avionics System (IAS)

    NASA Technical Reports Server (NTRS)

    Hunter, D. J.

    2001-01-01

    As spacecraft designs converge toward miniaturization and with the volumetric and mass constraints placed on avionics, programs will continue to advance the 'state of the art' in spacecraft systems development with new challenges to reduce power, mass, and volume. Although new technologies have improved packaging densities, a total system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and scalability to accommodate multiple missions. With these challenges in mind, a novel packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. This paper will describe the fundamental elements of the Integrated Avionics System (IAS), Horizontally Mounted Cube (HMC) hardware design, system and environmental test results. Additional information is contained in the original extended abstract.

  18. Integrated Farm System Model Version 4.1 and Dairy Gas Emissions Model Version 3.1 software release and distribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal facilities are significant contributors of gaseous emissions including ammonia (NH3) and nitrous oxide (N2O). Previous versions of the Integrated Farm System Model (IFSM version 4.0) and Dairy Gas Emissions Model (DairyGEM version 3.0), two whole-farm simulation models developed by USDA-ARS, ...

  19. Modular integrated video system

    SciTech Connect

    Gaertner, K.J.; Heaysman, B.; Holt, R.; Sonnier, C.

    1986-01-01

    The Modular Integrated Video System (MIVS) is intended to provide a simple, highly reliable closed circuit television (CCTV) system capable of replacing the IAEA Twin Minolta Film Camera Systems in those safeguards facilities where mains power is readily available, and situations where it is desired to have the CCTV camera separated from the CCTV recording console. This paper describes the MIVS and the Program Plan which is presently being followed for the development, testing, and implementation of the system.

  20. Optimization of Integrated Reservoir, Wellbore, and Power Plant Models for Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Peluchette, Jason

    Geothermal energy has the potential to become a substantially greater contributor to the U.S. energy market. An adequate investment in Enhanced Geothermal Systems (EGS) technology will be necessary in order to realize the potential of geothermal energy. This study presents an optimization of a waterbased Enhanced Geothermal System (EGS) modeled for AltaRock Energy's Newberry EGS Demonstration location. The optimization successfully integrates all three components of the geothermal system: (1) the present wellbore design, (2) the reservoir design, and (3) the surface plant design. Since the Newberry EGS Demonstration will use an existing well (NWG 55-29), there is no optimization of the wellbore design, and the aim of the study for this component is to replicate the present wellbore conditions and design. An in-house wellbore model is used to accurately reflect the temperature and pressure changes that occur in the wellbore fluid and the surrounding casing, cement, and earth during injection and production. For the reservoir design, the existing conditions, such as temperature and pressure at depth and rock density, are incorporated into the model, and several design variables are investigated. The engineered reservoir is modeled using the reservoir simulator TOUGH2 while using the graphical interface PetraSim for visualization. Several fracture networks are investigated with the goal of determining which fracture network yields the greatest electrical output when optimized jointly with the surface plant. A topological optimization of the surface is completed to determine what type of power plant is best suited for this location, and a parametric optimization of the surface plant is completed to determine the optimal operating conditions. The conditions present at the Newberry, Oregon EGS project site are the basis for this optimization. The subsurface conditions are favorable for the production of electricity from geothermal energy with rock temperatures exceeding

  1. IMPACTS OF CHANGES IN LAND USE AND LAND COVER ON U.S. AIR QUALITY: DEVELOPMENT AND APPLICATION OF AN INTEGRATED CLIMATE-VEGETATION-CHEMISTRY MODELING SYSTEM

    EPA Science Inventory

    (a). We have developed an integrated climate-vegetation-chemistry modeling system that incorporates a global chemical transport model model (GEOS-Chem CTM), a general circulation model (GISS GCM), and a global dynamic vegetation model (the LPJ model). This modeling system...

  2. Aviation Data Integration System

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Wang, Yao; Windrem, May; Patel, Hemil; Keller, Richard

    2003-01-01

    During the analysis of flight data and safety reports done in ASAP and FOQA programs, airline personnel are not able to access relevant aviation data for a variety of reasons. We have developed the Aviation Data Integration System (ADIS), a software system that provides integrated heterogeneous data to support safety analysis. Types of data available in ADIS include weather, D-ATIS, RVR, radar data, and Jeppesen charts, and flight data. We developed three versions of ADIS to support airlines. The first version has been developed to support ASAP teams. A second version supports FOQA teams, and it integrates aviation data with flight data while keeping identification information inaccessible. Finally, we developed a prototype that demonstrates the integration of aviation data into flight data analysis programs. The initial feedback from airlines is that ADIS is very useful in FOQA and ASAP analysis.

  3. Functional-integral study of the asymmetric Anderson model for dilute fluctuating-valence systems

    NASA Astrophysics Data System (ADS)

    Xianxi, Dai; Ting, Chin-Sen

    1983-11-01

    The functional-integral method in the harmonic approximation which was developed by Amit and Keiter has been extended to study the asymmetric Anderson model. This model gives a valid description of dilute rare-earth ions in metal. The magnetic susceptibility and the occupation number of the localized or f electrons are expressed in terms of some series of double integrals. These double integrals are evaluated numerically by an integration method in number theory. Our results for the temperature-dependent magnetic susceptibility agree quite well with those of renormalization-group calculation by Krishna-Murthy et al. for the f level lying above the Fermi level. However, when the f level lies below the Fermi level, the result of the present approximation loses its agreement with that of the renormalization-group calculation at low temperatures. The f-electron occupation number has also been calculated as a function of temperature and as a function of the energy level of f electrons.

  4. On Quantum Integrable Systems

    SciTech Connect

    Danilov, Viatcheslav; Nagaitsev, Sergei; /Fermilab

    2011-11-01

    Many quantum integrable systems are obtained using an accelerator physics technique known as Ermakov (or normalized variables) transformation. This technique was used to create classical nonlinear integrable lattices for accelerators and nonlinear integrable plasma traps. Now, all classical results are carried over to a nonrelativistic quantum case. In this paper we have described an extension of the Ermakov-like transformation to the Schroedinger and Pauli equations. It is shown that these newly found transformations create a vast variety of time dependent quantum equations that can be solved in analytic functions, or, at least, can be reduced to time-independent ones.

  5. Getting expert systems off the ground: Lessons learned from integrating model-based diagnostics with prototype flight hardware

    NASA Technical Reports Server (NTRS)

    Stephan, Amy; Erikson, Carol A.

    1991-01-01

    As an initial attempt to introduce expert system technology into an onboard environment, a model based diagnostic system using the TRW MARPLE software tool was integrated with prototype flight hardware and its corresponding control software. Because this experiment was designed primarily to test the effectiveness of the model based reasoning technique used, the expert system ran on a separate hardware platform, and interactions between the control software and the model based diagnostics were limited. While this project met its objective of showing that model based reasoning can effectively isolate failures in flight hardware, it also identified the need for an integrated development path for expert system and control software for onboard applications. In developing expert systems that are ready for flight, artificial intelligence techniques must be evaluated to determine whether they offer a real advantage onboard, identify which diagnostic functions should be performed by the expert systems and which are better left to the procedural software, and work closely with both the hardware and the software developers from the beginning of a project to produce a well designed and thoroughly integrated application.

  6. Integrated Data Modeling and Simulation on the Joint Polar Satellite System Program

    NASA Technical Reports Server (NTRS)

    Roberts, Christopher J.; Boyce, Leslye; Smith, Gary; Li, Angela; Barrett, Larry

    2012-01-01

    The Joint Polar Satellite System is a modern, large-scale, complex, multi-mission aerospace program, and presents a variety of design, testing and operational challenges due to: (1) System Scope: multi-mission coordination, role, responsibility and accountability challenges stemming from porous/ill-defined system and organizational boundaries (including foreign policy interactions) (2) Degree of Concurrency: design, implementation, integration, verification and operation occurring simultaneously, at multiple scales in the system hierarchy (3) Multi-Decadal Lifecycle: technical obsolesce, reliability and sustainment concerns, including those related to organizational and industrial base. Additionally, these systems tend to become embedded in the broader societal infrastructure, resulting in new system stakeholders with perhaps different preferences (4) Barriers to Effective Communications: process and cultural issues that emerge due to geographic dispersion and as one spans boundaries including gov./contractor, NASA/Other USG, and international relationships.

  7. Integrated work management system.

    SciTech Connect

    Williams, Edward J., Jr.; Henry, Karen Lynne

    2010-06-01

    Sandia National Laboratories develops technologies to: (1) sustain, modernize, and protect our nuclear arsenal (2) Prevent the spread of weapons of mass destruction; (3) Provide new capabilities to our armed forces; (4) Protect our national infrastructure; (5) Ensure the stability of our nation's energy and water supplies; and (6) Defend our nation against terrorist threats. We identified the need for a single overarching Integrated Workplace Management System (IWMS) that would enable us to focus on customer missions and improve FMOC processes. Our team selected highly configurable commercial-off-the-shelf (COTS) software with out-of-the-box workflow processes that integrate strategic planning, project management, facility assessments, and space management, and can interface with existing systems, such as Oracle, PeopleSoft, Maximo, Bentley, and FileNet. We selected the Integrated Workplace Management System (IWMS) from Tririga, Inc. Facility Management System (FMS) Benefits are: (1) Create a single reliable source for facility data; (2) Improve transparency with oversight organizations; (3) Streamline FMOC business processes with a single, integrated facility-management tool; (4) Give customers simple tools and real-time information; (5) Reduce indirect costs; (6) Replace approximately 30 FMOC systems and 60 homegrown tools (such as Microsoft Access databases); and (7) Integrate with FIMS.

  8. An integrated and modular digital modeling approach for the space station electrical power system development

    NASA Technical Reports Server (NTRS)

    Gombos, Frank J.; Dravid, Narayan

    1988-01-01

    An electrical power system for the Space Station was designed, developed and built. This system provides for electrical power generation, conditioning, storage, and distribution. The initial configuration uses photovoltaic power generation. The power system control is based on a hierarchical architecture to support the requirements of automation. In the preliminary design and technology development phase of the program, various modeling techniques and software tools were evaluated for the purpose of meeting the Space Station power system modeling requirements. Rocketdyne and LeRC jointly selected the EASY5 simulation software, developed by Boeing Computer Services, as a system level modeling tool. The application of the selected analytical modeling approach to represent the entire power system is described. Typical results of model predictions are also summarized. The equipment modeled includes solar arrays, dc to ac converters, resonant inverters, battery storage system, alternator, transmission line, switch gear, and system level microprocessor controls. During the advanced development phase of this program, several models were developed using this approach.

  9. An integrated and modular digital modeling approach for the Space Station electrical power system development

    NASA Technical Reports Server (NTRS)

    Gombos, Frank J.; Dravid, Narayan

    1988-01-01

    An electrical power system for the Space Station was designed, developed and built. This system provides for electrical power generation, conditioning, storage, and distribution. The initial configuration uses photovoltaic power generation. The power system control is based on a hierarchical architecture to support the requirements of automation. In the preliminary design and technology development phase of the program, various modeling techniques and software tools were evaluated for the purpose of meeting the Space Station power system modeling requirements. Rocketdyne and LeRC jointly selected the EASY5 simulation software, developed by Boeing Computer Services, as a system level modeling tool. The application of the selected analytical modeling approach to represent the entire power system is described. Typical results of model predictions are also summarized. The equipment modeled includes solar arrays, dc to ac converters, resonant inverters, battery storage system, alternator, transmission line, switch gear, and system level microprocessor controls. During the advanced development phase of this program, several models were developed using this approach.

  10. Using Discrete Event Simulation to Model Integrated Commodities Consumption for a Launch Campaign of the Space Launch System

    NASA Technical Reports Server (NTRS)

    Leonard, Daniel; Parsons, Jeremy W.; Cates, Grant

    2014-01-01

    In May 2013, NASA's GSDO Program requested a study to develop a discrete event simulation (DES) model that analyzes the launch campaign process of the Space Launch System (SLS) from an integrated commodities perspective. The scope of the study includes launch countdown and scrub turnaround and focuses on four core launch commodities: hydrogen, oxygen, nitrogen, and helium. Previously, the commodities were only analyzed individually and deterministically for their launch support capability, but this study was the first to integrate them to examine the impact of their interactions on a launch campaign as well as the effects of process variability on commodity availability. The study produced a validated DES model with Rockwell Arena that showed that Kennedy Space Center's ground systems were capable of supporting a 48-hour scrub turnaround for the SLS. The model will be maintained and updated to provide commodity consumption analysis of future ground system and SLS configurations.

  11. Integrative radiation systems biology.

    PubMed

    Unger, Kristian

    2014-01-01

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer" of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology. PMID:24411063

  12. Integrated modeling and dynamics simulation for the TMT-M3 control system

    NASA Astrophysics Data System (ADS)

    Deng, Yong-ting; Li, Hong-wen; Yang, Fei; Wang, Jian-li; Su, Yan-qin; Zhao, Hong-chao

    2014-09-01

    In order to analyze the tracking performance and design the controllers for TMT-M3 control system in the design stage. This paper presents the development of the analytical model of the gear driven large telescope using the lumped mass modeling method. The analytical model includes the telescope structure, its drives, the velocity loop and position loop. First, the modal model of a flexible structure is analyzed based on the finite-element data. And the modal model is transferred into the state-space model, in continuous-time. Next, the drive model is derived, and combined into the velocity loop and position loop. Finally, the impact of the error sources on the control loop properties is simulated. According to the simulation accuracy of the analytical modeling, the analytical model can be used in implementation, such as the model-based controllers.

  13. A volumetric CMUT-based ultrasound imaging system simulator with integrated reception and μ-beamforming electronics models.

    PubMed

    Matrone, Giulia; Savoia, Alessandro S; Terenzi, Marco; Caliano, Giosuè; Quaglia, Fabio; Magenes, Giovanni

    2014-05-01

    In modern ultrasound imaging devices, two-dimensional probes and electronic scanning allow volumetric imaging of anatomical structures. When dealing with the design of such complex 3-D ultrasound (US) systems, as the number of transducers and channels dramatically increases, new challenges concerning the integration of electronics and the implementation of smart micro-beamforming strategies arise. Hence, the possibility to predict the behavior of the whole system is mandatory. In this paper, we propose and describe an advanced simulation tool for ultrasound system modeling and simulation, which conjugates the US propagation and scattering, signal transduction, electronic signal conditioning, and beamforming in a single environment. In particular, we present the architecture and model of an existing 16-channel integrated receiver, which includes an amplification and micro-beamforming stage, and validate it by comparison with circuit simulations. The developed model is then used in conjunction with the transducer and US field models to perform a system simulation, aimed at estimating the performance of an example 3-D US imaging system that uses a capacitive micromachined ultrasonic transducer (CMUT) 2-D phased-array coupled to the modeled reception front-end. Results of point spread function (PSF) calculations, as well as synthetic imaging of a virtual phantom, show that this tool is actually able to model the complete US image reconstruction process, and that it could be used to quickly provide valuable system-level feedback for an optimized tuning of electronic design parameters. PMID:24803235

  14. Application of Manifold Methods for Data Assimilation in Integrated Earth System Models

    NASA Astrophysics Data System (ADS)

    Safaie, A.; Dang, C.; Radha, H.; Phanikumar, M. S.

    2015-12-01

    A novel manifold-based method is presented to assimilate different types of spatio-temporal data in integrated land and oceanic models. This method has been developed based on the assumption that hydrologic, atmospheric and oceanic data can be mapped onto an underlying differential manifold. In this study, the proposed method is employed to reconstruct meteorological forcing dataset over Lake Michigan, bathymetry of Gull Lake, and precipitation over the Grand River watershed in the State of Michigan. In the first case study, hourly interpolated meteorological forcing parameters are used to run a three-dimensional hydrodynamic model of Lake Michigan to show the improvement that results from the use of the interpolation method by comparing model results with observed data for currents. In the second case study, the bathymetry of the Gull Lake is interpolated from the scatter point data using the manifold technique. A hydrodynamic model of Gull Lake has been developed and improved by using the interpolated bathymetry. In the last case study, 13-year daily participation data are interpolated over the Grand River watershed and used as input for an integrated, distributed watershed model. All three case studies illustrate the effectiveness of the presented manifold based interpolation algorithm.

  15. Integrated Modeling System for Analysis of Watershed Water Balance: A Case Study in the Tims Branch Watershed, South Carolina

    NASA Astrophysics Data System (ADS)

    Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.

    2015-12-01

    The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims

  16. Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems

    SciTech Connect

    Mai, T.; Drury, E.; Eurek, K.; Bodington, N.; Lopez, A.; Perry, A.

    2013-01-01

    This report introduces a new capacity expansion model, the Resource Planning Model (RPM), with high spatial and temporal resolution that can be used for mid- and long-term scenario planning of regional power systems. Although RPM can be adapted to any geographic region, the report describes an initial version of the model adapted for the power system in Colorado. It presents examples of scenario results from the first version of the model, including an example of a 30%-by-2020 renewable electricity penetration scenario.

  17. An Integrated Model Recontextualized

    ERIC Educational Resources Information Center

    O'Meara, KerryAnn; Saltmarsh, John

    2016-01-01

    In this commentary, authors KerryAnn O'Meara and John Saltmarsh reflect on their 2008 "Journal of Higher Education Outreach and Engagement" article "An Integrated Model for Advancing the Scholarship of Engagement: Creating Academic Homes for the Engaged Scholar," reprinted in this 20th anniversary issue of "Journal of…

  18. Integrated system design report

    SciTech Connect

    Not Available

    1989-07-01

    The primary objective of the integrated system test phase is to demonstrate the commercial potential of a coal fueled diesel engine in its actual operating environment. The integrated system in this project is defined as a coal fueled diesel locomotive. This locomotive, shown on drawing 41D715542, is described in the separate Concept Design Report. The test locomotive will be converted from an existing oil fueled diesel locomotive in three stages, until it nearly emulates the concept locomotive. Design drawings of locomotive components (diesel engine, locomotive, flatcar, etc.) are included.

  19. Modeling evaluation of integrated strategies to meet proposed dissolved oxygen standards for the Chicago waterway system.

    PubMed

    Melching, Charles S; Ao, Yaping; Alp, Emre

    2013-02-15

    The Chicago Waterway System (CWS) is a 113.8 km branching network of navigable waterways controlled by hydraulic structures in which the majority of flow is treated sewage effluent and there are periods of substantial combined sewer overflow. The Illinois Pollution Control Board (IPCB) designated the majority of the CWS as Secondary Contact and Indigenous Aquatic Life Use waters in the 1970s and made small alterations to these designations in 1988. Between 1988 and 2002 substantial improvements in the pollution control and water-quality management facilities were made in the Chicago area. The results of a Use Attainability Analysis led the Illinois Environmental Protection Agency (IEPA) to propose the division of the CWS into two new aquatic life use classes with appropriate dissolved oxygen (DO) standards. To aid the IPCB in their deliberations regarding the appropriate water use classifications and DO standards for the CWS, the DUFLOW model that is capable of simulating hydraulics and water-quality processes under unsteady-flow conditions was used to evaluate integrated strategies of water-quality improvement facilities that could meet the proposed DO standards during representative wet (2001) and dry (2003) years. A total of 28 new supplementary aeration stations with a maximum DO load of 80 or 100 g/s and aerated flow transfers at three locations in the CWS would be needed to achieve the IEPA proposed DO standards 100% of the time for both years. A much simpler and less costly (≈one tenth of the cost) system of facilities would be needed to meet the IEPA proposed DO standards 90% of the time. In theory, the combinations of flow augmentation and new supplemental aeration stations can achieve 100% compliance with the IEPA proposed DO standards, however, 100% compliance will be hard to achieve in practice because of-(1) difficulties in determining when to turn on the aeration stations and (2) localized heavy loads of pollutants during storms that may yield

  20. Towards More Usable and Extendable Watershed Model: an Experience to Integrate RHESSys for HydroMet Forecasting System

    NASA Astrophysics Data System (ADS)

    Shin, D.; Hwang, T.; Band, L. E.

    2007-12-01

    HydroMet is a project of RENCI (Renaissance Computing Institute) to develop a new hydrologic modeling and forecasting system. It aims to provide accurate predictions for geophysical hazards including flash floods, droughts, and fire hazard at a fine spatial resolution. For this purpose, the system needs to integrate multi- disciplinary models including weather forecasting models (WRF, Weather Research and Forecasting and LDAS, Land Data Assimilation Systems), and a distributed watershed model (RHESSys, Regional Hydro-Ecologic Simulation System). As a core component to simulate full cycles of water, carbon, and nutrients in watersheds, RHESSys is required to be re-engineered to have a highly usable and extendable architecture. To build the architecture, we restructure RHESSys as a dynamically loadable package for Python, a scripting language for rapid prototyping of new algorithms and seamless integration of external programs. The entire internal structure of RHESSys is exposed to external programming environment, which enables users and external programs to closely inspect the model's states and flexibly control its behavior. The output file format is also redesigned as platform-independent and fully-annotated binary files with intuitive data access interface. Furthermore, packages for the direct access to GIS database and uncertainty estimation on parallel computing resources are newly developed. These reconstruction efforts extend the functional capability of RHESSys as a versatile model able to assimilate and produce massive spatiotemporal data, which is a critical feature required for building the operational nowcasting and forecasting system.

  1. Model-Based Design and Integration of Large Li-ion Battery Systems

    SciTech Connect

    Smith, Kandler; Kim, Gi-Heon; Santhanagopalan, Shriram; Shi, Ying; Pesaran, Ahmad; Mukherjee, Partha; Barai, Pallab; Maute, Kurt; Behrou, Reza; Patil, Chinmaya

    2015-11-17

    This presentation introduces physics-based models of batteries and software toolsets, including those developed by the U.S. Department of Energy's (DOE) Computer-Aided Engineering for Electric-Drive Vehicle Batteries Program (CAEBAT). The presentation highlights achievements and gaps in model-based tools for materials-to-systems design, lifetime prediction and control.

  2. Integral equation model of light scattering by an oriented monodisperse system of triaxial dielectric ellipsoids: application in ectacytometry.

    PubMed

    Stamatakos, G S; Yova, D; Uzunoglu, N K

    1997-09-01

    A novel mathematical model of light scattering by an oriented monodisperse system of triaxial dielectric ellipsoids of complex index of refraction is presented. It is based on an integral equation solution to the scattering of a plane electromagnetic wave by a single triaxial dielectric ellipsoid. Both the position and the orientation of a single representative scatterer in a given coordinate system are considered arbitrary. A Monte Carlo simulation is developed to reproduce the diffraction pattern of a population of aligned ellipsoids. As an example of practical importance, light scattering by a population of erythrocytes subjected to intense shear stress is modeled. Agreement with experimental observations and the anomalous diffraction theory is illustrated. Thus a novel check of the electromagnetic basis of ektacytometry is provided. Furthermore, the versatility of the integral equation method, particularly in the advent of parallel processing systems, is demonstrated. PMID:18259511

  3. Integrated Multiscale Modeling of the Nervous System: Predicting Changes in Hippocampal Network Activity by a Positive AMPA Receptor Modulator

    PubMed Central

    Allam, Sushmita L.; Hu, Eric Y.; Greget, Renaud; Ambert, Nicolas; Keller, Anne Florence; Bischoff, Serge; Baudry, Michel; Berger, Theodore W.

    2012-01-01

    One of the fundamental characteristics of the brain is its hierarchical organization. Scales in both space and time that must be considered when integrating across hierarchies of the nervous system are sufficiently great as to have impeded the development of routine multilevel modeling methodologies. Complex molecular interactions at the level of receptors and channels regulate activity at the level of neurons; interactions between multiple populations of neurons ultimately give rise to complex neural systems function and behavior. This spatial complexity takes place in the context of a composite temporal integration of multiple, different events unfolding at the millisecond, second, minute, hour, and longer time scales. In this study, we present a multiscale modeling methodology that integrates synaptic models into single neuron, and multineuron, network models. We have applied this approach to the specific problem of how changes at the level of kinetic parameters of a receptor-channel model are translated into changes in the temporal firing pattern of a single neuron, and ultimately, changes in the spatiotemporal activity of a network of neurons. These results demonstrate how this powerful methodology can be applied to understand the effects of a given local process within multiple hierarchical levels of the nervous system. PMID:21642035

  4. The MIKS (Member Integrated Knowledge System) Model: A Visualization of the Individual Organizational Member's Role When a Knowledge Management System Is Utilized in the Learning Organization

    ERIC Educational Resources Information Center

    Grobmeier, Cynthia

    2007-01-01

    Relating knowledge management (KM) case studies in various organizational contexts to existing theoretical constructs of learning organizations, a new model, the MIKS (Member Integrated Knowledge System) Model is proposed to include the role of the individual in the process. Their degree of motivation as well as communication and learning…

  5. Power systems integration

    SciTech Connect

    Brantley, L.W.

    1982-06-01

    Power systems integration in large flexible space structures is discussed with emphasis upon body control. A solar array is discussed as a typical example of spacecraft configuration problems. Information on how electric batteries dominate life-cycle costs is presented in chart form. Information is given on liquid metal droplet generators and collectors, hot spot analysis, power dissipation in solar arrays, solar array protection optimization, and electromagnetic compatibility for a power system platform.

  6. An integrated coastal modeling system for analyzing beach processes and beach restoration projects, SMC

    NASA Astrophysics Data System (ADS)

    González, M.; Medina, R.; Gonzalez-Ondina, J.; Osorio, A.; Méndez, F. J.; García, E.

    2007-07-01

    A user-friendly system called coastal modeling system (SMC) has been developed by the Spanish Ministry of Environment and the University of Cantabria. The system includes several numerical models specifically developed for the application of the methodology proposed in the Spanish Beach Nourishment and Protection Manual. According to this methodology, the SMC is structured into five -modules: (1) Pre-process module; (2) Short-term module; (3) Long-term module; (4) Coastal terrain module; and (5) Tutorial module. The pre-process module allows the processing of a database of morphodynamic information used as input for the different programs and models of the SMC. Short-, Long-term modules include numerical models to analyze coastal systems on different scales of variability (hours-months-years) and are composed of morphodynamic evolution models in cross-profile 2DV and beach plan 2DH. The coastal terrain module allows the user to modify the working bathymetry and to combine bathymetries from different sources in only one working bathymetry. The tutorial module includes a comprehensive collection of coastal engineering design and analysis software. The SMC has a dynamic design and allows the incorporation of future new databases and morphodynamic models. The SMC system is freely distributed to coastal practitioners and has already been implemented in several countries.

  7. Integration of Water Resource Models with Fayetteville Shale Decision Support and Information System

    SciTech Connect

    Cothren, Jackson; Thoma, Greg; DiLuzio, Mauro; Limp, Fred

    2013-06-30

    Significant issues can arise with the timing, location, and volume of surface water withdrawals associated with hydraulic fracturing of gas shale reservoirs as impacted watersheds may be sensitive, especially in drought years, during low flow periods, or during periods of the year when activities such as irrigation place additional demands on the surface supply of water. Significant energy production and associated water withdrawals may have a cumulative impact to watersheds over the short-term. Hence, hydraulic fracturing based on water withdrawal could potentially create shifts in the timing and magnitude of low or high flow events or change the magnitude of river flow at daily, monthly, seasonal, or yearly time scales. These changes in flow regimes can result in dramatically altered river systems. Currently little is known about the impact of fracturing on stream flow behavior. Within this context the objective of this study is to assess the impact of the hydraulic fracturing on the water balance of the Fayetteville Shale play area and examine the potential impacts of hydraulic fracturing on river flow regime at subbasin scale. This project addressed that need with four unique but integrated research and development efforts: 1) Evaluate the predictive reliability of the Soil and Water Assessment Tool (SWAT) model based at a variety of scales (Task/Section 3.5). The Soil and Water Assessment Tool (SWAT) model was used to simulate the across-scale water balance and the respective impact of hydraulic fracturing. A second hypothetical scenario was designed to assess the current and future impacts of water withdrawals for hydraulic fracturing on the flow regime and on the environmental flow components (EFCs) of the river. The shifting of these components, which present critical elements to water supply and water quality, could influence the ecological dynamics of river systems. For this purpose, we combined the use of SWAT model and Richter et al.’s (1996

  8. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect

    Rubin, E.S.

    1989-10-01

    The general goal of this research project is to enhance, and transfer to DOE, a new computer simulation model for analyzing the performance and cost of environmental control systems for coal-fired power plants. Systems utilizing pre-combustion, combustion, or post-combustion control methods, individually or in combination, may be considered. A unique capability of this model is the probabilistic representation of uncertainty in model input parameters. This stochastic simulation capability allows the performance and cost of environmental control systems to be quantified probabilistically, accounting for the interactions among all uncertain process and economic parameters. This method facilitates more rigorous comparisons between conventional and advanced clean coal technologies promising improved cost and/or effectiveness for SO{sub 2} and NO{sub x} removal. Detailed modeling of several pre-combustion and post-combustion processes of interest to DOE/PETC have been selected for analysis as part of this project.

  9. Integrated modeling: a look back

    NASA Astrophysics Data System (ADS)

    Briggs, Clark

    2015-09-01

    This paper discusses applications and implementation approaches used for integrated modeling of structural systems with optics over the past 30 years. While much of the development work focused on control system design, significant contributions were made in system modeling and computer-aided design (CAD) environments. Early work appended handmade line-of-sight models to traditional finite element models, such as the optical spacecraft concept from the ACOSS program. The IDEAS2 computational environment built in support of Space Station collected a wider variety of existing tools around a parametric database. Later, IMOS supported interferometer and large telescope mission studies at JPL with MATLAB modeling of structural dynamics, thermal analysis, and geometric optics. IMOS's predecessor was a simple FORTRAN command line interpreter for LQG controller design with additional functions that built state-space finite element models. Specialized language systems such as CAESY were formulated and prototyped to provide more complex object-oriented functions suited to control-structure interaction. A more recent example of optical modeling directly in mechanical CAD is used to illustrate possible future directions. While the value of directly posing the optical metric in system dynamics terms is well understood today, the potential payoff is illustrated briefly via project-based examples. It is quite likely that integrated structure thermal optical performance (STOP) modeling could be accomplished in a commercial off-the-shelf (COTS) tool set. The work flow could be adopted, for example, by a team developing a small high-performance optical or radio frequency (RF) instrument.

  10. Performance Assessment of a Low-Level Radioactive Waste Disposal Site using GoldSim Integrated Systems Model

    NASA Astrophysics Data System (ADS)

    Merrell, G.; Singh, A.; Tauxe, J.; Perona, R.; Dornsife, W.; grisak, G. E.; Holt, R. M.

    2011-12-01

    Texas Commission on Environmental Quality has approved licenses for four landfills at the Waste Control Specialists (WCS) site located in Andrews County, West Texas. The site includes a hazardous waste landfill and three landfills for radioactive waste. An updated performance assessment is necessary prior to acceptance of waste at the landfills. The updated performance assessment a) provides for more realistic and flexible dose modeling capabilities, b) addresses all plausible release and accident scenarios as they relate to the performance objectives, c) includes impact of climate and hydrologic scenarios that may impact long-term performance of the landfill, d) addresses impact of cover naturalization and degradation on the landfill, and e) incorporates uncertainty and sensitivity analysis for critical parameters. For the updated performance assessment, WCS has developed an integrated systems level performance assessment model using the GoldSim platform. GoldSim serves as a model for integrating all of the major components of a performance assessment, which include the radionuclide source term, facility design, environmental transport pathways, exposure scenarios, and radiological doses. Unlike many computer models that are based on first principles, GoldSim is a systems level model that can be used to integrate and abstract more complex sub-models into one system. This can then be used to assess the results into a unified model of the disposal system and environment. In this particular application, the GoldSim model consists of a) hydrogeologic model that simulates flow and transport through the Dockum geologic unit that underlies all of the waste facilities, b) waste cells that represent the containment unit and simulate degradation of waste forms, radionuclide leaching, and partitioning into the liquid and vapor phase within the waste unit, c) a cover system model that simulates upward diffusive transport from the underground repository to the atmosphere. In

  11. Integration of Evidence into a Detailed Clinical Model-based Electronic Nursing Record System

    PubMed Central

    Park, Hyeoun-Ae; Jeon, Eunjoo; Chung, Eunja

    2012-01-01

    Objectives The purpose of this study was to test the feasibility of an electronic nursing record system for perinatal care that is based on detailed clinical models and clinical practice guidelines in perinatal care. Methods This study was carried out in five phases: 1) generating nursing statements using detailed clinical models; 2) identifying the relevant evidence; 3) linking nursing statements with the evidence; 4) developing a prototype electronic nursing record system based on detailed clinical models and clinical practice guidelines; and 5) evaluating the prototype system. Results We first generated 799 nursing statements describing nursing assessments, diagnoses, interventions, and outcomes using entities, attributes, and value sets of detailed clinical models for perinatal care which we developed in a previous study. We then extracted 506 recommendations from nine clinical practice guidelines and created sets of nursing statements to be used for nursing documentation by grouping nursing statements according to these recommendations. Finally, we developed and evaluated a prototype electronic nursing record system that can provide nurses with recommendations for nursing practice and sets of nursing statements based on the recommendations for guiding nursing documentation. Conclusions The prototype system was found to be sufficiently complete, relevant, useful, and applicable in terms of content, and easy to use and useful in terms of system user interface. This study has revealed the feasibility of developing such an ENR system. PMID:22844649

  12. A system model to integrate the “Green Manufacturing” concept in Romanian manufacturing organisation

    NASA Astrophysics Data System (ADS)

    Tilină, D. I.; Zapciu, M.; Mohora, C.

    2015-11-01

    In Romania, the large majorities of the manufacturing companies consume natural resources and energy in an unsustainable manner. Over the years, the emissions of greenhouse gases have led not only to many environmental problems but also to important social and economic problems. A real solution to help the Romanian manufacturing companies to adapt to the new legislative requirements is the green manufacturing implementation. Considering the current situation, the purpose of this paper is to present a model that will integrate the green manufacturing concept at the organizational level based on the practices identified in the Romanian manufacturing companies at the operational level in the context of sustainable development.

  13. Potential effect of changing soil temperature within an integrated biophysical-hydrological modelling system

    NASA Astrophysics Data System (ADS)

    Muerth, Markus; Hank, Tobias; Mauser, Wolfram

    2010-05-01

    The projection of potential impacts of recent and future climate change on the ecological and geophysical condition of the land surface requires both, the scientific research into the processes triggered by a changing climate, as well as the analysis of the spatial and temporal patterns induced by altering climatic conditions. In general, the potential changes and future distribution of land surface properties (e.g. soil moisture) is investigated in modelling studies. Complex land surface models for regional change detection are typically driven by data from complex climate models. Consequently, the uncertainty of the land surface model results is strongly influenced through the bias and uncertainty inherent to the atmospheric models. Therefore, the impact assessment within the multi-disciplinary research project GLOWA-Danube, which this study is part of, concentrates on two types of climate change scenarios: Uni- and bi-directional coupling of the land surface model with regional climate models ("dynamic downscaling") on one hand, and stochastic rearrangement of climate stations data based on predefined trends in temperature and precipitation ("statistical downscaling") on the other. This allows for profound "what if" impact assessment, based on the historic climate characteristic of the investigated area, which in our case is represented by the 77,000 km2 Upper Danube basin. The water and nutrient cycles of the land surface, as well as the subsurface plant development are strongly influenced by the physical and biochemical state of the soil. Again, the biochemical processes occurring in soils are largely influenced by ambient temperature and moisture. Therefore, knowledge of the temporal and spatial patterns of soil temperature is a prerequisite for impact assessment in the field of plant growth and nutrient cycles. The biological activity at the land surface again exerts impact on soil water availability and quality. The development of the integrated biophysical

  14. Integrated Environmental Control Model

    Energy Science and Technology Software Center (ESTSC)

    1999-09-03

    IECM is a powerful multimedia engineering software program for simulating an integrated coal-fired power plant. It provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integratedmore » into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of dofferent costs and performance results. A Graphical Use Interface (GUI) facilitates the configuration of the technologies, entry of data, and retrieval of results.« less

  15. Geo-Semantic Framework for Integrating Long-Tail Data and Model Resources for Advancing Earth System Science

    NASA Astrophysics Data System (ADS)

    Elag, M.; Kumar, P.

    2014-12-01

    Often, scientists and small research groups collect data, which target to address issues and have limited geographic or temporal range. A large number of such collections together constitute a large database that is of immense value to Earth Science studies. Complexity of integrating these data include heterogeneity in dimensions, coordinate systems, scales, variables, providers, users and contexts. They have been defined as long-tail data. Similarly, we use "long-tail models" to characterize a heterogeneous collection of models and/or modules developed for targeted problems by individuals and small groups, which together provide a large valuable collection. Complexity of integrating across these models include differing variable names and units for the same concept, model runs at different time steps and spatial resolution, use of differing naming and reference conventions, etc. Ability to "integrate long-tail models and data" will provide an opportunity for the interoperability and reusability of communities' resources, where not only models can be combined in a workflow, but each model will be able to discover and (re)use data in application specific context of space, time and questions. This capability is essential to represent, understand, predict, and manage heterogeneous and interconnected processes and activities by harnessing the complex, heterogeneous, and extensive set of distributed resources. Because of the staggering production rate of long-tail models and data resulting from the advances in computational, sensing, and information technologies, an important challenge arises: how can geoinformatics bring together these resources seamlessly, given the inherent complexity among model and data resources that span across various domains. We will present a semantic-based framework to support integration of "long-tail" models and data. This builds on existing technologies including: (i) SEAD (Sustainable Environmental Actionable Data) which supports curation

  16. An integrated modelling framework to aid smallholder farming system management in the Olifants River Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Magombeyi, M. S.; Taigbenu, A. E.

    Computerised integrated models from science contribute to better informed and holistic assessments of multifaceted policies and technologies than individual models. This view has led to considerable effort being devoted to developing integrated models to support decision-making under integrated water resources management (IWRM). Nevertheless, an appraisal of previous and ongoing efforts to develop such decision support systems shows considerable deficiencies in attempts to address the hydro-socio-economic effects on livelihoods. To date, no universal standard integration method or framework is in use. For the existing integrated models, their application failures have pointed to the lack of stakeholder participation. In an endeavour to close this gap, development and application of a seasonal time-step integrated model with prediction capability is presented in this paper. This model couples existing hydrology, agronomy and socio-economic models with feedbacks to link livelihoods of resource-constrained smallholder farmers to water resources at catchment level in the semi-arid Olifants subbasin in South Africa. These three models, prior to coupling, were calibrated and validated using observed data and participation of local stakeholders. All the models gave good representation of the study conditions, as indicated by the statistical indicators. The integrated model is of general applicability, hence can be extended to other catchments. The impacts of untied ridges, planting basins and supplemental irrigation were compared to conventional rainfed tillage under maize crop production and for different farm typologies. Over the 20 years of simulation, the predicted benefit of untied ridges and planting basins versus conventional rainfed tillage on surface runoff (Mm 3/year) reduction was 14.3% and 19.8%, respectively, and about 41-46% sediment yield (t/year) reduction in the catchment. Under supplemental irrigation, maize yield improved by up to 500% from the long

  17. Modeling and Simulation Resource Repository (MSRR)(System Engineering/Integrated M&S Management Approach

    NASA Technical Reports Server (NTRS)

    Milroy, Audrey; Hale, Joe

    2006-01-01

    NASA s Exploration Systems Mission Directorate (ESMD) is implementing a management approach for modeling and simulation (M&S) that will provide decision-makers information on the model s fidelity, credibility, and quality, including the verification, validation and accreditation information. The NASA MSRR will be implemented leveraging M&S industry best practices. This presentation will discuss the requirements that will enable NASA to capture and make available the "meta data" or "simulation biography" data associated with a model. The presentation will also describe the requirements that drive how NASA will collect and document relevant information for models or suites of models in order to facilitate use and reuse of relevant models and provide visibility across NASA organizations and the larger M&S community.

  18. Isms dimensions: toward a more comprehensive and integrative model of belief-system components.

    PubMed

    Saucier, Gerard

    2013-05-01

    Psychological research on beliefs, values, worldview, and ideology has been limited by inadequate structural models to organize the plethora of constructs. The present studies investigate the potential of a dimensional model based on lexical, dictionary-represented -ism concepts to form an organizing structural model. Four isms factors found previously in college samples are shown to replicate in community-sample data with better controls for acquiescent responding. But analyses also reveal a 5th factor involving egalitarianism and inequality-aversion, increasing the comprehensiveness of the structural model. Relations of frequently used constructs (values, authoritarianism, social dominance orientation) to the isms dimensions are detailed, demonstrating both the integrative and value-adding potentials of the model. The possibility of potential additional nonlexical factors (Trust in Government, Ethnocentrism, Xenophobia, and Nativism) is evaluated. Factors identified in these studies are demonstrated to show interesting relations with political-party preference, subjective well-being, and change over time in the Big Five personality dimensions. PMID:23607535

  19. Integrated flow and structural modeling for rocket engine component test facility propellant systems

    NASA Technical Reports Server (NTRS)

    Dequay, L.; Lusk, A.; Nunez, S.

    1991-01-01

    A set of PC-based computational Dynamic Fluid Flow Simulation models is presented for modeling facility gas and cryogenic systems. Data obtained provide important information regarding performance envelope parameters for the facility using different engine components; time-dependent valve setting for controlling steady-state, quasi-steady state, and transient profiles; optimum facility pipe and pipe component sizes and parameters; momentum transfer loads; and fluid conditions at critical points. A set of COSMIC NASTRAN-based finite element models is also presented to evaluate the loads and stresses on test facility piping systems from fluid and gaseous effects, thermal chill down, and occasional wind loads. The models are based on Apple Macintosh software which makes it possible to change numerous parameters.

  20. Integrated oxygen recovery system

    NASA Technical Reports Server (NTRS)

    Lee, M. Gene; Davenport, Ronald J.

    1993-01-01

    Life Systems has conceptualized an innovative Integrated Oxygen Recovery System (IORS) applicable to advanced mission air revitalization. The IORS provides the capability to electrochemically generate metabolic oxygen (O2) and recover O2 from the space habitat atmosphere via a carbon dioxide (CO2) reduction process within a single assembly. To achieve this capability, the IORS utilizes a Solid Metal Cathode (SMC) water electrolysis unit that simultaneously serves as the Sabatier CO2 reduction reactor. The IORS enables two major life support systems currently baselined in closed loop air revitalization systems to be combined into one smaller, less complex system. This concept reduces fluidic and electrical interface requirements and eliminates a hydrogen (H2) interface. Life Systems is performing an evaluation of the IORS process directed at demonstrating performance and quantifying key physical characteristics including power, weight, and volume. The results of the checkout, shakedown, and initial parametric tests are summarized.

  1. Integrated oxygen recovery system

    NASA Technical Reports Server (NTRS)

    Lee, M. Gene; Davenport, Ronald J.

    1993-01-01

    Life Systems has conceptualized an innovative Integrated Oxygen Recovery System (IORS) applicable to advanced mission air revitalization. The IORS provides the capability to electrochemically generate metabolic oxygen (O2) and recover O2 from the space habitat atmosphere via a carbon dioxide (CO2) reduction process within a single assembly. To achieve this capability, the IORS utilizes a Solid Metal Cathode (SMC) water electrolysis unit that simultaneously serves as the Sabatier CO2 reduction reactor. The IORS enables two major life support systems currently baselined in closed loop air revitalization systems to be combined into one smaller, less complex system. This concept reduces fluidic and electrical interface requirements and eliminates a hydrogen (H2) interface. Life Systems is performing an evaluation of the IORS process directed at demonstrating performance and quantifying key physical characteristics including power, weight, and volume. Technical progress achieved during the first two months of the program is summarized.

  2. Integrating and Interfacing Library Systems.

    ERIC Educational Resources Information Center

    Boss, Richard W.

    1985-01-01

    This overview of local library online systems that integrate several functions covers functional integration, benefits of integrated systems, turnkey systems, minicomputer and microcomputer-based systems, interfacing automated systems, types of interfaces, linking homogenous and heterogeneous systems, role of vendors, library applications, linking…

  3. Benefit/Cost Ratio in Systems Engineering: Integrated Models, Tests, Design, and Production

    SciTech Connect

    Nitta, C; Logan, R; Chidester, S; Foltz, M F

    2004-10-27

    We have previously described our methodology for quantification of risk and risk reduction, and the use of risk, quantified as a dollar value, in the Value Engineering and decision tradeoff process. In this work we extend our example theme of the safety of reactive materials during accidental impacts. We have begun to place the validation of our impact safety model into a systems engineering context. In that sense, we have made connections between the data and the trends in the data, our models of the impact safety process, and the implications regarding confidence levels and reliability based on given impact safety requirements. We have folded this information into a quantitative risk assessment, and shown the assessed risk reduction value of developing an even better model, with more model work or more experimental data or both. Since there is a cost incurred for either model improvement or testing, we have used a Benefit/Cost Ratio metric to quantify this, where Benefit is our quantification of assessed risk reduction, and cost is the cost of the new test data, code development, and model validation. This has left us with further questions posed for our evolving system engineering representation for impact safety and its implications. We had concluded that the Benefit/Cost Ratio for more model validation was high, but such improvement could take several paths. We show our progress along two such paths; simple and high fidelity modeling of the impact safety process, and the implications of our knowledge and assumptions of the probability distribution functions involved. At the other end of the systems engineering scale, we discuss the implications of our linkage from model validation to risk on our production plant operations. Naturally, the nature of most such methodologies is still evolving, and this work represents the views of the authors and not necessarily the views of Lawrence Livermore National Laboratory.

  4. Modeling and Control System Design for an Integrated Solar Generation and Energy Storage System with a Ride-Through Capability: Preprint

    SciTech Connect

    Wang, X.; Yue, M.; Muljadi, E.

    2012-09-01

    This paper presents a generic approach for PV panel modeling. Data for this modeling can be easily obtained from manufacturer datasheet, which provides a convenient way for the researchers and engineers to investigate the PV integration issues. A two-stage power conversion system (PCS) is adopted in this paper for the PV generation system and a Battery Energy Storage System (BESS) can be connected to the dc-link through a bi-directional dc/dc converter. In this way, the BESS can provide some ancillary services which may be required in the high penetration PV generation scenario. In this paper, the fault ride-through (FRT) capability is specifically focused. The integrated BESS and PV generation system together with the associated control systems is modeled in PSCAD and Matlab platforms and the effectiveness of the controller is validated by the simulation results.

  5. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    SciTech Connect

    Isa, Nor Ashidi Mat

    2015-05-15

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  6. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    NASA Astrophysics Data System (ADS)

    Isa, Nor Ashidi Mat

    2015-05-01

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  7. Developing an Action Model for Integration of Health System Response to HIV/AIDS and Noncommunicable Diseases (NCDs) in Developing Countries

    PubMed Central

    Haregu, Tilahun Nigatu; Setswe, Geoffrey; Elliott, Julian; Oldenburg, Brian

    2014-01-01

    Introduction: Although there are several models of integrated architecture, we still lack models and theories about the integration process of health system responses to HIV/AIDS and NCDs. Objective: The overall purpose of this study is to design an action model, a systematic approach, for the integration of health system responses to HIV/AIDS and NCDs in developing countries. Methods: An iterative and progressive approach of model development using inductive qualitative evidence synthesis techniques was applied. As evidence about integration is spread across different fields, synthesis of evidence from a broad range of disciplines was conducted. Results: An action model of integration having 5 underlying principles, 4 action fields, and a 9-step action cycle is developed. The INTEGRATE model is an acronym of the 9 steps of the integration process: 1) Interrelate the magnitude and distribution of the problems, 2) Navigate the linkage between the problems, 3) Testify individual level co-occurrence of the problems, 4) Examine the similarities and understand the differences between the response functions, 5) Glance over the health system’s environment for integration, 6) Repackage and share evidence in a useable form, 7) Ascertain the plan for integration, 8) Translate the plan in to action, 9) Evaluate and Monitor the integration. Conclusion: Our model provides a basis for integration of health system responses to HIV/AIDS and NCDs in the context of developing countries. We propose that future empirical work is needed to refine the validity and applicability of the model. PMID:24373260

  8. Surface water vulnerability assessment applying the integrity model as a decision support system for quality improvement

    SciTech Connect

    Mirauda, Domenica; Ostoich, Marco

    2011-04-15

    The implementation of the Water Framework Directive (WFD) 2000/60/EC, aimed at achieving a 'Good' Ecological Status of surface water bodies by 2015, indicates the adoption of a River Basin Management approach by using a model which works as a support for decision making. This work has applied the suggestions put forward by the WFD by means of a mathematical model called the Integrity Model. This represents valid support when assessing the efficiency of planned interventions which may directly or indirectly play a role in enhancing the quality of surface waters at the basin scale. Herein the results of a preliminary application limited to just two indexes on the Bacchiglione river basin, located in Northern Italy, are both presented and compared with the results of institutional monitoring activities in compliance with set technical regulations. The proposed model appears to be useful when carrying out Strategic Environmental Assessment (SEA) procedures in accordance with Directive 2001/42/EC concerning water management and protection plans as well as for the Environmental Impact Assessment (EIA) procedure to be carried out on the interventions identified.

  9. The Strategic Impact Model: An Integrative Approach to Performance Improvement and Instructional Systems Design

    ERIC Educational Resources Information Center

    Molenda, Michael; Pershing, James A.

    2004-01-01

    Training in business settings and instruction in academic settings have never taken place in a vacuum, but in earlier times many instructional technology professionals behaved as though they did. Models of instructional systems design (ISD) placed training and instruction at the center of the universe ignoring the impact of the external…

  10. Slimplectic Integrators: Variational Integrators for Nonconservative systems

    NASA Astrophysics Data System (ADS)

    Tsang, David

    2016-05-01

    Symplectic integrators are widely used for long-term integration of conservative astrophysical problems due to their ability to preserve the constants of motion; however, they cannot in general be applied in the presence of nonconservative interactions. Here we present the “slimplectic” integrator, a new type of numerical integrator that shares many of the benefits of traditional symplectic integrators yet is applicable to general nonconservative systems. We utilize a fixed-time-step variational integrator formalism applied to a newly developed principle of stationary nonconservative action (Galley, 2013, Galley et al 2014). As a result, the generalized momenta and energy (Noether current) evolutions are well-tracked. We discuss several example systems, including damped harmonic oscillators, Poynting–Robertson drag, and gravitational radiation reaction, by utilizing our new publicly available code to demonstrate the slimplectic integrator algorithm. Slimplectic integrators are well-suited for integrations of systems where nonconservative effects play an important role in the long-term dynamical evolution. As such they are particularly appropriate for cosmological or celestial N-body dynamics problems where nonconservative interactions, e.g., gas interactions or dissipative tides, can play an important role.

  11. Slimplectic Integrators: Variational Integrators for Nonconservative systems

    NASA Astrophysics Data System (ADS)

    Tsang, David

    2016-01-01

    Symplectic integrators are widely used for long-term integration of conservative astrophysical problems due to their ability to preserve the constants of motion; however, they cannot in general be applied in the presence of nonconservative interactions. In this Letter, we develop the "slimplectic" integrator, a new type of numerical integrator that shares many of the benefits of traditional symplectic integrators yet is applicable to general nonconservative systems. We utilize a fixed-time-step variational integrator formalism applied to the principle of stationary nonconservative action developed in Galley et al. As a result, the generalized momenta and energy (Noether current) evolutions are well-tracked. We discuss several example systems, including damped harmonic oscillators, Poynting-Robertson drag, and gravitational radiation reaction, by utilizing our new publicly available code to demonstrate the slimplectic integrator algorithm. Slimplectic integrators are well-suited for integrations of systems where nonconservative effects play an important role in the long-term dynamical evolution. As such they are particularly appropriate for cosmological or celestial N-body dynamics problems where nonconservative interactions, e.g., gas interactions or dissipative tides, can play an important role.

  12. Microfabricated Mammalian Organ Systems and Their Integration into Models of Whole Animals and Humans

    PubMed Central

    Sung, Jong H; Esch, Mandy B; Prot, Jean-Matthieu; Long, Christopher J; Smith, Alec; Hickman, James; Shuler, Michael L

    2013-01-01

    While in vitro cell based systems have been an invaluable tool in biology, they often suffer from a lack of physiological relevance. The discrepancy between the in vitro and in vivo systems has been a bottleneck in drug development process and biological sciences. The recent progress in microtechnology has enabled manipulation of cellular environment at a physiologically relevant length scale, which has led to the development of novel in vitro organ systems, often termed ‘organ-on-a-chip’ systems. By mimicking the cellular environment of in vivo tissues, various organ-on-a-chip systems have been reported to reproduce target organ functions better than conventional in vitro model systems. Ultimately, these organ-on-a-chip systems will converge into multi-organ ‘body-on-a-chip’ systems composed of functional tissues that reproduce the dynamics of the whole-body response. Such microscale in vitro systems will open up new possibilities in medical science and in the pharmaceutical industry. PMID:23388858

  13. Integrable models and combinatorics

    NASA Astrophysics Data System (ADS)

    Bogolyubov, N. M.; Malyshev, C. L.

    2015-10-01

    Relations between quantum integrable models solvable by the quantum inverse scattering method and some aspects of enumerative combinatorics and partition theory are discussed. The main example is the Heisenberg XXZ spin chain in the limit cases of zero or infinite anisotropy. Form factors and some thermal correlation functions are calculated, and it is shown that the resulting form factors in a special q-parametrization are the generating functions for plane partitions and self-avoiding lattice paths. The asymptotic behaviour of the correlation functions is studied in the case of a large number of sites and a moderately large number of spin excitations. For sufficiently low temperature a relation is established between the correlation functions and the theory of matrix integrals. Bibliography: 125 titles.

  14. Integrating human and natural systems in community psychology: an ecological model of stewardship behavior.

    PubMed

    Moskell, Christine; Allred, Shorna Broussard

    2013-03-01

    Community psychology (CP) research on the natural environment lacks a theoretical framework for analyzing the complex relationship between human systems and the natural world. We introduce other academic fields concerned with the interactions between humans and the natural environment, including environmental sociology and coupled human and natural systems. To demonstrate how the natural environment can be included within CP's ecological framework, we propose an ecological model of urban forest stewardship action. Although ecological models of behavior in CP have previously modeled health behaviors, we argue that these frameworks are also applicable to actions that positively influence the natural environment. We chose the environmental action of urban forest stewardship because cities across the United States are planting millions of trees and increased citizen participation in urban tree planting and stewardship will be needed to sustain the benefits provided by urban trees. We used the framework of an ecological model of behavior to illustrate multiple levels of factors that may promote or hinder involvement in urban forest stewardship actions. The implications of our model for the development of multi-level ecological interventions to foster stewardship actions are discussed, as well as directions for future research to further test and refine the model. PMID:22722897

  15. Prospective and participatory integrated assessment of agricultural systems from farm to regional scales: Comparison of three modeling approaches.

    PubMed

    Delmotte, Sylvestre; Lopez-Ridaura, Santiago; Barbier, Jean-Marc; Wery, Jacques

    2013-11-15

    Evaluating the impacts of the development of alternative agricultural systems, such as organic or low-input cropping systems, in the context of an agricultural region requires the use of specific tools and methodologies. They should allow a prospective (using scenarios), multi-scale (taking into account the field, farm and regional level), integrated (notably multicriteria) and participatory assessment, abbreviated PIAAS (for Participatory Integrated Assessment of Agricultural System). In this paper, we compare the possible contribution to PIAAS of three modeling approaches i.e. Bio-Economic Modeling (BEM), Agent-Based Modeling (ABM) and statistical Land-Use/Land Cover Change (LUCC) models. After a presentation of each approach, we analyze their advantages and drawbacks, and identify their possible complementarities for PIAAS. Statistical LUCC modeling is a suitable approach for multi-scale analysis of past changes and can be used to start discussion about the futures with stakeholders. BEM and ABM approaches have complementary features for scenarios assessment at different scales. While ABM has been widely used for participatory assessment, BEM has been rarely used satisfactorily in a participatory manner. On the basis of these results, we propose to combine these three approaches in a framework targeted to PIAAS. PMID:24013558

  16. Integrated hydrometeorological predictions with the fully-coupled WRF-Hydro modeling system in western North America

    NASA Astrophysics Data System (ADS)

    Gochis, D. J.; Yu, W.

    2013-12-01

    Prediction of heavy rainfall and associated streamflow responses remain as critical hydrometeorological challenges and require improved understanding of the linkages between atmospheric and land surface processes. Streamflow prediction skill is intrinsically liked to quantitative precipitation forecast skill, which emphasizes the need to produce mesoscale predictions of rainfall of high fidelity. However, in many cases land surface parameters can also exert significant control on the runoff response to heavy rainfall and on the formation or localization of heavy rainfall as well. A new generation of integrated atmospheric-hydrologic modeling systems is emerging from different groups around the world to meet the challenge of integrated water cycle predictions. In this talk the community WRF-Hydro modeling system will be presented. After a brief reviewing the architectural features of the WRF-Hydro system short-term forecasting and regional hydroclimate prediction applications of the model from western North America will be presented. In these applications, analyses will present results from observation-validated prediction experiments where atmospheric and terrestrial hydrologic model components are run in both a fully coupled mode and separately without two-way interactions. Emphasis is placed on illustrating an assessment framework using an initial state perturbation methodology to quantify the role of land-atmosphere energy and moisture flux partitioning in controlling precipitation and runoff forecast skill. Issues related to experimental design of fully-coupled model prediction experiments will also be discussed as will issues related to computational performance.

  17. An integrated modeling system for estimating glacier and snow melt driven streamflow from remote sensing and earth system data products in the Himalayas

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Gupta, A. Sen; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.; Hummel, P.; Gray, M.; Duda, P.; Zaitchik, B.; Mahat, V.; Artan, G.; Tokar, S.

    2014-11-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (GeoSFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification of

  18. An Integrated Modeling System for Estimating Glacier and Snow Melt Driven Streamflow from Remote Sensing and Earth System Data Products in the Himalayas

    NASA Technical Reports Server (NTRS)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Sen Gupta, A.; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.

    2014-01-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (Geo- SFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification

  19. Integration of Complex Models Into a System Dynamics Based Basin Scale Planning Model for the Upper Rio Grande

    NASA Astrophysics Data System (ADS)

    Roach, J.; Tidwell, V.; Lansey, K.

    2004-12-01

    As the finite, and often over-allocated water resources of the western United States are challenged by a myriad of growing demands, computer based simulations can be a powerful tool for evaluation of potential water use scenarios for hydrologic decision making and water policy analysis. To maximize their usefulness for policy analysis, such simulations should accurately represent the physical system as well as its interconnectedness to the socio-economic systems relevant to water planning without losing user accessibility or run speed. One solution to these constraints is system dynamics (SD) modeling at a relatively coarse spatial and temporal resolution. The challenge of this approach is in maintaining sufficient physical accuracy despite coarse resolution and SD's simple modeling framework. In this paper, the development of a reach-based monthly time-step system dynamics model of the upper Rio Grande River (from the headwaters in Colorado to Elephant Butte Reservoir in New Mexico) is discussed. Within this SD model, temporally and spatially coarse physical and operational relationships are abstracted from a variety of existing models with higher resolutions, including an operations model (Upper Rio Grande Water Operations Model (URGWOM)), a land surface rainfall-runoff model, an evapotranspiration model, and two groundwater models. Abstraction and calibration methods and implications of information loss associated with this scaling are considered.

  20. On an improved sub-regional water resources management representation for integration into earth system models

    SciTech Connect

    Voisin, Nathalie; Li, Hongyi; Ward, Duane L.; Huang, Maoyi; Wigmosta, Mark S.; Leung, Lai-Yung R.

    2013-09-30

    Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of earth system models in hydrologic and climate predictions, as well as impact studies at regional to global scales. Emerging large-scale research reservoir models use generic operating rules that are flexible for coupling with earth system models. Those generic operating rules have been successful in reproducing the overall regulated flow at large basin scales. This study investigates the uncertainties of the reservoir models from different implementations of the generic operating rules using the complex multi-objective Columbia River Regulation System in northwestern United States as an example to understand their effects on not only regulated flow but also reservoir storage and fraction of the demand that is met. Numerical experiments are designed to test new generic operating rules that combine storage and releases targets for multi-purpose reservoirs and to compare the use of reservoir usage priorities, withdrawals vs. consumptive demand, as well as natural vs. regulated mean flow for calibrating operating rules. Overall the best performing implementation is the use of the combined priorities (flood control storage targets and irrigation release targets) operating rules calibrated with mean annual natural flow and mean monthly withdrawals. The challenge of not accounting for groundwater withdrawals, or on the contrary, assuming that all remaining demand is met through groundwater extractions, is discussed.

  1. Integrated traffic system

    SciTech Connect

    Creighton, H. ); Allen, R.; Stewart, S.; Hayto, S. )

    1990-11-01

    The traffic congestion on our roads today is becoming a critical problem. There is increased fuel consumption as cars wait along poorly timed arterials. Safety is threatened as poor traffic flow leads to collisions. This paper reports that Transport Canada and the Ministry of Transportation Ontario has developed an integrated traffic system (ITS). The system is designed to enable the optimization of traffic flow on existing roadways. The ITS system contains a data-base management system for traffic data (including accidents, roadway volumes, and signal timing details) and links this data base to the traffic analysis programs. This will ease the data management situation within the municipalities and standardize the traffic operations and reduce duplication of computerization development efforts.

  2. An integrated and dynamic optimisation model for the multi-level emergency logistics network in anti-bioterrorism system

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Zhao, Lindu

    2012-08-01

    Demand for emergency resources is usually uncertain and varies quickly in anti-bioterrorism system. Besides, emergency resources which had been allocated to the epidemic areas in the early rescue cycle will affect the demand later. In this article, an integrated and dynamic optimisation model with time-varying demand based on the epidemic diffusion rule is constructed. The heuristic algorithm coupled with the MATLAB mathematical programming solver is adopted to solve the optimisation model. In what follows, the application of the optimisation model as well as a short sensitivity analysis of the key parameters in the time-varying demand forecast model is presented. The results show that both the model and the solution algorithm are useful in practice, and both objectives of inventory level and emergency rescue cost can be controlled effectively. Thus, it can provide some guidelines for decision makers when coping with emergency rescue problem with uncertain demand, and offers an excellent reference when issues pertain to bioterrorism.

  3. Integrated cellular systems

    NASA Astrophysics Data System (ADS)

    Harper, Jason C.

    integrate cells and direct their behaviors. This process permits, for the first time, the selection and in situ isolation of a single target cell from a population of cells with mixed phenotypes, and the subsequent monitoring of its behavior, and that of its progeny, under well defined conditions. These techniques promise a new means to integrate biomolecules with nanostructures and macroscale systems, and to manipulate cellular behavior at the individual cell level, having significant implications towards development of practical and robust integrated cellular systems.

  4. Integrating traditional Chinese medicine into mainstream healthcare system in Hong Kong, China-A model of integrative medicine in the HKU-SZ Hospital.

    PubMed

    Lao, Lixing; Ning, Zhipeng

    2015-11-01

    The European Congress for Integrative Medicine 2015 Global Summit on Integrative Medicine and Healthcare in Greater Copenhagen has successfully promoted integrative medicine to the public once again. Integrative medicine, which is called the art and science of healthcare by Nordic Integrative Medicine, has been widely used in the world. In Hong Kong, integrated traditional Chinese and Western medicine, which is also known as the Chinese version of integrative medicine, provides a valuable reference for the development of integrative medicine in the world. In this article, we introduce the development of traditional Chinese medicine in Hong Kong and an integrated traditional Chinese and Western medicine model in the University of Hong Kong-Shenzhen Hospital. PMID:26559359

  5. Application of watershed modeling system (WMS) for integrated management of a watershed in Turkey.

    PubMed

    Erturk, Ali; Gurel, Melike; Baloch, Mansoor Ahmed; Dikerler, Teoman; Varol, Evren; Akbulut, Neslihan; Tanik, Aysegul

    2006-01-01

    Watershed models, that enable the quantification of current and future pollution loading impacts, are essential tools to address the functions and conflicts faced in watershed planning and management. In this study, the Watershed Modeling System (WMS) version 7.1 was used for the delineation of boundaries of Koycegiz Lake-Dalyan Lagoon watershed located in the southwest of Turkey at the Mediterranean Sea coast. A Digital Elevation Model (DEM) was created for one of the major streams of the watershed, namely, Kargicak Creek by using WMS, and DEM data were further used to extract stream networks and delineate the watershed boundaries. Typical properties like drainage areas, characteristic length and slope of sub-drainage areas have also been determined to be used as model inputs in hydrological and diffuse pollution modeling. Besides, run-off hydrographs for the sub-drainages have been calculated using the Rational Method, which produces valuable data for calculating the time variable inflow and input pollution loads to be further utilized in the future water quality models of the Creek. Application of WMS in the study has shown that, it is capable to visualize the results in establishing watershed management strategies. PMID:16849145

  6. Integrated Canada-U.S. Power Sector Modeling with the Regional Energy Deployment System (ReEDS)

    SciTech Connect

    Martinez, A.; Eurek, K.; Mai, T.; Perry, A.

    2013-02-01

    The electric power system in North America is linked between the United States and Canada. Canada has historically been a net exporter of electricity to the United States. The extent to which this remains true will depend on the future evolution of power markets, technology deployment, and policies. To evaluate these and related questions, we modify the Regional Energy Deployment System (ReEDS) model to include an explicit representation of the grid-connected power system in Canada to the continental United States. ReEDS is unique among long-term capacity expansion models for its high spatial resolution and statistical treatment of the impact of variable renewable generation on capacity planning and dispatch. These unique traits are extended to new Canadian regions. We present example scenario results using the fully integrated Canada-U.S. version of ReEDS to demonstrate model capabilities. The newly developed, integrated Canada-U.S. ReEDS model can be used to analyze the dynamics of electricity transfers and other grid services between the two countries under different scenarios.

  7. Hydrological Modelling of Cherial Watershed Integrating Remote Sensing and Geographical Information System (gis)

    NASA Astrophysics Data System (ADS)

    Siva Sankar, A.

    2004-12-01

    The increasing population growth is continuing to exert extra pressure on existing water resources all over the world. An imperative need for the development and judicious use of these resources is therefore essential. Rainfall in southern India is very erratic, unpredictable, uneven and distributed over a short period of 3-4 Months. Out of 4000 billion cubic meters of rainfall received annually, 41% is lost as evaporation and transpiration, 40% lost as runoff into seas and 10% seeps in for recharging groundwater. As a result Krishna and Godavari rivers of southern India are almost in dry conditions throughout the year with farmers suffering from droughts since past 20 years especially in the state of Andhra Pradesh. An imperative need for the development and judicious use of these resources is therefore essential for conservation of water resources and maintaining the hydrologic table when water is becoming a scarce material. Keeping this in view an integrated model is developed for the chronically drought prone area of Cherial watershed in Warangal district of Andhra Pradesh using Remote sensing and GIS techniques. This model explores and suggests cost-effective and sustainable methods of increasing the crop yield by increasing the ground water potential artificially. The main objective of the study is to evaluate both surface and groundwater resources in the region and develop methods for its efficient utilization and sustainable management. Remote sensing and GIS applications are adopted as an effective tool in meeting the objective of the study. The thematic layers v.i.z. drainage pattern, land use/ land cover, hydrogeomorphology, slope, soil, physiography and ground water prospects are all derived from IRS-ID PAN + LISS-III merged satellite imagery and Survey of India (SOI) topomaps using visual interpretation technique. These maps are then converted to digital format using AutoCAD software and further integrated using Arc/Info and ArcView GIS software for

  8. Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling

    SciTech Connect

    Hibbard, Kathleen A.; Janetos, Anthony C.; Van Vuuren, Detlef; Pongratz, Julia; Rose, Steven K.; Betts, Richard; Herold, Martin; Feddema, Johannes J.

    2010-11-15

    This special issue has highlighted recent and innovative methods and results that integrate observations and AQ3 modelling analyses of regional to global aspect of biophysical and biogeochemical interactions of land-cover change with the climate system. Both the Earth System and the Integrated Assessment modeling communities recognize the importance of an accurate representation of land use and land-cover change to understand and quantify the interactions and feedbacks with the climate and socio-economic systems, respectively. To date, cooperation between these communities has been limited. Based on common interests, this work discusses research priorities in representing land use and land-cover change for improved collaboration across modelling, observing and measurement communities. Major research topics in land use and land-cover change are those that help us better understand (1) the interaction of land use and land cover with the climate system (e.g. carbon cycle feedbacks), (2) the provision of goods and ecosystem services by terrestrial (natural and anthropogenic) land-cover types (e.g. food production), (3) land use and management decisions and (4) opportunities and limitations for managing climate change (for both mitigation and adaptation strategies).

  9. Integration of multiscale dendritic spine structure and function data into systems biology models

    PubMed Central

    Mancuso, James J.; Cheng, Jie; Yin, Zheng; Gilliam, Jared C.; Xia, Xiaofeng; Li, Xuping; Wong, Stephen T. C.

    2014-01-01

    Comprising 1011 neurons with 1014 synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long distance connectivity and brain volume. The major sites of contact for synapsing neurons are dendritic spines, which provide an excellent metric for the number and strength of signaling connections between elements of functional neuronal circuits. A comprehensive model of anatomical changes and their functional consequences would be a holy grail for the field of systems neuroscience but its realization appears far on the horizon. Various imaging technologies have advanced to allow for multi-scale visualization of brain plasticity and pathology, but computational analysis of the big data sets involved forms the bottleneck toward the creation of multiscale models of brain structure and function. While a full accounting of techniques and progress toward a comprehensive model of brain anatomy and function is beyond the scope of this or any other single paper, this review serves to highlight the opportunities for analysis of neuronal spine anatomy and function provided by new imaging technologies and the high-throughput application of older technologies while surveying the strengths and weaknesses of currently available computational analytical tools and room for future improvement. PMID:25429262

  10. Integration of modeling and simulation into hospital-based decision support systems guiding pediatric pharmacotherapy

    PubMed Central

    Barrett, Jeffrey S; Mondick, John T; Narayan, Mahesh; Vijayakumar, Kalpana; Vijayakumar, Sundararajan

    2008-01-01

    Background Decision analysis in hospital-based settings is becoming more common place. The application of modeling and simulation approaches has likewise become more prevalent in order to support decision analytics. With respect to clinical decision making at the level of the patient, modeling and simulation approaches have been used to study and forecast treatment options, examine and rate caregiver performance and assign resources (staffing, beds, patient throughput). There us a great need to facilitate pharmacotherapeutic decision making in pediatrics given the often limited data available to guide dosing and manage patient response. We have employed nonlinear mixed effect models and Bayesian forecasting algorithms coupled with data summary and visualization tools to create drug-specific decision support systems that utilize individualized patient data from our electronic medical records systems. Methods Pharmacokinetic and pharmacodynamic nonlinear mixed-effect models of specific drugs are generated based on historical data in relevant pediatric populations or from adults when no pediatric data is available. These models are re-executed with individual patient data allowing for patient-specific guidance via a Bayesian forecasting approach. The models are called and executed in an interactive manner through our web-based dashboard environment which interfaces to the hospital's electronic medical records system. Results The methotrexate dashboard utilizes a two-compartment, population-based, PK mixed-effect model to project patient response to specific dosing events. Projected plasma concentrations are viewable against protocol-specific nomograms to provide dosing guidance for potential rescue therapy with leucovorin. These data are also viewable against common biomarkers used to assess patient safety (e.g., vital signs and plasma creatinine levels). As additional data become available via therapeutic drug monitoring, the model is re-executed and projections are

  11. Traz - An Interactive Ray-Tracing Computer Program Integrated With A Solid-Modeling CAD System

    NASA Astrophysics Data System (ADS)

    Dolan, Ariel

    1986-02-01

    The combination of an optical ray-tracing program with a solid modeling C.A.D. (computer-aided-design) system creates a very flexible tool for optical system analysis and evaluation. The program uses the CAD data-structure and user-friendly menus for creation, manipulation and visualization of the optical system. Furthermore, it is capable of dealing with problems which are impossible or difficult to handle by existing optical design programs, such as calculations of three-dimensional sensitivities, multiple reflections, multiple-surface apertures, specular stray radiation, image rotation and complex-prism design. It can also be used as an efficient tool for error-budget and error-analysis, and can be fully interfaced with a finite-elements analysis program, thus enabling the evaluation of the effects of mechanical or thermal loads on the optical performance.

  12. cuSwift --- a suite of numerical integration methods for modelling planetary systems implemented in C/CUDA

    NASA Astrophysics Data System (ADS)

    Hellmich, S.; Mottola, S.; Hahn, G.; Kührt, E.; Hlawitschka, M.

    2014-07-01

    Simulations of dynamical processes in planetary systems represent an important tool for studying the orbital evolution of the systems [1--3]. Using modern numerical integration methods, it is possible to model systems containing many thousands of objects over timescales of several hundred million years. However, in general, supercomputers are needed to get reasonable simulation results in acceptable execution times [3]. To exploit the ever-growing computation power of Graphics Processing Units (GPUs) in modern desktop computers, we implemented cuSwift, a library of numerical integration methods for studying long-term dynamical processes in planetary systems. cuSwift can be seen as a re-implementation of the famous SWIFT integrator package written by Hal Levison and Martin Duncan. cuSwift is written in C/CUDA and contains different integration methods for various purposes. So far, we have implemented three algorithms: a 15th-order Radau integrator [4], the Wisdom-Holman Mapping (WHM) integrator [5], and the Regularized Mixed Variable Symplectic (RMVS) Method [6]. These algorithms treat only the planets as mutually gravitationally interacting bodies whereas asteroids and comets (or other minor bodies of interest) are treated as massless test particles which are gravitationally influenced by the massive bodies but do not affect each other or the massive bodies. The main focus of this work is on the symplectic methods (WHM and RMVS) which use a larger time step and thus are capable of integrating many particles over a large time span. As an additional feature, we implemented the non-gravitational Yarkovsky effect as described by M. Brož [7]. With cuSwift, we show that the use of modern GPUs makes it possible to speed up these methods by more than one order of magnitude compared to the single-core CPU implementation, thereby enabling modest workstation computers to perform long-term dynamical simulations. We use these methods to study the influence of the Yarkovsky

  13. An integrated system for wind energy forecast using meteorological models and statistical post-processing

    NASA Astrophysics Data System (ADS)

    Miranda, P.; Rodrigues, A.; Lopes, J.; Palma, J.; Tome, R.; Sousa, J.; Bessa, R.; Matos, J.

    2009-12-01

    With 3GW of installed wind turbines, corresponding to 23% of the total electric grid, and a 5-year plan that will grow that value above 5GW (near 40% of the grid), Portugal has been a recent success case for renewable energy development. Clearly such large share of wind energy in the national electric system implies a strong requirement for accurate wind forecasts, that can be used to forecast this highly variable energy source and allow for timely decision making in the energy markets, namely for on and off switching of alternative conventional sources. In the past 3 years, a system for 72h energy forecast in mainland Portugal was setup, using 6km resolution meteorological forecasts, forced by global GFS forecasts by NCEP. In the development phase, different boundary conditions (from NCEP and ECMWF) were tested, as well as different limited area models (namely MM5, Aladin, MesoNH and WRF) at resolutions from 12 to 2km, which were evaluated by comparison with wind observations at heights relevant for wind turbines (up to 80m) in different locations and for different synoptic conditions. The developed system, which works with a real time connection with wind farms, also includes a post-processing code that merges recent wind observations with the meteorological forecast, and converts the forecasted wind fields into forecasted energy, by incorporating empirical transfer functions of the wind farm. Wind conditions in Portugal are highly influenced by topography, as most wind farms are located in complex terrain, often in mountainous terrain, where stratification plays a significant role. Coastal effects are also highly relevant, especially during the Summer, where a strong diurnal cycle of the sea-breeze is superimposed on an equally strong boundary layer development, both with a significant impact on low level winds. These two ingredients tend to complicate wind forecasts, requiring fully developed meteorological models. In general, results from 2 full years of

  14. The Integral System

    PubMed Central

    2011-01-01

    The Integral System is a total care management system based on the Integral Theory which states ‘prolapse and symptoms of urinary stress, urge, abnormal bowel & bladder emptying, and some forms of pelvic pain, mainly arise, for different reasons, from laxity in the vagina or its supporting ligaments, a result of altered connective tissue’. Normal function The organs are suspended by ligaments against which muscles contract to open or close the their outlet tubes, urethra and anus. These ligaments fall naturally into a three-zone zone classification, anterior, middle, and posterior. Dysfunction Damaged ligaments weaken the force of muscle contraction, causing prolapse and abnormal bladder and bowel symptoms Diagnosis A pictorial diagnostic algorithm relates specific symptoms to damaged ligaments in each zone. Treatment In mild cases, new pelvic floor muscle exercises based on a squatting principle strengthen the natural closure muscles and their ligamentous insertions, thereby improving the symptoms predicted by the Theory. With more severe cases, polypropylene tapes applied through “keyhole” incision using special instruments reinforce the damaged ligaments, restoring structure and function. Problems that can be potentially addressed by application of the Integral System Urinary stress incontinenceUrinary urge incontinenceAbnormal bladder emptyingFacal incontinence and “obstructed evacuation” (“constipation”)Pelvic pain, and some types of vulvodynia and interstitial cystitisOrgan prolapse Conclusions Organ prolapse and symptoms are related, and both are mainly caused by laxity in the four main suspensory ligaments and perineal body. Restoration of ligament/fascial length and tension is required to restore anatomy and function. PMID:24578877

  15. Integrating Predictive Modeling with Control System Design for Managed Aquifer Recharge and Recovery Applications

    NASA Astrophysics Data System (ADS)

    Drumheller, Z. W.; Regnery, J.; Lee, J. H.; Illangasekare, T. H.; Kitanidis, P. K.; Smits, K. M.

    2014-12-01

    Aquifers around the world show troubling signs of irreversible depletion and seawater intrusion as climate change, population growth, and urbanization led to reduced natural recharge rates and overuse. Scientists and engineers have begun to re-investigate the technology of managed aquifer recharge and recovery (MAR) as a means to increase the reliability of the diminishing and increasingly variable groundwater supply. MAR systems offer the possibility of naturally increasing groundwater storage while improving the quality of impaired water used for recharge. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data-driven, real-time control. Our project seeks to ease the operational challenges of MAR facilities through the implementation of active sensor networks, adaptively calibrated flow and transport models, and simulation-based meta-heuristic control optimization methods. The developed system works by continually collecting hydraulic and water quality data from a sensor network embedded within the aquifer. The data is fed into an inversion algorithm, which calibrates the parameters and initial conditions of a predictive flow and transport model. The calibrated model is passed to a meta-heuristic control optimization algorithm (e.g. genetic algorithm) to execute the simulations and determine the best course of action, i.e., the optimal pumping policy for current aquifer conditions. The optimal pumping policy is manually or autonomously applied. During operation, sensor data are used to assess the accuracy of the optimal prediction and augment the pumping strategy as needed. At laboratory-scale, a small (18"H x 46"L) and an intermediate (6'H x 16'L) two-dimensional synthetic aquifer were constructed and outfitted with sensor networks. Data collection and model inversion components were developed and sensor data were validated by analytical measurements.

  16. Simulation model of the integrated flight/propulsion control system, displays, and propulsion system for ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Chung, W. Y. William; Borchers, Paul F.; Franklin, James A.

    1995-01-01

    A simulation model has been developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced, short takeoff, vertical landing lift fan fighter aircraft. The flight/propulsion control system includes modes for several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the lift fan propulsion system. Head-up display modes for approach and hover, tailored to their corresponding control modes are provided in the simulation. Propulsion system components modeled include a remote lift and a lift/cruise engine. Their static performance and dynamic response are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.

  17. Modeling energy in an Integrated Pollutant Removal (IPR) system with CO{sub 2} capture integrated with oxy-fuel combustion

    SciTech Connect

    Harendra, Sivaram; Oryshchyn, Danylo B.; Gerdemann, Stephen J.

    2012-01-01

    Oxy-coal combustion is one of the technical solutions for mitigating CO{sub 2} in thermal power plants. Many processes have been evolved in past the decade to capture CO{sub 2} from process industries. Researchers at the National Energy Technology Laboratory (NETL) have patented a process, integrated pollutant removal (IPR), that uses off the shelf technology to produce a sequestration-ready CO{sub 2} stream from an oxy-combustion power plant. The IPR process as it is realized at the Jupiter Oxygen Burner Test Facility is a spray tower (direct-contact heat exchanger) followed by four stages of compression with intercooling. To study the energy flows of the oxy-combustion process, a 15 MW{sub t}h oxy-combustion pulverized-coal-fired plant integrated with the IPR system was simulated and analyzed using ASPEN Plus and ASPEN energy analyzer. This paper discusses flue-gas recycle, energy flow, recovery, and optimization of IPR systems. ASPEN models of heat- and mass-transfer processes in aflue-gas-condensing heat-exchanger system were developed to predict the heat transferred from flue gas to cooling water. The flue-gas exit temperature, cooling water outlet temperature, and energy flows of IPR streams were computed using ASPEN models. Pinch principles are deployed for targeting design and operation-guiding purposes and balancing the heat and mass transfer in the IPR system. The results are expected to support sophistication of the IPR system design, improving its application in a variety of settings. They open the door for valuable IPR efficiency improvements and generalization of methodology for simultaneous management of energy resources.

  18. Lunar materials processing system integration

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1992-01-01

    The theme of this paper is that governmental resources will not permit the simultaneous development of all viable lunar materials processing (LMP) candidates. Choices will inevitably be made, based on the results of system integration trade studies comparing candidates to each other for high-leverage applications. It is in the best long-term interest of the LMP community to lead the selection process itself, quickly and practically. The paper is in five parts. The first part explains what systems integration means and why the specialized field of LMP needs this activity now. The second part defines the integration context for LMP -- by outlining potential lunar base functions, their interrelationships and constraints. The third part establishes perspective for prioritizing the development of LMP methods, by estimating realistic scope, scale, and timing of lunar operations. The fourth part describes the use of one type of analytical tool for gaining understanding of system interactions: the input/output model. A simple example solved with linear algebra is used to illustrate. The fifth and closing part identifies specific steps needed to refine the current ability to study lunar base system integration. Research specialists have a crucial role to play now in providing the data upon which this refinement process must be based.

  19. Lunar materials processing system integration

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    1992-02-01

    The theme of this paper is that governmental resources will not permit the simultaneous development of all viable lunar materials processing (LMP) candidates. Choices will inevitably be made, based on the results of system integration trade studies comparing candidates to each other for high-leverage applications. It is in the best long-term interest of the LMP community to lead the selection process itself, quickly and practically. The paper is in five parts. The first part explains what systems integration means and why the specialized field of LMP needs this activity now. The second part defines the integration context for LMP -- by outlining potential lunar base functions, their interrelationships and constraints. The third part establishes perspective for prioritizing the development of LMP methods, by estimating realistic scope, scale, and timing of lunar operations. The fourth part describes the use of one type of analytical tool for gaining understanding of system interactions: the input/output model. A simple example solved with linear algebra is used to illustrate. The fifth and closing part identifies specific steps needed to refine the current ability to study lunar base system integration. Research specialists have a crucial role to play now in providing the data upon which this refinement process must be based.

  20. Modeling Pilot Behavior for Assessing Integrated Alert and Notification Systems on Flight Decks

    NASA Technical Reports Server (NTRS)

    Cover, Mathew; Schnell, Thomas

    2010-01-01

    Numerous new flight deck configurations for caution, warning, and alerts can be conceived; yet testing them with human-in-the-Ioop experiments to evaluate each one would not be practical. New sensors, instruments, and displays are being put into cockpits every day and this is particularly true as we enter the dawn of the Next Generation Air Transportation System (NextGen). By modeling pilot behavior in a computer simulation, an unlimited number of unique caution, warning, and alert configurations can be evaluated 24/7 by a computer. These computer simulations can then identify the most promising candidate formats to further evaluate in higher fidelity, but more costly, Human-in-the-Ioop (HITL) simulations. Evaluations using batch simulations with human performance models saves time, money, and enables a broader consideration of possible caution, warning, and alerting configurations for future flight decks.

  1. Integrated Medical Model Overview

    NASA Technical Reports Server (NTRS)

    Myers, J.; Boley, L.; Foy, M.; Goodenow, D.; Griffin, D.; Keenan, A.; Kerstman, E.; Melton, S.; McGuire, K.; Saile, L.; Shah, R.; Garcia, Y.; Sirmons. B.; Walton, M.; Reyes, D.

    2015-01-01

    The Integrated Medical Model (IMM) Project represents one aspect of NASA's Human Research Program (HRP) to quantitatively assess medical risks to astronauts for existing operational missions as well as missions associated with future exploration and commercial space flight ventures. The IMM takes a probabilistic approach to assessing the likelihood and specific outcomes of one hundred medical conditions within the envelope of accepted space flight standards of care over a selectable range of mission capabilities. A specially developed Integrated Medical Evidence Database (iMED) maintains evidence-based, organizational knowledge across a variety of data sources. Since becoming operational in 2011, version 3.0 of the IMM, the supporting iMED, and the expertise of the IMM project team have contributed to a wide range of decision and informational processes for the space medical and human research community. This presentation provides an overview of the IMM conceptual architecture and range of application through examples of actual space flight community questions posed to the IMM project.

  2. Integrated network modelling for identifying microbial mechanisms of particulate organic carbon accumulation in coastal marine systems

    NASA Astrophysics Data System (ADS)

    McDonald, Karlie; Turk, Valentina; Mozetič, Patricija; Tinta, Tinkara; Malfatti, Francesca; Hannah, David; Krause, Stefan

    2016-04-01

    Accumulation of particulate organic carbon (POC) has the potential to change the structure and function of marine ecosystems. High abidance of POC can develop into aggregates, known as marine snow or mucus aggregates that can impair essential marine ecosystem functioning and services. Currently marine POC formation, accumulation and sedimentation processes are being explored as potential pathways to remove CO2 from the atmosphere by CO2 sequestration via fixation into biomass by phytoplankton. However, the current ability of scientists, environmental managers and regulators to analyse and predict high POC concentrations is restricted by the limited understanding of the dynamic nature of the microbial mechanisms regulating POC accumulation events in marine environments. We present a proof of concept study that applies a novel Bayesian Networks (BN) approach to integrate relevant biological and physical-chemical variables across spatial and temporal scales in order to identify the interactions of the main contributing microbial mechanisms regulating POC accumulation in the northern Adriatic Sea. Where previous models have characterised only the POC formed, the BN approach provides a probabilistic framework for predicting the occurrence of POC accumulation by linking biotic factors with prevailing environmental conditions. In this paper the BN was used to test three scenarios (diatom, nanoflagellate, and dinoflagellate blooms). The scenarios predicted diatom blooms to produce high chlorophyll a at the water surface while nanoflagellate blooms were predicted to occur at lower depths (> 6m) in the water column and produce lower chlorophyll a concentrations. A sensitivity analysis identified the variables with the greatest influence on POC accumulation being the enzymes protease and alkaline phosphatase, which highlights the importance of microbial community interactions. The developed proof of concept BN model allows for the first time to quantify the impacts of

  3. Integrating remote sensing and GIS data for the Natural Systems Boundary (NSB) model

    SciTech Connect

    Leary, T.J.; Flamm, R.O.; Haddad, K.D.

    1997-06-01

    Significant alterations in hydrology, water quality, and land use have put the entire south Florida ecosystem on the brink of collapse. Considerable federal, state, and local efforts have focused on this region to develop and implement management options for environmental and economic restoration and sustainability. The Governor`s Commission for a Sustainable South Florida was created to represent a broad array of interests in the region and is charged with setting the state is vision, direction, and management options for an environmentally and economically sustainable south Florida ecosystem. The Commission`s Science Research Advisory Committee (SRAC) was given the responsibility of delineating and evaluating alternative natural system boundaries. To meet the Commission`s recommendations, the SRAC empowered the Florida Marine Research Institute (FMR1) to develop a GIS-based modeling application. The resulting ARCVIEW application allows managers and scientists to delineate alternative Natural Systems Boundaries (NSBs) by varying the selection and weight (relative importance) of management criteria such as hydrology, habitat, wildlife, and water quality. Repetitive model runs with modifications to the user-defined inputs afford managers the opportunity to better understand the complexity of the data and their relationship to management objectives.

  4. Choosing the Right Systems Integration

    NASA Astrophysics Data System (ADS)

    Péči, Matúš; Važan, Pavel

    2014-12-01

    The paper examines systems integration and its main levels at higher levels of control. At present, the systems integration is one of the main aspects participating in the consolidation processes and financial flows of a company. Systems Integration is a complicated emotionconsuming process and it is often a problem to choose the right approach and level of integration. The research focused on four levels of integration, while each of them is characterized by specific conditions. At each level, there is a summary of recommendations and practical experience. The paper also discusses systems integration between the information and MES levels. The main part includes user-level integration where we describe an example of such integration. Finally, we list recommendations and also possible predictions of the systems integration as one of the important factors in the future.

  5. Recent Progresses in Incorporating Human Land-Water Management into Global Land Surface Models Toward Their Integration into Earth System Models

    NASA Technical Reports Server (NTRS)

    Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun

    2016-01-01

    The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.

  6. Apollo cryogenic integrated systems program

    NASA Technical Reports Server (NTRS)

    Seto, R. K. M.; Cunningham, J. E.

    1971-01-01

    The integrated systems program is capable of simulating both nominal and anomalous operation of the Apollo cryogenics storage system (CSS). Two versions of the program exist; one for the Apollo 14 configuration and the other for J Type Mission configurations. The program consists of two mathematical models which are dynamically coupled. A model of the CSS components and lines determines the oxygen and hydrogen flowrate from each storage tank given the tank pressures and temperatures, and the electrical power subsystem and environmental control subsystem flow demands. Temperatures and pressures throughout the components and lines are also determined. A model of the CSS tankage determines the pressure and temperatures in the tanks given the flowrate from each tank and the thermal environment. The model accounts for tank stretch and includes simplified oxygen tank heater and stratification routines. The program is currently operational on the Univac 1108 computer.

  7. Testing the ability of RIEMS2.0 (Regional Integrated Environment Modeling System) on regional climate simulation in East Asia

    NASA Astrophysics Data System (ADS)

    Zhao, D.; Fu, C.; Yan, X.

    2010-12-01

    RIEMS1.0 (Regional Integrated Environmental Modeling System version 1.0) was developed by researchers from the START (Global change System for Analysis, Research, and Training) Regional Center for Temperate East Asia, IAP/CAS in 1998. The model was built on the thermodynamic frame of PSU/NCAR MM5V2, into which a land surface scheme (BATS1e) and radiative transfer scheme (the revised CCM3) are integrated. The model has been widely used in regional climate studies in the East Asia monsoon system and expresses excellent performance from RMIP (Regional Climate Model Inter-comparison Project). RIEMS2.0 is now being developed starting from RIEMS1.0 by the Key Laboratory of Regional Climate Environment Research for Temperate East Asia, IAP/CAS, and Nanjing University. The new version is built on the thermodynamic framework of nonhydrostatic approximation from MM5V3 with the same land surface model and radiation scheme as RIEMS1.0. To make it an integrated modeling system, the Princeton ocean mode (POM), Atmosphere-Vegetation interaction model (AVIM) and a chemical model are now being integrated. In order to test RIEMS2.0’s ability to simulate short-term climate, we perform ensemble simulations with different physics process schemes. The model will be used to perform ensemble simulations on two continuous extreme climate events, which is serve drought with high temperature in north China in the summer (June, July and August) of 1997 and serve flood in the Yangtze River valley in the summer of 1998. The results show that RIEMS2.0 can reproduce the spatial distribution of the precipitation and SAT from two continuous extreme climate events in the summer of 1997/1998, and disclose sub-regional characteristics. Though difference can be found among ensemble members, ensembles can decrease the model’s uncertainty and improve the simulation decision in a certain degree. In order to test RIEMS2.0’s ability to simulate long-term climate and climate change, we compare

  8. The integrated environmental control model

    SciTech Connect

    Rubin, E.S.; Berkenpas, M.B.; Kalagnanam, J.R.

    1995-11-01

    The capability to estimate the performance and cost of emission control systems is critical to a variety of planning and analysis requirements faced by utilities, regulators, researchers and analysts in the public and private sectors. The computer model described in this paper has been developed for DOe to provide an up-to-date capability for analyzing a variety of pre-combustion, combustion, and post-combustion options in an integrated framework. A unique capability allows performance and costs to be modeled probabilistically, which allows explicit characterization of uncertainties and risks.

  9. Improved cyberinfrastructure for integrated hydrometeorological predictions within the fully-coupled WRF-Hydro modeling system

    NASA Astrophysics Data System (ADS)

    gochis, David; hooper, Rick; parodi, Antonio; Jha, Shantenu; Yu, Wei; Zaslavsky, Ilya; Ganapati, Dinesh

    2014-05-01

    The community WRF-Hydro system is currently being used in a variety of flood prediction and regional hydroclimate impacts assessment applications around the world. Despite its increasingly wide use certain cyberinfrastructure bottlenecks exist in the setup, execution and post-processing of WRF-Hydro model runs. These bottlenecks result in wasted time, labor, data transfer bandwidth and computational resource use. Appropriate development and use of cyberinfrastructure to setup and manage WRF-Hydro modeling applications will streamline the entire workflow of hydrologic model predictions. This talk will present recent advances in the development and use of new open-source cyberinfrastructure tools for the WRF-Hydro architecture. These tools include new web-accessible pre-processing applications, supercomputer job management applications and automated verification and visualization applications. The tools will be described successively and then demonstrated in a set of flash flood use cases for recent destructive flood events in the U.S. and in Europe. Throughout, an emphasis on the implementation and use of community data standards for data exchange is made.

  10. Integration of Mirror Design with Suspension System using NASA's New Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold, William; Bevan Ryan M.; Stahl, Philip

    2013-01-01

    Advances in mirror fabrication is making very large space based telescopes possible. In the many applications, only monolithic mirrors meet the performance requirements. The existing and near-term planned heavy launch vehicles place a premium on lowest possible mass. Again, available and planned payload shroud size limits near term designs to 4 meter class mirror. Practical 8 meter and beyond designs could encourage planners to include larger shrouds if it can be proven that such mirrors can be manufactured. These two factors lower mass and larger mirrors, presents the classic optimization problem. There is a practical upper limit to how large a mirror can be supported by a purely kinematic mount system and be launched. This paper shows how the design of the suspension system and mirror blank needs to be designed simultaneously. We will also explore the concepts of auxiliary support systems, which act only during launch and disengage on orbit. We will define required characteristics of these systems and show how they can substantially reduce the mirror mass. The AMTD project is developing and maturing the processes for future replacements for HUBBLE, creating the design tools, validating the methods and techniques necessary to manufacture, test and launch extremely large optical missions. This paper will use the AMTD 4 meter "design point" as an illustration of the typical use of the modeler in generating the multiple models of mirror and suspension systems used during the conceptual design phase of most projects. The influence of Hexapod geometry, mirror depth, cell size and construction techniques (Exelsis Deep Core Low Temperature Fusion (c) versus Corning Frit Bonded (c) versus Schott Pocket Milled Zerodur (c) in this particular study) are being evaluated. Due to space and time consideration we will only be able to present snippets of the study in this paper. The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low

  11. A Communication Model to Integrate the Request-Response and the Publish-Subscribe Paradigms into Ubiquitous Systems

    PubMed Central

    Rodríguez-Domínguez, Carlos; Benghazi, Kawtar; Noguera, Manuel; Garrido, José Luis; Rodríguez, María Luisa; Ruiz-López, Tomás

    2012-01-01

    The Request-Response (RR) paradigm is widely used in ubiquitous systems to exchange information in a secure, reliable and timely manner. Nonetheless, there is also an emerging need for adopting the Publish-Subscribe (PubSub) paradigm in this kind of systems, due to the advantages that this paradigm offers in supporting mobility by means of asynchronous, non-blocking and one-to-many message distribution semantics for event notification. This paper analyzes the strengths and weaknesses of both the RR and PubSub paradigms to support communications in ubiquitous systems and proposes an abstract communication model in order to enable their seamless integration. Thus, developers will be focused on communication semantics and the required quality properties, rather than be concerned about specific communication mechanisms. The aim is to provide developers with abstractions intended to decrease the complexity of integrating different communication paradigms commonly needed in ubiquitous systems. The proposal has been applied to implement a middleware and a real home automation system to show its applicability and benefits. PMID:22969366

  12. A communication model to integrate the Request-Response and the Publish-Subscribe paradigms into ubiquitous systems.

    PubMed

    Rodríguez-Domínguez, Carlos; Benghazi, Kawtar; Noguera, Manuel; Garrido, José Luis; Rodríguez, María Luisa; Ruiz-López, Tomás

    2012-01-01

    The Request-Response (RR) paradigm is widely used in ubiquitous systems to exchange information in a secure, reliable and timely manner. Nonetheless, there is also an emerging need for adopting the Publish-Subscribe (PubSub) paradigm in this kind of systems, due to the advantages that this paradigm offers in supporting mobility by means of asynchronous, non-blocking and one-to-many message distribution semantics for event notification. This paper analyzes the strengths and weaknesses of both the RR and PubSub paradigms to support communications in ubiquitous systems and proposes an abstract communication model in order to enable their seamless integration. Thus, developers will be focused on communication semantics and the required quality properties, rather than be concerned about specific communication mechanisms. The aim is to provide developers with abstractions intended to decrease the complexity of integrating different communication paradigms commonly needed in ubiquitous systems. The proposal has been applied to implement a middleware and a real home automation system to show its applicability and benefits. PMID:22969366

  13. Man-machine Integration Design and Analysis System (MIDAS) Task Loading Model (TLM) experimental and software detailed design report

    NASA Technical Reports Server (NTRS)

    Staveland, Lowell

    1994-01-01

    This is the experimental and software detailed design report for the prototype task loading model (TLM) developed as part of the man-machine integration design and analysis system (MIDAS), as implemented and tested in phase 6 of the Army-NASA Aircrew/Aircraft Integration (A3I) Program. The A3I program is an exploratory development effort to advance the capabilities and use of computational representations of human performance and behavior in the design, synthesis, and analysis of manned systems. The MIDAS TLM computationally models the demands designs impose on operators to aide engineers in the conceptual design of aircraft crewstations. This report describes TLM and the results of a series of experiments which were run this phase to test its capabilities as a predictive task demand modeling tool. Specifically, it includes discussions of: the inputs and outputs of TLM, the theories underlying it, the results of the test experiments, the use of the TLM as both stand alone tool and part of a complete human operator simulation, and a brief introduction to the TLM software design.

  14. Evaluation and optimization of a micro-tubular solid oxide fuel cell stack model including an integrated cooling system

    NASA Astrophysics Data System (ADS)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2016-01-01

    A micro-tubular solid oxide fuel cell stack model including an integrated cooling system was developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. For the purpose of model evaluation, reference operating, geometrical and material properties are determined. The reference stack design is composed of 3294 cells, with a diameter of 2 mm, and 61 cooling-tubes. The stack is operated at a power density of 300 mW/cm2 and air is used as the cooling fluid inside the integrated cooling system. Regarding the performance, the reference design achieves an electrical stack efficiency of around 57% and a power output of 1.1 kW. The maximum occurring temperature of the positive electrode electrolyte negative electrode (PEN)-structure is 1369 K. As a result of a design of experiments, parameters of a best-case design are determined. The best-case design achieves a comparable power output of 1.1 kW with an electrical efficiency of 63% and a maximum occurring temperature of the PEN-structure of 1268 K. Nevertheless, the best-case design has an increased volume based on the higher diameter of 3 mm and increased spacing between the cells.

  15. A System Dynamics Model for Integrated Decision Making: The Durham-Orange Light Rail Project

    EPA Science Inventory

    EPA’s Sustainable and Healthy Communities Research Program (SHC) is conducting transdisciplinary research to inform and empower decision-makers. EPA tools and approaches are being developed to enable communities to effectively weigh and integrate human health, socioeconomic, envi...

  16. Integrated fluorescence analysis system

    DOEpatents

    Buican, Tudor N.; Yoshida, Thomas M.

    1992-01-01

    An integrated fluorescence analysis system enables a component part of a sample to be virtually sorted within a sample volume after a spectrum of the component part has been identified from a fluorescence spectrum of the entire sample in a flow cytometer. Birefringent optics enables the entire spectrum to be resolved into a set of numbers representing the intensity of spectral components of the spectrum. One or more spectral components are selected to program a scanning laser microscope, preferably a confocal microscope, whereby the spectrum from individual pixels or voxels in the sample can be compared. Individual pixels or voxels containing the selected spectral components are identified and an image may be formed to show the morphology of the sample with respect to only those components having the selected spectral components. There is no need for any physical sorting of the sample components to obtain the morphological information.

  17. A balanced calibration of water quantity and quality by multi-objective optimization for integrated water system model

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Shao, Quanxi; Taylor, John A.

    2016-07-01

    Due to the high interactions among multiple processes in integrated water system models, it is extremely difficult, if not impossible, to achieve reasonable solutions for all objectives by using the traditional step-by-step calibration. In many cases, water quantity and quality are equally important but their objectives in model calibration usually conflict with each other, so it is not a good practice to calibrate one after another. In this study, a combined auto-calibration multi-process approach was proposed for the integrated water system model (HEQM) using a multi-objective evolutionary algorithm. This ensures that the model performance among inseparable or interactive processes could be balanced by users based on the Pareto front. The Huai River Basin, a highly regulated and heavily polluted region of China, was selected as a case study. The hydrological and water quality parameters of HEQM were calibrated simultaneously based on the observed series of runoff and ammonia-nitrogen (NH4-N) concentrations. The results were compared with those of the step-by-step calibration to demonstrate the rationality and feasibility of the multi-objective approach. The results showed that a Pareto optimal front was formed and could be divided into three clear sections based on the elastic coefficient of model performance between NH4-N and runoff, i.e., the dominated section for NH4-N improvement, the trade-off section between NH4-N and runoff, and the dominated section for runoff improvement. The trade-off of model performance between runoff and NH4-N concentration was clear. The results of the step-by-step calibration fell in the dominated section for NH4-N improvement, where just the optimum of the runoff simulation was achieved with a large potential to improve NH4-N simulation without a significant degradation of the runoff simulation. The overall optimal solutions for all the simulations appeared in the trade-off section. Therefore, the Pareto front provided different

  18. Advanced Integrated Traction System

    SciTech Connect

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  19. An integrated assessment of the catchment-scale energy and water balance using a terrestrial systems modeling platform and observations

    NASA Astrophysics Data System (ADS)

    Sulis, Mauro; Shrestha, Prabhakar; Keune, Jessica; Steinke, Sandra; Diederich, Malte; Schween, Jan; Crewell, Susanne; Simmer, Clemens; Kollet, Stefan

    2016-04-01

    Fully coupled hydrological models close the water and energy cycles while accounting for the dynamic feedbacks between the subsurface, land surface, and atmosphere compartments of terrestrial systems. Diagnoses of their predictive capabilities require spatio-temporal coherent data sets including states and fluxes across the soil-vegetation-atmosphere continuum. This study presents an extensive comparison between numerical simulations carried out using a novel integrated hydrological modeling platform (TerrSysMP) and a suite of cross-compartmental observations obtained from intensive field campaigns and continuous monitoring over the Rur catchment in western Germany during the HOPE experiment (April-May 2013). The observations encompass amongst others rainfall estimates from several X-band radars, atmospheric integrated water vapor estimates from microwave radiometers, radiation and turbulent fluxes at the land surface, and soil moisture retrieval from cosmic-ray probes. A detailed analysis of the radiation components indicates that TerrSysMP systematically overestimates incoming shortwave due to a cloudiness effect, but underestimates incoming longwave due to a lower simulated atmospheric water vapor content. Screening of observed and simulated data for clear sky conditions also reveals mismatches between surface albedo at certain locations within the catchment. Moreover, a preliminary cross-comparison of precipitation and soil moisture suggests that overall the model is able to reproduce catchment dynamics reasonably well while pronounced discrepancies between model and observations were observed in the mountainous region due to the lack of detailed soil parameterization (i.e., soil organic content) and the underestimation of some rainfall events.

  20. Symmetry and quaternionic integrable systems

    NASA Astrophysics Data System (ADS)

    Gaeta, G.; Rodríguez, M. A.

    2015-01-01

    Given a hyperkahler manifold M, the hyperkahler structure defines a triple of symplectic structures on M; with these, a triple of Hamiltonians defines a so-called hyperHamiltonian dynamical system on M. These systems are integrable when can be mapped to a system of quaternionic oscillators. We discuss the symmetry of integrable hyperHamiltonian systems, i.e. quaternionic oscillators, and conversely how these symmetries characterize, at least in the Euclidean case, integrable hyperHamiltonian systems.

  1. Integrative Analysis of Metabolomics and Transcriptomics Data: A Unified Model Framework to Identify Underlying System Pathways

    PubMed Central

    Brink-Jensen, Kasper; Bak, Søren; Jørgensen, Kirsten; Ekstrøm, Claus Thorn

    2013-01-01

    The abundance of high-dimensional measurements in the form of gene expression and mass spectroscopy calls for models to elucidate the underlying biological system. For widely studied organisms like yeast, it is possible to incorporate prior knowledge from a variety of databases, an approach used in several recent studies. However if such information is not available for a particular organism these methods fall short. In this paper we propose a statistical method that is applicable to a dataset consisting of Liquid Chromatography-Mass Spectroscopy (LC-MS) and gene expression (DNA microarray) measurements from the same samples, to identify genes controlling the production of metabolites. Due to the high dimensionality of both LC-MS and DNA microarray data, dimension reduction and variable selection are key elements of the analysis. Our proposed approach starts by identifying the basis functions (“building blocks”) that constitute the output from a mass spectrometry experiment. Subsequently, the weights of these basis functions are related to the observations from the corresponding gene expression data in order to identify which genes are associated with specific patterns seen in the metabolite data. The modeling framework is extremely flexible as well as computationally fast and can accommodate treatment effects and other variables related to the experimental design. We demonstrate that within the proposed framework, genes regulating the production of specific metabolites can be identified correctly unless the variation in the noise is more than twice that of the signal. PMID:24086255

  2. Integration of geographic information systems and logistic multiple regression for aquatic macrophyte modeling

    SciTech Connect

    Narumalani, S.; Jensen, J.R.; Althausen, J.D.; Burkhalter, S.; Mackey, H.E. Jr.

    1994-06-01

    Since aquatic macrophytes have an important influence on the physical and chemical processes of an ecosystem while simultaneously affecting human activity, it is imperative that they be inventoried and managed wisely. However, mapping wetlands can be a major challenge because they are found in diverse geographic areas ranging from small tributary streams, to shrub or scrub and marsh communities, to open water lacustrian environments. In addition, the type and spatial distribution of wetlands can change dramatically from season to season, especially when nonpersistent species are present. This research, focuses on developing a model for predicting the future growth and distribution of aquatic macrophytes. This model will use a geographic information system (GIS) to analyze some of the biophysical variables that affect aquatic macrophyte growth and distribution. The data will provide scientists information on the future spatial growth and distribution of aquatic macrophytes. This study focuses on the Savannah River Site Par Pond (1,000 ha) and L Lake (400 ha) these are two cooling ponds that have received thermal effluent from nuclear reactor operations. Par Pond was constructed in 1958, and natural invasion of wetland has occurred over its 35-year history, with much of the shoreline having developed extensive beds of persistent and non-persistent aquatic macrophytes.

  3. Power Systems Integration Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Power Systems Integration Laboratory at the Energy Systems Integration Facility. At NREL's Power Systems Integration Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on developing and testing large-scale distributed energy systems for grid-connected, stand-alone, and microgrid applications. The laboratory can accommodate large power system components such as inverters for photovoltaic (PV) and wind systems, diesel and natural gas generators, battery packs, microgrid interconnection switchgear, and vehicles. Closely coupled with the research electrical distribution bus at the ESIF, the Power Systems Integration Laboratory will offer power testing capability of megawatt-scale DC and AC power systems, as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Thermal heating and cooling loops and fuel also allow testing of combined heating/cooling and power systems (CHP).

  4. Earthworms dilong: ancient, inexpensive, noncontroversial models may help clarify approaches to integrated medicine emphasizing neuroimmune systems.

    PubMed

    Cooper, Edwin L; Balamurugan, Mariappan; Huang, Chih-Yang; Tsao, Clara R; Heredia, Jesus; Tommaseo-Ponzetta, Mila; Paoletti, Maurizio G

    2012-01-01

    Earthworms have provided ancient cultures with food and sources of medicinal cures. Ayurveda, traditional Chinese medicine (TCM), and practices in Japan, Vietnam, and Korea have focused first on earthworms as sources of food. Gradually fostering an approach to potential beneficial healing properties, there are renewed efforts through bioprospecting and evidence-based research to understand by means of rigorous investigations the mechanisms of action whether earthworms are used as food and/or as sources of potential medicinal products. Focusing on earthworms grew by serendipity from an extensive analysis of the earthworm's innate immune system. Their immune systems are replete with leukocytes and humoral products that exert credible health benefits. Their emerging functions with respect to evolution of innate immunity have long been superseded by their well-known ecological role in soil conservation. Earthworms as inexpensive, noncontroversial animal models (without ethical concerns) are not vectors of disease do not harbor parasites that threaten humans nor are they annoying pests. By recognizing their numerous ecological, environmental, and biomedical roles, substantiated by inexpensive and more comprehensive investigations, we will become more aware of their undiscovered beneficial properties. PMID:22888362

  5. Earthworms Dilong: Ancient, Inexpensive, Noncontroversial Models May Help Clarify Approaches to Integrated Medicine Emphasizing Neuroimmune Systems

    PubMed Central

    Cooper, Edwin L.; Balamurugan, Mariappan; Huang, Chih-Yang; Tsao, Clara R.; Heredia, Jesus; Tommaseo-Ponzetta, Mila; Paoletti, Maurizio G.

    2012-01-01

    Earthworms have provided ancient cultures with food and sources of medicinal cures. Ayurveda, traditional Chinese medicine (TCM), and practices in Japan, Vietnam, and Korea have focused first on earthworms as sources of food. Gradually fostering an approach to potential beneficial healing properties, there are renewed efforts through bioprospecting and evidence-based research to understand by means of rigorous investigations the mechanisms of action whether earthworms are used as food and/or as sources of potential medicinal products. Focusing on earthworms grew by serendipity from an extensive analysis of the earthworm's innate immune system. Their immune systems are replete with leukocytes and humoral products that exert credible health benefits. Their emerging functions with respect to evolution of innate immunity have long been superseded by their well-known ecological role in soil conservation. Earthworms as inexpensive, noncontroversial animal models (without ethical concerns) are not vectors of disease do not harbor parasites that threaten humans nor are they annoying pests. By recognizing their numerous ecological, environmental, and biomedical roles, substantiated by inexpensive and more comprehensive investigations, we will become more aware of their undiscovered beneficial properties. PMID:22888362

  6. An updated model for nitrate uptake modelling in plants. II. Assessment of active root involvement in nitrate uptake based on integrated root system age: measured versus modelled outputs

    PubMed Central

    Malagoli, Philippe; Le Deunff, Erwan

    2014-01-01

    Background and Aims An updated version of a mechanistic structural–functional model was developed to predict nitrogen (N) uptake throughout the growth cycle by a crop of winter oilseed rape, Brassica napus, grown under field conditions. Methods The functional component of the model derives from a revisited conceptual framework that combines the thermodynamic Flow–Force interpretation of nitrate uptake isotherms and environmental and in planta effects on nitrate influx. Estimation of the root biomass (structural component) is based upon a combination of root mapping along the soil depth profile in the field and a relationship between the specific root length and external nitrate concentration. The root biomass contributing actively to N uptake was determined by introduction of an integrated root system age that allows assignment of a root absorption capacity at a specific age of the root. Key Results Simulations were well matched to measured data of N taken up under field conditions for three levels of N fertilization. The model outputs indicated that the two topsoil layers (0–30 and 30–60 cm) contained 75–88 % of the total root length and biomass, and accounted for 90–95 % of N taken up at harvest. Conclusions This conceptual framework provides a model of nitrate uptake that is able to respond to external nitrate fluctuations at both functional and structural levels. PMID:24709791

  7. An updated model for nitrate uptake modelling in plants. II. Assessment of active root involvement in nitrate uptake based on integrated root system age: measured versus modelled outputs.

    PubMed

    Malagoli, Philippe; Le Deunff, Erwan

    2014-05-01

    Background and Aims An updated version of a mechanistic structural-functional model was developed to predict nitrogen (N) uptake throughout the growth cycle by a crop of winter oilseed rape, Brassica napus, grown under field conditions. Methods The functional component of the model derives from a revisited conceptual framework that combines the thermodynamic Flow-Force interpretation of nitrate uptake isotherms and environmental and in planta effects on nitrate influx. Estimation of the root biomass (structural component) is based upon a combination of root mapping along the soil depth profile in the field and a relationship between the specific root length and external nitrate concentration. The root biomass contributing actively to N uptake was determined by introduction of an integrated root system age that allows assignment of a root absorption capacity at a specific age of the root. Key Results Simulations were well matched to measured data of N taken up under field conditions for three levels of N fertilization. The model outputs indicated that the two topsoil layers (0-30 and 30-60 cm) contained 75-88 % of the total root length and biomass, and accounted for 90-95 % of N taken up at harvest. Conclusions This conceptual framework provides a model of nitrate uptake that is able to respond to external nitrate fluctuations at both functional and structural levels. PMID:24709791

  8. An Integrated Modeling Framework Forecasting Ecosystem Exposure-- A Systems Approach to the Cumulative Impacts of Multiple Stressors

    NASA Astrophysics Data System (ADS)

    Johnston, J. M.

    2013-12-01

    Freshwater habitats provide fishable, swimmable and drinkable resources and are a nexus of geophysical and biological processes. These processes in turn influence the persistence and sustainability of populations, communities and ecosystems. Climate change and landuse change encompass numerous stressors of potential exposure, including the introduction of toxic contaminants, invasive species, and disease in addition to physical drivers such as temperature and hydrologic regime. A systems approach that includes the scientific and technologic basis of assessing the health of ecosystems is needed to effectively protect human health and the environment. The Integrated Environmental Modeling Framework 'iemWatersheds' has been developed as a consistent and coherent means of forecasting the cumulative impact of co-occurring stressors. The Framework consists of three facilitating technologies: Data for Environmental Modeling (D4EM) that automates the collection and standardization of input data; the Framework for Risk Assessment of Multimedia Environmental Systems (FRAMES) that manages the flow of information between linked models; and the Supercomputer for Model Uncertainty and Sensitivity Evaluation (SuperMUSE) that provides post-processing and analysis of model outputs, including uncertainty and sensitivity analysis. Five models are linked within the Framework to provide multimedia simulation capabilities for hydrology and water quality processes: the Soil Water Assessment Tool (SWAT) predicts surface water and sediment runoff and associated contaminants; the Watershed Mercury Model (WMM) predicts mercury runoff and loading to streams; the Water quality Analysis and Simulation Program (WASP) predicts water quality within the stream channel; the Habitat Suitability Index (HSI) model scores physicochemical habitat quality for individual fish species; and the Bioaccumulation and Aquatic System Simulator (BASS) predicts fish growth, population dynamics and bioaccumulation

  9. A Three-Tier Model of Integrated Behavior and Learning Supports: Linking System-Wide Implementation to Student Outcomes

    ERIC Educational Resources Information Center

    Harms, Anna Leigh Shon

    2010-01-01

    This study explored elementary schools' implementation of an integrated three-tier model of reading and behavior supports as they participated with a statewide Response to Intervention (RtI) project. The purpose of the study was to examine the process of implementing an integrated three-tier model and to explore the relation between implementation…

  10. Decentralized Multisensory Information Integration in Neural Systems

    PubMed Central

    Zhang, Wen-hao; Chen, Aihua

    2016-01-01

    How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental evidence suggests that it is not a single multisensory brain area, but rather many multisensory brain areas that are simultaneously involved in the integration of information. Why many mutually connected areas should be needed for information integration is puzzling. Here, we investigated theoretically how information integration could be achieved in a distributed fashion within a network of interconnected multisensory areas. Using biologically realistic neural network models, we developed a decentralized information integration system that comprises multiple interconnected integration areas. Studying an example of combining visual and vestibular cues to infer heading direction, we show that such a decentralized system is in good agreement with anatomical evidence and experimental observations. In particular, we show that this decentralized system can integrate information optimally. The decentralized system predicts that optimally integrated information should emerge locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas. SIGNIFICANCE STATEMENT To extract information reliably from ambiguous environments, the brain integrates multiple sensory cues, which provide different aspects of information about the same entity of interest. Here, we propose a decentralized architecture for multisensory integration. In such a system, no processor is in the center of the network topology and information integration is achieved in a distributed manner through reciprocally connected local processors. Through studying the inference of heading direction with visual and vestibular cues, we show that

  11. An Integrated System for Vadose Zone Monitoring, Model Calibration, Performance Assessment, and Prediction (MCAP) in Hanford's T Tank Farm

    NASA Astrophysics Data System (ADS)

    Zhang, Z. F.; Keller, J. M.; Myers, D. A.; Sydnor, H. A.

    2006-12-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste is projected to have entered the groundwater. The largest known leak occurred from the T-106 Tank in 1973. Most of the contaminants from that leak still reside within the vadose zone beneath the T Tank Farm. To minimize movement of this residual contaminant plume, an interim infiltration barrier will be constructed on the ground surface. This barrier is expected to prevent infiltrating water from reaching the plume and moving it further towards groundwater. An integrated system will be used for vadose zone moisture monitoring, model calibration, performance assessment, and prediction (MCAP). The system is to be broadly- designed so that the data can be used for multiple purposes. In addition to monitoring soil water movement both under the proposed barrier and adjacent to it, the collected data can also be used to characterize vadose zone hydraulic properties and to calibrate a numerical model. The calibrated model can then be used to assess the performance of the infiltration barrier and to predict water flow and contaminant transport under conditions with and/or without a barrier. A MCAP system is being applied to the Hanford's T Tank Farm. Soil water content is to be monitored using both neutron and capacitance probes; soil water pressure and soil temperature will be monitored with heat dissipation sensors; and water flux will be measured using water fluxmeters. These instruments will be installed in direct push probe holes advanced by a hydraulic hammer unit. Excluding neutron probe measurements, all data collection and data transmittal will be sent to an automated central server. This design allows measurements to be taken continually and reduces the need for personnel to enter the farm thereby increasing worker safety. It is expected that

  12. Distributed and integrated response of a geographic information system-based hydrologic model in the eastern Palouse region, Idaho

    NASA Astrophysics Data System (ADS)

    Brooks, Erin S.; Boll, Jan; McDaniel, Paul A.

    2007-01-01

    Verification of distributed hydrologic models is rare owing to the lack of spatially detailed field measurements and a common mismatch between the scale at which soil hydraulic properties are measured and the scale of a single modelling unit. In this study, two of the most commonly calibrated parameters, i.e. soil depth and the vertical distribution of lateral saturated hydraulic conductivity Ks, were eliminated by a spatially detailed soil characterization and results of a hillslope-scale field experiment. The soil moisture routing (SMR) model, a geographic information system-based hydrologic model, was modified to represent the dominant hydrologic processes for the Palouse region of northern Idaho. Modifications included Ks as a double exponential function of depth in a single soil layer, a snow accumulation and melt algorithm, and a simple relationship between storage and perched water depth (PWD) using the drainable porosity. The model was applied to a 2 ha catchment without calibration to measured data. Distributed responses were compared with observed PWD over a 3-year period on a 10 m × 15 m grid. Integrated responses were compared with observed surface runoff at the catchment outlet. The modified SMR model simulated the PWD fluctuations remarkably well, especially considering the shallow soils in this catchment: a 0.20 m error in PWD is equivalent to only a 1.6% error in predicted soil moisture content. Simulations also captured PWD fluctuations during a year with high spatial variability of snow accumulation and snowmelt rates at upslope, mid-slope, and toe slope positions with errors as low as 0.09 m, 0.12 m, and 0.12 m respectively. Errors in distributed and integrated model simulations were attributed mostly to misrepresentation of rain events and snowmelt timing problems. In one location in the catchment, simulated PWD was consistently greater than observed PWD, indicating a localized recharge zone, which was not identified by the soil morphological

  13. Integrated Management Tracking System

    Energy Science and Technology Software Center (ESTSC)

    2000-03-30

    The Integrated Management Tracking System (IMTS) is a "Web Enabled" Client/Server Business application that provides for the Identification and Resolution of commitments, situations, events and problems. The IMTS engine is written with Microsoft Active Server Pages (ASP) for IIS4. The system provides for reporting, entering, editing, closing and administration over a Intranet, Extranet or Internet. This Application facilitates: Electronic assignment, acceptance and tracking to completion. Email notifications of assigned action. Establishment of Due Dates. Electronicmore » search and retrieval based on keywords in combination with user specified database parameters (Document Type, Date Ranges, etc.). Coded for Trending and Reporting. User selected reports. Various levels of access for reports and administration. The "Server" side of this application consists of a Microsoft Access database running on a NT Server with Internet Information Server (IIS). As the "Client" side of the application runs on any Web browser, this solution is a cost effective, user friendly application that lends itself to organizations not physically colocated in one location providing information immediately available to everyone at once.« less

  14. Integrated Management Tracking System

    SciTech Connect

    Garrett, Terrance

    2000-03-30

    The Integrated Management Tracking System (IMTS) is a "Web Enabled" Client/Server Business application that provides for the Identification and Resolution of commitments, situations, events and problems. The IMTS engine is written with Microsoft Active Server Pages (ASP) for IIS4. The system provides for reporting, entering, editing, closing and administration over a Intranet, Extranet or Internet. This Application facilitates: Electronic assignment, acceptance and tracking to completion. Email notifications of assigned action. Establishment of Due Dates. Electronic search and retrieval based on keywords in combination with user specified database parameters (Document Type, Date Ranges, etc.). Coded for Trending and Reporting. User selected reports. Various levels of access for reports and administration. The "Server" side of this application consists of a Microsoft Access database running on a NT Server with Internet Information Server (IIS). As the "Client" side of the application runs on any Web browser, this solution is a cost effective, user friendly application that lends itself to organizations not physically colocated in one location providing information immediately available to everyone at once.

  15. Integrated clinical information system.

    PubMed

    Brousseau, G

    1995-01-01

    SIDOCI (Système Informatisé de DOnnées Cliniques Intégrées) is a Canadian joint venture introducing newly-operating paradigms into hospitals. The main goal of SIDOCI is to maintain the quality of care in todayUs tightening economy. SIDOCI is a fully integrated paperless patient-care system which automates and links all information about a patient. Data is available on-line and instantaneously to doctors, nurses, and support staff in the format that best suits their specific requirements. SIDOCI provides a factual and chronological summary of the patient's progress by drawing together clinical information provided by all professionals working with the patient, regardless of their discipline, level of experience, or physical location. It also allows for direct entry of the patient's information at the bedside. Laboratory results, progress notes, patient history and graphs are available instantaneously on screen, eliminating the need for physical file transfers. The system, incorporating a sophisticated clinical information database, an intuitive graphical user interface, and customized screens for each medical discipline, guides the user through standard procedures. Unlike most information systems created for the health care industry, SIDOCI is longitudinal, covering all aspects of the health care process through its link to various vertical systems already in place. A multidisciplinary team has created a clinical dictionary that provides the user with most of the information she would normally use: symptoms, signs, diagnoses, allergies, medications, interventions, etc. This information is structured and displayed in such a manner that health care professionals can document the clinical situation at the touch of a finger. The data is then encoded into the patient's file. Once encoded, the structured data is accessible for research, statistics, education, and quality assurance. This dictionary complies with national and international nomenclatures. It also

  16. The Marsden-Weinstein Reduction Structure of Integrable Dynamical Systems and a Generalized Exactly Solvable Quantum Superradiance Model

    NASA Astrophysics Data System (ADS)

    Bogolubov, N. N.; Prykarpatsky, Y. A.

    2013-03-01

    An approach to describing nonlinear Lax type integrable dynamical systems of modern mathematical and theoretical physics, based on the Marsden-Weinstein reduction method on canonically symplectic manifolds with group symmetry, is proposed. Its natural relationship with the well-known Adler-Kostant-Souriau-Berezin-Kirillov method and the associated R-matrix approach is analyzed. A new generalized exactly solvable spatially one-dimensional quantum superradiance model, describing a charged fermionic medium interacting with external electromagnetic field, is suggested. The Lax type operator spectral problem is presented, the related R-structure is calculated. The Hamilton operator renormalization procedure subject to a physically stable vacuum is described, the quantum excitations and quantum solitons, related with the thermodynamical equilibrity of the model, are discussed.

  17. Integration of intraoperative and model-updated images into an industry-standard neuronavigation system: initial results

    NASA Astrophysics Data System (ADS)

    Schaewe, Timothy J.; Fan, Xiaoyao; Ji, Songbai; Hartov, Alex; Hiemenz Holton, Leslie; Roberts, David W.; Paulsen, Keith D.; Simon, David A.

    2013-03-01

    Dartmouth and Medtronic have established an academic-industrial partnership to develop, validate, and evaluate a multimodality neurosurgical image-guidance platform for brain tumor resection surgery that is capable of updating the spatial relationships between preoperative images and the current surgical field. Previous studies have shown that brain shift compensation through a modeling framework using intraoperative ultrasound and/or visible light stereovision to update preoperative MRI appears to result in improved accuracy in navigation. However, image updates have thus far only been produced retrospective to surgery in large part because of gaps in the software integration and information flow between the co-registration and tracking, image acquisition and processing, and image warping tasks which are required during a case. This paper reports the first demonstration of integration of a deformation-based image updating process for brain shift modeling with an industry-standard image guided surgery platform. Specifically, we have completed the first and most critical data transfer operation to transmit volumetric image data generated by the Dartmouth brain shift modeling process to the Medtronic StealthStation® system. StealthStation® comparison views, which allow the surgeon to verify the correspondence of the received updated image volume relative to the preoperative MRI, are presented, along with other displays of image data such as the intraoperative 3D ultrasound used to update the model. These views and data represent the first time that externally acquired and manipulated image data has been imported into the StealthStation® system through the StealthLink® portal and visualized on the StealthStation® display.

  18. Using X-band Weather Radar Measurements to Monitor the Integrity of Digital Elevation Models for Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Young, Steve; UijtdeHaag, Maarten; Sayre, Jonathon

    2003-01-01

    Synthetic Vision Systems (SVS) provide pilots with displays of stored geo-spatial data representing terrain, obstacles, and cultural features. As comprehensive validation is impractical, these databases typically have no quantifiable level of integrity. Further, updates to the databases may not be provided as changes occur. These issues limit the certification level and constrain the operational context of SVS for civil aviation. Previous work demonstrated the feasibility of using a realtime monitor to bound the integrity of Digital Elevation Models (DEMs) by using radar altimeter measurements during flight. This paper describes an extension of this concept to include X-band Weather Radar (WxR) measurements. This enables the monitor to detect additional classes of DEM errors and to reduce the exposure time associated with integrity threats. Feature extraction techniques are used along with a statistical assessment of similarity measures between the sensed and stored features that are detected. Recent flight-testing in the area around the Juneau, Alaska Airport (JNU) has resulted in a comprehensive set of sensor data that is being used to assess the feasibility of the proposed monitor technology. Initial results of this assessment are presented.

  19. Integrating Multiple Evidence Sources to Predict Adverse Drug Reactions Based on a Systems Pharmacology Model

    PubMed Central

    Cao, D-S; Xiao, N; Li, Y-J; Zeng, W-B; Liang, Y-Z; Lu, A-P; Xu, Q-S; Chen, AF

    2015-01-01

    Identifying potential adverse drug reactions (ADRs) is critically important for drug discovery and public health. Here we developed a multiple evidence fusion (MEF) method for the large-scale prediction of drug ADRs that can handle both approved drugs and novel molecules. MEF is based on the similarity reference by collaborative filtering, and integrates multiple similarity measures from various data types, taking advantage of the complementarity in the data. We used MEF to integrate drug-related and ADR-related data from multiple levels, including the network structural data formed by known drug–ADR relationships for predicting likely unknown ADRs. On cross-validation, it obtains high sensitivity and specificity, substantially outperforming existing methods that utilize single or a few data types. We validated our prediction by their overlap with drug–ADR associations that are known in databases. The proposed computational method could be used for complementary hypothesis generation and rapid analysis of potential drug–ADR interactions. PMID:26451329

  20. Integrated system checkout report

    SciTech Connect

    Not Available

    1991-08-14

    The planning and preparation phase of the Integrated Systems Checkout Program (ISCP) was conducted from October 1989 to July 1991. A copy of the ISCP, DOE-WIPP 90--002, is included in this report as an appendix. The final phase of the Checkout was conducted from July 10, 1991, to July 23, 1991. This phase exercised all the procedures and equipment required to receive, emplace, and retrieve contact handled transuranium (CH TRU) waste filled dry bins. In addition, abnormal events were introduced to simulate various equipment failures, loose surface radioactive contamination events, and personnel injury. This report provides a detailed summary of each days activities during this period. Qualification of personnel to safely conduct the tasks identified in the procedures and the abnormal events were verified by observers familiar with the Bin-Scale CH TRU Waste Test requirements. These observers were members of the staffs of Westinghouse WID Engineering, QA, Training, Health Physics, Safety, and SNL. Observers representing a number of DOE departments, the state of new Mexico, and the Defense Nuclear Facilities Safety Board observed those Checkout activities conducted during the period from July 17, 1991, to July 23, 1991. Observer comments described in this report are those obtained from the staff member observers. 1 figs., 1 tab.

  1. Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: Forward modeling

    NASA Astrophysics Data System (ADS)

    Morcrette, J.-J.; Boucher, O.; Jones, L.; Salmond, D.; Bechtold, P.; Beljaars, A.; Benedetti, A.; Bonet, A.; Kaiser, J. W.; Razinger, M.; Schulz, M.; Serrar, S.; Simmons, A. J.; Sofiev, M.; Suttie, M.; Tompkins, A. M.; Untch, A.

    2009-03-01

    This paper presents the aerosol modeling now part of the ECMWF Integrated Forecasting System (IFS). It includes new prognostic variables for the mass of sea salt, dust, organic matter and black carbon, and sulphate aerosols, interactive with both the dynamics and the physics of the model. It details the various parameterizations used in the IFS to account for the presence of tropospheric aerosols. Details are given of the various formulations and data sets for the sources of the different aerosols and of the parameterizations describing their sinks. Comparisons of monthly mean and daily aerosol quantities like optical depths against satellite and surface observations are presented. The capability of the forecast model to simulate aerosol events is illustrated through comparisons of dust plume events. The ECMWF IFS provides a good description of the horizontal distribution and temporal variability of the main aerosol types. The forecast-only model described here generally gives the total aerosol optical depth within 0.12 of the relevant observations and can therefore provide the background trajectory information for the aerosol assimilation system described in part 2 of this paper.

  2. Integrating pro-environmental behavior with transportation network modeling: User and system level strategies, implementation, and evaluation

    NASA Astrophysics Data System (ADS)

    Aziz, H. M. Abdul

    Personal transport is a leading contributor to fossil fuel consumption and greenhouse (GHG) emissions in the U.S. The U.S. Energy Information Administration (EIA) reports that light-duty vehicles (LDV) are responsible for 61% of all transportation related energy consumption in 2012, which is equivalent to 8.4 million barrels of oil (fossil fuel) per day. The carbon content in fossil fuels is the primary source of GHG emissions that links to the challenge associated with climate change. Evidently, it is high time to develop actionable and innovative strategies to reduce fuel consumption and GHG emissions from the road transportation networks. This dissertation integrates the broader goal of minimizing energy and emissions into the transportation planning process using novel systems modeling approaches. This research aims to find, investigate, and evaluate strategies that minimize carbon-based fuel consumption and emissions for a transportation network. We propose user and system level strategies that can influence travel decisions and can reinforce pro-environmental attitudes of road users. Further, we develop strategies that system operators can implement to optimize traffic operations with emissions minimization goal. To complete the framework we develop an integrated traffic-emissions (EPA-MOVES) simulation framework that can assess the effectiveness of the strategies with computational efficiency and reasonable accuracy. The dissertation begins with exploring the trade-off between emissions and travel time in context of daily travel decisions and its heterogeneous nature. Data are collected from a web-based survey and the trade-off values indicating the average additional travel minutes a person is willing to consider for reducing a lb. of GHG emissions are estimated from random parameter models. Results indicate that different trade-off values for male and female groups. Further, participants from high-income households are found to have higher trade-off values

  3. The integrated urban land model

    NASA Astrophysics Data System (ADS)

    Meng, Chunlei

    2015-06-01

    An integrated urban land model (IUM) was developed based on the Common Land Model (CoLM). A whole layer soil evaporation parameterization scheme was developed to improve soil evaporation simulation especially in arid areas. For the urban underlying surface, the energy and water balance model were modified; urban land parameters such as the anthropogenic heat (AH), albedo, surface roughness length, imperious surface evaporation etc. were also reparameterized. IUM was validated and compared with CoLM and the urbanized high-resolution land data assimilation system (u-HRLDAS) in single and regional scale. The validation results indicate that IUM can improve the simulation of land surface parameters and land-atmosphere interaction fluxes.

  4. Space Station Information System integrated communications concept

    NASA Technical Reports Server (NTRS)

    Muratore, J.; Bigham, J.; Whitelaw, V.; Marker, W.

    1987-01-01

    This paper presents a model for integrated communications within the Space Station Information System (SSIS). The SSIS is generally defined as the integrated set of space and ground information systems and networks which will provide required data services to the Space Station flight crew, ground operations personnel, and customer communities. This model is based on the International Standards Organization (ISO) layered model for Open Systems Interconnection (OSI). The requirements used to develop the model are presented, and the various elements of the model described.

  5. Integrated DEA models and grey system theory to evaluate past-to-future performance: a case of Indian electricity industry.

    PubMed

    Wang, Chia-Nan; Nguyen, Nhu-Ty; Tran, Thanh-Tuyen

    2015-01-01

    The growth of economy and population together with the higher demand in energy has created many concerns for the Indian electricity industry whose capacity is at 211 gigawatts mostly in coal-fired plants. Due to insufficient fuel supply, India suffers from a shortage of electricity generation, leading to rolling blackouts; thus, performance evaluation and ranking the industry turn into significant issues. By this study, we expect to evaluate the rankings of these companies under control of the Ministry of Power. Also, this research would like to test if there are any significant differences between the two DEA models: Malmquist nonradial and Malmquist radial. Then, one advance model of MPI would be chosen to see these companies' performance in recent years and next few years by using forecasting results of Grey system theory. Totally, the realistic data 14 are considered to be in this evaluation after the strict selection from the whole industry. The results found that all companies have not shown many abrupt changes on their scores, and it is always not consistently good or consistently standing out, which demonstrated the high applicable usability of the integrated methods. This integrated numerical research gives a better "past-present-future" insights into performance evaluation in Indian electricity industry. PMID:25821854

  6. Updates in the Global/Regional Integrated Model system (GRIMs)-Double Fourier Series (DFS) Dynamical Core

    NASA Astrophysics Data System (ADS)

    Koo, M. S.; Park, H.; Park, S. H.; Hong, S. Y.

    2014-12-01

    The Global/Regional Integrated Model system (GRIMs)-double Fourier series (DFS) spectral dynamical core has been developed to overcome the limitation of traditional spectral model using spherical harmonics in terms of computational cost at very high resolution. Recently, the GRIMs-DFS dynamical core was updated in two respects: (1) better scalability on high-performance computing platform; and (2) reduction of numerical time-stepping error. To improve the parallel efficiency, the archived wave domain was designed not to be sliced in the meridional direction, but to be decomposed in the horizontal and vertical directions. Although the computational cost slightly increased due to the requirement of temporary work array, the revised DFS dynamical core yielded higher scalability in terms of the wall-clock-time than the original one. In addition, its efficiency gain became greater with the increase of horizontal resolution when the number of processors is increased. The Robert-Asselin-Williams (RAW) time filter has been proposed as a simple improvement to the widely used Robert-Asselin filter, in order to reduce time-stepping errors in semi-implicit leapfrog integration. This new approach was implemented into the GRIMs-DFS dynamical core and its impact was quantitatively evaluated on medium-range forecast and seasonal ensemble prediction frameworks. Preliminary results showed that the RAW time-filter properly reduced spurious light rainfalls that might be produced from unphysical computational mode generated by leap-frog time stepping. Further details will be presented in the conference.

  7. Integrated DEA Models and Grey System Theory to Evaluate Past-to-Future Performance: A Case of Indian Electricity Industry

    PubMed Central

    Wang, Chia-Nan; Tran, Thanh-Tuyen

    2015-01-01

    The growth of economy and population together with the higher demand in energy has created many concerns for the Indian electricity industry whose capacity is at 211 gigawatts mostly in coal-fired plants. Due to insufficient fuel supply, India suffers from a shortage of electricity generation, leading to rolling blackouts; thus, performance evaluation and ranking the industry turn into significant issues. By this study, we expect to evaluate the rankings of these companies under control of the Ministry of Power. Also, this research would like to test if there are any significant differences between the two DEA models: Malmquist nonradial and Malmquist radial. Then, one advance model of MPI would be chosen to see these companies' performance in recent years and next few years by using forecasting results of Grey system theory. Totally, the realistic data 14 are considered to be in this evaluation after the strict selection from the whole industry. The results found that all companies have not shown many abrupt changes on their scores, and it is always not consistently good or consistently standing out, which demonstrated the high applicable usability of the integrated methods. This integrated numerical research gives a better “past-present-future” insights into performance evaluation in Indian electricity industry. PMID:25821854

  8. Simulating forage crop production in a northern climate with the Integrated Farm System Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole-farm simulation models are useful tools for evaluating the effect of management practices and climate variability on the agro-environmental and economic performance of farms. A few process-based farm-scale models have been developed, but none have been evaluated in a northern region with a sho...

  9. The WRF-CMAQ Integrated On-Line Modeling System: Development, Testing, and Initial Applications

    EPA Science Inventory

    Traditionally, atmospheric chemistry-transport and meteorology models have been applied in an off-line paradigm, in which archived output on the dynamical state of the atmosphere simulated using the meteorology model is used to drive transport and chemistry calculations of atmos...

  10. Assessing the Impact of Climate Change on Columbia River Basin Agriculture through Integrated Crop Systems, Hydrologic, and Water Management Modeling

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K.; Adam, J. C.; Barber, M. E.; Yorgey, G.; Stockle, C.; Nelson, R.; Brady, M.; Dinesh, S.; Malek, K.; Kruger, C.; Yoder, J.; Marsh, T.

    2011-12-01

    The Columbia River Basin (CRB) in the Pacific Northwest covers parts of US and Canada with a total drainage area of about 670,000 square kilometers. The water resources of the CRB are managed to satisfy multiple objectives including agricultural withdrawal, which is the largest consumptive user of Columbia River water with 14,000 square kilometers of irrigated area in the CRB. Agriculture is an important component of the economy in the region, with an annual value over $5 billion in Washington State alone. The availability of surface water for irrigation in the basin is expected to be negatively impacted by climate change. Previous climate change studies in the CRB region suggest a likelihood of increasing temperatures and a shift in precipitation patterns, with precipitation higher in the winter and lower in the summer. Warming further exacerbates summer water availability in many CRB tributaries as they shift from snowmelt-dominant towards rain-dominant hydrologic regimes. The goal of this research is to study the impacts of climate change on CRB water availability and agricultural production in the expectation that curtailment will occur more frequently in an altered climate. Towards this goal it is essential that we understand the interactions between crop-growth dynamics, climate dynamics, the hydrologic cycle, water management, and agricultural economy. To study these interactions at the regional scale, we use the newly developed crop-hydrology model VIC-CropSyst, which integrates a crop growth model CropSyst with the hydrologic model, Variable Infiltration Capacity (VIC). Simulation of future climate by VIC-CropSyst captures the socio-economic aspects of this system through economic analysis of the impacts of climate change on crop patterns. This integrated framework (submitted as a separate paper) is linked to a reservoir operations simulations model, Colsim. ColSim is modified to explicitly account for agricultural withdrawals. Washington State water

  11. Development of an Operation Support System for the Blast Furnace in the Ironmaking Process: Large-scale Database-based Online Modeling and Integrated Simulators

    NASA Astrophysics Data System (ADS)

    Ogai, Harutoshi; Ogawa, Masatoshi; Uchida, Kenko; Matsuzaki, Shinroku; Ito, Masahiro

    In the pig-ironmaking process, factors that cause operation malfunctions have increased with both the enlargement of the blast furnace and the increasing use of low quality ore. Therefore, an operation support system that predicts blast furnace performance is demanded. This paper reports the development of a blast furnace operation support system with an integrated simulator and “Large-scale database-based Online Modeling (LOM).” To develop the integrated simulator, a sophisticated burden distribution model is integrated with a two-dimensional total internal phenomenon model for the stationary state by using Java technology. Moreover, an integrated simulator for the partial non-stationary state is developed by modifying the two-dimensional total internal phenomenon model for the stationary state. To incorporate the LOM system into the operation support system, a cross-platform LOM system with general versatility is rebuilt by an existing LOM system. The operation support system is realized by the simulator of the physical modeling method and the LOM of the local modeling method. As a result, the operation support system predicts a dynamic molten pig-iron temperature in the blast furnace. The operation support system is expected to provide staff with useful information.

  12. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, part II: multilayer biofilm diffusional model.

    PubMed

    Sen, Dipankar; Randall, Clifford W

    2008-07-01

    Research was undertaken to develop a diffusional model of the biofilm that can be applied in lieu of a semi-empirical model to upgrade an activated sludge system to an integrated fixed-film activated sludge (IFAS) or moving-bed biofilm reactor (MBBR) system. The model has been developed to operate with up to 12 cells (reactors) in series, with biofilm media incorporated to one or more of the zone cells, except the anaerobic zone cells. The values of the kinetic parameters for the model were measured using pilot-scale activated sludge, IFAS, and MBBR systems. The biofilm is divided into 12 layers and has a stagnant liquid layer. Diffusion and substrate utilization are calculated for each layer. The equations are solved simultaneously using a finite difference technique. The biofilm flux model is then linked to the activated sludge model. Advanced features include the ability to compute the biofilm thickness and the effect of biofilm thickness on performance. The biofilm diffusional model is also used to provide information and create a table of biofilm yields at different substrate concentrations that can be used in the semi-empirical model. PMID:18710146

  13. WRATS Integrated Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Piatak, David J.

    2008-01-01

    The Wing and Rotor Aeroelastic Test System (WRATS) data acquisition system (DAS) is a 64-channel data acquisition display and analysis system specifically designed for use with the WRATS 1/5-scale V-22 tiltrotor model of the Bell Osprey. It is the primary data acquisition system for experimental aeroelastic testing of the WRATS model for the purpose of characterizing the aeromechanical and aeroelastic stability of prototype tiltrotor configurations. The WRATS DAS was also used during aeroelastic testing of Bell Helicopter Textron s Quad-Tiltrotor (QTR) design concept, a test which received international attention. The LabVIEW-based design is portable and capable of powering and conditioning over 64 channels of dynamic data at sampling rates up to 1,000 Hz. The system includes a 60-second circular data archive, an integrated model swashplate excitation system, a moving block damping application for calculation of whirl flutter mode subcritical damping, a loads and safety monitor, a pilot-control console display, data analysis capabilities, and instrumentation calibration functions. Three networked computers running custom-designed LabVIEW software acquire data through National Instruments data acquisition hardware. The aeroelastic model (see figure) was tested with the DAS at two facilities at NASA Langley, the Transonic Dynamics Tunnel (TDT) and the Rotorcraft Hover Test Facility (RHTF). Because of the need for seamless transition between testing at these facilities, DAS is portable. The software is capable of harmonic analysis of periodic time history data, Fast Fourier Transform calculations, power spectral density calculations, and on-line calibration of test instrumentation. DAS has a circular buffer archive to ensure critical data is not lost in event of model failure/incident, as well as a sample-and-hold capability for phase-correct time history data.

  14. Noncommutative integrable systems and quasideterminants

    SciTech Connect

    Hamanaka, Masashi

    2010-03-08

    We discuss extension of soliton theories and integrable systems into noncommutative spaces. In the framework of noncommutative integrable hierarchy, we give infinite conserved quantities and exact soliton solutions for many noncommutative integrable equations, which are represented in terms of Strachan's products and quasi-determinants, respectively. We also present a relation to an noncommutative anti-self-dual Yang-Mills equation, and make comments on how 'integrability' should be considered in noncommutative spaces.

  15. Business Process Design Method Based on Business Event Model for Enterprise Information System Integration

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takashi; Komoda, Norihisa

    The traditional business process design methods, in which the usecase is the most typical, have no useful framework to design the activity sequence with. Therefore, the design efficiency and quality vary widely according to the designer’s experience and skill. In this paper, to solve this problem, we propose the business events and their state transition model (a basic business event model) based on the language/action perspective, which is the result in the cognitive science domain. In the business process design, using this model, we decide event occurrence conditions so that every event synchronizes with each other. We also propose the design pattern to decide the event occurrence condition (a business event improvement strategy). Lastly, we apply the business process design method based on the business event model and the business event improvement strategy to the credit card issue process and estimate its effect.

  16. Integrated Grid Modeling System (IGMS) for Combined Transmission and Distribution Simulation

    SciTech Connect

    Palmintier, Bryan

    2015-07-28

    This presentation discusses the next-generation analysis framework for full-scale transmission and distribution modeling that supports millions of highly distributed energy resources, and also discusses future directions for transmission and distribution.

  17. Flexible Power System Operations Simulation Model for Assessing Wind Integration: Preprint

    SciTech Connect

    Ela, E.; Milligan, M.; O'Malley, M.

    2011-03-01

    In this paper a model was developed to mimic operator behavior using a combination of security-constrained unit commitment, security-constrained economic dispatch, and automatic generation control programs.

  18. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    USGS Publications Warehouse

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  19. Information Security and Integrity Systems

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Viewgraphs from the Information Security and Integrity Systems seminar held at the University of Houston-Clear Lake on May 15-16, 1990 are presented. A tutorial on computer security is presented. The goals of this tutorial are the following: to review security requirements imposed by government and by common sense; to examine risk analysis methods to help keep sight of forest while in trees; to discuss the current hot topic of viruses (which will stay hot); to examine network security, now and in the next year to 30 years; to give a brief overview of encryption; to review protection methods in operating systems; to review database security problems; to review the Trusted Computer System Evaluation Criteria (Orange Book); to comment on formal verification methods; to consider new approaches (like intrusion detection and biometrics); to review the old, low tech, and still good solutions; and to give pointers to the literature and to where to get help. Other topics covered include security in software applications and development; risk management; trust: formal methods and associated techniques; secure distributed operating system and verification; trusted Ada; a conceptual model for supporting a B3+ dynamic multilevel security and integrity in the Ada runtime environment; and information intelligence sciences.

  20. Integrated System Health Management Development Toolkit

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge; Smith, Harvey; Morris, Jon

    2009-01-01

    This software toolkit is designed to model complex systems for the implementation of embedded Integrated System Health Management (ISHM) capability, which focuses on determining the condition (health) of every element in a complex system (detect anomalies, diagnose causes, and predict future anomalies), and to provide data, information, and knowledge (DIaK) to control systems for safe and effective operation.

  1. Jamaica Integrated National Energy Planning Model

    SciTech Connect

    Macal, C.M.

    1987-01-01

    The Jamaica Integrated National Energy Planning (JINEP) Model was developed by Argonne National Laboratory under contract to the Jamaica Ministry of Mining, Energy, and Tourism. JINEP is a comprehensive model of the energy-producing sector and the major energy consuming sectors of Jamaica. The JINEP Model is an application of a modelling system, the Integrated Demand and Energy Supply (IDES) Model, that was previously developed at Argonne for the purpose of analyzing energy systems of developing countries. IDES is based on several years of experience in analyzing energy planning issues characteristic of developing countries.

  2. Duct propagation modelling for the integrated-refractive-effects prediction system (IREPS)

    NASA Astrophysics Data System (ADS)

    Baumgartner, G. B., Jr.; Hitney, H. V.; Pappert, R. A.

    1983-12-01

    IREPS and its products and models are reviewed and a recent propagation modelling effort to improve IREPS signal-prediction capabilities in tropospheric ducting environments is described. The feasibility of using asymptotic forms of plane wave reflection coefficients for waveguide calculations in order to expedite beyond-the-horizon field calculations is examined. Asymptotic formulas are given and compared with exact evaluations, and mode-search methods and field-strength formulas are summarized. Waveguide field calculations obtained using a 'mixed asymptotic' method are compared with the complete full-wave calculations.

  3. Integrated numerical modeling of a landslide early warning system in a context of adaptation to future climatic pressures

    NASA Astrophysics Data System (ADS)

    Khabarov, Nikolay; Huggel, Christian; Obersteiner, Michael; Ramírez, Juan Manuel

    2010-05-01

    Mountain regions are typically characterized by rugged terrain which is susceptible to different types of landslides during high-intensity precipitation. Landslides account for billions of dollars of damage and many casualties, and are expected to increase in frequency in the future due to a projected increase of precipitation intensity. Early warning systems (EWS) are thought to be a primary tool for related disaster risk reduction and climate change adaptation to extreme climatic events and hydro-meteorological hazards, including landslides. An EWS for hazards such as landslides consist of different components, including environmental monitoring instruments (e.g. rainfall or flow sensors), physical or empirical process models to support decision-making (warnings, evacuation), data and voice communication, organization and logistics-related procedures, and population response. Considering this broad range, EWS are highly complex systems, and it is therefore difficult to understand the effect of the different components and changing conditions on the overall performance, ultimately being expressed as human lives saved or structural damage reduced. In this contribution we present a further development of our approach to assess a landslide EWS in an integral way, both at the system and component level. We utilize a numerical model using 6 hour rainfall data as basic input. A threshold function based on a rainfall-intensity/duration relation was applied as a decision criterion for evacuation. Damage to infrastructure and human lives was defined as a linear function of landslide magnitude, with the magnitude modelled using a power function of landslide frequency. Correct evacuation was assessed with a ‘true' reference rainfall dataset versus a dataset of artificially reduced quality imitating the observation system component. Performance of the EWS using these rainfall datasets was expressed in monetary terms (i.e. damage related to false and correct evacuation). We

  4. Social Ecological Model Analysis for ICT Integration

    ERIC Educational Resources Information Center

    Zagami, Jason

    2013-01-01

    ICT integration of teacher preparation programmes was undertaken by the Australian Teaching Teachers for the Future (TTF) project in all 39 Australian teacher education institutions and highlighted the need for guidelines to inform systemic ICT integration approaches. A Social Ecological Model (SEM) was used to positively inform integration…

  5. Towards realistic representation of hydrological processes in integrated WRF-urban modeling system

    NASA Astrophysics Data System (ADS)

    Yang, Jiachuan; Wang, Zhi-hua; Chen, Fei; Miao, Shiguang; Tewari, Mukul; Georgescu, Matei

    2014-05-01

    To meet the demand of the ever-increasing urbanized global population, substantial conversion of natural landscapes to urban terrains is expected in the next few decades. The landscape modification will emerge as the source of many adverse effects that challenge the environmental sustainability of cities under changing climatic patterns. To address these adverse effects and to develop corresponding adaptation/mitigation strategies, physically-based single layer urban canopy model (SLUCM) has been developed and implemented into the Weather Research and Forecasting (WRF) platform. However, due to the lack of realistic representation of urban hydrological processes, simulation of urban climatology by current coupled WRF/SLUCM is inevitably inadequate. Aiming at improving the accuracy of simulations, in this study we implement physically-based parameterization of urban hydrological processes into the model, including (1) anthropogenic latent heat, (2) urban irrigation, (3) evaporation over water-holding engineered pavements, (4) urban oasis effect, and (5) green roof. In addition, we use an advanced Monte Carlo approach to quantify the sensitivity of urban hydrological modeling to parameter uncertainties. Evaluated against field observations at four major metropolitan areas, results show that the enhanced model is significantly improved in accurately predicting turbulent fluxes arising from built surfaces, especially the latent heat flux. Case studies show that green roof is capable of reducing urban surface temperature and sensible heat flux effectively, and modifying local and regional hydroclimate. Meanwhile, it is efficient in decreasing energy loading of buildings, not only cooling demand in summers but also heating demand in winters, through the combined evaporative cooling and insulation effect. Effectiveness of green roof is found to be limited by availability of water resources and highly sensitive to surface roughness heights. The enhanced WRF/SLUCM model

  6. Central Fan Integrated Ventilation Systems

    SciTech Connect

    2009-05-12

    This information sheet describes one example of a ventilation system design, a central fan integrated supply (CFIS) system, a mechanical ventilation and pollutant source control to ensure that there is reasonable indoor air quality inside the house.

  7. An Integrated Framework for Modeling Air Carrier Behavior, Policy, and Impacts in the U.S. Air Transportation System

    NASA Technical Reports Server (NTRS)

    Horio, Brant M.; Kumar, Vivek; DeCicco, Anthony H.; Hasan, Shahab; Stouffer, Virginia L.; Smith, Jeremy C.; Guerreiro, Nelson M.

    2015-01-01

    The implementation of the Next Generation Air Transportation System (NextGen) in the United States is an ongoing challenge for policymakers due to the complexity of the air transportation system (ATS) with its broad array of stakeholders and dynamic interdependencies between them. The successful implementation of NextGen has a hard dependency on the active participation of U.S. commercial airlines. To assist policymakers in identifying potential policy designs that facilitate the implementation of NextGen, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework called the Air Transportation System Evolutionary Simulation (ATS-EVOS). This framework integrates large empirical data sets with multiple specialized models to simulate the evolution of the airline response to potential future policies and explore consequential impacts on ATS performance and market dynamics. In the ATS-EVOS configuration presented here, we leverage the Transportation Systems Analysis Model (TSAM), the Airline Evolutionary Simulation (AIRLINE-EVOS), the Airspace Concept Evaluation System (ACES), and the Aviation Environmental Design Tool (AEDT), all of which enable this research to comprehensively represent the complex facets of the ATS and its participants. We validated this baseline configuration of ATS-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments that explored potential implementations of a carbon tax, congestion pricing policy, and the dynamics for equipage of new technology by airlines. These experiments demonstrated ATS-EVOS's capabilities in responding to a wide range of potential NextGen-related policies and utility for decision makers to gain insights for effective policy design.

  8. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, Part I: Semi-empirical model development.

    PubMed

    Sen, Dipankar; Randall, Clifford W

    2008-05-01

    Research was undertaken to develop a model for activated sludge, integrated fixed-film activated sludge (IFAS), and moving-bed biofilm reactor (MBBR) systems. The model can operate with up to 12 cells (reactors) in series, with biofilm media incorporated to one or more cells, except the anaerobic cells. The process configuration can be any combination of anaerobic, anoxic, aerobic, post-anoxic with or without supplemental carbon, and reaeration; it can also include any combination of step feed and recycles, including recycles for mixed liquor, return activated sludge, nitrates, and membrane bioreactors. This paper presents the structure of the model. The model embeds a biofilm model into a multicell activated sludge model. The biofilm flux rates for organics, nutrients, and biomass can be computed by two methods--a semi-empirical model of the biofilm that is relatively simpler, or a diffusional model that is computationally intensive. The values of the kinetic parameters for the model were measured using pilot-scale activated sludge, IFAS, and MBBR systems. For the semiempirical version, a series of Monod equations were developed for chemical oxygen demand, ammonium-nitrogen, and oxidized-nitrogen fluxes to the biofilm. Within the equations, a second Monod expression is used to simulate the effect of changes in biofilm thickness and fraction nitrifiers in the biofilm. The biofilm flux model is then linked to the activated sludge model. The diffusional model and the verification of the models are presented in subsequent papers (Sen and Randall, 2008a, 2008b). The model can be used to quantify the amount of media and surface area required to achieve nitrification, identify the best locations for the media, and optimize the dissolved oxygen levels and nitrate recycle rates. Some of the advanced features include the ability to apply different media types and fill fractions in cells; quantify nitrification, denitrification, and biomass production in the biofilm and

  9. Energy Systems Integration Facility Overview

    ScienceCinema

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-06-10

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  10. Energy Systems Integration Facility Overview

    SciTech Connect

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-02-28

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  11. Designing a Model for Integration of Information and Communication Technologies (ICTs) in the Iranian Agricultural Research System

    ERIC Educational Resources Information Center

    Sharifzadeh, Aboulqasem; Abdollahzadeh, Gholam Hossein; Sharifi, Mahnoosh

    2009-01-01

    Capacity Development is needed in the Iranian Agricultural System. Integrating Information and Communication Technologies (ICTs) in the agricultural research system is an appropriate capacity development mechanism. The appropriate application of ICTs and information such as a National Agricultural Information System requires a systemically…

  12. Integration of Mirror Design with Suspension System using NASA's New Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold,William R., Sr.; Bevan, Ryan M.; Stahl, Philip

    2013-01-01

    Advances in mirror fabrication are making very large space based telescopes possible. In many applications, only monolithic mirrors can meet the performance requirements. The existing and near-term planned heavy launch vehicles place a premium on lowest possible mass, and then available payload shroud sizes limit near term designs to 4 meter class mirrors. Practical 8 meter class and beyond designs could encourage planners to include larger shrouds, if it can be proven that such mirrors can be manufactured. These two factors, lower mass and larger mirrors, present the classic optimization problem. There is a practical upper limit to how large of a mirror can be supported by a purely kinematic mount system handling both operational and launch loads. This paper shows how the suspension system and mirror blank need to be designed simultaneously. We will also explore the concepts of auxiliary support systems which act only during launch and disengage on orbit. We will define required characteristics of these systems and show how they can substantially reduce the mirror mass.

  13. Integration of Mirror Design with Suspension System Using NASA's New Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.; Bevan, Ryan M.; Stahl, H. Philip

    2013-01-01

    Advances in mirror fabrication are making very large space based telescopes possible. In many applications, only monolithic mirrors can meet the performance requirements. The existing and near-term planned heavy launch vehicles place a premium on lowest possible mass, and then available payload shroud sizes limit near term designs to 4 meter class mirrors. Practical 8 meter class and beyond designs could encourage planners to include larger shrouds, if it can be proven that such mirrors can be manufactured. These two factors, lower mass and larger mirrors, present the classic optimization problem. There is a practical upper limit to how large of a mirror can be supported by a purely kinematic mount system handling both operational and launch loads. This paper shows how the suspension system and mirror blank need to be designed simultaneously. We will also explore the concepts of auxiliary support systems which act only during launch and disengage on orbit. We will define required characteristics of these systems and show how they can substantially reduce the mirror mass.

  14. Integrating Models of Collaborative Consultation and Systems Change to Implement Forgiveness-Focused Bullying Interventions

    ERIC Educational Resources Information Center

    Skaar, Nicole R.; Freedman, Suzanne; Carlon, Amy; Watson, Elizabeth

    2016-01-01

    Through collaborative consultation with school staff, school psychologists have increasingly helped schools add bullying prevention and intervention programming to their service delivery systems. As schools search for ways to lessen the impact of bullying on the social-emotional health and academic achievement of students, forgiveness education is…

  15. Integration of mirror design with suspension system using NASA's new mirror modeling software

    NASA Astrophysics Data System (ADS)

    Arnold, William R.; Bevan, Ryan M.; Stahl, H. Philip

    2013-09-01

    Advances in mirror fabrication are making very large space based telescopes possible. In many applications, only monolithic mirrors can meet the performance requirements. The existing and near-term planned heavy launch vehicles place a premium on lowest possible mass, and then available payload shroud sizes limit near term designs to 4 meter class mirrors. Practical 8 meter class and beyond designs could encourage planners to include larger shrouds, if it can be proven that such mirrors can be manufactured. These two factors, lower mass and larger mirrors, present the classic optimization problem. There is a practical upper limit to how large of a mirror can be supported by a purely kinematic mount system handling both operational and launch loads. This paper shows how the suspension system and mirror blank need to be designed simultaneously. We will also explore the concepts of auxiliary support systems which act only during launch and disengage on orbit. We will define required characteristics of these systems and show how they can substantially reduce the mirror mass.

  16. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry

    1991-01-01

    A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.

  17. A generic system for integrated modelling of multi-dimensional spatial data

    NASA Astrophysics Data System (ADS)

    Brown, I. M.

    A generic approach to computer modelling of earth science data is presented, utilising a state-of-the-art scientific visualisation environment (AVS/Express). The greater flexibility of such an approach allows us to handle a wide variety of different data types, including geophysical data as well as other earth science data (eg. stratigraphy, geomorphology, palaeontology) which often contrast by being generally discrete bodies rather than continuous fields. Application of volume visualisation techniques generally demonstrates that the sparse nature of sampling favours using surface-extraction techniques, such as isosurfaces and slicing, rather than direct volume rendering techniques. These techniques have also been applied to temporal 4D data-sets by incorporating time-slices into animation. However, all these procedures require a high performance workstation to be effective. Therefore, to allow greater desktop analysis of complex models, we are using the Virtual Reality Modelling Language (VRML) which provides considerable scope for increased access to 3D/4D data for education and collaboration.

  18. High-resolution modelling of health impacts and related external cost from air pollution over 36 years using the integrated model system EVA

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Hertel, Ole; Im, Ulas; Jensen, Steen S.; Ketzel, Matthias; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Sigsgaard, Torben

    2016-04-01

    A high-resolution assessment of health impacts from air pollution and related external cost has been conducted for Denmark using the integrated EVA model system. The EVA system is based on the impact-pathway methodology, where the site-specific emissions will result, via atmospheric transport and chemistry, in a concentration distribution, which together with detailed population data, is used to estimate the population-level exposure. Using exposure-response functions and economic valuations, the exposure is transformed into impacts on human health and related external costs. In this study we have used a coupling of two chemistry transport models to calculate the air pollution concentration at different domain and scales; the Danish Eulerian Hemispheric Model (DEHM) to calculate the air pollution levels in the Northern Hemisphere with a resolution down to 5.6 km x 5.6 km and the Urban Background Model (UBM) to further calculate the air pollution in Denmark at 1 km x 1 km resolution using results from DEHM as boundary conditions. Both the emission data as well as the population density has been represented in the model system with the same high resolution. Previous health impact assessments related to air pollution have been made on a lower resolution. In this study, the integrated model system, EVA, has been used to estimate the health impacts and related external cost for Denmark at a 1 km x 1 km resolution. New developments of the integrated model system will be presented as well as the development of health impacts and related external costs in Europe and Denmark over a period of 36 years (1979-2014). Acknowledgements This work was funded by: DCE - National Centre for Environment and Energy. Project: "Health impacts and external costs from air pollution in Denmark over 25 years" and NordForsk under the Nordic Programme on Health and Welfare. Project: "Understanding the link between air pollution and distribution of related health impacts and welfare in the

  19. Enhancing the Design Process for Complex Space Systems through Early Integration of Risk and Variable-Fidelity Modeling

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri; Osburg, Jan

    2005-01-01

    An important enabler of the new national Vision for Space Exploration is the ability to rapidly and efficiently develop optimized concepts for the manifold future space missions that this effort calls for. The design of such complex systems requires a tight integration of all the engineering disciplines involved, in an environment that fosters interaction and collaboration. The research performed under this grant explored areas where the space systems design process can be enhanced: by integrating risk models into the early stages of the design process, and by including rapid-turnaround variable-fidelity tools for key disciplines. Enabling early assessment of mission risk will allow designers to perform trades between risk and design performance during the initial design space exploration. Entry into planetary atmospheres will require an increased emphasis of the critical disciplines of aero- and thermodynamics. This necessitates the pulling forward of EDL disciplinary expertise into the early stage of the design process. Radiation can have a large potential impact on overall mission designs, in particular for the planned nuclear-powered robotic missions under Project Prometheus and for long-duration manned missions to the Moon, Mars and beyond under Project Constellation. This requires that radiation and associated risk and hazards be assessed and mitigated at the earliest stages of the design process. Hence, RPS is another discipline needed to enhance the engineering competencies of conceptual design teams. Researchers collaborated closely with NASA experts in those disciplines, and in overall space systems design, at Langley Research Center and at the Jet Propulsion Laboratory. This report documents the results of this initial effort.

  20. Integrated Learning Management Systems

    ERIC Educational Resources Information Center

    Clark, Sharon; Cossarin, Mary; Doxsee, Harry; Schwartz, Linda

    2004-01-01

    Four integrated learning management packages were reviewed: "CentraOne", "IntraLearn", "Lyceum", and "Silicon Chalk". These products provide different combinations of synchronous and asynchronous tools. The current report examines the products in relation to their specific value for distance educators and students.

  1. Factors Influencing the Selection of the Systems Integration Organizational Model Type for Planning and Implementing Government High-Technology Programs

    NASA Technical Reports Server (NTRS)

    Thomas, Leann; Utley, Dawn

    2006-01-01

    While there has been extensive research in defining project organizational structures for traditional projects, little research exists to support high technology government project s organizational structure definition. High-Technology Government projects differ from traditional projects in that they are non-profit, span across Government-Industry organizations, typically require significant integration effort, and are strongly susceptible to a volatile external environment. Systems Integration implementation has been identified as a major contributor to both project success and failure. The literature research bridges program management organizational planning, systems integration, organizational theory, and independent project reports, in order to assess Systems Integration (SI) organizational structure selection for improving the high-technology government project s probability of success. This paper will describe the methodology used to 1) Identify and assess SI organizational structures and their success rate, and 2) Identify key factors to be used in the selection of these SI organizational structures during the acquisition strategy process.

  2. A system dynamics model integrating physiology and biochemical regulation predicts extent of crassulacean acid metabolism (CAM) phases.

    PubMed

    Owen, Nick A; Griffiths, Howard

    2013-12-01

    A system dynamics (SD) approach was taken to model crassulacean acid metabolism (CAM) expression from measured biochemical and physiological constants. SD emphasizes state-dependent feedback interaction to describe the emergent properties of a complex system. These mechanisms maintain biological systems with homeostatic limits on a temporal basis. Previous empirical studies on CAM have correlated biological constants (e.g. enzyme kinetic parameters) with expression over the CAM diel cycle. The SD model integrates these constants within the architecture of the CAM 'system'. This allowed quantitative causal connections to be established between biological inputs and the four distinct phases of CAM delineated by gas exchange and malic acid accumulation traits. Regulation at flow junctions (e.g. stomatal and mesophyll conductance, and malic acid transport across the tonoplast) that are subject to feedback control (e.g. stomatal aperture, malic acid inhibition of phosphoenolpyruvate carboxylase, and enzyme kinetics) was simulated. Simulated expression for the leaf-succulent Kalanchoë daigremontiana and more succulent tissues of Agave tequilana showed strong correlation with measured gas exchange and malic acid accumulation (R(2)  = 0.912 and 0.937, respectively, for K. daigremontiana and R(2)  = 0.928 and 0.942, respectively, for A. tequilana). Sensitivity analyses were conducted to quantitatively identify determinants of diel CO2 uptake. The transition in CAM expression from low to high volume/area tissues (elimination of phase II-IV carbon-uptake signatures) was achieved largely by the manipulation three input parameters. PMID:23992169

  3. Integrating remote sensing, geographic information system and modeling for estimating crop yield

    NASA Astrophysics Data System (ADS)

    Salazar, Luis Alonso

    This thesis explores various aspects of the use of remote sensing, geographic information system and digital signal processing technologies for broad-scale estimation of crop yield in Kansas. Recent dry and drought years in the Great Plains have emphasized the need for new sources of timely, objective and quantitative information on crop conditions. Crop growth monitoring and yield estimation can provide important information for government agencies, commodity traders and producers in planning harvest, storage, transportation and marketing activities. The sooner this information is available the lower the economic risk translating into greater efficiency and increased return on investments. Weather data is normally used when crop yield is forecasted. Such information, to provide adequate detail for effective predictions, is typically feasible only on small research sites due to expensive and time-consuming collections. In order for crop assessment systems to be economical, more efficient methods for data collection and analysis are necessary. The purpose of this research is to use satellite data which provides 50 times more spatial information about the environment than the weather station network in a short amount of time at a relatively low cost. Specifically, we are going to use Advanced Very High Resolution Radiometer (AVHRR) based vegetation health (VH) indices as proxies for characterization of weather conditions.

  4. The LARsen Ice Shelf System, Antarctica, LARISSA a Model for Antarctic Integrated System Science (AISS) Investigations using Marine Platforms

    NASA Astrophysics Data System (ADS)

    Domack, E. W.; Huber, B. A.; Vernet, M.; Leventer, A.; Scambos, T. A.; Mosley-Thompson, E. S.; Smith, C. R.; de Batist, M. A.; Yoon, H.; Larissa

    2010-12-01

    The LARISSA program is the first interdisciplinary project funded in the AISS program of the NSF Office of Polar Programs and was officially launched in the closing days of the IPY. This program brings together investigators, students, and media to address the rapid and fundamental changes taking place in the region of the Larsen Ice Shelf and surrounding areas. Scientific foci include: glaciologic and oceanographic interactions, the response of pelagic and benthic ecosystems to ice shelf decay, sedimentary record of ice shelf break disintegration, the geologic evolution of ice shelf systems over the last 100,000 years, paleoclimate/environmental records from marine sediment and ice cores, and the crustal response to ice mass loss at decade to millennial time scales. The first major field season took place this past austral summer aboard the NB Palmer (cruise NBP10-01) which deployed with a multi-layered logistical infrastructure that included: two Bell 220 aircraft, a multifunctional deep water ROV, video guided sediment corer, jumbo piston core, and an array of oceanographic and biological sensors and instruments. In tandem with this ship based operation Twin Otter aircraft supported an ice core team upon the crest of the Bruce Plateau with logistic support provided by the BAS at Rothera Station. Although unusually heavy sea ice prevented much of the original work from being completed in the Larsen Embayment the interdisciplinary approach proved useful. Further the logistical model of ship based aircraft to support interdisciplinary work proved viable, again despite an unusually severe summer meterologic pattern across the northern Antarctic Peninsula. As the program moves forward other vessels will come into play and the model can be applied to interdisciplinary objectives in other regions of Antarctica which are remote and lack land based infrastructure to support coastal field programs in glaciology, geology, or meteorology. This work could then be completed

  5. An integrated model of learning.

    PubMed

    Trigg, A M; Cordova, F D

    1987-01-01

    Worldwide, most educational systems are based on three levels of education that utilize the pedagogical approaches to learning. In the 1960s, scholars formulated another approach to education that has become known as andragogy and has been applied to adult education. Several innovative scholars have seen how andragogy can be applied to teaching children. As a result, both andragogy and pedagogy are viewed as the opposite ends of the educational spectrum. Both of these approaches have a place and function within the modern educational framework. If one assumes that the goal of education is for the acquisition and application of knowledge, then both of these approaches can be used effectively for the attainment of that goal. In order to utilize these approaches effectively, an integrated model of learning has been developed that consists of initial teaching and exploratory learning phases. This model has both the directive and flexible qualities found in the theories of pedagogy and andragogy. With careful consideration and analysis this educational model can be utilized effectively within most educational systems. PMID:3588888

  6. INTEGRATED FISCHER TROPSCH MODULAR PROCESS MODEL

    SciTech Connect

    Donna Post Guillen; Richard Boardman; Anastasia M. Gribik; Rick A. Wood; Robert A. Carrington

    2007-12-01

    With declining petroleum reserves, increased world demand, and unstable politics in some of the world’s richest oil producing regions, the capability for the U.S. to produce synthetic liquid fuels from domestic resources is critical to national security and economic stability. Coal, biomass and other carbonaceous materials can be converted to liquid fuels using several conversion processes. The leading candidate for large-scale conversion of coal to liquid fuels is the Fischer Tropsch (FT) process. Process configuration, component selection, and performance are interrelated and dependent on feed characteristics. This paper outlines a flexible modular approach to model an integrated FT process that utilizes a library of key component models, supporting kinetic data and materials and transport properties allowing rapid development of custom integrated plant models. The modular construction will permit rapid assessment of alternative designs and feed stocks. The modeling approach consists of three thrust areas, or “strands” – model/module development, integration of the model elements into an end to end integrated system model, and utilization of the model for plant design. Strand 1, model/module development, entails identifying, developing, and assembling a library of codes, user blocks, and data for FT process unit operations for a custom feedstock and plant description. Strand 2, integration development, provides the framework for linking these component and subsystem models to form an integrated FT plant simulation. Strand 3, plant design, includes testing and validation of the comprehensive model and performing design evaluation analyses.

  7. Integrating land management into Earth system models: the importance of land use transitions at sub-grid-scale

    NASA Astrophysics Data System (ADS)

    Pongratz, Julia; Wilkenskjeld, Stiig; Kloster, Silvia; Reick, Christian

    2014-05-01

    Recent studies indicate that changes in surface climate and carbon fluxes caused by land management (i.e., modifications of vegetation structure without changing the type of land cover) can be as large as those caused by land cover change. Further, such effects may occur on substantial areas: while about one quarter of the land surface has undergone land cover change, another fifty percent are managed. This calls for integration of management processes in Earth system models (ESMs). This integration increases the importance of awareness and agreement on how to diagnose effects of land use in ESMs to avoid additional model spread and thus unnecessary uncertainties in carbon budget estimates. Process understanding of management effects, their model implementation, as well as data availability on management type and extent pose challenges. In this respect, a significant step forward has been done in the framework of the current IPCC's CMIP5 simulations (Coupled Model Intercomparison Project Phase 5): The climate simulations were driven with the same harmonized land use dataset that, different from most datasets commonly used before, included information on two important types of management: wood harvest and shifting cultivation. However, these new aspects were employed by only part of the CMIP5 models, while most models continued to use the associated land cover maps. Here, we explore the consequences for the carbon cycle of including subgrid-scale land transformations ("gross transitions"), such as shifting cultivation, as example of the current state of implementation of land management in ESMs. Accounting for gross transitions is expected to increase land use emissions because it represents simultaneous clearing and regrowth of natural vegetation in different parts of the grid cell, reducing standing carbon stocks. This process cannot be captured by prescribing land cover maps ("net transitions"). Using the MPI-ESM we find that ignoring gross transitions

  8. Integrated roof wind energy system

    NASA Astrophysics Data System (ADS)

    Suma, A. B.; Ferraro, R. M.; Dano, B.; Moonen, S. P. G.

    2012-10-01

    Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  9. Direct integration transmittance model

    NASA Technical Reports Server (NTRS)

    Kunde, V. G.; Maguire, W. C.

    1973-01-01

    A transmittance model was developed for the 200-2000/cm region for interpretation of high spectral resolution measurements of laboratory absorption and of planetary thermal emission. The high spectral resolution requires transmittances to be computed monochromatically by summing the contribution of individual molecular absorption lines. A magnetic tape atlas of H2O,O3, and CO2 molecular line parameters serves as input to the transmittance model with simple empirical representations used for continuum regions wherever suitable laboratory data exist. The theoretical formulation of the transmittance model and the computational procedures used for the evaluation of the transmittances are discussed. Application is demonstrated of the model to several homogenous path laboratory absorption examples.

  10. TMT/VLOT integrated modeling

    NASA Astrophysics Data System (ADS)

    Dunn, Jennifer; Roberts, Scott C.; Kerley, Dan; Fitzsimmons, Joeleff T.; Pazder, John S.; Herriot, Glen; Smith, Malcolm J.

    2004-11-01

    The National Research Council's Herzberg Institute of Astrophysics (NRC-HIA) has developed an opto-mechanical integrated modeling toolset called TM-IM. This time-domain state-space toolset has been implemented using Matlab/Simulink/C. The toolset was originally developed for the Very Large Optical Telescope (VLOT) design work, and continued when Canada joined in the Thirty Meter Telescope (TMT) project. The TM-IM toolset has been developed to accommodate different structural and optical designs and has been used to evaluate telescope performance to assist in making decisions for the TMT reference design expected fall 2004. Preliminary results include delivered image quality as a function of wind loading on the structure, primary and secondary mirror, and the simulation of an Adaptive Optics system which provides control feedback to the primary mirror.

  11. Health systems integration: state of the evidence

    PubMed Central

    Armitage, Gail D.; Suter, Esther; Oelke, Nelly D.; Adair, Carol E.

    2009-01-01

    Introduction Integrated health systems are considered a solution to the challenge of maintaining the accessibility and integrity of healthcare in numerous jurisdictions worldwide. However, decision makers in a Canadian health region indicated they were challenged to find evidence-based information to assist with the planning and implementation of integrated healthcare systems. Methods A systematic literature review of peer-reviewed literature from health sciences and business databases, and targeted grey literature sources. Results Despite the large number of articles discussing integration, significant gaps in the research literature exist. There was a lack of high quality, empirical studies providing evidence on how health systems can improve service delivery and population health. No universal definition or concept of integration was found and multiple integration models from both the healthcare and business literature were proposed in the literature. The review also revealed a lack of standardized, validated tools that have been systematically used to evaluate integration outcomes. This makes measuring and comparing the impact of integration on system, provider and patient level challenging. Discussion and conclusion Healthcare is likely too complex for a one-size-fits-all integration solution. It is important for decision makers and planners to choose a set of complementary models, structures and processes to create an integrated health system that fits the needs of the population across the continuum of care. However, in order to have evidence available, decision makers and planners should include evaluation for accountability purposes and to ensure a better understanding of the effectiveness and impact of health systems integration. PMID:19590762

  12. Integrated delivery systems. Evolving oligopolies.

    PubMed

    Malone, T A

    1998-01-01

    The proliferation of Integrated Delivery Systems (IDSs) in regional health care markets has resulted in the movement of these markets from a monopolistic competitive model of behavior to an oligopoly. An oligopoly is synonymous with competition among the few, as a small number of firms supply a dominant share of an industry's total output. The basic characteristics of a market with competition among the few are: (1) A mutual interdependence among the actions and behaviors of competing firms; (2) competition tends to rely on the differentiation of products; (3) significant barriers to entering the market exist; (4) the demand curve for services may be kinked; and (5) firms can benefit from economies of scale. An understanding of these characteristics is essential to the survival of IDSs as regional managed care markets mature. PMID:10180497

  13. Integrated multiplexed capillary electrophoresis system

    SciTech Connect

    Yeung, Edward S.; Tan, Hongdong

    2002-05-14

    The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.

  14. TOWARD EFFICIENT RIPARIAN RESTORATION: INTEGRATING ECONOMIC, PHYSICAL, AND BIOLOGICAL MODELS

    EPA Science Inventory

    This paper integrates economic, biological, and physical models to determine the efficient combination and spatial allocation of conservation efforts for water quality protection and salmonid habitat enhancement in the Grande Ronde basin, Oregon. The integrated modeling system co...

  15. An integrated modeling approach to support management decisions of coupled groundwater-agricultural systems under multiple uncertainties

    NASA Astrophysics Data System (ADS)

    Hagos Subagadis, Yohannes; Schütze, Niels; Grundmann, Jens

    2015-04-01

    The planning and implementation of effective water resources management strategies need an assessment of multiple (physical, environmental, and socio-economic) issues, and often requires new research in which knowledge of diverse disciplines are combined in a unified methodological and operational frameworks. Such integrative research to link different knowledge domains faces several practical challenges. Such complexities are further compounded by multiple actors frequently with conflicting interests and multiple uncertainties about the consequences of potential management decisions. A fuzzy-stochastic multiple criteria decision analysis tool was developed in this study to systematically quantify both probabilistic and fuzzy uncertainties associated with complex hydrosystems management. It integrated physical process-based models, fuzzy logic, expert involvement and stochastic simulation within a general framework. Subsequently, the proposed new approach is applied to a water-scarce coastal arid region water management problem in northern Oman, where saltwater intrusion into a coastal aquifer due to excessive groundwater extraction for irrigated agriculture has affected the aquifer sustainability, endangering associated socio-economic conditions as well as traditional social structure. Results from the developed method have provided key decision alternatives which can serve as a platform for negotiation and further exploration. In addition, this approach has enabled to systematically quantify both probabilistic and fuzzy uncertainties associated with the decision problem. Sensitivity analysis applied within the developed tool has shown that the decision makers' risk aversion and risk taking attitude may yield in different ranking of decision alternatives. The developed approach can be applied to address the complexities and uncertainties inherent in water resources systems to support management decisions, while serving as a platform for stakeholder participation.

  16. An integrated crop model and GIS decision support system for assisting agronomic decision making under climate change.

    PubMed

    Kadiyala, M D M; Nedumaran, S; Singh, Piara; S, Chukka; Irshad, Mohammad A; Bantilan, M C S

    2015-07-15

    The semi-arid tropical (SAT) regions of India are suffering from low productivity which may be further aggravated by anticipated climate change. The present study analyzes the spatial variability of climate change impacts on groundnut yields in the Anantapur district of India and examines the relative contribution of adaptation strategies. For this purpose, a web based decision support tool that integrates crop simulation model and Geographical Information System (GIS) was developed to assist agronomic decision making and this tool can be scalable to any location and crop. The climate change projections of five global climate models (GCMs) relative to the 1980-2010 baseline for Anantapur district indicates an increase in rainfall activity to the tune of 10.6 to 25% during Mid-century period (2040-69) with RCP 8.5. The GCMs also predict warming exceeding 1.4 to 2.4°C by 2069 in the study region. The spatial crop responses to the projected climate indicate a decrease in groundnut yields with four GCMs (MPI-ESM-MR, MIROC5, CCSM4 and HadGEM2-ES) and a contrasting 6.3% increase with the GCM, GFDL-ESM2M. The simulation studies using CROPGRO-Peanut model reveals that groundnut yields can be increased on average by 1.0%, 5.0%, 14.4%, and 20.2%, by adopting adaptation options of heat tolerance, drought tolerant cultivars, supplemental irrigation and a combination of drought tolerance cultivar and supplemental irrigation respectively. The spatial patterns of relative benefits of adaptation options were geographically different and the greatest benefits can be achieved by adopting new cultivars having drought tolerance and with the application of one supplemental irrigation at 60days after sowing. PMID:25829290

  17. From systems biology to photosynthesis and whole-plant modeling: a conceptual model for integrating multi-scale networks

    SciTech Connect

    Weston, David; Hanson, Paul J; Norby, Richard J; Tuskan, Gerald A; Wullschleger, Stan D

    2012-01-01

    Network analysis is now a common statistical tool for molecular biologists. Network algorithms are readily used to model gene, protein and metabolic correlations providing insight into pathways driving biological phenomenon. One output from such an analysis is a candidate gene list that can be responsible, in part, for the biological process of interest. The question remains, however, as to whether molecular network analysis can be used to inform process models at higher levels of biological organization. In our previous work, transcriptional networks derived from three plant species were constructed, interrogated for orthology and then correlated to photosynthetic inhibition at elevated temperature. One unique aspect of that study was the link from co-expression networks to net photosynthesis. In this addendum, we propose a conceptual model where traditional network analysis can be linked to whole-plant models thereby informing predictions on key processes such as photosynthesis, nutrient uptake and assimilation, and C partitioning.

  18. Optimization of gas condensate Field A development on the basis of "reservoir - gathering facilities system" integrated model

    NASA Astrophysics Data System (ADS)

    Demidova, E. A.; Maksyutina, O. V.

    2015-02-01

    It is known that many gas condensate fields are challenged with liquid loading and condensate banking problems. Therefore, gas production is declining with time. In this paper hydraulic fracturing treatment was considered as a method to improve the productivity of wells and consequently to exclude the factors that lead to production decline. This paper presents the analysis of gas condensate Field A development optimization with the purpose of maintaining constant gas production at the 2013 level for 8 years taking into account mentioned factors . To optimize the development of the filed, an integrated model was created. The integrated model of the field implies constructing the uniform model of the field consisting of the coupling models of the reservoir, wells and surface facilities. This model allowed optimizing each of the elements of the model separately and also taking into account the mutual influence of these elements. Using the integrated model, five development scenarios were analyzed and an optimal scenario was chosen. The NPV of this scenario equals 7,277 mln RUR, cumulative gas production - 12,160.6 mln m3, cumulative condensate production - 1.8 mln tons.

  19. Digital system bus integrity

    NASA Technical Reports Server (NTRS)

    Eldredge, Donald; Hitt, Ellis F.

    1987-01-01

    This report summarizes and describes the results of a study of current or emerging multiplex data buses as applicable to digital flight systems, particularly with regard to civil aircraft. Technology for pre-1995 and post-1995 timeframes has been delineated and critiqued relative to the requirements envisioned for those periods. The primary emphasis has been an assured airworthiness of the more prevalent type buses, with attention to attributes such as fault tolerance, environmental susceptibility, and problems under continuing investigation. Additionally, the capacity to certify systems relying on such buses has been addressed.

  20. Model-Based Systems

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    2007-01-01

    Engineers, who design systems using text specification documents, focus their work upon the completed system to meet Performance, time and budget goals. Consistency and integrity is difficult to maintain within text documents for a single complex system and more difficult to maintain as several systems are combined into higher-level systems, are maintained over decades, and evolve technically and in performance through updates. This system design approach frequently results in major changes during the system integration and test phase, and in time and budget overruns. Engineers who build system specification documents within a model-based systems environment go a step further and aggregate all of the data. They interrelate all of the data to insure consistency and integrity. After the model is constructed, the various system specification documents are prepared, all from the same database. The consistency and integrity of the model is assured, therefore the consistency and integrity of the various specification documents is insured. This article attempts to define model-based systems relative to such an environment. The intent is to expose the complexity of the enabling problem by outlining what is needed, why it is needed and how needs are being addressed by international standards writing teams.

  1. Voice integrated systems

    NASA Technical Reports Server (NTRS)

    Curran, P. Mike

    1977-01-01

    The program at Naval Air Development Center was initiated to determine the desirability of interactive voice systems for use in airborne weapon systems crew stations. A voice recognition and synthesis system (VRAS) was developed and incorporated into a human centrifuge. The speech recognition aspect of VRAS was developed using a voice command system (VCS) developed by Scope Electronics. The speech synthesis capability was supplied by a Votrax, VS-5, speech synthesis unit built by Vocal Interface. The effects of simulated flight on automatic speech recognition were determined by repeated trials in the VRAS-equipped centrifuge. The relationship of vibration, G, O2 mask, mission duration, and cockpit temperature and voice quality was determined. The results showed that: (1) voice quality degrades after 0.5 hours with an O2 mask; (2) voice quality degrades under high vibration; and (3) voice quality degrades under high levels of G. The voice quality studies are summarized. These results were obtained with a baseline of 80 percent recognition accuracy with VCS.

  2. Integrated Communication Systems.

    ERIC Educational Resources Information Center

    Simpson, Ward

    2003-01-01

    Describes the Internet-based information system that has provided effective communications and reporting for the upgrade to K-12 schools in Scottsdale, Arizona. The Website and software applications created valuable communications in the construction process and improved reporting on progress. (SLD)

  3. Integrating automated systems with modular architecture

    SciTech Connect

    Salit, M.L.; Guenther, F.R.; Kramer, G.W. ); Griesmeyer, J.M. )

    1994-03-15

    The modularity project of the Consortium for Automated Analytical Laboratory Systems, or CAALS, has been working to define and produce specifications with which manufacturers of analytical equipment can produce products suited for integration into automated systems. A set of standards that will allow subsystems to be configured into robust, useful, controllable systems in a stylized, consistent manner will facilitate the development and integration process. Such standards could ultimately allow an analytical chemist to select devices from a heterogeneous set of vendors and integrate those devices into a work cell to perform chemical methods without further invention, computer programming, or engineering. Our approach to this formidable task is to view analytical chemistry in an abstract fashion, forming a generic model from the understanding of what it is we do. In this article, we report on the generic model and the integration architecture we have developed to implement it. 6 refs., 3 figs.

  4. INTEGRATED PLANNING MODEL - EPA APPLICATIONS

    EPA Science Inventory

    The Integrated Planning Model (IPM) is a multi-regional, dynamic, deterministic linear programming (LP) model of the electric power sector in the continental lower 48 states and the District of Columbia. It provides forecasts up to year 2050 of least-cost capacity expansion, elec...

  5. Human System Integration: Regulatory Analysis

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document was intended as an input to the Access 5 Policy Integrated Product team. Using a Human System Integration (HIS) perspective, a regulatory analyses of the FARS (specifically Part 91), the Airman s Information Manual (AIM) and the FAA Controllers Handbook (7110.65) was conducted as part of a front-end approach needed to derive HSI requirements for Unmanned Aircraft Systems (UAS) operations in the National Airspace System above FL430. The review of the above aviation reference materials yielded eighty-four functions determined to be necessary or highly desirable for flight within the Air Traffic Management System. They include categories for Flight, Communications, Navigation, Surveillance, and Hazard Avoidance.

  6. The Self-System in Integral Counseling

    ERIC Educational Resources Information Center

    Ingersoll, R. Elliott; Cook-Greuter, Susanne R.

    2007-01-01

    The authors introduce the integral model of the self-system and, using that model, describe the dynamics of healthy growth and the development of psychogenic pathology. Self-identification is described as "sliding" in nature, and stage theories for self-related lines are outlined to help clinicians understand the characteristics of each stage the…

  7. Separations and safeguards model integration.

    SciTech Connect

    Cipiti, Benjamin B.; Zinaman, Owen

    2010-09-01

    Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

  8. Streamlining the Discovery, Evaluation, and Integration of Data, Models, and Decision Support Systems: a Big Picture View

    EPA Science Inventory

    21st century environmental problems are wicked and require holistic systems thinking and solutions that integrate social and economic knowledge with knowledge of the environment. Computer-based technologies are fundamental to our ability to research and understand the relevant sy...

  9. Integrated agricultural energy system

    NASA Astrophysics Data System (ADS)

    Taylor, R. M.

    1985-08-01

    The purpose of this program is to show New England farmers and other New England energy users how they can use alternative energy sources to reduce their energy cost and dependency on conventional sources. The project demonstrates alternative energy technologies in solar, alcohol and methane. Dissemination is planned through tours to be conducted by the Worcester County Extension Service. Most of these goals were completed as planned. A few things have yet to be completed. The solar panels and solar hot water tanks have to be installed. The fermenter's agitating and cooling system have to be secured inside the fermenter. Once these items are complete tours will begin early in the spring.

  10. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.

    PubMed

    Walczak, Karl; Chen, Yikai; Karp, Christoph; Beeman, Jeffrey W; Shaner, Matthew; Spurgeon, Joshua; Sharp, Ian D; Amashukeli, Xenia; West, William; Jin, Jian; Lewis, Nathan S; Xiang, Chengxiang

    2015-02-01

    A fully integrated solar-driven water-splitting system comprised of WO3 /FTO/p(+) n Si as the photoanode, Pt/TiO2 /Ti/n(+) p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0 M HClO4 , and evaluated for performance and safety characteristics under dual side illumination. A multi-physics model that accounted for the performance of the photoabsorbers and electrocatalysts, ion transport in the solution electrolyte, and gaseous product crossover was first used to define the optimal geometric design space for the system. The photoelectrodes and the membrane separators were then interconnected in a louvered design system configuration, for which the light-absorbing area and the solution-transport pathways were simultaneously optimized. The performance of the photocathode and the photoanode were separately evaluated in a traditional three-electrode photoelectrochemical cell configuration. The photocathode and photoanode were then assembled back-to-back in a tandem configuration to provide sufficient photovoltage to sustain solar-driven unassisted water-splitting. The current-voltage characteristics of the photoelectrodes showed that the low photocurrent density of the photoanode limited the overall solar-to-hydrogen (STH) conversion efficiency due to the large band gap of WO3 . A hydrogen-production rate of 0.17 mL hr(-1) and a STH conversion efficiency of 0.24 % was observed in a full cell configuration for >20 h with minimal product crossover in the fully operational, intrinsically safe, solar-driven water-splitting system. The solar-to-hydrogen conversion efficiency, ηSTH , calculated using the multiphysics numerical simulation was in excellent agreement with the experimental behavior of the system. The value of ηSTH was entirely limited by the performance of the photoelectrochemical assemblies employed in this study. The louvered design provides a robust platform for implementation of various types of

  11. Estimation of optical properties of neuroendocrine pancreas tumor with double-integrating-sphere system and inverse Monte Carlo model.

    PubMed

    Saccomandi, Paola; Larocca, Enza Stefania; Rendina, Veneranda; Schena, Emiliano; D'Ambrosio, Roberto; Crescenzi, Anna; Di Matteo, Francesco Maria; Silvestri, Sergio

    2016-08-01

    The investigation of laser-tissue interaction is crucial for diagnostics and therapeutics. In particular, the estimation of tissue optical properties allows developing predictive models for defining organ-specific treatment planning tool. With regard to laser ablation (LA), optical properties are among the main responsible for the therapy efficacy, as they globally affect the heating process of the tissue, due to its capability to absorb and scatter laser energy. The recent introduction of LA for pancreatic tumor treatment in clinical studies has fostered the need to assess the laser-pancreas interaction and hence to find its optical properties in the wavelength of interest. This work aims at estimating optical properties (i.e., absorption, μ a , scattering, μ s , anisotropy, g, coefficients) of neuroendocrine pancreas tumor at 1064 nm. Experiments were performed using two popular sample storage methods; the optical properties of frozen and paraffin-embedded neuroendocrine tumor of the pancreas are estimated by employing a double-integrating-sphere system and inverse Monte Carlo algorithm. Results show that paraffin-embedded tissue is characterized by absorption and scattering coefficients significantly higher than frozen samples (μ a of 56 cm(-1) vs 0.9 cm(-1), μ s of 539 cm(-1) vs 130 cm(-1), respectively). Simulations show that such different optical features strongly influence the pancreas temperature distribution during LA. This result may affect the prediction of therapeutic outcome. Therefore, the choice of the appropriate preparation technique of samples for optical property estimation is crucial for the performances of the mathematical models which predict LA thermal outcome on the tissue and lead the selection of optimal LA settings. PMID:27147075

  12. Integrated Building Management System (IBMS)

    SciTech Connect

    Anita Lewis

    2012-07-01

    This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.

  13. Integrated high power VCSEL systems

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Conrads, Ralf; Gronenborn, Stephan; Gu, Xi; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich

    2016-03-01

    High power VCSEL systems are a novel laser source used for thermal treatment in industrial manufacturing. These systems will be applied in many applications, which have not used a laser source before. This is enabled by the unique combination of efficiency, compactness and robustness. High power VCSEL system technology encompasses elements far beyond the VCSEL chip itself: i.e. heat sinks, bonding technology and integrated optics. This paper discusses the optimization of these components and processes specifically for building high-power laser systems with VCSEL arrays. New approaches help to eliminate components and process steps and make the system more robust and easier to manufacture. New cooler concepts with integrated electrical and mechanical interfaces have been investigated and offer advantages for high power system design. The bonding process of chips on sub-mounts and coolers has been studied extensively and for a variety of solder materials. High quality of the interfaces as well as good reliability under normal operation and thermal cycling have been realized. A viable alternative to soldering is silver sintering. The very positive results which have been achieved with a variety of technologies indicate the robustness of the VCSEL chips and their suitability for high power systems. Beam shaping micro-optics can be integrated on the VCSEL chip in a wafer scale process by replication of lenses in a polymer layer. The performance of VCSEL arrays with integrated collimation lenses has been positively evaluated and the integrated chips are fully compatible with all further assembly steps. The integrated high power systems make the application even easier and more robust. New examples in laser material processing and pumping of solid state lasers are presented.

  14. Symplectic integrators for spin systems.

    PubMed

    McLachlan, Robert I; Modin, Klas; Verdier, Olivier

    2014-06-01

    We present a symplectic integrator, based on the implicit midpoint method, for classical spin systems where each spin is a unit vector in R{3}. Unlike splitting methods, it is defined for all Hamiltonians and is O(3)-equivariant, i.e., coordinate-independent. It is a rare example of a generating function for symplectic maps of a noncanonical phase space. It yields a new integrable discretization of the spinning top. PMID:25019718

  15. Further development and implementation of the DIWA distributed hydrological model-based integrated hydroinformatics system in the Danube River Basin for supporting decision making in water management

    NASA Astrophysics Data System (ADS)

    Szabó, J. A.; Réti, G. Z.; Tóth, T.

    2012-04-01

    Today, the most significant mission of the decision makers on integrated water management issues is to carry out sustainable management for sharing the resources between a variety of users and the environment under conditions of considerable uncertainty (such as climate/land use/population/etc. change) conditions. In light of this increasing water management complexity, we consider that the most pressing needs is to develop and implement up-to-date Spatial Decision Support Systems (SDSS) for aiding decision-making processes to improve water management. One of the most important parts of such an SDSS is a distributed hydrologic model-based integrated hydroinformatics system to analyze the different scenarios. The less successful statistical and/or empirical model-experiments of earlier decades have highlighted the importance of paradigm shift in hydrological modelling approach towards the physically based distributed models, to better describe the complex hydrological processes even on catchments of more ten thousands of square km. Answers to questions like what are the effects of human actions in the catchment area (e. g. forestation or deforestation) or the changing of climate/land use on the flood, drought, or water scarcity, or what is the optimal strategy for planning and/or operating reservoirs, have become increasingly important. Nowadays the answers to this kind of questions can be provided more easily than before. The progress of applied mathematical methods, the advanced state of computer technology as well as the development of remote sensing and meteorological radar technology have accelerated the research capable of answering these questions using well-designed integrated hydroinformatics systems. With most emphasis on the recent years of extensive scientific and computational development HYDROInform UnLtd developed a distributed hydrological model-based integrated hydroinformatics system for supporting the various decisions in water management. Our

  16. The Systems Librarian: Re-Integrating the "Integrated" Library System

    ERIC Educational Resources Information Center

    Breeding, Marshall

    2005-01-01

    This article discusses the current environment of the ILS (Integrated Library System) plus add-ons tailored for electronic content and its future. It suggests that while the ILS may be mature, the supplemental products are not and the linkages among them are even less so. On the technical front, the recent interest in Web services gives reason to…

  17. The Integrated Medical Model - Optimizing In-flight Space Medical Systems to Reduce Crew Health Risk and Mission Impacts

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Walton, Marlei; Minard, Charles; Saile, Lynn; Myers, Jerry; Butler, Doug; Lyengar, Sriram; Fitts, Mary; Johnson-Throop, Kathy

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool used by medical system planners and designers as they prepare for exploration planning activities of the Constellation program (CxP). IMM provides an evidence-based approach to help optimize the allocation of in-flight medical resources for a specified level of risk within spacecraft operational constraints. Eighty medical conditions and associated resources are represented in IMM. Nine conditions are due to Space Adaptation Syndrome. The IMM helps answer fundamental medical mission planning questions such as What medical conditions can be expected? What type and quantity of medical resources are most likely to be used?", and "What is the probability of crew death or evacuation due to medical events?" For a specified mission and crew profile, the IMM effectively characterizes the sequence of events that could potentially occur should a medical condition happen. The mathematical relationships among mission and crew attributes, medical conditions and incidence data, in-flight medical resources, potential clinical and crew health end states are established to generate end state probabilities. A Monte Carlo computational method is used to determine the probable outcomes and requires up to 25,000 mission trials to reach convergence. For each mission trial, the pharmaceuticals and supplies required to diagnose and treat prevalent medical conditions are tracked and decremented. The uncertainty of patient response to treatment is bounded via a best-case, worst-case, untreated case algorithm. A Crew Health Index (CHI) metric, developed to account for functional impairment due to a medical condition, provides a quantified measure of risk and enables risk comparisons across mission scenarios. The use of historical in-flight medical data, terrestrial surrogate data as appropriate, and space medicine subject matter expertise has enabled the development of a probabilistic, stochastic decision support tool capable of

  18. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1991-01-01

    Significant advances have occurred during the last decade in intelligent systems technologies (a.k.a. knowledge-based systems, KBS) including research, feasibility demonstrations, and technology implementations in operational environments. Evaluation and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent systems technologies can be realized for Automated Rendezvous and Capture applications. The successful implementation of these technologies involve a complex system infrastructure integrating the requirements of transportation, vehicle checkout and health management, and communication systems without compromise to systems reliability and performance. The resources that must be invoked to accomplish these tasks include remote ground operations and control, built-in system fault management and control, and intelligent robotics. To ensure long-term evolution and integration of new validated technologies over the lifetime of the vehicle, system interfaces must also be addressed and integrated into the overall system interface requirements. An approach for defining and evaluating the system infrastructures including the testbed currently being used to support the on-going evaluations for the evolutionary Space Station Freedom Data Management System is presented and discussed. Intelligent system technologies discussed include artificial intelligence (real-time replanning and scheduling), high performance computational elements (parallel processors, photonic processors, and neural networks), real-time fault management and control, and system software development tools for rapid prototyping capabilities.

  19. Data and Model Integration Promoting Interdisciplinarity

    NASA Astrophysics Data System (ADS)

    Koike, T.

    2014-12-01

    It is very difficult to reflect accumulated subsystem knowledge into holistic knowledge. Knowledge about a whole system can rarely be introduced into a targeted subsystem. In many cases, knowledge in one discipline is inapplicable to other disciplines. We are far from resolving cross-disciplinary issues. It is critically important to establish interdisciplinarity so that scientific knowledge can transcend disciplines. We need to share information and develop knowledge interlinkages by building models and exchanging tools. We need to tackle a large increase in the volume and diversity of data from observing the Earth. The volume of data stored has exponentially increased. Previously, almost all of the large-volume data came from satellites, but model outputs occupy the largest volume in general. To address the large diversity of data, we should develop an ontology system for technical and geographical terms in coupling with a metadata design according to international standards. In collaboration between Earth environment scientists and IT group, we should accelerate data archiving by including data loading, quality checking and metadata registration, and enrich data-searching capability. DIAS also enables us to perform integrated research and realize interdisciplinarity. For example, climate change should be addressed in collaboration between the climate models, integrated assessment models including energy, economy, agriculture, health, and the models of adaptation, vulnerability, and human settlement and infrastructure. These models identify water as central to these systems. If a water expert can develop an interrelated system including each component, the integrated crisis can be addressed by collaboration with various disciplines. To realize this purpose, we are developing a water-related data- and model-integration system called a water cycle integrator (WCI).

  20. A Crop Simulation System for Integrating Remote Sensing and Climate Information to Reduce Model Uncertainty in Crop Yield Assessments

    NASA Astrophysics Data System (ADS)

    Ines, A. M.; Honda, K.; Yui, A.

    2012-12-01

    Uncertainties in crop yield assessments are caused by many factors, including an imperfect model, model parameters and modeling assumptions, as well as errors in data inputs, e.g. climate. Here, we present a crop simulation system that aims to reduce uncertainty in crop yield assessment due to model and data uncertainties. The system uses DSSAT-CSM as the core crop simulation model. The simulation strategy is two-folds: i) crop model parameter estimation and ii) simulation and prediction mode. In i) a noisy Monte Carlo genetic algorithm (NMCGA) is used to estimate crop, soil and management parameters and their uncertainties, where field and remote sensing data can be used in the process. In ii) simulations can be done in an incremental way, where climate data until the current day is used as inputs to the crop model while the climate inputs for rest of the simulation period are generated by a stochastic weather generator based on climatological or climate forecasts information. Also, in the prediction mode, an ensemble Kalman filter (EnKF) can be used to update crop model state variables, e.g., leaf area index (LAI) and soil moisture from remote sensing and field sensors, this can be used in tandem with the climate merging mechanism within the crop simulation system. A case study on wheat modeling in Hokkaido, Japan will be presented. Model uncertainty assessment and implications of the crop simulation system for crop assessment will be discussed.

  1. Integrating Systems Thinking Into Nursing Education.

    PubMed

    Phillips, Janet M; Stalter, Ann M

    2016-09-01

    A critical need exists for nursing leadership in current complex health care settings. Systems thinking can be incorporated into nursing education at all levels by using evidence-based principles in education. Teaching tips are provided using a systems awareness model to guide nurse educators in the assessment and integration of systems thinking and engaging learners in interprofessional education and practice. J Contin Educ Nurs. 2016;47(9):395-397. PMID:27580505

  2. Development of a Human Motor Model for the Evaluation of an Integrated Alerting and Notification Flight Deck System

    NASA Technical Reports Server (NTRS)

    Daiker, Ron; Schnell, Thomas

    2010-01-01

    A human motor model was developed on the basis of performance data that was collected in a flight simulator. The motor model is under consideration as one component of a virtual pilot model for the evaluation of NextGen crew alerting and notification systems in flight decks. This model may be used in a digital Monte Carlo simulation to compare flight deck layout design alternatives. The virtual pilot model is being developed as part of a NASA project to evaluate multiple crews alerting and notification flight deck configurations. Model parameters were derived from empirical distributions of pilot data collected in a flight simulator experiment. The goal of this model is to simulate pilot motor performance in the approach-to-landing task. The unique challenges associated with modeling the complex dynamics of humans interacting with the cockpit environment are discussed, along with the current state and future direction of the model.

  3. Two integrable systems with integrals of motion of degree four

    NASA Astrophysics Data System (ADS)

    Tsiganov, A. V.

    2016-03-01

    We discuss the possibility of using second-order Killing tensors to construct Liouville-integrable Hamiltonian systems that are not Nijenhuis integrable. As an example, we consider two Killing tensors with a nonzero Haantjes torsion that satisfy weaker geometric conditions and also three-dimensional systems corresponding to them that are integrable in Euclidean space and have two quadratic integrals of motion and one fourth-order integral in momenta.

  4. Construction of a GP integration model.

    PubMed

    Batterham, R; Southern, D; Appleby, N; Elsworth, G; Fabris, S; Dunt, D; Young, D

    2002-04-01

    There are frequent calls to improve integration of health services, within and between primary and secondary care sectors. In Australia, general medical practitioners (GPs) are central to these endeavours. This paper aims to better conceptualise GP integration and to develop a model and index based on this. A conceptualisation of integration is proposed based on integration fundamentally as an activity or process not structure. Integration process is the frequency and quality of episodes of information exchange involving the GP and another practitioner or patient and aimed at fulfilling the objectives of the health care system with regard to patient care. These are both direct responses to structural forces and emergent GP capacities and dispositions. The content of this typology was studied using Concept Mapping in 11 groups of GPs, consumers and other practitioners. Clusters of related statements within thematic domains were used as the basis for a provisional model. This was tested using confirmatory factor analysis in a data set derived from a national probability sample of 501 GPs. Some re-specification of the model was necessary, with three integration process factors needing to be subdivided. One factor congeneric model assumptions were used to identify the constituent items for these factors. The result was a model in which 50 items measured nine integration process factors and 20 items measured five enabling factors. Two distinct but correlated higher order factors, relating to individual patient care and public (or community) health--in contrast to a single higher order factor for integration--were identified. The re-specified model was tested with a new sample of 151 GPs and exhibited strong psychometric properties. Reliability and validity were acceptable to this stage of the indices' development. Further testing of the index is necessary to demonstrate factor invariance of the indices in other contexts as well as their utility in cross

  5. Rethinking School Bullying: Towards an Integrated Model

    ERIC Educational Resources Information Center

    Dixon, Roz; Smith, Peter K.

    2011-01-01

    What would make anti-bullying initiatives more successful? This book offers a new approach to the problem of school bullying. The question of what constitutes a useful theory of bullying is considered and suggestions are made as to how priorities for future research might be identified. The integrated, systemic model of school bullying introduced…

  6. Integration of a model-independent interface for RBE predictions in a treatment planning system for active particle beam scanning.

    PubMed

    Steinsträter, O; Scholz, U; Friedrich, T; Krämer, M; Grün, R; Durante, M; Scholz, M

    2015-09-01

    Especially for heavier ions such as carbon ions, treatment planning systems (TPSs) for ion radiotherapy depend on models predicting the relative biological effectiveness (RBE) of the particles involved. Such models are subject to intensive research and the choice of the optimal RBE model is a matter of debate. On the other hand TPSs are often strongly coupled to particular RBE models and transition even to extended models of the same family can be difficult. We present here a model-independent interface which allows the unbiased use of any RBE model capable of providing dose-effect curves (even sampled curves) for a TPS. The full decoupling between the RBE model and TPS is based on the beam-mixing model proposed by Lam which is, in contrast to the often-used Zaider-Rossi model, independent of the explicit form of the underlying dose-effect curves. This approach not only supports the refinement of RBE models without adaptations of the TPS--which we demonstrate by means of the local effect model (LEM)--but also allows the comparison of very different model approaches on a common basis. We exemplify this by a comparison between the LEM and a model from the literature for proton RBE prediction. PMID:26301433

  7. Integration of a model-independent interface for RBE predictions in a treatment planning system for active particle beam scanning

    NASA Astrophysics Data System (ADS)

    Steinsträter, O.; Scholz, U.; Friedrich, T.; Krämer, M.; Grün, R.; Durante, M.; Scholz, M.

    2015-09-01

    Especially for heavier ions such as carbon ions, treatment planning systems (TPSs) for ion radiotherapy depend on models predicting the relative biological effectiveness (RBE) of the particles involved. Such models are subject to intensive research and the choice of the optimal RBE model is a matter of debate. On the other hand TPSs are often strongly coupled to particular RBE models and transition even to extended models of the same family can be difficult. We present here a model-independent interface which allows the unbiased use of any RBE model capable of providing dose-effect curves (even sampled curves) for a TPS. The full decoupling between the RBE model and TPS is based on the beam-mixing model proposed by Lam which is, in contrast to the often-used Zaider-Rossi model, independent of the explicit form of the underlying dose-effect curves. This approach not only supports the refinement of RBE models without adaptations of the TPS—which we demonstrate by means of the local effect model (LEM)—but also allows the comparison of very different model approaches on a common basis. We exemplify this by a comparison between the LEM and a model from the literature for proton RBE prediction.

  8. Integrated Systems Health Management for Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Melcher, Kevin

    2011-01-01

    The implementation of an integrated system health management (ISHM) capability is fundamentally linked to the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system. It is akin to having a team of experts who are all individually and collectively observing and analyzing a complex system, and communicating effectively with each other in order to arrive at an accurate and reliable assessment of its health. In this paper, concepts, procedures, and approaches are presented as a foundation for implementing an intelligent systems ]relevant ISHM capability. The capability stresses integration of DIaK from all elements of a system. Both ground-based (remote) and on-board ISHM capabilities are compared and contrasted. The information presented is the result of many years of research, development, and maturation of technologies, and of prototype implementations in operational systems.

  9. Integrated Meteorology and Chemistry Modeling: Evaluation and Research Needs

    EPA Science Inventory

    Over the past decade several online integrated atmospheric chemical-transport and meteorology modeling systems with varying levels of interactions among different atmospheric processes have been developed. A variety of approaches to meteorology-chemistry integration with differe...

  10. Integrated computer control system architectural overview

    SciTech Connect

    Van Arsdall, P.

    1997-06-18

    This overview introduces the NIF Integrated Control System (ICCS) architecture. The design is abstract to allow the construction of many similar applications from a common framework. This summary lays the essential foundation for understanding the model-based engineering approach used to execute the design.

  11. Integrating Kinetic Model of E. coli with Genome Scale Metabolic Fluxes Overcomes Its Open System Problem and Reveals Bistability in Central Metabolism

    PubMed Central

    Mannan, Ahmad A.; Toya, Yoshihiro; Shimizu, Kazuyuki; McFadden, Johnjoe; Kierzek, Andrzej M.; Rocco, Andrea

    2015-01-01

    An understanding of the dynamics of the metabolic profile of a bacterial cell is sought from a dynamical systems analysis of kinetic models. This modelling formalism relies on a deterministic mathematical description of enzyme kinetics and their metabolite regulation. However, it is severely impeded by the lack of available kinetic information, limiting the size of the system that can be modelled. Furthermore, the subsystem of the metabolic network whose dynamics can be modelled is faced with three problems: how to parameterize the model with mostly incomplete steady state data, how to close what is now an inherently open system, and how to account for the impact on growth. In this study we address these challenges of kinetic modelling by capitalizing on multi-‘omics’ steady state data and a genome-scale metabolic network model. We use these to generate parameters that integrate knowledge embedded in the genome-scale metabolic network model, into the most comprehensive kinetic model of the central carbon metabolism of E. coli realized to date. As an application, we performed a dynamical systems analysis of the resulting enriched model. This revealed bistability of the central carbon metabolism and thus its potential to express two distinct metabolic states. Furthermore, since our model-informing technique ensures both stable states are constrained by the same thermodynamically feasible steady state growth rate, the ensuing bistability represents a temporal coexistence of the two states, and by extension, reveals the emergence of a phenotypically heterogeneous population. PMID:26469081

  12. Integrated model of t