Science.gov

Sample records for integrated multiple capillary

  1. Multiple capillary biochemical analyzer

    DOEpatents

    Dovichi, Norman J.; Zhang, Jian Z.

    1995-01-01

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibres to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands.

  2. Multiple capillary biochemical analyzer

    DOEpatents

    Dovichi, N.J.; Zhang, J.Z.

    1995-08-08

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.

  3. An integrated multiple capillary array electrophoresis system for high-throughput DNA sequencing

    SciTech Connect

    Lu, X.

    1998-03-27

    A capillary array electrophoresis system was chosen to perform DNA sequencing because of several advantages such as rapid heat dissipation, multiplexing capabilities, gel matrix filling simplicity, and the mature nature of the associated manufacturing technologies. There are two major concerns for the multiple capillary systems. One concern is inter-capillary cross-talk, and the other concern is excitation and detection efficiency. Cross-talk is eliminated through proper optical coupling, good focusing and immersing capillary array into index matching fluid. A side-entry excitation scheme with orthogonal detection was established for large capillary array. Two 100 capillary array formats were used for DNA sequencing. One format is cylindrical capillary with 150 {micro}m o.d., 75 {micro}m i.d and the other format is square capillary with 300 {micro}m out edge and 75 {micro}m inner edge. This project is focused on the development of excitation and detection of DNA as well as performing DNA sequencing. The DNA injection schemes are discussed for the cases of single and bundled capillaries. An individual sampling device was designed. The base-calling was performed for a capillary from the capillary array with the accuracy of 98%.

  4. Integrated multiplexed capillary electrophoresis system

    SciTech Connect

    Yeung, Edward S.; Tan, Hongdong

    2002-05-14

    The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.

  5. Laser illumination of multiple capillaries that form a waveguide

    DOEpatents

    Dhadwal, Harbans S.; Quesada, Mark A.; Studier, F. William

    1998-08-04

    A system and method are disclosed for efficient laser illumination of the interiors of multiple capillaries simultaneously, and collection of light emitted from them. Capillaries in a parallel array can form an optical waveguide wherein refraction at the cylindrical surfaces confines side-on illuminating light to the core of each successive capillary in the array. Methods are provided for determining conditions where capillaries will form a waveguide and for assessing and minimizing losses due to reflection. Light can be delivered to the arrayed capillaries through an integrated fiber optic transmitter or through a pair of such transmitters aligned coaxially at opposite sides of the array. Light emitted from materials within the capillaries can be carried to a detection system through optical fibers, each of which collects light from a single capillary, with little cross talk between the capillaries. The collection ends of the optical fibers can be in a parallel array with the same spacing as the capillary array, so that the collection fibers can all be aligned to the capillaries simultaneously. Applicability includes improving the efficiency of many analytical methods that use capillaries, including particularly high-throughput DNA sequencing and diagnostic methods based on capillary electrophoresis.

  6. Laser illumination of multiple capillaries that form a waveguide

    DOEpatents

    Dhadwal, H.S.; Quesada, M.A.; Studier, F.W.

    1998-08-04

    A system and method are disclosed for efficient laser illumination of the interiors of multiple capillaries simultaneously, and collection of light emitted from them. Capillaries in a parallel array can form an optical waveguide wherein refraction at the cylindrical surfaces confines side-on illuminating light to the core of each successive capillary in the array. Methods are provided for determining conditions where capillaries will form a waveguide and for assessing and minimizing losses due to reflection. Light can be delivered to the arrayed capillaries through an integrated fiber optic transmitter or through a pair of such transmitters aligned coaxially at opposite sides of the array. Light emitted from materials within the capillaries can be carried to a detection system through optical fibers, each of which collects light from a single capillary, with little cross talk between the capillaries. The collection ends of the optical fibers can be in a parallel array with the same spacing as the capillary array, so that the collection fibers can all be aligned to the capillaries simultaneously. Applicability includes improving the efficiency of many analytical methods that use capillaries, including particularly high-throughput DNA sequencing and diagnostic methods based on capillary electrophoresis. 35 figs.

  7. Multiple capillary biochemical analyzer with barrier member

    DOEpatents

    Dovichi, N.J.; Zhang, J.Z.

    1996-10-22

    A multiple capillary biochemical analyzer is disclosed for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal-to-noise ratio. 12 figs.

  8. Multiple capillary biochemical analyzer with barrier member

    DOEpatents

    Dovichi, Norman J.; Zhang, Jian Z.

    1996-01-01

    A multiple capillary biochemical analyzer for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal to noise ratio.

  9. Multiple beam interference model for measuring parameters of a capillary.

    PubMed

    Xu, Qiwei; Tian, Wenjing; You, Zhihong; Xiao, Jinghua

    2015-08-01

    A multiple beam interference model based on the ray tracing method and interference theory is built to analyze the interference patterns of a capillary tube filled with a liquid. The relations between the angular widths of the interference fringes and the parameters of both the capillary and liquid are derived. Based on these relations, an approach is proposed to simultaneously determine four parameters of the capillary, i.e., the inner and outer radii of the capillary, the refractive indices of the liquid, and the wall material. PMID:26368114

  10. Integration of amperometric sensors for microchip capillary electrophoresis application

    NASA Astrophysics Data System (ADS)

    Dicorato, F.; Moore, E.; Glennon, J.

    2011-08-01

    Capillary electrophoresis is a technique for the separation and analysis of chemical compounds. Techniques adopted from the microchip technology knowledge have led to recent developments of electrophoresis system with integration on microchip. Microchip Capillary Electrophoresis (μCE) systems offer a series of advantages as easy integration for Lab-on-a-chip applications, high performance, portability, speed, minimal solvent and sample requirements. A new technological challenge aims at the development of an economic modular microchip capillary electrophoresis systems using separable and independent units concerning the sensor. In this project we worked on the development of an interchangeable amperometric sensor in order to provide a solution to such electrode passivation and facilitating the use of tailored sensors for specific analyte detection besides. Fluidic chips have been machined from cyclic olefin polymer pallets (Zeonor®) using a micro-injection molding machine.

  11. Induced hydraulic pumping via integrated submicrometer cylindrical glass capillaries.

    PubMed

    Cao, Zhen; Yobas, Levent

    2014-08-01

    Here, we report on a micropump that generates hydraulic pressure owing to a mismatch in EOF rates of microchannels and submicrometer cylindrical glass capillaries integrated on silicon. The electrical conductance of such capillaries in the dilute limit departs from bulk linear behavior as well as from the surface-charge-governed saturation in nanoslits that is well described by the assumption of a constant surface charge density. The capillaries show rather a gradual decrease in conduction at low salt concentrations, which can be explained more aptly by a variable surface charge density that accounts for chemical equilibrium of the surface. The micropump uses a traditional cross-junction structure with ten identical capillaries integrated in parallel on a side arm and each with a 750 nm diameter and 3 mm length. For an applied voltage of 700 V, a hydraulic pressure up to 5 kPa is generated with a corresponding flow velocity nearly 3 mm/s in a straight field-free branch 20 μm wide, 10 μm deep, and 10 mm long. The micropump utility has been demonstrated in an open tubular LC of three fluorescently labeled amino acids in just less than 20 s with minimal plate height values between 3 and 7 μm. The submicrometer capillaries are self-enclosed and produced through a unique process that does not require high-resolution advanced lithography or wafer-bonding techniques to define their highly controlled precise structures. PMID:24917552

  12. Integrated on-line system for DNA sequencing by capillary electrophoresis: From template to called bases

    SciTech Connect

    Ton, H.; Yeung, E.S.

    1997-02-15

    An integrated on-line prototype for coupling a microreactor to capillary electrophoresis for DNA sequencing has been demonstrated. A dye-labeled terminator cycle-sequencing reaction is performed in a fused-silica capillary. Subsequently, the sequencing ladder is directly injected into a size-exclusion chromatographic column operated at nearly 95{degree}C for purification. On-line injection to a capillary for electrophoresis is accomplished at a junction set at nearly 70{degree}C. High temperature at the purification column and injection junction prevents the renaturation of DNA fragments during on-line transfer without affecting the separation. The high solubility of DNA in and the relatively low ionic strength of 1 x TE buffer permit both effective purification and electrokinetic injection of the DNA sample. The system is compatible with highly efficient separations by a replaceable poly(ethylene oxide) polymer solution in uncoated capillary tubes. Future automation and adaptation to a multiple-capillary array system should allow high-speed, high-throughput DNA sequencing from templates to called bases in one step. 32 refs., 5 figs.

  13. Heat Load Sharing in a Capillary Pumped Loop with Multiple Evaporators and Multiple Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2005-01-01

    This paper describes the heat load sharing function among multiple parallel evaporators in a capillary pumped loop (CPL). In the normal mode of operation, the evaporators cool the instruments by absorbing the waste heat. When an instruments is turned off, the attached evaporator can keep it warm by receiving heat from other evaporators serving the operating instruments. This is referred to as heat load sharing. A theoretical basis of heat load sharing is given first. The fact that the wicks in the powered evaporators will develop capillary pressure to force the generated vapor to flow to cold locations where the pressure is lower leads to the conclusion that heat load sharing is an inherent function of a CPL with multiple evaporators. Heat load sharing has been verified with many CPLs in ground tests. Experimental results of the Capillary Pumped Loop 3 (CAPL 3) Flight Experiment are presented in this paper. Factors that affect the amount of heat being shared are discussed. Some constraints of heat load sharing are also addressed.

  14. DNA sequencing by multiple capillaries that form a waveguide

    SciTech Connect

    Dhadwal, S.H.; Quesada, M.A.; Studier, F.W.

    1997-05-01

    A 12-capillary prototype electrophoresis system for DNA sequencing has been constructed. Laser illumination is introduced into an optical waveguide that is formed by an array of individual capillaries that serve both as the optical elements of the periodic array and as the channels containing sieving media for electrophoresis. A theoretical framework and experimental data will be presented to illustrate the viability of this approach.

  15. Enantiomeric resolution of multiple chiral centres racemates by capillary electrophoresis.

    PubMed

    Ali, Imran; Suhail, Mohd; Al-Othman, Zeid A; Alwarthan, Abdulrahman; Aboul-Enein, Hassan Y

    2016-05-01

    Enantiomeric resolution of multichiral centre racemates is an important area as some multichiral centre racemates are of great medicinal importance. However, enantioseparation of such types of racemates is a challenging task. Amongst many analytical techniques, capillary electrophoresis is a powerful technique and may be used to resolve such racemates. Only few papers are available describing enantiomeric resolution of such racemates. Therefore, efforts have been made to describe the enantiomeric resolution of multichiral centre racemates by capillary electrophoresis. This article discusses the importance of multichiral racemates, the need for capillary electrophoresis in enantiomeric resolution and chiral resolution of multichiral centre racemates using various chiral selectors. Further, attempts have been made to discuss the future challenges and prospects of enantiomeric resolution of multichiral racemates. The various chiral selectors used for the purpose are chiral crown ether, cyclodextrins, polysaccharides, macrocyclic glycopeptide antibiotics and ligand exchange. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26840015

  16. Microfabricated capillary electrophoresis chip and method for simultaneously detecting multiple redox labels

    DOEpatents

    Mathies, Richard A.; Singhal, Pankaj; Xie, Jin; Glazer, Alexander N.

    2002-01-01

    This invention relates to a microfabricated capillary electrophoresis chip for detecting multiple redox-active labels simultaneously using a matrix coding scheme and to a method of selectively labeling analytes for simultaneous electrochemical detection of multiple label-analyte conjugates after electrophoretic or chromatographic separation.

  17. Integration of monolithic frit into the particulate capillary (IMFPC) column in shotgun proteome analysis.

    PubMed

    Wang, Fangjun; Dong, Jing; Ye, Mingliang; Wu, Ren'an; Zou, Hanfa

    2009-10-12

    Capillary column plays an important role in nano-flow liquid chromatography coupled with tandem mass spectrometry for dealing with the high dynamic range and complexity of protein samples in shotgun proteome analysis. In this study, the integrated monolithic frit into the particulate capillary (IMFPC) column was prepared. By comparing the prepared IMFPC column with conventionally fritless capillary column, smaller size of packing materials could be easily packed into the capillary to achieve higher average peak capacity and proteome coverage. As the monolithic emitter was integrated onto this type of column, the void volume between packing particles and electrospray emitter was eliminated and the electrospray quality was improved. The prepared IMFPC column was applied to proteome analysis of mouse liver extracts, and it was observed that the number of identified proteins and peptides increased 14.9 and 12.9% as well as the peak capacity increased 11.6% by using IMFPC column over conventionally fritless capillary column. PMID:19786199

  18. Multiple capillary isotachophoresis with repetitive hydrodynamic injections for performance improvement of the electromigration preconcentration.

    PubMed

    Mai, Thanh Duc; Oukacine, Farid; Taverna, Myriam

    2016-07-01

    A novel electrokinetic preconcentration technique based on multiple isotachophoresis (M-ITP) realised in a micro-bored capillary to improve sensitivity for capillary electrophoresis with hydrodynamic injection was developed. The M-ITP operation relies on pressure-assisted pushing of a preconcentrated sample plug after the first ITP process back to the injection end of the capillary, followed by a large volume hydrodynamic injection prior to application of the second ITP step. This operational cycle was repeated as many times as desired with very good repeatability of the peak areas and peak heights at each ITP round (RSD less than 8%). Using imidazole and benzoate as models for cationic and anionic analytes, important insights into the mechanism of this electrokinetic preconcentration process with and without the presence of the electro-osmotic flow (EOF) at acidic and basic conditions were provided. Stacking of the benzoate ion, selected as one model analyte, in the presence of EOF and from a sample plug representing up to 300% of the total capillary length was successfully demonstrated. M-ITP was then demonstrated through the enrichment of the Aβ 1-40 amyloid peptide, considered as one of the biomarkers for biochemical diagnosis of Alzheimer's disease. Quantification of Aβ 1-40 down to 50nM with UV detection was made possible with 6 M-ITP cycles. PMID:27236482

  19. Development and integration of the capillary pumped loop GAS and Hitchhiker flight experiments

    NASA Technical Reports Server (NTRS)

    Butler, D.; Mcintosh, R.

    1990-01-01

    The Capillary Pumped Loop (CPL) is a thermal control system with high density heat acquisition and transport capability. A small spaceflight version of the CPL was built and flown as a GAS experiment on STS 51-D in April 1985 and STS 51-G in June 1985, and as a Hitchhiker-G experiment on STS 61-C in January 1986. The purpose of the experiments was to demonstrate the capability of a capillary pumped system under microgravity conditions for use in the thermal control of large scientific instruments, advanced orbiting spacecraft, and space station components. The development, integration, and test activities of the CPL are described.

  20. Impact of the capillary fringe in vertically integrated models for CO2 storage

    NASA Astrophysics Data System (ADS)

    Nordbotten, J. M.; Dahle, H. K.

    2011-02-01

    This paper investigates vertically integrated equilibrium models for CO2 storage. We pay particular attention to the importance of including the effect of fine-scale capillary forces in the integrated equations. This aspect has been neglected in previous work, where the fluids are segregated by a sharp interface. Our results show that the fine-scale capillary forces lead to qualitative and quantitative alterations of the integrated equations. Interestingly, while such forces are dispersive on the fine scale, they lead to self-sharpening of the solution on the integrated scale. We discuss these aspects for injection, leakage, and long-term migration through the application by comparison to common sharp interface models proposed in the literature.

  1. Mathematical Modeling of Loop Heat Pipes with Multiple Capillary Pumps and Multiple Condensers. Part 1; Stead State Stimulations

    NASA Technical Reports Server (NTRS)

    Hoang, Triem T.; OConnell, Tamara; Ku, Jentung

    2004-01-01

    Loop Heat Pipes (LHPs) have proven themselves as reliable and robust heat transport devices for spacecraft thermal control systems. So far, the LHPs in earth-orbit satellites perform very well as expected. Conventional LHPs usually consist of a single capillary pump for heat acquisition and a single condenser for heat rejection. Multiple pump/multiple condenser LHPs have shown to function very well in ground testing. Nevertheless, the test results of a dual pump/condenser LHP also revealed that the dual LHP behaved in a complicated manner due to the interaction between the pumps and condensers. Thus it is redundant to say that more research is needed before they are ready for 0-g deployment. One research area that perhaps compels immediate attention is the analytical modeling of LHPs, particularly the transient phenomena. Modeling a single pump/single condenser LHP is difficult enough. Only a handful of computer codes are available for both steady state and transient simulations of conventional LHPs. No previous effort was made to develop an analytical model (or even a complete theory) to predict the operational behavior of the multiple pump/multiple condenser LHP systems. The current research project offered a basic theory of the multiple pump/multiple condenser LHP operation. From it, a computer code was developed to predict the LHP saturation temperature in accordance with the system operating and environmental conditions.

  2. High-Throughput Proteomics Using High Efficiency Multiple-Capillary Liquid Chromatography With On-Line High-Performance ESI FTICR Mass Spectrometry

    SciTech Connect

    Shen, Yufeng ); Tolic, Nikola ); Zhao, Rui; Pasa Tolic, Ljiljana ); Li, Lingjun; Berger, Scott J.; Harkewicz, Richard ); Anderson, Gordon A. ); Belov, Mikhail E. ); Smith, Richard D. )

    2000-12-01

    We report on the design and application of a high-efficiency multiple-capillary liquid chromatography (LC) system for high-throughput proteome analysis. The multiple-capillary LC system was operated at the pressure of 10,000 psi using commercial LC pumps to deliver the mobile phase and newly developed passive feedback valves to switch the mobile phase flow and introduce samples. The multiple-capillary LC system was composed of several serially connected dual-capillary column devices. The dual-capillary column approach was designed to eliminate the time delay for regeneration (or equilibrium) of the capillary column after its use under the mobile phase gradient condition (i.e. one capillary column was used in separation and the other was washed using mobile phase A). The serially connected dual-capillary columns and ESI sources were operated independently, and could be used for either''backup'' operation or with other mass spectrometer(s). This high-efficiency multiple-capillary LC system uses switching valves for all operations and is highly amenable to automation. The separations efficiency of dual-capillary column device, optimal capillary dimensions (column length and packed particle size), suitable mobile phases for electrospray, and the capillary re-generation were investigated. A high magnetic field (11.5 tesla) Fourier transform ion cyclotron resonance (FTICR) mass spectrometer was coupled on-line with this high-efficiency multiple-capillary LC system through an electrospray ionization source. The capillary LC provided a peak capacity of {approx}600, and the 2-D capillary LC-FTICR provided a combined resolving power of > 6 x 10 7 polypeptide isotopic distributions. For yeast cellular tryptic digests, > 100,000 polypeptides were typically detected, and {approx}1,000 proteins can be characterized in a single run.

  3. Separation of somatropin charge variants by multiple-injection CZE with Polybrene/chondroitin sulfate A double-coated capillaries.

    PubMed

    Amini, Ahmad

    2013-08-01

    The performance of dynamic double-coated fused-silica capillaries with Polybrene and chondroitin sulfate A has been compared with uncoated fused-silica capillaries for the determination of recombinant human growth factor (somatropin) charge variants. The separations were carried out under the same electrophoretic conditions as described in the European Pharmacopoeia, i.e. at pH 6.0 and 30°C. The coating significantly reduced the interactions between the proteins and the surface of the fused-silica capillary. The first five separations performed in a new bare fused-silica capillary were discarded because of very poor separation performance as a result of protein-surface interactions. There was an approximate twofold increase in the interday migration time precision (%RSD ≤ 6.5%) in the double-coated capillaries. The method was successfully transferred to a multiple CZE mode where two samples were analyzed in a single electrophoretic run. The average purity of somatropin certified reference standard was 98.0% (%RSD ≤ 0.3%) determined by using uncoated and coated capillaries. PMID:23780627

  4. An air-pressure-free elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Jung, Wooseok; Barrett, Matthew; Brooks, Carla; Rivera, Andrew; Birdsell, Dawn N.; Wagner, David M.; Zenhausern, Frederic

    2015-12-01

    We present a new elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis. The valve functions include metering to capture a designated volume of biological sample into a polymerase chain reaction (PCR) chamber, sealing to preserve the sample during PCR cycling, and transfer of the PCR-products and on-chip formamide post-processing for the analysis of DNA fragments by capillary gel electrophoresis. This new valve differs from prior art polydimethylsiloxane (PDMS) valves in that the valve is not actuated externally by air-pressure or vacuum so that it simplifies a DNA analysis system by eliminating the need for an air-pressure or vacuum source, and off-cartridge solenoid valves, control circuit boards and software. Instead, the new valve is actuated by a thermal cycling peltier assembly integrated within the hardware instrument that tightly comes in contact with a microfluidic cartridge for thermal activation during PCR, so that it spontaneously closes the valve without an additional actuator system. The valve has bumps in the designated locations so that it has a self-alignment that does not require precise alignment of a valve actuator. Moreover, the thickness of the new valve is around 600 μm with an additional bump height of 400 μm so that it is easy to handle and very feasible to fabricate by injection molding compared to other PDMS valves whose thicknesses are around 30-100 μm. The new valve provided over 95% of metering performance in filling the fixed volume of the PCR chamber, preserved over 97% of the sample volume during PCR, and showed very comparable capillary electrophoresis peak heights to the benchtop assay tube controls with very consistent transfer volume of the PCR-product and on-chip formamide. The new valve can perform a core function for integrated nucleic acid analysis by capillary electrophoresis.

  5. Multiple-stage integrating accelerometer

    DOEpatents

    Devaney, H.F.

    1984-06-27

    An accelerometer assembly is provided for use in activating a switch in response to multiple acceleration pulses in series. The accelerometer includes a housing forming a chamber. An inertial mass or piston is slidably disposed in the chamber and spring biased toward a first or reset position. A damping system is also provided to damp piston movement in response to first and subsequent acceleration pulses. Additionally, a cam, including a Z-shaped slot, and cooperating follower pin slidably received therein are mounted to the piston and the housing. The middle or cross-over leg of the Z-shaped slot cooperates with the follower pin to block or limit piston movement and prevent switch activation in response to a lone acceleration pulse. The switch of the assembly is only activated after two or more separate acceleration pulses are sensed and the piston reaches the end of the chamber opposite the reset position.

  6. Multiple-stage integrating accelerometer

    DOEpatents

    Devaney, Howard F.

    1986-01-01

    An accelerometer assembly is provided for use in activating a switch in response to multiple acceleration pulses in series. The accelerometer includes a housing forming a chamber. An inertial mass or piston is slidably disposed in the chamber and spring biased toward a first or reset position. A damping system is also provided to damp piston movement in response to first and subsequent acceleration pulses. Additionally, a cam, including a Z-shaped slot, and cooperating follower pin slidably received therein are mounted to the piston and the housing. The middle or cross-over leg of the Z-shaped slot cooperates with the follower pin to block or limit piston movement and prevent switch activation in response to a lone acceleration pulse. The switch of the assembly is only activated after two or more separate acceleration pulses are sensed and the piston reaches the end of the chamber opposite the reset position.

  7. Quantitative confirmation of dimetridazole and ipronidazole in swine feed by capillary gas chromatography/mass spectrometry with multiple ion detection.

    PubMed

    Morris, W J; Nandrea, G J; Roybal, J E; Munns, R K; Shimoda, W; Skinner, H R

    1987-01-01

    Extracts from 4 types of swine feed containing 0.11 ppm each of dimetridazole (DMZ) and ipronidazole (IPR) were analyzed by capillary gas chromatography/mass spectrometry (GC/MS) using multiple ion detection (MID) techniques. We demonstrate in this paper that the quantitative results obtained by capillary GC/MS with MID are comparable for both compounds to results obtained by liquid chromatography and have a lower coefficient of variation for DMZ. Moreover, consistency in the ion ratios (5 ions in DMZ and 6 ions in IPR) permits identification of these compounds by electron ionization MS. PMID:3624166

  8. An Experimental Study of Pressure Oscillation in a Capillary Pumped Loop with Multiple Evaporators and Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jen-Tung; Hoang, Triem T.

    1998-01-01

    The heat transport capability of a capillary pumped loop (CPL) is limited by the pressure drop that its evaporator wick can sustain. The pressure drop in a CPL is not constant even under seemingly steady operation, but rather exhibits an oscillatory behavior. A hydrodynamic theory based on a mass-spring-dashpot model was previously developed to predict the pressure oscillation in a CPL with a single evaporator and a single condenser. The theory states that the pressure oscillation is a function of physical dimensions of the CPL components and operating conditions. Experimental data agreed very well with theoretical predictions. The hydrodynamic stability theory has recently been extended to predict the pressure oscillations in CPLs with multiple evaporators and multiple condensers. Concurrently, an experimental study was conducted to verify the theory and to investigate the effects of various parameters on the pressure oscillation. Four evaporators with different wick properties were tested using a test loop containing two condenser plates. The test loop allowed the four evaporators to be tested in a single-pump, two-pump or four-pump configuration, and the two condenser plates to be plumbed either in parallel or in series. Test conditions included varying the power input, the reservoir set point temperature, the condenser sink temperature, and the flow resistance between the reservoir and the loop. Experimental results agreed well with theoretical predictions.

  9. Multiple-capillary measurement of RBC speed, flux, and density with optical coherence tomography

    PubMed Central

    Lee, Jonghwan; Wu, Weicheng; Lesage, Frederic; Boas, David A

    2013-01-01

    As capillaries exhibit heterogeneous and fluctuating dynamics even during baseline, a technique measuring red blood cell (RBC) speed and flux over many capillaries at the same time is needed. Here, we report that optical coherence tomography can capture individual RBC passage simultaneously over many capillaries located at different depths. Further, we demonstrate the ability to quantify RBC speed, flux, and linear density. This technique will provide a means to monitor microvascular flow dynamics over many capillaries at different depths at the same time. PMID:24022621

  10. Fabrication of a miniaturized capillary waveguide integrated fiber-optic sensor for fluoride determination.

    PubMed

    Xiong, Yan; Wang, Chengjie; Tao, Tao; Duan, Ming; Tan, Jun; Wu, Jiayi; Wang, Dong

    2016-05-10

    Fluoride concentration is a key aspect of water quality and essential for human health. Too much or too little fluoride intake from water supplies is harmful to public health. In this study, a capillary waveguide integrated fiber-optic sensor was fabricated for fluoride measurement in water samples. The sensor was modularly designed with three parts, i.e., a light source, capillary flow cell and detector. When light propagated from a light emitting diode (LED) to the capillary waveguide cell through an excitation fiber, it interacted with the sensing reagent, and its intensity changed with different fluoride concentrations. Then, the light propagated to the detector through a detection fiber for absorption determination of fluoride according to Beer's law. This miniaturized sensor showed advantages of fast analysis (9.2 s) and small reagent demand (200 μL) per sample, and it also had a low detection limit (8 ppb) and high selectivity for fluoride determination. The sensor was applied to fluoride determination in different water samples. The results obtained were compared with those obtained by conventional spectrophotometry and ion chromatography, showing agreement and validating the sensor's potential application. PMID:27067512

  11. Gene analysis of multiple oral bacteria by the polymerase chain reaction coupled with capillary polymer electrophoresis.

    PubMed

    Liu, Chenchen; Yamaguchi, Yoshinori; Sekine, Shinichi; Ni, Yi; Li, Zhenqing; Zhu, Xifang; Dou, Xiaoming

    2016-03-01

    Capillary polymer electrophoresis is identified as a promising technology for the analysis of DNA from bacteria, virus and cell samples. In this paper, we propose an innovative capillary polymer electrophoresis protocol for the quantification of polymerase chain reaction products. The internal standard method was modified and applied to capillary polymer electrophoresis. The precision of our modified internal standard protocol was evaluated by measuring the relative standard deviation of intermediate capillary polymer electrophoresis experiments. Results showed that the relative standard deviation was reduced from 12.4-15.1 to 0.6-2.3%. Linear regression tests were also implemented to validate our protocol. The modified internal standard method showed good linearity and robust properties. Finally, the ease of our method was illustrated by analyzing a real clinical oral sample using a one-run capillary polymer electrophoresis experiment. PMID:26648455

  12. An integrated nematic liquid crystal in-fiber modulator derivates from capillary optical fiber

    NASA Astrophysics Data System (ADS)

    Guo, Xiaohui; Yang, Xinghua; Li, Song; Liu, Zhihai; Hu, Minggang; Qu, Bin; Yuan, Libo

    2016-05-01

    A novel liquid crystal integrated modulation-depth-adjustable in-fiber modulator is proposed. The liquid crystal is encapsulated in a specially designed capillary optical fiber with tubular structure. The experimental results show that the liquid crystal under the electric field can influence the light intensity in the tubular core of the fiber. The light at 632.8 nm in the circular waveguide can be modulated by only 2.71×10-2 nL of the liquid crystals under electric field. The wide range of modulation-depth from 23% to 50% can be obtained by adjusting the strength of the external electric field. In addition, the modulator shows good stability and repeatability. This work has great potentials in integrated in-fiber optical devices such as tunable modulators, optical switches and electric field sensors.

  13. Monitoring antigenic protein integrity during glycoconjugate vaccine synthesis using capillary electrophoresis-mass spectrometry.

    PubMed

    Tengattini, Sara; Domínguez-Vega, Elena; Temporini, Caterina; Terreni, Marco; Somsen, Govert W

    2016-09-01

    A capillary electrophoresis-mass spectrometry (CE-MS) method was developed for the characterization and integrity assessment of the Mycobacterium tuberculosis (MTB) antigens TB10.4 and Ag85B and their chemically produced glycoconjugates, which are glycovaccine candidates against tuberculosis (TB). In order to prevent protein adsorption to the inner capillary wall and to achieve efficient separation of the antigen proteoforms, a polyionic multilayer coating of polybrene-dextran sulfate-polybrene (PB-DS-PB) was used in combination with 1.5 M acetic acid as background electrolyte (BGE). Coupling of CE to high-resolution time-of-flight MS was achieved by a coaxial interface employing a sheath liquid of isopropanol-water (50:50, v/v) containing 0.1 % formic acid. The MTB antigens were exposed to experimental conditions used for chemical glycosylation (but no activated saccharide was added) in order to investigate their stability during glycovaccine production. CE-MS analysis revealed the presence of several closely related degradation products, including truncated, oxidized and conformational variants, which were assigned by accurate mass. Analysis of synthesized mannose conjugates of TB10.4 and Ag85B allowed the determination of the glycoform composition of the neo-glycoproteins next to the characterization of degradation products which were shown to be partly glycoconjugated. Moreover, the selectivity of CE-MS allowed specific detection of deamidated species (protein mass change of 1.0 Da only), indicating that chemical glycosylation increased susceptibility to deamidation. Overall, the results show that CE-MS represents a useful analytical tool for the detailed characterization and optimization of neo-glycoconjugate products. Graphical Abstract Flowchart illustrating Mycobacterium tuberculosis (MTB) antigen glycosylation, glycoconjugate variant and degradation product separation by capillary electrophoresis (CE) and their characterization by intact mass

  14. Integrated platform for detection of DNA sequence variants using capillary array electrophoresis

    SciTech Connect

    Qingbro, Li; Liu, Zhaowei; Monroe, Heidi M; Culiat, Cymbeline T

    2002-08-01

    We have developed a highly versatile platform that performs temperature gradient capillary electrophoresis (TGCE) for mutation/single-nucleotide polymorphism (SNP) detection, sequencing and mutation/SNP genotyping for identification of sequence variants on an automated 24-, 96- or 192-capillary array instrument. In the first mode, multiple DNA samples consisting of homoduplexes and heteroduplexes are separated by CE, during which a temperature gradient is applied that covers all possible temperatures of 50% melting equilibrium (Tms) for the samples. The differences in Tms result in separation of homoduplexes from heteroduplexes, thereby identifying the presence of DNA variants. The sequencing mode is then used to determine the exact location of the mutation/SNPs in the DNA variants. The first two modes allow the rapid identification of variants from the screening of a large number of samples. Only the variants need to be sequenced. The third mode utilizes multiplexed single-base extensions (SBEs) to survey mutations and SNPs at the known sites of DNA sequence. The TGCE approach combined with sequencing and SBE is fast and cost-effective for high-throughput mutation/SNP detection.

  15. Capillary-based fully integrated and automated system for nanoliter polymerase chain reaction analysis directly from cheek cells.

    PubMed

    He, Y; Zhang, Y H; Yeung, E S

    2001-07-27

    A miniaturized, integrated and automated system based on capillary fluidics has been developed for nanoliter DNA analysis directly from cheek cells. All steps for DNA analysis, including injecting aqueous reagents and DNA samples, mixing the solutions together, thermal cell lysis, polymerase chain reaction (PCR), transfer and injection of PCR product, separation, sizing and detection of those products are performed in a capillary-based integrated system. A small amount of cheek cells collected by a plastic toothpick is directly dissolved in the PCR cocktail in a plastic vial or mixed on-line with a small volume of PCR cocktail (125 nl) in the capillary. After thermal cell lysis and PCR in a microthermal cycler, the DNA fragments are mixed with DNA size standards and transferred to a micro-cross for injection and separation by capillary gel electrophoresis. Programmable syringe pumps, switching valves, multiposition and freeze-thaw valves are used for microfluidic control in the entire system. This work establishes the feasibility of performing all the steps of DNA analysis from real samples in a capillary-based nanoliter integrated system. PMID:11521874

  16. Multiple identities and the integration of personality.

    PubMed

    Gregg, G S

    1995-09-01

    Life-history interviews show narrators to shift among multiple, often contradictory self-representations. This article outlines a model that accounts for how a relatively small set of self-symbols and metaphors can form a grammar-like system that simultaneously defines and integrates multiple identities. Drawing on generative theories from linguistics, anthropology, and music, the model proposes that this system provides a unitary deep structure that can be configured in various arrangements to yield multiple surface structures. Each "surface" identity constructs an individual's emotions and social relations--and what he or she accepts as "Me" and rejects as "not-Me"--into a distinct pattern, with identity per se appearing as a dialogic or fugue-like structure of opposed voices. Study-of-lives interviews conducted by the author in urban America and rural Morocco are used to present the model and to demonstrate the pivotal role played by multistable or "structurally ambiguous" symbols in anchoring reversible self-representations which integrate personality as a system of organized contraction. The musical analogy is emphasized in order to build a bridge toward current research in cognitive science and toward efforts to formulate a "state integration" theory of personality development. PMID:7562365

  17. Wide-field imaging design for a multiple-capillary DNA-sequencing system

    NASA Astrophysics Data System (ADS)

    Nay, Lyle M.; Sinclair, Robert; Swerdlow, Harold

    1997-05-01

    A laser-induced fluorescence detection system compatible with a capillary electrophoresis array was developed. The design incorporates fiber-optic excitation and a detection system including a diffraction grating and a CCD camera. The system employs no moving parts and is capable of producing data comparable to commercially available systems. It is based on a spectrally-resolved four-dye sequencing scheme. The conceptual design was proven, however, refinements must be made to optimize performance for high-throughput capillary-array DNA sequencing. Automated sample preparation and loading in combination with a refillable separation- matrix capillary-array system could prove to be an invaluable tool for completion of the Human Genome Project.

  18. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device.

    PubMed

    Woolley, A T; Hadley, D; Landre, P; deMello, A J; Mathies, R A; Northrup, M A

    1996-12-01

    Microfabricated silicon PCR reactors and glass capillary electrophoresis (CE) chips have been successfully coupled to form an integrated DNA analysis system. This construct combines the rapid thermal cycling capabilities of microfabricated PCR devices (10 degrees C/s heating, 2.5 degrees C/s cooling) with the high-speed (< 120 s) DNA separations provided by microfabricated CE chips. The PCR chamber and the CE chip were directly linked through a photolithographically fabricated channel filled with hydroxyethylcellulose sieving matrix. Electrophoretic injection directly from the PCR chamber through the cross injection channel was used as an "electrophoretic valve" to couple the PCR and CE devices on-chip. To demonstrate the functionality of this system, a 15 min PCR amplification of a beta-globin target cloned in M13 was immediately followed by high-speed CE chip separation in under 120 s, providing a rapid PCR-CE analysis in under 20 min. A rapid assay for genomic Salmonella DNA was performed in under 45 min, demonstrating that challenging amplifications of diagnostically interesting targets can also be performed. Real-time monitoring of PCR target amplification in these integrated PCR-CE devices is also feasible. Amplification of the beta-globin target as a function of cycle number was directly monitored for two different reactions starting with 4 x 10(7) and 4 x 10(5) copies of DNA template. This work establishes the feasibility of performing high-speed DNA analyses in microfabricated integrated fluidic systems. PMID:8946790

  19. High-Throughput Analysis of Lidocaine in Pharmaceutical Formulation by Capillary Zone Electrophoresis Using Multiple Injections in a Single Run

    PubMed Central

    Valese, Andressa C.; Spudeit, Daniel A.; Dolzan, Maressa D.; Bretanha, Lizandra C.; Micke, Gustavo A.

    2016-01-01

    This paper reports the development of a subminute separation method by capillary zone electrophoresis in an uncoated capillary using multiple injection procedure for the determination of lidocaine in samples of pharmaceutical formulations. The separation was performed in less than a minute leading to doing four injections in a single run. The cathodic electroosmotic flow contributed to reducing the analyses time. The background electrolyte was composed of 20 mmol L−1 2-amino-2-(hydroxymethyl)-1,3-propanediol and 40 mmol L−1 2-(N-morpholino)ethanesulfonic acid at pH 6.1. The internal standard used was benzylamine. Separations were performed in a fused uncoated silica capillary (32 cm total length, 23.5 cm effective length, and 50 μm internal diameter) with direct UV detection at 200 nm. Samples and standards were injected hydrodynamically using 40 mbar/3 s interspersed with spacer electrolyte using 40 mbar/7 s. The electrophoretic system was operated under constant voltage of 30 kV with positive polarity on the injection side. The evaluation of some analytical parameters of the method showed good linearity (r2 > 0.999), a limit of detection 0.92 mg L−1, intermediate precision better than 3.2% (peak area), and recovery in the range of 92–102%. PMID:27069712

  20. High-Throughput Analysis of Lidocaine in Pharmaceutical Formulation by Capillary Zone Electrophoresis Using Multiple Injections in a Single Run.

    PubMed

    Valese, Andressa C; Spudeit, Daniel A; Dolzan, Maressa D; Bretanha, Lizandra C; Vitali, Luciano; Micke, Gustavo A

    2016-01-01

    This paper reports the development of a subminute separation method by capillary zone electrophoresis in an uncoated capillary using multiple injection procedure for the determination of lidocaine in samples of pharmaceutical formulations. The separation was performed in less than a minute leading to doing four injections in a single run. The cathodic electroosmotic flow contributed to reducing the analyses time. The background electrolyte was composed of 20 mmol L(-1) 2-amino-2-(hydroxymethyl)-1,3-propanediol and 40 mmol L(-1) 2-(N-morpholino)ethanesulfonic acid at pH 6.1. The internal standard used was benzylamine. Separations were performed in a fused uncoated silica capillary (32 cm total length, 23.5 cm effective length, and 50 μm internal diameter) with direct UV detection at 200 nm. Samples and standards were injected hydrodynamically using 40 mbar/3 s interspersed with spacer electrolyte using 40 mbar/7 s. The electrophoretic system was operated under constant voltage of 30 kV with positive polarity on the injection side. The evaluation of some analytical parameters of the method showed good linearity (r (2) > 0.999), a limit of detection 0.92 mg L(-1), intermediate precision better than 3.2% (peak area), and recovery in the range of 92-102%. PMID:27069712

  1. Chemosensory function of amphibian skin: integrating epithelial transport, capillary blood flow and behaviour.

    PubMed

    Hillyard, S D; Willumsen, N J

    2011-07-01

    Terrestrial anuran amphibians absorb water across specialized regions of skin on the posterioventral region of their bodies. Rapid water absorption is mediated by the insertion of aquaporins into the apical membrane of the outermost cell layer. Water moves out of the epithelium via aquaglyceroporins in the basolateral membrane and into the circulation in conjunction with increased capillary blood flow to the skin and aquaporins in the capillary endothelial cells. These physiological responses are activated by intrinsic stimuli relating to the animals' hydration status and extrinsic stimuli relating to the detection of osmotically available water. The integration of these processes has been studied using behavioural observations in conjunction with neurophysiological recordings and studies of epithelial transport. These studies have identified plasma volume and urinary bladder stores as intrinsic stimuli that activate the formation of angiotensin II (AII) to stimulate water absorption behaviour. The coordinated increase in water permeability and capillary blood flow appears to be mediated primarily by sympathetic stimulation of beta adrenergic receptors, although the neurohypopyseal hormone arginine vasotocin (AVT) may also play a role. Extrinsic stimuli relate primarily to the ionic and osmotic properties of hydration sources. Toads avoid NaCl solutions that have been shown to be harmful in acute exposure, approx. 200-250 mm. The avoidance is partially attenuated by amiloride raising the hypothesis that the mechanism for salt detection by toads resembles that for salt taste in mammals that take in water by mouth. In this model, depolarization of the basolateral membrane of taste cells is coupled to afferent neural stimulation. In toad skin we have identified innervation of skin epithelial cells by branches of spinal nerves and measured neural responses to NaCl solutions that elicit behavioural avoidance. These same concentrations produce depolarization of the

  2. Integral 3D display using multiple LCDs

    NASA Astrophysics Data System (ADS)

    Okaichi, Naoto; Miura, Masato; Arai, Jun; Mishina, Tomoyuki

    2015-03-01

    The quality of the integral 3D images created by a 3D imaging system was improved by combining multiple LCDs to utilize a greater number of pixels than that possible with one LCD. A prototype of the display device was constructed by using four HD LCDs. An integral photography (IP) image displayed by the prototype is four times larger than that reconstructed by a single display. The pixel pitch of the HD display used is 55.5 μm, and the number of elemental lenses is 212 horizontally and 119 vertically. The 3D image pixel count is 25,228, and the viewing angle is 28°. Since this method is extensible, it is possible to display an integral 3D image of higher quality by increasing the number of LCDs. Using this integral 3D display structure makes it possible to make the whole device thinner than a projector-based display system. It is therefore expected to be applied to the home television in the future.

  3. Integrated management of multiple reservoir field developments

    SciTech Connect

    Lyons, S.L.; Chan, H.M.; Harper, J.L.; Boyett, B.A.; Dowson, P.R.; Bette, S.

    1995-10-01

    This paper consists of two sections. The authors first describe the coupling of a pipeline network model to a reservoir simulator and then the application of this new simulator to optimize the production strategy of two Mobil field developments. Mobil`s PEGASUS simulator is an integrated all purpose reservoir simulator that handles black-oil, compositional, faulted and naturally fractured reservoirs. The authors have extended the simulator to simultaneously model multiple reservoirs coupled with surface pipeline networks and processes. This allows them to account for the effects of geology, well placement, and surface production facilities on well deliverability in a fully integrated fashion. They have also developed a gas contract allocation system that takes the user-specified constraints, target rates and swing factors and automatically assigns rates to the individual wells of each reservoir. This algorithm calculates the overall deliverability and automatically reduces the user-specified target rates to meet the deliverability constraints. The algorithm and solution technique are described. This enhanced simulator has been applied to model a Mobil field development in the Southern Gas Basin, offshore United Kingdom, which consists of three separate gas reservoirs connected via a pipeline network. The simulator allowed the authors to accurately determine the impact on individual reservoir and total field performance by varying the development timing of these reservoirs. Several development scenarios are shown to illustrate the capabilities of PEGASUS. Another application of this technology is in the field developments in North Sumatra, Indonesia. Here the objective is to economically optimize the development of multiple fields to feed the PT Arun LNG facility. Consideration of a range of gas compositions, well productivity`s, and facilities constraints in an integrated fashion results in improved management of these assets. Model specifics are discussed.

  4. Planar lens integrated capillary action microfluidic immunoassay device for the optical detection of troponin I

    PubMed Central

    Mohammed, Mazher-Iqbal; Desmulliez, Marc P. Y.

    2013-01-01

    Optical based analysis in microfluidic and lab-on-a-chip systems are currently considered the gold standard methodology for the determination of end point reactions for various chemical and biological reaction processes. Typically, assays are performed using bulky ancillary apparatus such as microscopes and complex optical excitation and detection systems. Such instrumentation negates many of the advantages offered by device miniaturisation, particularly with respect to overall portability. In this article, we present a CO2 laser ablation technique for rapidly prototyping on-chip planar lenses, in conjunction with capillary action based autonomous microfluidics, to create a miniaturised and fully integrated optical biosensing platform. The presented self-aligned on-chip optical components offer an efficient means to direct excitation light within microfluidics and to directly couple light from a LED source. The device has been used in conjunction with a miniaturised and bespoke fluorescence detection platform to create a complete, palm sized system (≈60 × 80 × 60 mm) capable of performing fluoro-immunoassays. The system has been applied to the detection of cardiac Troponin I, one of the gold standard biomarkers for the diagnosis of acute myocardial infarction, achieving a lower detection limit of 0.08 ng/ml, which is at the threshold of clinically applicable concentrations. The portable nature of the complete system and the biomarker detection capabilities demonstrate the potential of the devised instrumentation for use as a medical diagnostics device at the point of care. PMID:24396546

  5. Integrated Capture, Concentration, PCR, and Capillary Electrophoretic Analysis of Pathogens on a Chip

    PubMed Central

    Beyor, Nathaniel; Yi, Lina; Seo, Tae Seok; Mathies, Richard A.

    2009-01-01

    A lab-on-a-chip system for pathogen detection is presented that integrates cell preconcentration, purification, PCR, and capillary electrophoretic (CE) analysis. The microdevice is comprised of micropumps and valves, a cell capture structure, a 100 nL PCR reactor, and a 5-cm long CE column for amplicon separation. Sample volumes ranging from 10 to 100 μL are introduced and driven through a fluidized bed of magnetically constrained immunomagnetic beads where the target cells are captured. After cell capture, beads are transferred using the on-chip pumps to the PCR reactor for DNA amplification. The resulting PCR products are electrophoretically injected onto the CE column for separation and detection of E. coli K12 and E. coli O157 targets. A detection limit of 0.2 cfu/μL is achieved using the E. coli O157 target and an input volume of 50 μL. Finally, the sensitive detection of E. coli O157 in the presence of K12 at a ratio of 1:1000 illustrates the capability of our system to identify target cells in a high commensal background. This cell capture-PCR-CE microsystem is a significant advance in the development of rapid, sensitive, and specific lab-on-a-chip devices for pathogen detection. PMID:19341275

  6. Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips with integrated conductivity sensors

    NASA Astrophysics Data System (ADS)

    Schlautmann, Stefan; Wensink, Henk; Schasfoort, Richard; Elwenspoek, Miko; van den Berg, Albert

    2001-07-01

    The fabrication and characterization of a microfluidic device for capillary electrophoresis applications is presented. The device consists of a glass chip which contains a single separation channel as well as an integrated conductivity detection cell. In contrast to most microfluidic glass devices the channels are not wet etched in HF but machined by the newly developed micro powder-blasting technique which allows the creation of microstructures below 100 µm, and additionally makes parallel hole machining at very low costs outside the cleanroom environment possible [1, 2]. The integration of the conductivity detector was achieved by leading two thin-film metal electrodes inside the separation channel. For rapid sample injection the chip is mounted inside an autosampler-based capillary electrophoresis platform. The detection electrodes for conductivity detection are read out by lock-in amplifier electronics. First measurements show the successful separation of various ions in the sub-millimeter range.

  7. Capillary Hemangioma

    MedlinePlus

    ... Why do capillary hemangiomas on the eyelids cause vision problems? Capillary Hemangiomas of the eyelid can cause ... a capillary hemangioma in the eye socket cause vision problems? A capillary hemangioma in the eye socket ( ...

  8. Automation and integration of multiplexed on-line sample preparation with capillary electrophoresis for DNA sequencing

    SciTech Connect

    Tan, H.

    1999-03-31

    The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performed in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.

  9. Integrated continuous flow polymerase chain reaction and micro-capillary electrophoresis system with bioaffinity preconcentration.

    PubMed

    Njoroge, Samuel K; Witek, Magorzata A; Battle, Katrina N; Immethun, Vicki E; Hupert, Mateusz L; Soper, Steven A

    2011-11-01

    An integrated and modular DNA analysis system is reported that consists of two modules: (i) A continuous flow polymerase chain reaction (CFPCR) module fabricated in a high T(g) (150°C) polycarbonate substrate in which selected gene fragments were amplified using biotin and fluorescently labeled primers accomplished by continuously shuttling small packets of PCR reagents and template through isothermal zones as opposed to heating and cooling large thermal masses typically performed in batch-type thermal reactors. (ii) μCE (micro-capillary electrophoresis) module fabricated in poly(methylmethacrylate) (PMMA), which utilized a bioaffinity selection and purification bed (2.9  μL) to preconcentrate and purify the PCR products generated from the CFPCR module prior to electrophoretic sorting. Biotin-labeled CFPCR products were hydrostatically pumped through the streptavidin-modified bed, where they were extracted onto the surface of micropillars. The affinity bed was also fabricated in PMMA and was populated with an array of microposts (50  μm width; 100  μm height) yielding a total surface area of ∼117  mm(2). This solid-phase extraction (SPE) process demonstrated high selectivity for biotinylated amplicons and utilized the strong streptavidin/biotin interaction (K(d) = 10(-15)  M) to generate high recoveries. The SPE selected CFPCR products were thermally denatured and single-stranded DNA released for injection into a 7-cm-long μCE channel for size-based separations and fluorescence detection. The utility of the system was demonstrated using Alu DNA typing for gender and ethnicity determinations as a model. Compared with the traditional cross-T injection procedure typically used for μCE, the affinity pre-concentration and injection procedure generated signal enhancements of 17- to 40-fold, critical for CFPCR thermal cyclers due to Taylor dispersion associated with their operation. PMID:22038569

  10. One-step multiple component isolation from the oil of Crinitaria tatarica (Less) Sojak by preparative capillary gas chromatography with characterization by spectroscopic and spectrometric techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the present work multiple component isolation from the oil of Crinitaria tatarica (Less.) Sojak. by Preparative Capillary Gas Chromatography (PCGC) with characterization by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have been carried out. Gas chromatography (GC-FID) ...

  11. Sapphire decelerating capillary channel integrated with antenna at frequency 0.675 THz

    NASA Astrophysics Data System (ADS)

    Ashanin, I. A.; Polozov, S. M.

    2016-07-01

    In recent years, there has been an increasing interest in THz-radiation for application in medicine (THz tomographs), in pharmaceutics (composition analysis for medicines), in introscopy of large-scale objects (ships, trains, containers) and others. THz-radiation can be generated by relativistic electron bunches passing through the Cherenkov decelerating capillary channel (circular waveguide with dielectric filling) with horn extraction. Relativistic electron beams having ∼100 µm in diameter and pulse durations of 1 ps or less (as in photoinjectors) are capable of producing substantial power of THz-radiation. High-peak power coherent Cherenkov radiation can be produced by a properly modulated high-brightness electron beam or by a single, high-density bunch having sub-wavelength dimension. The aperture of a Cherenkov decelerating structure should be comparable with the mm or sub-mm wavelength (0.1-3 mm). Different dielectric materials for the internal surface coating of the capillary channel of mm-sub-mm cross-section can be used. As is known, a frequency of 0.675 THz corresponds to the atmospheric window with high transparency. This report presents the results of electrodynamics study of the metallized sapphire decelerating Cherenkov capillary. A horn antenna attached to the metallized sapphire capillary channel at the 0.675 THz resonant frequency will be considered.

  12. Integrating Multiple Intelligences in EFL/ESL Classrooms

    ERIC Educational Resources Information Center

    Bas, Gokhan

    2008-01-01

    This article deals with the integration of the theory of Multiple Intelligences in EFL/ESL classrooms. In this study, after the theory of multiple intelligences was presented shortly, the integration of this theory into English classrooms. Intelligence types in MI Theory were discussed and some possible application ways of these intelligence types…

  13. Complementary and Integrative Medicine - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Complementary and Integrative Medicine URL of this page: https://www.nlm.nih. ... V W XYZ List of All Topics All Complementary and Integrative Medicine - Multiple Languages To use the sharing features on ...

  14. Code Division Multiple Access system candidate for integrated modular avionics

    NASA Astrophysics Data System (ADS)

    Mendez, Antonio J.; Gagliardi, Robert M.

    1991-02-01

    There are government and industry trends towards avionics modularity and integrated avionics. Key requirements implicit in these trends are suitable data communication concepts compatible with the integration concept. In this paper we explore the use ofCode Division Multiple Access (CDMA) techniques as an alternative to collision detection and collision avoidance multiple access techniques.

  15. Complementary and Integrative Medicine - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Complementary and Integrative Medicine URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Complementary and Integrative Medicine - Multiple Languages To use the sharing features on ...

  16. Development and optimization of an integrated capillary-based opto-microfluidic device for chemiluminescence quantitative detection

    NASA Astrophysics Data System (ADS)

    Honrado, Carlos; Dong, Tao

    2014-12-01

    A capillary-action driven device amenable for integration of organic photodiodes (OPDs) was developed for monitoring parallel chemiluminescence (CL) reactions. Device characterization was conducted using finite element method (FEM) simulations. Definition of the simulation setup, dimensional optimization of the reaction chamber and overall geometrical characterization of the microfluidic device were the main simulation results. Furthermore, a non-uniform filling process was observed during the final simulation of the capillary device. Validation of this result and the proposed capillary-driven filling process was later confirmed by experimental results. Experimental testing performed on a single chamber defined an optimal exposure time to the luminescent substrate of 5 min, indicating a quick analyte detection time. Further tests using one chamber presented a linear relation between the signal-to-noise ratio and increasing concentrations of the protein used. A measured limit of detection of 28 nM was obtained for streptavidin. Regarding the tests performed on the whole device, acceptable values of 39 s ± 5 s were obtained for the luminescent substrate total filling times. Also, the microfluidic device showed the capability to perform a quantitative detection of the occurring CL reactions. Weaker optical signals, due to the occurrence of CL reactions, were detected in the chambers with a later filling process, as predicted by simulation results. Notwithstanding these results, the capillary-based device is promising for quantitative detection of proteins in future point-of-care systems, presenting an unprompted filling process and parallel quantitative detection capability.

  17. Capillary electrophoresis

    SciTech Connect

    Warner, M.

    1988-10-15

    Rapid instrumental methods for performing electrophoretic separations in capillary tubes have recently been developed, making capillary electrophoresis one of the most exciting new techniques available to analytical chemists. This article discusses detection methods, applications, and the future of capillary electrophoresis.

  18. Capillary sample

    MedlinePlus

    ... using capillary blood sampling. Disadvantages to capillary blood sampling include: Only a limited amount of blood can be drawn using this method. The procedure has some risks (see below). Capillary ...

  19. Preservation of peritubular capillary endothelial integrity and increasing pericytes may be critical to recovery from postischemic acute kidney injury

    PubMed Central

    Kwon, Osun; Hong, Seok-Min; Sutton, Timothy A.; Temm, Constance J.

    2008-01-01

    Decreased renal blood flow following an ischemic insult contributes to a reduction in glomerular filtration. However, little is known about the underlying cellular or subcellular mechanisms mediating reduced renal blood flow in human ischemic acute kidney injury (AKI) or acute renal failure (ARF). To examine renal vascular injury following ischemia, intraoperative graft biopsies were performed after reperfusion in 21 cadaveric renal allografts. Confocal fluorescence microscopy was utilized to examine vascular smooth muscle and endothelial cell integrity as well as peritubular interstitial pericytes in the biopsies. The reperfused, transplanted kidneys exhibited postischemic injury to the renal vasculature, as demonstrated by disorganization/disarray of the actin cytoskeleton in vascular smooth muscle cells and disappearance of von Willebrand factor from vascular endothelial cells. Damage to peritubular capillary endothelial cells was more severe in subjects destined to have sustained ARF than in those with rapid recovery of their graft function. In addition, peritubular pericytes/myofibroblasts were more pronounced in recipients destined to recover than those with sustained ARF. Taken together, these data suggest damage to the renal vasculature occurs after ischemia-reperfusion in human kidneys. Preservation of peritubular capillary endothelial integrity and increasing pericytes may be critical to recovery from postischemic AKI. PMID:18562634

  20. Integrated Instruction: Multiple Intelligences and Technology

    ERIC Educational Resources Information Center

    McCoog, Ian J.

    2007-01-01

    Advancements in technology have changed the day to day operation of society. The ways in which we teach and learn have begun the same process. For this reason, we must reexamine instruction. In this article, the author analyzes the changing environment of educational technology and how to incorporate the theory of multiple intelligences. The…

  1. Integrating Learning Styles and Multiple Intelligences.

    ERIC Educational Resources Information Center

    Silver, Harvey; Strong, Richard; Perini, Matthew

    1997-01-01

    Multiple-intelligences theory (MI) explores how cultures and disciplines shape human potential. Both MI and learning-style theories reject dominant ideologies of intelligence. Whereas learning styles are concerned with differences in the learning process, MI centers on learning content and products. Blending learning styles and MI theories via…

  2. Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2-2.4 μm range.

    PubMed

    Kedenburg, S; Gissibl, T; Steinle, T; Steinmann, A; Giessen, H

    2015-04-01

    We demonstrate supercontinuum generation in unspliced as well as in integrated CS(2)-filled capillary fibers at different pump wavelengths of 1030 nm, 1510 nm, and 1685 nm. A novel method for splicing a liquid-filled capillary fiber to a standard single-mode optical fiber is presented. This method is based on mechanical splicing using a direct-laser written polymer ferrule using a femtosecond two-photon polymerization process. We maintain mostly single-mode operation despite the multi-mode capability of the liquid-filled capillaries. The generated supercontinua exhibit a spectral width of over 1200 nm and 1000 nm for core diameters of 5 μm and 10 μm, respectively. This is an increase of more than 50 percent compared to previously reported values in the literature due to improved dispersion properties of the capillaries. PMID:25968666

  3. Building a cognitive map by assembling multiple path integration systems.

    PubMed

    Wang, Ranxiao Frances

    2016-06-01

    Path integration and cognitive mapping are two of the most important mechanisms for navigation. Path integration is a primitive navigation system which computes a homing vector based on an animal's self-motion estimation, while cognitive map is an advanced spatial representation containing richer spatial information about the environment that is persistent and can be used to guide flexible navigation to multiple locations. Most theories of navigation conceptualize them as two distinctive, independent mechanisms, although the path integration system may provide useful information for the integration of cognitive maps. This paper demonstrates a fundamentally different scenario, where a cognitive map is constructed in three simple steps by assembling multiple path integrators and extending their basic features. The fact that a collection of path integration systems can be turned into a cognitive map suggests the possibility that cognitive maps may have evolved directly from the path integration system. PMID:26442503

  4. Integral Methodological Pluralism in Science Education Research: Valuing Multiple Perspectives

    ERIC Educational Resources Information Center

    Davis, Nancy T.; Callihan, Laurie P.

    2013-01-01

    This article examines the multiple methodologies used in educational research and proposes a model that includes all of them as contributing to understanding educational contexts and research from multiple perspectives. The model, based on integral theory (Wilber in a theory of everything. Shambhala, Boston, 2000) values all forms of research as…

  5. The Effects of Tasks on Integrating Information from Multiple Documents

    ERIC Educational Resources Information Center

    Cerdan, Raquel; Vidal-Abarca, Eduardo

    2008-01-01

    The authors examine 2 issues: (a) how students integrate information from multiple scientific documents to describe and explain a physical phenomenon that represents a subset of the information in the documents; and (b) the role of 2 sorts of tasks to achieve this type of integration, either writing an essay on a question requiring integration…

  6. Applying Quadrature Rules with Multiple Nodes to Solving Integral Equations

    SciTech Connect

    Hashemiparast, S. M.; Avazpour, L.

    2008-09-01

    There are many procedures for the numerical solution of Fredholm integral equations. The main idea in these procedures is accuracy of the solution. In this paper, we use Gaussian quadrature with multiple nodes to improve the solution of these integral equations. The application of this method is illustrated via some examples, the related tables are given at the end.

  7. Identification of new oxycodone metabolites in human urine by capillary electrophoresis-multiple-stage ion-trap mass spectrometry.

    PubMed

    Baldacci, A; Caslavska, J; Wey, A B; Thormann, W

    2004-10-01

    Capillary electrophoresis-electrospray ionization multiple-stage ion-trap mass spectrometry (CE-MSn) and computer simulation of fragmentation are demonstrated to be effective tools to detect and identify phase I and phase II metabolites of oxycodone (OCOD) in human urine. OCOD is a strong analgesic used for the management of moderate to severe mainly postoperative or cancer-related pain whose metabolism in man is largely unknown. Using an aqueous pH 9 ammonium acetate buffer and CE-MSn (n < or = 5), OCOD and its phase I metabolites produced by O-demethylation, N-demethylation, 6-ketoreduction and N-oxidation (such as oxymorphone, noroxycodone, noroxymorphone, 6-oxycodol, nor-6-oxycodol, oxycodone-N-oxide and 6-oxycodol-N-oxide) and phase II conjugates with glucuronic acid of several of these compounds could be detected in alkaline solid-phase extracts of a patient urine that was collected during a pharmacotherapy episode with daily ingestion of 240-320 mg of OCOD chloride. The data for three known OCOD metabolites for which the standards had to be synthesized in-house, 6-oxycodol, nor-6-oxycodol and oxycodone-N-oxide, were employed to identify two new metabolites, the N-oxidized derivative of 6-oxycodol and an O-glucuronide of this compound. CE-MSn and computer simulation of fragmentation also led to the identification of the N-glucuronide of noroxymorphone, another novel OCOD metabolite for which no standard compound or mass spectra library data were available. PMID:15532584

  8. Interstitial integrals in the multiple-scattering model

    SciTech Connect

    Swanson, J.R.; Dill, D.

    1982-08-15

    We present an efficient method for the evaluation of integrals involving multiple-scattering wave functions over the interstitial region. Transformation of the multicenter interstitial wave functions to a single center representation followed by a geometric projection reduces the integrals to products of analytic angular integrals and numerical radial integrals. The projection function, which has the value 1 in the interstitial region and 0 elsewhere, has a closed-form partial-wave expansion. The method is tested by comparing its results with exact normalization and dipole integrals; the differences are 2% at worst and typically less than 1%. By providing an efficient means of calculating Coulomb integrals, the method allows treatment of electron correlations using a multiple scattering basis set.

  9. Portable, Battery Operated Capillary Electrophoresis with Optical Isomer Resolution Integrated with Ionization Source for Mass Spectrometry.

    PubMed

    Moini, Mehdi; Rollman, Christopher M

    2016-03-01

    We introduce a battery operated capillary electrophoresis electrospray ionization (CE/ESI) source for mass spectrometry with optical isomer separation capability. The source fits in front of low or high resolution mass spectrometers similar to a nanospray source with about the same weight and size. The source has two high voltage power supplies (±25 kV HVPS) capable of operating in forward or reverse polarity modes and powered by a 12 V rechargeable lithium ion battery with operation time of ~10 h. In ultrafast CE mode, in which short narrow capillaries (≤15 μm i.d., 15-25 cm long) and field gradients ≥1000 V/cm are used, peak widths at the base are <1 s wide. Under these conditions, the source provides high resolution separation, including optical isomer resolution in ~1 min. Using a low resolution mass spectrometer (LTQ Velos) with a scan time of 0.07 s/scan, baseline separation of amino acids and their optical isomers were achieved in ~1 min. Moreover, bovine serum albumin (BSA) was analyzed in ~1 min with 56% coverage using the data-dependent MS/MS. Using a high resolution mass spectrometer (Thermo Orbitrap Elite) with 15,000 resolution, the fastest scan time achieved was 0.15 s, which was adequate for CE-MS analysis when optical isomer separation is not required or when the optical isomers were well separated. Figures of merit including a detection limit of 2 fmol and linear dynamic range of two orders of magnitude were achieved for amino acids. PMID:26644308

  10. Portable, Battery Operated Capillary Electrophoresis with Optical Isomer Resolution Integrated with Ionization Source for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Moini, Mehdi; Rollman, Christopher M.

    2016-03-01

    We introduce a battery operated capillary electrophoresis electrospray ionization (CE/ESI) source for mass spectrometry with optical isomer separation capability. The source fits in front of low or high resolution mass spectrometers similar to a nanospray source with about the same weight and size. The source has two high voltage power supplies (±25 kV HVPS) capable of operating in forward or reverse polarity modes and powered by a 12 V rechargeable lithium ion battery with operation time of ~10 h. In ultrafast CE mode, in which short narrow capillaries (≤15 μm i.d., 15-25 cm long) and field gradients ≥1000 V/cm are used, peak widths at the base are <1 s wide. Under these conditions, the source provides high resolution separation, including optical isomer resolution in ~1 min. Using a low resolution mass spectrometer (LTQ Velos) with a scan time of 0.07 s/scan, baseline separation of amino acids and their optical isomers were achieved in ~1 min. Moreover, bovine serum albumin (BSA) was analyzed in ~1 min with 56% coverage using the data-dependent MS/MS. Using a high resolution mass spectrometer (Thermo Orbitrap Elite) with 15,000 resolution, the fastest scan time achieved was 0.15 s, which was adequate for CE-MS analysis when optical isomer separation is not required or when the optical isomers were well separated. Figures of merit including a detection limit of 2 fmol and linear dynamic range of two orders of magnitude were achieved for amino acids.

  11. Integration of a contactless conductivity detector into a commercial capillary cassette. Detection of inorganic cations and catecholamines.

    PubMed

    Vuorinen, Pasi S; Jussila, Matti; Sirén, Heli; Palonen, Sami; Riekkola, Marja-Liisa

    2003-03-21

    A contactless conductivity detector integrated into the capillary cassette of Agilent (3D)CE equipment is described. The detector is user-friendly, compact and easily modified. The UV detector of the (3D)CE equipment is available parallel with the contactless conductivity detector increasing the detection power. Two electrolyte solutions, 2-(N-morpholino)ethanesulfonic acid-histidine solution (20 mM, pH 6.0) and ammonium acetate (10 mM, pH 4.0), were used as the separation media for inorganic cations and organic catecholamines, respectively. The detection limit for all metal cations except barium was under 0.5 mg/l, and that for four catecholamines was ca. 10 mg/l. This last value was the same order of magnitude as achieved with parallel UV detection. PMID:12685582

  12. Multiple methods integration for structural mechanics analysis and design

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Aminpour, M. A.

    1991-01-01

    A new research area of multiple methods integration is proposed for joining diverse methods of structural mechanics analysis which interact with one another. Three categories of multiple methods are defined: those in which a physical interface are well defined; those in which a physical interface is not well-defined, but selected; and those in which the interface is a mathematical transformation. Two fundamental integration procedures are presented that can be extended to integrate various methods (e.g., finite elements, Rayleigh Ritz, Galerkin, and integral methods) with one another. Since the finite element method will likely be the major method to be integrated, its enhanced robustness under element distortion is also examined and a new robust shell element is demonstrated.

  13. From multiple unitarity cuts to the coproduct of Feynman integrals

    NASA Astrophysics Data System (ADS)

    Abreu, Samuel; Britto, Ruth; Duhr, Claude; Gardi, Einan

    2014-10-01

    We develop techniques for computing and analyzing multiple unitarity cuts of Feynman integrals, and reconstructing the integral from these cuts. We study the relations among unitarity cuts of a Feynman integral computed via diagrammatic cutting rules, the discontinuity across the corresponding branch cut, and the coproduct of the integral. For single unitarity cuts, these relations are familiar. Here we show that they can be generalized to sequences of unitarity cuts in different channels. Using concrete one- and two-loop scalar integral examples we demonstrate that it is possible to reconstruct a Feynman integral from either single or double unitarity cuts. Our results offer insight into the analytic structure of Feynman integrals as well as a new approach to computing them.

  14. Noise suppressing capillary separation system

    DOEpatents

    Yeung, Edward S.; Xue, Yongjun

    1996-07-30

    A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans.

  15. Trajectory of isoelectric focusing from gels to capillaries to immobilized gradients in capillaries

    PubMed Central

    Koshel, Brooke M.; Wirth, Mary J.

    2013-01-01

    This review presents the need for replacing gels in 2D separations for proteomics, where speed, high-throughput, and the ability to characterize trace level proteins or small samples are the current desires. The theme of the review is isoelectric focusing, which is a valuable tool because it pre-concentrates proteins in addition to separating with high peak capacity. The review traces the technological progress from gel IEF to cIEF to packed capillaries with immobilized gradients for cIEF. Multiple capillary techniques are progressing toward meeting the current desires, providing extremely high sensitivity with regard to concentration and to small samples, integrated automation, and high peak capacity from multiple dimensions of separation. Capillaries with immobilized pH gradients for cIEF are emerging, which will alleviate interference from ampholytes and improve reproducibility in separation times when this valuable technique can be used as one of the dimensions. PMID:22930445

  16. Contribution of capillary electrophoresis to an integrated vision of humic substances size and charge characterizations

    SciTech Connect

    D'Orlye, Fanny; Reiller, Pascal E.

    2014-02-15

    The physicochemical properties of three different humic substances (HS) are probed using capillary zone electrophoresis in alkaline carbonate buffers, pH 10. Special attention is drawn to the impact of the electrolyte ionic strength and counter-ion nature, chosen within the alkali-metal series, on HS electrophoretic mobility. Taylor-Aris dispersion analysis provides insights into the hydrodynamic radius (R-H) distributions of HS. The smallest characterized entities are of nano-metric dimensions, showing neither ionic strength- nor alkali-metal-induced aggregation. These results are compared with the entities evidenced in dynamic light scattering measurements, the size of which is two order of magnitude higher, ca. 100 nm. The extended Onsager model provides a reasonable description of measured electrophoretic mobilities in the ionic strength range 1-50 mM, thus allowing the estimation of limiting mobilities and ionic charge numbers for the different HS samples. An unexpected HS electrophoretic mobility increase (in absolute value) is observed in the order Li{sup +} ≤ Na{sup +} ≤ K{sup +} ≤ Cs{sup +} and discussed either in terms of retarding forces or in terms of ion-ion interactions. (authors)

  17. High-Throughput Analysis With 96-Capillary Array Electrophoresis and Integrated Sample Preparation for DNA Sequencing Based on Laser Induced Fluorescence Detection

    SciTech Connect

    Gang Xue

    2001-12-31

    The purpose of this research was to improve the fluorescence detection for the multiplexed capillary array electrophoresis, extend its use beyond the genomic analysis, and to develop an integrated micro-sample preparation system for high-throughput DNA sequencing. The authors first demonstrated multiplexed capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) separations in a 96-capillary array system with laser-induced fluorescence detection. Migration times of four kinds of fluoresceins and six polyaromatic hydrocarbons (PAHs) are normalized to one of the capillaries using two internal standards. The relative standard deviations (RSD) after normalization are 0.6-1.4% for the fluoresceins and 0.1-1.5% for the PAHs. Quantitative calibration of the separations based on peak areas is also performed, again with substantial improvement over the raw data. This opens up the possibility of performing massively parallel separations for high-throughput chemical analysis for process monitoring, combinatorial synthesis, and clinical diagnosis. The authors further improved the fluorescence detection by step laser scanning. A computer-controlled galvanometer scanner is adapted for scanning a focused laser beam across a 96-capillary array for laser-induced fluorescence detection. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries. The limit of detection for fluorescein is 3 x 10{sup -11} M (S/N = 3) for 5-mW of total laser power scanned at 4 Hz. The observed cross-talk among capillaries is 0.2%. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components, and flexibility due to the independent paths for excitation and emission.

  18. Method and system of integrating information from multiple sources

    DOEpatents

    Alford, Francine A.; Brinkerhoff, David L.

    2006-08-15

    A system and method of integrating information from multiple sources in a document centric application system. A plurality of application systems are connected through an object request broker to a central repository. The information may then be posted on a webpage. An example of an implementation of the method and system is an online procurement system.

  19. Integrating Multiple Teaching Methods into a General Chemistry Classroom.

    ERIC Educational Resources Information Center

    Francisco, Joseph S.; Nicoll, Gayle; Trautmann, Marcella

    1998-01-01

    Four different methods of teaching--cooperative learning, class discussions, concept maps, and lectures--were integrated into a freshman-level general chemistry course to compare students' levels of participation. Findings support the idea that multiple modes of learning foster the metacognitive skills necessary for mastering general chemistry.…

  20. Application of turbulence modeling to the integrated hydrodynamic thermal-capillary model of Czochralski crystal growth of silicon

    NASA Astrophysics Data System (ADS)

    Kinney, T. A.; Brown, R. A.

    1993-09-01

    The integrated hydrodynamic thermal-capillary model (IHTCM) of Czochralski growth for large-diameter silicon crystals is extended to include a k-ɛ model for turbulence in the melt implemented in a form appropriate for capturing the transition to nearly laminar flow near solid boundaries. Calculations are presented for buoyancy-driven flow alone and for the flow driven by a combination of crystal and crucible rotation, buoyancy and surface tension gradients. These results predict the enhancement in the heat and mass transfer seen in experiments with increased crucible rotation rate, which is not predicted by laminar flow simulatons. The computed temperature fields and interface shapes compare well with measurements reported before (Kinney, Bornside, Brown and Kim, J. Crystal Growth 126 (1992) 413). The use of the k-ɛ/IHTCM for optimization of operating conditions is demonstrated by calculations for varying crystal and crucible rotation rates using an objective function that attempts to optimize oxygen concentration in the crystal, to minimize the radial variation of oxygen and to reduce the magnitude of the thermoelastic stress.

  1. Multiple ray cluster rendering for interactive integral imaging system.

    PubMed

    Jiao, Shaohui; Wang, Xiaoguang; Zhou, Mingcai; Li, Weiming; Hong, Tao; Nam, Dongkyung; Lee, Jin-Ho; Wu, Enhua; Wang, Haitao; Kim, Ji-Yeun

    2013-04-22

    In this paper, we present an efficient Computer Generated Integral Imaging (CGII) method, called multiple ray cluster rendering (MRCR). Based on the MRCR, an interactive integral imaging system is realized, which provides accurate 3D image satisfying the changeable observers' positions in real time. The MRCR method can generate all the elemental image pixels within only one rendering pass by ray reorganization of multiple ray clusters and 3D content duplication. It is compatible with various graphic contents including mesh, point cloud, and medical data. Moreover, multi-sampling method is embedded in MRCR method for acquiring anti-aliased 3D image result. To our best knowledge, the MRCR method outperforms the existing CGII methods in both the speed performance and the display quality. Experimental results show that the proposed CGII method can achieve real-time computational speed for large-scale 3D data with about 50,000 points. PMID:23609712

  2. Downsizing of an integrated tracking unit for multiple applications

    NASA Astrophysics Data System (ADS)

    Steinway, William J.; Thomas, James E.; Nicoloff, Michael J.; Patz, Mark D.

    1997-02-01

    This paper describes the specifications and capabilities of the integrated tracking unit (ITU) and its multiple applications are presented. The original ITU was developed by Coleman Research Corporation (CRC) for several federal law enforcement agencies over a four-year period and it has been used for friendly and unfriendly vehicle and person position tracking. The ITU has been down-sized to reduce its physical size, weight, and power requirements with respect to the first generation unit. The ITU consists of a global positioning system (GPS) receiver for precise position location and a cellular phone to transmit voice and data to a PC base station with a modem interface. This paper describes the down-sizing of the unit introduced in CRC's 'An Integrated Tracking Unit for Multiple Applications' paper presented at the 1995 Counterdrug Technology Assessment Center's symposium in Nashua, NH. This paper provides a description of the ITU and tested applications.

  3. Integration of multiple sensor fusion in controller design.

    PubMed

    Abdelrahman, Mohamed; Kandasamy, Parameshwaran

    2003-04-01

    The main focus of this research is to reduce the risk of a catastrophic response of a feedback control system when some of the feedback data from the system sensors are not reliable, while maintaining a reasonable performance of the control system. In this paper a methodology for integrating multiple sensor fusion into the controller design is presented. The multiple sensor fusion algorithm produces, in addition to the estimate of the measurand, a parameter that measures the confidence in the estimated value. This confidence is integrated as a parameter into the controller to produce fast system response when the confidence in the estimate is high, and a slow response when the confidence in the estimate is low. Conditions for the stability of the system with the developed controller are discussed. This methodology is demonstrated on a cupola furnace model. The simulations illustrate the advantages of the new methodology. PMID:12708539

  4. Integrated multiple-input multiple-output visible light communications systems: recent progress and results

    NASA Astrophysics Data System (ADS)

    O'Brien, Dominic; Haas, Harald; Rajbhandari, Sujan; Chun, Hyunchae; Faulkner, Grahame; Cameron, Katherine; Jalajakumari, Aravind V. N.; Henderson, Robert; Tsonev, Dobroslav; Ijaz, Muhammad; Chen, Zhe; Xie, Enyuan; McKendry, Jonathan J. D.; Herrnsdorf, Johannes; Gu, Erdan; Dawson, Martin D.

    2015-01-01

    Solid state lighting systems typically use multiple Light Emitting Diode (LED) die within a single lamp, and multiple lamps within a coverage space. This infrastructure forms the transmitters for Visible Light Communications (VLC), and the availability of low-cost detector arrays offers the possibility of building Multiple Input Multiple Output (MIMO) transmission systems. Different approaches to optical MIMO are being investigated as part of a UK government funded research programme, `Ultra-Parallel Visible Light Communications' (UPVLC). In this paper we present a brief review of the area and report results from systems that use integrated subsystems developed as part of the project. The scalability of these approaches and future directions will also be discussed.

  5. Surveillance systems integrating multiple sensors for enhanced situational awareness

    NASA Astrophysics Data System (ADS)

    Van Anda, J. B.; Van Anda, J. D.

    2005-05-01

    In the modern world of high value security systems a successful installation requires the sensors to produce more than just good IR images, preprocessed data from these images, imagery in multiple bands fused in intelligent ways with each other and with non imaging information such as Laser ranging is required. This paper describes a system where LW uncooled, color TV, low light level TV, and laser ranging information are fused in a integral Pan and Tilt system to provide a sensor suite with exceptional capabilities for seamlessly integration into an advanced security system. Advances integrated in this system includes the advances sensor suite, sensible symbology for situational awareness in case of operator intervention, parallax and focus tracking through zoom and sensor changes to enhance auto tracking and motion detection algorithms.

  6. Multilayer polymer microchip capillary array electrophoresis devices with integrated on-chip labeling for high-throughput protein analysis

    PubMed Central

    Yu, Ming; Wang, Qingsong; Patterson, James E.; Woolley, Adam T.

    2011-01-01

    It is desirable to have inexpensive, high-throughput systems that integrate multiple sample analysis processes and procedures, for applications in biology, chemical analysis, drug discovery, and disease screening. In this paper, we demonstrate multilayer polymer microfluidic devices with integrated on-chip labeling and parallel electrophoretic separation of up to 8 samples. Microchannels were distributed in two different layers and connected through interlayer through-holes in the middle layer. A single set of electrophoresis reservoirs and one fluorescent label reservoir address parallel analysis units for up to 8 samples. Individual proteins and a mixture of cancer biomarkers have been successfully labeled on-chip and separated in parallel with this system. A detection limit of 600 ng/mL was obtained for heat shock protein 90. Our integrated on-chip labeling microdevices show great potential for low-cost, simplified, rapid and high-throughput analysis. PMID:21449615

  7. NEXT Propellant Management System Integration With Multiple Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Soulas, George C.; Herman, Daniel A.

    2011-01-01

    As a critical part of the NEXT test validation process, a multiple-string integration test was performed on the NEXT propellant management system and ion thrusters. The objectives of this test were to verify that the PMS is capable of providing stable flow control to multiple thrusters operating over the NEXT system throttling range and to demonstrate to potential users that the NEXT PMS is ready for transition to flight. A test plan was developed for the sub-system integration test for verification of PMS and thruster system performance and functionality requirements. Propellant management system calibrations were checked during the single and multi-thruster testing. The low pressure assembly total flow rates to the thruster(s) were within 1.4 percent of the calibrated support equipment flow rates. The inlet pressures to the main, cathode, and neutralizer ports of Thruster PM1R were measured as the PMS operated in 1-thruster, 2-thruster, and 3-thruster configurations. It was found that the inlet pressures to Thruster PM1R for 2-thruster and 3-thruster operation as well as single thruster operation with the PMS compare very favorably indicating that flow rates to Thruster PM1R were similar in all cases. Characterizations of discharge losses, accelerator grid current, and neutralizer performance were performed as more operating thrusters were added to the PMS. There were no variations in these parameters as thrusters were throttled and single and multiple thruster operations were conducted. The propellant management system power consumption was at a fixed voltage to the DCIU and a fixed thermal throttle temperature of 75 C. The total power consumed by the PMS was 10.0, 17.9, and 25.2 W, respectively, for single, 2-thruster, and 3-thruster operation with the PMS. These sub-system integration tests of the PMS, the DCIU Simulator, and multiple thrusters addressed, in part, the NEXT PMS and propulsion system performance and functionality requirements.

  8. Integrative metabolomics for characterizing unknown low-abundance metabolites by capillary electrophoresis-mass spectrometry with computer simulations.

    PubMed

    Lee, Richard; Ptolemy, Adam S; Niewczas, Liliana; Britz-McKibbin, Philip

    2007-01-15

    Characterization of unknown low-abundance metabolites in biological samples is one the most significant challenges in metabolomic research. In this report, an integrative strategy based on capillary electrophoresis-electrospray ionization-ion trap mass spectrometry (CE-ESI-ITMS) with computer simulations is examined as a multiplexed approach for studying the selective nutrient uptake behavior of E. coli within a complex broth medium. On-line sample preconcentration with desalting by CE-ESI-ITMS was performed directly without off-line sample pretreatment in order to improve detector sensitivity over 50-fold for cationic metabolites with nanomolar detection limits. The migration behavior of charged metabolites were also modeled in CE as a qualitative tool to support MS characterization based on two fundamental analyte physicochemical properties, namely, absolute mobility (muo) and acid dissociation constant (pKa). Computer simulations using Simul 5.0 were used to better understand the dynamics of analyte electromigration, as well as aiding de novo identification of unknown nutrients. There was excellent agreement between computer-simulated and experimental electropherograms for several classes of cationic metabolites as reflected by their relative migration times with an average error of <2.0%. Our studies revealed differential uptake of specific amino acids and nucleoside nutrients associated with distinct stages of bacterial growth. Herein, we demonstrate that CE can serve as an effective preconcentrator, desalter, and separator prior to ESI-MS, while providing additional qualitative information for unambiguous identification among isobaric and isomeric metabolites. The proposed strategy is particularly relevant for characterizing unknown yet biologically relevant metabolites that are not readily synthesized or commercially available. PMID:17222002

  9. Predicting Protein Function via Semantic Integration of Multiple Networks.

    PubMed

    Yu, Guoxian; Fu, Guangyuan; Wang, Jun; Zhu, Hailong

    2016-01-01

    Determining the biological functions of proteins is one of the key challenges in the post-genomic era. The rapidly accumulated large volumes of proteomic and genomic data drives to develop computational models for automatically predicting protein function in large scale. Recent approaches focus on integrating multiple heterogeneous data sources and they often get better results than methods that use single data source alone. In this paper, we investigate how to integrate multiple biological data sources with the biological knowledge, i.e., Gene Ontology (GO), for protein function prediction. We propose a method, called SimNet, to Semantically i ntegrate multiple functional association Networks derived from heterogenous data sources. SimNet firstly utilizes GO annotations of proteins to capture the semantic similarity between proteins and introduces a semantic kernel based on the similarity. Next, SimNet constructs a composite network, obtained as a weighted summation of individual networks, and aligns the network with the kernel to get the weights assigned to individual networks. Then, it applies a network-based classifier on the composite network to predict protein function. Experiment results on heterogenous proteomic data sources of Yeast, Human, Mouse, and Fly show that, SimNet not only achieves better (or comparable) results than other related competitive approaches, but also takes much less time. The Matlab codes of SimNet are available at https://sites.google.com/site/guoxian85/simnet. PMID:26800544

  10. New capillary gel electrophoresis method for fast and accurate identification and quantification of multiple viral proteins in influenza vaccines.

    PubMed

    van Tricht, Ewoud; Geurink, Lars; Pajic, Bojana; Nijenhuis, Johan; Backus, Harold; Germano, Marta; Somsen, Govert W; Sänger-van de Griend, Cari E

    2015-11-01

    Current methods for the identification and/or quantification of viral proteins in influenza virus and virosome samples suffer from long analysis times, limited protein coverage and/or low accuracy and precision. We studied and optimized capillary gel electrophoresis (CGE) in order to achieve faster and enhanced characterization and quantification of viral proteins. Sample preparation as well the composition of the gel buffer was investigated in order to achieve adequate protein separation in relatively short times. The total sample preparation (reduction and deglycosylation) could be carried out efficiently within two hours. Hydrodynamic injection, separation voltage, and capillary temperature were optimized in full factorial design. The final method was validated and showed good performance for hemagglutinin fragment 1 (HA1), hemagglutinin fragment 2 (HA2), matrix protein (M) and nucleoprotein (NP). The CGE method allowed identification of different virus strains based on their specific protein profile. B/Brisbane inactivated virus and virosome samples could be analyzed within one day. The CGE results (titers) were comparable to single radial immune-diffusion (SRID), but the method has the advantage of a much faster time to results. CGE analysis of A/Christchurch from upstream process demonstrated the applicability of the method to samples of high complexity. The CGE method could be used in the same analyte concentration range as the RP-HPLC method, but showed better precision and accuracy. Overall, the total analysis time for the CGE method was much shorter, allowing analysis of 100 samples in 4 days instead of 10 days for SRID. PMID:26452923

  11. Miniaturized high throughput detection system for capillary array electrophoresis on chip with integrated light emitting diode array as addressed ring-shaped light source.

    PubMed

    Ren, Kangning; Liang, Qionglin; Mu, Xuan; Luo, Guoan; Wang, Yiming

    2009-03-01

    A novel miniaturized, portable fluorescence detection system for capillary array electrophoresis (CAE) on a microfluidic chip was developed, consisting of a scanning light-emitting diode (LED) light source and a single point photoelectric sensor. Without charge coupled detector (CCD), lens, fibers and moving parts, the system was extremely simplified. Pulsed driving of the LED significantly increased the sensitivity, and greatly reduced the power consumption and photobleaching effect. The highly integrated system was robust and easy to use. All the advantages realized the concept of a portable micro-total analysis system (micro-TAS), which could work on a single universal serial bus (USB) port. Compared with traditional CAE detecting systems, the current system could scan the radial capillary array with high scanning rate. An 8-channel CAE of fluorescein isothiocyanate (FITC) labeled arginine (Arg) on chip was demonstrated with this system, resulting in a limit of detection (LOD) of 640 amol. PMID:19224025

  12. Multiple cue use and integration in pigeons (Columba livia).

    PubMed

    Legge, Eric L G; Madan, Christopher R; Spetch, Marcia L; Ludvig, Elliot A

    2016-05-01

    Encoding multiple cues can improve the accuracy and reliability of navigation and goal localization. Problems may arise, however, if one cue is displaced and provides information which conflicts with other cues. Here we investigated how pigeons cope with cue conflict by training them to locate a goal relative to two landmarks and then varying the amount of conflict between the landmarks. When the amount of conflict was small, pigeons tended to integrate both cues in their search patterns. When the amount of conflict was large, however, pigeons used information from both cues independently. This context-dependent strategy for resolving spatial cue conflict agrees with Bayes optimal calculations for using information from multiple sources. PMID:26908004

  13. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  14. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  15. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figures.

  16. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.

  17. Pt@AuNPs integrated quantitative capillary-based biosensors for point-of-care testing application.

    PubMed

    Wu, Ze; Fu, Qiangqiang; Yu, Shiting; Sheng, Liangrong; Xu, Meng; Yao, Cuize; Xiao, Wei; Li, Xiuqing; Tang, Yong

    2016-11-15

    Current diagnostic technologies primarily rely on bulky and costly analytical instruments. Therefore, cost-effective and portable diagnosis tools that can be used for point-of-care tests (POCT) are highly desirable. In this study, we report a cost-effective, portable capillary-based biosensor for quantitative detection of biomarkers by the naked eye. This capillary-based biosensor was tested by measuring the distance of blue ink movement, which was directly correlated with the oxygen (O2) produced by efficient core-shell Pt@Au nanoparticles (Pt@AuNPs) catalysts decomposed hydrogen peroxide (H2O2). By linking the Pt@AuNPs with antibodies, capillary-based biosensor sandwich immunoassays were constructed. The concentrations of the target proteins were positively correlated with the distances of ink movement. To demonstrate their performance, the biosensors were used to detect the cancer biomarker sprostate-specific antigen (PSA) and carcinoembryonic antigen (CEA). The linear detection range (LDR) of the capillary-based biosensor for detecting PSA was from 0.02 to 2.5ng/mL, and the limit of detection (LOD) was 0.017ng/mL. LDR of the biosensor for detecting CEA was from 0.063 to 16ng/mL, and the LOD was 0.044ng/mL. For detection of PSA and CEA in clinical serum samples, the detection results of the capillary-based biosensor were well correlate with the results from of chemiluminescence immunoassays (CLIAs). Thus, the capillary-based biosensor may potentially be a useful strategy for point-of-care testing, in addition to being portable and cost effective. PMID:27240013

  18. Simultaneous chiral discrimination of multiple profens by cyclodextrin-modified capillary electrophoresis in normal and reversed polarity modes.

    PubMed

    La, Sookie; Kim, Jiyung; Kim, Jung-Han; Goto, Junichi; Kim, Kyoung-Rae

    2003-08-01

    Simultaneous enantioseparations of nine profens for their accurate chiral discrimination were achieved by capillary electrophoresis (CE) in the normal polarity (NP) mode with a single cyclodextrin (CD) system and in the reversed polarity (RP) mode with a dual CD system. The single CD system in the NP mode employed heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin (TMbetaCD) added at 75 mM-100 mM 2-(N-morpholino)ethanesulfonic acid buffer (pH 6.0) as the optimum run buffer. The dual CD system operated in the RP mode used 30 mM TMbetaCD and 1.0% anionic carboxymethyl-beta-cyclodextrin dissolved in pH 3.0, 100 mM phosphoric acid-triethanolamine buffer containing 0.01% hexadimethrine bromide added to reverse the electroosmotic flow. Fairly good enantiomeric resolutions and the opposite enantiomer migration orders were achieved in the two modes. Relative migration times to internal standard under respective optimum conditions were characteristic of each enantiomer with good precision (< 2% relative standard deviation, RSD), thereby enabling to crosscheck the chemical identification of profens and also their accurate chiralities. The method linearity in the two modes was found to be adequate (r > or = 0.9991) for the chiral assay of the profens investigated. Simultaneous enantiomeric purity test of ibuprofen, ketoprofen and flurbiprofen in a mixture was feasible in a single analysis by the present method. PMID:12900877

  19. One-step multiple component isolation from the oil of Crinitaria tatarica (Less.) Sojak. by preparative capillary gas with characterization by spectroscopic and spectrometric techniques and evaluation of biological activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the present work multiple component isolation from the oil of Crinitaria tatarica (Less.) Sojak. by Preparative Capillary Gas Chromatography (PCGC) with characterization by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have been carried out. Gas chromatography (GC-FID) ...

  20. Integrative Data Analysis: The Simultaneous Analysis of Multiple Data Sets

    PubMed Central

    Curran, Patrick J.; Hussong, Andrea M.

    2009-01-01

    Both quantitative and methodological techniques exist that foster the development and maintenance of a cumulative knowledge base within the psychological sciences. Most noteworthy of these techniques is meta-analysis which allows for the synthesis of summary statistics drawn from multiple studies when the original data are not available. However, when the original data can be obtained from multiple studies, many advantages stem from the statistical analysis of the pooled data. The authors define integrative data analysis (IDA) as the analysis of multiple data sets that have been pooled into one. Although variants of IDA have been incorporated into other scientific disciplines, the use of these techniques are much less evident in psychology. In this paper the authors present an overview of IDA as it may be applied within the psychological sciences; a discussion of the relative advantages and disadvantages of IDA; a description of analytic strategies for analyzing pooled individual data; and offer recommendations for the use of IDA in practice. PMID:19485623

  1. Integral methodological pluralism in science education research: valuing multiple perspectives

    NASA Astrophysics Data System (ADS)

    Davis, Nancy T.; Callihan, Laurie P.

    2013-09-01

    This article examines the multiple methodologies used in educational research and proposes a model that includes all of them as contributing to understanding educational contexts and research from multiple perspectives. The model, based on integral theory (Wilber in a theory of everything. Shambhala, Boston, 2000) values all forms of research as true, but partial. Consideration of objective (exterior) forms of research and data and subjective (interior) forms of research and data are further divided into individual and collective domains. Taking this categorization system one step further reveals eight indigenous perspectives that form a framework for considering research methodologies. Each perspective has unique questions, data sources, methods and quality criteria designed to reveal what is "true" from that view. As science educators who guide our students' research, this framework offers a useful guide to explain differences in types of research, the purpose and validity of each. It allows professional science educators to appreciate multiple forms of research while maintaining rigorous quality criteria. Use of this framework can also help avoid problems of imposing quality criteria of one methodology on research data and questions gathered using another methodology. This model is explored using the second author's dissertation research. Finally a decision chart is provided to use with those who are starting inquiries to guide their thinking and choice of appropriate methodologies to use when conducting research.

  2. Automation and integration of polymerase chain reaction with capillary electrophoresis for high throughput genotyping and disease diagnosis

    SciTech Connect

    Zhang, N.

    1999-02-12

    Genotyping is to detect specific loci in the human genome. These loci provide important information for forensic testing, construction of genetic linkage maps, gene related disease diagnosis and pharmacogenetic research. Genotyping is becoming more and more popular after these loci can be easily amplified by polymerase chain reaction (PCR). Capillary electrophoresis has its unique advantages for DNA analysis due to its fast heat dissipation and ease of automation. Four projects are described in which genotyping is performed by capillary electrophoresis emphasizing different aspects. First, the author demonstrates a principle to determine the genotype based on capillary electrophoresis system. VNTR polymorphism in the human D1S80 locus was studied. Second, the separation of four short tandem repeat (STR) loci vWF, THO1, TPOX and CSF1PO (CTTv) by using poly(ethylene oxide) (PEO) was studied in achieving high resolution and preventing rehybridization of the DNA fragments. Separation under denaturing, non-denaturing conditions and at elevated temperature was discussed. Third, a 250 {micro}m i.d., 365 {micro}m o.d. fused silica capillary was used as the microreactor for PCR. Fourth, direct PCR from blood was studied to simplify the sample preparation for genotyping to minimum.

  3. Noise suppressing capillary separation system

    DOEpatents

    Yeung, E.S.; Xue, Y.

    1996-07-30

    A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans. 13 figs.

  4. A multiple index integrating different levels of organization.

    PubMed

    Cortes, Rui; Hughes, Samantha; Coimbra, Ana; Monteiro, Sandra; Pereira, Vítor; Lopes, Marisa; Pereira, Sandra; Pinto, Ana; Sampaio, Ana; Santos, Cátia; Carrola, João; de Jesus, Joaquim; Varandas, Simone

    2016-10-01

    Many methods in freshwater biomonitoring tend to be restricted to a few levels of biological organization, limiting the potential spectrum of measurable of cause-effect responses to different anthropogenic impacts. We combined distinct organisational levels, covering biological biomarkers (histopathological and biochemical reactions in liver and fish gills), community based bioindicators (fish guilds, invertebrate metrics/traits and chironomid pupal exuviae) and ecosystem functional indicators (decomposition rates) to assess ecological status at designated Water Framework Directive monitoring sites, covering a gradient of human impact across several rivers in northern Portugal. We used Random Forest to rank the variables that contributed more significantly to successfully predict the different classes of ecological status and also to provide specific cut levels to discriminate each WFD class based on reference condition. A total of 59 Biological Quality Elements and functional indicators were determined using this procedure and subsequently applied to develop the integrated Multiple Ecological Level Index (MELI Index), a potentially powerful bioassessment tool. PMID:27344015

  5. Multiple Integrated Complementary Healing Approaches: Energetics & Light for bone.

    PubMed

    Gray, Michael G; Lackey, Brett R; Patrick, Evelyn F; Gray, Sandra L; Hurley, Susan G

    2016-01-01

    A synergistic-healing strategy that combines molecular targeting within a system-wide perspective is presented as the Multiple Integrated Complementary Healing Approaches: Energetics And Light (MICHAEL). The basis of the MICHAEL approach is the realization that environmental, nutritional and electromagnetic factors form a regulatory framework involved in bone and nerve healing. The interactions of light, energy, and nutrition with neural, hormonal and cellular pathways will be presented. Energetic therapies including electrical, low-intensity pulsed ultrasound and light based treatments affect growth, differentiation and proliferation of bone and nerve and can be utilized for their healing benefits. However, the benefits of these therapies can be impaired by the absence of nutritional, hormonal and organismal factors. For example, lack of sleep, disrupted circadian rhythms and vitamin-D deficiency can impair healing. Molecular targets, such as the Wnt pathway, protein kinase B and glucocorticoid signaling systems can be modulated by nutritional components, including quercetin, curcumin and Mg(2+) to enhance the healing process. The importance of water and water-regulation will be presented as an integral component. The effects of exercise and acupuncture on bone healing will also be discussed within the context of the MICHAEL approach. PMID:26804592

  6. Tools and Models for Integrating Multiple Cellular Networks

    SciTech Connect

    Gerstein, Mark

    2015-11-06

    In this grant, we have systematically investigated the integrated networks, which are responsible for the coordination of activity between metabolic pathways in prokaryotes. We have developed several computational tools to analyze the topology of the integrated networks consisting of metabolic, regulatory, and physical interaction networks. The tools are all open-source, and they are available to download from Github, and can be incorporated in the Knowledgebase. Here, we summarize our work as follow. Understanding the topology of the integrated networks is the first step toward understanding its dynamics and evolution. For Aim 1 of this grant, we have developed a novel algorithm to determine and measure the hierarchical structure of transcriptional regulatory networks [1]. The hierarchy captures the direction of information flow in the network. The algorithm is generally applicable to regulatory networks in prokaryotes, yeast and higher organisms. Integrated datasets are extremely beneficial in understanding the biology of a system in a compact manner due to the conflation of multiple layers of information. Therefore for Aim 2 of this grant, we have developed several tools and carried out analysis for integrating system-wide genomic information. To make use of the structural data, we have developed DynaSIN for protein-protein interactions networks with various dynamical interfaces [2]. We then examined the association between network topology with phenotypic effects such as gene essentiality. In particular, we have organized E. coli and S. cerevisiae transcriptional regulatory networks into hierarchies. We then correlated gene phenotypic effects by tinkering with different layers to elucidate which layers were more tolerant to perturbations [3]. In the context of evolution, we also developed a workflow to guide the comparison between different types of biological networks across various species using the concept of rewiring [4], and Furthermore, we have developed

  7. Integrity of hypothalamic fibers and cognitive fatigue in multiple sclerosis.

    PubMed

    Hanken, Katrin; Eling, Paul; Kastrup, Andreas; Klein, Jan; Hildebrandt, Helmut

    2015-01-01

    Cognitive fatigue is a common and disabling symptom of multiple sclerosis (MS), but little is known about its pathophysiology. The present study investigated whether the posterior hypothalamus, which is considered as the waking center, is associated with MS-related cognitive fatigue. We analyzed the integrity of posterior hypothalamic fibers in 49 patients with relapsing-remitting MS and 14 healthy controls. Diffusion tensor imaging (DTI) parameters were calculated for fibers between the posterior hypothalamus and, respectively, the mesencephalon, pons and prefrontal cortex. In addition, DTI parameters were computed for fibers between the anterior hypothalamus and these regions and for the corpus callosum. Cognitive fatigue was assessed using the Fatigue Scale for Motor and Cognitive Functions. Analyses of variance with repeated measures were performed to investigate the impact of cognitive fatigue on diffusion parameters. Cognitively fatigued patients (75.5%) showed a significantly lower mean axial and radial diffusivity for fibers between the posterior hypothalamus and the mesencephalon than cognitively non-fatigued patients (Group(⁎)Target area(⁎)Diffusion orientation: F=4.047; p=0.023). For fibers of the corpus callosum, MS patients presented significantly higher axial and radial diffusivity than healthy controls (Group(⁎)Diffusion orientation: F=9.904; p<0.001). Depressive mood, used as covariate, revealed significant interaction effects for anterior hypothalamic fibers (Target area(⁎)Diffusion orientation(⁎)Depression: F=5.882; p=0.021; Hemisphere(⁎)Diffusion orientation(⁎) Depression: F=8.744; p=0.008). Changes in integrity of fibers between the posterior hypothalamus and the mesencephalon appear to be associated with MS-related cognitive fatigue. These changes might cause an altered modulation of hypothalamic centers responsible for wakefulness. Furthermore, integrity of anterior hypothalamic fibers might be related to depression in MS. PMID

  8. 77 FR 39735 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... COMMISSION Certain Integrated Circuit Packages Provided With Multiple Heat- Conducting Paths and Products... the sale within the United States after importation of certain integrated circuit packages provided... integrated circuit packages provided with multiple heat-conducting paths and products containing same...

  9. Development of Multiple-Locus Variable-Number Tandem-Repeat Analysis for Molecular Subtyping of Campylobacter jejuni by Using Capillary Electrophoresis

    PubMed Central

    Techaruvichit, Punnida; Vesaratchavest, Mongkol; Keeratipibul, Suwimon; Kuda, Takashi; Kimura, Bon

    2015-01-01

    Campylobacter jejuni is a common cause of the frequently reported food-borne diseases in developed and developing nations. This study describes the development of multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) using capillary electrophoresis as a novel typing method for microbial source tracking and epidemiological investigation of C. jejuni. Among 36 tandem repeat loci detected by the Tandem Repeat Finder program, 7 VNTR loci were selected and used for characterizing 60 isolates recovered from chicken meat samples from retail shops, samples from chicken meat processing factory, and stool samples. The discrimination ability of MLVA was compared with that of multilocus sequence typing (MLST). MLVA (diversity index of 0.97 with 31 MLVA types) provided slightly higher discrimination than MLST (diversity index of 0.95 with 25 MLST types). The overall concordance between MLVA and MLST was estimated at 63% by adjusted Rand coefficient. MLVA predicted MLST type better than MLST predicted MLVA type, as reflected by Wallace coefficient (Wallace coefficient for MLVA to MLST versus MLST to MLVA, 86% versus 51%). MLVA is a useful tool and can be used for effective monitoring of C. jejuni and investigation of epidemics caused by C. jejuni. PMID:26025899

  10. High integrity carrier phase navigation using multiple civil GPS signals

    NASA Astrophysics Data System (ADS)

    Jung, Jaewoo

    2000-11-01

    A navigation system should guide users to their destinations accurately and reliably. Among the many available navigation aids, the Global Positioning System stands out due to its unique capabilities. It is a satellite-based navigation system which covers the entire Earth with horizontal accuracy of 20 meters for stand alone civil users. Today, the GPS provides only one civil signal, but two more signals will be available in the near future. GPS will provide a second signal at 1227.60 MHz (L2) and a third signal at 1176.45 MHz (Lc), in addition to the current signal at 1575.42 MHz (L1). The focus of this thesis is exploring the possibility of using beat frequencies of these signals to provide navigation aid to users with high accuracy and integrity. To achieve high accuracy, the carrier phase differential GPS is used. The integer ambiguity is resolved using the Cascade Integer Resolution (CIR), which is defined in this thesis. The CIR is an instantaneous, geometry-free integer resolution method utilizing beat frequencies of GPS signals. To insure high integrity, the probability of incorrect integer ambiguity resolution using the CIR is analyzed. The CIR can immediately resolve the Lc integer ambiguity up to 2.4 km from the reference receiver, the Widelane (L1-L2) integer ambiguity up to 22 km, and the Extra Widelane (L2-Lc) integer ambiguity from there on, with probability of incorrect integer resolution of 10-4 . The optimal use of algebraic combinations of multiple GPS signals are also investigated in this thesis. Finally, the gradient of residual differential ionospheric error is estimated to stimated to increase performance of the CIR.

  11. Multiple-analyte fluoroimmunoassay using an integrated optical waveguide sensor.

    PubMed

    Plowman, T E; Durstchi, J D; Wang, H K; Christensen, D A; Herron, J N; Reichert, W M

    1999-10-01

    A silicon oxynitride integrated optical waveguide was used to evanescently excite fluorescence from a multianalyte sensor surface in a rapid, sandwich immunoassay format. Multiple analyte immunoassay (MAIA) results for two sets of three different analytes, one employing polyclonal and the other monoclonal capture antibodies, were compared with results for identical analytes performed in a single-analyte immunoassay (SAIA) format. The MAIA protocol was applied in both phosphate-buffered saline and simulated serum solutions. Point-to-point correlation values between the MAIA and SAIA results varied widely for the polyclonal antibodies (R2 = 0.42-0.98) and were acceptable for the monoclonal antibodies (R2 = 0.93-0.99). Differences in calculated receptor affinities were also evident with polyclonal antibodies, but not so with monoclonal antibodies. Polyclonal antibody capture layers tended to demonstrate departure from ideal receptor-ligand binding while monoclonal antibodies generally displayed monovalent binding. A third set of three antibodies, specific for three cardiac proteins routinely used to categorize myocardial infarction, were also evaluated with the two assay protocols. MAIA responses, over clinically significant ranges for creatin kinase MB, cardiac troponin I, and myoglobin agreed well with responses generated with SAIA protocols (R2 = 0.97-0.99). PMID:10517150

  12. Impaired functional integration in multiple sclerosis: a graph theory study.

    PubMed

    Rocca, Maria A; Valsasina, Paola; Meani, Alessandro; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo

    2016-01-01

    Aim of this study was to explore the topological organization of functional brain network connectivity in a large cohort of multiple sclerosis (MS) patients and to assess whether its disruption contributes to disease clinical manifestations. Graph theoretical analysis was applied to resting state fMRI data from 246 MS patients and 55 matched healthy controls (HC). Functional connectivity between 116 cortical and subcortical brain regions was estimated using a bivariate correlation analysis. Global network properties (network degree, global efficiency, hierarchy, path length and assortativity) were abnormal in MS patients vs HC, and contributed to distinguish cognitively impaired MS patients (34%) from HC, but not the main MS clinical phenotypes. Compared to HC, MS patients also showed: (1) a loss of hubs in the superior frontal gyrus, precuneus and anterior cingulum in the left hemisphere; (2) a different lateralization of basal ganglia hubs (mostly located in the left hemisphere in HC, and in the right hemisphere in MS patients); and (3) a formation of hubs, not seen in HC, in the left temporal pole and cerebellum. MS patients also experienced a decreased nodal degree in the bilateral caudate nucleus and right cerebellum. Such a modification of regional network properties contributed to cognitive impairment and phenotypic variability of MS. An impairment of global integration (likely to reflect a reduced competence in information exchange between distant brain areas) occurs in MS and is associated with cognitive deficits. A regional redistribution of network properties contributes to cognitive status and phenotypic variability of these patients. PMID:25257603

  13. A Fuzzy Logic Framework for Integrating Multiple Learned Models

    SciTech Connect

    Bobi Kai Den Hartog

    1999-03-01

    The Artificial Intelligence field of Integrating Multiple Learned Models (IMLM) explores ways to combine results from sets of trained programs. Aroclor Interpretation is an ill-conditioned problem in which trained programs must operate in scenarios outside their training ranges because it is intractable to train them completely. Consequently, they fail in ways related to the scenarios. We developed a general-purpose IMLM solution, the Combiner, and applied it to Aroclor Interpretation. The Combiner's first step, Scenario Identification (M), learns rules from very sparse, synthetic training data consisting of results from a suite of trained programs called Methods. S1 produces fuzzy belief weights for each scenario by approximately matching the rules. The Combiner's second step, Aroclor Presence Detection (AP), classifies each of three Aroclors as present or absent in a sample. The third step, Aroclor Quantification (AQ), produces quantitative values for the concentration of each Aroclor in a sample. AP and AQ use automatically learned empirical biases for each of the Methods in each scenario. Through fuzzy logic, AP and AQ combine scenario weights, automatically learned biases for each of the Methods in each scenario, and Methods' results to determine results for a sample.

  14. Development of a microfabricated disposable microchip with a capillary electrophoresis and integrated three-electrode electrochemical detection.

    PubMed

    Kim, Ju-Ho; Kang, C J; Kim, Yong-Sang

    2005-05-15

    We have developed microsystems with a capillary electrophoresis and an electrochemical detector. The microfabricated CE-ECD systems are adequate for a disposable type and the characteristics are optimized for application in electrochemical detection. The system was realized by means of a polydimethylsiloxane (PDMS)-glass chip and an indium tin oxide electrode. The injection and separation channels were produced by relatively simple and inexpensive methods. A capillary electrophoresis and a three-electrode electrochemical detector were fabricated on the same substrate with the same fabrication procedure. We measured electropherograms for the testing analytes consisting of catechol and dopamine with different concentrations of 1mM and 0.1mM, respectively. The results showed an efficient and rapid separation and detection of all compounds within a very short time of around 80s using a separate electric field 60 V/cm. We could also successfully achieve an electropherogram of the separation of the 1 kb DNA ladder (8.4 ng/mul) from the 500 bp to 10 kb DNA fragments within just 150 s. PMID:15797332

  15. On-line sample preconcentration with chemical derivatization of bacterial biomarkers by capillary electrophoresis: a dual strategy for integrating sample pretreatment with chemical analysis.

    PubMed

    Ptolemy, Adam S; Le Bihan, Marianne; Britz-McKibbin, Philip

    2005-11-01

    Simple, selective yet sensitive methods to quantify low-abundance bacterial biomarkers derived from complex samples are required in clinical, biological, and environmental applications. In this report, a new strategy to integrate sample pretreatment with chemical analysis is investigated using on-line preconcentration with chemical derivatization by CE and UV detection. Single-step enantioselective analysis of muramic acid (MA) and diaminopimelic acid (DAP) was achieved by CE via sample enrichment by dynamic pH junction with ortho-phthalaldehyde/N-acetyl-L-cysteine labeling directly in-capillary. The optimized method resulted in up to a 100-fold enhancement in concentration sensitivity compared to conventional off-line derivatization procedures. The method was also applied toward the detection of micromolar levels of MA and DAP excreted in the extracellular medium of Escherichia coli bacterial cell cultures. On-line preconcentration with chemical derivatization by CE represents a unique approach for conducting rapid, sensitive, and high-throughput analyses of other classes of amino acid and amino sugar metabolites with reduced sample handling, where the capillary functions simultaneously as a concentrator, microreactor, and chiral selector. PMID:16200529

  16. Prioritizing Cancer Therapeutic Small Molecules by Integrating Multiple OMICS Datasets

    PubMed Central

    Lv, Sali; Xu, Yanjun; Chen, Xin; Li, Yan; Li, Ronghong; Wang, Qianghu

    2012-01-01

    Abstract Drug design is crucial for the effective discovery of anti-cancer drugs. The success or failure of drug design often depends on the leading compounds screened in pre-clinical studies. Many efforts, such as in vivo animal experiments and in vitro drug screening, have improved this process, but these methods are usually expensive and laborious. In the post-genomics era, it is possible to seek leading compounds for large-scale candidate small-molecule screening with multiple OMICS datasets. In the present study, we developed a computational method of prioritizing small molecules as leading compounds by integrating transcriptomics and toxicogenomics data. This method provides priority lists for the selection of leading compounds, thereby reducing the time required for drug design. We found 11 known therapeutic small molecules for breast cancer in the top 100 candidates in our list, 2 of which were in the top 10. Furthermore, another 3 of the top 10 small molecules were recorded as closely related to cancer treatment in the DrugBank database. A comparison of the results of our approach with permutation tests and shared gene methods demonstrated that our OMICS data-based method is quite competitive. In addition, we applied our method to a prostate cancer dataset. The results of this analysis indicated that our method surpasses both the shared gene method and random selection. These analyses suggest that our method may be a valuable tool for directing experimental studies in cancer drug design, and we believe this time- and cost-effective computational strategy will be helpful in future studies in cancer therapy. PMID:22917481

  17. In silico gene prioritization by integrating multiple data sources.

    PubMed

    Chen, Yixuan; Wang, Wenhui; Zhou, Yingyao; Shields, Robert; Chanda, Sumit K; Elston, Robert C; Li, Jing

    2011-01-01

    Identifying disease genes is crucial to the understanding of disease pathogenesis, and to the improvement of disease diagnosis and treatment. In recent years, many researchers have proposed approaches to prioritize candidate genes by considering the relationship of candidate genes and existing known disease genes, reflected in other data sources. In this paper, we propose an expandable framework for gene prioritization that can integrate multiple heterogeneous data sources by taking advantage of a unified graphic representation. Gene-gene relationships and gene-disease relationships are then defined based on the overall topology of each network using a diffusion kernel measure. These relationship measures are in turn normalized to derive an overall measure across all networks, which is utilized to rank all candidate genes. Based on the informativeness of available data sources with respect to each specific disease, we also propose an adaptive threshold score to select a small subset of candidate genes for further validation studies. We performed large scale cross-validation analysis on 110 disease families using three data sources. Results have shown that our approach consistently outperforms other two state of the art programs. A case study using Parkinson disease (PD) has identified four candidate genes (UBB, SEPT5, GPR37 and TH) that ranked higher than our adaptive threshold, all of which are involved in the PD pathway. In particular, a very recent study has observed a deletion of TH in a patient with PD, which supports the importance of the TH gene in PD pathogenesis. A web tool has been implemented to assist scientists in their genetic studies. PMID:21731658

  18. Fully automatic sample treatment by integration of microextraction by packed sorbents into commercial capillary electrophoresis-mass spectrometry equipment: application to the determination of fluoroquinolones in urine.

    PubMed

    Morales-Cid, Gabriel; Cárdenas, Soledad; Simonet, Bartolomé M; Valcárcel, Miguel

    2009-04-15

    This paper describes a new and innovative way to integrate microextraction by packed sorbents (MEPS) into commercial CE equipment. The suggested integration allows the automatic sample cleanup and preconcentration requiring only a few microliters of sample and no additional hardware and software. The MEPS was integrated in the outlet region of a commercial CE equipment cartridge in order to provide easy manipulation and exchange. The robustness of the proposed integration was demonstrated by the design and use of a (MEPS)-nonaqueous capillary electrophoresis (NACE)-MS method used to determine fluoroquinolones "FQs" (namely, ofloxacin, marbofloxacin, enrofloxacin, danofloxacin, and difloxacin) in urine. The method allows the analysis of micrograms per liter of FQs to be carried out with only 48 microL of urine sample. The obtained LODs were in the range 6.3-10.6 microg/L. An analysis of spiked urine samples was used to validate the method. Absolute recoveries were in the range of 71-109% while the precision expressed as repetitivity of peak area was lower than 5.9%. PMID:19284777

  19. Portable integrated capillary-electrophoresis system using disposable polymer chips with capacitively coupled contactless conductivity detection for on-site analysis of foodstuff

    NASA Astrophysics Data System (ADS)

    Gärtner, Claudia; Hoffmann, Werner; Demattio, Horst; Clemens, Thomas; Klotz, Matthias; Klemm, Richard; Becker, Holger

    2009-05-01

    We present a compact portable chip-based capillary electrophoresis system that employs capacitively coupled contactless conductivity detection (C4D) operating at 4 MHz as an alternative detection method compared to the commonly used optical detection based on laser-induced fluorescence. Emphasis was put on system integration and industrial manufacturing technologies for the system. Therefore, the disposable chip for this system is fabricated out of PMMA using injection molding; the electrodes are screen-printed or thin-film electrodes. The system is designed for the measurement of small ionic species like Li+, Na+, K+, SO42- or NO3- typically present in foods like milk and mineral water as well as acids e.g. in wine.

  20. Generating nonlinear FM chirp radar signals by multiple integrations

    DOEpatents

    Doerry, Armin W.

    2011-02-01

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  1. Information Integration in Multiple Cue Judgment: A Division of Labor Hypothesis

    ERIC Educational Resources Information Center

    Juslin, Peter; Karlsson, Linnea; Olsson, Henrik

    2008-01-01

    There is considerable evidence that judgment is constrained to additive integration of information. The authors propose an explanation of why serial and additive cognitive integration can produce accurate multiple cue judgment both in additive and non-additive environments in terms of an adaptive division of labor between multiple representations.…

  2. 77 FR 33486 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... COMMISSION Certain Integrated Circuit Packages Provided With Multiple Heat- Conducting Paths and Products... With Multiple Heat-Conducting Paths and Products Containing Same, DN 2899; the Commission is soliciting... multiple heat-conducting paths and products containing same. The complaint names as respondents...

  3. Capillary muscle

    PubMed Central

    Cohen, Caroline; Mouterde, Timothée; Quéré, David; Clanet, Christophe

    2015-01-01

    The contraction of a muscle generates a force that decreases when increasing the contraction velocity. This “hyperbolic” force–velocity relationship has been known since the seminal work of A. V. Hill in 1938 [Hill AV (1938) Proc R Soc Lond B Biol Sci 126(843):136–195]. Hill’s heuristic equation is still used, and the sliding-filament theory for the sarcomere [Huxley H, Hanson J (1954) Nature 173(4412):973–976; Huxley AF, Niedergerke R (1954) Nature 173(4412):971–973] suggested how its different parameters can be related to the molecular origin of the force generator [Huxley AF (1957) Prog Biophys Biophys Chem 7:255–318; Deshcherevskiĭ VI (1968) Biofizika 13(5):928–935]. Here, we develop a capillary analog of the sarcomere obeying Hill’s equation and discuss its analogy with muscles. PMID:25944938

  4. Capillary muscle.

    PubMed

    Cohen, Caroline; Mouterde, Timothée; Quéré, David; Clanet, Christophe

    2015-05-19

    The contraction of a muscle generates a force that decreases when increasing the contraction velocity. This "hyperbolic" force-velocity relationship has been known since the seminal work of A. V. Hill in 1938 [Hill AV (1938) Proc R Soc Lond B Biol Sci 126(843):136-195]. Hill's heuristic equation is still used, and the sliding-filament theory for the sarcomere [Huxley H, Hanson J (1954) Nature 173(4412):973-976; Huxley AF, Niedergerke R (1954) Nature 173(4412):971-973] suggested how its different parameters can be related to the molecular origin of the force generator [Huxley AF (1957) Prog Biophys Biophys Chem 7:255-318; Deshcherevskiĭ VI (1968) Biofizika 13(5):928-935]. Here, we develop a capillary analog of the sarcomere obeying Hill's equation and discuss its analogy with muscles. PMID:25944938

  5. Curriculum Integration in Arts Education: Connecting Multiple Art Forms through the Idea of "Space"

    ERIC Educational Resources Information Center

    Bautista, Alfredo; Tan, Liang See; Ponnusamy, Letchmi Devi; Yau, Xenia

    2016-01-01

    Arts integration research has focused on documenting how the teaching of specific art forms can be integrated with "core" academic subject matters (e.g. science, mathematics and literacy). However, the question of how the teaching of multiple art forms themselves can be integrated in schools remains to be explored by educational…

  6. Integrative Data Analysis: The Simultaneous Analysis of Multiple Data Sets

    ERIC Educational Resources Information Center

    Curran, Patrick J.; Hussong, Andrea M.

    2009-01-01

    There are both quantitative and methodological techniques that foster the development and maintenance of a cumulative knowledge base within the psychological sciences. Most noteworthy of these techniques is meta-analysis, which allows for the synthesis of summary statistics drawn from multiple studies when the original data are not available.…

  7. Spectrometer capillary vessel and method of making same

    DOEpatents

    Linehan, John C.; Yonker, Clement R.; Zemanian, Thomas S.; Franz, James A.

    1995-01-01

    The present invention is an arrangement of a glass capillary tube for use in spectroscopy. In particular, the invention is a capillary arranged in a manner permitting a plurality or multiplicity of passes of a sample material through a spectroscopic measurement zone. In a preferred embodiment, the multi-pass capillary is insertable within a standard NMR sample tube. The present invention further includes a method of making the multi-pass capillary tube and an apparatus for spinning the tube.

  8. Spectrometer capillary vessel and method of making same

    DOEpatents

    Linehan, J.C.; Yonker, C.R.; Zemanian, T.S.; Franz, J.A.

    1995-11-21

    The present invention is an arrangement of a glass capillary tube for use in spectroscopy. In particular, the invention is a capillary arranged in a manner permitting a plurality or multiplicity of passes of a sample material through a spectroscopic measurement zone. In a preferred embodiment, the multi-pass capillary is insertable within a standard NMR sample tube. The present invention further includes a method of making the multi-pass capillary tube and an apparatus for spinning the tube. 13 figs.

  9. Restructuring for Integrative Education: Multiple Perspectives, Multiple Contexts. Critical Studies in Education and Culture Series.

    ERIC Educational Resources Information Center

    Jennings, Todd, Ed.

    Integrative education is defined as education that promotes learning and teaching in nonfragmented ways that embrace notions of holism, complexity, and interconnection. Furthermore, integrative education embraces the links, rather than the divisions, between the academic disciplines (e.g., arts and sciences) and between various subjective and…

  10. Identifying multiple submissions in Internet research: preserving data integrity.

    PubMed

    Bowen, Anne M; Daniel, Candice M; Williams, Mark L; Baird, Grayson L

    2008-11-01

    Internet-based sexuality research with hidden populations has become increasingly popular. Respondent anonymity may encourage participation and lower social desirability, but associated disinhibition may promote multiple submissions, especially when incentives are offered. The goal of this study was to identify the usefulness of different variables for detecting multiple submissions from repeat responders and to explore incentive effects. The data included 1,900 submissions from a three-session Internet intervention with a pretest and three post-test questionnaires. Participants were men who have sex with men and incentives were offered to rural participants for completing each questionnaire. The final number of submissions included 1,273 "unique", 132 first submissions by "repeat responders" and 495 additional submissions by the "repeat responders" (N = 1,900). Four categories of repeat responders were identified: "infrequent" (2-5 submissions), "persistent" (6-10 submissions), "very persistent" (11-30 submissions), and "hackers" (more than 30 submissions). Internet Provider (IP) addresses, user names, and passwords were the most useful for identifying "infrequent" repeat responders. "Hackers" often varied their IP address and identifying information to prevent easy identification, but investigating the data for small variations in IP, using reverse telephone look up, and patterns across usernames and passwords were helpful. Incentives appeared to play a role in stimulating multiple submissions, especially from the more sophisticated "hackers". Finally, the web is ever evolving and it will be necessary to have good programmers and staff who evolve as fast as "hackers". PMID:18240015

  11. Total integrated slidable and valveless solid phase extraction-polymerase chain reaction-capillary electrophoresis microdevice for mini Y chromosome short tandem repeat genotyping.

    PubMed

    Kim, Yong Tae; Lee, Dohwan; Heo, Hyun Young; Sim, Jeong Eun; Woo, Kwang Man; Kim, Do Hyun; Im, Sung Gap; Seo, Tae Seok

    2016-04-15

    A fully integrated slidable and valveless microsystem, which performs solid phase DNA extraction (SPE), micro-polymerase chain reaction (μPCR) and micro-capillary electrophoresis (μCE) coupled with a portable genetic analyser, has been developed for forensic genotyping. The use of a slidable chip, in which a 1 μL-volume of the PCR chamber was patterned at the center, does not necessitate any microvalves and tubing systems for fluidic control. The functional micro-units of SPE, μPCR, and μCE were fabricated on a single glass wafer by conventional photolithography, and the integrated microdevice consists of three layers: from top to bottom, a slidable chip, a channel wafer in which a SPE chamber, a mixing microchannel, and a CE microchannel were fabricated, and a Ti/Pt resistance temperature detector (RTD) wafer. The channel glass wafer and the RTD glass wafer were thermally bonded, and the slidable chip was placed on the designated functional unit. The entire process from the DNA extraction using whole human blood sample to identification of target Y chromosomal short tandem repeat (STR) loci was serially carried out with simply sliding the slidable chamber from one to another functional unit. Monoplex and multiplex detection of amelogenin and mini Y STR loci were successfully analysed on the integrated slidable SPE-μPCR-μCE microdevice by using 1 μL whole human blood within 60 min. The proposed advanced genetic analysis microsystem is capable of point-of-care DNA testing with sample-in-answer-out capability, more importantly, without use of complicated microvalves and microtubing systems for liquid transfer. PMID:26657593

  12. Multiple integral representation for the trigonometric SOS model with domain wall boundaries

    NASA Astrophysics Data System (ADS)

    Galleas, W.

    2012-05-01

    Using the dynamical Yang-Baxter algebra we derive a functional equation for the partition function of the trigonometric SOS model with domain wall boundary conditions. The solution of the equation is given in terms of a multiple contour integral.

  13. Two-Dimensional Integral Combustion for Multiple Phase Flow

    Energy Science and Technology Software Center (ESTSC)

    1997-05-05

    This ANL multiphase two-dimensional combustion computer code solves conservation equations for gaseous species and solid particles (or droplets) of various sizes. General conservation laws, expressed by ellipitic-type partial differential equations are used in conjunction with rate equations governing the mass, momentum, enthaply, species, turbulent kinetic energy, and turbulent dissipation for a two-phase reacting flow. Associated submodels include an integral combustion, a two-parameter turbulence, a particle evaporation, and interfacial submodels. A newly-developed integral combustion submodel replacingmore » an Arrhenius-type differential reaction submodel is implemented to improve numerical convergence and enhance numerical stability. The two-parameter turbulence submodel is modified for both gas and solid phases. The evaporation submodel treats size dispersion as well as particle evaporation. Interfacial submodels use correlations to model interfacial momentum and energy transfer.« less

  14. Integration of Multiple Organic Light Emitting Diodes and a Lens for Emission Angle Control

    NASA Astrophysics Data System (ADS)

    Rahadian, Fanny; Masada, Tatsuya; Fujieda, Ichiro

    We propose to integrate a single lens on top of multiple OLEDs. Angular distribution of the light emitted from the lens surface is altered by turning on the OLEDs selectively. We can use such a light source as a backlight for a liquid crystal display to switch its viewing angle range and/or to display multiple images in different directions. Pixel-level integration would allow one to construct an OLED display with a similar emission angle control.

  15. Identifying Multiple Submissions in Internet Research: Preserving Data Integrity

    PubMed Central

    Bowen, Anne M.; Daniel, Candice M.; Williams, Mark L.; Baird, Grayson L.

    2008-01-01

    Internet-based sexuality research with hidden populations has become increasingly popular. Respondent anonymity may encourage participation and lower social desirability, but associated disinhibition may promote multiple submissions, especially when incentives are offered. The goal of this study was to identify the usefulness of different variables for detecting multiple submissions from repeat responders and to explore incentive effects. The data included 1,900 submissions from a three-session Internet intervention with a pretest and three post-test questionnaires. Participants were men who have sex with men and incentives were offered to rural participants for completing each questionnaire. The final number of submissions included 1,273 “unique”, 132 first submissions by “repeat responders” and 495 additional submissions by the “repeat responders” (N = 1,900). Four categories of repeat responders were identified: “infrequent” (2–5 submissions), “persistent” (6–10 submissions), “very persistent” (11–30 submissions), and “hackers” (more than 30 submissions). Internet Provider (IP) addresses, user names, and passwords were the most useful for identifying “infrequent” repeat responders. “Hackers” often varied their IP address and identifying information to prevent easy identification, but investigating the data for small variations in IP, using reverse telephone look up, and patterns across usernames and passwords were helpful. Incentives appeared to play a role in stimulating multiple submissions, especially from the more sophisticated “hackers”. Finally, the web is ever evolving and it will be necessary to have good programmers and staff who evolve as fast as “hackers”. PMID:18240015

  16. Empathetic, Critical Integrations of Multiple Perspectives: A Core Practice for Language Teacher Education?

    ERIC Educational Resources Information Center

    Daniel, Shannon M.

    2015-01-01

    In this self-study, the author reflects on her implementation of empathetic, critical integrations of multiple perspectives (ECI), which she designed to afford preservice teachers the opportunity to discuss and collectively reflect upon the oft-diverging multiple perspectives, values, and practices they experience during their practicum (Daniel,…

  17. Multiple time step integrators in ab initio molecular dynamics

    SciTech Connect

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-02-28

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.

  18. Integrated microfluidic capillary electrophoresis-electrospray ionization devices with online MS detection for the separation and characterization of intact monoclonal antibody variants.

    PubMed

    Redman, Erin A; Batz, Nicholas G; Mellors, J Scott; Ramsey, J Michael

    2015-02-17

    Here, we demonstrate an integrated microfluidic capillary electrophoresis-electrospray ionization (CE-ESI) device for the separation of intact monoclonal antibody charge variants with online mass spectrometric (MS) identification. The need for dynamic coating and zwitterionic background electrolyte (BGE) additives has been eliminated by utilizing surface chemistry within the device channels to control analyte adsorption and electroosmotic flow (EOF) while maintaining separation efficiency. The effectiveness of this strategy was illustrated with the separation of charge variants of Infliximab. Three major species corresponding to C-terminal lysine variants were separated with an average resolution of 0.80 and identified by mass difference. In addition to the lysine variants, masses were determined for minor acidic and basic species. The separation of these variants prior to MS analysis facilitated the identification of glycosylation patterns for each of the variants. The general applicability of this method was demonstrated by analyzing two additional monoclonal antibody species: an IgG2 antibody and an IgG1 antibody conjugate. The IgG2 proved to have similar modifications to Infliximab with lower relative abundances of the lysine variants. Analysis of the IgG1 drug conjugate further exemplified the advantages of MS detection; differences in the extent of antibody conjugation were detectable despite limited CE resolution. The CE-ESI-MS methodology described here is a rapid and generic strategy for the separation of intact mAb charge variants and facilitates the identification of variants through MS detection. PMID:25569459

  19. Integrated Dataset of Screening Hits against Multiple Neglected Disease Pathogens

    PubMed Central

    Nwaka, Solomon; Besson, Dominique; Ramirez, Bernadette; Maes, Louis; Matheeussen, An; Bickle, Quentin; Mansour, Nuha R.; Yousif, Fouad; Townson, Simon; Gokool, Suzanne; Cho-Ngwa, Fidelis; Samje, Moses; Misra-Bhattacharya, Shailja; Murthy, P. K.; Fakorede, Foluke; Paris, Jean-Marc; Yeates, Clive; Ridley, Robert; Van Voorhis, Wesley C.; Geary, Timothy

    2011-01-01

    New chemical entities are desperately needed that overcome the limitations of existing drugs for neglected diseases. Screening a diverse library of 10,000 drug-like compounds against 7 neglected disease pathogens resulted in an integrated dataset of 744 hits. We discuss the prioritization of these hits for each pathogen and the strong correlation observed between compounds active against more than two pathogens and mammalian cell toxicity. Our work suggests that the efficiency of early drug discovery for neglected diseases can be enhanced through a collaborative, multi-pathogen approach. PMID:22247786

  20. Students' integration of multiple representations in a titration experiment

    NASA Astrophysics Data System (ADS)

    Kunze, Nicole M.

    A complete understanding of a chemical concept is dependent upon a student's ability to understand the microscopic or particulate nature of the phenomenon and integrate the microscopic, symbolic, and macroscopic representations of the phenomenon. Acid-base chemistry is a general chemistry topic requiring students to understand the topics of chemical reactions, solutions, and equilibrium presented earlier in the course. In this study, twenty-five student volunteers from a second semester general chemistry course completed two interviews. The first interview was completed prior to any classroom instruction on acids and bases. The second interview took place after classroom instruction, a prelab activity consisting of a titration calculation worksheet, a titration computer simulation, or a microscopic level animation of a titration, and two microcomputer-based laboratory (MBL) titration experiments. During the interviews, participants were asked to define and describe acid-base concepts and in the second interview they also drew the microscopic representations of four stages in an acid-base titration. An analysis of the data showed that participants had integrated the three representations of an acid-base titration to varying degrees. While some participants showed complete understanding of acids, bases, titrations, and solution chemistry, other participants showed several alternative conceptions concerning strong acid and base dissociation, the formation of titration products, and the dissociation of soluble salts. Before instruction, participants' definitions of acid, base, and pH were brief and consisted of descriptive terms. After instruction, the definitions were more scientific and reflected the definitions presented during classroom instruction.

  1. Promoting return of function in multiple sclerosis: An integrated approach

    PubMed Central

    Gacias, Mar; Casaccia, Patrizia

    2013-01-01

    Multiple sclerosis is a disease characterized by inflammatory demyelination, axonal degeneration and progressive brain atrophy. Most of the currently available disease modifying agents proved to be very effective in managing the relapse rate, however progressive neuronal damage continues to occur and leads to progressive accumulation of irreversible disability. For this reason, any therapeutic strategy aimed at restoration of function must take into account not only immunomodulation, but also axonal protection and new myelin formation. We further highlight the importance of an holistic approach, which considers the variability of therapeutic responsiveness as the result of the interplay between genetic differences and the epigenome, which is in turn affected by gender, age and differences in life style including diet, exercise, smoking and social interaction. PMID:24363985

  2. Promoting return of function in multiple sclerosis: An integrated approach.

    PubMed

    Gacias, Mar; Casaccia, Patrizia

    2013-10-01

    Multiple sclerosis is a disease characterized by inflammatory demyelination, axonal degeneration and progressive brain atrophy. Most of the currently available disease modifying agents proved to be very effective in managing the relapse rate, however progressive neuronal damage continues to occur and leads to progressive accumulation of irreversible disability. For this reason, any therapeutic strategy aimed at restoration of function must take into account not only immunomodulation, but also axonal protection and new myelin formation. We further highlight the importance of an holistic approach, which considers the variability of therapeutic responsiveness as the result of the interplay between genetic differences and the epigenome, which is in turn affected by gender, age and differences in life style including diet, exercise, smoking and social interaction. PMID:24363985

  3. Exercise in multiple sclerosis -- an integral component of disease management

    PubMed Central

    2012-01-01

    Multiple sclerosis (MS) is the most common chronic inflammatory disorder of the central nervous system (CNS) in young adults. The disease causes a wide range of symptoms depending on the localization and characteristics of the CNS pathology. In addition to drug-based immunomodulatory treatment, both drug-based and non-drug approaches are established as complementary strategies to alleviate existing symptoms and to prevent secondary diseases. In particular, physical therapy like exercise and physiotherapy can be customized to the individual patient's needs and has the potential to improve the individual outcome. However, high quality systematic data on physical therapy in MS are rare. This article summarizes the current knowledge on the influence of physical activity and exercise on disease-related symptoms and physical restrictions in MS patients. Other treatment strategies such as drug treatments or cognitive training were deliberately excluded for the purposes of this article. PMID:22738091

  4. Plant aquaporins: membrane channels with multiple integrated functions.

    PubMed

    Maurel, Christophe; Verdoucq, Lionel; Luu, Doan-Trung; Santoni, Véronique

    2008-01-01

    Aquaporins are channel proteins present in the plasma and intracellular membranes of plant cells, where they facilitate the transport of water and/or small neutral solutes (urea, boric acid, silicic acid) or gases (ammonia, carbon dioxide). Recent progress was made in understanding the molecular bases of aquaporin transport selectivity and gating. The present review examines how a wide range of selectivity profiles and regulation properties allows aquaporins to be integrated in numerous functions, throughout plant development, and during adaptations to variable living conditions. Although they play a central role in water relations of roots, leaves, seeds, and flowers, aquaporins have also been linked to plant mineral nutrition and carbon and nitrogen fixation. PMID:18444909

  5. "Getting the best sensitivity from on-capillary fluorescence detection in capillary electrophoresis" - A tutorial.

    PubMed

    Galievsky, Victor A; Stasheuski, Alexander S; Krylov, Sergey N

    2016-09-01

    Capillary electrophoresis with Laser-Induced Fluorescence (CE-LIF) detection is being applied to new analytical problems which challenge both the power of CE separation and the sensitivity of LIF detection. On-capillary LIF detection is much more practical than post-capillary detection in a sheath-flow cell. Therefore, commercial CE instruments utilize solely on-capillary CE-LIF detection with a Limit of Detection (LOD) in the nM range, while there are multiple applications of CE-LIF that require pM or lower LODs. This tutorial analyzes all aspects of on-capillary LIF detection in CE in an attempt to identify means for improving LOD of CE-LIF with on-capillary detection. We consider principles of signal enhancement and noise reduction, as well as relevant areas of fluorophore photochemistry and fluorescent microscopy. PMID:27543015

  6. A boundary-integral representation for biphasic mixture theory, with application to the post-capillary glycocalyx

    PubMed Central

    Sumets, P. P.; Cater, J. E.; Long, D. S.; Clarke, R. J.

    2015-01-01

    We describe a new boundary-integral representation for biphasic mixture theory, which allows us to efficiently solve certain elastohydrodynamic–mobility problems using boundary element methods. We apply this formulation to model the motion of a rigid particle through a microtube which has non-uniform wall shape, is filled with a viscous Newtonian fluid, and is lined with a thin poroelastic layer. This is relevant to scenarios such as the transport of small rigid cells (such as neutrophils) through microvessels that are lined with an endothelial glycocalyx layer (EGL). In this context, we examine the impact of geometry upon some recently reported phenomena, including the creation of viscous eddies, fluid flux into the EGL, as well as the role of the EGL in transmitting mechanical signals to the underlying endothelial cells. PMID:26345494

  7. Research on model of combining multiple neural networks by fuzzy integral-MNNF

    NASA Astrophysics Data System (ADS)

    Fu, Yue; Chai, Bianfang

    2013-03-01

    The method of multiple neural network Fusion using Fuzzy Integral (MNNF) presented by this paper is to improve the detection performance of data mining-based intrusion detection system. The basic idea of MNNF is to mine on distinct feature training dataset by neural networks separately, and detect TCP/IP data by different neural networks, and then nonlinearly combine the results from multiple neural networks by fuzzy integral. The experiment results show that this technique is superior to single neural networks for intrusion detection in terms of classification accuracy. Compared with other combination methods such as Majority, Average, Borda count, fuzzy integral is better than one of them.

  8. Integrating regional conservation priorities for multiple objectives into national policy.

    PubMed

    Beger, Maria; McGowan, Jennifer; Treml, Eric A; Green, Alison L; White, Alan T; Wolff, Nicholas H; Klein, Carissa J; Mumby, Peter J; Possingham, Hugh P

    2015-01-01

    Multinational conservation initiatives that prioritize investment across a region invariably navigate trade-offs among multiple objectives. It seems logical to focus where several objectives can be achieved efficiently, but such multi-objective hotspots may be ecologically inappropriate, or politically inequitable. Here we devise a framework to facilitate a regionally cohesive set of marine-protected areas driven by national preferences and supported by quantitative conservation prioritization analyses, and illustrate it using the Coral Triangle Initiative. We identify areas important for achieving six objectives to address ecosystem representation, threatened fauna, connectivity and climate change. We expose trade-offs between areas that contribute substantially to several objectives and those meeting one or two objectives extremely well. Hence there are two strategies to guide countries choosing to implement regional goals nationally: multi-objective hotspots and complementary sets of single-objective priorities. This novel framework is applicable to any multilateral or global initiative seeking to apply quantitative information in decision making. PMID:26364769

  9. Integrating regional conservation priorities for multiple objectives into national policy

    PubMed Central

    Beger, Maria; McGowan, Jennifer; Treml, Eric A.; Green, Alison L.; White, Alan T.; Wolff, Nicholas H.; Klein, Carissa J.; Mumby, Peter J.; Possingham, Hugh P.

    2015-01-01

    Multinational conservation initiatives that prioritize investment across a region invariably navigate trade-offs among multiple objectives. It seems logical to focus where several objectives can be achieved efficiently, but such multi-objective hotspots may be ecologically inappropriate, or politically inequitable. Here we devise a framework to facilitate a regionally cohesive set of marine-protected areas driven by national preferences and supported by quantitative conservation prioritization analyses, and illustrate it using the Coral Triangle Initiative. We identify areas important for achieving six objectives to address ecosystem representation, threatened fauna, connectivity and climate change. We expose trade-offs between areas that contribute substantially to several objectives and those meeting one or two objectives extremely well. Hence there are two strategies to guide countries choosing to implement regional goals nationally: multi-objective hotspots and complementary sets of single-objective priorities. This novel framework is applicable to any multilateral or global initiative seeking to apply quantitative information in decision making. PMID:26364769

  10. Integration over Multiple Timescales in Primary Auditory Cortex

    PubMed Central

    Shamma, Shihab A.

    2013-01-01

    Speech and other natural vocalizations are characterized by large modulations in their sound envelope. The timing of these modulations contains critical information for discrimination of important features, such as phonemes. We studied how depression of synaptic inputs, a mechanism frequently reported in cortex, can contribute to the encoding of envelope dynamics. Using a nonlinear stimulus-response model that accounted for synaptic depression, we predicted responses of neurons in ferret primary auditory cortex (A1) to stimuli with natural temporal modulations. The depression model consistently performed better than linear and second-order models previously used to characterize A1 neurons, and it produced more biologically plausible fits. To test how synaptic depression can contribute to temporal stimulus integration, we used nonparametric maximum a posteriori decoding to compare the ability of neurons showing and not showing depression to reconstruct the stimulus envelope. Neurons showing evidence for depression reconstructed stimuli over a longer range of latencies. These findings suggest that variation in depression across the cortical population supports a rich code for representing the temporal dynamics of natural sounds. PMID:24305812

  11. Integrating multiple scientific computing needs via a Private Cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Berzano, D.; Brunetti, R.; Lusso, S.; Vallero, S.

    2014-06-01

    In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.

  12. Integrating the tools for an individualized prognosis in multiple sclerosis.

    PubMed

    Fernández, O

    2013-08-15

    Clinicians treating multiple sclerosis (MS) patients need biomarkers in order to predict an individualized prognosis for every patient, that is, characteristics that can be measured in an objective manner, and that give information over normal or pathological processes, or about the response to a given therapeutic intervention. Pharmacogenetics/Genomics in the fields of MS by now can be considered a promise. In the meanwhile, clinicians should use the information provided by the many clinical epidemiological studies performed by now, telling us that there are some clinical markers of good prognosis (female sex, young age of onset, optic neuritis or isolated sensory symptoms at debut, long interval between initial and second relapse, no accumulation of disability after five years of disease evolution, normal or near normal magnetic resonance imaging (MRI) at onset). Some markers in biological samples are considered as potential prognostic markers like IgM and neurofilaments in CSF or antimyelin and chitinase 3-like 1 in blood (plasma/sera). Baseline MRI lesion number, lesion load and location have been closely associated with a worse evolution, as well as MRI measures related to axonal damage (black holes in T1, brain atrophy, grey matter atrophy (GMA) and white matter atrophy (WMA), magnetization transfer measures and intracortical lesions). Functional measures (OCT, evoked potentials) have a potential role in measuring neurodegeneration in MS and could be very useful tools for prognosis. Several mathematical approaches to estimate the risk of short term use early clinical and paraclinical biomarkers to predict the evolution of the disease. PMID:23692966

  13. Integration of multiple research disciplines on the International Space Station

    NASA Technical Reports Server (NTRS)

    Penley, N. J.; Uri, J.; Sivils, T.; Bartoe, J. D.

    2000-01-01

    The International Space Station will provide an extremely high-quality, long-duration microgravity environment for the conduct of research. In addition, the ISS offers a platform for performing observations of Earth and Space from a high-inclination orbit, outside of the Earth's atmosphere. This unique environment and observational capability offers the opportunity for advancement in a diverse set of research fields. Many of these disciplines do not relate to one another, and present widely differing approaches to study, as well as different resource and operational requirements. Significant challenges exist to ensure the highest quality research return for each investigation. Requirements from different investigations must be identified, clarified, integrated and communicated to ISS personnel in a consistent manner. Resources such as power, crew time, etc. must be apportioned to allow the conduct of each investigation. Decisions affecting research must be made at the strategic level as well as at a very detailed execution level. The timing of the decisions can range from years before an investigation to real-time operations. The international nature of the Space Station program adds to the complexity. Each participating country must be assured that their interests are represented during the entire planning and operations process. A process for making decisions regarding research planning, operations, and real-time replanning is discussed. This process ensures adequate representation of all research investigators. It provides a means for timely decisions, and it includes a means to ensure that all ISS International Partners have their programmatic interests represented. c 2000 Published by Elsevier Science Ltd. All rights reserved.

  14. Integrating stakeholder values with multiple attributes to quantify watershed performance

    NASA Astrophysics Data System (ADS)

    Shriver, Deborah M.; Randhir, Timothy O.

    2006-08-01

    Integrating stakeholder values into the process of quantifying impairment of ecosystem functions is an important aspect of watershed assessment and planning. This study develops a classification and prioritization model to assess potential impairment in watersheds. A systematic evaluation of a broad set of abiotic, biotic, and human indicators of watershed structure and function was used to identify the level of degradation at a subbasin scale. Agencies and communities can use the method to effectively target and allocate resources to areas of greatest restoration need. The watershed performance measure (WPM) developed in this study is composed of three major components: (1) hydrologic processes (water quantity and quality), (2) biodiversity at a species scale (core and priority habitat for rare and endangered species and species richness) and landscape scale (impacts of fragmentation), and (3) urban impacts as assessed in the built environment (effective impervious area) and population effects (densities and density of toxic waste sites). Simulation modeling using the Soil and Water Assessment Tool (SWAT), monitoring information, and spatial analysis with GIS were used to assess each criterion in developing this model. Weights for attributes of potential impairment were determined through the use of the attribute prioritization procedure with a panel of expert stakeholders. This procedure uses preselected attributes and corresponding stakeholder values and is data intensive. The model was applied to all subbasins of the Chicopee River Watershed of western Massachusetts, an area with a mixture of rural, heavily forested lands, suburban, and urbanized areas. Highly impaired subbasins in one community were identified using this methodology and evaluated for principal forms of degradation and potential restoration policies and BMPs. This attribute-based prioritization method could be used in identifying baselines, prioritization policies, and adaptive community

  15. An Integrated Approach for Accessing Multiple Datasets through LANCE

    NASA Astrophysics Data System (ADS)

    Murphy, K. J.; Teague, M.; Conover, H.; Regner, K.; Beaumont, B.; Masuoka, E.; Vollmer, B.; Theobald, M.; Durbin, P.; Michael, K.; Boller, R. A.; Schmaltz, J. E.; Davies, D.; Horricks, K.; Ilavajhala, S.; Thompson, C. K.; Bingham, A.

    2011-12-01

    The NASA/GSFC Land Atmospheres Near-real time Capability for EOS (LANCE) provides imagery for approximately 40 data products from MODIS, AIRS, AMSR-E and OMI to support the applications community in the study of a variety of phenomena. Thirty-six of these products are available within 2.5 hours of observation at the spacecraft. The data set includes the population density data provided by the EOSDIS Socio-Economic Data and Applications Center (SEDAC). The purpose of this paper is to describe the variety of tools that have been developed by LANCE to support user access to the imagery. The long-standing Rapid Response system has been integrated into LANCE and is a major vehicle for the distribution of the imagery to end users. There are presently approximately 10,000 anonymous users per month accessing these imagery. The products are grouped into 14 applications categories such as Smoke Plumes, Pollution, Fires, Agriculture and the selection of any category will make relevant subsets of the 40 products available as possible overlays in an interactive Web Client utilizing Web Mapping Service (WMS) to support user investigations (http://lance2.modaps.eosdis.nasa.gov/wms/). For example, selecting Severe Storms will include 6 products for MODIS, OMI, AIRS, and AMSR-E plus the SEDAC population density data. The client and WMS were developed using open-source technologies such as OpenLayers and MapServer and provides a uniform, browser-based access to data products. All overlays are downloadable in PNG, JPEG, or GeoTiff form up to 200MB per request. The WMS was beta-tested with the user community and substantial performance improvements were made through the use of such techniques as tile-caching. LANCE established a partnership with Physical Oceanography Distributed Active Archive Center (PO DAAC) to develop an alternative presentation for the 40 data products known as the State of the Earth (SOTE). This provides a Google Earth-based interface to the products grouped in

  16. An integrated quality by design and mixture-process variable approach in the development of a capillary electrophoresis method for the analysis of almotriptan and its impurities.

    PubMed

    Orlandini, S; Pasquini, B; Stocchero, M; Pinzauti, S; Furlanetto, S

    2014-04-25

    The development of a capillary electrophoresis (CE) method for the assay of almotriptan (ALM) and its main impurities using an integrated Quality by Design and mixture-process variable (MPV) approach is described. A scouting phase was initially carried out by evaluating different CE operative modes, including the addition of pseudostationary phases and additives to the background electrolyte, in order to approach the analytical target profile. This step made it possible to select normal polarity microemulsion electrokinetic chromatography (MEEKC) as operative mode, which allowed a good selectivity to be achieved in a low analysis time. On the basis of a general Ishikawa diagram for MEEKC methods, a screening asymmetric matrix was applied in order to screen the effects of the process variables (PVs) voltage, temperature, buffer concentration and buffer pH, on critical quality attributes (CQAs), represented by critical separation values and analysis time. A response surface study was then carried out considering all the critical process parameters, including both the PVs and the mixture components (MCs) of the microemulsion (borate buffer, n-heptane as oil, sodium dodecyl sulphate/n-butanol as surfactant/cosurfactant). The values of PVs and MCs were simultaneously changed in a MPV study, making it possible to find significant interaction effects. The design space (DS) was defined as the multidimensional combination of PVs and MCs where the probability for the different considered CQAs to be acceptable was higher than a quality level π=90%. DS was identified by risk of failure maps, which were drawn on the basis of Monte-Carlo simulations, and verification points spanning the design space were tested. Robustness testing of the method, performed by a D-optimal design, and system suitability criteria allowed a control strategy to be designed. The optimized method was validated following ICH Guideline Q2(R1) and was applied to a real sample of ALM coated tablets. PMID

  17. Numerical solution of optimal control problems using multiple-interval integral Gegenbauer pseudospectral methods

    NASA Astrophysics Data System (ADS)

    Tang, Xiaojun

    2016-04-01

    The main purpose of this work is to provide multiple-interval integral Gegenbauer pseudospectral methods for solving optimal control problems. The latest developed single-interval integral Gauss/(flipped Radau) pseudospectral methods can be viewed as special cases of the proposed methods. We present an exact and efficient approach to compute the mesh pseudospectral integration matrices for the Gegenbauer-Gauss and flipped Gegenbauer-Gauss-Radau points. Numerical results on benchmark optimal control problems confirm the ability of the proposed methods to obtain highly accurate solutions.

  18. The Effect of Sensory Integration Treatment on Children with Multiple Disabilities.

    ERIC Educational Resources Information Center

    Din, Feng S.; Lodato, Donna M.

    Six children with multiple disabilities (ages 5 to 8) participated in this evaluation of the effect of sensory integration treatment on sensorimotor function and academic learning. The children had cognitive abilities ranging from sub-average to significantly sub-average, three were non-ambulatory, one had severe behavioral problems, and each…

  19. Multiplicity and Self-Identity: Trauma and Integration in Shirley Mason's Art

    ERIC Educational Resources Information Center

    Thompson, Geoffrey

    2011-01-01

    This viewpoint appeared in its original form as the catalogue essay that accompanied the exhibition "Multiplicity and Self-Identity: Trauma and Integration in Shirley Mason's Art," curated by the author for Gallery 2110, Sacramento, CA, and the 2010 Annual Conference of the American Art Therapy Association. The exhibition featured 17 artworks by…

  20. Multiple proviral integration events after virological synapse-mediated HIV-1 spread

    SciTech Connect

    Russell, Rebecca A.; Martin, Nicola; Mitar, Ivonne; Jones, Emma; Sattentau, Quentin J.

    2013-08-15

    HIV-1 can move directly between T cells via virological synapses (VS). Although aspects of the molecular and cellular mechanisms underlying this mode of spread have been elucidated, the outcomes for infection of the target cell remain incompletely understood. We set out to determine whether HIV-1 transfer via VS results in productive, high-multiplicity HIV-1 infection. We found that HIV-1 cell-to-cell spread resulted in nuclear import of multiple proviruses into target cells as seen by fluorescence in-situ hybridization. Proviral integration into the target cell genome was significantly higher than that seen in a cell-free infection system, and consequent de novo viral DNA and RNA production in the target cell detected by quantitative PCR increased over time. Our data show efficient proviral integration across VS, implying the probability of multiple integration events in target cells that drive productive T cell infection. - Highlights: • Cell-to-cell HIV-1 infection delivers multiple vRNA copies to the target cell. • Cell-to-cell infection results in productive infection of the target cell. • Cell-to-cell transmission is more efficient than cell-free HIV-1 infection. • Suggests a mechanism for recombination in cells infected with multiple viral genomes.

  1. Integrating Multiple Evidence Sources to Predict Adverse Drug Reactions Based on a Systems Pharmacology Model

    PubMed Central

    Cao, D-S; Xiao, N; Li, Y-J; Zeng, W-B; Liang, Y-Z; Lu, A-P; Xu, Q-S; Chen, AF

    2015-01-01

    Identifying potential adverse drug reactions (ADRs) is critically important for drug discovery and public health. Here we developed a multiple evidence fusion (MEF) method for the large-scale prediction of drug ADRs that can handle both approved drugs and novel molecules. MEF is based on the similarity reference by collaborative filtering, and integrates multiple similarity measures from various data types, taking advantage of the complementarity in the data. We used MEF to integrate drug-related and ADR-related data from multiple levels, including the network structural data formed by known drug–ADR relationships for predicting likely unknown ADRs. On cross-validation, it obtains high sensitivity and specificity, substantially outperforming existing methods that utilize single or a few data types. We validated our prediction by their overlap with drug–ADR associations that are known in databases. The proposed computational method could be used for complementary hypothesis generation and rapid analysis of potential drug–ADR interactions. PMID:26451329

  2. TEACHING PHYSICS: Capillary effects

    NASA Astrophysics Data System (ADS)

    Ivanov, Dragia; Petrova, Hristina

    2000-07-01

    We examine capillary tubes with a variable cross section, in which there is a column of fully wetting or fully non-wetting liquid. The direction in which the liquid moves when the tubes are placed horizontally is determined by means of Pascal's law. We promote the idea that the conical capillary tube is a hydraulic machine, whose two pistons are the liquid column's free surfaces, which have different radii. We propose a new way of demonstrating the described capillary effects by means of flat models of capillary tubes, constructed from glass plates. The demonstrations are presented in front of a large audience using an overhead projector.

  3. Hollow fiber integrated microfluidic platforms for in vitro Co-culture of multiple cell types.

    PubMed

    Huang, Jen-Huang; Harris, Jennifer F; Nath, Pulak; Iyer, Rashi

    2016-10-01

    This study demonstrates a rapid prototyping approach for fabricating and integrating porous hollow fibers (HFs) into microfluidic device. Integration of HF can enhance mass transfer and recapitulate tubular shapes for tissue-engineered environments. We demonstrate the integration of single or multiple HFs, which can give the users the flexibility to control the total surface area for tissue development. We also present three microfluidic designs to enable different co-culture conditions such as the ability to co-culture multiple cell types simultaneously on a flat and tubular surface, or inside the lumen of multiple HFs. Additionally, we introduce a pressurized cell seeding process that can allow the cells to uniformly adhere on the inner surface of HFs without losing their viabilities. Co-cultures of lung epithelial cells and microvascular endothelial cells were demonstrated on the different platforms for at least five days. Overall, these platforms provide new opportunities for co-culturing of multiple cell types in a single device to reconstruct native tissue micro-environment for biomedical and tissue engineering research. PMID:27613401

  4. Aerobic Fitness is Associated with Gray Matter Volume and White Matter Integrity in Multiple Sclerosis

    PubMed Central

    Prakash, Ruchika Shaurya; Snook, Erin M.; Motl, Robert W.; Kramer, Arthur F.

    2009-01-01

    Alterations in gray and white matter have been well documented in individuals with multiple sclerosis. Severity and extent of such brain tissue damage have been associated with cognitive impairment, disease duration and neurological disability, making quantitative indices of tissue damage important markers of disease progression. In this study, we investigated the association between cardiorespiratory fitness and measures of gray matter atrophy and white matter integrity. Employing a voxel-based approach to analyses of gray matter and white matter, we specifically examined whether higher levels of fitness in multiple sclerosis participants were associated with preserved gray matter volume and integrity of white matter. We found a positive association between cardiorespiratory fitness and regional gray matter volumes and higher focal fractional anisotropy values. Statistical mapping revealed that higher levels of fitness were associated with greater gray matter volume in the midline cortical structures including the medial frontal gyrus, anterior cingulate cortex and the precuneus. Further, we also found increasing levels of fitness were associated with higher fractional anisotropy in the left thalamic radiation and right anterior corona radiata. Both preserved gray matter volume and white-matter tract integrity were associated with better performance on measures of processing speed. Taken together, these results suggest that fitness exerts a prophylactic influence on the cerebral atrophy observed early on preserving neuronal integrity in multiple sclerosis, thereby reducing long-term disability. PMID:19560443

  5. Integrative and regularized principal component analysis of multiple sources of data.

    PubMed

    Liu, Binghui; Shen, Xiaotong; Pan, Wei

    2016-06-15

    Integration of data of disparate types has become increasingly important to enhancing the power for new discoveries by combining complementary strengths of multiple types of data. One application is to uncover tumor subtypes in human cancer research in which multiple types of genomic data are integrated, including gene expression, DNA copy number, and DNA methylation data. In spite of their successes, existing approaches based on joint latent variable models require stringent distributional assumptions and may suffer from unbalanced scales (or units) of different types of data and non-scalability of the corresponding algorithms. In this paper, we propose an alternative based on integrative and regularized principal component analysis, which is distribution-free, computationally efficient, and robust against unbalanced scales. The new method performs dimension reduction simultaneously on multiple types of data, seeking data-adaptive sparsity and scaling. As a result, in addition to feature selection for each type of data, integrative clustering is achieved. Numerically, the proposed method compares favorably against its competitors in terms of accuracy (in identifying hidden clusters), computational efficiency, and robustness against unbalanced scales. In particular, compared with a popular method, the new method was competitive in identifying tumor subtypes associated with distinct patient survival patterns when applied to a combined analysis of DNA copy number, mRNA expression, and DNA methylation data in a glioblastoma multiforme study. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26756854

  6. Aerobic fitness is associated with gray matter volume and white matter integrity in multiple sclerosis.

    PubMed

    Prakash, Ruchika Shaurya; Snook, Erin M; Motl, Robert W; Kramer, Arthur F

    2010-06-23

    Alterations in gray and white matter have been well documented in individuals with multiple sclerosis. Severity and extent of such brain tissue damage have been associated with cognitive impairment, disease duration and neurological disability, making quantitative indices of tissue damage important markers of disease progression. In this study, we investigated the association between cardiorespiratory fitness and measures of gray matter atrophy and white matter integrity. Employing voxel-based approaches to analysis of gray matter and white matter, we specifically examined whether higher levels of fitness in multiple sclerosis participants were associated with preserved gray matter volume and integrity of white matter. We found a positive association between cardiorespiratory fitness and regional gray matter volumes and higher focal fractional anisotropy values. Statistical mapping revealed that higher levels of fitness were associated with greater gray matter volume in the midline cortical structures including the medial frontal gyrus, anterior cingulate cortex and the precuneus. Further, we also found that increasing levels of fitness were associated with higher fractional anisotropy in the left thalamic radiation and right anterior corona radiata. Both preserved gray matter volume and white matter tract integrity were associated with better performance on measures of processing speed. Taken together, these results suggest that fitness exerts a prophylactic influence on the structural decline observed early on, preserving neuronal integrity in multiple sclerosis, thereby reducing long-term disability. PMID:19560443

  7. Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins

    PubMed Central

    Stražar, Martin; Žitnik, Marinka; Zupan, Blaž; Ule, Jernej; Curk, Tomaž

    2016-01-01

    Motivation: RNA binding proteins (RBPs) play important roles in post-transcriptional control of gene expression, including splicing, transport, polyadenylation and RNA stability. To model protein–RNA interactions by considering all available sources of information, it is necessary to integrate the rapidly growing RBP experimental data with the latest genome annotation, gene function, RNA sequence and structure. Such integration is possible by matrix factorization, where current approaches have an undesired tendency to identify only a small number of the strongest patterns with overlapping features. Because protein–RNA interactions are orchestrated by multiple factors, methods that identify discriminative patterns of varying strengths are needed. Results: We have developed an integrative orthogonality-regularized nonnegative matrix factorization (iONMF) to integrate multiple data sources and discover non-overlapping, class-specific RNA binding patterns of varying strengths. The orthogonality constraint halves the effective size of the factor model and outperforms other NMF models in predicting RBP interaction sites on RNA. We have integrated the largest data compendium to date, which includes 31 CLIP experiments on 19 RBPs involved in splicing (such as hnRNPs, U2AF2, ELAVL1, TDP-43 and FUS) and processing of 3’UTR (Ago, IGF2BP). We show that the integration of multiple data sources improves the predictive accuracy of retrieval of RNA binding sites. In our study the key predictive factors of protein–RNA interactions were the position of RNA structure and sequence motifs, RBP co-binding and gene region type. We report on a number of protein-specific patterns, many of which are consistent with experimentally determined properties of RBPs. Availability and implementation: The iONMF implementation and example datasets are available at https://github.com/mstrazar/ionmf. Contact: tomaz.curk@fri.uni-lj.si Supplementary information: Supplementary data are available

  8. Integrated strong cation-exchange hybrid monolith coupled with capillary zone electrophoresis and simultaneous dynamic pH junction for large-volume proteomic analysis by mass spectrometry.

    PubMed

    Zhang, Zhenbin; Sun, Liangliang; Zhu, Guijie; Yan, Xiaojing; Dovichi, Norman J

    2015-06-01

    A sulfonate-silica hybrid strong cation-exchange (SCX) monolith was synthesized at the proximal end of a capillary zone electrophoresis column and used for on-line solid-phase extraction (SPE) sample preconcentration. Sample was prepared in an acidic buffer and deposited onto the SCX-SPE monolith and eluted using a basic buffer. Electrophoresis was performed in an acidic buffer. This combination of buffers results in formation of a dynamic pH junction, which allows use of relatively large elution buffer volume while maintaining peak efficiency and resolution. All experiments were performed with a 50 µm ID capillary, a 1cm long SCX-SPE monolith, a 60cm long separation capillary, and a electrokinetically pumped nanospray interface. The volume of the capillary is 1.1 µL. By loading 21 µL of a 1×10(-7) M angiotensin II solution, an enrichment factor of 3000 compared to standard electrokinetic injection was achieved on this platform while retaining efficient electrophoretic performance (N=44,000 plates). The loading capacity of the sulfonate SCX hybrid monolith was determined to be ~15 pmol by frontal analysis with 10(-5) M angiotensin II. The system was also applied to the analysis of a 10(-4) mg/mL bovine serum albumin tryptic digest; the protein coverage was 12% and 11 peptides were identified. Finally, by loading 5.5 µL of a 10(-3) mg/mL E. coli digest, 109 proteins and 271 peptides were identified in a 20 min separation; the median separation efficiency generated by these peptides was 25,000 theoretical plates. PMID:25863379

  9. High sensitivity detection of NO2 employing off-axis integrated cavity output spectroscopy coupled with multiple line integrated spectroscopy

    NASA Astrophysics Data System (ADS)

    Rao, Gottipaty N.; Karpf, Andreas

    2011-05-01

    We report on the development of a new sensor for NO2 with ultrahigh sensitivity of detection. This has been accomplished by combining off-axis integrated cavity output spectroscopy (OA-ICOS) (which can provide large path lengths of the order of several km in a small volume cell) with multiple line integrated absorption spectroscopy (MLIAS) (where we integrate the absorption spectra over a large number of rotational-vibrational transitions of the molecular species to further improve the sensitivity). Employing an external cavity tunable quantum cascade laser operating in the 1601 - 1670 cm-1 range and a high-finesse optical cavity, the absorption spectra of NO2 over 100 transitions in the R-band have been recorded. From the observed linear relationship between the integrated absorption vs. concentration of NO2, we report an effective sensitivity of detection of 10 ppt for NO2. To the best of our knowledge, this is among the most sensitive levels of detection of NO2 to date. A sensitive sensor for the detection of NO2 will be helpful to monitor the ambient air quality, combustion emissions from the automobiles, power plants, aircraft and for the detection of nitrate based explosives (which are commonly used in improvised explosives (IEDs)). Additionally such a sensor would be valuable for the study of complex chemical reactions that undergo in the atmosphere resulting in the formation of photochemical smog, tropospheric ozone and acid rain.

  10. Scientific concepts and applications of integrated discrete multiple organ co-culture technology

    PubMed Central

    Gayathri, Loganathan; Dhanasekaran, Dharumadurai; Akbarsha, Mohammad A.

    2015-01-01

    Over several decades, animals have been used as models to investigate the human-specific drug toxicity, but the outcomes are not always reliably extrapolated to the humans in vivo. Appropriate in vitro human-based experimental system that includes in vivo parameters is required for the evaluation of multiple organ interaction, multiple organ/organ-specific toxicity, and metabolism of xenobiotic compounds to avoid the use of animals for toxicity testing. One such versatile in vitro technology in which human primary cells could be used is integrated discrete multiple organ co-culture (IdMOC). IdMOC system adopts wells-within-well concept that facilitates co-culture of cells from different organs in a discrete manner, separately in the respective media in the smaller inner wells which are then interconnected by an overlay of a universal medium in the large containing well. This novel in vitro approach mimics the in vivo situation to a great extent, and employs cells from multiple organs that are physically separated but interconnected by a medium that mimics the systemic circulation and provides for multiple organ interaction. Applications of IdMOC include assessment of multiple organ toxicity, drug distribution, organ-specific toxicity, screening of anticancer drugs, metabolic cytotoxicity, etc. PMID:25969651

  11. Capillary rheometry for thermosets

    NASA Technical Reports Server (NTRS)

    Malguarnera, S. C.; Carroll, D. R.

    1982-01-01

    Capillary rheometry is effectively used with thermosets. Most important is providing a uniform temperature in the barrel. This was successfully accomplished by using a circulating hot oil system. Standard capillary rheometry methods provide the dependence of thermoset apparent viscosity on shear rate, temperature and time. Such information is very useful in evaluating resin processability and in setting preliminary fabrication conditions.

  12. Genetic, Epigenetic, and Environmental Factors Influencing Neurovisceral Integration of Cardiovascular Modulation: Focus on Multiple Sclerosis.

    PubMed

    Sternberg, Zohara

    2016-03-01

    Thought to be an autoimmune inflammatory CNS disease, multiple sclerosis (MS) involves multiple pathologies with heterogeneous clinical presentations. An impaired neurovisceral integration of cardiovascular modulation, indicated by sympathetic and parasympathetic autonomic nervous system (ANS) dysfunction, is among common MS clinical presentations. ANS dysfunction could not only enhance MS inflammatory and neurodegenerative processes, but can also lead to clinical symptoms such as depression, fatigue, sleep disorder, migraine, osteoporosis, and cerebral hemodynamic impairments. Therefore, factors influencing ANS functional activities, in one way or another, will have a significant impact on MS disease course. This review describes the genetic and epigenetic factors, and their interactions with a number of environmental factors contributing to the neurovisceral integration of cardiovascular modulation, with a focus on MS. Future studies should investigate the improvement in cardiovascular ANS function, as a strategy for preventing and minimizing MS-related morbidities, and improving patients' quality of life. PMID:26502224

  13. Quadrature rules with multiple nodes for evaluating integrals with strong singularities

    NASA Astrophysics Data System (ADS)

    Milovanovic, Gradimir V.; Spalevic, Miodrag M.

    2006-05-01

    We present a method based on the Chakalov-Popoviciu quadrature formula of Lobatto type, a rather general case of quadrature with multiple nodes, for approximating integrals defined by Cauchy principal values or by Hadamard finite parts. As a starting point we use the results obtained by L. Gori and E. Santi (cf. On the evaluation of Hilbert transforms by means of a particular class of Turan quadrature rules, Numer. Algorithms 10 (1995), 27-39; Quadrature rules based on s-orthogonal polynomials for evaluating integrals with strong singularities, Oberwolfach Proceedings: Applications and Computation of Orthogonal Polynomials, ISNM 131, Birkhauser, Basel, 1999, pp. 109-119). We generalize their results by using some of our numerical procedures for stable calculation of the quadrature formula with multiple nodes of Gaussian type and proposed methods for estimating the remainder term in such type of quadrature formulae. Numerical examples, illustrations and comparisons are also shown.

  14. The eye in hand: predicting others' behavior by integrating multiple sources of information

    PubMed Central

    Pezzulo, Giovanni; Costantini, Marcello

    2015-01-01

    The ability to predict the outcome of other beings' actions confers significant adaptive advantages. Experiments have assessed that human action observation can use multiple information sources, but it is currently unknown how they are integrated and how conflicts between them are resolved. To address this issue, we designed an action observation paradigm requiring the integration of multiple, potentially conflicting sources of evidence about the action target: the actor's gaze direction, hand preshape, and arm trajectory, and their availability and relative uncertainty in time. In two experiments, we analyzed participants' action prediction ability by using eye tracking and behavioral measures. The results show that the information provided by the actor's gaze affected participants' explicit predictions. However, results also show that gaze information was disregarded as soon as information on the actor's hand preshape was available, and this latter information source had widespread effects on participants' prediction ability. Furthermore, as the action unfolded in time, participants relied increasingly more on the arm movement source, showing sensitivity to its increasing informativeness. Therefore, the results suggest that the brain forms a robust estimate of the actor's motor intention by integrating multiple sources of information. However, when informative motor cues such as a preshaped hand with a given grip are available and might help in selecting action targets, people tend to capitalize on such motor cues, thus turning out to be more accurate and fast in inferring the object to be manipulated by the other's hand. PMID:25568158

  15. PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis

    PubMed Central

    Choi, Hyunmo; Oh, Eunkyoo

    2016-01-01

    As sessile organisms, plants must be able to adapt to the environment. Plants respond to the environment by adjusting their growth and development, which is mediated by sophisticated signaling networks that integrate multiple environmental and endogenous signals. Recently, increasing evidence has shown that a bHLH transcription factor PIF4 plays a major role in the multiple signal integration for plant growth regulation. PIF4 is a positive regulator in cell elongation and its activity is regulated by various environmental signals, including light and temperature, and hormonal signals, including auxin, gibberellic acid and brassinosteroid, both transcriptionally and post-translationally. Moreover, recent studies have shown that the circadian clock and metabolic status regulate endogenous PIF4 level. The PIF4 transcription factor cooperatively regulates the target genes involved in cell elongation with hormone-regulated transcription factors. Therefore, PIF4 is a key integrator of multiple signaling pathways, which optimizes growth in the environment. This review will discuss our current understanding of the PIF4-mediated signaling networks that control plant growth. PMID:27432188

  16. PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis.

    PubMed

    Choi, Hyunmo; Oh, Eunkyoo

    2016-08-31

    As sessile organisms, plants must be able to adapt to the environment. Plants respond to the environment by adjusting their growth and development, which is mediated by sophisticated signaling networks that integrate multiple environmental and endogenous signals. Recently, increasing evidence has shown that a bHLH transcription factor PIF4 plays a major role in the multiple signal integration for plant growth regulation. PIF4 is a positive regulator in cell elongation and its activity is regulated by various environmental signals, including light and temperature, and hormonal signals, including auxin, gibberellic acid and brassinosteroid, both transcriptionally and post-translationally. Moreover, recent studies have shown that the circadian clock and metabolic status regulate endogenous PIF4 level. The PIF4 transcription factor cooperatively regulates the target genes involved in cell elongation with hormone-regulated transcription factors. Therefore, PIF4 is a key integrator of multiple signaling pathways, which optimizes growth in the environment. This review will discuss our current understanding of the PIF4-mediated signaling networks that control plant growth. PMID:27432188

  17. The eye in hand: predicting others' behavior by integrating multiple sources of information.

    PubMed

    Ambrosini, Ettore; Pezzulo, Giovanni; Costantini, Marcello

    2015-04-01

    The ability to predict the outcome of other beings' actions confers significant adaptive advantages. Experiments have assessed that human action observation can use multiple information sources, but it is currently unknown how they are integrated and how conflicts between them are resolved. To address this issue, we designed an action observation paradigm requiring the integration of multiple, potentially conflicting sources of evidence about the action target: the actor's gaze direction, hand preshape, and arm trajectory, and their availability and relative uncertainty in time. In two experiments, we analyzed participants' action prediction ability by using eye tracking and behavioral measures. The results show that the information provided by the actor's gaze affected participants' explicit predictions. However, results also show that gaze information was disregarded as soon as information on the actor's hand preshape was available, and this latter information source had widespread effects on participants' prediction ability. Furthermore, as the action unfolded in time, participants relied increasingly more on the arm movement source, showing sensitivity to its increasing informativeness. Therefore, the results suggest that the brain forms a robust estimate of the actor's motor intention by integrating multiple sources of information. However, when informative motor cues such as a preshaped hand with a given grip are available and might help in selecting action targets, people tend to capitalize on such motor cues, thus turning out to be more accurate and fast in inferring the object to be manipulated by the other's hand. PMID:25568158

  18. A hybrid fluorous monolithic capillary column with integrated nanoelectrospray ionization emitter for determination of perfluoroalkyl acids by nano-liquid chromatography-nanoelectrospray ionization-mass spectrometry/mass spectrometry.

    PubMed

    Zhang, Haiyang; Ou, Junjie; Wei, Yinmao; Wang, Hongwei; Liu, Zhongshan; Zou, Hanfa

    2016-04-01

    A hybrid fluorous monolithic column was simply prepared via photo-initiated free radical polymerization of an acrylopropyl polyhedral oligomeric silsesquioxane (acryl-POSS) and a perfluorous monomer (2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl acrylate) in UV-transparent fused-silica capillaries within 5min. The physical characterization of hybrid fluorous monolith, including scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, mercury intrusion porosimetry (MIP) and nitrogen adsorption/desorption measurement was performed. Chromatographic performance was also evaluated by capillary liquid chromatography (cLC). Due to the fluorous-fluorous interaction between fluorous monolith and analytes, fluorobenzenes could well be separated, and the column efficiencies reached 86,600-92,500plates/m at the velocity of 0.87mm/s for alkylbenzenes and 51,900-76,000plates/m at the velocity of 1.10mm/s for fluorobenzenes. Meanwhile, an approach to integrate nanoelectrospray ionization (ESI) emitter with hybrid fluorous monolithic column was developed for quantitative determination of perfluoroalkyl acids by nanoHPLC-ESI-MS/MS. The integration design could minimize extracolumn volume, thus excluding undesirable peak broadening and improving separation performance. PMID:26916593

  19. A Methodology for Multiple Rule System Integration and Resolution Within a Singular Knowledge Base

    NASA Technical Reports Server (NTRS)

    Kautzmann, Frank N., III

    1988-01-01

    Expert Systems which support knowledge representation by qualitative modeling techniques experience problems, when called upon to support integrated views embodying description and explanation, especially when other factors such as multiple causality, competing rule model resolution, and multiple uses of knowledge representation are included. A series of prototypes are being developed to demonstrate the feasibility of automating the process of systems engineering, design and configuration, and diagnosis and fault management. A study involves not only a generic knowledge representation; it must also support multiple views at varying levels of description and interaction between physical elements, systems, and subsystems. Moreover, it will involve models of description and explanation for each level. This multiple model feature requires the development of control methods between rule systems and heuristics on a meta-level for each expert system involved in an integrated and larger class of expert system. The broadest possible category of interacting expert systems is described along with a general methodology for the knowledge representation and control of mutually exclusive rule systems.

  20. Jacobian integration method increases the statistical power to measure gray matter atrophy in multiple sclerosis☆

    PubMed Central

    Nakamura, Kunio; Guizard, Nicolas; Fonov, Vladimir S.; Narayanan, Sridar; Collins, D. Louis; Arnold, Douglas L.

    2013-01-01

    Gray matter atrophy provides important insights into neurodegeneration in multiple sclerosis (MS) and can be used as a marker of neuroprotection in clinical trials. Jacobian integration is a method for measuring volume change that uses integration of the local Jacobian determinants of the nonlinear deformation field registering two images, and is a promising tool for measuring gray matter atrophy. Our main objective was to compare the statistical power of the Jacobian integration method to commonly used methods in terms of the sample size required to detect a treatment effect on gray matter atrophy. We used multi-center longitudinal data from relapsing–remitting MS patients and evaluated combinations of cross-sectional and longitudinal pre-processing with SIENAX/FSL, SPM, and FreeSurfer, as well as the Jacobian integration method. The Jacobian integration method outperformed these other commonly used methods, reducing the required sample size by a factor of 4–5. The results demonstrate the advantage of using the Jacobian integration method to assess neuroprotection in MS clinical trials. PMID:24266007

  1. Modulation of C. elegans touch sensitivity is integrated at multiple levels.

    PubMed

    Chen, Xiaoyin; Chalfie, Martin

    2014-05-01

    Sensory systems can adapt to different environmental signals. Here we identify four conditions that modulate anterior touch sensitivity in Caenorhabditis elegans after several hours and demonstrate that such sensory modulation is integrated at multiple levels to produce a single output. Prolonged vibration involving integrin signaling directly sensitizes the touch receptor neurons (TRNs). In contrast, hypoxia, the dauer state, and high salt reduce touch sensitivity by preventing the release of long-range neuroregulators, including two insulin-like proteins. Integration of these latter inputs occurs at upstream neurohormonal cells and at the insulin signaling cascade within the TRNs. These signals and those from integrin signaling converge to modulate touch sensitivity by regulating AKT kinases and DAF-16/FOXO. Thus, activation of either the integrin or insulin pathways can compensate for defects in the other pathway. This modulatory system integrates conflicting signals from different modalities, and adapts touch sensitivity to both mechanical and non-mechanical conditions. PMID:24806678

  2. Investigation of optimized wafer sampling with multiple integrated metrology modules within photolithography equipment

    NASA Astrophysics Data System (ADS)

    Taylor, Ted L.; Makimura, Eri

    2007-03-01

    Micron Technology, Inc., explores the challenges of defining specific wafer sampling scenarios for users of multiple integrated metrology modules within a Tokyo Electron Limited (TEL) CLEAN TRACK TM LITHIUS TM. With the introduction of integrated metrology (IM) into the photolithography coater/developer, users are faced with the challenge of determining what type of data is required to collect to adequately monitor the photolithography tools and the manufacturing process. Photolithography coaters/developers have a metrology block that is capable of integrating three metrology modules into the standard wafer flow. Taking into account the complexity of multiple metrology modules and varying across-wafer sampling plans per metrology module, users must optimize the module wafer sampling to obtain their desired goals. Users must also understand the complexity of the coater/developer handling systems to deliver wafers to each module. Coater/developer systems typically process wafers sequentially through each module to ensure consistent processing. In these systems, the first wafer must process through a module before the next wafer can process through a module, and the first wafer must return to the cassette before the second wafer can return to the cassette. IM modules within this type of system can reduce throughput and limit flexible wafer selections. Finally, users must have the ability to select specific wafer samplings for each IM module. This case study explores how to optimize wafer sampling plans and how to identify limitations with the complexity of multiple integrated modules to ensure maximum metrology throughput without impact to the productivity of processing wafers through the photolithography cell (litho cell).

  3. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Li, Qingbo; Lu, Xiandan

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  4. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.; Li, Qingbo; Lu, Xiandan

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  5. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Li, Q.; Lu, X.

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  6. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.; Li, Q.; Lu, X.

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  7. Exotic containers for capillary surfaces

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1991-01-01

    This paper discusses 'exotic' rotationally symmetric containers that admit an entire continuum of distinct equilibrium capillary free surfaces. The paper extends earlier work to a larger class of parameters and clarifies and simplifies the governing differential equations, while expressing them in a parametric form appropriate for numerical integration. A unified presentation suitable for both zero and nonzero gravity is given. Solutions for the container shapes are depicted graphically along with members of the free-surface continuum, and comments are given concerning possible physical experiments.

  8. Microbeam-coupled capillary electrophoresis.

    PubMed

    Garty, G; Ehsan, M U; Buonanno, M; Yang, Z; Sweedler, J V; Brenner, D J

    2015-09-01

    Within the first few microseconds following a charged particle traversal of a cell, numerous oxygen and nitrogen radicals are formed along the track. Presented here is a method, using capillary electrophoresis, for simultaneous measurement, within an individual cell, of specific reactive oxygen species, such as the superoxide radical ([Formula: see text]) as well as the native and oxidised forms of glutathione, an ubiquitous anti-oxidant that assists the cell in coping with these species. Preliminary data are presented as well as plans for integrating this system into the charged particle microbeam at Columbia University. PMID:25870435

  9. High-precision, automated integration of multiple isothermal titration calorimetric thermograms: new features of NITPIC.

    PubMed

    Scheuermann, Thomas H; Brautigam, Chad A

    2015-04-01

    Isothermal titration calorimetry (ITC) has become a standard and widely available tool to measure the thermodynamic parameters of macromolecular associations. Modern applications of the method, including global analysis and drug screening, require the acquisition of multiple sets of data; sometimes these data sets number in the hundreds. Therefore, there is a need for quick, precise, and automated means to process the data, particularly at the first step of data analysis, which is commonly the integration of the raw data to yield an interpretable isotherm. Herein, we describe enhancements to an algorithm that previously has been shown to provide an automated, unbiased, and high-precision means to integrate ITC data. These improvements allow for the speedy and precise serial integration of an unlimited number of ITC data sets, and they have been implemented in the freeware program NITPIC, version 1.1.0. We present a comprehensive comparison of the performance of this software against an older version of NITPIC and a current version of Origin, which is commonly used for integration. The new methods recapitulate the excellent performance of the previous versions of NITPIC while speeding it up substantially, and their precision is significantly better than that of Origin. This new version of NITPIC is therefore well suited to the serial integration of many ITC data sets. PMID:25524420

  10. A fast and high performance multiple data integration algorithm for identifying human disease genes

    PubMed Central

    2015-01-01

    Background Integrating multiple data sources is indispensable in improving disease gene identification. It is not only due to the fact that disease genes associated with similar genetic diseases tend to lie close with each other in various biological networks, but also due to the fact that gene-disease associations are complex. Although various algorithms have been proposed to identify disease genes, their prediction performances and the computational time still should be further improved. Results In this study, we propose a fast and high performance multiple data integration algorithm for identifying human disease genes. A posterior probability of each candidate gene associated with individual diseases is calculated by using a Bayesian analysis method and a binary logistic regression model. Two prior probability estimation strategies and two feature vector construction methods are developed to test the performance of the proposed algorithm. Conclusions The proposed algorithm is not only generated predictions with high AUC scores, but also runs very fast. When only a single PPI network is employed, the AUC score is 0.769 by using F2 as feature vectors. The average running time for each leave-one-out experiment is only around 1.5 seconds. When three biological networks are integrated, the AUC score using F3 as feature vectors increases to 0.830, and the average running time for each leave-one-out experiment takes only about 12.54 seconds. It is better than many existing algorithms. PMID:26399620

  11. Real object-based 360-degree integral-floating display using multiple depth camera

    NASA Astrophysics Data System (ADS)

    Erdenebat, Munkh-Uchral; Dashdavaa, Erkhembaatar; Kwon, Ki-Chul; Wu, Hui-Ying; Yoo, Kwan-Hee; Kim, Young-Seok; Kim, Nam

    2015-03-01

    A novel 360-degree integral-floating display based on the real object is proposed. The general procedure of the display system is similar with conventional 360-degree integral-floating displays. Unlike previously presented 360-degree displays, the proposed system displays the 3D image generated from the real object in 360-degree viewing zone. In order to display real object in 360-degree viewing zone, multiple depth camera have been utilized to acquire the depth information around the object. Then, the 3D point cloud representations of the real object are reconstructed according to the acquired depth information. By using a special point cloud registration method, the multiple virtual 3D point cloud representations captured by each depth camera are combined as single synthetic 3D point cloud model, and the elemental image arrays are generated for the newly synthesized 3D point cloud model from the given anamorphic optic system's angular step. The theory has been verified experimentally, and it shows that the proposed 360-degree integral-floating display can be an excellent way to display real object in the 360-degree viewing zone.

  12. Identification of Functional Modules by Integration of Multiple Data Sources Using a Bayesian Network Classifier

    PubMed Central

    Wang, Jinlian; Zuo, Yiming; Liu, Lun; Man, Yangao; Tadesse, Mahlet G.; Ressom, Habtom W

    2014-01-01

    Background Prediction of functional modules is indispensable for detecting protein deregulation in human complex diseases such as cancer. Bayesian network (BN) is one of the most commonly used models to integrate heterogeneous data from multiple sources such as protein domain, interactome, functional annotation, genome-wide gene expression, and the literature. Methods and Results In this paper, we present a BN classifier that is customized to: 1) increase the ability to integrate diverse information from different sources, 2) effectively predict protein-protein interactions, 3) infer aberrant networks with scale-free and small world properties, and 4) group molecules into functional modules or pathways based on the primary function and biological features. Application of this model on discovering protein biomarkers of hepatocelluar carcinoma (HCC) leads to the identification of functional modules that provide insights into the mechanism of the development and progression of HCC. These functional modules include cell cycle deregulation, increased angiogenesis (e.g., vascular endothelial growth factor, blood vessel morphogenesis), oxidative metabolic alterations, and aberrant activation of signaling pathways involved in cellular proliferation, survival, and differentiation. Conclusion The discoveries and conclusions derived from our customized BN classifier are consistent with previously published results. The proposed approach for determining BN structure facilitates the integration of heterogeneous data from multiple sources to elucidate the mechanisms of complex diseases. PMID:24736851

  13. MSblender: a probabilistic approach for integrating peptide identifications from multiple database search engines

    PubMed Central

    Kwon, Taejoon; Choi, Hyungwon; Vogel, Christine; Nesvizhskii, Alexey I.; Marcotte, Edward M.

    2011-01-01

    Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for all possible PSMs and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for all detected proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses. PMID:21488652

  14. MSblender: A probabilistic approach for integrating peptide identifications from multiple database search engines.

    PubMed

    Kwon, Taejoon; Choi, Hyungwon; Vogel, Christine; Nesvizhskii, Alexey I; Marcotte, Edward M

    2011-07-01

    Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for every possible PSM and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for most proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses. PMID:21488652

  15. Displaced capillary dies

    DOEpatents

    Kalejs, Juris P.; Chalmers, Bruce; Surek, Thomas

    1984-01-01

    An asymmetrical shaped capillary die made exclusively of graphite is used to grow silicon ribbon which is capable of being made into solar cells that are more efficient than cells produced from ribbon made using a symmetrically shaped die.

  16. Displaced capillary dies

    DOEpatents

    Kalejs, Juris P.; Chalmers, Bruce; Surek, Thomas

    1982-01-01

    An asymmetrical shaped capillary die made exclusively of graphite is used to grow silicon ribbon which is capable of being made into solar cells that are more efficient than cells produced from ribbon made using a symmetrically shaped die.

  17. Integration of multiple view plus depth data for free viewpoint 3D display

    NASA Astrophysics Data System (ADS)

    Suzuki, Kazuyoshi; Yoshida, Yuko; Kawamoto, Tetsuya; Fujii, Toshiaki; Mase, Kenji

    2014-03-01

    This paper proposes a method for constructing a reasonable scale of end-to-end free-viewpoint video system that captures multiple view and depth data, reconstructs three-dimensional polygon models of objects, and display them on virtual 3D CG spaces. This system consists of a desktop PC and four Kinect sensors. First, multiple view plus depth data at four viewpoints are captured by Kinect sensors simultaneously. Then, the captured data are integrated to point cloud data by using camera parameters. The obtained point cloud data are sampled to volume data that consists of voxels. Since volume data that are generated from point cloud data are sparse, those data are made dense by using global optimization algorithm. Final step is to reconstruct surfaces on dense volume data by discrete marching cubes method. Since accuracy of depth maps affects to the quality of 3D polygon model, a simple inpainting method for improving depth maps is also presented.

  18. ePRISM: A case study in multiple proxy and mixed temporal resolution integration

    USGS Publications Warehouse

    Robinson, Marci M.; Dowsett, Harry J.

    2010-01-01

    As part of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project, we present the ePRISM experiment designed I) to provide climate modelers with a reconstruction of an early Pliocene warm period that was warmer than the PRISM interval (similar to 3.3 to 3.0 Ma), yet still similar in many ways to modern conditions and 2) to provide an example of how best to integrate multiple-proxy sea surface temperature (SST) data from time series with varying degrees of temporal resolution and age control as we begin to build the next generation of PRISM, the PRISM4 reconstruction, spanning a constricted time interval. While it is possible to tie individual SST estimates to a single light (warm) oxygen isotope event, we find that the warm peak average of SST estimates over a narrowed time interval is preferential for paleoclimate reconstruction as it allows for the inclusion of more records of multiple paleotemperature proxies.

  19. Characterization of multiple-bit errors from single-ion tracks in integrated circuits

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Edmonds, L. D.; Smith, L. S.

    1989-01-01

    The spread of charge induced by an ion track in an integrated circuit and its subsequent collection at sensitive nodal junctions can cause multiple-bit errors. The authors have experimentally and analytically investigated this phenomenon using a 256-kb dynamic random-access memory (DRAM). The effects of different charge-transport mechanisms are illustrated, and two classes of ion-track multiple-bit error clusters are identified. It is demonstrated that ion tracks that hit a junction can affect the lateral spread of charge, depending on the nature of the pull-up load on the junction being hit. Ion tracks that do not hit a junction allow the nearly uninhibited lateral spread of charge.

  20. Integrated airborne lidar and multiple endmember spectral mixture analysis (MESMA) for plant species mapping across multiple functional groups

    NASA Astrophysics Data System (ADS)

    Dahlin, K.; Asner, G. P.

    2010-12-01

    The ability to map plant species distributions has long been one of the key goals of terrestrial remote sensing. Achieving this goal has been challenging, however, due to technical constraints and the difficulty in relating remote observations to ground measurements. Advances in both the types of data that can be collected remotely and in available analytical tools like multiple endmember spectral mixture analysis (MESMA) are allowing for rapid improvements in this field. In 2007 the Carnegie Airborne Observatory (CAO) acquired high resolution lidar and hyperspectral imagery of Jasper Ridge Biological Preserve (Woodside, California). The site contains a mosaic of vegetation types, from grassland to chaparral to evergreen forest. To build a spectral library, 415 GPS points were collected in the field, made up of 44 plant species, six plant categories (for nonphotosynthetic vegetation), and four substrate types. Using the lidar data to select the most illuminated pixels as seen from the aircraft (based on canopy shape and viewing angle), we then reduced the spectral library to only the most fully lit pixels. To identify individual plant species in the imagery, first the hyperspectral data was used to calculate the normalized difference vegetation index (NDVI), and then pixels with an NDVI less than 0.15 were removed from further analysis. The remaining image was stratified into five classes based on vegetation height derived from the lidar data. For each class, a suite of possible endmembers was identified and then three endmember selection procedures (endmember average RMS, minimum average spectral angle, and count based endmember selection) were employed to select the most representative endmembers from each species in each class. Two and three endmember models were then applied and each pixel was assigned a species or plant category based on the highest endmember fraction. To validate the approach, an independent set of 200 points was collected throughout the

  1. Capillary saturation and desaturation

    NASA Astrophysics Data System (ADS)

    Hilfer, R.; Armstrong, R. T.; Berg, S.; Georgiadis, A.; Ott, H.

    2015-12-01

    Capillary desaturation experiments produce disconnected (trapped) ganglia of mesoscopic sizes intermediate between pore size and system size. Experimental evidence for interactions between these mesoscale clusters during desaturation is analyzed and discussed within the established microscopic and macroscopic laws of Newton, Young-Laplace, and Darcy. A theoretical expression for capillary number correlations is introduced that seems to have remained unnoticed. It expresses capillary desaturation curves in terms of stationary capillary pressures and relative permeabilities. The theoretical expression shows that the plateau saturation in capillary desaturation curves may in general differ from the residual nonwetting saturation defined through the saturation limit of the main hysteresis loop. Hysteresis effects as well as the difference between wetting and nonwetting fluids are introduced into the analysis of capillary desaturation experiments. The article examines experiments with different desaturation protocols and discusses the existence of a mesoscopic length scale intermediate between pore scale and sample scale. The theoretical expression is derived entirely within the existing traditional theory of two-phase flow in porous media and compared to a recent experiment.

  2. Noisy Speech Recognition Based on Integration/Selection of Multiple Noise Suppression Methods Using Noise GMMs

    NASA Astrophysics Data System (ADS)

    Kitaoka, Norihide; Hamaguchi, Souta; Nakagawa, Seiichi

    To achieve high recognition performance for a wide variety of noise and for a wide range of signal-to-noise ratio, this paper presents methods for integration of four noise reduction algorithms: spectral subtraction with smoothing of time direction, temporal domain SVD-based speech enhancement, GMM-based speech estimation and KLT-based comb-filtering. In this paper, we proposed two types of combination methods of noise suppression algorithms: selection of front-end processor and combination of results from multiple recognition processes. Recognition results on the CENSREC-1 task showed the effectiveness of our proposed methods.kn-abstract=

  3. Method for Visually Integrating Multiple Data Acquisition Technologies for Real Time and Retrospective Analysis

    NASA Technical Reports Server (NTRS)

    Bogart, Edward H. (Inventor); Pope, Alan T. (Inventor)

    2000-01-01

    A system for display on a single video display terminal of multiple physiological measurements is provided. A subject is monitored by a plurality of instruments which feed data to a computer programmed to receive data, calculate data products such as index of engagement and heart rate, and display the data in a graphical format simultaneously on a single video display terminal. In addition live video representing the view of the subject and the experimental setup may also be integrated into the single data display. The display may be recorded on a standard video tape recorder for retrospective analysis.

  4. Evaluating environmental sustainability: an integration of multiple-criteria decision-making and fuzzy logic.

    PubMed

    Liu, Kevin F R

    2007-05-01

    While pursuing economic development, countries around the world have become aware of the importance of environmental sustainability; therefore, the evaluation of environmental sustainability has become a significant issue. Traditionally, multiple-criteria decision-making (MCDM) was widely used as a way of evaluating environmental sustainability, Recently, several researchers have attempted to implement this evaluation with fuzzy logic since they recognized the assessment of environmental sustainability as a subjective judgment Intuition. This paper outlines a new evaluation-framework of environmental sustainability, which integrates fuzzy logic into MCDM. This evaluation-framework consists of 36 structured and 5 unstructured decision-points, wherein MCDM is used to handle the former and fuzzy logic serves for the latter, With the integrated evaluation-framework, the evaluations of environmental sustainability in 146 countries are calculated, ranked and clustered, and the evaluation results are very helpful to these countries, as they identify their obstacles towards environmental sustainability. PMID:17377731

  5. One-step integration of multiple genes into the oleaginous yeast Yarrowia lipolytica.

    PubMed

    Gao, Shuliang; Han, Linna; Zhu, Li; Ge, Mei; Yang, Sheng; Jiang, Yu; Chen, Daijie

    2014-12-01

    Yarrowia lipolytica is an unconventional yeast, and is generally recognized as safe (GRAS). It provides a versatile fermentation platform that is used commercially to produce many added-value products. Here we report a multiple fragment assembly method that allows one-step integration of an entire β-carotene biosynthesis pathway (~11 kb, consisting of four genes) via in vivo homologous recombination into the rDNA locus of the Y. lipolytica chromosome. The highest efficiency was 21%, and the highest production of β-carotene was 2.2 ± 0.3 mg per g dry cell weight. The total procedure was completed in less than one week, as compared to a previously reported sequential gene integration method that required n weeks for n genes. This time-saving method will facilitate synthetic biology, metabolic engineering and functional genomics studies of Y. lipolytica. PMID:25216641

  6. Design of capillary flows with functionally graded porous titanium oxide films fabricated by anodization instability.

    PubMed

    Joung, Young Soo; Figliuzzi, Bruno Michel; Buie, Cullen R

    2014-06-01

    We have developed an electrochemical fabrication method utilizing breakdown anodization (BDA) to yield capillary flows that can be expressed as functions of capillary height. This method uses anodization instability with high electric potentials and mildly acidic electrolytes that are maintained at low temperature. BDA produces highly porous micro- and nano-structured surfaces composed of amorphous titanium oxide on titanium substrates, resulting in high capillary pressure and capillary diffusivity. With this fabrication technique the capillary flow properties can be controlled by varying the applied electric field and electrolyte temperature. Furthermore, they can be expressed as functions of capillary height when customized electric fields are used in BDA. To predict capillary flows on BDA surfaces, we developed a conceptual model of highly wettable porous films, which are modeled as multiple layers of capillary tubes oriented in the flow direction. From the model, we derived a general capillary flow equation of motion in terms of capillary pressure and capillary diffusivity, both of which can be expressed as functions of capillary height. The theoretical model was verified by comparisons with experimental capillary flows, showing good agreement. From investigation of the surface morphology we found that the surface structures were also functionally graded with respect to the capillary height (i.e. applied electric field). The suggested fabrication method and the theoretical model offer novel design methodologies for microscale liquid transport devices requiring control over propagation speed. PMID:24703679

  7. Pragmatic Metadata Management for Integration into Multiple Spatial Data Infrastructure Systems and Platforms

    NASA Astrophysics Data System (ADS)

    Benedict, K. K.; Scott, S.

    2013-12-01

    While there has been a convergence towards a limited number of standards for representing knowledge (metadata) about geospatial (and other) data objects and collections, there exist a variety of community conventions around the specific use of those standards and within specific data discovery and access systems. This combination of limited (but multiple) standards and conventions creates a challenge for system developers that aspire to participate in multiple data infrastrucutres, each of which may use a different combination of standards and conventions. While Extensible Markup Language (XML) is a shared standard for encoding most metadata, traditional direct XML transformations (XSLT) from one standard to another often result in an imperfect transfer of information due to incomplete mapping from one standard's content model to another. This paper presents the work at the University of New Mexico's Earth Data Analysis Center (EDAC) in which a unified data and metadata management system has been developed in support of the storage, discovery and access of heterogeneous data products. This system, the Geographic Storage, Transformation and Retrieval Engine (GSTORE) platform has adopted a polyglot database model in which a combination of relational and document-based databases are used to store both data and metadata, with some metadata stored in a custom XML schema designed as a superset of the requirements for multiple target metadata standards: ISO 19115-2/19139/19110/19119, FGCD CSDGM (both with and without remote sensing extensions) and Dublin Core. Metadata stored within this schema is complemented by additional service, format and publisher information that is dynamically "injected" into produced metadata documents when they are requested from the system. While mapping from the underlying common metadata schema is relatively straightforward, the generation of valid metadata within each target standard is necessary but not sufficient for integration into

  8. Capillary self-assembly of floating bodies

    NASA Astrophysics Data System (ADS)

    Jung, Sunghwan; Thompson, Paul; Bush, John

    2007-11-01

    We study the self-assembly of bodies supported on the water surface by surface tension. Attractive and repulsive capillary forces exist between menisci of, respectively, the same and opposite signs. In nature, floating objects (e.g. mosquito larvae) thus interact through capillary forces to form coherent packings on the water surface. We here present the results of an experimental investigation of such capillary pattern formation. Thin elliptical metal sheets were designed to have variable shape, flexibility and mass distribution. On the water surface, mono-, bi-, or tri-polar menisci could thus be achieved. The influence of the form of the menisci on the packings arising from the interaction of multiple floaters is explored. Biological applications are discussed.

  9. Accelerating Ab Initio Path Integral Simulations via Imaginary Multiple-Timestepping.

    PubMed

    Cheng, Xiaolu; Herr, Jonathan D; Steele, Ryan P

    2016-04-12

    This work investigates the use of multiple-timestep schemes in imaginary time for computationally efficient ab initio equilibrium path integral simulations of quantum molecular motion. In the simplest formulation, only every n(th) path integral replica is computed at the target level of electronic structure theory, whereas the remaining low-level replicas still account for nuclear motion quantum effects with a more computationally economical theory. Motivated by recent developments for multiple-timestep techniques in real-time classical molecular dynamics, both 1-electron (atomic-orbital basis set) and 2-electron (electron correlation) truncations are shown to be effective. Structural distributions and thermodynamic averages are tested for representative analytic potentials and ab initio molecular examples. Target quantum chemistry methods include density functional theory and second-order Møller-Plesset perturbation theory, although any level of theory is formally amenable to this framework. For a standard two-level splitting, computational speedups of 1.6-4.0x are observed when using a 4-fold reduction in time slices; an 8-fold reduction is feasible in some cases. Multitiered options further reduce computational requirements and suggest that quantum mechanical motion could potentially be obtained at a cost not significantly different from the cost of classical simulations. PMID:26966920

  10. A graphical model method for integrating multiple sources of genome-scale data

    PubMed Central

    Dvorkin, Daniel; Biehs, Brian; Kechris, Katerina

    2016-01-01

    Making effective use of multiple data sources is a major challenge in modern bioinformatics. Genome-wide data such as measures of transcription factor binding, gene expression, and sequence conservation, which are used to identify binding regions and genes that are important to major biological processes such as development and disease, can be difficult to use together due to the different biological meanings and statistical distributions of the heterogeneous data types, but each can provide valuable information for understanding the processes under study. Here we present methods for integrating multiple data sources to gain a more complete picture of gene regulation and expression. Our goal is to identify genes and cis-regulatory regions which play specific biological roles. We describe a graphical mixture model approach for data integration, examine the effect of using different model topologies, and discuss methods for evaluating the effectiveness of the models. Model fitting is computationally efficient and produces results which have clear biological and statistical interpretations. The Hedgehog and Dorsal signaling pathways in Drosophila, which are critical in embryonic development, are used as examples. PMID:23934610

  11. Structure of the EGF receptor transactivation circuit integrates multiple signals with cell context

    SciTech Connect

    Joslin, Elizabeth J.; Shankaran, Harish; Opresko, Lee K.; Bollinger, Nikki; Lauffenburger, Douglas A.; Wiley, H. S.

    2010-05-10

    Transactivation of the epidermal growth factor receptor (EGFR) has been proposed to be a mechanism by which a variety of cellular inputs can be integrated into a single signaling pathway, but the regulatory topology of this important system is unclear. To understand the transactivation circuit, we first created a “non-binding” reporter for ligand shedding. We then quantitatively defined how signals from multiple agonists were integrated both upstream and downstream of the EGFR into the extracellular signal regulated kinase (ERK) cascade in human mammary epithelial cells. We found that transactivation is mediated by a recursive autocrine circuit where ligand shedding drives EGFR-stimulated ERK that in turn drives further ligand shedding. The time from shedding to ERK activation is fast (<5 min) whereas the recursive feedback is slow (>15 min). Simulations showed that this delay in positive feedback greatly enhanced system stability and robustness. Our results indicate that the transactivation circuit is constructed so that the magnitude of ERK signaling is governed by the sum of multiple direct inputs, while recursive, autocrine ligand shedding controls signal duration.

  12. Critical Velocities in Open Capillary Flow

    NASA Technical Reports Server (NTRS)

    Dreyer, Michael; Langbein, Dieter; Rath, Hans J.

    1996-01-01

    This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.

  13. Energy Simulation of Integrated Multiple-Zone Variable Refrigerant Flow System

    SciTech Connect

    Shen, Bo; Rice, C Keith; Baxter, Van D

    2013-01-01

    We developed a detailed steady-state system model, to simulate the performance of an integrated five-zone variable refrigerant flow (VRF)heat pump system. The system is multi-functional, capable of space cooling, space heating, combined space cooling and water heating, and dedicated water heating. Methods were developed to map the VRF performance in each mode, based on the abundant data produced by the equipment system model. The performance maps were used in TRNSYS annual energy simulations. Using TRNSYS, we have successfully setup and run cases for a multiple-split, VRF heat pump and dehumidifier combination in 5-zone houses in 5 climates that control indoor dry-bulb temperature and relative humidity. We compared the calculated energy consumptions for the VRF heat pump against that of a baseline central air source heat pump, coupled with electric water heating and the standalone dehumidifiers. In addition, we investigated multiple control scenarios for the VRF heat pump, i.e. on/off control, variable indoor air flow rate, and using different zone temperature setting schedules, etc. The energy savings for the multiple scenarios were assessed.

  14. Cumulative health risk assessment: integrated approaches for multiple contaminants, exposures, and effects

    SciTech Connect

    Rice, Glenn; Teuschler, Linda; MacDonel, Margaret; Butler, Jim; Finster, Molly; Hertzberg, Rick; Harou, Lynne

    2007-07-01

    Available in abstract form only. Full text of publication follows: As information about environmental contamination has increased in recent years, so has public interest in the combined effects of multiple contaminants. This interest has been highlighted by recent tragedies such as the World Trade Center disaster and hurricane Katrina. In fact, assessing multiple contaminants, exposures, and effects has long been an issue for contaminated sites, including U.S. Department of Energy (DOE) legacy waste sites. Local citizens have explicitly asked the federal government to account for cumulative risks, with contaminants moving offsite via groundwater flow, surface runoff, and air dispersal being a common emphasis. Multiple exposures range from ingestion and inhalation to dermal absorption and external gamma irradiation. Three types of concerns can lead to cumulative assessments: (1) specific sources or releases - e.g., industrial facilities or accidental discharges; (2) contaminant levels - in environmental media or human tissues; and (3) elevated rates of disease - e.g., asthma or cancer. The specific initiator frames the assessment strategy, including a determination of appropriate models to be used. Approaches are being developed to better integrate a variety of data, extending from environmental to internal co-location of contaminants and combined effects, to support more practical assessments of cumulative health risks. (authors)

  15. Encrypting three-dimensional information system based on integral imaging and multiple chaotic maps

    NASA Astrophysics Data System (ADS)

    Xing, Yan; Wang, Qiong-Hua; Xiong, Zhao-Long; Deng, Huan

    2016-02-01

    An encrypting three-dimensional (3-D) information system based on integral imaging (II) and multiple chaotic maps is proposed. In the encrypting process, the elemental image array (EIA) which represents spatial and angular information of the real 3-D scene is picked up by a microlens array. Subsequently, R, G, and B color components decomposed by the EIA are encrypted using multiple chaotic maps. Finally, these three encrypted components are interwoven to obtain the cipher information. The decryption process implements the reverse operation of the encryption process for retrieving the high-quality 3-D images. Since the encrypted EIA has the data redundancy property due to II, and all parameters of the pickup part are the secret keys of the encrypting system, the system sensitivity on the changes of the plaintext and secret keys can be significantly improved. Moreover, the algorithm based on multiple chaotic maps can effectively enhance the security. A preliminary experiment is carried out, and the experimental results verify the effectiveness, robustness, and security of the proposed system.

  16. 360 degree viewable floating autostereoscopic display using integral photography and multiple semitransparent mirrors.

    PubMed

    Zhao, Dong; Su, Baiquan; Chen, Guowen; Liao, Hongen

    2015-04-20

    In this paper, we present a polyhedron-shaped floating autostereoscopic display viewable from 360 degrees using integral photography (IP) and multiple semitransparent mirrors. IP combined with polyhedron-shaped multiple semitransparent mirrors is used to achieve a 360 degree viewable floating three-dimensional (3D) autostereoscopic display, having the advantage of being able to be viewed by several observers from various viewpoints simultaneously. IP is adopted to generate a 3D autostereoscopic image with full parallax property. Multiple semitransparent mirrors reflect corresponding IP images, and the reflected IP images are situated around the center of the polyhedron-shaped display device for producing the floating display. The spatial reflected IP images reconstruct a floating autostereoscopic image viewable from 360 degrees. We manufactured two prototypes for producing such displays and performed two sets of experiments to evaluate the feasibility of the method described above. The results of our experiments showed that our approach can achieve a floating autostereoscopic display viewable from surrounding area. Moreover, it is shown the proposed method is feasible to facilitate the continuous viewpoint of a whole 360 degree display without flipping. PMID:25969022

  17. Assessing District Energy Systems Performance Integrated with Multiple Thermal Energy Storages

    NASA Astrophysics Data System (ADS)

    Rezaie, Behnaz

    The goal of this study is to examine various energy resources in district energy (DE) systems and then DE system performance development by means of multiple thermal energy storages (TES) application. This study sheds light on areas not yet investigated precisely in detail. Throughout the research, major components of the heat plant, energy suppliers of the DE systems, and TES characteristics are separately examined; integration of various configurations of the multiple TESs in the DE system is then analysed. In the first part of the study, various sources of energy are compared, in a consistent manner, financially and environmentally. The TES performance is then assessed from various aspects. Then, TES(s) and DE systems with several sources of energy are integrated, and are investigated as a heat process centre. The most efficient configurations of the multiple TESs integrated with the DE system are investigated. Some of the findings of this study are applied on an actual DE system. The outcomes of this study provide insight for researchers and engineers who work in this field, as well as policy makers and project managers who are decision-makers. The accomplishments of the study are original developments TESs and DE systems. As an original development the Enviro-Economic Function, to balance the economic and environmental aspects of energy resources technologies in DE systems, is developed; various configurations of multiple TESs, including series, parallel, and general grid, are developed. The developed related functions are discharge temperature and energy of the TES, and energy and exergy efficiencies of the TES. The TES charging and discharging behavior of TES instantaneously is also investigated to obtain the charging temperature, the maximum charging temperature, the charging energy flow, maximum heat flow capacity, the discharging temperature, the minimum charging temperature, the discharging energy flow, the maximum heat flow capacity, and performance

  18. DNA Sequencing Using capillary Electrophoresis

    SciTech Connect

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  19. Passive Reactor Cooling Using Capillary Porous Wick

    SciTech Connect

    Miller, Christopher G.; Lin, Thomas F.

    2006-07-01

    Long-term reliability of actively pumped cooling systems is a concern in space-based nuclear reactors. Capillary-driven passive cooling systems are being considered as an alternative to gravity-driven systems. The high surface tension of liquid lithium makes it attractive as the coolant in a capillary-driven cooling system. A system has been conceived in which the fuel rod of a reactor is surrounded by a concentric wick through which liquid lithium flows to provide cooling under normal and emergency operating conditions. Unheated wicking experiments at three pressures using four layered screen mesh wicks of different porosities and three relatively high surface tension fluids have been conducted to gain insight into capillary phenomena for such a capillary cooling system. All fluids tested demonstrated wicking ability in each of the wick structures for all pressures, and wicking ability for each fluid increased with decreasing wick pore size. An externally heated wicking experiment with liquid lithium as the wicking fluid was also conducted. In addition to wicking experiments, a heater rod is under development to simulate the fuel rod of a space based nuclear reactor by providing a heat flux of up to 110 kW/m{sup 2}. Testing of this heater rod has shown its ability to undergo repeated cycling from below 533 K to over 1255 K without failure. This heater rod will be integrated into lithium wicking experiments to provide more realistic simulation of the proposed capillary-driven space nuclear reactor cooling system. (authors)

  20. An Integrative Framework for the Analysis of Multiple and Multimodal Representations for Meaning-Making in Science Education

    ERIC Educational Resources Information Center

    Tang, Kok-Sing; Delgado, Cesar; Moje, Elizabeth Birr

    2014-01-01

    This paper presents an integrative framework for analyzing science meaning-making with representations. It integrates the research on multiple representations and multimodal representations by identifying and leveraging the differences in their units of analysis in two dimensions: timescale and compositional grain size. Timescale considers the…

  1. Integrating multiple lines of evidence into historical biogeography hypothesis testing: a Bison bison case study

    PubMed Central

    Metcalf, Jessica L.; Prost, Stefan; Nogués-Bravo, David; DeChaine, Eric G.; Anderson, Christian; Batra, Persaram; Araújo, Miguel B.; Cooper, Alan; Guralnick, Robert P.

    2014-01-01

    One of the grand goals of historical biogeography is to understand how and why species' population sizes and distributions change over time. Multiple types of data drawn from disparate fields, combined into a single modelling framework, are necessary to document changes in a species's demography and distribution, and to determine the drivers responsible for change. Yet truly integrated approaches are challenging and rarely performed. Here, we discuss a modelling framework that integrates spatio-temporal fossil data, ancient DNA, palaeoclimatological reconstructions, bioclimatic envelope modelling and coalescence models in order to statistically test alternative hypotheses of demographic and potential distributional changes for the iconic American bison (Bison bison). Using different assumptions about the evolution of the bioclimatic niche, we generate hypothetical distributional and demographic histories of the species. We then test these demographic models by comparing the genetic signature predicted by serial coalescence against sequence data derived from subfossils and modern populations. Our results supported demographic models that include both climate and human-associated drivers of population declines. This synthetic approach, integrating palaeoclimatology, bioclimatic envelopes, serial coalescence, spatio-temporal fossil data and heterochronous DNA sequences, improves understanding of species' historical biogeography by allowing consideration of both abiotic and biotic interactions at the population level. PMID:24403338

  2. Integrating syndromic surveillance data across multiple locations: effects on outbreak detection performance.

    PubMed

    Reis, Ben Y; Mandl, Kenneth D

    2003-01-01

    Syndromic surveillance systems are being deployed widely to monitor for signals of covert bioterrorist attacks. Regional systems are being established through the integration of local surveillance data across multiple facilities. We studied how different methods of data integration affect outbreak detection performance. We used a simulation relying on a semi-synthetic dataset, introducing simulated outbreaks of different sizes into historical visit data from two hospitals. In one simulation, we introduced the synthetic outbreak evenly into both hospital datasets (aggregate model). In the second, the outbreak was introduced into only one or the other of the hospital datasets (local model). We found that the aggregate model had a higher sensitivity for detecting outbreaks that were evenly distributed between the hospitals. However, for outbreaks that were localized to one facility, maintaining individual models for each location proved to be better. Given the complementary benefits offered by both approaches, the results suggest building a hybrid system that includes both individual models for each location, and an aggregate model that combines all the data. We also discuss options for multi-level signal integration hierarchies. PMID:14728233

  3. Brain capillaries in Alzheimer's disease.

    PubMed

    Baloyannis, Stavros J

    2015-01-01

    , silver impregnation techniques revealed a marked tortuosity of the capillaries in early cases of AD. In addition, the distance between two branch points is longer in capillaries of AD brains, whereas the branch point density as well as the ratio of the branch point density to astrocytic density is substantially decreased in AD in comparison with age matched normal controls. EM revealed, that the most frequent morphological alterations of the brain capillaries in AD consist of thickness, splitting and duplication of the basement membrane, reduction of the length of tight junctions, decrease of the number of tight junctions per vessel length, associated as a rule, with morphological alterations of the mitochondria of the endothelial cells, the pericytes and the perivascular astrocytic processes. The number of the pinocytotic vesicles is substantially increase in the endothelium of the brain capillaries in AD in comparison with age matched normal controls. Endothelial cells play a very important role in the transport systems in the brain. Subsequently, the dysfunction of the endothelial cells and the disruption of the BBB may induce serious impairment in the transport system. The dysfunction of the brain capillaries may result in releasing neurotoxic factors, such as thrombin, pro-inflammatory cytokines, nitric oxide and leukocyte adhesion molecules, and in abnormal regulation of Aβ-peptide homeostasis in the brain. The impairment of the brain capillaries in structures of the brain, which are crucial for the homeostatic equilibrium, such as the hypothalamic nuclei, may induce autonomic dysfunction, which usually occur in the advanced stages of AD, affecting dramatically the viability of the patients. Degeneration of the pericytes is also observed emphasizing even more the importance of the vascular factor in AD. Pericytes may serve as integrators, coordinators and effectors of blood-brain barrier structure and maintenance, and play a key role in microvascular stability

  4. Capillary condenser/evaporator

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A. (Inventor)

    2010-01-01

    A heat transfer device is disclosed for transferring heat to or from a fluid that is undergoing a phase change. The heat transfer device includes a liquid-vapor manifold in fluid communication with a capillary structure thermally connected to a heat transfer interface, all of which are disposed in a housing to contain the vapor. The liquid-vapor manifold transports liquid in a first direction and conducts vapor in a second, opposite direction. The manifold provides a distributed supply of fluid (vapor or liquid) over the surface of the capillary structure. In one embodiment, the manifold has a fractal structure including one or more layers, each layer having one or more conduits for transporting liquid and one or more openings for conducting vapor. Adjacent layers have an increasing number of openings with decreasing area, and an increasing number of conduits with decreasing cross-sectional area, moving in a direction toward the capillary structure.

  5. Generalized Additive Mixed-Models for Pharmacology Using Integrated Discrete Multiple Organ Co-Culture.

    PubMed

    Ingersoll, Thomas; Cole, Stephanie; Madren-Whalley, Janna; Booker, Lamont; Dorsey, Russell; Li, Albert; Salem, Harry

    2016-01-01

    Integrated Discrete Multiple Organ Co-culture (IDMOC) is emerging as an in-vitro alternative to in-vivo animal models for pharmacology studies. IDMOC allows dose-response relationships to be investigated at the tissue and organoid levels, yet, these relationships often exhibit responses that are far more complex than the binary responses often measured in whole animals. To accommodate departure from binary endpoints, IDMOC requires an expansion of analytic techniques beyond simple linear probit and logistic models familiar in toxicology. IDMOC dose-responses may be measured at continuous scales, exhibit significant non-linearity such as local maxima or minima, and may include non-independent measures. Generalized additive mixed-modeling (GAMM) provides an alternative description of dose-response that relaxes assumptions of independence and linearity. We compared GAMMs to traditional linear models for describing dose-response in IDMOC pharmacology studies. PMID:27110941

  6. Integrating gender on multiple levels: a conceptual model for teaching gender issues in family therapy.

    PubMed

    Williams, Lee; McBain, Heidi

    2006-07-01

    As the field of family therapy has evolved, there has been growing recognition as to the importance of gender in family therapy. To prepare the next generation of family therapists adequately, it is important that they recognize the many and complex ways in which gender permeates their work. In this article we present an integrative model to help educators teach family therapists about gender issues. The model examines how gender influences clinical work on multiple levels, including contextual levels such as society and the marriage and family therapy field. The model also acknowledges how gender can influence individuals, including clients, therapists, and supervisors. Finally, the model attempts to capture the complexity of how gender can impact the relational dynamics between two or more individuals. PMID:16933441

  7. Generalized Additive Mixed-Models for Pharmacology Using Integrated Discrete Multiple Organ Co-Culture

    PubMed Central

    Ingersoll, Thomas; Cole, Stephanie; Madren-Whalley, Janna; Booker, Lamont; Dorsey, Russell; Li, Albert; Salem, Harry

    2016-01-01

    Integrated Discrete Multiple Organ Co-culture (IDMOC) is emerging as an in-vitro alternative to in-vivo animal models for pharmacology studies. IDMOC allows dose-response relationships to be investigated at the tissue and organoid levels, yet, these relationships often exhibit responses that are far more complex than the binary responses often measured in whole animals. To accommodate departure from binary endpoints, IDMOC requires an expansion of analytic techniques beyond simple linear probit and logistic models familiar in toxicology. IDMOC dose-responses may be measured at continuous scales, exhibit significant non-linearity such as local maxima or minima, and may include non-independent measures. Generalized additive mixed-modeling (GAMM) provides an alternative description of dose-response that relaxes assumptions of independence and linearity. We compared GAMMs to traditional linear models for describing dose-response in IDMOC pharmacology studies. PMID:27110941

  8. System and method for integrating and accessing multiple data sources within a data warehouse architecture

    DOEpatents

    Musick, Charles R.; Critchlow, Terence; Ganesh, Madhaven; Slezak, Tom; Fidelis, Krzysztof

    2006-12-19

    A system and method is disclosed for integrating and accessing multiple data sources within a data warehouse architecture. The metadata formed by the present method provide a way to declaratively present domain specific knowledge, obtained by analyzing data sources, in a consistent and useable way. Four types of information are represented by the metadata: abstract concepts, databases, transformations and mappings. A mediator generator automatically generates data management computer code based on the metadata. The resulting code defines a translation library and a mediator class. The translation library provides a data representation for domain specific knowledge represented in a data warehouse, including "get" and "set" methods for attributes that call transformation methods and derive a value of an attribute if it is missing. The mediator class defines methods that take "distinguished" high-level objects as input and traverse their data structures and enter information into the data warehouse.

  9. The continuous end-state comfort effect: weighted integration of multiple biases.

    PubMed

    Herbort, Oliver; Butz, Martin V

    2012-05-01

    The grasp orientation when grasping an object is frequently aligned in anticipation of the intended rotation of the object (end-state comfort effect). We analyzed grasp orientation selection in a continuous task to determine the mechanisms underlying the end-state comfort effect. Participants had to grasp a box by a circular handle-which allowed for arbitrary grasp orientations-and then had to rotate the box by various angles. Experiments 1 and 2 revealed both that the rotation's direction considerably determined grasp orientations and that end-postures varied considerably. Experiments 3 and 4 further showed that visual stimuli and initial arm postures biased grasp orientations if the intended rotation could be easily achieved. The data show that end-state comfort but also other factors determine grasp orientation selection. A simple mechanism that integrates multiple weighted biases can account for the data. PMID:21499901

  10. Effect of dengue virus-induced cytotoxin on capillary permeability.

    PubMed Central

    Dhawan, R.; Khanna, M.; Chaturvedi, U. C.; Mathur, A.

    1990-01-01

    Capillary permeability is increased in cases of dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS) but its genesis is not known. Dengue type 2 virus (DV) induces production of a cytokine (CF2) by mouse macrophages. The present study was undertaken to investigate the effect of CF2 on capillary permeability. It was observed that intraperitoneal inoculation of CF2 in mice increased the capillary permeability in a dose-dependent manner, as shown by leakage of intravenously injected radioactive iodine (125I) or Evan's blue dye in the peritoneal cavity. Peak leakage occurred at 30 min and the vascular integrity was restored by 1-2 h. The increase in capillary permeability was abrogated by pretreatment of mice with avil (H1 receptor blocker) but not by ranitidine (H2 receptor blocker). The findings thus show that DV-induced CF2 increases the capillary permeability via release of histamine. PMID:2310617

  11. Improved detection of differentially expressed genes in microarray experiments through multiple scanning and image integration

    PubMed Central

    Romualdi, Chiara; Trevisan, Silvia; Celegato, Barbara; Costa, Germano; Lanfranchi, Gerolamo

    2003-01-01

    The variability of results in microarray technology is in part due to the fact that independent scans of a single hybridised microarray give spot images that are not quite the same. To solve this problem and turn it to our advantage, we introduced the approach of multiple scanning and of image integration of microarrays. To this end, we have developed specific software that creates a virtual image that statistically summarises a series of consecutive scans of a microarray. We provide evidence that the use of multiple imaging (i) enhances the detection of differentially expressed genes; (ii) increases the image homogeneity; and (iii) reveals false-positive results such as differentially expressed genes that are detected by a single scan but not confirmed by successive scanning replicates. The increase in the final number of differentially expressed genes detected in a microarray experiment with this approach is remarkable; 50% more for microarrays hybridised with targets labelled by reverse transcriptase, and 200% more for microarrays developed with the tyramide signal amplification (TSA) technique. The results have been confirmed by semi-quantitative RT–PCR tests. PMID:14627839

  12. An integrated voice and data multiple-access scheme for a land-mobile satellite system

    NASA Technical Reports Server (NTRS)

    Li, V. O. K.; Yan, T.-Y.

    1984-01-01

    An analytical study is performed of the satellite requirements for a land mobile satellite system (LMSS). The spacecraft (MSAT-X) would be in GEO and would be compatible with multiple access by mobile radios and antennas and fixed stations. The FCC has received a petition from NASA to reserve the 821-825 and 866-870 MHz frequencies for the LMSS, while communications with fixed earth stations would be in the Ku band. MSAT-X transponders would alter the frequencies of signal and do no processing in the original configuration considered. Channel use would be governed by an integrated demand-assigned, multiple access protocol, which would divide channels into reservation and information channels, governed by a network management center. Further analyses will cover tradeoffs between data and voice users, probability of blocking, and the performance impacts of on-board switching and variable bandwidth assignment. Initial calculations indicate that a large traffic volume can be handled with acceptable delays and voice blocking probabilities.

  13. Integration of multiple cues allows threat-sensitive anti-intraguild predator responses in predatory mites

    PubMed Central

    Walzer, Andreas; Schausberger, Peter

    2013-01-01

    Intraguild (IG) prey is commonly confronted with multiple IG predator species. However, the IG predation (IGP) risk for prey is not only dependent on the predator species, but also on inherent (intraspecific) characteristics of a given IG predator such as its life-stage, sex or gravidity and the associated prey needs. Thus, IG prey should have evolved the ability to integrate multiple IG predator cues, which should allow both inter- and intraspecific threat-sensitive anti-predator responses. Using a guild of plant-inhabiting predatory mites sharing spider mites as prey, we evaluated the effects of single and combined cues (eggs and/or chemical traces left by a predator female on the substrate) of the low risk IG predator Neoseiulus californicus and the high risk IG predator Amblyseius andersoni on time, distance and path shape parameters of the larval IG prey Phytoseiulus persimilis. IG prey discriminated between traces of the low and high risk IG predator, with and without additional presence of their eggs, indicating interspecific threat-sensitivity. The behavioural changes were manifest in distance moved, activity and path shape of IG prey. The cue combination of traces and eggs of the IG predators conveyed other information than each cue alone, allowing intraspecific threat-sensitive responses by IG prey apparent in changed velocities and distances moved. We argue that graded responses to single and combined IG predator cues are adaptive due to minimization of acceptance errors in IG prey decision making. PMID:23750040

  14. Pooling data from multiple longitudinal studies: the role of item response theory in integrative data analysis.

    PubMed

    Curran, Patrick J; Hussong, Andrea M; Cai, Li; Huang, Wenjing; Chassin, Laurie; Sher, Kenneth J; Zucker, Robert A

    2008-03-01

    There are a number of significant challenges researchers encounter when studying development over an extended period of time, including subject attrition, the changing of measurement structures across groups and developmental periods, and the need to invest substantial time and money. Integrative data analysis is an emerging set of methodologies that allows researchers to overcome many of the challenges of single-sample designs through the pooling of data drawn from multiple existing developmental studies. This approach is characterized by a host of advantages, but this also introduces several new complexities that must be addressed prior to broad adoption by developmental researchers. In this article, the authors focus on methods for fitting measurement models and creating scale scores using data drawn from multiple longitudinal studies. The authors present findings from the analysis of repeated measures of internalizing symptomatology that were pooled from three existing developmental studies. The authors describe and demonstrate each step in the analysis and conclude with a discussion of potential limitations and directions for future research. PMID:18331129

  15. A quantitative approach for integrating multiple lines of evidence for the evaluation of environmental health risks

    PubMed Central

    Schleier III, Jerome J.; Marshall, Lucy A.; Davis, Ryan S.

    2015-01-01

    Decision analysis often considers multiple lines of evidence during the decision making process. Researchers and government agencies have advocated for quantitative weight-of-evidence approaches in which multiple lines of evidence can be considered when estimating risk. Therefore, we utilized Bayesian Markov Chain Monte Carlo to integrate several human-health risk assessment, biomonitoring, and epidemiology studies that have been conducted for two common insecticides (malathion and permethrin) used for adult mosquito management to generate an overall estimate of risk quotient (RQ). The utility of the Bayesian inference for risk management is that the estimated risk represents a probability distribution from which the probability of exceeding a threshold can be estimated. The mean RQs after all studies were incorporated were 0.4386, with a variance of 0.0163 for malathion and 0.3281 with a variance of 0.0083 for permethrin. After taking into account all of the evidence available on the risks of ULV insecticides, the probability that malathion or permethrin would exceed a level of concern was less than 0.0001. Bayesian estimates can substantially improve decisions by allowing decision makers to estimate the probability that a risk will exceed a level of concern by considering seemingly disparate lines of evidence. PMID:25648367

  16. Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique.

    PubMed

    Leckey, Cara A C; Rogge, Matthew D; Miller, Corey A; Hinders, Mark K

    2012-02-01

    We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred. PMID:21908011

  17. Multiple sclerosis, an autoimmune inflammatory disease: prospects for its integrative management.

    PubMed

    Kidd, P M

    2001-12-01

    Multiple sclerosis (MS) is aptly named for the many scars it produces in the brain and spinal cord. A sometimes fatal, often debilitating disease, MS features autoimmune inflammatory attack against the myelin insulation of neurons. Thymus derived (T) cells sensitized against myelin self-antigens secrete tumor necrosis factor, cytokines, prostaglandins, and other inflammatory mediators that strip away the myelin and sometimes destroy the axons. Familial and twin inheritance studies indicate MS is mildly heritable. No single MS locus has been identified, but an HLA haplotype has been implicated. Unique geographic distribution of the disease is best attributed to some combination of vitamin D abnormality and dietary patterns. No pharmaceutical or other therapies exist that confer prolonged remission on MS, and obvious interrelationships between toxic, infectious, and dietary factors make a persuasive case for integrative management. The time-proven MS diet meticulously keeps saturated fats low, includes three fish meals per week, and eliminates allergenic foods. Dietary supplementation for MS minimally requires potent vitamin supplementation, along with the thiol antioxidants, the anti-inflammatory omega-3 fatty acids, and adaptogenic phytonutrients. Gut malabsorption and dysbiosis can be corrected using digestive enzymes and probiotics. Long-term hyperbaric oxygen therapy can slow or remit the disease. Transdermal histamine offers promise, and adenosine monophosphate may sometimes benefit. Chronic viruses and other infectious load must be aggressively treated and exercise should maintain muscle tone and balance. Early intervention with integrative modalities has the potential to make MS a truly manageable disease. PMID:11804546

  18. An Integrated Modeling Framework for Assessment of Impacts of Multiple Global Changes on Terrestrial Productivity

    NASA Astrophysics Data System (ADS)

    Wittig, V.; Yang, X.; Jain, A.

    2008-12-01

    Independent changes in atmospheric carbon dioxide, tropospheric ozone, nitrogen deposition and climate change directly impact terrestrial productivity. Less well understood are the interactive effects of these globally changing factors on terrestrial productivity and the resultant impact on rising atmospheric carbon dioxide concentrations. This study uses the Integrated Science Assessment Model (ISAM) to quantify the impacts of these multiple global changes on terrestrial productivity and further, to project how these changes feedback on atmospheric carbon dioxide concentrations via respiratory carbon fluxes. The ISAM is modified to include a mechanistic model of leaf photosynthesis including the sensitivity of leaf photosynthesis to tropospheric ozone. Leaf-level photosynthetic carbon gain is scaled to the canopy with a sun-shade microclimate model to estimate the gross primary productivity of major biomes comprised of representative plant functional types. The modified carbon cycle in ISAM is coupled to a detailed model of the terrestrial nitrogen cycle therefore providing the integrated modeling framework required to assess the interactive effects of rising carbon dioxide, tropospheric ozone, nitrogen deposition and climate change on global productivity.

  19. Optimal Operation System of the Integrated District Heating System with Multiple Regional Branches

    NASA Astrophysics Data System (ADS)

    Kim, Ui Sik; Park, Tae Chang; Kim, Lae-Hyun; Yeo, Yeong Koo

    This paper presents an optimal production and distribution management for structural and operational optimization of the integrated district heating system (DHS) with multiple regional branches. A DHS consists of energy suppliers and consumers, district heating pipelines network and heat storage facilities in the covered region. In the optimal management system, production of heat and electric power, regional heat demand, electric power bidding and sales, transport and storage of heat at each regional DHS are taken into account. The optimal management system is formulated as a mixed integer linear programming (MILP) where the objectives is to minimize the overall cost of the integrated DHS while satisfying the operation constraints of heat units and networks as well as fulfilling heating demands from consumers. Piecewise linear formulation of the production cost function and stairwise formulation of the start-up cost function are used to compute nonlinear cost function approximately. Evaluation of the total overall cost is based on weekly operations at each district heat branches. Numerical simulations show the increase of energy efficiency due to the introduction of the present optimal management system.

  20. Integration of metabolomics and proteomics in multiple sclerosis: From biomarkers discovery to personalized medicine.

    PubMed

    Del Boccio, Piero; Rossi, Claudia; di Ioia, Maria; Cicalini, Ilaria; Sacchetta, Paolo; Pieragostino, Damiana

    2016-04-01

    Personalized medicine is the science of individualized prevention and therapy. In the last decade, advances in high-throughput approaches allowed the development of proteomic and metabolomic studies in evaluating the association of genetic and phenotypic variability with disease sensitivity and analgesic response. These considerations have more value in case of multiple sclerosis (MuS), a multifactorial disease with high heterogeneity in clinical course and treatment response. In this review, we reported and updated about proteomic and metabolomic studies for the research of new candidate biomarkers in MuS, and difficulties in their clinical applications. We focused especially on the description of both "omics" approaches that, once integrated, may synergically describe pathophysiology conditions. To prove this assumption, we rebuilt interaction between proteins and metabolites described in the literature as potential biomarkers for MuS, and a pathway analysis of these molecules was performed. The result of such speculation demonstrated a strong convergence of proteomic and metabolomic results in this field, showing also a poorness of available tools for incorporating "omics" approaches. In conclusion, the integration of Metabolomics and Proteomics may allow a more complete characterization of such a heterogeneous disease, providing further insights into personalized healthcare. PMID:27061322

  1. Integrating multiple scales of hydraulic conductivity measurements in training image-based stochastic models

    NASA Astrophysics Data System (ADS)

    Mahmud, K.; Mariethoz, G.; Baker, A.; Sharma, A.

    2015-01-01

    Hydraulic conductivity is one of the most critical and at the same time one of the most uncertain parameters in many groundwater models. One problem commonly faced is that the data are usually not collected at the same scale as the discretized elements used in a numerical model. Moreover, it is common that different types of hydraulic conductivity measurements, corresponding to different spatial scales, coexist in a studied domain, which have to be integrated simultaneously. Here we address this issue in the context of Image Quilting, one of the recently developed multiple-point geostatistics methods. Based on a training image that represents fine-scale spatial variability, we use the simplified renormalization upscaling method to obtain a series of upscaled training images that correspond to the different scales at which measurements are available. We then apply Image Quilting with such a multiscale training image to be able to incorporate simultaneously conditioning data at several spatial scales of heterogeneity. The realizations obtained satisfy the conditioning data exactly across all scales, but it can come at the expense of a small approximation in the representation of the physical scale relationships. In order to mitigate this approximation, we iteratively apply a kriging-based correction to the finest scale that ensures local conditioning at the coarsest scales. The method is tested on a series of synthetic examples where it gives good results and shows potential for the integration of different measurement methods in real-case hydrogeological models.

  2. The blackboard model - A framework for integrating multiple cooperating expert systems

    NASA Technical Reports Server (NTRS)

    Erickson, W. K.

    1985-01-01

    The use of an artificial intelligence (AI) architecture known as the blackboard model is examined as a framework for designing and building distributed systems requiring the integration of multiple cooperating expert systems (MCXS). Aerospace vehicles provide many examples of potential systems, ranging from commercial and military aircraft to spacecraft such as satellites, the Space Shuttle, and the Space Station. One such system, free-flying, spaceborne telerobots to be used in construction, servicing, inspection, and repair tasks around NASA's Space Station, is examined. The major difficulties found in designing and integrating the individual expert system components necessary to implement such a robot are outlined. The blackboard model, a general expert system architecture which seems to address many of the problems found in designing and building such a system, is discussed. A progress report on a prototype system under development called DBB (Distributed BlackBoard model) is given. The prototype will act as a testbed for investigating the feasibility, utility, and efficiency of MCXS-based designs developed under the blackboard model.

  3. Integrated health messaging for multiple neglected zoonoses: Approaches, challenges and opportunities in Morocco.

    PubMed

    Ducrotoy, M J; Yahyaoui Azami, H; El Berbri, I; Bouslikhane, M; Fassi Fihri, O; Boué, F; Petavy, A F; Dakkak, A; Welburn, S; Bardosh, K L

    2015-12-01

    Integrating the control of multiple neglected zoonoses at the community-level holds great potential, but critical data is missing to inform the design and implementation of different interventions. In this paper we present an evaluation of an integrated health messaging intervention, using powerpoint presentations, for five bacterial (brucellosis and bovine tuberculosis) and dog-associated (rabies, cystic echinococcosis and leishmaniasis) zoonotic diseases in Sidi Kacem Province, northwest Morocco. Conducted by veterinary and epidemiology students between 2013 and 2014, this followed a process-based approach that encouraged sequential adaptation of images, key messages, and delivery strategies using auto-evaluation and end-user feedback. We describe the challenges and opportunities of this approach, reflecting on who was targeted, how education was conducted, and what tools and approaches were used. Our results showed that: (1) replacing words with local pictures and using "hands-on" activities improved receptivity; (2) information "overload" easily occurred when disease transmission pathways did not overlap; (3) access and receptivity at schools was greater than at the community-level; and (4) piggy-backing on high-priority diseases like rabies offered an important avenue to increase knowledge of other zoonoses. We conclude by discussing the merits of incorporating our validated education approach into the school curriculum in order to influence long-term behaviour change. PMID:26299194

  4. Integrating multiple evidences in taxonomy: species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus).

    PubMed

    Pavan, Ana Carolina; Marroig, Gabriel

    2016-10-01

    A phylogenetic systematic perspective is instrumental in recovering new species and their evolutionary relationships. The advent of new technologies for molecular and morphological data acquisition and analysis, allied to the integration of knowledge from different areas, such as ecology and population genetics, allows for the emergence of more rigorous, accurate and complete scientific hypothesis on species diversity. Mustached bats (genus Pteronotus) are a good model for the application of this integrative approach. They are a widely distributed and a morphologically homogeneous group, but comprising species with remarkable differences in their echolocation strategy and feeding behavior. The latest systematic review suggested six species with 17 subspecies in Pteronotus. Subsequent studies using discrete morphological characters supported the same arrangement. However, recent papers reported high levels of genetic divergence among conspecific taxa followed by bioacoustic and geographic agreement, suggesting an underestimated diversity in the genus. To date, no study merging genetic evidences and morphometric variation along the entire geographic range of this group has been attempted. Based on a comprehensive sampling including representatives of all current taxonomic units, we attempt to delimit species in Pteronotus through the application of multiple methodologies and hierarchically distinct datasets. The molecular approach includes six molecular markers from three genetic transmission systems; morphological investigations used 41 euclidean distances estimated through three-dimensional landmarks collected from 1628 skulls. The phylogenetic analysis reveals a greater diversity than previously reported, with a high correspondence among the genetic lineages and the currently recognized subspecies in the genus. Discriminant analysis of variables describing size and shape of cranial bones support the rising of the genetic groups to the specific status. Based on

  5. Integrating Multiple Autonomous Underwater Vessels, Surface Vessels and Aircraft into Oceanographic Research Vessel Operations

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Martins, R.; Rajan, K.

    2012-12-01

    Autonomous platforms are increasingly used as components of Integrated Ocean Observing Systems and oceanographic research cruises. Systems deployed can include gliders or propeller-driven autonomous underwater vessels (AUVs), autonomous surface vessels (ASVs), and unmanned aircraft systems (UAS). Prior field campaigns have demonstrated successful communication, sensor data fusion and visualization for studies using gliders and AUVs. However, additional requirements exist for incorporating ASVs and UASs into ship operations. For these systems to be optimally integrated into research vessel data management and operational planning systems involves addressing three key issues: real-time field data availability, platform coordination, and data archiving for later analysis. A fleet of AUVs, ASVs and UAS deployed from a research vessel is best operated as a system integrated with the ship, provided communications among them can be sustained. For this purpose, Disruptive Tolerant Networking (DTN) software protocols for operation in communication-challenged environments help ensure reliable high-bandwidth communications. Additionally, system components need to have considerable onboard autonomy, namely adaptive sampling capabilities using their own onboard sensor data stream analysis. We discuss Oceanographic Decision Support System (ODSS) software currently used for situational awareness and planning onshore, and in the near future event detection and response will be coordinated among multiple vehicles. Results from recent field studies from oceanographic research vessels using AUVs, ASVs and UAS, including the Rapid Environmental Picture (REP-12) cruise, are presented describing methods and results for use of multi-vehicle communication and deliberative control networks, adaptive sampling with single and multiple platforms, issues relating to data management and archiving, and finally challenges that remain in addressing these technological issues. Significantly, the

  6. Integrated defense system overlaps as a disease model: with examples for multiple chemical sensitivity.

    PubMed Central

    Rowat, S C

    1998-01-01

    The central nervous, immune, and endocrine systems communicate through multiple common messengers. Over evolutionary time, what may be termed integrated defense system(s) (IDS) have developed to coordinate these communications for specific contexts; these include the stress response, acute-phase response, nonspecific immune response, immune response to antigen, kindling, tolerance, time-dependent sensitization, neurogenic switching, and traumatic dissociation (TD). These IDSs are described and their overlap is examined. Three models of disease production are generated: damage, in which IDSs function incorrectly; inadequate/inappropriate, in which IDS response is outstripped by a changing context; and evolving/learning, in which the IDS learned response to a context is deemed pathologic. Mechanisms of multiple chemical sensitivity (MCS) are developed from several IDS disease models. Model 1A is pesticide damage to the central nervous system, overlapping with body chemical burdens, TD, and chronic zinc deficiency; model 1B is benzene disruption of interleukin-1, overlapping with childhood developmental windows and hapten-antigenic spreading; and model 1C is autoimmunity to immunoglobulin-G (IgG), overlapping with spreading to other IgG-inducers, sudden spreading of inciters, and food-contaminating chemicals. Model 2A is chemical and stress overload, including comparison with the susceptibility/sensitization/triggering/spreading model; model 2B is genetic mercury allergy, overlapping with: heavy metals/zinc displacement and childhood/gestational mercury exposures; and model 3 is MCS as evolution and learning. Remarks are offered on current MCS research. Problems with clinical measurement are suggested on the basis of IDS models. Large-sample patient self-report epidemiology is described as an alternative or addition to clinical biomarker and animal testing. Images Figure 1 Figure 2 Figure 3 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9539008

  7. A multiple hypotheses uncertainty analysis in hydrological modelling: about model structure, landscape parameterization, and numerical integration

    NASA Astrophysics Data System (ADS)

    Pilz, Tobias; Francke, Till; Bronstert, Axel

    2016-04-01

    Until today a large number of competing computer models has been developed to understand hydrological processes and to simulate and predict streamflow dynamics of rivers. This is primarily the result of a lack of a unified theory in catchment hydrology due to insufficient process understanding and uncertainties related to model development and application. Therefore, the goal of this study is to analyze the uncertainty structure of a process-based hydrological catchment model employing a multiple hypotheses approach. The study focuses on three major problems that have received only little attention in previous investigations. First, to estimate the impact of model structural uncertainty by employing several alternative representations for each simulated process. Second, explore the influence of landscape discretization and parameterization from multiple datasets and user decisions. Third, employ several numerical solvers for the integration of the governing ordinary differential equations to study the effect on simulation results. The generated ensemble of model hypotheses is then analyzed and the three sources of uncertainty compared against each other. To ensure consistency and comparability all model structures and numerical solvers are implemented within a single simulation environment. First results suggest that the selection of a sophisticated numerical solver for the differential equations positively affects simulation outcomes. However, already some simple and easy to implement explicit methods perform surprisingly well and need less computational efforts than more advanced but time consuming implicit techniques. There is general evidence that ambiguous and subjective user decisions form a major source of uncertainty and can greatly influence model development and application at all stages.

  8. A multi-disciplinary approach for the integrated assessment of multiple risks in delta areas.

    NASA Astrophysics Data System (ADS)

    Sperotto, Anna; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio

    2016-04-01

    The assessment of climate change related risks is notoriously difficult due to the complex and uncertain combinations of hazardous events that might happen, the multiplicity of physical processes involved, the continuous changes and interactions of environmental and socio-economic systems. One important challenge lies in predicting and modelling cascades of natural and man -made hazard events which can be triggered by climate change, encompassing different spatial and temporal scales. Another regard the potentially difficult integration of environmental, social and economic disciplines in the multi-risk concept. Finally, the effective interaction between scientists and stakeholders is essential to ensure that multi-risk knowledge is translated into efficient adaptation and management strategies. The assessment is even more complex at the scale of deltaic systems which are particularly vulnerable to global environmental changes, due to the fragile equilibrium between the presence of valuable natural ecosystems and relevant economic activities. Improving our capacity to assess the combined effects of multiple hazards (e.g. sea-level rise, storm surges, reduction in sediment load, local subsidence, saltwater intrusion) is therefore essential to identify timely opportunities for adaptation. A holistic multi-risk approach is here proposed to integrate terminology, metrics and methodologies from different research fields (i.e. environmental, social and economic sciences) thus creating shared knowledge areas to advance multi risk assessment and management in delta regions. A first testing of the approach, including the application of Bayesian network analysis for the assessment of impacts of climate change on key natural systems (e.g. wetlands, protected areas, beaches) and socio-economic activities (e.g. agriculture, tourism), is applied in the Po river delta in Northern Italy. The approach is based on a bottom-up process involving local stakeholders early in different

  9. Integration of Multiple Genomic and Phenotype Data to Infer Novel miRNA-Disease Associations.

    PubMed

    Shi, Hongbo; Zhang, Guangde; Zhou, Meng; Cheng, Liang; Yang, Haixiu; Wang, Jing; Sun, Jie; Wang, Zhenzhen

    2016-01-01

    MicroRNAs (miRNAs) play an important role in the development and progression of human diseases. The identification of disease-associated miRNAs will be helpful for understanding the molecular mechanisms of diseases at the post-transcriptional level. Based on different types of genomic data sources, computational methods for miRNA-disease association prediction have been proposed. However, individual source of genomic data tends to be incomplete and noisy; therefore, the integration of various types of genomic data for inferring reliable miRNA-disease associations is urgently needed. In this study, we present a computational framework, CHNmiRD, for identifying miRNA-disease associations by integrating multiple genomic and phenotype data, including protein-protein interaction data, gene ontology data, experimentally verified miRNA-target relationships, disease phenotype information and known miRNA-disease connections. The performance of CHNmiRD was evaluated by experimentally verified miRNA-disease associations, which achieved an area under the ROC curve (AUC) of 0.834 for 5-fold cross-validation. In particular, CHNmiRD displayed excellent performance for diseases without any known related miRNAs. The results of case studies for three human diseases (glioblastoma, myocardial infarction and type 1 diabetes) showed that all of the top 10 ranked miRNAs having no known associations with these three diseases in existing miRNA-disease databases were directly or indirectly confirmed by our latest literature mining. All these results demonstrated the reliability and efficiency of CHNmiRD, and it is anticipated that CHNmiRD will serve as a powerful bioinformatics method for mining novel disease-related miRNAs and providing a new perspective into molecular mechanisms underlying human diseases at the post-transcriptional level. CHNmiRD is freely available at http://www.bio-bigdata.com/CHNmiRD. PMID:26849207

  10. Integrating Multiple Distribution Models to Guide Conservation Efforts of an Endangered Toad

    PubMed Central

    Treglia, Michael L.; Fisher, Robert N.; Fitzgerald, Lee A.

    2015-01-01

    Species distribution models are used for numerous purposes such as predicting changes in species’ ranges and identifying biodiversity hotspots. Although implications of distribution models for conservation are often implicit, few studies use these tools explicitly to inform conservation efforts. Herein, we illustrate how multiple distribution models developed using distinct sets of environmental variables can be integrated to aid in identification sites for use in conservation. We focus on the endangered arroyo toad (Anaxyrus californicus), which relies on open, sandy streams and surrounding floodplains in southern California, USA, and northern Baja California, Mexico. Declines of the species are largely attributed to habitat degradation associated with vegetation encroachment, invasive predators, and altered hydrologic regimes. We had three main goals: 1) develop a model of potential habitat for arroyo toads, based on long-term environmental variables and all available locality data; 2) develop a model of the species’ current habitat by incorporating recent remotely-sensed variables and only using recent locality data; and 3) integrate results of both models to identify sites that may be employed in conservation efforts. We used a machine learning technique, Random Forests, to develop the models, focused on riparian zones in southern California. We identified 14.37% and 10.50% of our study area as potential and current habitat for the arroyo toad, respectively. Generally, inclusion of remotely-sensed variables reduced modeled suitability of sites, thus many areas modeled as potential habitat were not modeled as current habitat. We propose such sites could be made suitable for arroyo toads through active management, increasing current habitat by up to 67.02%. Our general approach can be employed to guide conservation efforts of virtually any species with sufficient data necessary to develop appropriate distribution models. PMID:26125634

  11. Integrating Multiple Distribution Models to Guide Conservation Efforts of an Endangered Toad.

    PubMed

    Treglia, Michael L; Fisher, Robert N; Fitzgerald, Lee A

    2015-01-01

    Species distribution models are used for numerous purposes such as predicting changes in species' ranges and identifying biodiversity hotspots. Although implications of distribution models for conservation are often implicit, few studies use these tools explicitly to inform conservation efforts. Herein, we illustrate how multiple distribution models developed using distinct sets of environmental variables can be integrated to aid in identification sites for use in conservation. We focus on the endangered arroyo toad (Anaxyrus californicus), which relies on open, sandy streams and surrounding floodplains in southern California, USA, and northern Baja California, Mexico. Declines of the species are largely attributed to habitat degradation associated with vegetation encroachment, invasive predators, and altered hydrologic regimes. We had three main goals: 1) develop a model of potential habitat for arroyo toads, based on long-term environmental variables and all available locality data; 2) develop a model of the species' current habitat by incorporating recent remotely-sensed variables and only using recent locality data; and 3) integrate results of both models to identify sites that may be employed in conservation efforts. We used a machine learning technique, Random Forests, to develop the models, focused on riparian zones in southern California. We identified 14.37% and 10.50% of our study area as potential and current habitat for the arroyo toad, respectively. Generally, inclusion of remotely-sensed variables reduced modeled suitability of sites, thus many areas modeled as potential habitat were not modeled as current habitat. We propose such sites could be made suitable for arroyo toads through active management, increasing current habitat by up to 67.02%. Our general approach can be employed to guide conservation efforts of virtually any species with sufficient data necessary to develop appropriate distribution models. PMID:26125634

  12. Integrating multiple distribution models to guide conservation efforts of an endangered toad

    USGS Publications Warehouse

    Treglia, Michael L.; Fisher, Robert N.; Fitzgerald, Lee A.

    2015-01-01

    Species distribution models are used for numerous purposes such as predicting changes in species’ ranges and identifying biodiversity hotspots. Although implications of distribution models for conservation are often implicit, few studies use these tools explicitly to inform conservation efforts. Herein, we illustrate how multiple distribution models developed using distinct sets of environmental variables can be integrated to aid in identification sites for use in conservation. We focus on the endangered arroyo toad (Anaxyrus californicus), which relies on open, sandy streams and surrounding floodplains in southern California, USA, and northern Baja California, Mexico. Declines of the species are largely attributed to habitat degradation associated with vegetation encroachment, invasive predators, and altered hydrologic regimes. We had three main goals: 1) develop a model of potential habitat for arroyo toads, based on long-term environmental variables and all available locality data; 2) develop a model of the species’ current habitat by incorporating recent remotely-sensed variables and only using recent locality data; and 3) integrate results of both models to identify sites that may be employed in conservation efforts. We used a machine learning technique, Random Forests, to develop the models, focused on riparian zones in southern California. We identified 14.37% and 10.50% of our study area as potential and current habitat for the arroyo toad, respectively. Generally, inclusion of remotely-sensed variables reduced modeled suitability of sites, thus many areas modeled as potential habitat were not modeled as current habitat. We propose such sites could be made suitable for arroyo toads through active management, increasing current habitat by up to 67.02%. Our general approach can be employed to guide conservation efforts of virtually any species with sufficient data necessary to develop appropriate distribution models.

  13. Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery

    PubMed Central

    Speicher, Nora K.; Pfeifer, Nico

    2015-01-01

    Motivation: Despite ongoing cancer research, available therapies are still limited in quantity and effectiveness, and making treatment decisions for individual patients remains a hard problem. Established subtypes, which help guide these decisions, are mainly based on individual data types. However, the analysis of multidimensional patient data involving the measurements of various molecular features could reveal intrinsic characteristics of the tumor. Large-scale projects accumulate this kind of data for various cancer types, but we still lack the computational methods to reliably integrate this information in a meaningful manner. Therefore, we apply and extend current multiple kernel learning for dimensionality reduction approaches. On the one hand, we add a regularization term to avoid overfitting during the optimization procedure, and on the other hand, we show that one can even use several kernels per data type and thereby alleviate the user from having to choose the best kernel functions and kernel parameters for each data type beforehand. Results: We have identified biologically meaningful subgroups for five different cancer types. Survival analysis has revealed significant differences between the survival times of the identified subtypes, with P values comparable or even better than state-of-the-art methods. Moreover, our resulting subtypes reflect combined patterns from the different data sources, and we demonstrate that input kernel matrices with only little information have less impact on the integrated kernel matrix. Our subtypes show different responses to specific therapies, which could eventually assist in treatment decision making. Availability and implementation: An executable is available upon request. Contact: nora@mpi-inf.mpg.de or npfeifer@mpi-inf.mpg.de PMID:26072491

  14. Capillary Isoelectric Focusing

    NASA Astrophysics Data System (ADS)

    Markuszewski, Michał J.; Bujak, Renata; Daghir, Emilia

    Capillary isoelectric focusing (CIEF) is a widespread technique for the analysis of peptides and proteins in biological samples. CIEF is used to separate mixtures of compounds on the basis of differences in their isoelectric point. Aspects of sample preparation, capillary selection, zone mobilization procedures as well as various detection modes used have been described and discussed. Moreover CIEF, coupled to various types of detection techniques (MALDI or LIF), has increasingly been applied to the analysis of variety different high-molecular compounds. CIEF is considered as a highly specific analytical method which may be routinely used in the separation of rare hemoglobin variants. In addition, the application of CIEF in proteomic field have been discussed on the examples of analyses of glycoproteins and immunoglobins due to the meaning in clinical diagnostic.

  15. Semipreparative capillary electrochromatography.

    PubMed

    Chen, J R; Zare, R N; Peters, E C; Svec, F; Frechét, J J

    2001-05-01

    Capillaries with inner diameters of 550 microm have successfully been packed with 1.5-microm octadecyl silica particles using frits made of macroporous polymers by the UV photopolymerization of a solution of glycidyl methacrylate and trimethylolpropane trimethacrylate. This type of frit is found superior to one made of low-melting point poly(styrene-co-divinylbenzene) beads. Bubble formation is not observed to occur within these capillary columns under our experimental conditions. Separations can be achieved with sample injection volumes as high as 1 microL. To demonstrate its semipreparative use, a mixture of 500 nL of taxol (20 mM) and its precursor, baccatin III (30 mM), is separated using such a column with a Tris buffer. PMID:11354480

  16. Drosophila Myc integrates multiple signaling pathways to regulate intestinal stem cell proliferation during midgut regeneration

    PubMed Central

    Ren, Fangfang; Shi, Qing; Chen, Yongbin; Jiang, Alice; Ip, Y Tony; Jiang, Huaqi; Jiang, Jin

    2013-01-01

    Intestinal stem cells (ISCs) in the Drosophila adult midgut are essential for maintaining tissue homeostasis, and their proliferation and differentiation speed up in order to meet the demand for replenishing the lost cells in response to injury. Several signaling pathways including JAK-STAT, EGFR and Hippo (Hpo) pathways have been implicated in damage-induced ISC proliferation, but the mechanisms that integrate these pathways have remained elusive. Here, we demonstrate that the Drosophila homolog of the oncoprotein Myc (dMyc) functions downstream of these signaling pathways to mediate their effects on ISC proliferation. dMyc expression in precursor cells is stimulated in response to tissue damage, and dMyc is essential for accelerated ISC proliferation and midgut regeneration. We show that tissue damage caused by dextran sulfate sodium feeding stimulates dMyc expression via the Hpo pathway, whereas bleomycin feeding activates dMyc through the JAK-STAT and EGFR pathways. We provide evidence that dMyc expression is transcriptionally upregulated by multiple signaling pathways, which is required for optimal ISC proliferation in response to tissue damage. We have also obtained evidence that tissue damage can upregulate dMyc expression post-transcriptionally. Finally, we show that a basal level of dMyc expression is required for ISC maintenance, proliferation and lineage differentiation during normal tissue homeostasis. PMID:23896988

  17. Efficient implicit integration for finite-strain viscoplasticity with a nested multiplicative split

    NASA Astrophysics Data System (ADS)

    Shutov, A. V.

    2016-07-01

    An efficient and reliable stress computation algorithm is presented, which is based on implicit integration of the local evolution equations of multiplicative finite-strain plasticity/viscoplasticity. The algorithm is illustrated by an example involving a combined nonlinear isotropic/kinematic hardening; numerous backstress tensors are employed for a better description of the material behavior. The considered material model exhibits the so-called weak invariance under arbitrary isochoric changes of the reference configuration, and the presented algorithm retains this useful property. Even more: the weak invariance serves as a guide in constructing this algorithm. The constraint of inelastic incompressibility is exactly preserved as well. The proposed method is first-order accurate. Concerning the accuracy of the stress computation, the new algorithm is comparable to the Euler Backward method with a subsequent correction of incompressibility (EBMSC) and the classical exponential method (EM). Regarding the computational efficiency, the new algorithm is superior to the EBMSC and EM. Some accuracy tests are presented using parameters of the aluminum alloy 5754-O and the 42CrMo4 steel. FEM solutions of two boundary value problems using MSC.MARC are presented to show the correctness of the numerical implementation.

  18. Integrity of the Anterior Visual Pathway and Its Association with Ambulatory Performance in Multiple Sclerosis

    PubMed Central

    Sandroff, Brian M.; Pula, John H.; Motl, Robert W.

    2013-01-01

    Background. Retinal nerve fiber layer thickness (RNFLT) and total macular volume (TMV) represent markers of neuroaxonal degeneration within the anterior visual pathway that might correlate with ambulation in persons with multiple sclerosis (MS). Objective. This study examined the associations between RNFLT and TMV with ambulatory parameters in MS. Methods. Fifty-eight MS patients underwent a neurological examination for generation of an expanded disability status scale (EDSS) score and measurement of RNFLT and TMV using optical coherence tomography (OCT). Participants completed the 6-minute walk (6MW) and the timed 25-foot walk (T25FW). The associations were examined using generalized estimating equation models that accounted for within-patient, inter-eye correlations, and controlled for disease duration, EDSS score, and age. Results. RNFLT was not significantly associated with 6MW (P = 0.99) or T25FW (P = 0.57). TMV was significantly associated with 6MW (P = 0.023) and T25FW (P = 0.005). The coefficients indicated that unit differences in 6MW (100 feet) and T25FW (1 second) were associated with 0.040 and −0.048 unit differences in TMV (mm3), respectively. Conclusion. Integrity of the anterior visual pathway, particularly TMV, might represent a noninvasive measure of neuroaxonal degeneration that is correlated with ambulatory function in MS. PMID:23864950

  19. Integrating semantic information into multiple kernels for protein-protein interaction extraction from biomedical literatures.

    PubMed

    Li, Lishuang; Zhang, Panpan; Zheng, Tianfu; Zhang, Hongying; Jiang, Zhenchao; Huang, Degen

    2014-01-01

    Protein-Protein Interaction (PPI) extraction is an important task in the biomedical information extraction. Presently, many machine learning methods for PPI extraction have achieved promising results. However, the performance is still not satisfactory. One reason is that the semantic resources were basically ignored. In this paper, we propose a multiple-kernel learning-based approach to extract PPIs, combining the feature-based kernel, tree kernel and semantic kernel. Particularly, we extend the shortest path-enclosed tree kernel (SPT) by a dynamic extended strategy to retrieve the richer syntactic information. Our semantic kernel calculates the protein-protein pair similarity and the context similarity based on two semantic resources: WordNet and Medical Subject Heading (MeSH). We evaluate our method with Support Vector Machine (SVM) and achieve an F-score of 69.40% and an AUC of 92.00%, which show that our method outperforms most of the state-of-the-art systems by integrating semantic information. PMID:24622773

  20. Modified principal component analysis: an integration of multiple similarity subspace models.

    PubMed

    Fan, Zizhu; Xu, Yong; Zuo, Wangmeng; Yang, Jian; Tang, Jinhui; Lai, Zhihui; Zhang, David

    2014-08-01

    We modify the conventional principal component analysis (PCA) and propose a novel subspace learning framework, modified PCA (MPCA), using multiple similarity measurements. MPCA computes three similarity matrices exploiting the similarity measurements: 1) mutual information; 2) angle information; and 3) Gaussian kernel similarity. We employ the eigenvectors of similarity matrices to produce new subspaces, referred to as similarity subspaces. A new integrated similarity subspace is then generated using a novel feature selection approach. This approach needs to construct a kind of vector set, termed weak machine cell (WMC), which contains an appropriate number of the eigenvectors spanning the similarity subspaces. Combining the wrapper method and the forward selection scheme, MPCA selects a WMC at a time that has a powerful discriminative capability to classify samples. MPCA is very suitable for the application scenarios in which the number of the training samples is less than the data dimensionality. MPCA outperforms the other state-of-the-art PCA-based methods in terms of both classification accuracy and clustering result. In addition, MPCA can be applied to face image reconstruction. MPCA can use other types of similarity measurements. Extensive experiments on many popular real-world data sets, such as face databases, show that MPCA achieves desirable classification results, as well as has a powerful capability to represent data. PMID:25050950

  1. Integrating Semantic Information into Multiple Kernels for Protein-Protein Interaction Extraction from Biomedical Literatures

    PubMed Central

    Li, Lishuang; Zhang, Panpan; Zheng, Tianfu; Zhang, Hongying; Jiang, Zhenchao; Huang, Degen

    2014-01-01

    Protein-Protein Interaction (PPI) extraction is an important task in the biomedical information extraction. Presently, many machine learning methods for PPI extraction have achieved promising results. However, the performance is still not satisfactory. One reason is that the semantic resources were basically ignored. In this paper, we propose a multiple-kernel learning-based approach to extract PPIs, combining the feature-based kernel, tree kernel and semantic kernel. Particularly, we extend the shortest path-enclosed tree kernel (SPT) by a dynamic extended strategy to retrieve the richer syntactic information. Our semantic kernel calculates the protein-protein pair similarity and the context similarity based on two semantic resources: WordNet and Medical Subject Heading (MeSH). We evaluate our method with Support Vector Machine (SVM) and achieve an F-score of 69.40% and an AUC of 92.00%, which show that our method outperforms most of the state-of-the-art systems by integrating semantic information. PMID:24622773

  2. A way to integrate multiple block layers for middle of line contact patterning

    NASA Astrophysics Data System (ADS)

    Kunnen, E.; Demuynck, S.; Brouri, M.; Boemmels, J.; Versluijs, J.; Ryckaert, J.

    2015-03-01

    It is clear today that further scaling towards smaller dimensions and pitches requires a multitude of additional process steps. Within this work we look for solutions to achieve a middle of line 193i based patterning scheme for N7 logic at a contacted poly pitch of 40-45 nm. At these pitches, trenches can still be printed by means of double patterning. However, they need to be blocked at certain positions because of a limited line end control below 90 nm pitch single print. Based on the 193i patterning abilities, the proposed SRAM (Static Random Access Memory) cell requires 5 blocking layers. Integrating 5 blocking layers is a new challenge since down to N10 one blocking layer was usually sufficient. The difficulty with multiple blocking layers is the removal of the masked parts, especially in cases of overlap. As a solution a novel patterning approach is proposed and tried out on relaxed dimensions (patent pending). The proposed solution is expected not to be sensitive to the number of blocking layers used, and tolerates their overlap. The stack is constructed to be compatible with N7 substrates such as SiGe or P:Si. Experimental results of the stack blocking performance on relaxed pitch will be presented and discussed.

  3. An integrated economic model of multiple types and uses of water

    NASA Astrophysics Data System (ADS)

    Luckmann, Jonas; Grethe, Harald; McDonald, Scott; Orlov, Anton; Siddig, Khalid

    2014-05-01

    Water scarcity is an increasing problem in many parts of the world and the management of water has become an important issue on the political economy agenda in many countries. As water is used in most economic activities and the allocation of water is often a complex problem involving different economic agents and sectors, Computable General Equilibrium (CGE) models have been proven useful to analyze water allocation problems, although their adaptation to include water is still relatively undeveloped. This paper provides a description of an integrated water-focused CGE model (STAGE_W) that includes multiple types and uses of water, and for the first time, the reclamation of wastewater as well as the provision of brackish groundwater as separate, independent activities with specific cost structures. The insights provided by the model are illustrated with an application to the Israeli water sector assuming that freshwater resources available to the economy are cut by 50%. We analyze how the Israeli economy copes with this shock if it reduces potable water supply compared with further investments in the desalination sector. The results demonstrate that the effects on the economy are slightly negative under both scenarios. Counter intuitively, the provision of additional potable water to the economy through desalination does not substantively reduce the negative outcomes. This is mainly due to the high costs of desalination, which are currently subsidized, with the distribution of the negative welfare effect over household groups dependent on how these subsidies are financed.

  4. Automated Parallel Capillary Electrophoretic System

    DOEpatents

    Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.

    2000-02-22

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  5. Optimized breeding strategies for multiple trait integration: II. Process efficiency in event pyramiding and trait fixation.

    PubMed

    Peng, Ting; Sun, Xiaochun; Mumm, Rita H

    2014-01-01

    Multiple trait integration (MTI) is a multi-step process of converting an elite variety/hybrid for value-added traits (e.g. transgenic events) through backcross breeding. From a breeding standpoint, MTI involves four steps: single event introgression, event pyramiding, trait fixation, and version testing. This study explores the feasibility of marker-aided backcross conversion of a target maize hybrid for 15 transgenic events in the light of the overall goal of MTI of recovering equivalent performance in the finished hybrid conversion along with reliable expression of the value-added traits. Using the results to optimize single event introgression (Peng et al. Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression. Mol Breed, 2013) which produced single event conversions of recurrent parents (RPs) with ≤8 cM of residual non-recurrent parent (NRP) germplasm with ~1 cM of NRP germplasm in the 20 cM regions flanking the event, this study focused on optimizing process efficiency in the second and third steps in MTI: event pyramiding and trait fixation. Using computer simulation and probability theory, we aimed to (1) fit an optimal breeding strategy for pyramiding of eight events into the female RP and seven in the male RP, and (2) identify optimal breeding strategies for trait fixation to create a 'finished' conversion of each RP homozygous for all events. In addition, next-generation seed needs were taken into account for a practical approach to process efficiency. Building on work by Ishii and Yonezawa (Optimization of the marker-based procedures for pyramiding genes from multiple donor lines: I. Schedule of crossing between the donor lines. Crop Sci 47:537-546, 2007a), a symmetric crossing schedule for event pyramiding was devised for stacking eight (seven) events in a given RP. Options for trait fixation breeding strategies considered selfing and doubled haploid approaches to achieve homozygosity

  6. Using Images, Metaphor, and Hypnosis in Integrating Multiple Personality and Dissociative States: A Review of the Literature.

    ERIC Educational Resources Information Center

    Crawford, Carrie L.

    1990-01-01

    Reviews literature on hypnosis, imagery, and metaphor as applied to the treatment and integration of those with multiple personality disorder (MPD) and dissociative states. Considers diagnostic criteria of MPD; explores current theories of etiology and treatment; and suggests specific examples of various clinical methods of treatment using…

  7. Determination of cloud effective particle size from the multiple-scattering effect on lidar integration-method temperature measurements.

    PubMed

    Reichardt, Jens; Reichardt, Susanne

    2006-04-20

    A method is presented that permits the determination of the cloud effective particle size from Raman- or Rayleigh-integration temperature measurements that exploits the dependence of the multiple-scattering contributions to the lidar signals from heights above the cloud on the particle size of the cloud. Independent temperature information is needed for the determination of size. By use of Raman-integration temperatures, the technique is applied to cirrus measurements. The magnitude of the multiple-scattering effect and the above-cloud lidar signal strength limit the method's range of applicability to cirrus optical depths from 0.1 to 0.5. Our work implies that records of stratosphere temperature obtained with lidar may be affected by multiple scattering in clouds up to heights of 30 km and beyond. PMID:16633433

  8. Integration of Multiple Non-Normal Checklist Procedures into a Single Checklist Procedure for Transport Aircraft: A Preliminary Investigation

    NASA Technical Reports Server (NTRS)

    Foernsler, Lynda J.

    1996-01-01

    Checklists are used by the flight crew to properly configure an aircraft for safe flight and to ensure a high level of safety throughout the duration of the flight. In addition, the checklist provides a sequential framework to meet cockpit operational requirements, and it fosters cross-checking of the flight deck configuration among crew members. This study examined the feasibility of integrating multiple checklists for non-normal procedures into a single procedure for a typical transport aircraft. For the purposes of this report, a typical transport aircraft is one that represents a midpoint between early generation aircraft (B-727/737-200 and DC-10) and modern glass cockpit aircraft (B747-400/777 and MD-11). In this report, potential conflicts among non-normal checklist items during multiple failure situations for a transport aircraft are identified and analyzed. The non-normal checklist procedure that would take precedence for each of the identified multiple failure flight conditions is also identified. The rationale behind this research is that potential conflicts among checklist items might exist when integrating multiple checklists for non-normal procedures into a single checklist. As a rule, multiple failures occurring in today's highly automated and redundant system transport aircraft are extremely improbable. In addition, as shown in this analysis, conflicts among checklist items in a multiple failure flight condition are exceedingly unlikely. The possibility of a multiple failure flight condition occurring with a conflict among checklist items is so remote that integration of the non-normal checklists into a single checklist appears to be a plausible option.

  9. Capillary solitons on a levitated medium.

    PubMed

    Perrard, S; Deike, L; Duchêne, C; Pham, C-T

    2015-07-01

    A water cylinder deposited on a heated channel levitates on its own generated vapor film owing to the Leidenfrost effect. This experimental setup permits the study of the one-dimensional propagation of surface waves in a free-to-move liquid system. We report the observation of gravity-capillary waves under a dramatic reduction of gravity (up to a factor 30), leading to capillary waves at the centimeter scale. The generated nonlinear structures propagate without deformation and undergo mutual collisions and reflections at the boundaries of the domain. They are identified as Korteweg-de Vries solitons with negative amplitude and subsonic velocity. The typical width and amplitude-dependent velocities are in excellent agreement with theoretical predictions based on a generalized Korteweg-de Vries equation adapted to any substrate geometry. When multiple solitons are present, they interact and form a soliton turbulencelike spectrum. PMID:26274114

  10. Capillary reference half-cell

    DOEpatents

    Hall, S.H.

    1996-02-13

    The present invention is a reference half-cell electrode wherein intermingling of test fluid with reference fluid does not affect the performance of the reference half-cell over a long time. This intermingling reference half-cell may be used as a single or double junction submersible or surface reference electrode. The intermingling reference half-cell relies on a capillary tube having a first end open to reference fluid and a second end open to test fluid wherein the small diameter of the capillary tube limits free motion of fluid within the capillary to diffusion. The electrode is placed near the first end of the capillary in contact with the reference fluid. The method of operation of the present invention begins with filling the capillary tube with a reference solution. After closing the first end of the capillary, the capillary tube may be fully submerged or partially submerged with the second open end inserted into test fluid. Since the electrode is placed near the first end of the capillary, and since the test fluid may intermingle with the reference fluid through the second open end only by diffusion, this intermingling capillary reference half-cell provides a stable voltage potential for long time periods. 11 figs.

  11. Capillary reference half-cell

    DOEpatents

    Hall, Stephen H.

    1996-01-01

    The present invention is a reference half-cell electrode wherein intermingling of test fluid with reference fluid does not affect the performance of the reference half-cell over a long time. This intermingling reference half-cell may be used as a single or double junction submersible or surface reference electrode. The intermingling reference half-cell relies on a capillary tube having a first end open to reference fluid and a second end open to test fluid wherein the small diameter of the capillary tube limits free motion of fluid within the capillary to diffusion. The electrode is placed near the first end of the capillary in contact with the reference fluid. The method of operation of the present invention begins with filling the capillary tube with a reference solution. After closing the first end of the capillary, the capillary tube may be fully submerged or partially submerged with the second open end inserted into test fluid. Since the electrode is placed near the first end of the capillary, and since the test fluid may intermingle with the reference fluid through the second open end only by diffusion, this intermingling capillary reference half-cell provides a stable voltage potential for long time periods.

  12. Pervasive pleiotropy between psychiatric disorders and immune disorders revealed by integrative analysis of multiple GWAS.

    PubMed

    Wang, Qian; Yang, Can; Gelernter, Joel; Zhao, Hongyu

    2015-11-01

    Although some existing epidemiological observations and molecular experiments suggested that brain disorders in the realm of psychiatry may be influenced by immune dysregulation, the degree of genetic overlap between psychiatric disorders and immune disorders has not been well established. We investigated this issue by integrative analysis of genome-wide association studies of 18 complex human traits/diseases (five psychiatric disorders, seven immune disorders, and others) and multiple genome-wide annotation resources (central nervous system genes, immune-related expression-quantitative trait loci (eQTL) and DNase I hypertensive sites from 98 cell lines). We detected pleiotropy in 24 of the 35 psychiatric-immune disorder pairs. The strongest pleiotropy was observed for schizophrenia-rheumatoid arthritis with MHC region included in the analysis (p = 3.9 x 10(-285), and schizophrenia-Crohn's disease with MHC region excluded (p = 1.1 x 10(-36). Significant enrichment (> 1.4 fold) of immune-related eQTL was observed in four psychiatric disorders. Genomic regions responsible for pleiotropy between psychiatric disorders and immune disorders were detected. The MHC region on chromosome 6 appears to be the most important with other regions, such as cytoband 1p13.2, also playing significant roles in pleiotropy. We also found that most alleles shared between schizophrenia and Crohn's disease have the same effect direction, with similar trend found for other disorder pairs, such as bipolar-Crohn's disease. Our results offer a novel bird's-eye view of the genetic relationship and demonstrate strong evidence for pervasive pleiotropy between psychiatric disorders and immune disorders. Our findings might open new routes for prevention and treatment strategies for these disorders based on a new appreciation of the importance of immunological mechanisms in mediating risk of many psychiatric diseases. PMID:26340901

  13. Integrating data from multiple science networks to conduct cross-scale ecohydrological research. (Invited)

    NASA Astrophysics Data System (ADS)

    Tazik, D.; Roehm, C. L.; Atkin, O.; Ayers, E.; Berukoff, S. J.; Fitzgerald, M.; Held, A. A.; Hinckley, E. S.; Kampe, T. U.; Liddell, M.; Phinn, S. R.; Taylor, J. R.; Thibault, K. M.; Thorpe, A.

    2013-12-01

    Distributed standardized sensor networks that collect coordinated airborne- and ground-based observations and are coupled with remotely sensed satellite imagery provide unique insight into complex ecological processes and feedbacks across a range of spatio-temporal scales. Measurements and information transfer at and across scales are key challenges in ecohydrology. A combination of approaches, for example, isotopic signatures of leaves, evapotranspiration using micrometeorological techniques, and water stress from remote sensing imagery, will improve our ability to integrate data across spatial scales. The collaboration among science networks such as the National Ecological Observatory Network (NEON) in the US and Terrestrial Ecosystem Research Network (TERN) in Australia will provide data that enable researchers to address complex questions regarding processes operating within and across systems, at site-to-continental scales and beyond. In this talk, we present several examples demonstrating combinations of remotely sensed and ground-based ecohydrological data collected using standardized methodologies across multiple sensor networks. Examples include: 1) determining ecohydrological controls on plant production at plot to regional scales; 2) interpreting atmospheric chemical and isotopic deposition gradients across geographic domains; 3) using the stable isotope signatures of small mammal tissues to track drought dynamics across space and time; 4) mapping water quality characteristics in optically complex waters using remotely sensed imagery and high temporal frequency ground based sensor calibration data and 5) scaling plot and individual plant level vegetation structure estimates to continental scale maps of vegetation and ground cover dynamics. Australian scientists are using TERN's infrastructure for improving Soil-Vegetation-Atmosphere Transfer (SVAT) modeling for Australian conditions by assessing plant photosynthetic and respiration performance across a

  14. Coaxial capillary and conductive capillary interfaces for collection of fractions isolated by capillary electrophoresis

    SciTech Connect

    Chiu, R.W.; Walker, K.L.; Hagen, J.J.; Monning, C.A.; Wilkins, C.L.

    1995-11-15

    An instrument is described that allows the automated collection of fractions isolated by capillary electrophoresis. This instrument allows the electrical connection to be established with the separation capillary by using a coaxial capillary flow cell or by treating the outer surface of the capillary with a gold-filled epoxy to allow electrophoresis. The coaxial interface is most useful when the electroosmotic flow in the capillary is small, and the conductive capillary interface is favored when dilution and contamination of the sample must be minimized. Both geometries permit closely spaced fractions to be acquired with minimal cross-contamination and dilution. Sample recoveries were better than 80% and virtually independent of the chemical characteristics of the sample. Fractions isolated with this instrument were successfully analyzed by high-pressure liquid chromatography and electrospray mass spectrometry. 25 refs., 4 figs.

  15. Alveolar Capillary Dysplasia

    PubMed Central

    Stankiewicz, Pawel; Steinhorn, Robin H.

    2011-01-01

    Alveolar capillary dysplasia with misalignment of the pulmonary veins (ACD/MPV) is a rare, fatal developmental lung disorder of neonates and infants. This review aims to address recent findings in the etiology and genetics of ACD/MPV and to raise awareness of this poorly known disease, which may also present as milder, unclassified forms. Successively discussed are what is known about the epidemiology, pathogenesis, pathophysiology, diagnostic indicators and approaches, genetic testing, treatment, and cases of delayed onset. The review concludes with suggestions for future directions to answer the many unknowns about this disorder. PMID:21471096

  16. Repetitive, marker-free, site-specific integration as a novel tool for multiple chromosomal integration of DNA.

    PubMed

    Petersen, Kia Vest; Martinussen, Jan; Jensen, Peter Ruhdal; Solem, Christian

    2013-06-01

    We present a tool for repetitive, marker-free, site-specific integration in Lactococcus lactis, in which a nonreplicating plasmid vector (pKV6) carrying a phage attachment site (attP) can be integrated into a bacterial attachment site (attB). The novelty of the tool described here is the inclusion of a minimal bacterial attachment site (attB(min)), two mutated loxP sequences (lox66 and lox71) allowing for removal of undesirable vector elements (antibiotic resistance marker), and a counterselection marker (oroP) for selection of loxP recombination on the pKV6 vector. When transformed into L. lactis expressing the phage TP901-1 integrase, pKV6 integrates with high frequency into the chromosome, where it is flanked by attL and attR hybrid attachment sites. After expression of Cre recombinase from a plasmid that is not able to replicate in L. lactis, loxP recombinants can be selected for by using 5-fluoroorotic acid. The introduced attB(min) site can subsequently be used for a second round of integration. To examine if attP recombination was specific to the attB site, integration was performed in strains containing the attB, attL, and attR sites or the attL and attR sites only. Only attP-attB recombination was observed when all three sites were present. In the absence of the attB site, a low frequency of attP-attL recombination was observed. To demonstrate the functionality of the system, the xylose utilization genes (xylABR and xylT) from L. lactis strain KF147 were integrated into the chromosome of L. lactis strain MG1363 in two steps. PMID:23542630

  17. Identification and integration of Picorna-like viruses in multiple insect taxa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus infection often leads to incorporation of a piece of the virus genetic code into the genome of the host organism, referred to as integration. Determining if the virus has integrated into the host genome provides valuable information needed to monitor disease spread. Detection of integrated vir...

  18. Capillary suspensions: Particle networks formed through the capillary force

    PubMed Central

    Koos, Erin

    2014-01-01

    The addition of small amounts of a secondary fluid to a suspension can, through the attractive capillary force, lead to particle bridging and network formation. The capillary bridging phenomenon can be used to stabilize particle suspensions and precisely tune their rheological properties. This effect can even occur when the secondary fluid wets the particles less well than the bulk fluid. These materials, so-called capillary suspensions, have been the subject of recent research studying the mechanism for network formation, the properties of these suspensions, and how the material properties can be modified. Recent work in colloidal clusters is summarized and the relationship to capillary suspensions is discussed. Capillary suspensions can also be used as a pathway for new material design and some of these applications are highlighted. Results obtained to date are summarized and central questions that remain to be answered are proposed in this review. PMID:25729316

  19. Tapered capillary optics

    DOEpatents

    Hirsch, Gregory

    1998-01-01

    A metal or glass wire is etched with great precision into a very narrowly tapering cone which has the shape of the desired final capillary-optics bore. By controlling the rate of removal of the wire from an etchant bath, a carefully controlled taper is produced. A sensor measures the diameter of the wire as it leaves the surface of the etchant. This signal is used for feedback control of the withdrawal speed. The etched wire undergoes a treatment to produce an extremely low surface-roughness. The etched and smoothed wire is coated with the material of choice for optimizing the reflectivity of the radiation being focused. This could be a vacuum evaporation, sputtering, CVD or aqueous chemical process. The coated wire is either electroplated, built up with electroless plating, or encapsulated in a polymer cylinder such as epoxy to increase the diameter of the wire for easier handling and greater robustness. During this process, the wire is vertically oriented and tensioned to assure that the wire is absolutely straight. The coated and electroformed wire is bonded to a flat, rigid substrate and is then periodically segmented by cutting or etching a series of narrow slits or grooves into the wire. The wire is vertically oriented and tensioned during the bonding process to assure that it is straight. The original wire material is then chemically etched away through the slits or otherwise withdrawn to leave the hollow internal bore of the final tapered-capillary optical element.

  20. EasyCloneMulti: A Set of Vectors for Simultaneous and Multiple Genomic Integrations in Saccharomyces cerevisiae

    PubMed Central

    Baallal Jacobsen, Simo Abdessamad; Jensen, Niels B.; Kildegaard, Kanchana R.; Herrgård, Markus J.; Schneider, Konstantin; Koza, Anna; Forster, Jochen; Nielsen, Jens; Borodina, Irina

    2016-01-01

    Saccharomyces cerevisiae is widely used in the biotechnology industry for production of ethanol, recombinant proteins, food ingredients and other chemicals. In order to generate highly producing and stable strains, genome integration of genes encoding metabolic pathway enzymes is the preferred option. However, integration of pathway genes in single or few copies, especially those encoding rate-controlling steps, is often not sufficient to sustain high metabolic fluxes. By exploiting the sequence diversity in the long terminal repeats (LTR) of Ty retrotransposons, we developed a new set of integrative vectors, EasyCloneMulti, that enables multiple and simultaneous integration of genes in S. cerevisiae. By creating vector backbones that combine consensus sequences that aim at targeting subsets of Ty sequences and a quickly degrading selective marker, integrations at multiple genomic loci and a range of expression levels were obtained, as assessed with the green fluorescent protein (GFP) reporter system. The EasyCloneMulti vector set was applied to balance the expression of the rate-controlling step in the β-alanine pathway for biosynthesis of 3-hydroxypropionic acid (3HP). The best 3HP producing clone, with 5.45 g.L-1 of 3HP, produced 11 times more 3HP than the lowest producing clone, which demonstrates the capability of EasyCloneMulti vectors to impact metabolic pathway enzyme activity. PMID:26934490

  1. On Capillary Rise and Nucleation

    ERIC Educational Resources Information Center

    Prasad, R.

    2008-01-01

    A comparison of capillary rise and nucleation is presented. It is shown that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. Such a comparison may help to introduce nucleation with a topic familiar to the students, capillary rise. (Contains 1 table and 3 figures.)

  2. Formulation of an explicit-multiple-time-step time integration method for use in a global primitive equation grid model

    NASA Technical Reports Server (NTRS)

    Chao, W. C.

    1982-01-01

    With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is incorporated into the UCLA model. In this scheme, the linearized terms in the governing equations that generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time step dictated by the CFL condition for low-frequency waves. This large time step requires a special modification of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS is a stable, efficient and accurate scheme.

  3. Multiple integration site of hepatitis B virus DNA in hepatocellular carcinoma and chronic active hepatitis tissues from children.

    PubMed Central

    Yaginuma, K; Kobayashi, H; Kobayashi, M; Morishima, T; Matsuyama, K; Koike, K

    1987-01-01

    Attention was directed to hepatitis B virus (HBV) integration in tissues obtained from an hepatocellular carcinoma (HCC) of an 11-year-old boy and from the liver of his 6-year-old brother, who had chronic active hepatitis. Multiple HBV DNA integration sites were demonstrated in both tissues. Cell population(s) in the HCC and liver from the patient with chronic active hepatitis were assumed to be heterogeneous with regard to HBV integration. The integrated forms in the two tissues showed similar genetic organization without gross rearrangement. The location of one of the virus-chromosomal junctions was restricted to the 5'-end region of the minus-strand DNA of HBV. The experimental results support our previous model for the mechanism of HBV integration, in which minus-strand replicative intermediates integrate into chromosomal DNA. The integrated HBV DNAs were conserved in the same region of the viral genome, spanning from the C gene through the S gene to the X gene, which contains intrinsic promoter-enhancer sequences. Images PMID:3033312

  4. Capillary optics for radiation focusing

    SciTech Connect

    Peurrung, A.J.; Reeder, P.L.; Bliss, M.; Craig, R.A.; Lepel, E.A.; Stromswold, D.C.; Stoffels, J.; Sunberg, D.S.; Tenny, H.

    1996-11-01

    Capillary lens technology may ultimately bring benefits to neutron and x-ray-based science like conventional lenses with visible light. Although the technology is not yet 10 years old, these lenses have already had a significant impact in engineering, science, and medicine. Capillary lenses are advantageous when it is desirable to increase the radiation flux at a location without regard to its angular divergence. PNNL has worked to improve the technology in several ways. A single, optimally tapered capillary was manufactured, which allows intensity gains of a factor of 270 for an initially parallel, incident x-ray beam. Feasibility of constructing neutron lenses using {sup 58}Ni (particularly effective at reflecting neutrons) has been explored. Three applications for capillary optics have been identified and studied: neutron telescope, Gandolphi x-ray diffractometry, and neutron radiotherapy. A brief guide is given for determining which potential applications are likely to be helped by capillary optics.

  5. Biomedical applications of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Kartsova, L. A.; Bessonova, E. A.

    2015-08-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references.

  6. Highly multiplexed DNA sequencing by capillary electrophoresis

    SciTech Connect

    Yeung, E.S.; Ueno, K.; Chang, H.T.

    1994-12-31

    It is obvious that irrespective of whichever basic technology is eventually selected to sequence the entire human genome there are substantial gains to be made if a high degree of multiplexing of parallel runs can be implemented. Such multiplexing should not involve expensive instrumentation and should not require additional personnel, or else the main objective of cost reduction will not be satisfied even though the total time for sequencing is reduced. In the last two years, several research groups have shown that capillary electrophoresis (CE) is an attractive alternative for DNA sequencing. Part of the improvement in sequencing speed in CE is counteracted by the inherent ability of slab gels for accommodating multiple lanes in a single run. Recently, the authors have developed several excitation schemes for highly multiplexed capillary electrophoresis. Detection at the pM level was demonstrated. The authors report here the use of a novel excitation geometry to simultaneously monitor 100 capillary tubes during electrophoresis. This represents a truly parallel multiplexing scheme for high-speed DNA sequencing.

  7. Flight Testing of the Capillary Pumped Loop 3 Experiment

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; Butler, Dan; Ku, Jentung; Cheung, Kwok; Baldauff, Robert; Hoang, Triem

    2002-01-01

    The Capillary Pumped Loop 3 (CAPL 3) experiment was a multiple evaporator capillary pumped loop experiment that flew in the Space Shuttle payload bay in December 2001 (STS-108). The main objective of CAPL 3 was to demonstrate in micro-gravity a multiple evaporator capillary pumped loop system, capable of reliable start-up, reliable continuous operation, and heat load sharing, with hardware for a deployable radiator. Tests performed on orbit included start-ups, power cycles, low power tests (100 W total), high power tests (up to 1447 W total), heat load sharing, variable/fixed conductance transition tests, and saturation temperature change tests. The majority of the tests were completed successfully, although the experiment did exhibit an unexpected sensitivity to shuttle maneuvers. This paper describes the experiment, the tests performed during the mission, and the test results.

  8. Integrated photonic decoder with complementary code processing and balanced detection for two-dimensional optical code division multiple access.

    PubMed

    Takiguchi, K; Okuno, M; Takahashi, H; Moriwaki, O

    2007-04-01

    We propose a novel integrated photonic decoder for two-dimensional (time spreading, wavelength hopping) optical code division multiple access. The decoder is composed of multiplexers-demultiplexers, variable delay lines, and a coupler, which processes complementary codes and utilizes balanced detection to reduce unwanted cross-correlation interference. We successfully carried out a 10 Gbit/s transmission that demonstrated its effectiveness. PMID:17339936

  9. The use of artificial intelligence techniques to improve the multiple payload integration process

    NASA Technical Reports Server (NTRS)

    Cutts, Dannie E.; Widgren, Brian K.

    1992-01-01

    A maximum return of science and products with a minimum expenditure of time and resources is a major goal of mission payload integration. A critical component then, in successful mission payload integration is the acquisition and analysis of experiment requirements from the principal investigator and payload element developer teams. One effort to use artificial intelligence techniques to improve the acquisition and analysis of experiment requirements within the payload integration process is described.

  10. Multiple Strategies for Spatial Integration of 2D Layouts within Working Memory

    PubMed Central

    Meilinger, Tobias; Watanabe, Katsumi

    2016-01-01

    Prior results on the spatial integration of layouts within a room differed regarding the reference frame that participants used for integration. We asked whether these differences also occur when integrating 2D screen views and, if so, what the reasons for this might be. In four experiments we showed that integrating reference frames varied as a function of task familiarity combined with processing time, cues for spatial transformation, and information about action requirements paralleling results in the 3D case. Participants saw part of an object layout in screen 1, another part in screen 2, and reacted on the integrated layout in screen 3. Layout presentations between two screens coincided or differed in orientation. Aligning misaligned screens for integration is known to increase errors/latencies. The error/latency pattern was thus indicative of the reference frame used for integration. We showed that task familiarity combined with self-paced learning, visual updating, and knowing from where to act prioritized the integration within the reference frame of the initial presentation, which was updated later, and from where participants acted respectively. Participants also heavily relied on layout intrinsic frames. The results show how humans flexibly adjust their integration strategy to a wide variety of conditions. PMID:27101011

  11. Multiple Strategies for Spatial Integration of 2D Layouts within Working Memory.

    PubMed

    Meilinger, Tobias; Watanabe, Katsumi

    2016-01-01

    Prior results on the spatial integration of layouts within a room differed regarding the reference frame that participants used for integration. We asked whether these differences also occur when integrating 2D screen views and, if so, what the reasons for this might be. In four experiments we showed that integrating reference frames varied as a function of task familiarity combined with processing time, cues for spatial transformation, and information about action requirements paralleling results in the 3D case. Participants saw part of an object layout in screen 1, another part in screen 2, and reacted on the integrated layout in screen 3. Layout presentations between two screens coincided or differed in orientation. Aligning misaligned screens for integration is known to increase errors/latencies. The error/latency pattern was thus indicative of the reference frame used for integration. We showed that task familiarity combined with self-paced learning, visual updating, and knowing from where to act prioritized the integration within the reference frame of the initial presentation, which was updated later, and from where participants acted respectively. Participants also heavily relied on layout intrinsic frames. The results show how humans flexibly adjust their integration strategy to a wide variety of conditions. PMID:27101011

  12. A capillary Archimedes' screw

    NASA Astrophysics Data System (ADS)

    Darbois Texier, Baptiste; Dorbolo, Stephane

    2014-11-01

    As used by Egyptians for irrigation and reported by Archimedes, a screw turning inside a hollow pipe can pull out a fluid againt gravity. At a centimetric scale, an analagous system can be found with a drop pending on a rotating spiral which is tilted toward the horizontal. The ascent of the drop to the top of the spiral is considered and a theoretical model based on geometrical considerations is proposed. The climb of the drop is limited by the fluid deposition on the screw at high capillary number and by a centrifugation phenomenon. We find out the range of fluid proprities and spiral characteristics for which an ascending motion of the drop is possible. Finally we discuss the efficiency of such system to extract a fluid from a bath at a centrimetric scale.

  13. Steady Capillary Driven Flow

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M.

    1996-01-01

    A steady capillary driven flow is developed for a liquid index in a circular tube which is partially coated with a surface modifier to produce a discontinuous wetting condition from one side of the tube to the other. The bulk flow is novel in that it is truly steady, and controlled solely by the physics associated with dynamic wetting. The influence of gravity on the flow is minimized through the use of small diameter tubes approximately O(1 mm) tested horizontally in a laboratory and larger tubes approximately O(10 mm) tested in the low gravity environment of a drop tower. Average steady velocities are predicted and compared against a large experimental data set which includes the effects of tube dimensions and fluid properties. The sensitivity of the velocity to surface cleanliness is dramatic and the advantages of experimentation in a microgravity environment are discussed.

  14. Capillary interconnect device

    DOEpatents

    Renzi, Ronald F.

    2007-12-25

    A manifold for connecting external capillaries to the inlet and/or outlet ports of a microfluidic device for high pressure applications is provided. The fluid connector for coupling at least one fluid conduit to a corresponding port of a substrate that includes: (i) a manifold comprising one or more channels extending therethrough wherein each channel is at least partially threaded, (ii) one or more threaded ferrules each defining a bore extending therethrough with each ferrule supporting a fluid conduit wherein each ferrule is threaded into a channel of the manifold, (iii) a substrate having one or more ports on its upper surface wherein the substrate is positioned below the manifold so that the one or more ports is aligned with the one or more channels of the manifold, and (iv) means for applying an axial compressive force to the substrate to couple the one or more ports of the substrate to a corresponding proximal end of a fluid conduit.

  15. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  16. Capillaries for use in a multiplexed capillary electrophoresis system

    SciTech Connect

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  17. High-Throughput Multiple Dies-to-Wafer Bonding Technology and III/V-on-Si Hybrid Lasers for Heterogeneous Integration of Optoelectronic Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Luo, Xianshu; Cao, Yulian; Song, Junfeng; Hu, Xiaonan; Cheng, Yungbing; Li, Chengming; Liu, Chongyang; Liow, Tsung-Yang; Yu, Mingbin; Wang, Hong; Wang, Qijie; Lo, Patrick Guo-Qiang

    2015-04-01

    Integrated optical light source on silicon is one of the key building blocks for optical interconnect technology. Great research efforts have been devoting worldwide to explore various approaches to integrate optical light source onto the silicon substrate. The achievements so far include the successful demonstration of III/V-on-Si hybrid lasers through III/V-gain material to silicon wafer bonding technology. However, for potential large-scale integration, leveraging on mature silicon complementary metal oxide semiconductor (CMOS) fabrication technology and infrastructure, more effective bonding scheme with high bonding yield is in great demand considering manufacturing needs. In this paper, we propose and demonstrate a high-throughput multiple dies-to-wafer (D2W) bonding technology which is then applied for the demonstration of hybrid silicon lasers. By temporarily bonding III/V dies to a handle silicon wafer for simultaneous batch processing, it is expected to bond unlimited III/V dies to silicon device wafer with high yield. As proof-of-concept, more than 100 III/V dies bonding to 200 mm silicon wafer is demonstrated. The high performance of the bonding interface is examined with various characterization techniques. Repeatable demonstrations of 16-III/V-die bonding to pre-patterned 200 mm silicon wafers have been performed for various hybrid silicon lasers, in which device library including Fabry-Perot (FP) laser, lateral-coupled distributed feedback (LC-DFB) laser with side wall grating, and mode-locked laser (MLL). From these results, the presented multiple D2W bonding technology can be a key enabler towards the large-scale heterogeneous integration of optoelectronic integrated circuits (H-OEIC).

  18. Integrated p–n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities

    NASA Astrophysics Data System (ADS)

    Cai, Wei; Gao, Xumin; Yuan, Wei; Yang, Yongchao; Yuan, Jialei; Zhu, Hongbo; Wang, Yongjin

    2016-05-01

    We propose, fabricate, and demonstrate integrated p–n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities on a GaN-on-silicon platform. Suspended devices with a common n-contact are realized using a wafer-level process. For the integrated devices, part of the light emitted by a light-emitting diode (LED) is guided in-plane through a suspended waveguide and is sensed by another photodiode. The induced photocurrent is tuned by the LED. The integrated devices can act as two independent LEDs to deliver different signals simultaneously for free-space visible light communication. Furthermore, the suspended devices can be used as two separate photodiodes to detect incident light with a distinct on/off switching performance.

  19. Accurate and efficient Nyström volume integral equation method for the Maxwell equations for multiple 3-D scatterers

    NASA Astrophysics Data System (ADS)

    Chen, Duan; Cai, Wei; Zinser, Brian; Cho, Min Hyung

    2016-09-01

    In this paper, we develop an accurate and efficient Nyström volume integral equation (VIE) method for the Maxwell equations for a large number of 3-D scatterers. The Cauchy Principal Values that arise from the VIE are computed accurately using a finite size exclusion volume together with explicit correction integrals consisting of removable singularities. Also, the hyper-singular integrals are computed using interpolated quadrature formulae with tensor-product quadrature nodes for cubes, spheres and cylinders, that are frequently encountered in the design of meta-materials. The resulting Nyström VIE method is shown to have high accuracy with a small number of collocation points and demonstrates p-convergence for computing the electromagnetic scattering of these objects. Numerical calculations of multiple scatterers of cubic, spherical, and cylindrical shapes validate the efficiency and accuracy of the proposed method.

  20. Evidence for multiple mechanisms for membrane binding and integration via carboxyl-terminal insertion sequences.

    PubMed

    Kim, P K; Janiak-Spens, F; Trimble, W S; Leber, B; Andrews, D W

    1997-07-22

    Subcellular localization of proteins with carboxyl-terminal insertion sequences requires the molecule be both targeted to and integrated into the correct membrane. The mechanism of membrane integration of cytochrome b5 has been shown to be promiscuous, spontaneous, nonsaturable, and independent of membrane proteins. Thus endoplasmic reticulum localization for cytochrome b5 depends primarily on accurate targeting to the appropriate membrane. Here direct comparison of this mechanism with that of three other proteins integrated into membranes via carboxyl-terminal insertion sequences [vesicle-associated membrane protein 1(Vamp1), polyomavirus middle-T antigen, and Bcl-2] revealed that, unlike cytochrome b5, membrane selectivity for these molecules is conferred at least in part by the mechanisms of membrane integration. Bcl-2 membrane integration was similar to that of cytochrome b5 except that insertion into lipid vesicles was inefficient. Unlike cytochrome b5 and Bcl-2, Vamp1 binding to canine pancreatic microsomes was saturable, ATP-dependent, and abolished by mild trypsin treatment of microsomes. Surprisingly, although the insertion sequence of polyomavirus middle-T antigen was sufficient to mediate electrostatic binding to membranes, binding did not lead to integration into the bilayer. Together these results demonstrate that there are at least two different mechanisms for correct membrane integration of proteins with insertion sequences, one mediated primarily by targeting and one relying on factors in the target membrane to mediate selective integration. Our results also demonstrate that, contrary to expectation, hydrophobicity is not sufficient for insertion sequence-mediated membrane integration. We suggest that the structure of the insertion sequence determines whether or not specific membrane-bound receptor proteins are required for membrane integration. PMID:9220974

  1. Applications of capillary optical fibers

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard

    2006-10-01

    The paper updates and summarizes contemporary applications of capillary optical fibers. Some of these applications are straight consequence of the classical capillary properties and capillary devices like: rheometry, electrophoresis, column chromatography (gas and liquid). Some new applications are tightly connected with co-propagation (or counter-propagation) of micro-mass together with optical wave - evanescent or of considerable intensity. In the first case, the optical wave is propagated in a narrow (more and more frequently single-mode) optical ring core adjacent to the capillary hole. The optical propagation is purely refractive. In the second case, the intensity maximum of optical wave is on the capillary long axis, i.e. in the center of the hole. The optical propagation is purely photonic, i.e. in a Bragg waveguide (one dimensional photonic band-gap). The capillary hole is filled with vacuum or with propagated matter (gas, liquid, single atoms, continuous particle arrangement). Optical capillaries, filamentary and embedded, are turning to a fundamental component of nano- and micro-MOEMS.

  2. Instability of the capillary bridge

    NASA Astrophysics Data System (ADS)

    Pare, Gounseti; Hoepffner, Jerome

    2014-11-01

    Capillary adhesion is a physical mechanism that maintains two bodies in contact by capillarity through a liquid ligament. The capillary bridge is an idealization of this capillary adhesion. In this study we first focus on the classical case of the stability of the capillary bridge. Secondly we study a slightly more complex configuration, imagining a flow in the capillary bridge as in the case of the dynamics of the neck of a liquid ligament, in its withdrawal under the effect of capillarity. Inspired by the experiments on soap films of Plateau, the configuration analyzed consists of an initially axisymmetric, mass of fluid held by surface tension forces between two parallel, coaxial, solid pipes of the same diameter. The results presented are obtained by numerical simulations using the free software, Gerris Flow Solver. We first focus on the capillary Venturi. In the static configuration the stability diagram of the capillary bridge obtained is in perfect agreement with the results of Lev A. Slobozhanin. In the dynamic case we develop a matlab code based on the one dimensional equations of Eggers and Dupont. The comparison of the bifurcation diagram obtained and the numerical simulations shows a good agreement.

  3. Capillary Array Waveguide Amplified Fluorescence Detector for mHealth

    PubMed Central

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2013-01-01

    array can potentially be used for sensitive analysis of multiple fluorescent detection assays simultaneously. The simple phone based capillary array approach presented in this paper is capable of amplifying weak fluorescent signals thereby improving the sensitivity of optical detectors based on mobile phones. This may allow sensitive biological assays to be measured with low sensitivity detectors and may make mHealth practical for many diagnostics applications, especially in resource-poor and global health settings. PMID:24039345

  4. Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression.

    PubMed

    Peng, Ting; Sun, Xiaochun; Mumm, Rita H

    2014-01-01

    From a breeding standpoint, multiple trait integration (MTI) is a four-step process of converting an elite variety/hybrid for value-added traits (e.g. transgenic events) using backcross breeding, ultimately regaining the performance attributes of the target hybrid along with reliable expression of the value-added traits. In the light of the overarching goal of recovering equivalent performance in the finished conversion, this study focuses on the first step of MTI, single event introgression, exploring the feasibility of marker-aided backcross conversion of a target maize hybrid for 15 transgenic events, incorporating eight events into the female hybrid parent and seven into the male parent. Single event introgression is conducted in parallel streams to convert the recurrent parent (RP) for individual events, with the primary objective of minimizing residual non-recurrent parent (NRP) germplasm, especially in the chromosomal proximity to the event (i.e. linkage drag). In keeping with a defined lower limit of 96.66 % overall RP germplasm recovery (i.e. ≤120 cM NRP germplasm given a genome size of 1,788 cM), a breeding goal for each of the 15 single event conversions was developed: <8 cM of residual NRP germplasm across the genome with ~1 cM in the 20 cM region flanking the event. Using computer simulation, we aimed to identify optimal breeding strategies for single event introgression to achieve this breeding goal, measuring efficiency in terms of number of backcross generations required, marker data points needed, and total population size across generations. Various selection schemes classified as three-stage, modified two-stage, and combined selection conducted from BC1 through BC3, BC4, or BC5 were compared. The breeding goal was achieved with a selection scheme involving five generations of marker-aided backcrossing, with BC1 through BC3 selected for the event of interest and minimal linkage drag at population size of 600, and BC4 and BC5 selected for

  5. Multiple Integration of the Heat-Conduction Equation for a Space Bounded From the Inside

    NASA Astrophysics Data System (ADS)

    Kot, V. A.

    2016-03-01

    An N-fold integration of the heat-conduction equation for a space bounded from the inside has been performed using a system of identical equalities with definition of the temperature function by a power polynomial with an exponential factor. It is shown that, in a number of cases, the approximate solutions obtained can be considered as exact because their errors comprise hundredths and thousandths of a percent. The method proposed for N-fold integration represents an alternative to classical integral transformations.

  6. A fully integrated and automated microsystem for rapid pharmacogenetic typing of multiple warfarin-related single-nucleotide polymorphisms.

    PubMed

    Zhuang, Bin; Han, Junping; Xiang, Guangxin; Gan, Wupeng; Wang, Shuaiqin; Wang, Dong; Wang, Lei; Sun, Jing; Li, Cai-Xia; Liu, Peng

    2016-01-01

    A fully integrated and automated microsystem consisting of low-cost, disposable plastic chips for DNA extraction and PCR amplification combined with a reusable glass capillary array electrophoresis chip in a modular-based format was successfully developed for warfarin pharmacogenetic testing. DNA extraction was performed by adopting a filter paper-based method, followed by "in situ" PCR that was carried out directly in the same reaction chamber of the chip without elution. PCR products were then co-injected with sizing standards into separation channels for detection using a novel injection electrode. The entire process was automatically conducted on a custom-made compact control and detection instrument. The limit of detection of the microsystem for the singleplex amplification of amelogenin was determined to be 0.625 ng of standard K562 DNA and 0.3 μL of human whole blood. A two-color multiplex allele-specific PCR assay for detecting the warfarin-related single-nucleotide polymorphisms (SNPs) 6853 (-1639G>A) and 6484 (1173C>T) in the VKORC1 gene and the *3 SNP (1075A>C) in the CYP2C9 gene was developed and used for validation studies. The fully automated genetic analysis was completed in two hours with a minimum requirement of 0.5 μL of input blood. Samples from patients with different genotypes were all accurately analyzed. In addition, both dried bloodstains and oral swabs were successfully processed by the microsystem with a simple modification to the DNA extraction and amplification chip. The successful development and operation of this microsystem establish the feasibility of rapid warfarin pharmacogenetic testing in routine clinical practice. PMID:26568290

  7. Integration and Testing Challenges of Small, Multiple Satellite Missions: Experiences from the Space Technology 5 Project

    NASA Technical Reports Server (NTRS)

    Sauerwein, Timothy A.; Gostomski, Thomas

    2008-01-01

    The ST5 technology demonstration mission led by GSFC of NASA's New Millennium Program managed by JPL consisted of three micro satellites (approximately 30 kg each) deployed into orbit from the Pegasus XL launch vehicle. In order to meet the launch date schedule of ST5, a different approach was required rather than the standard I&T approach used for single, room-sized satellites. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center. It was determined that there was insufficient time in the schedule to perform three spacecraft I&T activities in series using standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all three spacecraft, learning and gaining knowledge and efficiency as spacecraft #1 integration and testing progressed. They became acutely familiar with the hardware, operation and processes for I&T, thus had the experience and knowledge to safely execute I&T for spacecraft #2 and #3. The integration team was extremely versatile; each member could perform many different activities or work any spacecraft, when needed. ST5 was successfully integrated, tested and shipped to the launch site per the I&T schedule that was planned three years previously. The I&T campaign was completed with ST5's successful launch on March 22, 2006.

  8. Analysis of Capillary Rise in Asymmetric Branch-Like Capillary

    NASA Astrophysics Data System (ADS)

    Li, Caoxiong; Shen, Yinghao; Ge, Hongkui; Yang, Zhihui; Su, Shuai; Ren, Kai; Huang, Heyu

    2016-05-01

    Transport in porous media is common in nature, attracting many attentions for a long time. Tree-like network model is often used as a simplification for porous space, expressing the complexity of pore spaces instead of capillary bundle. To investigate spontaneous imbibition characteristics in this network, a dynamic asymmetric branch-like capillary model is used to represent basic network structure, using fractal method to represent tortuosity. This work investigates the influence of parameters on imbibition process in the branch-like capillary model. An analytical equation for the imbibition mass versus time is derived. Parameters from capillary structures to liquid properties are taken into account and analyzed based on the numerical solution of the equation. It is found that the imbibition process in asymmetric branch-like capillary model can be recognized by four sections and brunching tubes are positive for imbibition process. Concomitantly, meniscus arrest event is simulated and discussed. Moreover, the influence of parameters on imbibition process is discussed. These parameters can be classified as static and dynamic. Static parameters mainly change the capillary force, which are related to the ultimate imbibition mass or imbibition ability, while dynamic parameters mainly have influence on resistance of flowing fluid, which are related to the imbibition speed in the imbibition process.

  9. FUSED SILICA CAPILLARY COLUMN GC/MS FOR THE ANALYSIS OF PRIORITY POLLUTANTS

    EPA Science Inventory

    Operational characteristics have been determined for fused silica capillary column (FSCC) GC/MS as applied to 'extractable' priority pollutants. Chromatographic data show excellent relative retention time (RRT) intralaboratory precision and interlaboratory accuracy when multiple ...

  10. APPLICATION OF THE NATURALLY-OCCURRING DEUTERIUM ISOTOPE TO TRACING THE CAPILLARY FRINGE

    EPA Science Inventory

    Naturally-occurring deuterium is a useful tracer of subsurface hydrologic processes. A possible application includes the identification of capillary fringes in the vadose zone. Multiple and discontinuous water tables persist in many temperate regions, under various hydrogeologi...

  11. Surface Tension and Capillary Rise

    ERIC Educational Resources Information Center

    Walton, Alan J.

    1972-01-01

    Discussion of the shortcomings of textbook explanations of surface tension, distinguishing between concepts of tension and capillary rise. The arguments require only a clear understanding of Newtonian mechanics, notably potential energy. (DF)

  12. DNA typing by capillary electrophoresis

    SciTech Connect

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  13. Impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach.

    PubMed

    Chandrasekar, A; Rakkiyappan, R; Cao, Jinde

    2015-10-01

    This paper studies the impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. The array of neural networks are coupled in a random fashion which is governed by Bernoulli random variable. The aim of this paper is to obtain the synchronization criteria, which is suitable for both exactly known and partly unknown transition probabilities such that the coupled neural network is synchronized with mixed time-delay. The considered impulsive effects can be synchronized at partly unknown transition probabilities. Besides, a multiple integral approach is also proposed to strengthen the Markovian jumping randomly coupled neural networks with partly unknown transition probabilities. By making use of Kronecker product and some useful integral inequalities, a novel Lyapunov-Krasovskii functional was designed for handling the coupled neural network with mixed delay and then impulsive synchronization criteria are solvable in a set of linear matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and advantages of the theoretical results. PMID:26210982

  14. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals.

    PubMed

    Wang, Baojun; Barahona, Mauricio; Buck, Martin

    2013-02-15

    Cells perceive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate particular phenotypic responses. Here, we employ both single and mixed cell type populations, pre-programmed with engineered modular cell signalling and sensing circuits, as processing units to detect and integrate multiple environmental signals. Based on an engineered modular genetic AND logic gate, we report the construction of a set of scalable synthetic microbe-based biosensors comprising exchangeable sensory, signal processing and actuation modules. These cellular biosensors were engineered using distinct signalling sensory modules to precisely identify various chemical signals, and combinations thereof, with a quantitative fluorescent output. The genetic logic gate used can function as a biological filter and an amplifier to enhance the sensing selectivity and sensitivity of cell-based biosensors. In particular, an Escherichia coli consortium-based biosensor has been constructed that can detect and integrate three environmental signals (arsenic, mercury and copper ion levels) via either its native two-component signal transduction pathways or synthetic signalling sensors derived from other bacteria in combination with a cell-cell communication module. We demonstrate how a modular cell-based biosensor can be engineered predictably using exchangeable synthetic gene circuit modules to sense and integrate multiple-input signals. This study illustrates some of the key practical design principles required for the future application of these biosensors in broad environmental and healthcare areas. PMID:22981411

  15. Capillary electrophoresis electrospray ionization mass spectrometry interface

    SciTech Connect

    Smith, R.D.; Severs, J.C.

    1999-11-30

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an analyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  16. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  17. Diffusion Weighted Callosal Integrity Reflects Interhemispheric Communication Efficiency in Multiple Sclerosis

    ERIC Educational Resources Information Center

    Warlop, Nele P.; Achten, Eric; Debruyne, Jan; Vingerhoets, Guy

    2008-01-01

    We aimed to investigate the relation between damage in the corpus callosum and the performance on an interhemispheric communication task in patients with multiple sclerosis (MS). Relative callosal lesion load defined as the ratio between callosal area and the total lesion load in the total corpus callosum, and the diffusion tensor imaging (DTI)…

  18. Meaning, Memory, and Multiplication: Integrating Patterns and Properties with Basic Facts

    ERIC Educational Resources Information Center

    Ploger, Don; Hecht, Steven

    2012-01-01

    Although learning mathematics certainly depends upon accurate understanding of the facts of multiplication, it requires much more. This study examines the relationship between a meaningful understanding of arithmetic operations and the mastery of basic facts. The study began with a joke about a mistaken mathematical fact. The children appreciated…

  19. SOUND SURVEY DESIGNS CAN FACILITATE INTEGRATING STREAM MONITORING DATA ACROSS MULTIPLE PROGRAMS

    EPA Science Inventory

    Multiple agencies in the Pacific Northwest monitor the condition of stream networks or their watersheds. Some agencies use a stream "network" perspective to report on the fraction or length of the network that either meets or violates particular criteria. Other agencies use a "wa...

  20. A transverse aperture-integral equation solution for edge diffraction by multiple layers of homogeneous material

    NASA Astrophysics Data System (ADS)

    Pearson, L. W.; Whitaker, R. A.

    1991-02-01

    The transverse-aperture/integral-equation method provides a means of computation for diffraction coefficients at blunt edges of a broad class of stratified layers, including sheet-anisotropy models for conducting composites. This paper concentrates on the application of the method when the material profile comprises layers of homogeneous, potentially lossy material. The method proceeds from defining an artificial aperture perpendicular to a semiinfinite, planar, stratified region and passing through the terminal edge of the region. An integral equation is formulated over this infinite-extent aperture, and the solution to the integral equation represents the influence of the edge. The kernel in the integral equation is a weighted sum of the Green functions for the respective half spaces lying on either side of the aperture plane. The vector wave equation is separable in each of these half spaces, resulting in Green functions that are expressible analytically. The Green function for the stratified half space is stated in terms of a Sommerfeld-type integral.

  1. Gravity-Capillary Lumps

    NASA Astrophysics Data System (ADS)

    Akylas, Triantaphyllos R.; Kim, Boguk

    2004-11-01

    In dispersive wave systems, it is known that 1-D plane solitary waves can bifurcate from linear sinusoidal wavetrains at particular wave numbers k = k0 where the phase speed c(k) happens to be an extremum (dc/dk| _0=0) and equals the group speed c_g(k_0). Two distinct possibilities thus arise: either the extremum occurs in the long-wave limit (k_0=0) and, as in shallow water, the bifurcating solitary waves are of the KdV type; or k0 ne 0 and the solitary waves are in the form of packets, described by the NLS equation to leading order, as for gravity-capillary waves in deep water. Here it is pointed out that an entirely analogous scenario is valid for the genesis of 2-D solitary waves or `lumps'. Lumps also may bifurcate at extrema of the phase speed and do so when 1-D solitary waves happen to be unstable to transverse perturbations; moreover, they have algebraically decaying tails and are either of the KPI type (e.g. in shallow water in the presence of strong surface tension) or of the wave packet type (e.g. in deep water) and are described by an elliptic-elliptic Davey-Stewartson equation system to leading order. Examples of steady lump profiles are presented and their dynamics is discussed.

  2. Filling of charged cylindrical capillaries.

    PubMed

    Das, Siddhartha; Chanda, Sourayon; Eijkel, J C T; Tas, N R; Chakraborty, Suman; Mitra, Sushanta K

    2014-10-01

    We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because of decreased velocity gradients at the wall. Both these effects essentially stem from the spontaneous formation of an electric double layer (EDL) and the resulting streaming potential caused by the net capillary-flow-driven advection of ionic species within the EDL. Our results demonstrate that filling of charged capillaries also exhibits the well-known linear and Washburn regimes witnessed for uncharged capillaries, although the filling rate is always lower than that of the uncharged capillary. We attribute this to a competitive success of the lowering of the driving forces (because of electroviscous effects), in comparison to the effect of weaker drag forces. We further reveal that the time at which the transition between the linear and the Washburn regime occurs may become significantly altered with the introduction of surface charges, thereby altering the resultant capillary dynamics in a rather intricate manner. PMID:25375597

  3. Integrating Multiple Types of Data for Signaling Research: Challenges and Opportunities

    SciTech Connect

    Wiley, H. S.

    2011-02-15

    New technologies promise to provide unprecedented amounts of information that can provide a foundation for creating predictive models of cell signaling pathways. To be useful, however, this information must be integrated into a coherent framework. In addition, the sheer volume of data gathered from the new technologies requires computational approaches for its analysis. Unfortunately, there are many barriers to data integration and analysis, mostly because of a lack of adequate data standards and their inconsistent use by scientists. However, solving the fundamental issues of data sharing will enable the investigation of entirely new areas of cell signaling research.

  4. Design and Integration of an All-Magnetic Attitude Control System for FASTSAT-HSV01's Multiple Pointing Objectives

    NASA Technical Reports Server (NTRS)

    DeKock, Brandon; Sanders, Devon; Vanzwieten, Tannen; Capo-Lugo, Pedro

    2011-01-01

    The FASTSAT-HSV01 spacecraft is a microsatellite with magnetic torque rods as it sole attitude control actuator. FASTSAT s multiple payloads and mission functions require the Attitude Control System (ACS) to maintain Local Vertical Local Horizontal (LVLH)-referenced attitudes without spin-stabilization, while the pointing errors for some attitudes be significantly smaller than the previous best-demonstrated for this type of control system. The mission requires the ACS to hold multiple stable, unstable, and non-equilibrium attitudes, as well as eject a 3U CubeSat from an onboard P-POD and recover from the ensuing tumble. This paper describes the Attitude Control System, the reasons for design choices, how the ACS integrates with the rest of the spacecraft, and gives recommendations for potential future applications of the work.

  5. Simultaneous reconstruction of multiple depth images without off-focus points in integral imaging using a graphics processing unit.

    PubMed

    Yi, Faliu; Lee, Jieun; Moon, Inkyu

    2014-05-01

    The reconstruction of multiple depth images with a ray back-propagation algorithm in three-dimensional (3D) computational integral imaging is computationally burdensome. Further, a reconstructed depth image consists of a focus and an off-focus area. Focus areas are 3D points on the surface of an object that are located at the reconstructed depth, while off-focus areas include 3D points in free-space that do not belong to any object surface in 3D space. Generally, without being removed, the presence of an off-focus area would adversely affect the high-level analysis of a 3D object, including its classification, recognition, and tracking. Here, we use a graphics processing unit (GPU) that supports parallel processing with multiple processors to simultaneously reconstruct multiple depth images using a lookup table containing the shifted values along the x and y directions for each elemental image in a given depth range. Moreover, each 3D point on a depth image can be measured by analyzing its statistical variance with its corresponding samples, which are captured by the two-dimensional (2D) elemental images. These statistical variances can be used to classify depth image pixels as either focus or off-focus points. At this stage, the measurement of focus and off-focus points in multiple depth images is also implemented in parallel on a GPU. Our proposed method is conducted based on the assumption that there is no occlusion of the 3D object during the capture stage of the integral imaging process. Experimental results have demonstrated that this method is capable of removing off-focus points in the reconstructed depth image. The results also showed that using a GPU to remove the off-focus points could greatly improve the overall computational speed compared with using a CPU. PMID:24921860

  6. An integrated modeling approach to support management decisions of coupled groundwater-agricultural systems under multiple uncertainties

    NASA Astrophysics Data System (ADS)

    Hagos Subagadis, Yohannes; Schütze, Niels; Grundmann, Jens

    2015-04-01

    The planning and implementation of effective water resources management strategies need an assessment of multiple (physical, environmental, and socio-economic) issues, and often requires new research in which knowledge of diverse disciplines are combined in a unified methodological and operational frameworks. Such integrative research to link different knowledge domains faces several practical challenges. Such complexities are further compounded by multiple actors frequently with conflicting interests and multiple uncertainties about the consequences of potential management decisions. A fuzzy-stochastic multiple criteria decision analysis tool was developed in this study to systematically quantify both probabilistic and fuzzy uncertainties associated with complex hydrosystems management. It integrated physical process-based models, fuzzy logic, expert involvement and stochastic simulation within a general framework. Subsequently, the proposed new approach is applied to a water-scarce coastal arid region water management problem in northern Oman, where saltwater intrusion into a coastal aquifer due to excessive groundwater extraction for irrigated agriculture has affected the aquifer sustainability, endangering associated socio-economic conditions as well as traditional social structure. Results from the developed method have provided key decision alternatives which can serve as a platform for negotiation and further exploration. In addition, this approach has enabled to systematically quantify both probabilistic and fuzzy uncertainties associated with the decision problem. Sensitivity analysis applied within the developed tool has shown that the decision makers' risk aversion and risk taking attitude may yield in different ranking of decision alternatives. The developed approach can be applied to address the complexities and uncertainties inherent in water resources systems to support management decisions, while serving as a platform for stakeholder participation.

  7. Understanding Introductory Students' Application of Integrals in Physics from Multiple Perspectives

    ERIC Educational Resources Information Center

    Hu, Dehui

    2013-01-01

    Calculus is used across many physics topics from introductory to upper-division level college courses. The concepts of differentiation and integration are important tools for solving real world problems. Using calculus or any mathematical tool in physics is much more complex than the straightforward application of the equations and algorithms that…

  8. Integrating Gender on Multiple Levels: A Conceptual Model for Teaching Gender Issues in Family Therapy

    ERIC Educational Resources Information Center

    Williams, Lee; McBain, Heidi

    2006-01-01

    As the field of family therapy has evolved, there has been growing recognition as to the importance of gender in family therapy. To prepare the next generation of family therapists adequately, it is important that they recognize the many and complex ways in which gender permeates their work. In this article we present an integrative model to help…

  9. Multiple Integrated Examinations: An Observational Study of Different Academic Curricula Based on a Business Administration Assessment

    ERIC Educational Resources Information Center

    Ardolino, Piermatteo; Noventa, Stefano; Formicuzzi, Maddalena; Cubico, Serena; Favretto, Giuseppe

    2016-01-01

    An observational study has been carried out to analyse differences in performance between students of different undergraduate curricula in the same written business administration examination, focusing particularly on possible effects of "integrated" or "multi-modular" examinations, a recently widespread format in Italian…

  10. Pooling Data from Multiple Longitudinal Studies: The Role of Item Response Theory in Integrative Data Analysis

    ERIC Educational Resources Information Center

    Curran, Patrick J.; Hussong, Andrea M.; Cai, Li; Huang, Wenjing; Chassin, Laurie; Sher, Kenneth J.; Zucker, Robert A.

    2008-01-01

    There are a number of significant challenges researchers encounter when studying development over an extended period of time, including subject attrition, the changing of measurement structures across groups and developmental periods, and the need to invest substantial time and money. Integrative data analysis is an emerging set of methodologies…

  11. Integration and Testing Challenges of Small, Multiple Satellite Missions: Experiences from the Space Technology 5 Project

    NASA Technical Reports Server (NTRS)

    Sauerwein, Timothy A.; Gostomski, Thomas

    2007-01-01

    The ST5 payload, part of NASA s New Millennium Program headquartered at JPL, consisted of three micro satellites (approx. 30 kg each) deployed into orbit from the Pegasus XL launch. ST5 was a technology demonstration mission, intended to test new technologies for potential use for future missions. In order to meet the launch date schedule of ST 5, a different approach was required rather than the standard I&T approach used for single, room-sized satellites. The I&T phase was planned for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 in tandem. A team of engineers and technicians planned and executed the integration of all three spacecraft emphasizing versatility and commonality. They increased their knowledge and efficiency through spacecraft #1 integration and testing and utilized their experience and knowledge to safely execute I&T for spacecraft #2 and #3. Each integration team member could perform many different roles and functions and thus better support activities on any of the three spacecraft. The I&T campaign was completed with STS s successful launch on March 22,2006

  12. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions.

    PubMed

    Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael

    2015-01-01

    Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. PMID:26609814

  13. Tuning cell migration: contractility as an integrator of intracellular signals from multiple cues

    PubMed Central

    Bordeleau, Francois; Reinhart-King, Cynthia A.

    2016-01-01

    There has been immense progress in our understanding of the factors driving cell migration in both two-dimensional and three-dimensional microenvironments over the years. However, it is becoming increasingly evident that even though most cells share many of the same signaling molecules, they rarely respond in the same way to migration cues. To add to the complexity, cells are generally exposed to multiple cues simultaneously, in the form of growth factors and/or physical cues from the matrix. Understanding the mechanisms that modulate the intracellular signals triggered by multiple cues remains a challenge. Here, we will focus on the molecular mechanism involved in modulating cell migration, with a specific focus on how cell contractility can mediate the crosstalk between signaling initiated at cell-matrix adhesions and growth factor receptors. PMID:27508074

  14. Tuning cell migration: contractility as an integrator of intracellular signals from multiple cues.

    PubMed

    Bordeleau, Francois; Reinhart-King, Cynthia A

    2016-01-01

    There has been immense progress in our understanding of the factors driving cell migration in both two-dimensional and three-dimensional microenvironments over the years. However, it is becoming increasingly evident that even though most cells share many of the same signaling molecules, they rarely respond in the same way to migration cues. To add to the complexity, cells are generally exposed to multiple cues simultaneously, in the form of growth factors and/or physical cues from the matrix. Understanding the mechanisms that modulate the intracellular signals triggered by multiple cues remains a challenge. Here, we will focus on the molecular mechanism involved in modulating cell migration, with a specific focus on how cell contractility can mediate the crosstalk between signaling initiated at cell-matrix adhesions and growth factor receptors. PMID:27508074

  15. Integrating multiple health behavior theories into program planning: the PER worksheet.

    PubMed

    Langlois, Marietta A; Hallam, Jeffrey S

    2010-03-01

    The foundation of a logic model or any theory-based planning model is the identification of the behavioral antecedents and the relationship of these variables to the target behavior. Applying theoretical concepts to specific behaviors and populations is often challenging for practitioners and program planning students. The challenge comes from the abstract definition of theoretical constructs, the duplication of similar constructs in multiple theories, and the need to combine multiple theories. To simplify the planning process when utilizing logic models and health behavior theory, we recommend the use of the PER Worksheet. The PER Worksheet is a planning tool that provides layman-term prompts for identifying health behavior antecedents. It encompasses five common health behavior theories-health belief model, theory of planned behavior, social cognitive theory, an ecological perspective, and transtheoretical model. The PER Worksheet is organized into three columns: Predisposing, Enabling, and Reinforcing factors, terms of the PRECEDE/PROCEED model. PMID:18552278

  16. Multi-model inference in comparative phylogeography: an integrative approach based on multiple lines of evidence

    PubMed Central

    Collevatti, Rosane G.; Terribile, Levi C.; Diniz-Filho, José A. F.; Lima-Ribeiro, Matheus S.

    2015-01-01

    Comparative phylogeography has its roots in classical biogeography and, historically, relies on a pattern-based approach. Here, we present a model-based framework for comparative phylogeography. Our framework was initially developed for statistical phylogeography based on a multi-model inference approach, by coupling ecological niche modeling, coalescent simulation and direct spatio-temporal reconstruction of lineage diffusion using a relaxed random walk model. This multi-model inference framework is particularly useful to investigate the complex dynamics and current patterns in genetic diversity in response to processes operating on multiple taxonomic levels in comparative phylogeography. In addition, because of the lack, or incompleteness of fossil record, the understanding of the role of biogeographical events (vicariance and dispersal routes) in most regions worldwide is barely known. Thus, we believe that the expansion of that framework for multiple species under a comparative approach may give clues on genetic legacies in response to Quaternary climate changes and other biogeographical processes. PMID:25741360

  17. Unexpected Inheritance: Multiple Integrations of Ancient Bornavirus and Ebolavirus/Marburgvirus Sequences in Vertebrate Genomes

    PubMed Central

    Belyi, Vladimir A.; Levine, Arnold J.; Skalka, Anna Marie

    2010-01-01

    Vertebrate genomes contain numerous copies of retroviral sequences, acquired over the course of evolution. Until recently they were thought to be the only type of RNA viruses to be so represented, because integration of a DNA copy of their genome is required for their replication. In this study, an extensive sequence comparison was conducted in which 5,666 viral genes from all known non-retroviral families with single-stranded RNA genomes were matched against the germline genomes of 48 vertebrate species, to determine if such viruses could also contribute to the vertebrate genetic heritage. In 19 of the tested vertebrate species, we discovered as many as 80 high-confidence examples of genomic DNA sequences that appear to be derived, as long ago as 40 million years, from ancestral members of 4 currently circulating virus families with single strand RNA genomes. Surprisingly, almost all of the sequences are related to only two families in the Order Mononegavirales: the Bornaviruses and the Filoviruses, which cause lethal neurological disease and hemorrhagic fevers, respectively. Based on signature landmarks some, and perhaps all, of the endogenous virus-like DNA sequences appear to be LINE element-facilitated integrations derived from viral mRNAs. The integrations represent genes that encode viral nucleocapsid, RNA-dependent-RNA-polymerase, matrix and, possibly, glycoproteins. Integrations are generally limited to one or very few copies of a related viral gene per species, suggesting that once the initial germline integration was obtained (or selected), later integrations failed or provided little advantage to the host. The conservation of relatively long open reading frames for several of the endogenous sequences, the virus-like protein regions represented, and a potential correlation between their presence and a species' resistance to the diseases caused by these pathogens, are consistent with the notion that their products provide some important biological

  18. The dynamics of capillary-driven two-phase flow: the role of nanofluid structural forces.

    PubMed

    Nikolov, Alex; Zhang, Hua

    2015-07-01

    Capillary-driven flows are fundamental phenomena and are involved in many key technological processes, such as oil recovery through porous rocks, ink-jet printing, the bubble dynamics in a capillary, microfluidic devices and labs on chips. Here, we discuss and propose a model for the oil displacement dynamics from the capillary by the nanofluid (which is composed of a liquid suspension of nanoparticles); we elucidate the physics of the novelty of the phenomenon and its application. The oil displacement by the nanofluid flow is a multi-stage phenomenon, first leading to the oil film formation on the capillary wall, its break-up, and retraction over the capillary wall; this lead to the formation of the oil double concave meniscus. With time, the process repeats itself, leading to the formation of a regular "necklace" of oil droplets inside the capillary. Finally, the oil droplets are separated by the nanofluid film from the capillary wall. The light reflected differential interferometry technique is applied to investigate the nanofluid interactions with the glass wall. We find nanoparticles tend to self-structure into multiple layers close to the solid wall, which cause the structural forces to arise that lead to the oil displacement from the capillary. This research is expected to benefit the understanding of nanofluid phenomena in a capillary and promote their use in technological applications. PMID:25465201

  19. Microscale extraction and phase separation using a porous capillary.

    PubMed

    Phillips, Thomas W; Bannock, James H; deMello, John C

    2015-07-21

    We report the use of a porous polytetrafluoroethylene capillary for the inline separation of liquid-liquid segmented flows, based on the selective wetting and permeation of the porous capillary walls by one of the liquids. Insertion of a narrow flow restriction at the capillary outlet allows the back pressure to be tuned for multiple liquid-liquid combinations and flow conditions. In this way, efficient separation of aqueous-organic, aqueous-fluorous and organic-fluorous segmented flows can be readily achieved over a wide range of flow rates. The porous-capillary-separator enables the straightforward regeneration of a continuous flow from a segmented flow, and may be applied to various applications, including inline analysis, biphasic reactions, and purification. As a demonstration of the latter, we performed a simple inline aqueous-organic extraction of the pH indicator 2,6-dichloroindophenol. An aqueous solution of the conjugate base was mixed with hydrochloric acid in continuous flow to protonate the indicator and render it organic-soluble. The indicator was then extracted from the aqueous feed into chloroform using a segmented flow. The two liquids were finally separated inline using a porous PTFE capillary, with the aqueous phase emerging as a continuous stream from the separator outlet. UV-visible absorption spectroscopy showed the concentration of indicator in the outflowing aqueous phase to be less than one percent of its original value, confirming the efficacy of the extraction and separation process. PMID:26054926

  20. On the performance of capillary barriers as landfill cover

    NASA Astrophysics Data System (ADS)

    Kämpf, M.; Montenegro, H.

    Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m). In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  1. A Case Study in Integrating Multiple E-commerce Standards via Semantic Web Technology

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Hillman, Donald; Setio, Basuki; Heflin, Jeff

    Internet business-to-business transactions present great challenges in merging information from different sources. In this paper we describe a project to integrate four representative commercial classification systems with the Federal Cataloging System (FCS). The FCS is used by the US Defense Logistics Agency to name, describe and classify all items under inventory control by the DoD. Our approach uses the ECCMA Open Technical Dictionary (eOTD) as a common vocabulary to accommodate all different classifications. We create a semantic bridging ontology between each classification and the eOTD to describe their logical relationships in OWL DL. The essential idea is that since each classification has formal definitions in a common vocabulary, we can use subsumption to automatically integrate them, thus mitigating the need for pairwise mappings. Furthermore our system provides an interactive interface to let users choose and browse the results and more importantly it can translate catalogs that commit to these classifications using compiled mapping results.

  2. Integration of multiple components in polystyrene-based microfluidic devices part I: fabrication and characterization.

    PubMed

    Johnson, Alicia S; Anderson, Kari B; Halpin, Stephen T; Kirkpatrick, Douglas C; Spence, Dana M; Martin, R Scott

    2013-01-01

    In Part I of a two-part series, we describe a simple and inexpensive approach to fabricate polystyrene devices that is based upon melting polystyrene (from either a Petri dish or powder form) against PDMS molds or around electrode materials. The ability to incorporate microchannels in polystyrene and integrate the resulting device with standard laboratory equipment such as an optical plate reader for analyte readout and pipets for fluid propulsion is first described. A simple approach for sample and reagent delivery to the device channels using a standard, multi-channel micropipette and a PDMS-based injection block is detailed. Integration of the microfluidic device with these off-chip functions (sample delivery and readout) enables high-throughput screens and analyses. An approach to fabricate polystyrene-based devices with embedded electrodes is also demonstrated, thereby enabling the integration of microchip electrophoresis with electrochemical detection through the use of a palladium electrode (for a decoupler) and carbon-fiber bundle (for detection). The device was sealed against a PDMS-based microchannel and used for the electrophoretic separation and amperometric detection of dopamine, epinephrine, catechol, and 3,4-dihydroxyphenylacetic acid. Finally, these devices were compared against PDMS-based microchips in terms of their optical transparency and absorption of an anti-platelet drug, clopidogrel. Part I of this series lays the foundation for Part II, where these devices were utilized for various on-chip cellular analysis. PMID:23120747

  3. Towards a Better Understanding of CMMI and Agile Integration - Multiple Case Study of Four Companies

    NASA Astrophysics Data System (ADS)

    Pikkarainen, Minna

    The amount of software is increasing in the different domains in Europe. This provides the industries in smaller countries good opportunities to work in the international markets. Success in the global markets however demands the rapid production of high quality, error free software. Both CMMI and agile methods seem to provide a ready solution for quality and lead time improvements. There is not, however, much empirical evidence available either about 1) how the integration of these two aspects can be done in practice or 2) what it actually demands from assessors and software process improvement groups. The goal of this paper is to increase the understanding of CMMI and agile integration, in particular, focusing on the research question: how to use ‘lightweight’ style of CMMI assessments in agile contexts. This is done via four case studies in which assessments were conducted using the goals of CMMI integrated project management and collaboration and coordination with relevant stakeholder process areas and practices from XP and Scrum. The study shows that the use of agile practices may support the fulfilment of the goals of CMMI process areas but there are still many challenges for the agile teams to be solved within the continuous improvement programs. It also identifies practical advices to the assessors and improvement groups to take into consideration when conducting assessment in the context of agile software development.

  4. Multiple-integrating sphere spectrophotometer for measuring absolute spectral reflectance and transmittance.

    PubMed

    Zerlaut, G A; Anderson, T E

    1981-11-01

    A spectroreflectometer/transmissometer is described that permits determination of absolute optical characteristics in the 300-2600-nm wavelength region (which is essentially the complete solar spectrum). The uniqueness of the instrument derives from use of three rapidly interchangeable 20-cm (8-in.) integrating spheres to measure (1) absolute hemispherical spectral reflectance as a function of angles of incidence from -40 to +40 degrees employing an Edwards-type integrating sphere with a center-mounted sample [using small 2.5-cm (1-in.) diam specimens], (2) absolute hemispherical and absolute diffuse spectral reflectance at an angle of incidence of 20 degrees employing a sphere with a wall-mounted sample (for large specimens) and a screened detector, and (3) absolute hemispherical and absolute directional (near-normal exitance) transmittance employing a complete integrating sphere with the only ports being for the sample and reference beams. Data are presented that demonstrate the ability to measure the spectral reflectance of nonmirror surfaces to an absolute accuracy of 0.995 (an uncertainty of +/-0.005 reflectance units) in both reflectance spheres and of highly specular mirrors to an absolute accuracy of 0.993 (an uncertainty of +/-0.007 reflectance units). Spectral transmittance can be measured to an absolute accuracy of better than 0.995 (an uncertainty of +/-0.005 transmittance units). PMID:20372262

  5. MetaTracker: integration and abstraction of 3D motion tracking data from multiple hardware systems

    NASA Astrophysics Data System (ADS)

    Kopecky, Ken; Winer, Eliot

    2014-06-01

    Motion tracking has long been one of the primary challenges in mixed reality (MR), augmented reality (AR), and virtual reality (VR). Military and defense training can provide particularly difficult challenges for motion tracking, such as in the case of Military Operations in Urban Terrain (MOUT) and other dismounted, close quarters simulations. These simulations can take place across multiple rooms, with many fast-moving objects that need to be tracked with a high degree of accuracy and low latency. Many tracking technologies exist, such as optical, inertial, ultrasonic, and magnetic. Some tracking systems even combine these technologies to complement each other. However, there are no systems that provide a high-resolution, flexible, wide-area solution that is resistant to occlusion. While frameworks exist that simplify the use of tracking systems and other input devices, none allow data from multiple tracking systems to be combined, as if from a single system. In this paper, we introduce a method for compensating for the weaknesses of individual tracking systems by combining data from multiple sources and presenting it as a single tracking system. Individual tracked objects are identified by name, and their data is provided to simulation applications through a server program. This allows tracked objects to transition seamlessly from the area of one tracking system to another. Furthermore, it abstracts away the individual drivers, APIs, and data formats for each system, providing a simplified API that can be used to receive data from any of the available tracking systems. Finally, when single-piece tracking systems are used, those systems can themselves be tracked, allowing for real-time adjustment of the trackable area. This allows simulation operators to leverage limited resources in more effective ways, improving the quality of training.

  6. Microsystem capillary separations

    DOEpatents

    TeGrotenhuis, Ward E [Kennewick, WA; Wegeng, Robert S [Richland, WA; Whyatt, Greg A [West Richland, WA; Stenkamp, Victoria S [Richland, WA; Gauglitz, Phillip A [Richland, WA

    2003-12-23

    Laminated, multiphase separators and contactors having wicking structures and gas flow channels are described. Some preferred embodiments are combined with microchannel heat exchange. Integrated systems containing these components are also part of the present invention.

  7. FDRAnalysis: a tool for the integrated analysis of tandem mass spectrometry identification results from multiple search engines.

    PubMed

    Wedge, David C; Krishna, Ritesh; Blackhurst, Paul; Siepen, Jennifer A; Jones, Andrew R; Hubbard, Simon J

    2011-04-01

    Confident identification of peptides via tandem mass spectrometry underpins modern high-throughput proteomics. This has motivated considerable recent interest in the postprocessing of search engine results to increase confidence and calculate robust statistical measures, for example through the use of decoy databases to calculate false discovery rates (FDR). FDR-based analyses allow for multiple testing and can assign a single confidence value for both sets and individual peptide spectrum matches (PSMs). We recently developed an algorithm for combining the results from multiple search engines, integrating FDRs for sets of PSMs made by different search engine combinations. Here we describe a web-server and a downloadable application that makes this routinely available to the proteomics community. The web server offers a range of outputs including informative graphics to assess the confidence of the PSMs and any potential biases. The underlying pipeline also provides a basic protein inference step, integrating PSMs into protein ambiguity groups where peptides can be matched to more than one protein. Importantly, we have also implemented full support for the mzIdentML data standard, recently released by the Proteomics Standards Initiative, providing users with the ability to convert native formats to mzIdentML files, which are available to download. PMID:21222473

  8. FDRAnalysis: A tool for the integrated analysis of tandem mass spectrometry identification results from multiple search engines

    PubMed Central

    Wedge, David C; Krishna, Ritesh; Blackhurst, Paul; Siepen, Jennifer A; Jones, Andrew R.; Hubbard, Simon J.

    2013-01-01

    Confident identification of peptides via tandem mass spectrometry underpins modern high-throughput proteomics. This has motivated considerable recent interest in the post-processing of search engine results to increase confidence and calculate robust statistical measures, for example through the use of decoy databases to calculate false discovery rates (FDR). FDR-based analyses allow for multiple testing and can assign a single confidence value for both sets and individual peptide spectrum matches (PSMs). We recently developed an algorithm for combining the results from multiple search engines, integrating FDRs for sets of PSMs made by different search engine combinations. Here we describe a web-server, and a downloadable application, which makes this routinely available to the proteomics community. The web server offers a range of outputs including informative graphics to assess the confidence of the PSMs and any potential biases. The underlying pipeline provides a basic protein inference step, integrating PSMs into protein ambiguity groups where peptides can be matched to more than one protein. Importantly, we have also implemented full support for the mzIdentML data standard, recently released by the Proteomics Standards Initiative, providing users with the ability to convert native formats to mzIdentML files, which are available to download. PMID:21222473

  9. A hyphenated optical trap capillary electrophoresis laser induced native fluorescence system for single-cell chemical analysis

    PubMed Central

    Cecala, Christine; Rubakhin, Stanislav S.; Mitchell, Jennifer W.; Gillette, Martha U.; Sweedler, Jonathan V.

    2013-01-01

    Single-cell measurements allow a unique glimpse into cell-to-cell heterogeneity; even small changes in selected cells can have a profound impact on an organism’s physiology. Here an integrated approach to single-cell chemical sampling and assay are described. Capillary electrophoresis (CE) with laser-induced native fluorescence (LINF) has the sensitivity to characterize natively-fluorescent indoles and catechols within individual cells. While the separation and detection approaches are well established, the sampling and injection of individually selected cells requires new approaches. We describe an optimized system that interfaces a single-beam optical trap with CE and multichannel LINF detection. A cell is localized within the trap and then the capillary inlet is positioned near the cell using a computer-controlled micromanipulator. Hydrodynamic injection allows cell lysis to occur within the capillary inlet, followed by the CE separation and LINF detection. The use of multiple emission wavelengths allows improved analyte identification based on differences in analyte fluorescence emission profiles and migration time. The system enables injections of individual rat pinealocytes and quantification of their endogenous indoles, including serotonin, N-acetyl-serotonin, 5-hydroxyindole-3-acetic acid, tryptophol and others. The amounts detected in individual cells incubated in 5-hydroxytryptophan ranged from 10−14 mol to 10−16 mol, an order of magnitude higher than observed in untreated pinealocytes. PMID:22543409

  10. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions

    PubMed Central

    Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael

    2015-01-01

    Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. DOI: http://dx.doi.org/10.7554/eLife.08411.001 PMID:26609814

  11. Integration of C/N-nutrient and multiple environmental signals into the ABA signaling cascade

    PubMed Central

    Lu, Yu; Yamaguchi, Junji; Sato, Takeo

    2015-01-01

    Due to their immobility, plants have developed sophisticated mechanisms to robustly monitor and appropriately respond to dynamic changes in nutrient availability. Carbon (C) and nitrogen (N) are especially important in regulating plant metabolism and development, thereby affecting crop productivity. In addition to their independent utilization, the ratio of C to N metabolites in the cell, referred to as the “C/N balance”, is important for the regulation of plant growth, although molecular mechanisms mediating C/N signaling remain unclear. Recently ABI1, a protein phosphatase type 2C (PP2C), was shown to be a regulator of C/N response in Arabidopsis plants. ABI1 functions as a negative regulator of abscisic acid (ABA) signal transduction. ABA is versatile phytohormone that regulates multiple aspects of plant growth and adaptation to environmental stress. This review highlights the regulation of the C/N response mediated by a non-canonical ABA signaling pathway that is independent of ABA biosynthesis, as well as recent findings on the direct crosstalk between multiple cellular signals and the ABA signaling cascade. PMID:26786013

  12. Hybrid MCDA Methods to Integrate Multiple Ecosystem Services in Forest Management Planning: A Critical Review

    NASA Astrophysics Data System (ADS)

    Uhde, Britta; Andreas Hahn, W.; Griess, Verena C.; Knoke, Thomas

    2015-08-01

    Multi-criteria decision analysis (MCDA) is a decision aid frequently used in the field of forest management planning. It includes the evaluation of multiple criteria such as the production of timber and non-timber forest products and tangible as well as intangible values of ecosystem services (ES). Hence, it is beneficial compared to those methods that take a purely financial perspective. Accordingly, MCDA methods are increasingly popular in the wide field of sustainability assessment. Hybrid approaches allow aggregating MCDA and, potentially, other decision-making techniques to make use of their individual benefits and leading to a more holistic view of the actual consequences that come with certain decisions. This review is providing a comprehensive overview of hybrid approaches that are used in forest management planning. Today, the scientific world is facing increasing challenges regarding the evaluation of ES and the trade-offs between them, for example between provisioning and regulating services. As the preferences of multiple stakeholders are essential to improve the decision process in multi-purpose forestry, participatory and hybrid approaches turn out to be of particular importance. Accordingly, hybrid methods show great potential for becoming most relevant in future decision making. Based on the review presented here, the development of models for the use in planning processes should focus on participatory modeling and the consideration of uncertainty regarding available information.

  13. Carotenoid-based bill colour is an integrative signal of multiple parasite infection in blackbird

    NASA Astrophysics Data System (ADS)

    Biard, Clotilde; Saulnier, Nicolas; Gaillard, Maria; Moreau, Jérôme

    2010-11-01

    In the study of parasite-mediated sexual selection, there has been controversial evidence for the prediction that brighter males should have fewer parasites. Most of these studies have focused on one parasite species. Our aim was to investigate the expression of carotenoid-based coloured signals in relation to patterns of multiple parasite infections, to determine whether colour reflects parasite load of all parasite species, or whether different relationships might be found when looking at each parasite species independently. We investigated the relationship between bill colour, body mass and plasma carotenoids and parasite load (feather chewing lice, blood parasite Plasmodium sp., intestinal parasites cestodes and coccidia) in the blackbird ( Turdus merula). Bill colour on its own appeared to be a poor predictor of parasite load when investigating its relationships with individual parasite species. Variation in parasite intensities at the community level was summarised using principal component analysis to derive synthetic indexes of relative parasite species abundance and absolute parasite load. The relative abundance of parasite species was strongly related to bill colour, plasma carotenoid levels and body mass: birds with relatively more cestodes and chewing lice and relatively less Plasmodium and coccidia had a more colourful bill, circulated more carotenoids and were heavier. These results suggest that bill colour more accurately reflects the relative intensities of parasite infection, rather than one-by-one relationships with parasites or absolute parasite burden. Investigating patterns of multiple parasite infection would thus improve our understanding of the information conveyed by coloured signals on parasite load.

  14. Hybrid MCDA Methods to Integrate Multiple Ecosystem Services in Forest Management Planning: A Critical Review.

    PubMed

    Uhde, Britta; Hahn, W Andreas; Griess, Verena C; Knoke, Thomas

    2015-08-01

    Multi-criteria decision analysis (MCDA) is a decision aid frequently used in the field of forest management planning. It includes the evaluation of multiple criteria such as the production of timber and non-timber forest products and tangible as well as intangible values of ecosystem services (ES). Hence, it is beneficial compared to those methods that take a purely financial perspective. Accordingly, MCDA methods are increasingly popular in the wide field of sustainability assessment. Hybrid approaches allow aggregating MCDA and, potentially, other decision-making techniques to make use of their individual benefits and leading to a more holistic view of the actual consequences that come with certain decisions. This review is providing a comprehensive overview of hybrid approaches that are used in forest management planning. Today, the scientific world is facing increasing challenges regarding the evaluation of ES and the trade-offs between them, for example between provisioning and regulating services. As the preferences of multiple stakeholders are essential to improve the decision process in multi-purpose forestry, participatory and hybrid approaches turn out to be of particular importance. Accordingly, hybrid methods show great potential for becoming most relevant in future decision making. Based on the review presented here, the development of models for the use in planning processes should focus on participatory modeling and the consideration of uncertainty regarding available information. PMID:25896820

  15. SoftSearch: Integration of Multiple Sequence Features to Identify Breakpoints of Structural Variations

    PubMed Central

    Hart, Steven N.; Sarangi, Vivekananda; Moore, Raymond; Baheti, Saurabh; Bhavsar, Jaysheel D.; Couch, Fergus J.; Kocher, Jean-Pierre A.

    2013-01-01

    Background Structural variation (SV) represents a significant, yet poorly understood contribution to an individual’s genetic makeup. Advanced next-generation sequencing technologies are widely used to discover such variations, but there is no single detection tool that is considered a community standard. In an attempt to fulfil this need, we developed an algorithm, SoftSearch, for discovering structural variant breakpoints in Illumina paired-end next-generation sequencing data. SoftSearch combines multiple strategies for detecting SV including split-read, discordant read-pair, and unmated pairs. Co-localized split-reads and discordant read pairs are used to refine the breakpoints. Results We developed and validated SoftSearch using real and synthetic datasets. SoftSearch’s key features are 1) not requiring secondary (or exhaustive primary) alignment, 2) portability into established sequencing workflows, and 3) is applicable to any DNA-sequencing experiment (e.g. whole genome, exome, custom capture, etc.). SoftSearch identifies breakpoints from a small number of soft-clipped bases from split reads and a few discordant read-pairs which on their own would not be sufficient to make an SV call. Conclusions We show that SoftSearch can identify more true SVs by combining multiple sequence features. SoftSearch was able to call clinically relevant SVs in the BRCA2 gene not reported by other tools while offering significantly improved overall performance. PMID:24358278

  16. Capillary wave measurements on helically-supported capillary channels

    NASA Astrophysics Data System (ADS)

    Chandurwala, Fahim; Thiessen, David

    2010-10-01

    NASA is considering power generation by the Rankine cycle to save weight on long-duration manned missions to the moon or Mars. Phase separation technology is critical to this process in microgravity. Arrays of capillary channels might be useful for filtering liquid drops from a flowing vapor. The efficiency of droplet capture by a helically-supported capillary channel is being studied. A droplet impinging on the channel launches capillary waves that propagate down the channel helping to dissipate some of the drop's kinetic energy. High-speed video of the channel combined with image processing allows for measurement of the amplitude and speed of the wave packets. Increasing the pitch of the support structure decreases the wave speed. An understanding of the dynamic response of the channel to drop impact is a first step in predicting drop-capture efficiency.

  17. The fine structure of capillaries and small arteries.

    PubMed

    MOORE, D H; RUSKA, H

    1957-05-25

    Details of capillary endothelia of the mammalian heart are described and compared with capillaries of other organs and tissues. Continuous invagination and pinching off of the plasma membrane to form small vesicles which move across the cytoplasm are suggested as constituting a means of active and selective transmission through capillary walls (12). This might be designated as cytopempsis (transmission by cell). The fine structure of the different layers in the walls of small heart arteries is demonstrated. Endothelial protrusions extend through windows of the elestica interna to make direct contact with smooth muscle plasma membranes. The elastica interna appears to vary greatly in both thickness and density, and probably restricts filtration, diffusion, and osmosis to such an extent that windows and the transport mechanisms described (cytopempsis) are necessary for the functional integrity of the smooth muscle layer. The contractile material consists of very fine, poorly oriented filaments. PMID:13438930

  18. Integration of multiple DICOM Web servers into an enterprise-wide Web-based electronic medical record

    NASA Astrophysics Data System (ADS)

    Stewart, Brent K.; Langer, Steven G.; Martin, Kelly P.

    1999-07-01

    The purpose of this paper is to integrate multiple DICOM image webservers into the currently existing enterprises- wide web-browsable electronic medical record. Over the last six years the University of Washington has created a clinical data repository combining in a distributed relational database information from multiple departmental databases (MIND). A character cell-based view of this data called the Mini Medical Record (MMR) has been available for four years, MINDscape, unlike the text-based MMR. provides a platform independent, dynamic, web browser view of the MIND database that can be easily linked with medical knowledge resources on the network, like PubMed and the Federated Drug Reference. There are over 10,000 MINDscape user accounts at the University of Washington Academic Medical Centers. The weekday average number of hits to MINDscape is 35,302 and weekday average number of individual users is 1252. DICOM images from multiple webservers are now being viewed through the MINDscape electronic medical record.

  19. Performance Analysis of Fault Detection and Identification for Multiple Faults in GNSS and GNSS/INS Integration

    NASA Astrophysics Data System (ADS)

    Alqurashi, Muwaffaq; Wang, Jinling

    2015-03-01

    For positioning, navigation and timing (PNT) purposes, GNSS or GNSS/INS integration is utilised to provide real-time solutions. However, any potential sensor failures or faulty measurements due to malfunctions of sensor components or harsh operating environments may cause unsatisfactory estimation for PNT parameters. The inability for immediate detecting faulty measurements or sensor component failures will reduce the overall performance of the system. So, real time detection and identification of faulty measurements is required to make the system more accurate and reliable for different applications that need real time solutions such as real time mapping for safety or emergency purposes. Consequently, it is necessary to implement an online fault detection and isolation (FDI) algorithm which is a statistic-based approach to detect and identify multiple faults.However, further investigations on the performance of the FDI for multiple fault scenarios is still required. In this paper, the performance of the FDI method under multiple fault scenarios is evaluated, e.g., for two, three and four faults in the GNSS and GNSS/INS measurements under different conditions of visible satellites and satellites geometry. Besides, the reliability (e.g., MDB) and separability (correlation coefficients between faults detection statistics) measures are also investigated to measure the capability of the FDI method. A performance analysis of the FDI method is conducted under the geometric constraints, to show the importance of the FDI method in terms of fault detectability and separability for robust positioning and navigation for real time applications.

  20. Integrating Ground System Tools From Multiple Technologies Into a Single System Environment

    NASA Technical Reports Server (NTRS)

    Ritter, George H.

    2004-01-01

    With rapid technology changes and new and improved development techniques, it becomes extremely difficult to try to add capabilities to existing ground systems without wanting to replace the entire system. Replacing entire systems is not usually cost effective so there is a need to be able to slowly improve systems without long development times that introduce risk due to large amounts of change. The Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC) ground system provides command, telemetry, and payload planning systems in support of the International Space Station. Our systems have continuously evolved with technology changes due to hardware end of life issues, and also due to user requirement changes. As changes have been implemented, we have tried to take advantage of some of the latest technologies while at the same time maintaining certain legacy capabilities that are not cost affective to replace. One of our biggest challenges is to integrate all of these implementations into a single system that is usable, maintainable, and scalable. Another challenge is to provide access to our tools in such a way that users are not aware of all the various implementation methods and tools being used. This approach not only makes our system much more usable, it allows us to continue to migrate capabilities and to add capabilities without impacting system usability. This paper will give an overview of the tools used for MSFC ISS payload operations and show an approach for integrating various technologies into a single environment that is maintainable, flexible, usable, cost effective, and that meets user needs.

  1. Laser-based capillary polarimeter.

    PubMed

    Swinney, K; Hankins, J; Bornhop, D J

    1999-01-01

    A laser-based capillary polarimeter has been configured to allow for the detection of optically active molecules in capillary tubes with a characteristic inner diameter of 250 microm and a 39-nL (10(-9)) sample volume. The simple optical configuration consists of a HeNe laser, polarizing optic, fused-silica capillary, and charge-coupled device (CCD) camera in communication with a laser beam analyzer. The capillary scale polarimeter is based on the interaction between a polarized laser beam and a capillary tube, which results in a 360 degree fan of scattered light. This array of scattered light contains a set of interference fringe, which respond in a reproducible manner to changes in solute optical activity. The polarimetric utility of the instrument will be demonstrated by the analysis of two optically active solutes, R-mandelic acid and D-glucose, in addition to the nonoptically active control, glycerol. The polarimetric response of the system is quantifiable with detection limits facilitating 1.7 x 10(-3) M or 68 x 10(-12) nmol (7 psi 10(-9) g) sensitivity. PMID:11315158

  2. Alexander’s Law in Patients with Acute Vestibular Tone Asymmetry—Evidence for Multiple Horizontal Neural Integrators

    PubMed Central

    Hegemann, S.; Straumann, D.

    2007-01-01

    Alexander’s law (AL) states that the slow-phase velocity of spontaneous nystagmus of peripheral vestibular origin is dependent on horizontal gaze position, with greater velocity when gaze is directed in the fast-phase direction. AL is thought to be a compensatory reaction resulting from adaptive changes in the horizontal ocular motor neural integrator. Until now, only horizontal eye movements have been investigated with respect to AL. Because spontaneous nystagmus usually includes vertical and torsional components, we asked whether horizontal gaze changes would have an effect on the 3D drift of spontaneous nystagmus and, thus, on the vertical/torsional neural integrator. We hypothesized that AL reduces all nystagmus components proportionally. Moreover, we questioned the classical theory of a single bilaterally organized horizontal integrator and searched for nonlinearities of AL implying a network of multiple integrators. Using dual scleral search coils, we measured AL in 17 patients with spontaneous nystagmus. Patients followed a pulsed laser dot at eye level jumping in 5° steps along the horizontal meridian between 25° right and left in otherwise complete darkness. AL was observed in 15 of 17 patients. Whereas individual patients typically showed a change of 3D-drift direction at different horizontal eye positions, the average change in direction was not different from zero. The strength of AL (= rate of change of total velocity with gaze position) correlated with nystagmus slow-phase velocity (Spearman’s rho = 0.5; p < 0.05) and, on average, did not change the 3D nystagmus drift direction. In general, eye velocity did not vary linearly with eye position. Rather, there was a stronger dependence of velocity on horizontal position when subjects looked in the slow-phase direction compared to the fast-phase direction. We conclude that the theory of a simple leak of a single horizontal neural integrator is not sufficient to explain all aspects of AL

  3. Whole-Brain Radiotherapy With Simultaneous Integrated Boost to Multiple Brain Metastases Using Volumetric Modulated Arc Therapy

    SciTech Connect

    Lagerwaard, Frank J. Hoorn, Elles A.P. van der; Verbakel, Wilko; Haasbeek, Cornelis J.A.; Slotman, Ben J.; Senan, Suresh

    2009-09-01

    Purpose: Volumetric modulated arc therapy (RapidArc [RA]; Varian Medical Systems, Palo Alto, CA) allows for the generation of intensity-modulated dose distributions by use of a single gantry rotation. We used RA to plan and deliver whole-brain radiotherapy (WBRT) with a simultaneous integrated boost in patients with multiple brain metastases. Methods and Materials: Composite RA plans were generated for 8 patients, consisting of WBRT (20 Gy in 5 fractions) with an integrated boost, also 20 Gy in 5 fractions, to Brain metastases, and clinically delivered in 3 patients. Summated gross tumor volumes were 1.0 to 37.5 cm{sup 3}. RA plans were measured in a solid water phantom by use of Gafchromic films (International Specialty Products, Wayne, NJ). Results: Composite RA plans could be generated within 1 hour. Two arcs were needed to deliver the mean of 1,600 monitor units with a mean 'beam-on' time of 180 seconds. RA plans showed excellent coverage of planning target volume for WBRT and planning target volume for the boost, with mean volumes receiving at least 95% of the prescribed dose of 100% and 99.8%, respectively. The mean conformity index was 1.36. Composite plans showed much steeper dose gradients outside Brain metastases than plans with a conventional summation of WBRT and radiosurgery. Comparison of calculated and measured doses showed a mean gamma for double-arc plans of 0.30, and the area with a gamma larger than 1 was 2%. In-room times for clinical RA sessions were approximately 20 minutes for each patient. Conclusions: RA treatment planning and delivery of integrated plans of WBRT and boosts to multiple brain metastases is a rapid and accurate technique that has a higher conformity index than conventional summation of WBRT and radiosurgery boost.

  4. Two-Dimensional Integral Reacting Computer Code for Multiple Phase Flows

    Energy Science and Technology Software Center (ESTSC)

    1997-05-05

    ICRKFLO solves conservation equations for gaseous species, droplets, and solid particles of various sizes. General conservation laws, expressed by ellipitic-type partial differential equations, are used in conjunction with rate equations governing the mass, momentum, enthalpy, species, turbulent kinetic energy and dissipation for a three-phase reacting flow. Associated sub-models include integral combustion, two-parameter turbulence, particle melting and evaporation, droplet evaporation, and interfacial submodels. An evolving integral reaction submodel, originally designed for ICOMFLO2 to solve numerical stabilitymore » problems associated with Arrhenius type differential reaction submodels, was expanded and enhanced to handle petroleum cracking applications. A two-parameter turbulence submodel accounts for droplet and particle dispersion by gas phase turbulence with feedback effects on the gas phase. The evaporation submodel treats not only particle evaporation but the droplet size distribution shift caused by evaporation. Interfacial submodels correlate momentum and energy transfer between phases. Three major upgrades, adding new capabilities and improved physical modeling, were implemnted in IRCKFLO Version 2.0. They are :(1) particle-particle and particle wall interactions; (2) a two-step process for computing the reaction kinetics for a very large number of chemical reactions within a complex non-isothermal hydrodynamic flow field; and (3) a sectional coupling method combined with a triangular blocked cell technique for computing reacting multiphase flow systems of complex geometry while preserving the advantages of grid orthogonality.« less

  5. The value of integrating information from multiple hazards for flood risk management

    NASA Astrophysics Data System (ADS)

    Castillo-Rodríguez, J. T.; Escuder-Bueno, I.; Altarejos-García, L.; Serrano-Lombillo, A.

    2013-07-01

    This article presents a methodology for estimating flood risk in urban areas integrating pluvial flooding, river flooding and failure of both small and large dams. The first part includes a review of basic concepts and existing methods on flood risk analysis, evaluation and management. Traditionally, flood risk analyses have focused on specific site studies and qualitative or semi-quantitative approaches. However, in this context, a general methodology to perform a quantitative flood risk analysis including different flood hazards was still required. The second part describes the proposed methodology, which presents an integrated approach - combining pluvial, river flooding and dam failure, as applied to a case study: a urban area located downstream a dam under construction. Such methodology represents an upgrade of the methodological piece developed within the SUFRI project. This article shows how outcomes from flood risk analysis provide better and more complete information to inform authorities, local entities and the stakeholders involved on decision-making with regard to flood risk management.

  6. Integration of Multiple Field Methods in Characterizing a Field Site with Bayesian Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Savoy, H.; Dietrich, P.; Osorio-Murillo, C. A.; Kalbacher, T.; Kolditz, O.; Ames, D. P.; Rubin, Y.

    2014-12-01

    A hydraulic property of a field can be expressed as a space random function (SRF), and the parameters of that SRF can be constrained by the Method of Anchored Distributions (MAD). MAD is a general Bayesian inverse modeling technique that quantifies the uncertainty of SRF parameters by integrating various direct local data along with indirect non-local data. An example is given with a high-resolution 3D aquifer analog with known hydraulic conductivity (K) and porosity (n) at every location. MAD is applied using different combinations of simulated measurements of K, n, and different scales of hydraulic head that represent different field methods. The ln(K) and n SRF parameters are characterized with each of the method combinations to assess the influence of the methods on the SRFs and their implications. The forward modeling equations are solved by the numerical modeling software OpenGeoSys (opengeosys.org) and MAD is applied with the software MAD# (mad.codeplex.com). The inverse modeling results are compared to the aquifer analog for success evaluation. The goal of the study is to show how integrating combinations of multi-scale and multi-type measurements from the field via MAD can be used to reduce the uncertainty in field-scale SRFs, as well as point values, of hydraulic properties.

  7. Salient object detection based on discriminative boundary and multiple cues integration

    NASA Astrophysics Data System (ADS)

    Jiang, Qingzhu; Wu, Zemin; Tian, Chang; Liu, Tao; Zeng, Mingyong; Hu, Lei

    2016-01-01

    In recent years, many saliency models have achieved good performance by taking the image boundary as the background prior. However, if all boundaries of an image are equally and artificially selected as background, misjudgment may happen when the object touches the boundary. We propose an algorithm called weighted contrast optimization based on discriminative boundary (wCODB). First, a background estimation model is reliably constructed through discriminating each boundary via Hausdorff distance. Second, the background-only weighted contrast is improved by fore-background weighted contrast, which is optimized through weight-adjustable optimization framework. Then to objectively estimate the quality of a saliency map, a simple but effective metric called spatial distribution of saliency map and mean saliency in covered window ratio (MSR) is designed. Finally, in order to further promote the detection result using MSR as the weight, we propose a saliency fusion framework to integrate three other cues-uniqueness, distribution, and coherence from three representative methods into our wCODB model. Extensive experiments on six public datasets demonstrate that our wCODB performs favorably against most of the methods based on boundary, and the integrated result outperforms all state-of-the-art methods.

  8. Evolving the Optical Transport Network Management to Integrate Multiple Technologies and Services

    NASA Astrophysics Data System (ADS)

    Comi, Alberto; Gallina, Marco

    Optical networks are evolving at a fast pace from traditional synchronous digital hierarchy/synchronous optical network (SDH/SONET) and wavelength division multiplexing (WDM) infrastructures, used by client network layers in overlay mode, to a converged multi-service and multi-technology network able to transport traditional time division multiplexing (TDM) traffic and new packet traffic in a flexible way. Alcatel-Lucent is leading the network transformation required by network providers to offer data transport while guaranteeing the same quality and reliability typical of classical transport services. The introduction of new data communication services requires an evolution of the network management platform that needs to integrate new management applications associated with the new technologies and services. The resulting network has to be integrated from service provisioning and management system viewpoints to optimize its use and to reduce the in-field modifications of the transport network. This article describes specificities in the management of multi-service networks, identifying the management architecture able to support the rapid evolution of such environment.

  9. The value of integrating information from multiple hazards for flood risk analysis and management

    NASA Astrophysics Data System (ADS)

    Castillo-Rodríguez, J. T.; Escuder-Bueno, I.; Altarejos-García, L.; Serrano-Lombillo, A.

    2014-02-01

    This article presents a methodology for estimating flood risk in urban areas integrating pluvial flooding, river flooding and failure of both small and large dams. The first part includes a review of basic concepts on flood risk analysis, evaluation and management. Flood risk analyses may be developed at local, regional and national level, however a general methodology to perform a quantitative flood risk analysis including different flood hazards is still required. The second part describes the proposed methodology, which presents an integrated approach - combining pluvial, river flooding and flooding from dam failure, as applied to a case study: an urban area located downstream of a dam under construction. The methodology enhances the approach developed within the SUFRI project ("Sustainable Strategies of Urban Flood Risk Management to cope with the residual risk", 2009-2011). This article also shows how outcomes from flood risk analysis provide better and more complete information to inform authorities, local entities and the stakeholders involved in decision-making with regard to flood risk management.

  10. Real-time trace gas sensor using a multimode diode laser and multiple-line integrated cavity enhanced absorption spectroscopy.

    PubMed

    Karpf, Andreas; Rao, Gottipaty N

    2015-07-01

    We describe and demonstrate a highly sensitive trace gas sensor based on a simplified design that is capable of measuring sub-ppb concentrations of NO2 in tens of milliseconds. The sensor makes use of a relatively inexpensive Fabry-Perot diode laser to conduct off-axis cavity enhanced spectroscopy. The broad frequency range of a multimode Fabry-Perot diode laser spans a large number of absorption lines, thereby removing the need for a single-frequency tunable laser source. The use of cavity enhanced absorption spectroscopy enhances the sensitivity of the sensor by providing a pathlength on the order of 1 km in a small volume. Off-axis alignment excites a large number of cavity modes simultaneously, thereby reducing the sensor's susceptibility to vibration. Multiple-line integrated absorption spectroscopy (where one integrates the absorption spectra over a large number of rovibronic transitions of the molecular species) further improves the sensitivity of detection. Relatively high laser power (∼400  mW) is used to compensate for the low coupling efficiency of a broad linewidth laser to the optical cavity. The approach was demonstrated using a 407 nm diode laser to detect trace quantities of NO2 in zero air. Sensitivities of 750 ppt, 110 ppt, and 65 ppt were achieved using integration times of 50 ms, 5 s, and 20 s respectively. PMID:26193156

  11. Paramecium swimming in capillary tube

    NASA Astrophysics Data System (ADS)

    Jana, Saikat; Um, Soong Ho; Jung, Sunghwan

    2012-04-01

    Swimming organisms in their natural habitat need to navigate through a wide range of geometries and chemical environments. Interaction with boundaries in such situations is ubiquitous and can significantly modify the swimming characteristics of the organism when compared to ideal laboratory conditions. We study the different patterns of ciliary locomotion in glass capillaries of varying diameter and characterize the effect of the solid boundaries on the velocities of the organism. Experimental observations show that Paramecium executes helical trajectories that slowly transition to straight lines as the diameter of the capillary tubes decreases. We predict the swimming velocity in capillaries by modeling the system as a confined cylinder propagating longitudinal metachronal waves that create a finite pressure gradient. Comparing with experiments, we find that such pressure gradient considerations are necessary for modeling finite sized ciliary organisms in restrictive geometries.

  12. Non-Aqueous Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Szumski, Michał; Buszewski, Bogusław

    Non-aqueous capillary electrophoresis and capillary electrochromatography are special variants of these techniques. Here, organic solvents or their mixtures with or without dissolved electrolytes are used as separation buffer or mobile phase, respectively. The most important features of non-aqueous systems are: better solubility of more hydrophobic ionic substances (many natural products) than in water, much less current and Joule heating allows for using highly concentrated buffers and/or larger capillary internal diameters, polar interactions are enhanced in organic solvents which is often highly advantageous in chiral separation systems. This chapter presents most frequently used solvents, their properties, as well as shows pH* scale which is often used in non-aqueous systems.

  13. Integrating multiple HD video services over tiled display for advanced multi-party collaboration

    NASA Astrophysics Data System (ADS)

    Han, Sangwoo; Kim, Jaeyoun; Choi, Kiho; Kim, JongWon

    2006-10-01

    Multi-party collaborative environments based on AG (Access Grid) are extensively utilized for distance learning, e-science, and other distributed global collaboration events. In such environments, A/V media services play an important role in providing QoE (quality of experience) to participants in collaboration sessions. In this paper, in order to support high-quality user experience in the aspect of video services, we design an integration architecture to combine high-quality video services and a high-resolution tiled display service. In detail, the proposed architecture incorporates video services for DV (digital video) and HDV (high-definition digital video) streaming with a display service to provide methods for decomposable decoding/display for a tiled display system. By implementing the proposed architecture on top of AG, we verify that high-quality collaboration among a couple of collaboration sites can be realized over a multicast-enabled network testbed with improved media quality experience.

  14. Multiple-body simulation with emphasis on integrated Space Shuttle vehicle

    NASA Astrophysics Data System (ADS)

    Chiu, Ing-Tsau

    1993-02-01

    The program to obtain intergrid communications - Pegasus - was enhanced to make better use of computing resources. Periodic block tridiagonal and penta-diagonal diagonal routines in OVERFLOW were modified to use a better algorithm to speed up the calculation for grids with periodic boundary conditions. Several programs were added to collar grid tools and a user friendly shell script was developed to help users generate collar grids. User interface for HYPGEN was modified to cope with the changes in HYPGEN. ET/SRB attach hardware grids were added to the computational model for the space shuttle and is currently incorporated into the refined shuttle model jointly developed at Johnson Space Center and Ames Research Center. Flow simulation for the integrated space shuttle vehicle at flight Reynolds number was carried out and compared with flight data as well as the earlier simulation for wind tunnel Reynolds number.

  15. Multiple-body simulation with emphasis on integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chiu, Ing-Tsau

    1993-01-01

    The program to obtain intergrid communications - Pegasus - was enhanced to make better use of computing resources. Periodic block tridiagonal and penta-diagonal diagonal routines in OVERFLOW were modified to use a better algorithm to speed up the calculation for grids with periodic boundary conditions. Several programs were added to collar grid tools and a user friendly shell script was developed to help users generate collar grids. User interface for HYPGEN was modified to cope with the changes in HYPGEN. ET/SRB attach hardware grids were added to the computational model for the space shuttle and is currently incorporated into the refined shuttle model jointly developed at Johnson Space Center and Ames Research Center. Flow simulation for the integrated space shuttle vehicle at flight Reynolds number was carried out and compared with flight data as well as the earlier simulation for wind tunnel Reynolds number.

  16. A planning study of simultaneous integrated boost with forward IMRT for multiple brain metastases

    SciTech Connect

    Liang, Xiaodong; Ni, Lingqin; Hu, Wei; Chen, Weijun; Ying, Shenpeng; Gong, Qiangjun; Liu, Yanmei

    2013-07-01

    The objective of this study was to evaluate the dose conformity and feasibility of whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in patients with 1 to 3 brain metastases. Forward intensity-modulated radiation therapy plans were generated for 10 patients with 1 to 3 brain metastases on Pinnacle 6.2 Treatment Planning System. The prescribed dose was 30 Gy to the whole brain (planning target volume [PTV]{sub wbrt}) and 40 Gy to individual brain metastases (PTV{sub boost}) simultaneously, and both doses were given in 10 fractions. The maximum diameters of individual brain metastases ranged from 1.6 to 6 cm, and the summated PTVs per patient ranged from 1.62 to 69.81 cm{sup 3}. Conformity and feasibility were evaluated regarding conformation number and treatment delivery time. One hundred percent volume of the PTV{sub boost} received at least 95% of the prescribed dose in all cases. The maximum doses were less than 110% of the prescribed dose to the PTV{sub boost}, and all of the hot spots were within the PTV{sub boost}. The volume of the PTV{sub wbrt} that received at least 95% of the prescribed dose ranged from 99.2% to 100%. The mean values of conformation number were 0.682. The mean treatment delivery time was 2.79 minutes. Ten beams were used on an average in these plans. Whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in 1 to 3 brain metastases is feasible, and treatment delivery time is short.

  17. Facile integration of multiple magnetite nanoparticles for theranostics combining efficient MRI and thermal therapy

    NASA Astrophysics Data System (ADS)

    Huang, Guoming; Zhu, Xianglong; Li, Hui; Wang, Lirong; Chi, Xiaoqin; Chen, Jiahe; Wang, Xiaomin; Chen, Zhong; Gao, Jinhao

    2015-01-01

    Multifunctional nanostructures with both diagnostic and therapeutic capabilities have attracted considerable attention in biomedical research because they can offer great advantages in disease management and prognosis. In this work, a facile way to transfer the hydrophobic iron oxide (IO) nanoparticles into aqueous media by employing carboxylic graphene oxide (GO-COOH) as the transferring agent has been reported. In this one-step process, IO nanoparticles adhere to GO-COOH and form water-dispersible clusters via hydrophobic interactions between the hydrophobic ligands of IO nanoparticles and the basal plane of GO-COOH. The multiple IO nanoparticles on GO-COOH sheets (IO/GO-COOH) present a significant increase in T2 contrast enhancement. Moreover, the IO/GO-COOH nanoclusters also display a high photothermal conversion efficiency and can effectively inhibit tumor growth through the photothermal effects. It is envisioned that such IO/GO-COOH nanocomposites combining efficient MRI and photothermal therapy hold great promise in theranostic applications.Multifunctional nanostructures with both diagnostic and therapeutic capabilities have attracted considerable attention in biomedical research because they can offer great advantages in disease management and prognosis. In this work, a facile way to transfer the hydrophobic iron oxide (IO) nanoparticles into aqueous media by employing carboxylic graphene oxide (GO-COOH) as the transferring agent has been reported. In this one-step process, IO nanoparticles adhere to GO-COOH and form water-dispersible clusters via hydrophobic interactions between the hydrophobic ligands of IO nanoparticles and the basal plane of GO-COOH. The multiple IO nanoparticles on GO-COOH sheets (IO/GO-COOH) present a significant increase in T2 contrast enhancement. Moreover, the IO/GO-COOH nanoclusters also display a high photothermal conversion efficiency and can effectively inhibit tumor growth through the photothermal effects. It is envisioned

  18. Capillary interactions in Pickering emulsions

    NASA Astrophysics Data System (ADS)

    Guzowski, J.; Tasinkevych, M.; Dietrich, S.

    2011-09-01

    The effective capillary interaction potentials for small colloidal particles trapped at the surface of liquid droplets are calculated analytically. Pair potentials between capillary monopoles and dipoles, corresponding to particles floating on a droplet with a fixed center of mass and subjected to external forces and torques, respectively, exhibit a repulsion at large angular separations and an attraction at smaller separations, with the latter resembling the typical behavior for flat interfaces. This change of character is not observed for quadrupoles, corresponding to free particles on a mechanically isolated droplet. The analytical results are compared with the numerical minimization of the surface free energy of the droplet in the presence of spherical or ellipsoidal particles.

  19. Nonsteady Flow in Capillary Tubes

    NASA Astrophysics Data System (ADS)

    Hara, Ayako

    2000-03-01

    Surface phenomena in the field of electron devices and the problem of how long. It takes plants to absorb water during their growth in hydroponic cultivation is attraching the attention of riseachers. However, the related study of non-steady flow in capillary tubes has a number of issues that require investigation. In response to this situation, we made attempted to assess nonsteady fiow in capillary tubes, the liquid rise time and other issues, using a motion equation that takes factors including the friction force of the tube and the surface tension into consideration.

  20. A network-based integrative approach to prioritize reliable hits from multiple genome-wide RNAi screens in Drosophila

    PubMed Central

    Wang, Li; Tu, Zhidong; Sun, Fengzhu

    2009-01-01

    Background The recently developed RNA interference (RNAi) technology has created an unprecedented opportunity which allows the function of individual genes in whole organisms or cell lines to be interrogated at genome-wide scale. However, multiple issues, such as off-target effects or low efficacies in knocking down certain genes, have produced RNAi screening results that are often noisy and that potentially yield both high rates of false positives and false negatives. Therefore, integrating RNAi screening results with other information, such as protein-protein interaction (PPI), may help to address these issues. Results By analyzing 24 genome-wide RNAi screens interrogating various biological processes in Drosophila, we found that RNAi positive hits were significantly more connected to each other when analyzed within a protein-protein interaction network, as opposed to random cases, for nearly all screens. Based on this finding, we developed a network-based approach to identify false positives (FPs) and false negatives (FNs) in these screening results. This approach relied on a scoring function, which we termed NePhe, to integrate information obtained from both PPI network and RNAi screening results. Using a novel rank-based test, we compared the performance of different NePhe scoring functions and found that diffusion kernel-based methods generally outperformed others, such as direct neighbor-based methods. Using two genome-wide RNAi screens as examples, we validated our approach extensively from multiple aspects. We prioritized hits in the original screens that were more likely to be reproduced by the validation screen and recovered potential FNs whose involvements in the biological process were suggested by previous knowledge and mutant phenotypes. Finally, we demonstrated that the NePhe scoring system helped to biologically interpret RNAi results at the module level. Conclusion By comprehensively analyzing multiple genome-wide RNAi screens, we conclude that

  1. Facile integration of multiple magnetite nanoparticles for theranostics combining efficient MRI and thermal therapy.

    PubMed

    Huang, Guoming; Zhu, Xianglong; Li, Hui; Wang, Lirong; Chi, Xiaoqin; Chen, Jiahe; Wang, Xiaomin; Chen, Zhong; Gao, Jinhao

    2015-02-14

    Multifunctional nanostructures with both diagnostic and therapeutic capabilities have attracted considerable attention in biomedical research because they can offer great advantages in disease management and prognosis. In this work, a facile way to transfer the hydrophobic iron oxide (IO) nanoparticles into aqueous media by employing carboxylic graphene oxide (GO-COOH) as the transferring agent has been reported. In this one-step process, IO nanoparticles adhere to GO-COOH and form water-dispersible clusters via hydrophobic interactions between the hydrophobic ligands of IO nanoparticles and the basal plane of GO-COOH. The multiple IO nanoparticles on GO-COOH sheets (IO/GO-COOH) present a significant increase in T2 contrast enhancement. Moreover, the IO/GO-COOH nanoclusters also display a high photothermal conversion efficiency and can effectively inhibit tumor growth through the photothermal effects. It is envisioned that such IO/GO-COOH nanocomposites combining efficient MRI and photothermal therapy hold great promise in theranostic applications. PMID:25581879

  2. An Integrated MRI and MRS Approach to Evaluation of Multiple Sclerosis with Cognitive Impairment

    NASA Astrophysics Data System (ADS)

    Liang, Zhengrong; Li, Lihong; Lu, Hongbing; Huang, Wei; Tudorica, Alina; Krupp, Lauren

    Magnetic resonance imaging and spectroscopy (MRI/MRS) plays a unique role in multiple sclerosis (MS) evaluation, because of its ability to provide both high image contrast and significant chemical change among brain tissues. The image contrast renders the possibility of quantifying the tissue volumetric and texture variations, e.g., cerebral atrophy and progressing speed, reflecting the ongoing destructive pathologic processes. Any chemical change reflects an early sign of pathological alteration, e.g., decreased N-acetyl aspartate (NAA) in lesions and normal appearing white matter, related to axonal damage or dysfunction. Both MRI and MRS encounter partial volume (PV) effect, which compromises the quantitative capability, especially for MRS. This work aims to develop a statistical framework to segment the tissue mixtures inside each image element, eliminating theoretically the PV effect, and apply the framework to the evaluation of MS with cognitive impairment. The quantitative measures from MRI/MRS neuroimaging are strongly correlated with the qualitative neuropsychological scores of Brief Repeatable Battery (BRB) test on cognitive impairment, demonstrating the usefulness of the PV image segmentation framework in this clinically significant problem.

  3. Multiple components are integrated to determine leaf complexity in Lotus japonicus.

    PubMed

    Wang, Zhenhua; Chen, Jianghua; Weng, Lin; Li, Xin; Cao, Xianglin; Hu, Xiaohe; Luo, Da; Yang, Jun

    2013-05-01

    Transcription factors and phytohormones have been reported to play crucial roles to regulate leaf complexity among plant species. Using the compound-leafed species Lotus japonicus, a model legume plant with five visible leaflets, we characterized four independent mutants with reduced leaf complexity, proliferating floral meristem (pfm), proliferating floral organ-2 (pfo-2), fused leaflets1 (ful1) and umbrella leaflets (uml), which were further identified as loss-of-function mutants of Arabidopsis orthologs LEAFY (LFY), UNUSUAL FLORAL ORGANS (UFO), CUP-SHAPED COTYLEDON 2 (CUC2) and PIN-FORMED 1 (PIN1), respectively. Comparing the leaf development of wild-type and mutants by a scanning electron microscopy approach, leaflet initiation and/or dissection were found to be affected in these mutants. Expression and phenotype analysis indicated that PFM/LjLFY and PFO/LjUFO determined the basipetal leaflet initiation manner in L. japonicus. Genetic analysis of ful1 and uml mutants and their double mutants revealed that the CUC2-like gene and auxin pathway also participated in leaflet dissection in L. japonicus, and their functions might influence cytokinin biogenesis directly or indirectly. Our results here suggest that multiple genes were interplayed and played conserved functions in controlling leaf complexity during compound leaf development in L. japonicus. PMID:23331609

  4. Integrated management of natural resources: dealing with ambiguous issues, multiple actors and diverging frames.

    PubMed

    Dewulf, A; Craps, M; Bouwen, R; Taillieu, T; Pahl-Wostl, C

    2005-01-01

    Uncertainty is an increasingly important concern when trying to manage complex systems of interrelated natural resources. Scientific knowledge or necessary information may be lacking or incomplete. Additionally, the multiple and interdependent users of those resources may diverge in defining what really is at stake. When they frame issues in very different ways, ambiguity results, i.e., the existence of two or more equally plausible interpretation possibilities. Environmental management in these conditions implies a shift in attention from solving clearly delineated problems to continuous negotiating and tuning between different actors and expertise domains. This requires dealing with the frame differences in a reciprocal way by mutually acknowledging frames and connecting them. Some or all parties will have to revise, enlarge or reframe the way they relate to the issues and to each other, in order to support mutual understanding and common action. The contribution of experts does not consist then in providing total predictability nor in predefining issues and solutions, but in supporting a joint learning and negotiation process among different actors and in feeding this process with relevant information. Behavioural simulations may play an important function to stimulate multi-actor learning and negotiation processes. PMID:16304943

  5. ASIC3 Channels Integrate Agmatine and Multiple Inflammatory Signals through the Nonproton Ligand Sensing Domain

    PubMed Central

    2010-01-01

    Background Acid-sensing ion channels (ASICs) have long been known to sense extracellular protons and contribute to sensory perception. Peripheral ASIC3 channels represent natural sensors of acidic and inflammatory pain. We recently reported the use of a synthetic compound, 2-guanidine-4-methylquinazoline (GMQ), to identify a novel nonproton sensing domain in the ASIC3 channel, and proposed that, based on its structural similarity with GMQ, the arginine metabolite agmatine (AGM) may be an endogenous nonproton ligand for ASIC3 channels. Results Here, we present further evidence for the physiological correlation between AGM and ASIC3. Among arginine metabolites, only AGM and its analog arcaine (ARC) activated ASIC3 channels at neutral pH in a sustained manner similar to GMQ. In addition to the homomeric ASIC3 channels, AGM also activated heteromeric ASIC3 plus ASIC1b channels, extending its potential physiological relevance. Importantly, the process of activation by AGM was highly sensitive to mild acidosis, hyperosmolarity, arachidonic acid (AA), lactic acid and reduced extracellular Ca2+. AGM-induced ASIC3 channel activation was not through the chelation of extracellular Ca2+ as occurs with increased lactate, but rather through a direct interaction with the newly identified nonproton ligand sensing domain. Finally, AGM cooperated with the multiple inflammatory signals to cause pain-related behaviors in an ASIC3-dependent manner. Conclusions Nonproton ligand sensing domain might represent a novel mechanism for activation or sensitization of ASIC3 channels underlying inflammatory pain-sensing under in vivo conditions. PMID:21143836

  6. Object location memory: integration and competition between multiple context objects but not between observers' body and context objects.

    PubMed

    Mou, Weimin; Spetch, Marcia L

    2013-02-01

    Five experiments examined the integration and competition between body and context objects in locating an object. Participants briefly viewed a target object in a virtual environment and detected whether the target object was moved or not after a 10 s interval. Experiments 1 and 2 showed that performance when both the observer body and the context objects were consistent across study and test was not better than the optimal sum of performances when either one was the only consistent cue across study and test. In Experiments 3 and 4, in the competition conditions, both the body and the context objects were reference points at learning but only one stayed consistent during test. In the no competition conditions, only the body or the context objects were the primary reference points in learning and it stayed consistent in test. Detection performance did not differ between these conditions. Experiment 5 demonstrated the integration and competition between context objects as a reference point. Detection performance based on all four context objects was better than the optimal sum of the performance based on two close context objects and the performance based on two far context objects; detection performance based on two context objects was better when there were only these two context objects during learning than when there were four context objects during learning. These results suggest that body-object (body-target) and interobject (context-target) vectors are encoded independently and combined at test in an optimal way. Body-object and interobject vectors are not encoded in an integrated way and encoding of them does not compete. By contrast multiple interobject vectors are encoded in an integrated way in addition to the representations of individual interobject vectors and encoding close interobject vectors and encoding far interobject vectors interfere with each other. PMID:23142038

  7. Integrated optic chemical sensor for the simultaneous detection and quantification of multiple ions. Final report, March--September 1995

    SciTech Connect

    Mendoza, E.

    1995-09-01

    This final report summarizes the work performed by Physical Optics Corporation (POC) on the DOE contract entitled {open_quotes}Integrated Optic Chemical Sensor for the Simultaneous Detection and Quantification of Multiple Metal Ions{close_quotes}. This project successfully demonstrated a multi-element integrated optic chemical sensor (IOCS) system capable of simultaneous detection and quantification of metal ions in a water flow stream. POC`s innovative integrated optic chemical sensor technology uses an array of chemically active optical waveguides integrated in parallel in a single small IOCS chip. The IOCS technique uses commonly available materials and straightforward processing to produce channel waveguides in porous glass, each channel treated with a chemical indicator that responds optically to heavy metal ions in a water flow stream. The porosity of the glass allows metal ions present in the water to diffuse into the glass and interact with the immobilized indicators, producing a measurable optical chance. For the {open_quotes}proof-of-concept{close_quotes} demonstration, POC designed and fabricated two types of IOCS chips. Type I uses an array of four straight channel waveguides, three of which are doped with a metal sensitive indicator, an ionophore. The undoped fourth channel is used as the reference channel. Type II uses a 1 x 4 star coupler structure with three sensing channels and a reference channel. Successful implementation of the IOCS technology is expected to have a broad impact on water quality control as well as in the commercial environmental monitoring market. Because of the self-referenced, multidetection capability of the IOCS technique, POC`s water quality sensors are expected to find markets in environmental monitoring and protection, ground water monitoring, and in-line process control. Specific applications include monitoring of chromium, copper, and iron ions in water discharged by the metal plating industry.

  8. Integration and Visualization of Multiple Sensors in Generating the NOAA Operational Snow and Ice Cover Products

    NASA Astrophysics Data System (ADS)

    Li, M.; Helfrich, S.

    2011-12-01

    Global snow and ice cover is a key component in the climate and hydrologic system as well as daily weather forecasting. The National Oceanic and Atmospheric Administration (NOAA) has produced a daily northern hemisphere snow and ice cover chart since 1997 through the Interactive Multisensor Snow and Ice Mapping System (IMS). The IMS integrates and visualizes a wide variety of satellite data, as well as derived snow/ice products and surface observations, to provide meteorologists with the ability to interactively prepare the daily northern hemisphere snow and ice cover chart. These products are presently used as operational inputs into several weather prediction models and are applied in climate monitoring. The IMS is currently on its second version (released in 2004) and scheduled to be upgraded to the third version (V3) in 2013. The IMS V3 will have nearly 40 external inputs as data sources processed by the IMS, which fall into five data formats: binary image, HDF file, GeoTIFF image, Shapefile image and ASCII file. With the exception of the GeoTIFF and Shapefile files, which are used directly by IMS, all other types of data are pre-processed to ENVI image file format and "sectorized" for different areas around the northern hemisphere. The IMS V3 will generate daily snow and ice cover maps in five formats: ASCII, ENVI, GeoTIFF, GIF and GRIB2 and three resolutions: 24km, 4km and 1km. In this presentation, the methods are discussed for accessing and processing satellite data, model results and surface reports. All input data with varying formats and resolutions are processed to a fixed projection. The visualization methodology for IMS are provided for five different resolutions of 48km, 24km, 8km, 4km, 2km and 1km. This work will facilitate the future enhancement of IMS, provide users with an understanding of the software architecture, provide a prospectus on future data sources, and help to preserve the integrity of the long-standing satellite-derived snow and ice

  9. Simulating mesoscale coastal evolution for decadal coastal management: A new framework integrating multiple, complementary modelling approaches

    NASA Astrophysics Data System (ADS)

    van Maanen, Barend; Nicholls, Robert J.; French, Jon R.; Barkwith, Andrew; Bonaldo, Davide; Burningham, Helene; Brad Murray, A.; Payo, Andres; Sutherland, James; Thornhill, Gillian; Townend, Ian H.; van der Wegen, Mick; Walkden, Mike J. A.

    2016-03-01

    Coastal and shoreline management increasingly needs to consider morphological change occurring at decadal to centennial timescales, especially that related to climate change and sea-level rise. This requires the development of morphological models operating at a mesoscale, defined by time and length scales of the order 101 to 102 years and 101 to 102 km. So-called 'reduced complexity' models that represent critical processes at scales not much smaller than the primary scale of interest, and are regulated by capturing the critical feedbacks that govern landform behaviour, are proving effective as a means of exploring emergent coastal behaviour at a landscape scale. Such models tend to be computationally efficient and are thus easily applied within a probabilistic framework. At the same time, reductionist models, built upon a more detailed description of hydrodynamic and sediment transport processes, are capable of application at increasingly broad spatial and temporal scales. More qualitative modelling approaches are also emerging that can guide the development and deployment of quantitative models, and these can be supplemented by varied data-driven modelling approaches that can achieve new explanatory insights from observational datasets. Such disparate approaches have hitherto been pursued largely in isolation by mutually exclusive modelling communities. Brought together, they have the potential to facilitate a step change in our ability to simulate the evolution of coastal morphology at scales that are most relevant to managing erosion and flood risk. Here, we advocate and outline a new integrated modelling framework that deploys coupled mesoscale reduced complexity models, reductionist coastal area models, data-driven approaches, and qualitative conceptual models. Integration of these heterogeneous approaches gives rise to model compositions that can potentially resolve decadal- to centennial-scale behaviour of diverse coupled open coast, estuary and inner

  10. Cooperative Suction by Vertical Capillary Array Pump for Controlling Flow Profiles of Microfluidic Sensor Chips

    PubMed Central

    Horiuchi, Tsutomu; Hayashi, Katsuyoshi; Seyama, Michiko; Inoue, Suzuyo; Tamechika, Emi

    2012-01-01

    A passive pump consisting of integrated vertical capillaries has been developed for a microfluidic chip as an useful component with an excellent flow volume and flow rate. A fluidic chip built into a passive pump was used by connecting the bottoms of all the capillaries to a top surface consisting of a thin layer channel in the microfluidic chip where the thin layer channel depth was smaller than the capillary radius. As a result the vertical capillaries drew fluid cooperatively rather than independently, thus exerting the maximum suction efficiency at every instance. This meant that a flow rate was realized that exhibited little variation and without any external power or operation. A microfluidic chip built into this passive pump had the ability to achieve a quasi-steady rather than a rapidly decreasing flow rate, which is a universal flow characteristic in an ordinary capillary. PMID:23202035

  11. Balancing multiple constraints in model-data integration: Weights and the parameter block approach

    NASA Astrophysics Data System (ADS)

    Wutzler, T.; Carvalhais, N.

    2014-11-01

    Model data integration (MDI) studies are key to parameterize ecosystem models that synthesize our knowledge about ecosystem function. The use of diverse data sets, however, results in strongly imbalanced contributions of data streams with model fits favoring the largest data stream. This imbalance poses new challenges in the identification of model deficiencies. A standard approach for balancing is to attribute weights to different data streams in the cost function. However, this may result in overestimation of posterior uncertainty. In this study, we propose an alternative: the parameter block approach. The proposed method enables joint optimization of different blocks, i.e., subsets of the parameters, against particular data streams. This method is applicable when specific parameter blocks are related to processes that are more strongly associated with specific observations, i.e., data streams. A comparison of different approaches using simple artificial examples and the DALEC ecosystem model is presented. The unweighted inversion of a DALEC model variant, where artificial structural errors in photosynthesis calculation had been introduced, failed to reveal the resulting biases in fast processes (e.g., turnover). The posterior bias emerged only in parameters related to slower processes (e.g., carbon allocation) constrained by fewer data sets. On the other hand, when weighted or blocked approaches were used, the introduced biases were revealed, as expected, in parameters of fast processes. Ultimately, with the parameter block approach, the transfer of model error was diminished and at the same time the overestimation of posterior uncertainty associated with weighting was prevented.

  12. Integrating Multiple On-line Knowledge Bases for Disease-Lab Test Relation Extraction.

    PubMed

    Zhang, Yaoyun; Soysal, Ergin; Moon, Sungrim; Wang, Jingqi; Tao, Cui; Xu, Hua

    2015-01-01

    A computable knowledge base containing relations between diseases and lab tests would be a great resource for many biomedical informatics applications. This paper describes our initial step towards establishing a comprehensive knowledge base of disease and lab tests relations utilizing three public on-line resources. LabTestsOnline, MedlinePlus and Wikipedia are integrated to create a freely available, computable disease-lab test knowledgebase. Disease and lab test concepts are identified using MetaMap and relations between diseases and lab tests are determined based on source-specific rules. Experimental results demonstrate a high precision for relation extraction, with Wikipedia achieving the highest precision of 87%. Combining the three sources reached a recall of 51.40%, when compared with a subset of disease-lab test relations extracted from a reference book. Moreover, we found additional disease-lab test relations from on-line resources, indicating they are complementary to existing reference books for building a comprehensive disease and lab test relation knowledge base. PMID:26306271

  13. Using Multiple Instrument Measurements To Assess Integrated Water Vapor Path From A Multispectral Microwave Radiometer

    NASA Astrophysics Data System (ADS)

    Fallon, J.; Han, Z. T.; Gross, B.; Moshary, F.

    2013-12-01

    Microwave Radiometers are mounted on satellites and the ground to collect climatological data. While they provide very useful information about temperature, RH, and water vapor, radiometers should periodically be cross-referenced with other instruments to gauge the veracity of the data. Data available from the closest ground-based GPS receivers and sun photometers was plotted alongside, and used to analyze, data from City College's Microwave Radiometer. Observing all of the data together in a graph allows one to see some of the general advantages and disadvantages of each instrument. The GPS-MET seems to be accurate continuously, while AERONET data is not even available during the night and while there is cloud cover. Lastly, the microwave radiometer collects data continuously, but at certain times the data are about five times higher than the expected values, based on the values given by GPS-MET and AERONET. A good explanation for those spikes is rainfall. For times when it is not raining, the microwave radiometer at City College is sufficiently close to the integrated water vapor data collected by City College's sun photometer and data from Union, New Jersey and East Moriches, New York, as proven by statistical tools.

  14. Evolution of epithelial morphogenesis: phenotypic integration across multiple levels of biological organization

    PubMed Central

    Horn, Thorsten; Hilbrant, Maarten; Panfilio, Kristen A.

    2015-01-01

    Morphogenesis involves the dynamic reorganization of cell and tissue shapes to create the three-dimensional body. Intriguingly, different species have evolved different morphogenetic processes to achieve the same general outcomes during embryonic development. How are meaningful comparisons between species made, and where do the differences lie? In this Perspective, we argue that examining the evolution of embryonic morphogenesis requires the simultaneous consideration of different levels of biological organization: (1) genes, (2) cells, (3) tissues, and (4) the entire egg, or other gestational context. To illustrate the importance of integrating these levels, we use the extraembryonic epithelia of insects—a lineage-specific innovation and evolutionary hotspot—as an exemplary case study. We discuss how recent functional data, primarily from RNAi experiments targeting the Hox3/Zen and U-shaped group transcription factors, provide insights into developmental processes at all four levels. Comparisons of these data from several species both challenge and inform our understanding of homology, in assessing how the process of epithelial morphogenesis has itself evolved. PMID:26483835

  15. Towards a Phenological Assessment of California: Integrating Multiple Data Sources and the Implications for Statewide Analyses

    NASA Astrophysics Data System (ADS)

    Roth, K. L.; Haggerty, B. P.; Bradley, E. S.; Toomey, M. P.; Mazer, S. J.; Roberts, D.

    2009-12-01

    Recent advances in the collection and analysis of phenological data have led to a call by the USA National Phenology Network to organize a First National Phenological Assessment. Establishing a baseline measurement of phenology in California presents some challenges given its size, ecosystem diversity, and climate variation. A diverse suite of phenological monitoring techniques is thus required for an adequate characterization. Hence, we must identify existing data and the individuals and science networks which collect them. Here we present a survey of existing phenological data sources in California, including both research networks and citizen science groups. We provide the case study of Santa Barbara County to illustrate the potential for phenological assessment in an area with co-occurring datasets using three techniques. The first demonstrates a new and more precise quantitative approach to re-constructing historical flowering times using herbarium specimens - a valuable research tool in the absence of legacy data sets. The second study integrates two methods for measuring reproductive phenology (flowering as measured by field observations and by webcam imagery). Lastly, we describe and evaluate a dual-scale image analysis system (webcam and MODIS) for measuring seasonal greenness and explore its synergies with on-site micrometeorological observations. This study indicates promise for employing diverse data sources for phenological assessment in California and provides lessons for their effective application.

  16. Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi

    PubMed Central

    Tu, Kimberly C.; Bassler, Bonnie L.

    2007-01-01

    Quorum sensing is a cell–cell communication mechanism that bacteria use to collectively regulate gene expression and, at a higher level, to coordinate group behavior. In the bioluminescent marine bacterium Vibrio harveyi, sensory information from three independent quorum-sensing systems converges on the shared response regulator LuxO. When LuxO is phosphorylated, it activates the expression of a putative repressor that destabilizes the mRNA encoding the master quorum-sensing transcriptional regulator LuxR. In the closely related species Vibrio cholerae, this repressor was revealed to be the RNA chaperone Hfq together with four small regulatory RNAs (sRNAs) called Qrr1–4 (quorum regulatory RNA). Here, we identify five Qrr sRNAs that control quorum sensing in V. harveyi. Mutational analysis reveals that only four of the five Qrrs are required for destabilization of the luxR mRNA. Surprisingly, unlike in V. cholerae where the sRNAs act redundantly, in V. harveyi, the Qrr sRNAs function additively to control quorum sensing. This latter mechanism produces a gradient of LuxR that, in turn, enables differential regulation of quorum-sensing target genes. Other regulators appear to be involved in control of V. harveyi qrr expression, allowing the integration of additional sensory information into the regulation of quorum-sensing gene expression. PMID:17234887

  17. BioZone Exploting Source-Capability Information for Integrated Access to Multiple Bioinformatics Data Sources

    SciTech Connect

    Liu, L; Buttler, D; Paques, H; Pu, C; Critchlow

    2002-01-28

    Modern Bioinformatics data sources are widely used by molecular biologists for homology searching and new drug discovery. User-friendly and yet responsive access is one of the most desirable properties for integrated access to the rapidly growing, heterogeneous, and distributed collection of data sources. The increasing volume and diversity of digital information related to bioinformatics (such as genomes, protein sequences, protein structures, etc.) have led to a growing problem that conventional data management systems do not have, namely finding which information sources out of many candidate choices are the most relevant and most accessible to answer a given user query. We refer to this problem as the query routing problem. In this paper we introduce the notation and issues of query routing, and present a practical solution for designing a scalable query routing system based on multi-level progressive pruning strategies. The key idea is to create and maintain source-capability profiles independently, and to provide algorithms that can dynamically discover relevant information sources for a given query through the smart use of source profiles. Compared to the keyword-based indexing techniques adopted in most of the search engines and software, our approach offers fine-granularity of interest matching, thus it is more powerful and effective for handling queries with complex conditions.

  18. Integrating Multiple On-line Knowledge Bases for Disease-Lab Test Relation Extraction

    PubMed Central

    Zhang, Yaoyun; Soysal, Ergin; Moon, Sungrim; Wang, Jingqi; Tao, Cui; Xu, Hua

    2015-01-01

    A computable knowledge base containing relations between diseases and lab tests would be a great resource for many biomedical informatics applications. This paper describes our initial step towards establishing a comprehensive knowledge base of disease and lab tests relations utilizing three public on-line resources. LabTestsOnline, MedlinePlus and Wikipedia are integrated to create a freely available, computable disease-lab test knowledgebase. Disease and lab test concepts are identified using MetaMap and relations between diseases and lab tests are determined based on source-specific rules. Experimental results demonstrate a high precision for relation extraction, with Wikipedia achieving the highest precision of 87%. Combining the three sources reached a recall of 51.40%, when compared with a subset of disease-lab test relations extracted from a reference book. Moreover, we found additional disease-lab test relations from on-line resources, indicating they are complementary to existing reference books for building a comprehensive disease and lab test relation knowledge base. PMID:26306271

  19. High-throughput microfluidic device for single cell analysis using multiple integrated soft lithographic pumps.

    PubMed

    Patabadige, Damith E W; Mickleburgh, Tom; Ferris, Lorin; Brummer, Gage; Culbertson, Anne H; Culbertson, Christopher T

    2016-05-01

    The ability to accurately control fluid transport in microfluidic devices is key for developing high-throughput methods for single cell analysis. Making small, reproducible changes to flow rates, however, to optimize lysis and injection using pumps external to the microfluidic device are challenging and time-consuming. To improve the throughput and increase the number of cells analyzed, we have integrated previously reported micropumps into a microfluidic device that can increase the cell analysis rate to ∼1000 cells/h and operate for over an hour continuously. In order to increase the flow rates sufficiently to handle cells at a higher throughput, three sets of pumps were multiplexed. These pumps are simple, low-cost, durable, easy to fabricate, and biocompatible. They provide precise control of the flow rate up to 9.2 nL/s. These devices were used to automatically transport, lyse, and electrophoretically separate T-Lymphocyte cells loaded with Oregon green and 6-carboxyfluorescein. Peak overlap statistics predicted the number of fully resolved single-cell electropherograms seen. In addition, there was no change in the average fluorescent dye peak areas indicating that the cells remained intact and the dyes did not leak out of the cells over the 1 h analysis time. The cell lysate peak area distribution followed that expected of an asynchronous steady-state population of immortalized cells. PMID:26887846

  20. BioZoom: Exploiting Source-Capability Information for Integrated Access to Multiple Bioinformatics Data Sources

    SciTech Connect

    Liu, L; Buttler, D; Critchlow, T J; Han, W; Paques, H; Pu, C; Rocco, D

    2003-01-09

    Modern Bioinformatics data sources are widely used by molecular biologists for homology searching and new drug discovery. User-friendly and yet responsive access is one of the most desirable properties for integrated access to the rapidly growing, heterogeneous, and distributed collection of data sources. The increasing volume and diversity of digital information related to bioinformatics (such as genomes, protein sequences, protein structures, etc.) have led to a growing problem that conventional data management systems do not have, namely finding which information sources out of many candidate choices are the most relevant and most accessible to answer a given user query. We refer to this problem as the query routing problem. In this paper we introduce the notation and issues of query routing, and present a practical solution for designing a scalable query routing system based on multi-level progressive pruning strategies. The key idea is to create and maintain source-capability profiles independently, and to provide algorithms that can dynamically discover relevant information sources for a given query through the smart use of source profiles. Compared to the keyword-based indexing techniques adopted in most of the search engines and software, our approach offers fine-granularity of interest matching, thus it is more powerful and effective for handling queries with complex conditions.

  1. ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks

    PubMed Central

    Wang, Panwen; Qin, Jing; Qin, Yiming; Zhu, Yun; Wang, Lily Yan; Li, Mulin Jun; Zhang, Michael Q.; Wang, Junwen

    2015-01-01

    Transcription factors (TFs) play an important role in gene regulation. The interconnections among TFs, chromatin interactions, epigenetic marks and cis-regulatory elements form a complex gene transcription apparatus. Our previous work, ChIP-Array, combined TF binding and transcriptome data to construct gene regulatory networks (GRNs). Here we present an enhanced version, ChIP-Array 2, to integrate additional types of omics data including long-range chromatin interaction, open chromatin region and histone modification data to dissect more comprehensive GRNs involving diverse regulatory components. Moreover, we substantially extended our motif database for human, mouse, rat, fruit fly, worm, yeast and Arabidopsis, and curated large amount of omics data for users to select as input or backend support. With ChIP-Array 2, we compiled a library containing regulatory networks of 18 TFs/chromatin modifiers in mouse embryonic stem cell (mESC). The web server and the mESC library are publicly free and accessible athttp://jjwanglab.org/chip-array. PMID:25916854

  2. Multiple attractors of host-parasitoid models with integrated pest management strategies: eradication, persistence and outbreak.

    PubMed

    Tang, Sanyi; Xiao, Yanni; Cheke, Robert A

    2008-03-01

    Host-parasitoid models including integrated pest management (IPM) interventions with impulsive effects at both fixed and unfixed times were analyzed with regard to host-eradication, host-parasitoid persistence and host-outbreak solutions. The host-eradication periodic solution with fixed moments is globally stable if the host's intrinsic growth rate is less than the summation of the mean host-killing rate and the mean parasitization rate during the impulsive period. Solutions for all three categories can coexist, with switch-like transitions among their attractors showing that varying dosages and frequencies of insecticide applications and the numbers of parasitoids released are crucial. Periodic solutions also exist for models with unfixed moments for which the maximum amplitude of the host is less than the economic threshold. The dosages and frequencies of IPM interventions for these solutions are much reduced in comparison with the pest-eradication periodic solution. Our results, which are robust to inclusion of stochastic effects and with a wide range of parameter values, confirm that IPM is more effective than any single control tactic. PMID:18215410

  3. Integrating aerial geophysical data in multiple-point statistics simulations to assist groundwater flow models

    NASA Astrophysics Data System (ADS)

    Dickson, Neil E. M.; Comte, Jean-Christophe; Renard, Philippe; Straubhaar, Julien A.; McKinley, Jennifer M.; Ofterdinger, Ulrich

    2015-08-01

    The process of accounting for heterogeneity has made significant advances in statistical research, primarily in the framework of stochastic analysis and the development of multiple-point statistics (MPS). Among MPS techniques, the direct sampling (DS) method is tested to determine its ability to delineate heterogeneity from aerial magnetics data in a regional sandstone aquifer intruded by low-permeability volcanic dykes in Northern Ireland, UK. The use of two two-dimensional bivariate training images aids in creating spatial probability distributions of heterogeneities of hydrogeological interest, despite relatively `noisy' magnetics data (i.e. including hydrogeologically irrelevant urban noise and regional geologic effects). These distributions are incorporated into a hierarchy system where previously published density function and upscaling methods are applied to derive regional distributions of equivalent hydraulic conductivity tensor K. Several K models, as determined by several stochastic realisations of MPS dyke locations, are computed within groundwater flow models and evaluated by comparing modelled heads with field observations. Results show a significant improvement in model calibration when compared to a simplistic homogeneous and isotropic aquifer model that does not account for the dyke occurrence evidenced by airborne magnetic data. The best model is obtained when normal and reverse polarity dykes are computed separately within MPS simulations and when a probability threshold of 0.7 is applied. The presented stochastic approach also provides improvement when compared to a previously published deterministic anisotropic model based on the unprocessed (i.e. noisy) airborne magnetics. This demonstrates the potential of coupling MPS to airborne geophysical data for regional groundwater modelling.

  4. A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia

    PubMed Central

    Paugh, Steven W.; Paugh, Barbara S.; Rahmani, Mohamed; Kapitonov, Dmitri; Almenara, Jorge A.; Kordula, Tomasz; Milstien, Sheldon; Adams, Jeffrey K.; Zipkin, Robert E.; Grant, Steven

    2008-01-01

    The potent bioactive sphingolipid mediator, sphingosine-1-phosphate (S1P), is produced by 2 sphingosine kinase isoenzymes, SphK1 and SphK2. Expression of SphK1 is up-regulated in cancers, including leukemia, and associated with cancer progression. A screen of sphingosine analogs identified (2R,3S,4E)-N-methyl-5-(4′-pentylphenyl)-2-aminopent-4-ene-1,3-diol, designated SK1-I (BML-258), as a potent, water-soluble, isoenzyme-specific inhibitor of SphK1. In contrast to pan-SphK inhibitors, SK1-I did not inhibit SphK2, PKC, or numerous other protein kinases. SK1-I decreased growth and survival of human leukemia U937 and Jurkat cells, and enhanced apoptosis and cleavage of Bcl-2. Lethality of SK1-I was reversed by caspase inhibitors and by expression of Bcl-2. SK1-I not only decreased S1P levels but concomitantly increased levels of its proapoptotic precursor ceramide. Conversely, S1P protected against SK1-I–induced apoptosis. SK1-I also induced multiple perturbations in activation of signaling and survival-related proteins, including diminished phosphorylation of ERK1/2 and Akt. Expression of constitutively active Akt protected against SK1-I–induced apoptosis. Notably, SK1-I potently induced apoptosis in leukemic blasts isolated from patients with acute myelogenous leukemia but was relatively sparing of normal peripheral blood mononuclear leukocytes. Moreover, SK1-I markedly reduced growth of AML xenograft tumors. Our results suggest that specific inhibitors of SphK1 warrant attention as potential additions to the therapeutic armamentarium in leukemia. PMID:18511810

  5. Regulation of skeletal muscle capillary growth in exercise and disease.

    PubMed

    Haas, Tara L; Nwadozi, Emmanuel

    2015-12-01

    Capillaries, which are the smallest and most abundant type of blood vessel, form the primary site of gas, nutrient, and waste transfer between the vascular and tissue compartments. Skeletal muscle exhibits the capacity to generate new capillaries (angiogenesis) as an adaptation to exercise training, thus ensuring that the heightened metabolic demand of the active muscle is matched by an improved capacity for distribution of gases, nutrients, and waste products. This review summarizes the current understanding of the regulation of skeletal muscle capillary growth. The multi-step process of angiogenesis is coordinated through the integration of a diverse array of signals associated with hypoxic, metabolic, hemodynamic, and mechanical stresses within the active muscle. The contributions of metabolic and mechanical factors to the modulation of key pro- and anti-angiogenic molecules are discussed within the context of responses to a single aerobic exercise bout and short-term and long-term training. Finally, the paradoxical lack of angiogenesis in peripheral artery disease and diabetes and the implications for disease progression and muscle health are discussed. Future studies that emphasize an integrated analysis of the mechanisms that control skeletal muscle capillary growth will enable development of targeted exercise programs that effectively promote angiogenesis in healthy individuals and in patient populations. PMID:26554747

  6. Non-Bayesian Information Fusion for Integrating Hydrologic and Multiple Sets of Geophysical Data

    NASA Astrophysics Data System (ADS)

    Ozbek, M. M.; Pinder, G. F.

    2005-12-01

    Combination of geological, geophysical and geohydrological data derived from disparate sources is a cost-effective and scientifically challenging approach to maximizing information on the subsurface. Existing studies have limitations in that no universal methods are available for converting geophysical attributes to geohydrological ones due to the inconsistency in the methods of geophysical data acquisition and interpretation and the fact that the complementary nature of the geophysical methods are not exploited. Indeed, there is no single geophysical method effective in most environmental and subsurface conditions, and all are strongly scenario-dependent. Thus it becomes essential to characterize the information that each individual geophysical method provides in combination. Our approach explicitly quantifies and integrates into the characterization process the insight of a geophysicist on i) the individual capabilities that geophysical methods have and ii) what the meaning of the data is that they produce when interpreted collectively. A model based upon the mathematics of fuzzy set theory based approximate reasoning and of belief theory is used address the following problems: 1) the use of geological and hydrogeological knowledge that relates geological conditions to hydrogeological attributes for the creation of site specific a priori conductivity field in the presence of a limited amount of borehole data 2) the use of geophysical knowledge in the solution of the `geophysical data interpretation' problem defined as the synthesis of data generated by several geophysical methods to infer the true conditions of the soil and 3) the use of the inferred soil information to condition the a priori conductivity field. The approach is demonstrated through an application using real site data.

  7. An integrated pan-tropical biomass map using multiple reference datasets.

    PubMed

    Avitabile, Valerio; Herold, Martin; Heuvelink, Gerard B M; Lewis, Simon L; Phillips, Oliver L; Asner, Gregory P; Armston, John; Ashton, Peter S; Banin, Lindsay; Bayol, Nicolas; Berry, Nicholas J; Boeckx, Pascal; de Jong, Bernardus H J; DeVries, Ben; Girardin, Cecile A J; Kearsley, Elizabeth; Lindsell, Jeremy A; Lopez-Gonzalez, Gabriela; Lucas, Richard; Malhi, Yadvinder; Morel, Alexandra; Mitchard, Edward T A; Nagy, Laszlo; Qie, Lan; Quinones, Marcela J; Ryan, Casey M; Ferry, Slik J W; Sunderland, Terry; Laurin, Gaia Vaglio; Gatti, Roberto Cazzolla; Valentini, Riccardo; Verbeeck, Hans; Wijaya, Arief; Willcock, Simon

    2016-04-01

    We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1-km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N-23.4 S) of 375 Pg dry mass, 9-18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15-21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha(-1) vs. 21 and 28 Mg ha(-1) for the input maps). The fusion method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets. PMID:26499288

  8. On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities.

    PubMed

    Cai, Wei; Yang, Yongchao; Gao, Xumin; Yuan, Jialei; Yuan, Wei; Zhu, Hongbo; Wang, Yongjin

    2016-03-21

    We propose, fabricate and demonstrate on-chip photonic integration of suspended InGaN/GaN multiple quantum wells (MQWs) devices on the GaN-on-silicon platform. Both silicon removal and back wafer etching are conducted to obtain membrane-type devices, and suspended waveguides are used for the connection between p-n junction InGaN/GaN MQWs devices. As an in-plane data transmission system, the middle p-n junction InGaN/GaN MQWs device is used as a light emitting diode (LED) to deliver signals by modulating the intensity of the emitted light, and the other two devices act as photodetectors (PDs) to sense the light guided by the suspended waveguide and convert the photons into electrons, achieving 1 × 2 in-plane information transmission via visible light. Correspondingly, the three devices can function as independent PDs to realize multiple receivers for free space visible light communication. Further, the on-chip photonic platform can be used as an active electro-optical sensing system when the middle device acts as a PD and the other two devices serve as LEDs. The experimental results show that the auxiliary LED sources can enhance the amplitude of the induced photocurrent. PMID:27136794

  9. MUSI: an integrated system for identifying multiple specificity from very large peptide or nucleic acid data sets

    PubMed Central

    Kim, TaeHyung; Tyndel, Marc S.; Huang, Haiming; Sidhu, Sachdev S.; Bader, Gary D.; Gfeller, David; Kim, Philip M.

    2012-01-01

    Peptide recognition domains and transcription factors play crucial roles in cellular signaling. They bind linear stretches of amino acids or nucleotides, respectively, with high specificity. Experimental techniques that assess the binding specificity of these domains, such as microarrays or phage display, can retrieve thousands of distinct ligands, providing detailed insight into binding specificity. In particular, the advent of next-generation sequencing has recently increased the throughput of such methods by several orders of magnitude. These advances have helped reveal the presence of distinct binding specificity classes that co-exist within a set of ligands interacting with the same target. Here, we introduce a software system called MUSI that can rapidly analyze very large data sets of binding sequences to determine the relevant binding specificity patterns. Our pipeline provides two major advances. First, it can detect previously unrecognized multiple specificity patterns in any data set. Second, it offers integrated processing of very large data sets from next-generation sequencing machines. The results are visualized as multiple sequence logos describing the different binding preferences of the protein under investigation. We demonstrate the performance of MUSI by analyzing recent phage display data for human SH3 domains as well as microarray data for mouse transcription factors. PMID:22210894

  10. Decadal trends in global pelagic ocean chlorophyll: A new assessment integrating multiple satellites, in situ data, and models

    PubMed Central

    Gregg, Watson W; Rousseaux, Cécile S

    2014-01-01

    Quantifying change in ocean biology using satellites is a major scientific objective. We document trends globally for the period 1998–2012 by integrating three diverse methodologies: ocean color data from multiple satellites, bias correction methods based on in situ data, and data assimilation to provide a consistent and complete global representation free of sampling biases. The results indicated no significant trend in global pelagic ocean chlorophyll over the 15 year data record. These results were consistent with previous findings that were based on the first 6 years and first 10 years of the SeaWiFS mission. However, all of the Northern Hemisphere basins (north of 10° latitude), as well as the Equatorial Indian basin, exhibited significant declines in chlorophyll. Trend maps showed the local trends and their change in percent per year. These trend maps were compared with several other previous efforts using only a single sensor (SeaWiFS) and more limited time series, showing remarkable consistency. These results suggested the present effort provides a path forward to quantifying global ocean trends using multiple satellite missions, which is essential if we are to understand the state, variability, and possible changes in the global oceans over longer time scales. PMID:26213675

  11. Capillary electrophoresis for drug analysis

    NASA Astrophysics Data System (ADS)

    Lurie, Ira S.

    1999-02-01

    Capillary electrophoresis (CE) is a high resolution separation technique which is amenable to a wide variety of solutes, including compounds which are thermally degradable, non-volatile and highly polar, and is therefore well suited for drug analysis. Techniques which have been used in our laboratory include electrokinetic chromatography (ECC), free zone electrophoresis (CZE) and capillary electrochromatography (CEC). ECC, which uses a charged run buffer additive which migrates counter to osmotic flow, is excellent for many applications, including, drug screening and analyses of heroin, cocaine and methamphetamine samples. ECC approaches include the use of micelles and charged cyclodextrins, which allow for the separation of complex mixtures. Simultaneous separation of acidic, neutral and basic solutes and the resolution of optical isomers and positional isomers are possible. CZE has been used for the analysis of small ions (cations and anions) in heroin exhibits. For the ECC and CZE experiments performed in our laboratory, uncoated capillaries were used. In contrast, CEC uses capillaries packed with high performance liquid chromatography stationary phases, and offers both high peak capacities and unique selectivities. Applications include the analysis of cannabinoids and drug screening. Although CE suffers from limited concentration sensitivity, it is still applicable to trace analysis of drug samples, especially when using injection techniques such as stacking, or detection schemes such as laser induced fluorescence and extended pathlength UV.

  12. Capillary Rise in a Wedge

    ERIC Educational Resources Information Center

    Piva, M.

    2009-01-01

    In introductory-level physics courses, the concept of surface tension is often illustrated using the example of capillary rise in thin tubes. In this paper the author describes experiments conducted using a planar geometry created with two small plates forming a thin wedge. The distribution of the fluid entering the wedge can be studied as a…

  13. Gradient elution in capillary electrochromatography

    SciTech Connect

    Anex, D.; Rakestraw, D.J.; Yan, Chao; Dadoo, R.; Zare, R.N.

    1997-08-01

    In analogy to pressure-driven gradient techniques in high-performance liquid chromatography, a system has been developed for delivering electroosmotically-driven solvent gradients for capillary electrochromatography (CEC). Dynamic gradients with sub-mL/min flow rates are generated by merging two electroosmotic flows that are regulated by computer-controlled voltages. These flows are delivered by two fused-silica capillary arms attached to a T-connector, where they mix and then flow into a capillary column that has been electrokinetically packed with 3-mm reversed-phase particles. The inlet of one capillary arm is placed in a solution reservoir containing one mobile phase and the inlet of the other is placed in a second reservoir containing a second mobile phase. Two independent computer-controlled programmable high-voltage power supplies (0-50 kV)--one providing an increasing ramp and the other providing a decreasing ramp--are used to apply variable high-voltage potentials to the mobile phase reservoirs to regulate the electroosmotic flow in each arm. The ratio of the electroosmotic flow rates between the two arms is changed with time according to the computer-controlled voltages to deliver the required gradient profile to the separation column. Experiments were performed to confirm the composition of the mobile phase during a gradient run and to determine the change of the composition in response to the programmed voltage profile. To demonstrate the performance of electroosmotically-driven gradient elution in CEC, a mixture of 16 polycyclic aromatic hydrocarbons (PAHs) was separated in less than 90 minutes. This gradient technique is expected to be well-suited for generating not only solvent gradients in CEC, but also other types of gradients such as pH- and ionic-strength gradients in capillary electrokinetic separations and analyses.

  14. Development of a Multiple Input Integrated Pole-to-Pole Global CMORPH

    NASA Astrophysics Data System (ADS)

    Joyce, R.; Xie, P.

    2013-12-01

    A test system is being developed at NOAA Climate Prediction Center (CPC) to produce a passive microwave (PMW), IR-based, and model integrated high-resolution precipitation estimation on a 0.05olat/lon grid covering the entire globe from pole to pole. Experiments have been conducted for a summer Test Bed period using data for July and August of 2009. The pole-to-pole global CMORPH system is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). First, retrievals of instantaneous precipitation rates from PMW observations aboard nine low earth orbit (LEO) satellites are decoded and pole-to-pole mapped onto a 0.05olat/lon grid over the globe. Also precipitation estimates from LEO AVHRR retrievals are derived using a PDF matching of LEO IR with calibrated microwave combined (MWCOMB) precipitation retrievals. The motion vectors for the precipitating cloud systems are defined using information from both satellite IR observations and precipitation fields generated by the NCEP Climate Forecast System Reanalysis (CFSR). To this end, motion vectors are first computed for the CFSR hourly precipitation fields through cross-correlation analysis of consecutive hourly precipitation fields on the global T382 (~35 km) grid. In a similar manner, separate processing is also performed on satellite IR-based precipitation estimates to derive motion vectors from observations. A blended analysis of precipitating cloud motion vectors is then constructed through the combination of CFSR and satellite-derived vectors utilizing a two-dimensional optimal interpolation (2D-OI) method, in which CFSR-derived motion vectors are used as the first guess and subsequently satellite derived vectors modify the first guess. Weights used to generate the combinations are defined under the OI framework as a function of error statistics for the CFSR and satellite IR based motion vectors. The screened and calibrated PMW and AVHRR derived precipitation estimates are then separately

  15. Interfacial velocities and capillary pressure gradients during Haines jumps.

    PubMed

    Armstrong, Ryan T; Berg, Steffen

    2013-10-01

    Drainage is typically understood as a process where the pore space is invaded by a nonwetting phase pore-by-pore, the controlling parameters of which are represented by capillary number and mobility ratio. However, what is less understood and where experimental data are lacking is direct knowledge of the dynamics of pore drainage and the associated intrinsic time scales since the rate dependencies often observed with displacement processes are potentially dependent on these time scales. Herein, we study pore drainage events with a high speed camera in a micromodel system and analyze the dependency of interfacial velocity on bulk flow rate and spatial fluid configurations. We find that pore drainage events are cooperative, meaning that capillary pressure differences which extend over multiple pores directly affect fluid topology and menisci dynamics. Results suggest that not only viscous forces but also capillarity acts in a nonlocal way. Lastly, the existence of a pore morphological parameter where pore drainage transitions from capillary to inertial and/or viscous dominated is discussed followed by a discussion on capillary dispersion and time scale dependencies. We show that the displacement front is disperse when volumetric flow rate is less than the intrinsic time scale for a pore drainage event and becomes sharp when the flow rate is greater than the intrinsic time scale (i.e., overruns the pore drainage event), which clearly shows how pore-scale parameters influence macroscale flow behavior. PMID:24229279

  16. BEAUTY: an enhanced BLAST-based search tool that integrates multiple biological information resources into sequence similarity search results.

    PubMed

    Worley, K C; Wiese, B A; Smith, R F

    1995-09-01

    BEAUTY (BLAST enhanced alignment utility) is an enhanced version of the NCBI's BLAST data base search tool that facilitates identification of the functions of matched sequences. We have created new data bases of conserved regions and functional domains for protein sequences in NCBI's Entrez data base, and BEAUTY allows this information to be incorporated directly into BLAST search results. A Conserved Regions Data Base, containing the locations of conserved regions within Entrez protein sequences, was constructed by (1) clustering the entire data base into families, (2) aligning each family using our PIMA multiple sequence alignment program, and (3) scanning the multiple alignments to locate the conserved regions within each aligned sequence. A separate Annotated Domains Data Base was constructed by extracting the locations of all annotated domains and sites from sequences represented in the Entrez, PROSITE, BLOCKS, and PRINTS data bases. BEAUTY performs a BLAST search of those Entrez sequences with conserved regions and/or annotated domains. BEAUTY then uses the information from the Conserved Regions and Annotated Domains data bases to generate, for each matched sequence, a schematic display that allows one to directly compare the relative locations of (1) the conserved regions, (2) annotated domains and sites, and (3) the locally aligned regions matched in the BLAST search. In addition, BEAUTY search results include World-Wide Web hypertext links to a number of external data bases that provide a variety of additional types of information on the function of matched sequences. This convenient integration of protein families, conserved regions, annotated domains, alignment displays, and World-Wide Web resources greatly enhances the biological informativeness of sequence similarity searches. BEAUTY searches can be performed remotely on our system using the "BCM Search Launcher" World-Wide Web pages (URL is < http:/ /gc.bcm.tmc.edu:8088/ search

  17. Scaling filtering and multiplicative cascade information integration techniques for geological, geophysical and geochemical data processing and geological feature recognition

    NASA Astrophysics Data System (ADS)

    Cheng, Q.

    2013-12-01

    This paper introduces several techniques recently developed based on the concepts of multiplicative cascade processes and multifractals for processing exploration geochemical and geophysical data for recognition of geological features and delineation of target areas for undiscovered mineral deposits. From a nonlinear point of view extreme geo-processes such as cloud formation, rainfall, hurricanes, flooding, landslides, earthquakes, igneous activities, tectonics and mineralization often show singular property that they may result in anomalous amounts of energy release or mass accumulation that generally are confined to narrow intervals in space or time. The end products of these non-linear processes have in common that they can be modeled as fractals or multifractals. Here we show that the three fundamental concepts of scaling in the context of multifractals: singularity, self-similarity and fractal dimension spectrum, make multifractal theory and methods useful for geochemical and geophysical data processing for general purposes of geological features recognition. These methods include: a local singularity analysis based on a area-density (C-A) multifractal model used as a scaling high-pass filtering technique capable of extracting weak signals caused by buried geological features; a suite of multifractal filtering techniques based on spectrum density - area (S-A) multifractal models implemented in various domain including frequency domain can be used for unmixing geochemical or geophysical fields according to distinct generalized self-similarities characterized in certain domain; and multiplicative cascade processes for integration of diverse evidential layers of information for prediction of point events such as location of mineral deposits. It is demonstrated by several case studies involving Fe, Sn, Mo-Ag and Mo-W mineral deposits that singularity method can be utilized to process stream sediment/soil geochemical data and gravity/aeromagnetic data as high

  18. Capillary electrophoresis systems and methods

    DOEpatents

    Dorairaj, Rathissh; Keynton, Robert S.; Roussel, Thomas J.; Crain, Mark M.; Jackson, Douglas J.; Walsh, Kevin M.; Naber, John F.; Baldwin, Richard P.; Franco, Danielle B.

    2011-08-02

    An embodiment of the invention is directed to a capillary electrophoresis apparatus comprising a plurality of separation micro-channels. A sample loading channel communicates with each of the plurality of separation channels. A driver circuit comprising a plurality of electrodes is configured to induce an electric field across each of the plurality of separation channels sufficient to cause analytes in the samples to migrate along each of the channels. The system further comprises a plurality of detectors configured to detect the analytes.

  19. Capillary Flow Limitations of Nanowicks

    NASA Astrophysics Data System (ADS)

    Zhang, Conan; Hidrovo, Carlos

    2009-11-01

    Thermal management is an important issue in microelectronic systems. The inaccessibility and diminishing size of these systems, however, requires that the heat management components be reliable and compact, such as is the case with heat pipes. In most intermediate temperature heat pipes typically found in microelectronics, the critical heat flux is governed by the capillary limit. Given the projected increases in computer chip heat fluxes, it is important to investigate the use of nanowicks as a means of raising this capillary limit. A theoretical model was developed to simulate flow through a vertical nanopillar array by balancing the capillary driving forces and the viscous losses in a quasi-steady state dynamic formulation. Based on this model, the maximum mass flow and its critical heat flux can be found for a wick given its microstructure geometry. These values were also found experimentally for commercially available wicks and nanowicks. We found that nanowicks provide lower mass flow rates than conventional wicks, mainly due to a reduced cross section. However, nanowicks achieved higher velocities and show promise over some conventional heat pipe wicks.

  20. Treelike networks accelerating capillary flow

    NASA Astrophysics Data System (ADS)

    Shou, Dahua; Ye, Lin; Fan, Jintu

    2014-05-01

    Transport in treelike networks has received wide attention in natural systems, oil recovery, microelectronic cooling systems, and textiles. Existing studies are focused on transport behaviors under a constant potential difference (including pressure, temperature, and voltage) in a steady state [B. Yu and B. Li, Phys. Rev. E 73, 066302 (2006), 10.1103/PhysRevE.73.066302; J. Chen, B. Yu, P. Xu, and Y. Li, Phys. Rev. E 75, 056301 (2007), 10.1103/PhysRevE.75.056301]. However, dynamic (time-dependent) transport in such systems has rarely been concerned. In this work, we theoretically investigate the dynamics of capillary flow in treelike networks and design the distribution of radius and length of local branches for the fastest capillary flow. It is demonstrated that capillary flow in the optimized tree networks is faster than in traditional parallel tube nets under fixed constraints. As well, the flow time of the liquid is found to increase approximately linearly with penetration distance, which differs from Washburn's classic description that flow time increases as the square of penetration distance in a uniform tube.

  1. Capillary Electrophoresis - Optical Detection Systems

    SciTech Connect

    Sepaniak, M. J.

    2001-08-06

    Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatography relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.

  2. Treelike networks accelerating capillary flow.

    PubMed

    Shou, Dahua; Ye, Lin; Fan, Jintu

    2014-05-01

    Transport in treelike networks has received wide attention in natural systems, oil recovery, microelectronic cooling systems, and textiles. Existing studies are focused on transport behaviors under a constant potential difference (including pressure, temperature, and voltage) in a steady state [B. Yu and B. Li, Phys. Rev. E 73, 066302 (2006); J. Chen, B. Yu, P. Xu, and Y. Li, Phys. Rev. E 75, 056301 (2007)]. However, dynamic (time-dependent) transport in such systems has rarely been concerned. In this work, we theoretically investigate the dynamics of capillary flow in treelike networks and design the distribution of radius and length of local branches for the fastest capillary flow. It is demonstrated that capillary flow in the optimized tree networks is faster than in traditional parallel tube nets under fixed constraints. As well, the flow time of the liquid is found to increase approximately linearly with penetration distance, which differs from Washburn's classic description that flow time increases as the square of penetration distance in a uniform tube. PMID:25353880

  3. Viscous peeling with capillary suction

    NASA Astrophysics Data System (ADS)

    Peng, Gunnar; Lister, John

    2014-11-01

    If an elastic tape is stuck to a rigid substrate by a thin film of viscous fluid and then peeled off by pulling at a small angle to the horizontal, then both viscous and capillary forces affect the peeling speed (McEwan and Taylor, 1966). If there is no capillary meniscus (e.g. if the peeling is due to viscous fluid being injected under the tape), then the peeling speed is given by a Cox-Voinov-like law, and is an increasing function of the peeling angle. We show that, with a meniscus present, the effect of the capillary forces is to suck down the tape, reducing the effective peeling angle and hence the peeling speed. When surface tension dominates and the peeling speed tends to zero, the system transitions to a new state whose time-evolution can be described by a system of coupled ordinary differential equations. These asymptotic results are confirmed by numerical calculations. Similar results hold for the peeling-by-bending of elastic beams, with ``angle'' replaced by ``curvature'' (i.e. bending moment).

  4. Validation of STR typing by capillary electrophoresis.

    PubMed

    Moretti, T R; Baumstark, A L; Defenbaugh, D A; Keys, K M; Brown, A L; Budowle, B

    2001-05-01

    With the use of capillary electrophoresis (CE), high-resolution electrophoretic separation of short tandem repeat (STR) loci can be achieved in a semiautomated fashion. Laser-induced detection of fluorescently labeled PCR products and multicolor analysis enable the rapid generation of multilocus DNA profiles. In this study, conditions for typing PCR-amplified STR loci by capillary electrophoresis were investigated using the ABI Prism 310 Genetic Analyzer (Applied Biosystems). An internal size standard was used with each run to effectively normalize mobility differences among injections. Alleles were designated by comparison to allelic ladders that were run with each sample set. Multiple runs of allelic ladders and of amplified samples demonstrate that allele sizes were reproducible, with standard deviations typically less than 0.12 bases for fragments up to 317 bases in length (largest allele analyzed) separated in a 47 cm capillary. Therefore, 99.7% of all alleles that are the same length should fall within the measurement error window of +/- 0.36 bases. Microvariants of the tetranucleotide repeats were also accurately typed by the analytical software. Alleles differing in size by one base could be resolved in two-donor DNA mixtures in which the minor component comprised > or = 5% of the total DNA. Furthermore, the quantitative data format (i.e., peak amplitude) can in some instances assist in determining individual STR profiles in mixed samples. DNA samples from previously typed cases (typed for RFLP, AmpliType PM+DQA1, and/or D1S80) were amplified using AmpFlSTR Profiler Plus and COfiler and were evaluated using the ABI Prism 310. Most samples yielded typable results. Compared with previously determined results for other loci, there were no discrepancies as to the inclusion or exclusion of suspects or victims. CE thus provides efficient separation, resolution, sensitivity and precision, and the analytical software provides reliable genotyping of STR loci. The

  5. Progression of Diabetic Capillary Occlusion: A Model

    PubMed Central

    Gens, John Scott; Glazier, James A.; Burns, Stephen A.; Gast, Thomas J.

    2016-01-01

    An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions. PMID:27300722

  6. Fluid Delivery System For Capillary Electrophoretic Applications.

    DOEpatents

    Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.

    2002-04-23

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  7. Development of semi-sphere field-of-view sun sensor integrated with multiple linear CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Yao-kun; Li, Bin; Zhang, Fan

    2014-11-01

    Sun sensor is a key device in satellite's attitude determination system. It acquires satellite's attitude information by measuring sun light direction. Compared with area array CMOS sun sensor, the linear CMOS sun sensor has the advantages of low power consumption, light weight and relatively simple algorithm. Considering the pixel number, power consumption and efficiency of output, most sun sensors equipped with a single photosensitive unit usually have (+/-60)x(+/-60) field of view(FOV). Satellites usually use multiple sun sensors for semi-sphere field of view in total to meet the need of attitude measurement in all directions. Considering the need of large-scale FOV measurement and high integration level, this paper proposes a semi-sphere FOV sun sensor, of which coverage area can be (+/-90)x(+/-90) . A prototype has been made and the calibration of key component has been conducted. By integrating four photosensitive units, the semi-sphere FOV sun sensor is achieved, as a result, the demand of high integration can be realized for a micro-satellite device. The photosensitive unit consists of an N-shape slit mask and a linear CMOS image sensor. An N-shape slit model is established to acquire biaxial sun angles from analyzing the shift of 3 peak values from the image of the linear sensor. Embedded system has been designed and developed, in which the MCU control four photosensitive units. Calibration of one photosensitive unit, which is the key step in the process of the whole calibration of semi-sphere FOV sun sensor, has been conducted. As a result of the symmetry of N-shape slit, initial position of the linear image sensor can be fixed. Due to the installation error and machining deviation, centroid algorithm and data gridding technique is adopted to improve the accuracy. Experiments show that the single photosensitive unit can reach an angle accuracy of 0.1625°. Consequently, from the point of significant component in the sun sensor, initial calibration ensures

  8. Capillary Versus Aspiration Biopsy: Effect of Needle Size and Length on the Cytopathological Specimen Quality

    SciTech Connect

    Hopper, Kenneth D.; Grenko, Ronald T.; Fisher, Alicia I.; TenHave, Thomas R.

    1996-09-15

    Purpose: To test the value of the nonaspiration, or capillary, biopsy technique by experimental comparison with the conventional fine-needle aspiration technique using various needle gauges and lengths. Methods: On fresh hepatic and renal tissue from five autopsies, multiple biopsy specimens were taken with 20, 22, and 23-gauge Chiba needles of 5, 10, 15, and 20-cm length, using the aspiration technique and the capillary technique. The resultant specimens were graded on the basis of a grading scheme by a cytopathologist who was blinded to the biopsy technique. Results: The capillary technique obtained less background blood or clot which could obscure diagnostic tissue, although not significantly different from the aspiration technique (p= 0.2). However, for the amount of cellular material obtained, retention of appropriate architecture, and mean score, the capillary technique performed statistically worse than aspiration biopsy (p < 0.01). In addition, with decreasing needle caliber (increasing needle gauge) and increasing length, the capillary biopsy was inferior to the aspiration biopsy. Conclusion: The capillary biopsy technique is inferior to the aspiration technique according to our study. When the capillary technique is to be applied, preference should be given to larger caliber, shorter needles.

  9. A Chip-Capillary Hybrid Device for Automated Transfer of Sample Pre-Separated by Capillary Isoelectric Focusing to Parallel Capillary Gel Electrophoresis for Two-Dimensional Protein Separation

    PubMed Central

    Lu, Joann J.; Wang, Shili; Li, Guanbin; Wang, Wei; Pu, Qiaosheng; Liu, Shaorong

    2012-01-01

    In this report, we introduce a chip-capillary hybrid device to integrate capillary isoelectric focusing (CIEF) with parallel capillary sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE) or capillary gel electrophoresis (CGE) toward automating two-dimensional (2D) protein separations. The hybrid device consists of three chips that are butted together. The middle chip can be moved between two positions to re-route the fluidic paths, which enables the performance of CIEF and injection of proteins partially resolved by CIEF to CGE capillaries for parallel CGE separations in a continuous and automated fashion. Capillaries are attached to the other two chips to facilitate CIEF and CGE separations and to extend the effective lengths of CGE columns. Specifically, we illustrate the working principle of the hybrid device, develop protocols for producing and preparing the hybrid device, and demonstrate the feasibility of using this hybrid device for automated injection of CIEF-separated sample to parallel CGE for 2D protein separations. Potentials and problems associated with the hybrid device are also discussed. PMID:22830584

  10. OVA: integrating molecular and physical phenotype data from multiple biomedical domain ontologies with variant filtering for enhanced variant prioritization

    PubMed Central

    Antanaviciute, Agne; Watson, Christopher M.; Harrison, Sally M.; Lascelles, Carolina; Crinnion, Laura; Markham, Alexander F.; Bonthron, David T.; Carr, Ian M.

    2015-01-01

    Motivation: Exome sequencing has become a de facto standard method for Mendelian disease gene discovery in recent years, yet identifying disease-causing mutations among thousands of candidate variants remains a non-trivial task. Results: Here we describe a new variant prioritization tool, OVA (ontology variant analysis), in which user-provided phenotypic information is exploited to infer deeper biological context. OVA combines a knowledge-based approach with a variant-filtering framework. It reduces the number of candidate variants by considering genotype and predicted effect on protein sequence, and scores the remainder on biological relevance to the query phenotype. We take advantage of several ontologies in order to bridge knowledge across multiple biomedical domains and facilitate computational analysis of annotations pertaining to genes, diseases, phenotypes, tissues and pathways. In this way, OVA combines information regarding molecular and physical phenotypes and integrates both human and model organism data to effectively prioritize variants. By assessing performance on both known and novel disease mutations, we show that OVA performs biologically meaningful candidate variant prioritization and can be more accurate than another recently published candidate variant prioritization tool. Availability and implementation: OVA is freely accessible at http://dna2.leeds.ac.uk:8080/OVA/index.jsp Supplementary information: Supplementary data are available at Bioinformatics online. Contact: umaan@leeds.ac.uk PMID:26272982

  11. Many Is Better Than One: An Integration of Multiple Simple Strategies for Accurate Lung Segmentation in CT Images

    PubMed Central

    Zhao, Minghua; Liu, Yonghong; Feng, Yaning; Zhang, Ming; He, Lifeng; Suzuki, Kenji

    2016-01-01

    Accurate lung segmentation is an essential step in developing a computer-aided lung disease diagnosis system. However, because of the high variability of computerized tomography (CT) images, it remains a difficult task to accurately segment lung tissue in CT slices using a simple strategy. Motived by the aforementioned, a novel CT lung segmentation method based on the integration of multiple strategies was proposed in this paper. Firstly, in order to avoid noise, the input CT slice was smoothed using the guided filter. Then, the smoothed slice was transformed into a binary image using an optimized threshold. Next, a region growing strategy was employed to extract thorax regions. Then, lung regions were segmented from the thorax regions using a seed-based random walk algorithm. The segmented lung contour was then smoothed and corrected with a curvature-based correction method on each axis slice. Finally, with the lung masks, the lung region was automatically segmented from a CT slice. The proposed method was validated on a CT database consisting of 23 scans, including a number of 883 2D slices (the number of slices per scan is 38 slices), by comparing it to the commonly used lung segmentation method. Experimental results show that the proposed method accurately segmented lung regions in CT slices.

  12. MULTIPASS, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways.

    PubMed

    Schmidt, Romy; Schippers, Jos H M; Mieulet, Delphine; Obata, Toshihiro; Fernie, Alisdair R; Guiderdoni, Emmanuel; Mueller-Roeber, Bernd

    2013-10-01

    Growth regulation is an important aspect of plant adaptation during environmental perturbations. Here, the role of MULTIPASS (OsMPS), an R2R3-type MYB transcription factor of rice, was explored. OsMPS is induced by salt stress and expressed in vegetative and reproductive tissues. Over-expression of OsMPS reduces growth under non-stress conditions, while knockdown plants display increased biomass. OsMPS expression is induced by abscisic acid and cytokinin, but is repressed by auxin, gibberellin and brassinolide. Growth retardation caused by OsMPS over-expression is partially restored by auxin application. Expression profiling revealed that OsMPS negatively regulates the expression of EXPANSIN (EXP) and cell-wall biosynthesis as well as phytohormone signaling genes. Furthermore, the expression of OsMPS-dependent genes is regulated by auxin, cytokinin and abscisic acid. Moreover, we show that OsMPS is a direct upstream regulator of OsEXPA4, OsEXPA8, OsEXPB2, OsEXPB3, OsEXPB6 and the endoglucanase genes OsGLU5 and OsGLU14. The multiple responses of OsMPS and its target genes to various hormones suggest an integrative function of OsMPS in the cross-talk between phytohormones and the environment to regulate adaptive growth. PMID:23855375

  13. A novel molecule integrating therapeutic and diagnostic activities reveals multiple aspects of stem cell-based therapy.

    PubMed

    Hingtgen, Shawn D; Kasmieh, Randa; van de Water, Jeroen; Weissleder, Ralph; Shah, Khalid

    2010-04-01

    Stem cells are promising therapeutic delivery vehicles; however pre-clinical and clinical applications of stem cell-based therapy would benefit significantly from the ability to simultaneously determine therapeutic efficacy and pharmacokinetics of therapies delivered by engineered stem cells. In this study, we engineered and screened numerous fusion variants that contained therapeutic (TRAIL) and diagnostic (luciferase) domains designed to allow simultaneous investigation of multiple events in stem cell-based therapy in vivo. When various stem cell lines were engineered with the optimized molecule, SRL(O)L(2)TR, diagnostic imaging showed marked differences in the levels and duration of secretion between stem cell lines, while the therapeutic activity of the molecule showed the different secretion levels translated to significant variability in tumor cell killing. In vivo, simultaneous diagnostic and therapeutic monitoring revealed that stem cell-based delivery significantly improved pharmacokinetics and anti-tumor effectiveness of the therapy compared to intravenous or intratumoral delivery. As treatment for highly malignant brain tumor xenografts, tracking SRL(O)L(2)TR showed stable stem cell-mediated delivery significantly regressed peripheral and intracranial tumors. Together, the integrated diagnostic and therapeutic properties of SRL(O)L(2)TR answer critical questions necessary for successful utilization of stem cells as novel therapeutic vehicles. PMID:20127797

  14. Circulation in the southern Great Barrier Reef studied through an integration of multiple remote sensing and in situ measurements

    NASA Astrophysics Data System (ADS)

    Mao, Yadan; Luick, John L.

    2014-03-01

    New mechanisms for stratification and upwelling in the southern Great Barrier Reef (GBR) are identified, and dynamic details of Capricorn Eddy, a transient feature located off the shelf at the southern extremity of the GBR, are revealed using the newly available surface current from High Frequency (HF) radar combined with other remote sensing and mooring data. The HF radar surface currents were used for tidal harmonic analysis and current-wind correlation analysis. These analyses, combined with Sea Surface Temperature (SST) data, mooring data, and altimetry-based geostrophic currents, enabled the effects of forcing from the large-scale oceanic currents (including the East Australian Current (EAC)), wind, and tides in a topographically complex flow regime to be separately identified. Within the indentation region where the width of the shelf abruptly narrows, current is strongly coupled with the EAC. Here strong residual flows, identified on current maps and SST images, fall into three patterns: southward flow, northwestward flow, and an eddy. Multiple data sets shed light on the prerequisite for the formation of the eddy, the reasons for its geometric variation, and its evolution with time. Intrusions of the eddy onto the shelf result in stratification characterized by a significant increase of surface temperature. Upwelling driven by wind or oceanic inflow is shown to cause stratification of previously well-mixed shelf water. The upwelling appears to be associated with equatorward-traveling coastal-trapped waves. The integrative method of analysis embodied here is applicable to other coastal regions with complex circulation.

  15. High-resolution microbial community reconstruction by integrating short reads from multiple 16S rRNA regions.

    PubMed

    Amir, Amnon; Zeisel, Amit; Zuk, Or; Elgart, Michael; Stern, Shay; Shamir, Ohad; Turnbaugh, Peter J; Soen, Yoav; Shental, Noam

    2013-12-01

    The emergence of massively parallel sequencing technology has revolutionized microbial profiling, allowing the unprecedented comparison of microbial diversity across time and space in a wide range of host-associated and environmental ecosystems. Although the high-throughput nature of such methods enables the detection of low-frequency bacteria, these advances come at the cost of sequencing read length, limiting the phylogenetic resolution possible by current methods. Here, we present a generic approach for integrating short reads from large genomic regions, thus enabling phylogenetic resolution far exceeding current methods. The approach is based on a mapping to a statistical model that is later solved as a constrained optimization problem. We demonstrate the utility of this method by analyzing human saliva and Drosophila samples, using Illumina single-end sequencing of a 750 bp amplicon of the 16S rRNA gene. Phylogenetic resolution is significantly extended while reducing the number of falsely detected bacteria, as compared with standard single-region Roche 454 Pyrosequencing. Our approach can be seamlessly applied to simultaneous sequencing of multiple genes providing a higher resolution view of the composition and activity of complex microbial communities. PMID:24214960

  16. High-resolution microbial community reconstruction by integrating short reads from multiple 16S rRNA regions

    PubMed Central

    Amir, Amnon; Zeisel, Amit; Zuk, Or; Elgart, Michael; Stern, Shay; Shamir, Ohad; Turnbaugh, Peter J.; Soen, Yoav; Shental, Noam

    2013-01-01

    The emergence of massively parallel sequencing technology has revolutionized microbial profiling, allowing the unprecedented comparison of microbial diversity across time and space in a wide range of host-associated and environmental ecosystems. Although the high-throughput nature of such methods enables the detection of low-frequency bacteria, these advances come at the cost of sequencing read length, limiting the phylogenetic resolution possible by current methods. Here, we present a generic approach for integrating short reads from large genomic regions, thus enabling phylogenetic resolution far exceeding current methods. The approach is based on a mapping to a statistical model that is later solved as a constrained optimization problem. We demonstrate the utility of this method by analyzing human saliva and Drosophila samples, using Illumina single-end sequencing of a 750 bp amplicon of the 16S rRNA gene. Phylogenetic resolution is significantly extended while reducing the number of falsely detected bacteria, as compared with standard single-region Roche 454 Pyrosequencing. Our approach can be seamlessly applied to simultaneous sequencing of multiple genes providing a higher resolution view of the composition and activity of complex microbial communities. PMID:24214960

  17. Detachable strong cation exchange monolith, integrated with capillary zone electrophoresis and coupled with pH gradient elution, produces improved sensitivity and numbers of peptide identifications during bottom-up analysis of complex proteomes.

    PubMed

    Zhang, Zhenbin; Yan, Xiaojing; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J

    2015-04-21

    A detachable sulfonate-silica hybrid strong cation-exchange monolith was synthesized in a fused silica capillary, and used for solid phase extraction with online pH gradient elution during capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) proteomic analysis. Tryptic digests were prepared in 50 mM formic acid and loaded onto the strong cation-exchange monolith. Fractions were eluted using a series of buffers with lower concentration but higher pH values than the 50 mM formic acid background electrolyte. This combination of elution and background electrolytes results in both sample stacking and formation of a dynamic pH junction and allows use of relatively large elution buffer volumes while maintaining reasonable peak efficiency and resolution. A series of five pH bumps were applied to elute E. coli tryptic peptides from the monolith, followed by analysis using CZE coupled to an LTQ-Orbitrap Velos mass spectrometer; 799 protein groups and 3381 peptides were identified from 50 ng of the digest in a 2.5 h analysis, which approaches the identification rate for this organism that was obtained with an Orbitrap Fusion. We attribute the improved numbers of peptide and protein identifications to the efficient fractionation by the online pH gradient elution, which decreased the complexity of the sample in each elution step and improved the signal intensity of low abundance peptides. We also performed a comparative analysis using a nanoACQUITY UltraPerformance LCH system. Similar numbers of protein and peptide identifications were produced by the two methods. Protein identifications showed significant overlap between the two methods, whereas peptide identifications were complementary. PMID:25822566

  18. Integrating Multiple Intelligences and Learning Styles on Solving Problems, Achievement in, and Attitudes towards Math in Six Graders with Learning Disabilities in Cooperative Groups

    ERIC Educational Resources Information Center

    Eissa, Mourad Ali; Mostafa, Amaal Ahmed

    2013-01-01

    This study investigated the effect of using differentiated instruction by integrating multiple intelligences and learning styles on solving problems, achievement in, and attitudes towards math in six graders with learning disabilities in cooperative groups. A total of 60 students identified with LD were invited to participate. The sample was…

  19. The Effects of Student Multiple Intelligence Preference on Integration of Earth Science Concepts and Knowledge within a Middle Grades Science Classroom.

    ERIC Educational Resources Information Center

    Cutshall, Lisa Christine

    This research was conducted in an eastern Tennessee 8th grade science classroom with 99 students participating. The action research project attempted to examine an adolescent science student's integration of science concepts within a project-based setting using the multiple intelligence theory. In an effort to address the national science…

  20. Capillary Phenomena at Nanoscales: Electrowetting and Capillary Adhesion

    NASA Astrophysics Data System (ADS)

    Robbins, Mark

    2011-11-01

    Theories of capillary phenomena have traditionally been based on continuum approximations that break down as dimensions shrink to nanometer scales. Molecular simulations are used to test the limits of continuum theory in electrowetting on dielectric (EWOD) and capillary adhesion between solids. In EWOD, a fluid drop is separated from an electrode by a dielectric. Increasing the voltage V between drop and electrode, decreases the contact angle θ, allowing the droplet to be manipulated. Simulations of nanoscale drops show the same behavior as experiments on millimeter drops. The contact angle follows the continuum Young-Lippmann equation (YLE) at low voltages and then saturates. The saturation mechanism has been difficult to identify in experiments. Simulations show that charged molecules are pulled from the drop by large electrostatic forces near the contact line. Saturation can be delayed by increasing molecular binding, lowering temperature or increasing dielectric constant. A local force balance equation is derived that agrees with the YLE below saturation and remains valid after saturation. Simulations of capillary adhesion examined the force between a spherical tip of radius R and a flat substrate. The shape of the meniscus agrees remarkably well with continuum theory down to nanometer separations, as does the adhesive force from interfacial tension. However, the total force may deviate by factors of two or have the opposite sign. While the component of the pressure along the substrate agrees with the Laplace pressure from continuum theory, the out-of âplane component does not. There may also be significant force oscillations associated with layering near the solids. The elastic response of the solid has little affect on adhesive forces. This material is based upon work supported by National Science Foundation Grant No. CMS-0103408.

  1. Capillary pumped loop body heat exchanger

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  2. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices.

    PubMed

    Hartmann, Daniel M; Nevill, J Tanner; Pettigrew, Kenneth I; Votaw, Gregory; Kung, Pang-Jen; Crenshaw, Hugh C

    2008-04-01

    Microfluidic chips require connections to larger macroscopic components, such as light sources, light detectors, and reagent reservoirs. In this article, we present novel methods for integrating capillaries, optical fibers, and wires with the channels of microfluidic chips. The method consists of forming planar interconnect channels in microfluidic chips and inserting capillaries, optical fibers, or wires into these channels. UV light is manually directed onto the ends of the interconnects using a microscope. UV-curable glue is then allowed to wick to the end of the capillaries, fibers, or wires, where it is cured to form rigid, liquid-tight connections. In a variant of this technique, used with light-guiding capillaries and optical fibers, the UV light is directed into the capillaries or fibers, and the UV-glue is cured by the cone of light emerging from the end of each capillary or fiber. This technique is fully self-aligned, greatly improves both the quality and the manufacturability of the interconnects, and has the potential to enable the fabrication of interconnects in a fully automated fashion. Using these methods, including a semi-automated implementation of the second technique, over 10,000 interconnects have been formed in almost 2000 microfluidic chips made of a variety of rigid materials. The resulting interconnects withstand pressures up to at least 800psi, have unswept volumes estimated to be less than 10 femtoliters, and have dead volumes defined only by the length of the capillary. PMID:18369517

  3. Sub-wavelength fluorescent polymer coatings to convert standard glass capillaries into robust microfluidic refractometric sensors

    NASA Astrophysics Data System (ADS)

    Rowland, Kristopher J.; François, Alexandre; Hoffmann, Peter; Monro, Tanya M.

    2013-03-01

    A capillary microresonator platform for label-free refractometric sensing is demonstrated by coating the interior of thick-walled silica capillaries with a sub-wavelength layer of high refractive index, dye-doped polymer. No intermediate processing, such as etching or tapering, of the capillary is required. Side illumination and detection of the polymer layer reveals a fluorescence spectrum that is periodically modulated by the presence of whispering gallery modes within the layer. The fabricated capillary resonators exhibited sensitivities to changes in internal refractive index of up to 29.44 nm/RIU, demonstrated by flowing through aqueous dilutions of glucose. Thick walled capillaries are used in order to readily allow interfacing with existing biological and chemical sensing and separation platforms such as capillary electrophoresis or gas chromatography where such capillaries are routinely used. The interior polymer coating method described here could enable the use of a wide range of materials for the design of optofluidic label-free sensors integrated with industry standard (bio)chemical analytical separation platforms.

  4. Non-contact acoustic trapping in circular cross-section glass capillaries: a numerical study.

    PubMed

    Gralinski, Ian; Alan, Tuncay; Neild, Adrian

    2012-11-01

    Ultrasonic particle manipulation has many applications in microfluidic systems. Such manipulation is achievable by establishing an ultrasonic standing wave in fluid filled micromachined chambers. In this work, the focus is on analyzing the trapping potential of water filled capillary tubes actuated ultrasonically. The curved walls necessitate the use of a finite element modeling approach. Multiple arrangements of the piezoelectric transducers were studied along with the effects of changing the capillary and piezoelectric transducer thicknesses. Additionally, different modes of driving the piezoelectric transducers were investigated. It was found that positioning four piezoelectric transducers equally spaced around the capillary tube provided the best force potential field for trapping polystyrene spheres in the center of the capillary. PMID:23145585

  5. Capillary device refilling. [liquid rocket propellant tank tests

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Merino, F.; Symons, E. P.

    1980-01-01

    An analytical and experimental study was conducted dealing with refilling start baskets (capillary devices) with settled fluid. A computer program was written to include dynamic pressure, screen wicking, multiple-screen barriers, standpipe screens, variable vehicle mass for computing vehicle acceleration, and calculation of tank outflow rate and vapor pullthrough height. An experimental apparatus was fabricated and tested to provide data for correlation with the analytical model; the test program was conducted in normal gravity using a scale-model capillary device and ethanol as the test fluid. The test data correlated with the analytical model; the model is a versatile and apparently accurate tool for predicting start basket refilling under actual mission conditions.

  6. Modelling the effect of pore structure and wetting angles on capillary rise in soils having different wettabilities

    NASA Astrophysics Data System (ADS)

    Czachor, Henryk

    2006-09-01

    SummaryCapillary rise in axis symmetrical sinusoidal capillary (SC) has been modelled. Analytical formula for meniscus radius, capillary pressure and meniscus rate in SC have been found. Capillary shape described by wall waviness highly influences all of them. The limit between wettability and repellency in such capillary is described by critical value of contact angle θc which is related to the pore geometry by the equation ctg( θc) = πd2, where d2 - pore wall waviness. Kinetics of capillary rise in sinusoidal capillary has been determined by numerical integration of meniscus rate equation for a wide range of pore wall waviness and several values of contact angles. Application of Washburn theory to the data obtained from simulation gives the contact angle value much higher than the true one. In contrast, the obtained pore radius value is usually well correlated with capillary neck. However, in some cases a calculated radius can be even smaller. Above conclusions have been qualitatively confirmed by experiments performed on glass beads and soils. Contact angle measured on flat glass was 27.4°. The calculations concerning the data from capillary rise experiments on 90-1000 μm fraction of glass powder and Washburn theory gave values ca. 80°. The contact angle values for peat soils and loamy sand have close values, which supports the opinion that non-cylindrical shape of soil pores highly influences both the wettability/repellency and the water flux in soils.

  7. Intracranial capillary hemangioma mimicking a dissociative disorder

    PubMed Central

    John, Santosh G.; Pillai, Unnikrishnan; Lacasse, Alexander

    2012-01-01

    Capillary hemangiomas, hamartomatous proliferation of vascular endothelial cells, are rare in the central nervous system (CNS). Intracranial capillary hemangiomas presenting with reversible behavioral abnormalities and focal neurological deficits have rarely been reported. We report a case of CNS capillary hemangioma presenting with transient focal neurological deficits and behavioral abnormalities mimicking Ganser's syndrome. Patient underwent total excision of the vascular malformation, resulting in complete resolution of his symptoms. PMID:24765434

  8. Heuristic approach to capillary pressures averaging

    SciTech Connect

    Coca, B.P.

    1980-10-01

    Several methods are available to average capillary pressure curves. Among these are the J-curve and regression equations of the wetting-fluid saturation in porosity and permeability (capillary pressure held constant). While the regression equation seem completely empiric, the J-curve method seems to be theoretically sound due to its expression based on a relation between the average capillary radius and the permeability-porosity ratio. An analysis is given of each of these methods.

  9. Malpighi and the discovery of capillaries.

    PubMed

    Pearce, J M S

    2007-01-01

    Leonardo da Vinci clearly observed and described capillaries. Using the microscope, Marcello Malpighi examined the brain and major organs to demonstrate their finer anatomical features. This led to his discovery in 1661, of capillaries that proved fundamental to our understanding of the vascular system in the brain and cord. He hypothesized that capillaries were the connection between arteries and veins that allowed blood to flow back to the heart in the circulation of the blood, as first asserted by William Harvey. PMID:17851250

  10. Capillary rise kinetics of some building materials.

    PubMed

    Karoglou, M; Moropoulou, A; Giakoumaki, A; Krokida, M K

    2005-04-01

    The presence of water in masonry is one of the main factors in deterioration. Capillary rise is the most usual mechanism of water penetration into building materials. In this study the kinetics of the capillary rise phenomenon was studied for various building materials: four stones, two bricks, and six plasters. A first-order kinetic model was proposed, in which the equilibrium moisture height derived from Darcy law. The capillary height time constant found to be strongly affected by the material characteristics. Moreover, the capillary height time constant can be predicted if the average pore radius of the materials is known. PMID:15752811

  11. Capillaroscopy and the measurement of capillary pressure

    PubMed Central

    Shore, Angela C

    2000-01-01

    Capillaries play a critical role in cardiovascular function as the point of exchange of nutrients and waste products between the tissues and circulation. Studies of capillary function in man are limited by access to the vascular bed. However, skin capillaries can readily be studied by the technique of capillaroscopy which enables the investigator to assess morphology, density and blood flow velocity. It is also possible to estimate capillary pressure by direct cannulation using glass micropipettes. This review will describe the techniques used to make these assessments and will outline some of the changes that are seen in health and disease. PMID:11136289

  12. Transient studies of capillary-induced flow

    NASA Technical Reports Server (NTRS)

    Reagan, M. K.; Bowman, W. J.

    1993-01-01

    This paper presents the numerical and experimental results of a study performed on the transient rise of fluid in a capillary tube. The capillary tube problem provides an excellent mechanism from which to launch an investigation into the transient flow of a fluid in a porous wick structure where capillary forces must balance both adverse gravitational effects and frictional losses. For the study, a capillary tube, initially charged with a small volume of water, was lowered into a pool of water. The behavior of the column of fluid during the transient that followed as more water entered the tube from the pool was both numerically and experimentally studied.

  13. Microfoam formation in a capillary.

    PubMed

    Kotopoulis, Spiros; Postema, Michiel

    2010-02-01

    The ultrasound-induced formation of bubble clusters may be of interest as a therapeutic means. If the clusters behave as one entity, i.e., one mega-bubble, its ultrasonic manipulation towards a boundary is straightforward and quick. If the clusters can be forced to accumulate to a microfoam, entire vessels might be blocked on purpose using an ultrasound contrast agent and a sound source. In this paper, we analyse how ultrasound contrast agent clusters are formed in a capillary and what happens to the clusters if sonication is continued, using continuous driving frequencies in the range 1-10 MHz. Furthermore, we show high-speed camera footage of microbubble clustering phenomena. We observed the following stages of microfoam formation within a dense population of microbubbles before ultrasound arrival. After the sonication started, contrast microbubbles collided, forming small clusters, owing to secondary radiation forces. These clusters coalesced within the space of a quarter of the ultrasonic wavelength, owing to primary radiation forces. The resulting microfoams translated in the direction of the ultrasound field, hitting the capillary wall, also owing to primary radiation forces. We have demonstrated that as soon as the bubble clusters are formed and as long as they are in the sound field, they behave as one entity. At our acoustic settings, it takes seconds to force the bubble clusters to positions approximately a quarter wavelength apart. It also just takes seconds to drive the clusters towards the capillary wall. Subjecting an ultrasound contrast agent of given concentration to a continuous low-amplitude signal makes it cluster to a microfoam of known position and known size, allowing for sonic manipulation. PMID:19875143

  14. Time resolved EUV spectra from Zpinching capillary discharge plasma

    NASA Astrophysics Data System (ADS)

    Jancarek, Alexandr; Nevrkla, Michal; Nawaz, Fahad

    2015-09-01

    We developed symmetrically charged driver to obtain high voltage, high current Z-pinching capillary discharge. Plasma is created by up to 70 kA, 29 ns risetime current pulse passing through a 5 mm inner diameter, 224 mm long capillary filled with gas to initial pressure in the range of 1 kPa. Due to the low inductance design of the driver, the pinch is observable directly from the measured current curve. Time-integrated and time-resolved spectra of discharge plasma radiation are recorded together with the capillary current and analyzed. The most encouraging spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 - 3 transition. Spectral lines are identified in the NIST database using the FLY kinetic code. The line of 13.38 nm wavelength, transition NVII 2 - 3, was observed in gated, and also in time-integrated spectra for currents >60 kA. This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic grants LG13029.

  15. Quantification of normal-appearing white matter tract integrity in multiple sclerosis: a diffusion kurtosis imaging study.

    PubMed

    de Kouchkovsky, Ivan; Fieremans, Els; Fleysher, Lazar; Herbert, Joseph; Grossman, Robert I; Inglese, Matilde

    2016-06-01

    Our aim was to characterize the nature and extent of pathological changes in the normal-appearing white matter (NAWM) of patients with multiple sclerosis (MS) using novel diffusion kurtosis imaging-derived white matter tract integrity (WMTI) metrics and to investigate the association between these WMTI metrics and clinical parameters. Thirty-two patients with relapsing-remitting MS and 19 age- and gender-matched healthy controls underwent MRI and neurological examination. Maps of mean diffusivity, fractional anisotropy and WMTI metrics (intra-axonal diffusivity, axonal water fraction, tortuosity and axial and radial extra-axonal diffusivity) were created. Tract-based spatial statistics analysis was performed to assess for differences in the NAWM between patients and controls. A region of interest analysis of the corpus callosum was also performed to assess for group differences and to evaluate correlations between WMTI metrics and measures of disease severity. Mean diffusivity and radial extra-axonal diffusivity were significantly increased while fractional anisotropy, axonal water fraction, intra-axonal diffusivity and tortuosity were decreased in MS patients compared with controls (p values ranging from <0.001 to <0.05). Axonal water fraction in the corpus callosum was significantly associated with the expanded disability status scale score (ρ = -0.39, p = 0.035). With the exception of the axial extra-axonal diffusivity, all metrics were correlated with the symbol digits modality test score (p values ranging from 0.001 to <0.05). WMTI metrics are thus sensitive to changes in the NAWM of MS patients and might provide a more pathologically specific, clinically meaningful and practical complement to standard diffusion tensor imaging-derived metrics. PMID:27094571

  16. Patient- and family-centered care coordination: a framework for integrating care for children and youth across multiple systems.

    PubMed

    2014-05-01

    Understanding a care coordination framework, its functions, and its effects on children and families is critical for patients and families themselves, as well as for pediatricians, pediatric medical subspecialists/surgical specialists, and anyone providing services to children and families. Care coordination is an essential element of a transformed American health care delivery system that emphasizes optimal quality and cost outcomes, addresses family-centered care, and calls for partnership across various settings and communities. High-quality, cost-effective health care requires that the delivery system include elements for the provision of services supporting the coordination of care across settings and professionals. This requirement of supporting coordination of care is generally true for health systems providing care for all children and youth but especially for those with special health care needs. At the foundation of an efficient and effective system of care delivery is the patient-/family-centered medical home. From its inception, the medical home has had care coordination as a core element. In general, optimal outcomes for children and youth, especially those with special health care needs, require interfacing among multiple care systems and individuals, including the following: medical, social, and behavioral professionals; the educational system; payers; medical equipment providers; home care agencies; advocacy groups; needed supportive therapies/services; and families. Coordination of care across settings permits an integration of services that is centered on the comprehensive needs of the patient and family, leading to decreased health care costs, reduction in fragmented care, and improvement in the patient/family experience of care. PMID:24777209

  17. Multiple Roles for Enterococcus faecalis Glycosyltransferases in Biofilm-Associated Antibiotic Resistance, Cell Envelope Integrity, and Conjugative Transfer

    PubMed Central

    Dale, Jennifer L.; Cagnazzo, Julian; Phan, Chi Q.; Barnes, Aaron M. T.

    2015-01-01

    The emergence of multidrug-resistant bacteria and the limited availability of new antibiotics are of increasing clinical concern. A compounding factor is the ability of microorganisms to form biofilms (communities of cells encased in a protective extracellular matrix) that are intrinsically resistant to antibiotics. Enterococcus faecalis is an opportunistic pathogen that readily forms biofilms and also has the propensity to acquire resistance determinants via horizontal gene transfer. There is intense interest in the genetic basis for intrinsic and acquired antibiotic resistance in E. faecalis, since clinical isolates exhibiting resistance to multiple antibiotics are not uncommon. We performed a genetic screen using a library of transposon (Tn) mutants to identify E. faecalis biofilm-associated antibiotic resistance determinants. Five Tn mutants formed wild-type biofilms in the absence of antibiotics but produced decreased biofilm biomass in the presence of antibiotic concentrations that were subinhibitory to the parent strain. Genetic determinants responsible for biofilm-associated antibiotic resistance include components of the quorum-sensing system (fsrA, fsrC, and gelE) and two glycosyltransferase (GTF) genes (epaI and epaOX). We also found that the GTFs play additional roles in E. faecalis resistance to detergent and bile salts, maintenance of cell envelope integrity, determination of cell shape, polysaccharide composition, and conjugative transfer of the pheromone-inducible plasmid pCF10. The epaOX gene is located in a variable extended region of the enterococcal polysaccharide antigen (epa) locus. These data illustrate the importance of GTFs in E. faecalis adaptation to diverse growth conditions and suggest new targets for antimicrobial design. PMID:25918141

  18. Capillary rafts and their destabilization

    NASA Astrophysics Data System (ADS)

    Protiere, Suzie; Abkarian, Manouk; Aristoff, Jeffrey; Stone, Howard

    2010-11-01

    Small objects trapped at an interface are very common in Nature (insects walking on water, ant rafts, bubbles or pollen at the water-air interface, membranes...) and are found in many multiphase industrial processes. The study of such particle-laden interfaces is therefore of practical as well as fundamental importance. Here we report experiments on the self-assembly of spherical particles into capillary rafts at an oil-water interface and elucidate how such rafts sink. We characterize different types of sinking behavior and show that it is possible to obtain "armored droplets," whereby the sinking oil is encapsulated within a shell of particles.

  19. Capillary electrophoresis in metallodrug development.

    PubMed

    Holtkamp, Hannah; Hartinger, Christian G

    2015-09-01

    Capillary electrophoresis (CE) is a separation method based on differential migration of analytes in electric fields. The compatibility with purely aqueous separation media makes it a versatile tool in metallodrug research. Many metallodrugs undergo ligand exchange reactions that can easily be followed with this method and the information gained can even be improved by coupling the CE to advanced detectors, such as mass spectrometers. This gives the method high potential to facilitate the development of metallodrugs, especially when combined with innovative method development and experimental design. PMID:26547417

  20. High pressure pulsed capillary viscometry

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Walowitt, J. A.; Pan, C. H. T.

    1972-01-01

    An analytical and test program was conducted in order to establish the feasibility of a multichamber pulsed-capillary viscometer. The initial design incorporated a piston, ram, and seals which produced measured pulses up to 30,000 psi in the closed chamber system. Pressure pulses from one to ten milliseconds were investigated in a system volume of 1 cuin. Four test fluids: a MIL-L-7808, a 5P4E polyphenyl ether, a MIL-L-23699A, and a synthetic hydrocarbon were examined in the test pressure assembly. The pressure-viscosity coefficient and viscosity delay time were determined for the MIL-L-7808 lubricant tested.

  1. Evaluation of capillary reinforced composites

    NASA Technical Reports Server (NTRS)

    Cahill, J. E.; Halase, J. F.; South, W. K.; Stoffer, L. J.

    1985-01-01

    Anti-icing of the inlet of jet engines is generally performed with high pressure heated air that is directed forward from the compressor through a series of pipes to various manifolds located near the structures to be anti-iced. From these manifolds, the air is directed to all flowpath surfaces that may be susceptible to ice formation. There the anti-icing function may be performed by either heat conduction or film heating. Unfortunately, the prospect of utilizing lighweight, high strength composites for inlet structures of jet engines has been frustrated by the low transverse thermal conductivity of such materials. It was the objective of this program to develop an advanced materials and design concept for anti-icing composite structures. The concept that was evaluated used capillary glass tubes embedded on the surface of a composite structure with heated air ducted through the tubes. An analytical computer program was developed to predict the anti-icing performance of such tubes and a test program was conducted to demonstrate actual performance of this system. Test data and analytical code results were in excellent agreement. Both indicate feasibility of using capillary tubes for surface heating as a means for composite engine structures to combat ice accumulation.

  2. Capillary Rise in Porous Media.

    PubMed

    Lago, Marcelo; Araujo, Mariela

    2001-02-01

    Capillary rise experiments were performed in columns filled with glass beads and Berea sandstones, using visual methods to register the advance of the water front. For the glass bead filled columns, early time data are well fitted by the Washburn equation. However, in the experiments, the advancing front exceeded the predicted equilibrium height. For large times, an algebraic behavior of the velocity of the front is observed (T. Delker et al., Phys. Rev. Lett. 76, 2902 (1996)). A model for studying the capillary pressure evolution in a regular assembly of spheres is proposed and developed. It is based on a quasi-static advance of the meniscus with a piston-like motion and allows us to estimate the hydraulic equilibrium height, with values very close to those obtained by fitting early time data to a Washburn equation. The change of regime is explained as a transition in the mechanism of advance of the meniscus. On the other hand, only the Washburn regime was observed for the sandstones. The front velocity was fitted to an algebraical form with an exponent close to 0.5, a value expected from the asymptotic limit of the Washburn equation. Copyright 2001 Academic Press. PMID:11161488

  3. Atomic Force Controlled Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Yeshua, Talia; Palchan, Mila; Lovsky, Yulia; Taha, Hesham

    2010-03-01

    Lithography based on scanning probe microscopic techniques has considerable potential for accurate & localized deposition of material on the nanometer scale. Controlled deposition of metallic features with high purity and spatial accuracy is of great interest for circuit edit applications in the semiconductor industry, for plasmonics & nanophotonics and for basic research in surface enhanced Raman scattering & nanobiophysics. Within the context of metal deposition we will review the development of fountain pen nanochemistry and its most recent emulation Atomic Force Controlled Capillary Electrophoresis (ACCE). Using this latter development we will demonstrate achievement of unprecedented control of nanoparticle deposition using a three-electrode geometry. Three electrodes are attached: one on the outside of a metal coated glass probe, one on the inside of a hollow probe in a solution containing Au nanoparticles in the capillary, and a third on the surface where the writing takes place. The three electrodes provide electrical pulses for accurate control of deposition and retraction of the liquid from the surface overcoming the lack of control seen in both dip pen lithography & fountain pen nanochemistry when the tip contacts the surface. With this development, we demonstrate depositing a single 1.3 nm Au nanoparticle onto surfaces such as semiconductors.

  4. Cryogenic Capillary Screen Heat Entrapment

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L.G.; Hastings, L.J.; Stathman, G.

    2007-01-01

    Cryogenic liquid acquisition devices (LADs) for space-based propulsion interface directly with the feed system, which can be a significant heat leak source. Further, the accumulation of thermal energy within LAD channels can lead to the loss of sub-cooled propellant conditions and result in feed system cavitation during propellant outflow. Therefore, the fundamental question addressed by this program was: "To what degree is natural convection in a cryogenic liquid constrained by the capillary screen meshes envisioned for LADs.?"Testing was first conducted with water as the test fluid, followed by LN2 tests. In either case, the basic experimental approach was to heat the bottom of a cylindrical column of test fluid to establish stratification patterns measured by temperature sensors located above and below a horizontal screen barrier position. Experimentation was performed without barriers, with screens, and with a solid barrier. The two screen meshes tested were those typically used by LAD designers, "200x1400" and "325x2300", both with Twill Dutch Weave. Upon consideration of both the water and LN2 data it was concluded that heat transfer across the screen meshes was dependent upon barrier thermal conductivity and that the capillary screen meshes were impervious to natural convection currents.

  5. Single-step co-integration of multiple expressible heterologous genes into the ribosomal DNA of the methylotrophic yeast Hansenula polymorpha.

    PubMed

    Klabunde, J; Diesel, A; Waschk, D; Gellissen, G; Hollenberg, C P; Suckow, M

    2002-05-01

    We have investigated the methylotrophic yeast Hansenula polymorpha as a host for the co-integration and expression of multiple heterologous genes using an rDNA integration approach. The ribosomal DNA (rDNA) of H. polymorpha was found to consist of a single rDNA cluster of about 50-60 repeats of an 8-kb unit located on chromosome II. A 2.4-kb segment of H. polymorpha rDNA encompassing parts of the 25S, the complete 5S and the non-transcribed spacer region between 25S and 18S rDNA was isolated and inserted into conventional integrative H. polymorpha plasmids harboring the Saccharomyces- cerevisiae-derived URA3 gene for selection. These rDNA plasmids integrated homologously into the rDNA repeats of a H. polymorpha (odc1) host as several independent clusters. Anticipating that this mode of multiple-cluster integration could be used for the simultaneous integration of several distinct rDNA plasmids, the host strain was co-transformed with a mixture of up to three different plasmids, all bearing the same URA3 selection marker. Transformations indeed resulted in mitotically stable strains harboring one, two, or all three plasmids integrated into the rDNA. The overall copy number of the plasmids integrated did not exceed the number of rDNA repeats present in the untransformed host strain, irrespective of the number of different plasmids involved. Strains harboring different plasmids co-expressed the introduced genes, resulting in functional proteins. Thus, this approach provides a new and attractive tool for the rapid generation of recombinant strains that simultaneously co-produce several proteins in desired stoichiometric ratios. PMID:12021801

  6. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    SciTech Connect

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  7. Capillary Movement in Granular Beds in Microgravity

    NASA Technical Reports Server (NTRS)

    Yendler, Boris S.; Bula, Ray J.; Kliss, Mark (Technical Monitor)

    1996-01-01

    Understanding the dynamics of capillary flow through unsaturated porous media is very important for the development of an effective water and nutrient delivery system for growing plants in microgravity and chemical engineering applications. Experiments were conducted on the Space Shuttle during the STS-63 mission using three experimental cuvettes called "Capillary Testbed-M." These experiments studied the effect of bead diameter on capillary flow by comparing the capillary flow in three different granular beds. It was observed that the speed of water propagation in the granular bed consisting of 1.5 mm diameter particles was less than that in the bed consisting of 1.0 mm. diameter particles. Such results contradict the existing theory of capillary water propagation in granular beds. It was found also that in microgravity water propagates independently in adjacent layers of a layered granular bed .

  8. Intracranial capillary hemangioma in an elderly patient

    PubMed Central

    Okamoto, Ai; Nakagawa, Ichiro; Matsuda, Ryosuke; Nishimura, Fumihiko; Motoyama, Yasushi; Park, Young-Su; Nakamura, Mitsutoshi; Nakase, Hiroyuki

    2015-01-01

    Background: Capillary hemangiomas are neoplasms involving skin and soft tissue in infants. These lesions rarely involved an intracranial space and reported age distribution ranges from infancy to middle age. We report an extremely rare case of rapidly rising intracranial capillary hemangioma in an elderly woman. Case Description: The 82-year-old woman presented with vomiting, reduced level of consciousness, and worsening mental state. Computed tomography showed a contrast-enhanced extra-axial lesion in the left frontal operculum, although no intracranial mass lesion was identifiable from magnetic resonance imaging taken 2 years earlier. Complete surgical excision was performed and histopathological examination diagnosed benign capillary hemangioma consisting of a variety of dilated capillary blood vessels lined by endothelial cells. Conclusion: This is the first description of rapid growth of an intracranial capillary hemangioma in an elderly woman. These lesions are exceedingly rare in the elderly population, but still show the capacity for rapid growth. Complete excision would prevent further recurrence. PMID:26664868

  9. Modeling capillary barriers in unsaturated fractured rock

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Shu; Zhang, W.; Pan, Lehua; Hinds, Jennifer; Bodvarsson, G. S.

    2002-11-01

    This work presents a series of numerical modeling studies that investigate the hydrogeologic conditions required to form capillary barriers and the effect that capillary barriers have on fluid flow and tracer transport processes in the unsaturated fractured rock of Yucca Mountain, Nevada, a potential site for storing high-level radioactive waste. The modeling approach is based on a dual-continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. The numerical modeling results showed that effective capillary barriers can develop where both matrix and fracture capillary gradients tend to move water upward. Under the current hydrogeologic conceptualization of Yucca Mountain, strong capillary barrier effects exist for diverting a significant amount of moisture flow through the relatively shallow Paintbrush nonwelded unit, with major faults observed at the site serving as major downward pathways for laterally diverted percolation fluxes. In addition, we used observed field liquid saturation and goechemical isotopic data to check model results and found consistent agreement.

  10. On-line preconcentration of sodium dodecyl sulfate-protein complexes using electrokinetic supercharging method with a prefilled water plug in capillary sieving electrophoresis.

    PubMed

    Liu, Jing; Kang, Mingchao; Liu, Zhen

    2011-09-01

    An electrokinetic supercharging (EKS) method with a prefilled water plug at the head column of capillary was developed for on-line preconcentration of sodium dodecyl sulfate (SDS)-protein complexes in capillary sieving electrophoresis (CSE). Conventional EKS is a combination of electrokinetic injection with transient isotachophoresis (tr-ITP). The capillary is first filled with background electrolyte, then an appropriate amount of a leading electrolyte is filled and electro-injection is carried out for certain duration. After that, terminating electrolyte is filled, and tr-ITP is subsequently initiated, followed by capillary electrophoresis (CE) separation. In this work, the performance of EKS was evaluated by integrating multiple sub-methods step by step, and a water plug containing polymer was introduced before electrokinetic injection in order to further improve the concentration effect. The positive effects of the sub-methods were verified, including molecular sieving effect of polymer, field enhanced sample injection (FESI) with and without a water plug, and transient isotachophoretic electrophoresis-based FESI. It was observed that analyte discrimination usually encountered in conventional electrokinetic injection was eliminated due to the similar charge to mass ratios of SDS-protein complexes. Based on these results, a hybrid on-line preconcentration method, EKS with injecting a water plug containing polymer before sample electrokinetic injection, was proposed and used to indiscriminately preconcentrate SDS-protein complexes, which provided a sensitivity enhancement factor of more than 1000. It was very suitable for the analysis of low-abundance proteins, providing the information of their molecular mass. PMID:22233073

  11. The performance of integrated health care networks in continuity of care: a qualitative multiple case study of COPD patients

    PubMed Central

    Waibel, Sina; Vargas, Ingrid; Aller, Marta-Beatriz; Gusmão, Renata; Henao, Diana; Vázquez, M. Luisa

    2015-01-01

    Background Integrated health care networks (IHN) are promoted in numerous countries as a response to fragmented care delivery by providing a coordinated continuum of services to a defined population. However, evidence on their effectiveness and outcome is scarce, particularly considering continuity across levels of care; that is the patient's experience of connected and coherent care received from professionals of the different care levels over time. The objective was to analyse the chronic obstructive pulmonary disease (COPD) patients’ perceptions of continuity of clinical management and information across care levels and continuity of relation in IHN of the public health care system of Catalonia. Methods A qualitative multiple case study was conducted, where the cases are COPD patients. A theoretical sample was selected in two stages: (1) study contexts: IHN and (2) study cases consisting of COPD patients. Data were collected by means of individual, semi-structured interviews to the patients, their general practitioners and pulmonologists and review of records. A thematic content analysis segmented by IHN and cases with a triangulation of sources and analysists was carried out. Results COPD patients of all networks perceived that continuity of clinical management was existent due to clear distribution of roles for COPD care across levels, rapid access to care during exacerbations and referrals to secondary care when needed; nevertheless, patients of some networks highlighted too long waiting times to non-urgent secondary care. Physicians generally agreed with patients, however, also indicated unclear distribution of roles, some inadequate referrals and long waiting times to primary care in some networks. Concerning continuity of information, patients across networks considered that their clinical information was transferred across levels via computer and that physicians also used informal communication mechanisms (e-mail, telephone); whereas physicians

  12. Analysis of reconfigurable line pattern of capillary plasma antenna array

    NASA Astrophysics Data System (ADS)

    Ramli, Noor Fadhilah; Dagang, Ahmad Nazri; Ali, Mohd Tarmizi

    2015-04-01

    Simulations by applying Computer Simulation Technology (CST) Microwave Studio have been done towards Hg-Ar (10 Torr and 20 Torr) capillary tubes. These capillary tubes which are 5 mm in diameter are designed as plasma antenna monopole antenna and antenna arrays (four line array, six line array and nine line array). They have been arranged in the two different dimensions, 4mm × 4mm and 8mm × 8mm. Their performance as an antenna have been analyzed and compared. The reconfigurable characteristics of these kinds of plasma antenna such as gain, directivity and return loss are calculated. The results of gain and directivity of 10 Torr of plasma antenna are stronger than 20 Torr in the 4mm × 4mm dimension. Return loss of these kinds of plasma antenna significantly dropped in different operating frequencies of microwave ranges make them suitable to be applied for multiple applications in antennas or telecommunications field. Gas pressure of plasma antenna and array distance between the capillary tubes give a significant effect to the antenna performance in range of 10 GHz and below.

  13. Chiral structures from achiral liquid crystals in cylindrical capillaries

    PubMed Central

    Jeong, Joonwoo; Kang, Louis; Davidson, Zoey S.; Collings, Peter J.; Lubensky, Tom C.; Yodh, A. G.

    2015-01-01

    We study chiral symmetry-broken configurations of nematic liquid crystals (LCs) confined to cylindrical capillaries with homeotropic anchoring on the cylinder walls (i.e., perpendicular surface alignment). Interestingly, achiral nematic LCs with comparatively small twist elastic moduli relieve bend and splay deformations by introducing twist deformations. In the resulting twisted and escaped radial (TER) configuration, LC directors are parallel to the cylindrical axis near the center, but to attain radial orientation near the capillary wall, they escape along the radius through bend and twist distortions. Chiral symmetry-breaking experiments in polymer-coated capillaries are carried out using Sunset Yellow FCF, a lyotropic chromonic LC with a small twist elastic constant. Its director configurations are investigated by polarized optical microscopy and explained theoretically with numerical calculations. A rich phenomenology of defects also arises from the degenerate bend/twist deformations of the TER configuration, including a nonsingular domain wall separating domains of opposite twist handedness but the same escape direction and singular point defects (hedgehogs) separating domains of opposite escape direction. We show the energetic preference for singular defects separating domains of opposite twist handedness compared with those of the same handedness, and we report remarkable chiral configurations with a double helix of disclination lines along the cylindrical axis. These findings show archetypally how simple boundary conditions and elastic anisotropy of confined materials lead to multiple symmetry breaking and how these broken symmetries combine to create a variety of defects. PMID:25825733

  14. Chiral structures from achiral liquid crystals in cylindrical capillaries.

    PubMed

    Jeong, Joonwoo; Kang, Louis; Davidson, Zoey S; Collings, Peter J; Lubensky, Tom C; Yodh, A G

    2015-04-14

    We study chiral symmetry-broken configurations of nematic liquid crystals (LCs) confined to cylindrical capillaries with homeotropic anchoring on the cylinder walls (i.e., perpendicular surface alignment). Interestingly, achiral nematic LCs with comparatively small twist elastic moduli relieve bend and splay deformations by introducing twist deformations. In the resulting twisted and escaped radial (TER) configuration, LC directors are parallel to the cylindrical axis near the center, but to attain radial orientation near the capillary wall, they escape along the radius through bend and twist distortions. Chiral symmetry-breaking experiments in polymer-coated capillaries are carried out using Sunset Yellow FCF, a lyotropic chromonic LC with a small twist elastic constant. Its director configurations are investigated by polarized optical microscopy and explained theoretically with numerical calculations. A rich phenomenology of defects also arises from the degenerate bend/twist deformations of the TER configuration, including a nonsingular domain wall separating domains of opposite twist handedness but the same escape direction and singular point defects (hedgehogs) separating domains of opposite escape direction. We show the energetic preference for singular defects separating domains of opposite twist handedness compared with those of the same handedness, and we report remarkable chiral configurations with a double helix of disclination lines along the cylindrical axis. These findings show archetypally how simple boundary conditions and elastic anisotropy of confined materials lead to multiple symmetry breaking and how these broken symmetries combine to create a variety of defects. PMID:25825733

  15. Chiral structures from achiral liquid crystals in cylindrical capillaries

    NASA Astrophysics Data System (ADS)

    Jeong, Joonwoo; Kang, Louis; Davidson, Zoey S.; Collings, Peter J.; Lubensky, Tom C.; Yodh, A. G.

    2015-04-01

    We study chiral symmetry-broken configurations of nematic liquid crystals (LCs) confined to cylindrical capillaries with homeotropic anchoring on the cylinder walls (i.e., perpendicular surface alignment). Interestingly, achiral nematic LCs with comparatively small twist elastic moduli relieve bend and splay deformations by introducing twist deformations. In the resulting twisted and escaped radial (TER) configuration, LC directors are parallel to the cylindrical axis near the center, but to attain radial orientation near the capillary wall, they escape along the radius through bend and twist distortions. Chiral symmetry-breaking experiments in polymer-coated capillaries are carried out using Sunset Yellow FCF, a lyotropic chromonic LC with a small twist elastic constant. Its director configurations are investigated by polarized optical microscopy and explained theoretically with numerical calculations. A rich phenomenology of defects also arises from the degenerate bend/twist deformations of the TER configuration, including a nonsingular domain wall separating domains of opposite twist handedness but the same escape direction and singular point defects (hedgehogs) separating domains of opposite escape direction. We show the energetic preference for singular defects separating domains of opposite twist handedness compared with those of the same handedness, and we report remarkable chiral configurations with a double helix of disclination lines along the cylindrical axis. These findings show archetypally how simple boundary conditions and elastic anisotropy of confined materials lead to multiple symmetry breaking and how these broken symmetries combine to create a variety of defects.

  16. Monitoring the Lavina di Roncovetro (RE, Italy) landslide by integrating traditional monitoring systems and multiple high-resolution topographic datasets

    NASA Astrophysics Data System (ADS)

    Fornaciai, Alessandro; Favalli, Massimiliano; Gigli, Giovanni; Nannipieri, Luca; Mucchi, Lorenzo; Intieri, Emanuele; Agostini, Andrea; Pizziolo, Marco; Bertolini, Giovanni; Trippi, Federico; Casagli, Nicola; Schina, Rosa; Carnevale, Ennio

    2016-04-01

    Roncovetro Landslide were generated at different times. The 3D models are then georeferenced and the digital elevation models (DEMs) created. By comparing the obtained DEMs, changes in the investigated area were detected and the sediment volumes, as well as the 3D displacement at the most active parts of the landslide quantified. In this work, we test the performance of the SFM techniques applied on active landslide by comparing them with the traditional monitoring systems, highlighting the strengths and weaknesses of both methods. In addition, we show the preliminary results obtained integrating the traditional monitoring systems and the multiple high-resolution topographic datasets, over a period of more than one year, used for investigating the spatial and the temporal evolution of the upper sector of the Roncovetro landslide.

  17. A biological approach to assembling tissue modules through endothelial capillary network formation.

    PubMed

    Riesberg, Jeremiah J; Shen, Wei

    2015-09-01

    To create functional tissues having complex structures, bottom-up approaches to assembling small tissue modules into larger constructs have been emerging. Most of these approaches are based on chemical reactions or physical interactions at the interface between tissue modules. Here we report a biological assembly approach to integrate small tissue modules through endothelial capillary network formation. When adjacent tissue modules contain appropriate extracellular matrix materials and cell types that support robust endothelial capillary network formation, capillary tubules form and grow across the interface, resulting in assembly of the modules into a single, larger construct. It was shown that capillary networks formed in modules of dense fibrin gels seeded with human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (MSCs); adjacent modules were firmly assembled into an integrated construct having a strain to failure of 117 ± 26%, a tensile strength of 2208 ± 83 Pa and a Young's modulus of 2548 ± 574 Pa. Under the same culture conditions, capillary networks were absent in modules of dense fibrin gels seeded with either HUVECs or MSCs alone; adjacent modules disconnected even when handled gently. This biological assembly approach eliminates the need for chemical reactions or physical interactions and their associated limitations. In addition, the integrated constructs are prevascularized, and therefore this bottom-up assembly approach may also help address the issue of vascularization, another key challenge in tissue engineering. PMID:25694020

  18. Integration of a sensor based multiple robot environment for space applications: The Johnson Space Center Teleoperator Branch Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Hwang, James; Campbell, Perry; Ross, Mike; Price, Charles R.; Barron, Don

    1989-01-01

    An integrated operating environment was designed to incorporate three general purpose robots, sensors, and end effectors, including Force/Torque Sensors, Tactile Array sensors, Tactile force sensors, and Force-sensing grippers. The design and implementation of: (1) the teleoperation of a general purpose PUMA robot; (2) an integrated sensor hardware/software system; (3) the force-sensing gripper control; (4) the host computer system for dual Robotic Research arms; and (5) the Ethernet integration are described.

  19. Abnormalities of capillary microarchitecture in a rat model of coronary ischemic congestive heart failure

    PubMed Central

    Chen, Jiqiu; Yaniz-Galende, Elisa; Kagan, Heather J.; Liang, Lifan; Hekmaty, Saboor; Giannarelli, Chiara

    2015-01-01

    The aim of the present study is to explore the role of capillary disorder in coronary ischemic congestive heart failure (CHF). CHF was induced in rats by aortic banding plus ischemia-reperfusion followed by aortic debanding. Coronary arteries were perfused with plastic polymer containing fluorescent dye. Multiple fluorescent images of casted heart sections and scanning electric microscope of coronary vessels were obtained to characterize changes in the heart. Cardiac function was assessed by echocardiography and in vivo hemodynamics. Stenosis was found in all levels of the coronary arteries in CHF. Coronary vasculature volume and capillary density in remote myocardium were significantly increased in CHF compared with control. This occurred largely in microvessels with a diameter of ≤3 μm. Capillaries in CHF had a tortuous structure, while normal capillaries were linear. Capillaries in CHF had inconsistent diameters, with assortments of narrowed and bulged segments. Their surfaces appeared rough, potentially indicating endothelial dysfunction in CHF. Segments of main capillaries between bifurcations were significantly shorter in length in CHF than in control. Transiently increasing preload by injecting 50 μl of 30% NaCl demonstrated that the CHF heart had lower functional reserve; this may be associated with congestion in coronary microcirculation. Ischemic coronary vascular disorder is not limited to the main coronary arteries, as it occurs in arterioles and capillaries. Capillary disorder in CHF included stenosis, deformed structure, proliferation, and roughened surfaces. This disorder in the coronary artery architecture may contribute to the reduction in myocyte contractility in the setting of heart failure. PMID:25659485

  20. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  1. The Capillary Fluidics of Espresso

    NASA Astrophysics Data System (ADS)

    Ott, Nathan; Wollman, Drew; Graf, John; Weislogel, Mark

    2014-11-01

    Espresso is enjoyed by tens of millions of people daily. The coffee is distinguished by a complex low density colloid of emulsified oils. Due to gravity, these oils rise to the surface forming a foam lid called the crema. In this work we present a variety of large length scale capillary fluidic effects for espresso in a gravity-free environment. Drop tower tests are performed to establish brief microgravity conditions under which spontaneous capillarity-driven behavior is observed. Because the variety of espresso drinks is extensive, specific property measurements are made to assess the effects of wetting and surface tension for `Italian' espresso, caffe latte, and caffe Americano. To some, the texture and aromatics of the crema play a critical role in the overall espresso experience. We show how in the low-g environment this may not be possible. We also suggest alternate methods for enjoying espresso aboard spacecraft. NASA NNX09AP66A, Glenn Research Center.

  2. Geometry of the capillary net in human hearts.

    PubMed

    Rakusan, K; Cicutti, N; Spatenka, J; Samánek, M

    1997-01-01

    The geometry of the coronary capillary bed in human hearts was studied using samples obtained during cardiac surgery of children operated for tetralogy of Fallot and samples from fresh normal hearts used for valve harvesting. The results revealed a similar coronary capillary density and heterogeneity of capillary spacing in samples from both groups. A double-staining method was used to distinguish between capillary segments close to the feeding arteriole (proximal capillaries) and segments distant from the arteriole (distal capillaries). In both groups of hearts, capillary segment length was consistently shorter on the venular than the arteriolar portion of the capillary. Similarly, capillary domain areas were also smaller and the resulting capillary supply unit was smaller along venular portions compared to arteriolar regions of the capillary bed. This distinctive geometry would provide advantageous geometric conditions for tissue oxygen supply. PMID:9176723

  3. Capillary isoelectric focusing of native and inactivated microorganisms.

    PubMed

    Horká, M; Kubícek, O; Růzicka, F; Holá, V; Malinovská, I; Slais, K

    2007-07-01

    The research of microorganisms includes the development of methods for the inactivation of viruses and other microbes. It also means to efficiently eliminate the infectivity of microorganisms without damage of their integrity and structure. According to the results of the last 5 years the capillary electromigration techniques appear to be very perspective for the comparison of the methods applicable for inactivation in the diagnostics and study of the pathogens. In this paper we suggest the capillary isoelectric focusing of the model microorganisms, Escherichia coli, Staphylococcus epidermidis, Candida albicans and bacteriophage PhiX 174, native or inactivated by different procedures. UV detection and fluorometric detection for the dynamically modified microbes by pyrenebutanoate on the basis of the non-ionogenic tenside were used here. Isoelectric points of native and/or dynamically modified microorganisms and other properties were compared with those obtained after microorganisms inactivation. The segmental injection of the sample pulse enabled the reproducible and efficient capillary isoelectric focusing in different pH gradients. The low-molecular-weight pI markers were used for tracing of the pH gradient. PMID:17328903

  4. In Vitro Perfused Human Capillary Networks

    PubMed Central

    Moya, Monica L.; Hsu, Yu-Hsiang; Lee, Abraham P.; Hughes, Christopher C.W.

    2013-01-01

    Replicating in vitro the complex in vivo tissue microenvironment has the potential to transform our approach to medicine and also our understanding of biology. In order to accurately model the 3D arrangement and interaction of cells and extracellular matrix, new microphysiological systems must include a vascular supply. The vasculature not only provides the necessary convective transport of oxygen, nutrients, and waste in 3D culture, but also couples and integrates the responses of organ systems. Here we combine tissue engineering and microfluidic technology to create an in vitro 3D metabolically active stroma (∼1 mm3) that, for the first time, contains a perfused, living, dynamic, interconnected human capillary network. The range of flow rate (μm/s) and shear rate (s−1) within the network was 0–4000 and 0–1000, respectively, and thus included the normal physiological range. Infusion of FITC dextran demonstrated microvessels (15–50 μm) to be largely impermeable to 70 kDa. Our high-throughput biology-directed platform has the potential to impact a broad range of fields that intersect with the microcirculation, including tumor metastasis, drug discovery, vascular disease, and environmental chemical toxicity. PMID:23320912

  5. Capillary waveguide optrodes: an approach to optical sensing in medical diagnostics

    NASA Astrophysics Data System (ADS)

    Lippitsch, Max E.; Draxler, Sonja; Kieslinger, Dietmar; Lehmann, Hartmut; Weigl, Bernhard H.

    1996-07-01

    Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. A capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Various detection schemes based on absorption, fluorescence intensity, or fluorescence lifetime are described. In absorption-based capillary waveguide optrodes the absorption in the sensor layer is analyte dependent; hence light transmission along the inhomogeneous waveguiding structure formed by the capillary wall and the sensing layer is a function of the analyte concentration. Similarly, in fluorescence-based capillary optrodes the fluorescence intensity or the fluorescence lifetime of an indicator dye fixed in the sensing layer is analyte dependent; thus the specific property of fluorescent light excited in the sensing layer and thereafter guided along the inhomogeneous waveguiding structure is a function of the analyte concentration. Both schemes are experimentally demonstrated, one with carbon dioxide as the analyte and the other one with oxygen. The device combines optical sensors with the standard glass capillaries usually applied to gather blood drops from fingertips, to yield a versatile diagnostic instrument, integrating the sample compartment, the optical sensor, and the light-collecting optics into a single piece. This ensures enhanced sensor performance as well as improved handling compared with other sensors. waveguide, blood gases, medical diagnostics.

  6. Multiple Perspectives on Integrated Education for Children with Disabilities in the Context of Early Childhood Centres in Hong Kong

    ERIC Educational Resources Information Center

    Lai, Yuk Ching; Gill, Judith

    2014-01-01

    The integration of children with disabilities in mainstream early childhood settings is a common practice in many developed and developing countries world-wide. A number of key points have been raised concerning such integration, including the increased attention to civil education about the rights of persons with disabilities, training for…

  7. Gardening for Homonyms: Integrating Science and Language Arts to Support Children's Creative Use of Multiple Meaning Words

    ERIC Educational Resources Information Center

    Luna, Melissa J.; Rye, James Andrew; Forinash, Melissa; Minor, Alana

    2015-01-01

    Curriculum integration can increase the presence of science at the elementary level. The purpose of this article is to share how two second-grade teachers have integrated language arts content as a part of science-language arts instruction in a garden-based learning context. One application was a teacher-designed "Gardening for Homonyms"…

  8. An integrated eco-hydrologic modeling framework for assessing the effects of interacting stressors on multiple ecosystem services

    EPA Science Inventory

    The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...

  9. Towards new applications using capillary waveguides

    PubMed Central

    Stasio, Nicolino; Shibukawa, Atsushi; Papadopoulos, Ioannis N.; Farahi, Salma; Simandoux, Olivier; Huignard, Jean-Pierre; Bossy, Emmanuel; Moser, Christophe; Psaltis, Demetri

    2015-01-01

    In this paper we demonstrate the enhancement of the sensing capabilities of glass capillaries. We exploit their properties as optical and acoustic waveguides to transform them potentially into high resolution minimally invasive endoscopic devices. We show two possible applications of silica capillary waveguides demonstrating fluorescence and optical-resolution photoacoustic imaging using a single 330 μm-thick silica capillary. A nanosecond pulsed laser is focused and scanned in front of a capillary by digital phase conjugation through the silica annular ring of the capillary, used as an optical waveguide. We demonstrate optical-resolution photoacoustic images of a 30 μm-thick nylon thread using the water-filled core of the same capillary as an acoustic waveguide, resulting in a fully passive endoscopic device. Moreover, fluorescence images of 1.5 μm beads are obtained collecting the fluorescence signal through the optical waveguide. This kind of silica-capillary waveguide together with wavefront shaping techniques such as digital phase conjugation, paves the way to minimally invasive multi-modal endoscopy. PMID:26713182

  10. Towards new applications using capillary waveguides.

    PubMed

    Stasio, Nicolino; Shibukawa, Atsushi; Papadopoulos, Ioannis N; Farahi, Salma; Simandoux, Olivier; Huignard, Jean-Pierre; Bossy, Emmanuel; Moser, Christophe; Psaltis, Demetri

    2015-12-01

    In this paper we demonstrate the enhancement of the sensing capabilities of glass capillaries. We exploit their properties as optical and acoustic waveguides to transform them potentially into high resolution minimally invasive endoscopic devices. We show two possible applications of silica capillary waveguides demonstrating fluorescence and optical-resolution photoacoustic imaging using a single 330 μm-thick silica capillary. A nanosecond pulsed laser is focused and scanned in front of a capillary by digital phase conjugation through the silica annular ring of the capillary, used as an optical waveguide. We demonstrate optical-resolution photoacoustic images of a 30 μm-thick nylon thread using the water-filled core of the same capillary as an acoustic waveguide, resulting in a fully passive endoscopic device. Moreover, fluorescence images of 1.5 μm beads are obtained collecting the fluorescence signal through the optical waveguide. This kind of silica-capillary waveguide together with wavefront shaping techniques such as digital phase conjugation, paves the way to minimally invasive multi-modal endoscopy. PMID:26713182

  11. Multiple-Integrations of HPV16 Genome and Altered Transcription of Viral Oncogenes and Cellular Genes Are Associated with the Development of Cervical Cancer

    PubMed Central

    Lin, Mao; Duan, Ping; Ye, Lulu; Chen, Jun; Chen, Xiangmin; Zhang, Lifang; Xue, Xiangyang

    2014-01-01

    The constitutive expression of the high-risk HPV E6 and E7 viral oncogenes is the major cause of cervical cancer. To comprehensively explore the composition of HPV16 early transcripts and their genomic annotation, cervical squamous epithelial tissues from 40 HPV16-infected patients were collected for analysis of papillomavirus oncogene transcripts (APOT). We observed different transcription patterns of HPV16 oncogenes in progression of cervical lesions to cervical cancer and identified one novel transcript. Multiple-integration events in the tissues of cervical carcinoma (CxCa) are significantly more often than those of low-grade squamous intraepithelial lesions (LSIL) and high-grade squamous intraepithelial lesions (HSIL). Moreover, most cellular genes within or near these integration sites are cancer-associated genes. Taken together, this study suggests that the multiple-integrations of HPV genome during persistent viral infection, which thereby alters the expression patterns of viral oncogenes and integration-related cellular genes, play a crucial role in progression of cervical lesions to cervix cancer. PMID:24992025

  12. Fast and Broadband Signal Integrity Analysis of Multiple Vias in Heterogeneous 3D IC and Die-Level Packaging by Using Generalized Foldy-Lax Scattering Method

    NASA Astrophysics Data System (ADS)

    Chang, Xin

    This dissertation proposal is concerned with the use of fast and broadband full-wave electromagnetic methods for modeling high speed interconnects (e.g, vertical vias and horizontal traces) and passive components (e.g, decoupling capacitors) for structures of PCB and packages, in 3D IC, Die-level packaging and SIW based devices, to effectively modeling the designs signal integrity (SI) and power integrity (PI) aspects. The main contributions finished in this thesis is to create a novel methodology, which hybridizes the Foldy-Lax multiple scattering equations based fast full wave method, method of moment (MoM) based 1D technology, modes decoupling based geometry decomposition and cavity modes expansions, to model and simulate the electromagnetic scattering effects for the irregular power/ground planes, multiple vias and traces, for fast and accurate analysis of link level simulation on multilayer electronic structures. For the modeling details, the interior massively-coupled multiple vias problem is modeled most-analytically by using the Foldy-Lax multiple scattering equations. The dyadic Green's functions of the magnetic field are expressed in terms of waveguide modes in the vertical direction and vector cylindrical wave expansions or cavity modes expansions in the horizontal direction, combined with 2D MoM realized by 1D technology. For the incident field of the case of vias in the arbitrarily shaped antipad in finite large cavity/waveguide, the exciting and scattering field coefficients are calculated based on the transformation which converts surface integration of magnetic surface currents in antipad into 1D line integration of surface charges on the vias and on the ground plane. Geometry decomposition method is applied to model and integrate both the vertical and horizontal interconnects/traces in arbitrarily shaped power/ground planes. Moreover, a new form of multiple scattering equations is derived for solving coupling effects among mixed metallic

  13. A new set of rDNA-NTS-based multiple integrative cassettes for the development of antibiotic-marker-free recombinant yeasts.

    PubMed

    Moon, Hye Yun; Lee, Dong Wook; Sim, Gyu Hun; Kim, Hong-Jin; Hwang, Jee Youn; Kwon, Mun-Gyeong; Kang, Bo-Kyu; Kim, Jong Man; Kang, Hyun Ah

    2016-09-10

    The traditional yeast Saccharomyces cerevisiae has been widely used as a host system to produce recombinant proteins and metabolites of great commercial value. To engineer recombinant yeast that stably maintains expression cassettes without an antibiotic resistance gene, we developed new multiple integration cassettes by exploiting the non-transcribed spacer (NTS) of ribosomal DNA (rDNA) in combination with defective selection markers. The 5' and 3'-fragments of rDNA-NTS2 were used as flanking sequences for the expression cassettes carrying a set of URA3, LEU2, HIS3, and TRP1 selection markers with truncated promoters of different lengths. The integration numbers of NTS-based expression cassettes, ranging from one to ∼30 copies, showed a proportional increase with the extent of decreased expression of the auxotrophic markers. The NTS-based cassettes were used to construct yeast strains expressing the capsid protein of red-spotted grouper necrosis virus (RG-NNVCP) in a copy number-dependent manner. Oral administration of the recombinant yeast, harboring ∼30 copies of the integrated RG-NNVCP cassettes, provoked efficient immune responses in mice. In contrast, for the NTS cassettes expressing a truncated 3-hydroxyl-3-methylglutaryl-CoA reductase, the integrant carrying only 4 copies was screened as the highest producer of squalene, showing a 150-fold increase compared to that of the wild-type strain. The multiple integrated cassettes were stably retained under prolonged nonselective conditions. Altogether, our results strongly support that rDNA-NTS integrative cassettes are useful tools to construct recombinant yeasts carrying optimal copies of a desired expression cassette without an antibiotic marker gene, which are suitable as oral vaccines or feed additives for animal and human consumption. PMID:27411901

  14. Evaporation dynamics of femtoliter water capillary bridges

    NASA Astrophysics Data System (ADS)

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Kim, Jung Gu; Weon, Byung Mook

    2015-11-01

    Capillary bridges are usually formed by a small liquid volume in confined space between two solid surfaces and particularly they have lower internal pressure than 1 atm at femtoliter scales. Femtoliter capillary bridges exhibit rapid evaporation rates. To quantify detailed evaporation kinetics of femtoliter bridges, we present a feasible protocol to directly visualize femtoliter water bridges that evaporate in still air between a microsphere and a flat substrate by utilizing transmission X-ray microscopy. Precise measurements of evaporation kinetics for water bridges indicate that lower water pressure than 1 atm can significantly decelerate evaporation by suppression of vapor diffusion. This finding would provide a consensus to understand evaporation of ultrasmall capillary bridges.

  15. Arrested segregative phase separation in capillary tubes.

    PubMed

    Tromp, R Hans; Lindhoud, Saskia

    2006-09-01

    Phase separation in a capillary tube with one of the phases fully wetting the capillary wall is arrested when the typical size of the phase domains reaches the value of the diameter of the tube. The arrested state consists of an alternating sequence of concave-capped and convex-capped cylindrical domains, called "plugs," "bridges," or "lenses," of wetting and nonwetting phase, respectively. A description of this arrested plug state for an aqueous mixture of two polymer solutions is the subject of this work. A phase separating system consisting of two incompatible polymers dissolved in water was studied. The phase volume ratio was close to unity. The initial state from which plugs evolve is characterized by droplets of wetting phase in a continuous nonwetting phase. Experiments show the formation of plugs by a pathway that differs from the theoretically well-described instabilities in the thickness of a fluid thread inside a confined fluid cylinder. Plugs appear to form after the wetting layer (the confined fluid cylinder) has become unstable after merging of droplet with the wetting layer. The relative density of the phases could be set by the addition of salt, enabling density matching. As a consequence, the capillary length can in principle be made infinitely large and the Bond number (which represents the force of gravity relative to the capillary force) zero, without considerably changing the interfacial tension. Using the possibility of density matching, the relations among capillary length and capillary diameter on the one hand, and the presence of plugs and their average size on the other were studied. It was found that stable plugs are present when the capillary radius does not exceed a certain value, which is probably smaller than the capillary length. However, the average plug size is independent of capillary length. At constant capillary length, average plug size was found to scale with the capillary diameter to a power 1.3, significantly higher than the

  16. Cytokine Analysis by Immunoaffinity Capillary Electrophoresis

    PubMed Central

    Mendonca, Mark; Kalish, Heather

    2014-01-01

    Immunoaffinity capillary electrophoresis (ICE) is a powerful tool used to detect and quantify target proteins of interest in complex biological fluids. The target analyte is captured and bound to antibodies immobilized onto the wall of a capillary, labeled in situ with a fluorescent dye, eluted and detected online using laser-induced fluorescence following electrophoretic separation. Here, we illustrate how to construct an immunoaffinity capillary and utilize it to run ICE in order to capture and quantify target cytokines and chemokines from a clinical sample. PMID:22976107

  17. Micromechanism linear actuator with capillary force sealing

    DOEpatents

    Sniegowski, Jeffry J.

    1997-01-01

    A class of micromachine linear actuators whose function is based on gas driven pistons in which capillary forces are used to seal the gas behind the piston. The capillary forces also increase the amount of force transmitted from the gas pressure to the piston. In a major subclass of such devices, the gas bubble is produced by thermal vaporization of a working fluid. Because of their dependence on capillary forces for sealing, such devices are only practical on the sub-mm size scale, but in that regime they produce very large force times distance (total work) values.

  18. Google Earth as a Vehicle to Integrating Multiple Layers of Environmental Satellite Data for Weather and Science Applications

    NASA Astrophysics Data System (ADS)

    Turk, F. J.; Miller, S. D.

    2007-12-01

    One of the main challenges facing current and future environmental satellite systems (e.g, the future National Polar Orbiting Environmental Satellite System (NPOESS)) is reaching and entraining the diverse user community via communication of how these systems address their particular needs. A necessary element to meeting this challenge is effective data visualization: facilitating the display, animation and layering of multiple satellite imaging and sounding sensors (providing complementary information) in a user-friendly and intuitive fashion. In light of the fact that these data are rapidly making their way into the classroom owing to efficient and timely data archival systems and dissemination over the Internet, there is a golden opportunity to leverage existing technology to introduce environmental science to wide spectrum of users. Google Earth's simplified interface and underlying markup language enables access to detailed global geographic information, and contains features which are both desirable and advantageous for geo-referencing and combining a wide range of environmental satellite data types. Since these satellite data are available with a variety of horizontal spatial resolutions (tens of km down to hundreds of meters), the imagery can be sub-setted (tiled) at a very small size. This allows low-bandwidth users to efficiently view and animate a sequence of imagery while zoomed out from the surface, whereas high-bandwidth users can efficiently zoom into the finest image resolution when viewing fine-scale phenomena such as fires, volcanic activity, as well as the details of meteorological phenomena such as hurricanes, rainfall, lightning, winds, etc. Dynamically updated network links allow for near real-time updates such that these data can be integrated with other Earth-hosted applications and exploited not only in the teaching environment, but also for operational users in the government and private industry sectors. To conceptualize how environmental

  19. PNEUMATIC MICROVALVE FOR ELECTROKINETIC SAMPLE PRECONCENTRATION AND CAPILLARY ELECTROPHORESIS INJECTION

    SciTech Connect

    Cong, Yongzheng; Rausch, Sarah J.; Geng, Tao; Jambovane, Sachin R.; Kelly, Ryan T.

    2014-10-27

    Here we show that a closed pneumatic microvalve on a PDMS chip can serve as a semipermeable membrane under an applied potential, enabling current to pass through while blocking the passage of charged analytes. Enrichment of both anionic and cationic species has been demonstrated, and concentration factors of ~70 have been achieved in just 8 s. Once analytes are concentrated, the valve is briefly opened and the sample is hydrodynamically injected onto an integrated microchip or capillary electrophoresis (CE) column. In contrast to existing preconcentration approaches, the membrane-based method described here enables both rapid analyte concentration as well as high resolution separations.

  20. Loop Heat Pipes and Capillary Pumped Loops: An Applications Perspective

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Ku, Jentung; Swanson, Theodore; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    Capillary pumped loops (CPLS) and loop heat pipes (LHPS) are versatile two-phase heat transfer devices which have recently gained increasing acceptance in space applications. Both systems work based on the same principles and have very similar designs. Nevertheless, some differences exist in the construction of the evaporator and the hydro-accumulator, and these differences lead to very distinct operating characteristics for each loop. This paper presents comparisons of the two loops from an applications perspective, and addresses their impact on spacecraft design, integration, and test. Some technical challenges and issues for both loops are also addressed.