Science.gov

Sample records for integrated sequence motif

  1. Mining protein sequences for motifs.

    PubMed

    Narasimhan, Giri; Bu, Changsong; Gao, Yuan; Wang, Xuning; Xu, Ning; Mathee, Kalai

    2002-01-01

    We use methods from Data Mining and Knowledge Discovery to design an algorithm for detecting motifs in protein sequences. The algorithm assumes that a motif is constituted by the presence of a "good" combination of residues in appropriate locations of the motif. The algorithm attempts to compile such good combinations into a "pattern dictionary" by processing an aligned training set of protein sequences. The dictionary is subsequently used to detect motifs in new protein sequences. Statistical significance of the detection results are ensured by statistically determining the various parameters of the algorithm. Based on this approach, we have implemented a program called GYM. The Helix-Turn-Helix motif was used as a model system on which to test our program. The program was also extended to detect Homeodomain motifs. The detection results for the two motifs compare favorably with existing programs. In addition, the GYM program provides a lot of useful information about a given protein sequence. PMID:12487759

  2. Detecting correlations among functional-sequence motifs

    NASA Astrophysics Data System (ADS)

    Pirino, Davide; Rigosa, Jacopo; Ledda, Alice; Ferretti, Luca

    2012-06-01

    Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation. Identification of such words proceeds through rejection of Markov models on the expected motif frequency along the genome. Additional biological information can be extracted from the correlation structure among patterns of motif occurrences. In this paper a log-linear multivariate intensity Poisson model is estimated via expectation maximization on a set of motifs along the genome of E. coli K12. The proposed approach allows for excitatory as well as inhibitory interactions among motifs and between motifs and other genomic features like gene occurrences. Our findings confirm previous stylized facts about such types of interactions and shed new light on genome-maintenance functions of some particular motifs. We expect these methods to be applicable to a wider set of genomic features.

  3. Detecting correlations among functional-sequence motifs.

    PubMed

    Pirino, Davide; Rigosa, Jacopo; Ledda, Alice; Ferretti, Luca

    2012-06-01

    Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation. Identification of such words proceeds through rejection of Markov models on the expected motif frequency along the genome. Additional biological information can be extracted from the correlation structure among patterns of motif occurrences. In this paper a log-linear multivariate intensity Poisson model is estimated via expectation maximization on a set of motifs along the genome of E. coli K12. The proposed approach allows for excitatory as well as inhibitory interactions among motifs and between motifs and other genomic features like gene occurrences. Our findings confirm previous stylized facts about such types of interactions and shed new light on genome-maintenance functions of some particular motifs. We expect these methods to be applicable to a wider set of genomic features. PMID:23005179

  4. Detecting seeded motifs in DNA sequences.

    PubMed

    Pizzi, Cinzia; Bortoluzzi, Stefania; Bisognin, Andrea; Coppe, Alessandro; Danieli, Gian Antonio

    2005-01-01

    The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, composed by regions with a different extent of variability. The method is based on a multi-step approach, which was implemented in a motif searching web tool (MOST). Overrepresented exact patterns are extracted from input sequences and clustered to produce motifs core regions, which are then extended and scored to generate seeded motifs. The combination of automated pattern discovery algorithms and different display tools for the evaluation and selection of results at several analysis steps can potentially lead to much more meaningful results than complete automation can produce. Experimental results on different yeast and human real datasets proved the methodology to be a promising solution for finding seeded motifs. MOST web tool is freely available at http://telethon.bio.unipd.it/bioinfo/MOST. PMID:16141193

  5. Detecting seeded motifs in DNA sequences

    PubMed Central

    Pizzi, Cinzia; Bortoluzzi, Stefania; Bisognin, Andrea; Coppe, Alessandro; Danieli, Gian Antonio

    2005-01-01

    The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, composed by regions with a different extent of variability. The method is based on a multi-step approach, which was implemented in a motif searching web tool (MOST). Overrepresented exact patterns are extracted from input sequences and clustered to produce motifs core regions, which are then extended and scored to generate seeded motifs. The combination of automated pattern discovery algorithms and different display tools for the evaluation and selection of results at several analysis steps can potentially lead to much more meaningful results than complete automation can produce. Experimental results on different yeast and human real datasets proved the methodology to be a promising solution for finding seeded motifs. MOST web tool is freely available at . PMID:16141193

  6. MIDDAS-M: Motif-Independent De Novo Detection of Secondary Metabolite Gene Clusters through the Integration of Genome Sequencing and Transcriptome Data

    PubMed Central

    Umemura, Myco; Koike, Hideaki; Nagano, Nozomi; Ishii, Tomoko; Kawano, Jin; Yamane, Noriko; Kozone, Ikuko; Horimoto, Katsuhisa; Shin-ya, Kazuo; Asai, Kiyoshi; Yu, Jiujiang; Bennett, Joan W.; Machida, Masayuki

    2013-01-01

    Many bioactive natural products are produced as “secondary metabolites” by plants, bacteria, and fungi. During the middle of the 20th century, several secondary metabolites from fungi revolutionized the pharmaceutical industry, for example, penicillin, lovastatin, and cyclosporine. They are generally biosynthesized by enzymes encoded by clusters of coordinately regulated genes, and several motif-based methods have been developed to detect secondary metabolite biosynthetic (SMB) gene clusters using the sequence information of typical SMB core genes such as polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). However, no detection method exists for SMB gene clusters that are functional and do not include core SMB genes at present. To advance the exploration of SMB gene clusters, especially those without known core genes, we developed MIDDAS-M, a motif-independent de novo detection algorithm for SMB gene clusters. We integrated virtual gene cluster generation in an annotated genome sequence with highly sensitive scoring of the cooperative transcriptional regulation of cluster member genes. MIDDAS-M accurately predicted 38 SMB gene clusters that have been experimentally confirmed and/or predicted by other motif-based methods in 3 fungal strains. MIDDAS-M further identified a new SMB gene cluster for ustiloxin B, which was experimentally validated. Sequence analysis of the cluster genes indicated a novel mechanism for peptide biosynthesis independent of NRPS. Because it is fully computational and independent of empirical knowledge about SMB core genes, MIDDAS-M allows a large-scale, comprehensive analysis of SMB gene clusters, including those with novel biosynthetic mechanisms that do not contain any functionally characterized genes. PMID:24391870

  7. Short sequence motifs, overrepresented in mammalian conservednon-coding sequences

    SciTech Connect

    Minovitsky, Simon; Stegmaier, Philip; Kel, Alexander; Kondrashov,Alexey S.; Dubchak, Inna

    2007-02-21

    Background: A substantial fraction of non-coding DNAsequences of multicellular eukaryotes is under selective constraint. Inparticular, ~;5 percent of the human genome consists of conservednon-coding sequences (CNSs). CNSs differ from other genomic sequences intheir nucleotide composition and must play important functional roles,which mostly remain obscure.Results: We investigated relative abundancesof short sequence motifs in all human CNSs present in the human/mousewhole-genome alignments vs. three background sets of sequences: (i)weakly conserved or unconserved non-coding sequences (non-CNSs); (ii)near-promoter sequences (located between nucleotides -500 and -1500,relative to a start of transcription); and (iii) random sequences withthe same nucleotide composition as that of CNSs. When compared tonon-CNSs and near-promoter sequences, CNSs possess an excess of AT-richmotifs, often containing runs of identical nucleotides. In contrast, whencompared to random sequences, CNSs contain an excess of GC-rich motifswhich, however, lack CpG dinucleotides. Thus, abundance of short sequencemotifs in human CNSs, taken as a whole, is mostly determined by theiroverall compositional properties and not by overrepresentation of anyspecific short motifs. These properties are: (i) high AT-content of CNSs,(ii) a tendency, probably due to context-dependent mutation, of A's andT's to clump, (iii) presence of short GC-rich regions, and (iv) avoidanceof CpG contexts, due to their hypermutability. Only a small number ofshort motifs, overrepresented in all human CNSs are similar to bindingsites of transcription factors from the FOX family.Conclusion: Human CNSsas a whole appear to be too broad a class of sequences to possess strongfootprints of any short sequence-specific functions. Such footprintsshould be studied at the level of functional subclasses of CNSs, such asthose which flank genes with a particular pattern of expression. Overallproperties of CNSs are affected by patterns in

  8. CodingMotif: exact determination of overrepresented nucleotide motifs in coding sequences

    PubMed Central

    2012-01-01

    Background It has been increasingly appreciated that coding sequences harbor regulatory sequence motifs in addition to encoding for protein. These sequence motifs are expected to be overrepresented in nucleotide sequences bound by a common protein or small RNA. However, detecting overrepresented motifs has been difficult because of interference by constraints at the protein level. Sampling-based approaches to solve this problem based on codon-shuffling have been limited to exploring only an infinitesimal fraction of the sequence space and by their use of parametric approximations. Results We present a novel O(N(log N)2)-time algorithm, CodingMotif, to identify nucleotide-level motifs of unusual copy number in protein-coding regions. Using a new dynamic programming algorithm we are able to exhaustively calculate the distribution of the number of occurrences of a motif over all possible coding sequences that encode the same amino acid sequence, given a background model for codon usage and dinucleotide biases. Our method takes advantage of the sparseness of loci where a given motif can occur, greatly speeding up the required convolution calculations. Knowledge of the distribution allows one to assess the exact non-parametric p-value of whether a given motif is over- or under- represented. We demonstrate that our method identifies known functional motifs more accurately than sampling and parametric-based approaches in a variety of coding datasets of various size, including ChIP-seq data for the transcription factors NRSF and GABP. Conclusions CodingMotif provides a theoretically and empirically-demonstrated advance for the detection of motifs overrepresented in coding sequences. We expect CodingMotif to be useful for identifying motifs in functional genomic datasets such as DNA-protein binding, RNA-protein binding, or microRNA-RNA binding within coding regions. A software implementation is available at http://bioinformatics.bc.edu/chuanglab/codingmotif.tar PMID

  9. Occurrence probability of structured motifs in random sequences.

    PubMed

    Robin, S; Daudin, J-J; Richard, H; Sagot, M-F; Schbath, S

    2002-01-01

    The problem of extracting from a set of nucleic acid sequences motifs which may have biological function is more and more important. In this paper, we are interested in particular motifs that may be implicated in the transcription process. These motifs, called structured motifs, are composed of two ordered parts separated by a variable distance and allowing for substitutions. In order to assess their statistical significance, we propose approximations of the probability of occurrences of such a structured motif in a given sequence. An application of our method to evaluate candidate promoters in E. coli and B. subtilis is presented. Simulations show the goodness of the approximations. PMID:12614545

  10. DynaMIT: the dynamic motif integration toolkit

    PubMed Central

    Dassi, Erik; Quattrone, Alessandro

    2016-01-01

    De-novo motif search is a frequently applied bioinformatics procedure to identify and prioritize recurrent elements in sequences sets for biological investigation, such as the ones derived from high-throughput differential expression experiments. Several algorithms have been developed to perform motif search, employing widely different approaches and often giving divergent results. In order to maximize the power of these investigations and ultimately be able to draft solid biological hypotheses, there is the need for applying multiple tools on the same sequences and merge the obtained results. However, motif reporting formats and statistical evaluation methods currently make such an integration task difficult to perform and mostly restricted to specific scenarios. We thus introduce here the Dynamic Motif Integration Toolkit (DynaMIT), an extremely flexible platform allowing to identify motifs employing multiple algorithms, integrate them by means of a user-selected strategy and visualize results in several ways; furthermore, the platform is user-extendible in all its aspects. DynaMIT is freely available at http://cibioltg.bitbucket.org. PMID:26253738

  11. RSAT::Plants: Motif Discovery Within Clusters of Upstream Sequences in Plant Genomes.

    PubMed

    Contreras-Moreira, Bruno; Castro-Mondragon, Jaime A; Rioualen, Claire; Cantalapiedra, Carlos P; van Helden, Jacques

    2016-01-01

    The plant-dedicated mirror of the Regulatory Sequence Analysis Tools (RSAT, http://plants.rsat.eu ) offers specialized options for researchers dealing with plant transcriptional regulation. The website contains whole-sequenced genomes from species regularly updated from Ensembl Plants and other sources (currently 40), and supports an array of tasks frequently required for the analysis of regulatory sequences, such as retrieving upstream sequences, motif discovery, motif comparison, and pattern matching. RSAT::Plants also integrates the footprintDB collection of DNA motifs. This protocol explains step-by-step how to discover DNA motifs in regulatory regions of clusters of co-expressed genes in plants. It also explains how to empirically control the significance of the result, and how to associate the discovered motifs with putative binding factors. PMID:27557774

  12. Identifying novel sequence variants of RNA 3D motifs

    PubMed Central

    Zirbel, Craig L.; Roll, James; Sweeney, Blake A.; Petrov, Anton I.; Pirrung, Meg; Leontis, Neocles B.

    2015-01-01

    Predicting RNA 3D structure from sequence is a major challenge in biophysics. An important sub-goal is accurately identifying recurrent 3D motifs from RNA internal and hairpin loop sequences extracted from secondary structure (2D) diagrams. We have developed and validated new probabilistic models for 3D motif sequences based on hybrid Stochastic Context-Free Grammars and Markov Random Fields (SCFG/MRF). The SCFG/MRF models are constructed using atomic-resolution RNA 3D structures. To parameterize each model, we use all instances of each motif found in the RNA 3D Motif Atlas and annotations of pairwise nucleotide interactions generated by the FR3D software. Isostericity relations between non-Watson–Crick basepairs are used in scoring sequence variants. SCFG techniques model nested pairs and insertions, while MRF ideas handle crossing interactions and base triples. We use test sets of randomly-generated sequences to set acceptance and rejection thresholds for each motif group and thus control the false positive rate. Validation was carried out by comparing results for four motif groups to RMDetect. The software developed for sequence scoring (JAR3D) is structured to automatically incorporate new motifs as they accumulate in the RNA 3D Motif Atlas when new structures are solved and is available free for download. PMID:26130723

  13. Identifying novel sequence variants of RNA 3D motifs.

    PubMed

    Zirbel, Craig L; Roll, James; Sweeney, Blake A; Petrov, Anton I; Pirrung, Meg; Leontis, Neocles B

    2015-09-01

    Predicting RNA 3D structure from sequence is a major challenge in biophysics. An important sub-goal is accurately identifying recurrent 3D motifs from RNA internal and hairpin loop sequences extracted from secondary structure (2D) diagrams. We have developed and validated new probabilistic models for 3D motif sequences based on hybrid Stochastic Context-Free Grammars and Markov Random Fields (SCFG/MRF). The SCFG/MRF models are constructed using atomic-resolution RNA 3D structures. To parameterize each model, we use all instances of each motif found in the RNA 3D Motif Atlas and annotations of pairwise nucleotide interactions generated by the FR3D software. Isostericity relations between non-Watson-Crick basepairs are used in scoring sequence variants. SCFG techniques model nested pairs and insertions, while MRF ideas handle crossing interactions and base triples. We use test sets of randomly-generated sequences to set acceptance and rejection thresholds for each motif group and thus control the false positive rate. Validation was carried out by comparing results for four motif groups to RMDetect. The software developed for sequence scoring (JAR3D) is structured to automatically incorporate new motifs as they accumulate in the RNA 3D Motif Atlas when new structures are solved and is available free for download. PMID:26130723

  14. BlockLogo: visualization of peptide and sequence motif conservation.

    PubMed

    Olsen, Lars Rønn; Kudahl, Ulrich Johan; Simon, Christian; Sun, Jing; Schönbach, Christian; Reinherz, Ellis L; Zhang, Guang Lan; Brusic, Vladimir

    2013-12-31

    BlockLogo is a web-server application for the visualization of protein and nucleotide fragments, continuous protein sequence motifs, and discontinuous sequence motifs using calculation of block entropy from multiple sequence alignments. The user input consists of a multiple sequence alignment, selection of motif positions, type of sequence, and output format definition. The output has BlockLogo along with the sequence logo, and a table of motif frequencies. We deployed BlockLogo as an online application and have demonstrated its utility through examples that show visualization of T-cell epitopes and B-cell epitopes (both continuous and discontinuous). Our additional example shows a visualization and analysis of structural motifs that determine the specificity of peptide binding to HLA-DR molecules. The BlockLogo server also employs selected experimentally validated prediction algorithms to enable on-the-fly prediction of MHC binding affinity to 15 common HLA class I and class II alleles as well as visual analysis of discontinuous epitopes from multiple sequence alignments. It enables the visualization and analysis of structural and functional motifs that are usually described as regular expressions. It provides a compact view of discontinuous motifs composed of distant positions within biological sequences. BlockLogo is available at: http://research4.dfci.harvard.edu/cvc/blocklogo/ and http://met-hilab.bu.edu/blocklogo/. PMID:24001880

  15. A Gibbs sampler for motif detection in phylogenetically close sequences

    NASA Astrophysics Data System (ADS)

    Siddharthan, Rahul; van Nimwegen, Erik; Siggia, Eric

    2004-03-01

    Genes are regulated by transcription factors that bind to DNA upstream of genes and recognize short conserved ``motifs'' in a random intergenic ``background''. Motif-finders such as the Gibbs sampler compare the probability of these short sequences being represented by ``weight matrices'' to the probability of their arising from the background ``null model'', and explore this space (analogous to a free-energy landscape). But closely related species may show conservation not because of functional sites but simply because they have not had sufficient time to diverge, so conventional methods will fail. We introduce a new Gibbs sampler algorithm that accounts for common ancestry when searching for motifs, while requiring minimal ``prior'' assumptions on the number and types of motifs, assessing the significance of detected motifs by ``tracking'' clusters that stay together. We apply this scheme to motif detection in sporulation-cycle genes in the yeast S. cerevisiae, using recent sequences of other closely-related Saccharomyces species.

  16. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    PubMed

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology. PMID:26886735

  17. Discovering Motifs in Ranked Lists of DNA Sequences

    PubMed Central

    Eden, Eran; Lipson, Doron; Yogev, Sivan; Yakhini, Zohar

    2007-01-01

    Computational methods for discovery of sequence elements that are enriched in a target set compared with a background set are fundamental in molecular biology research. One example is the discovery of transcription factor binding motifs that are inferred from ChIP–chip (chromatin immuno-precipitation on a microarray) measurements. Several major challenges in sequence motif discovery still require consideration: (i) the need for a principled approach to partitioning the data into target and background sets; (ii) the lack of rigorous models and of an exact p-value for measuring motif enrichment; (iii) the need for an appropriate framework for accounting for motif multiplicity; (iv) the tendency, in many of the existing methods, to report presumably significant motifs even when applied to randomly generated data. In this paper we present a statistical framework for discovering enriched sequence elements in ranked lists that resolves these four issues. We demonstrate the implementation of this framework in a software application, termed DRIM (discovery of rank imbalanced motifs), which identifies sequence motifs in lists of ranked DNA sequences. We applied DRIM to ChIP–chip and CpG methylation data and obtained the following results. (i) Identification of 50 novel putative transcription factor (TF) binding sites in yeast ChIP–chip data. The biological function of some of them was further investigated to gain new insights on transcription regulation networks in yeast. For example, our discoveries enable the elucidation of the network of the TF ARO80. Another finding concerns a systematic TF binding enhancement to sequences containing CA repeats. (ii) Discovery of novel motifs in human cancer CpG methylation data. Remarkably, most of these motifs are similar to DNA sequence elements bound by the Polycomb complex that promotes histone methylation. Our findings thus support a model in which histone methylation and CpG methylation are mechanistically linked. Overall

  18. Oligonucleotide Sequence Motifs as Nucleosome Positioning Signals

    PubMed Central

    Collings, Clayton K.; Fernandez, Alfonso G.; Pitschka, Chad G.; Hawkins, Troy B.; Anderson, John N.

    2010-01-01

    To gain a better understanding of the sequence patterns that characterize positioned nucleosomes, we first performed an analysis of the periodicities of the 256 tetranucleotides in a yeast genome-wide library of nucleosomal DNA sequences that was prepared by in vitro reconstitution. The approach entailed the identification and analysis of 24 unique tetranucleotides that were defined by 8 consensus sequences. These consensus sequences were shown to be responsible for most if not all of the tetranucleotide and dinucleotide periodicities displayed by the entire library, demonstrating that the periodicities of dinucleotides that characterize the yeast genome are, in actuality, due primarily to the 8 consensus sequences. A novel combination of experimental and bioinformatic approaches was then used to show that these tetranucleotides are important for preferred formation of nucleosomes at specific sites along DNA in vitro. These results were then compared to tetranucleotide patterns in genome-wide in vivo libraries from yeast and C. elegans in order to assess the contributions of DNA sequence in the control of nucleosome residency in the cell. These comparisons revealed striking similarities in the tetranucleotide occurrence profiles that are likely to be involved in nucleosome positioning in both in vitro and in vivo libraries, suggesting that DNA sequence is an important factor in the control of nucleosome placement in vivo. However, the strengths of the tetranucleotide periodicities were 3–4 fold higher in the in vitro as compared to the in vivo libraries, which implies that DNA sequence plays less of a role in dictating nucleosome positions in vivo. The results of this study have important implications for models of sequence-dependent positioning since they suggest that a defined subset of tetranucleotides is involved in preferred nucleosome occupancy and that these tetranucleotides are the major source of the dinucleotide periodicities that are characteristic of

  19. Discovering common stem–loop motifs in unaligned RNA sequences

    PubMed Central

    Gorodkin, Jan; Stricklin, Shawn L.; Stormo, Gary D.

    2001-01-01

    Post-transcriptional regulation of gene expression is often accomplished by proteins binding to specific sequence motifs in mRNA molecules, to affect their translation or stability. The motifs are often composed of a combination of sequence and structural constraints such that the overall structure is preserved even though much of the primary sequence is variable. While several methods exist to discover transcriptional regulatory sites in the DNA sequences of coregulated genes, the RNA motif discovery problem is much more difficult because of covariation in the positions. We describe the combined use of two approaches for RNA structure prediction, FOLDALIGN and COVE, that together can discover and model stem–loop RNA motifs in unaligned sequences, such as UTRs from post-transcriptionally coregulated genes. We evaluate the method on two datasets, one a section of rRNA genes with randomly truncated ends so that a global alignment is not possible, and the other a hyper-variable collection of IRE-like elements that were inserted into randomized UTR sequences. In both cases the combined method identified the motifs correctly, and in the rRNA example we show that it is capable of determining the structure, which includes bulge and internal loops as well as a variable length hairpin loop. Those automated results are quantitatively evaluated and found to agree closely with structures contained in curated databases, with correlation coefficients up to 0.9. A basic server, Stem–Loop Align SearcH (SLASH), which will perform stem–loop searches in unaligned RNA sequences, is available at http://www.bioinf.au.dk/slash/. PMID:11353083

  20. Identification of disease-specific motifs in the antibody specificity repertoire via next-generation sequencing.

    PubMed

    Pantazes, Robert J; Reifert, Jack; Bozekowski, Joel; Ibsen, Kelly N; Murray, Joseph A; Daugherty, Patrick S

    2016-01-01

    Disease-specific antibodies can serve as highly effective biomarkers but have been identified for only a relatively small number of autoimmune diseases. A method was developed to identify disease-specific binding motifs through integration of bacterial display peptide library screening, next-generation sequencing (NGS) and computational analysis. Antibody specificity repertoires were determined by identifying bound peptide library members for each specimen using cell sorting and performing NGS. A computational algorithm, termed Identifying Motifs Using Next- generation sequencing Experiments (IMUNE), was developed and applied to discover disease- and healthy control-specific motifs. IMUNE performs comprehensive pattern searches, identifies patterns statistically enriched in the disease or control groups and clusters the patterns to generate motifs. Using celiac disease sera as a discovery set, IMUNE identified a consensus motif (QPEQPF[PS]E) with high diagnostic sensitivity and specificity in a validation sera set, in addition to novel motifs. Peptide display and sequencing (Display-Seq) coupled with IMUNE analysis may thus be useful to characterize antibody repertoires and identify disease-specific antibody epitopes and biomarkers. PMID:27481573

  1. Identification of disease-specific motifs in the antibody specificity repertoire via next-generation sequencing

    PubMed Central

    Pantazes, Robert J.; Reifert, Jack; Bozekowski, Joel; Ibsen, Kelly N.; Murray, Joseph A.; Daugherty, Patrick S.

    2016-01-01

    Disease-specific antibodies can serve as highly effective biomarkers but have been identified for only a relatively small number of autoimmune diseases. A method was developed to identify disease-specific binding motifs through integration of bacterial display peptide library screening, next-generation sequencing (NGS) and computational analysis. Antibody specificity repertoires were determined by identifying bound peptide library members for each specimen using cell sorting and performing NGS. A computational algorithm, termed Identifying Motifs Using Next- generation sequencing Experiments (IMUNE), was developed and applied to discover disease- and healthy control-specific motifs. IMUNE performs comprehensive pattern searches, identifies patterns statistically enriched in the disease or control groups and clusters the patterns to generate motifs. Using celiac disease sera as a discovery set, IMUNE identified a consensus motif (QPEQPF[PS]E) with high diagnostic sensitivity and specificity in a validation sera set, in addition to novel motifs. Peptide display and sequencing (Display-Seq) coupled with IMUNE analysis may thus be useful to characterize antibody repertoires and identify disease-specific antibody epitopes and biomarkers. PMID:27481573

  2. Computing distribution of scale independent motifs in biological sequences

    PubMed Central

    Almeida, Jonas S; Vinga, Susana

    2006-01-01

    The use of Chaos Game Representation (CGR) or its generalization, Universal Sequence Maps (USM), to describe the distribution of biological sequences has been found objectionable because of the fractal structure of that coordinate system. Consequently, the investigation of distribution of symbolic motifs at multiple scales is hampered by an inexact association between distance and sequence dissimilarity. A solution to this problem could unleash the use of iterative maps as phase-state representation of sequences where its statistical properties can be conveniently investigated. In this study a family of kernel density functions is described that accommodates the fractal nature of iterative function representations of symbolic sequences and, consequently, enables the exact investigation of sequence motifs of arbitrary lengths in that scale-independent representation. Furthermore, the proposed kernel density includes both Markovian succession and currently used alignment-free sequence dissimilarity metrics as special solutions. Therefore, the fractal kernel described is in fact a generalization that provides a common framework for a diverse suite of sequence analysis techniques. PMID:17049089

  3. Do short, frequent DNA sequence motifs mould the epigenome?

    PubMed

    Quante, Timo; Bird, Adrian

    2016-04-01

    'Epigenome' refers to the panoply of chemical modifications borne by DNA and its associated proteins that locally affect genome function. Epigenomic patterns are thought to be determined by external constraints resulting from development, disease and the environment, but DNA sequence is also a potential influence. We propose that domains of relatively uniform DNA base composition may modulate the epigenome through cell type-specific proteins that recognize short, frequent sequence motifs. Differential recruitment of epigenomic modifiers may adjust gene expression in multigene blocks as an alternative to tuning the activity of each gene separately, thus simplifying gene expression programming. PMID:26837845

  4. Sequence-Based Classification Using Discriminatory Motif Feature Selection

    PubMed Central

    Xiong, Hao; Capurso, Daniel; Sen, Śaunak; Segal, Mark R.

    2011-01-01

    Most existing methods for sequence-based classification use exhaustive feature generation, employing, for example, all -mer patterns. The motivation behind such (enumerative) approaches is to minimize the potential for overlooking important features. However, there are shortcomings to this strategy. First, practical constraints limit the scope of exhaustive feature generation to patterns of length , such that potentially important, longer () predictors are not considered. Second, features so generated exhibit strong dependencies, which can complicate understanding of derived classification rules. Third, and most importantly, numerous irrelevant features are created. These concerns can compromise prediction and interpretation. While remedies have been proposed, they tend to be problem-specific and not broadly applicable. Here, we develop a generally applicable methodology, and an attendant software pipeline, that is predicated on discriminatory motif finding. In addition to the traditional training and validation partitions, our framework entails a third level of data partitioning, a discovery partition. A discriminatory motif finder is used on sequences and associated class labels in the discovery partition to yield a (small) set of features. These features are then used as inputs to a classifier in the training partition. Finally, performance assessment occurs on the validation partition. Important attributes of our approach are its modularity (any discriminatory motif finder and any classifier can be deployed) and its universality (all data, including sequences that are unaligned and/or of unequal length, can be accommodated). We illustrate our approach on two nucleosome occupancy datasets and a protein solubility dataset, previously analyzed using enumerative feature generation. Our method achieves excellent performance results, with and without optimization of classifier tuning parameters. A Python pipeline implementing the approach is available at http

  5. Identification of imine reductase-specific sequence motifs.

    PubMed

    Fademrecht, Silvia; Scheller, Philipp N; Nestl, Bettina M; Hauer, Bernhard; Pleiss, Jürgen

    2016-05-01

    Chiral amines are valuable building blocks for the production of a variety of pharmaceuticals, agrochemicals and other specialty chemicals. Only recently, imine reductases (IREDs) were discovered which catalyze the stereoselective reduction of imines to chiral amines. Although several IREDs were biochemically characterized in the last few years, knowledge of the reaction mechanism and the molecular basis of substrate specificity and stereoselectivity is limited. To gain further insights into the sequence-function relationships, the Imine Reductase Engineering Database (www.IRED.BioCatNet.de) was established and a systematic analysis of 530 putative IREDs was performed. A standard numbering scheme based on R-IRED-Sk was introduced to facilitate the identification and communication of structurally equivalent positions in different proteins. A conservation analysis revealed a highly conserved cofactor binding region and a predominantly hydrophobic substrate binding cleft. Two IRED-specific motifs were identified, the cofactor binding motif GLGxMGx5 [ATS]x4 Gx4 [VIL]WNR[TS]x2 [KR] and the active site motif Gx[DE]x[GDA]x[APS]x3 {K}x[ASL]x[LMVIAG]. Our results indicate a preference toward NADPH for all IREDs and explain why, despite their sequence similarity to β-hydroxyacid dehydrogenases (β-HADs), no conversion of β-hydroxyacids has been observed. Superfamily-specific conservations were investigated to explore the molecular basis of their stereopreference. Based on our analysis and previous experimental results on IRED mutants, an exclusive role of standard position 187 for stereoselectivity is excluded. Alternatively, two standard positions 139 and 194 were identified which are superfamily-specifically conserved and differ in R- and S-selective enzymes. Proteins 2016; 84:600-610. © 2016 Wiley Periodicals, Inc. PMID:26857686

  6. Phosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases

    PubMed Central

    Zhao, Bryan M.; Keasey, Sarah L.; Tropea, Joseph E.; Lountos, George T.; Dyas, Beverly K.; Cherry, Scott; Raran-Kurussi, Sreejith; Waugh, David S.; Ulrich, Robert G.

    2015-01-01

    Protein tyrosine phosphatases dephosphorylate tyrosine residues of proteins, whereas, dual specificity phosphatases (DUSPs) are a subgroup of protein tyrosine phosphatases that dephosphorylate not only Tyr(P) residue, but also the Ser(P) and Thr(P) residues of proteins. The DUSPs are linked to the regulation of many cellular functions and signaling pathways. Though many cellular targets of DUSPs are known, the relationship between catalytic activity and substrate specificity is poorly defined. We investigated the interactions of peptide substrates with select DUSPs of four types: MAP kinases (DUSP1 and DUSP7), atypical (DUSP3, DUSP14, DUSP22 and DUSP27), viral (variola VH1), and Cdc25 (A-C). Phosphatase recognition sites were experimentally determined by measuring dephosphorylation of 6,218 microarrayed Tyr(P) peptides representing confirmed and theoretical phosphorylation motifs from the cellular proteome. A broad continuum of dephosphorylation was observed across the microarrayed peptide substrates for all phosphatases, suggesting a complex relationship between substrate sequence recognition and optimal activity. Further analysis of peptide dephosphorylation by hierarchical clustering indicated that DUSPs could be organized by substrate sequence motifs, and peptide-specificities by phylogenetic relationships among the catalytic domains. The most highly dephosphorylated peptides represented proteins from 29 cell-signaling pathways, greatly expanding the list of potential targets of DUSPs. These newly identified DUSP substrates will be important for examining structure-activity relationships with physiologically relevant targets. PMID:26302245

  7. Functional roles of short sequence motifs in the endocytosis of membrane receptors

    PubMed Central

    Pandey, Kailash N.

    2009-01-01

    Internalization and trafficking of cell-surface membrane receptors and proteins into subcellular compartments is mediated by specific short-sequence signal motifs, which are usually located within the cytoplasmic domains of these receptor and protein molecules. The signals usually consist of short linear amino acid sequences, which are recognized by adaptor coat proteins along the endocytic and sorting pathways. The complex arrays of signals and recognition proteins ensure the dynamic movement, accurate trafficking, and designated distribution of transmembrane receptors and ligands into intracellular compartments, particularly to the endosomal-lysosomal system. This review summarizes the new information and concepts, integrating them with the current and established views of endocytosis, intracellular trafficking, and sorting of membrane receptors and proteins. Particular emphasis has been given to the functional roles of short-sequence signal motifs responsible for the itinerary and destination of membrane receptors and proteins moving into the subcellular compartments. The specific characteristics and functions of short-sequence motifs, including various tyrosine-based, dileucine-type, and other short-sequence signals in the trafficking and sorting of membrane receptors and membrane proteins are presented and discussed. PMID:19482617

  8. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs

    PubMed Central

    2012-01-01

    Background Discovery of functionally significant short, statistically overrepresented subsequence patterns (motifs) in a set of sequences is a challenging problem in bioinformatics. Oftentimes, not all sequences in the set contain a motif. These non-motif-containing sequences complicate the algorithmic discovery of motifs. Filtering the non-motif-containing sequences from the larger set of sequences while simultaneously determining the identity of the motif is, therefore, desirable and a non-trivial problem in motif discovery research. Results We describe MotifCatcher, a framework that extends the sensitivity of existing motif-finding tools by employing random sampling to effectively remove non-motif-containing sequences from the motif search. We developed two implementations of our algorithm; each built around a commonly used motif-finding tool, and applied our algorithm to three diverse chromatin immunoprecipitation (ChIP) data sets. In each case, the motif finder with the MotifCatcher extension demonstrated improved sensitivity over the motif finder alone. Our approach organizes candidate functionally significant discovered motifs into a tree, which allowed us to make additional insights. In all cases, we were able to support our findings with experimental work from the literature. Conclusions Our framework demonstrates that additional processing at the sequence entry level can significantly improve the performance of existing motif-finding tools. For each biological data set tested, we were able to propose novel biological hypotheses supported by experimental work from the literature. Specifically, in Escherichia coli, we suggested binding site motifs for 6 non-traditional LexA protein binding sites; in Saccharomyces cerevisiae, we hypothesize 2 disparate mechanisms for novel binding sites of the Cse4p protein; and in Halobacterium sp. NRC-1, we discoverd subtle differences in a general transcription factor (GTF) binding site motif across several data sets. We

  9. SVM2Motif--Reconstructing Overlapping DNA Sequence Motifs by Mimicking an SVM Predictor.

    PubMed

    Vidovic, Marina M-C; Görnitz, Nico; Müller, Klaus-Robert; Rätsch, Gunnar; Kloft, Marius

    2015-01-01

    Identifying discriminative motifs underlying the functionality and evolution of organisms is a major challenge in computational biology. Machine learning approaches such as support vector machines (SVMs) achieve state-of-the-art performances in genomic discrimination tasks, but--due to its black-box character--motifs underlying its decision function are largely unknown. As a remedy, positional oligomer importance matrices (POIMs) allow us to visualize the significance of position-specific subsequences. Although being a major step towards the explanation of trained SVM models, they suffer from the fact that their size grows exponentially in the length of the motif, which renders their manual inspection feasible only for comparably small motif sizes, typically k ≤ 5. In this work, we extend the work on positional oligomer importance matrices, by presenting a new machine-learning methodology, entitled motifPOIM, to extract the truly relevant motifs--regardless of their length and complexity--underlying the predictions of a trained SVM model. Our framework thereby considers the motifs as free parameters in a probabilistic model, a task which can be phrased as a non-convex optimization problem. The exponential dependence of the POIM size on the oligomer length poses a major numerical challenge, which we address by an efficient optimization framework that allows us to find possibly overlapping motifs consisting of up to hundreds of nucleotides. We demonstrate the efficacy of our approach on a synthetic data set as well as a real-world human splice site data set. PMID:26690911

  10. JAR3D Webserver: Scoring and aligning RNA loop sequences to known 3D motifs.

    PubMed

    Roll, James; Zirbel, Craig L; Sweeney, Blake; Petrov, Anton I; Leontis, Neocles

    2016-07-01

    Many non-coding RNAs have been identified and may function by forming 2D and 3D structures. RNA hairpin and internal loops are often represented as unstructured on secondary structure diagrams, but RNA 3D structures show that most such loops are structured by non-Watson-Crick basepairs and base stacking. Moreover, different RNA sequences can form the same RNA 3D motif. JAR3D finds possible 3D geometries for hairpin and internal loops by matching loop sequences to motif groups from the RNA 3D Motif Atlas, by exact sequence match when possible, and by probabilistic scoring and edit distance for novel sequences. The scoring gauges the ability of the sequences to form the same pattern of interactions observed in 3D structures of the motif. The JAR3D webserver at http://rna.bgsu.edu/jar3d/ takes one or many sequences of a single loop as input, or else one or many sequences of longer RNAs with multiple loops. Each sequence is scored against all current motif groups. The output shows the ten best-matching motif groups. Users can align input sequences to each of the motif groups found by JAR3D. JAR3D will be updated with every release of the RNA 3D Motif Atlas, and so its performance is expected to improve over time. PMID:27235417

  11. Sequence Motifs in MADS Transcription Factors Responsible for Specificity and Diversification of Protein-Protein Interaction

    PubMed Central

    van Dijk, Aalt D. J.; Morabito, Giuseppa; Fiers, Martijn; van Ham, Roeland C. H. J.; Angenent, Gerco C.; Immink, Richard G. H.

    2010-01-01

    Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain transcription factor family. In comparison to the situation in mammalian species, this important family of transcription regulators has expanded enormously in plant species and contains over 100 members in the model plant species Arabidopsis thaliana. Here, we provide insight into the mechanisms that determine protein-protein interaction specificity for the Arabidopsis MADS domain transcription factor family, using an integrated computational and experimental approach. Plant MADS proteins have highly similar amino acid sequences, but their dimerization patterns vary substantially. Our computational analysis uncovered small sequence regions that explain observed differences in dimerization patterns with reasonable accuracy. Furthermore, we show the usefulness of the method for prediction of MADS domain transcription factor interaction networks in other plant species. Introduction of mutations in the predicted interaction motifs demonstrated that single amino acid mutations can have a large effect and lead to loss or gain of specific interactions. In addition, various performed bioinformatics analyses shed light on the way evolution has shaped MADS domain transcription factor interaction specificity. Identified protein-protein interaction motifs appeared to be strongly conserved among orthologs, indicating their evolutionary importance. We also provide evidence that mutations in these motifs can be a source for sub- or neo-functionalization. The analyses presented here take us a step forward in understanding protein-protein interactions and the interplay between protein sequences and network evolution. PMID

  12. False occurrences of functional motifs in protein sequences highlight evolutionary constraints

    PubMed Central

    Via, Allegra; Gherardini, Pier Federico; Ferraro, Enrico; Ausiello, Gabriele; Scalia Tomba, Gianpaolo; Helmer-Citterich, Manuela

    2007-01-01

    Background False occurrences of functional motifs in protein sequences can be considered as random events due solely to the sequence composition of a proteome. Here we use a numerical approach to investigate the random appearance of functional motifs with the aim of addressing biological questions such as: How are organisms protected from undesirable occurrences of motifs otherwise selected for their functionality? Has the random appearance of functional motifs in protein sequences been affected during evolution? Results Here we analyse the occurrence of functional motifs in random sequences and compare it to that observed in biological proteomes; the behaviour of random motifs is also studied. Most motifs exhibit a number of false positives significantly similar to the number of times they appear in randomized proteomes (=expected number of false positives). Interestingly, about 3% of the analysed motifs show a different kind of behaviour and appear in biological proteomes less than they do in random sequences. In some of these cases, a mechanism of evolutionary negative selection is apparent; this helps to prevent unwanted functionalities which could interfere with cellular mechanisms. Conclusion Our thorough statistical and biological analysis showed that there are several mechanisms and evolutionary constraints both of which affect the appearance of functional motifs in protein sequences. PMID:17331242

  13. Illumina MiSeq sequencing disfavours a sequence motif in the GFP reporter gene

    PubMed Central

    Van den Hoecke, Silvie; Verhelst, Judith; Saelens, Xavier

    2016-01-01

    Green fluorescent protein (GFP) is one of the most used reporter genes. We have used next-generation sequencing (NGS) to analyse the genetic diversity of a recombinant influenza A virus that expresses GFP and found a remarkable coverage dip in the GFP coding sequence. This coverage dip was present when virus-derived RT-PCR product or the parental plasmid DNA was used as starting material for NGS and regardless of whether Nextera XT transposase or Covaris shearing was used for DNA fragmentation. Therefore, the sequence coverage dip in the GFP coding sequence was not the result of emerging GFP mutant viruses or a bias introduced by Nextera XT fragmentation. Instead, we found that the Illumina MiSeq sequencing method disfavours the ‘CCCGCC’ motif in the GFP coding sequence. PMID:27193250

  14. Illumina MiSeq sequencing disfavours a sequence motif in the GFP reporter gene.

    PubMed

    Van den Hoecke, Silvie; Verhelst, Judith; Saelens, Xavier

    2016-01-01

    Green fluorescent protein (GFP) is one of the most used reporter genes. We have used next-generation sequencing (NGS) to analyse the genetic diversity of a recombinant influenza A virus that expresses GFP and found a remarkable coverage dip in the GFP coding sequence. This coverage dip was present when virus-derived RT-PCR product or the parental plasmid DNA was used as starting material for NGS and regardless of whether Nextera XT transposase or Covaris shearing was used for DNA fragmentation. Therefore, the sequence coverage dip in the GFP coding sequence was not the result of emerging GFP mutant viruses or a bias introduced by Nextera XT fragmentation. Instead, we found that the Illumina MiSeq sequencing method disfavours the 'CCCGCC' motif in the GFP coding sequence. PMID:27193250

  15. Phosphatidylinositol transfer proteins: sequence motifs in structural and evolutionary analyses

    PubMed Central

    Wyckoff, Gerald J.; Solidar, Ada; Yoden, Marilyn D.

    2016-01-01

    Phosphatidylinositol transfer proteins (PITP) are a family of monomeric proteins that bind and transfer phosphatidylinositol and phosphatidylcholine between membrane compartments. They are required for production of inositol and diacylglycerol second messengers, and are found in most metazoan organisms. While PITPs are known to carry out crucial cell-signaling roles in many organisms, the structure, function and evolution of the majority of family members remains unexplored; primarily because the ubiquity and diversity of the family thwarts traditional methods of global alignment. To surmount this obstacle, we instead took a novel approach, using MEME and a parsimony-based analysis to create a cladogram of conserved sequence motifs in 56 PITP family proteins from 26 species. In keeping with previous functional annotations, three clades were supported within our evolutionary analysis; two classes of soluble proteins and a class of membrane-associated proteins. By, focusing on conserved regions, the analysis allowed for in depth queries regarding possible functional roles of PITP proteins in both intra- and extra- cellular signaling.

  16. ZFP57 recognizes multiple and closely spaced sequence motif variants to maintain repressive epigenetic marks in mouse embryonic stem cells

    PubMed Central

    Anvar, Zahra; Cammisa, Marco; Riso, Vincenzo; Baglivo, Ilaria; Kukreja, Harpreet; Sparago, Angela; Girardot, Michael; Lad, Shraddha; De Feis, Italia; Cerrato, Flavia; Angelini, Claudia; Feil, Robert; Pedone, Paolo V.; Grimaldi, Giovanna; Riccio, Andrea

    2016-01-01

    Imprinting Control Regions (ICRs) need to maintain their parental allele-specific DNA methylation during early embryogenesis despite genome-wide demethylation and subsequent de novo methylation. ZFP57 and KAP1 are both required for maintaining the repressive DNA methylation and H3-lysine-9-trimethylation (H3K9me3) at ICRs. In vitro, ZFP57 binds a specific hexanucleotide motif that is enriched at its genomic binding sites. We now demonstrate in mouse embryonic stem cells (ESCs) that SNPs disrupting closely-spaced hexanucleotide motifs are associated with lack of ZFP57 binding and H3K9me3 enrichment. Through a transgenic approach in mouse ESCs, we further demonstrate that an ICR fragment containing three ZFP57 motif sequences recapitulates the original methylated or unmethylated status when integrated into the genome at an ectopic position. Mutation of Zfp57 or the hexanucleotide motifs led to loss of ZFP57 binding and DNA methylation of the transgene. Finally, we identified a sequence variant of the hexanucleotide motif that interacts with ZFP57 both in vivo and in vitro. The presence of multiple and closely located copies of ZFP57 motif variants emerges as a distinct characteristic that is required for the faithful maintenance of repressive epigenetic marks at ICRs and other ZFP57 binding sites. PMID:26481358

  17. Physical-chemical property based sequence motifs and methods regarding same

    DOEpatents

    Braun, Werner; Mathura, Venkatarajan S.; Schein, Catherine H.

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  18. Bioinformatic identification of novel regulatory DNA sequence motifs in Streptomyces coelicolor

    PubMed Central

    Studholme, David J; Bentley, Stephen D; Kormanec, Jan

    2004-01-01

    Background Streptomyces coelicolor is a bacterium with a vast repertoire of metabolic functions and complex systems of cellular development. Its genome sequence is rich in genes that encode regulatory proteins to control these processes in response to its changing environment. We wished to apply a recently published bioinformatic method for identifying novel regulatory sequence signals to gain new insights into regulation in S. coelicolor. Results The method involved production of position-specific weight matrices from alignments of over-represented words of DNA sequence. We generated 2497 weight matrices, each representing a candidate regulatory DNA sequence motif. We scanned the genome sequence of S. coelicolor against each of these matrices. A DNA sequence motif represented by one of the matrices was found preferentially in non-coding sequences immediately upstream of genes involved in polysaccharide degradation, including several that encode chitinases. This motif (TGGTCTAGACCA) was also found upstream of genes encoding components of the phosphoenolpyruvate phosphotransfer system (PTS). We hypothesise that this DNA sequence motif represents a regulatory element that is responsive to availability of carbon-sources. Other motifs of potential biological significance were found upstream of genes implicated in secondary metabolism (TTAGGTtAGgCTaACCTAA), sigma factors (TGACN19TGAC), DNA replication and repair (ttgtCAGTGN13TGGA), nucleotide conversions (CTACgcNCGTAG), and ArsR (TCAGN12TCAG). A motif found upstream of genes involved in chromosome replication (TGTCagtgcN7Tagg) was similar to a previously described motif found in UV-responsive promoters. Conclusions We successfully applied a recently published in silico method to identify conserved sequence motifs in S. coelicolor that may be biologically significant as regulatory elements. Our data are broadly consistent with and further extend data from previously published studies. We invite experimental testing of

  19. Over-represented localized sequence motifs in ribosomal protein gene promoters of basal metazoans.

    PubMed

    Perina, Drago; Korolija, Marina; Roller, Maša; Harcet, Matija; Jeličić, Branka; Mikoč, Andreja; Cetković, Helena

    2011-07-01

    Equimolecular presence of ribosomal proteins (RPs) in the cell is needed for ribosome assembly and is achieved by synchronized expression of ribosomal protein genes (RPGs) with promoters of similar strengths. Over-represented motifs of RPG promoter regions are identified as targets for specific transcription factors. Unlike RPs, those motifs are not conserved between mammals, drosophila, and yeast. We analyzed RPGs proximal promoter regions of three basal metazoans with sequenced genomes: sponge, cnidarian, and placozoan and found common features, such as 5'-terminal oligopyrimidine tracts and TATA-boxes. Furthermore, we identified over-represented motifs, some of which displayed the highest similarity to motifs abundant in human RPG promoters and not present in Drosophila or yeast. Our results indicate that humans over-represented motifs, as well as corresponding domains of transcription factors, were established very early in metazoan evolution. The fast evolving nature of RPGs regulatory network leads to formation of other, lineage specific, over-represented motifs. PMID:21457775

  20. Fast and Accurate Discovery of Degenerate Linear Motifs in Protein Sequences

    PubMed Central

    Levy, Emmanuel D.; Michnick, Stephen W.

    2014-01-01

    Linear motifs mediate a wide variety of cellular functions, which makes their characterization in protein sequences crucial to understanding cellular systems. However, the short length and degenerate nature of linear motifs make their discovery a difficult problem. Here, we introduce MotifHound, an algorithm particularly suited for the discovery of small and degenerate linear motifs. MotifHound performs an exact and exhaustive enumeration of all motifs present in proteins of interest, including all of their degenerate forms, and scores the overrepresentation of each motif based on its occurrence in proteins of interest relative to a background (e.g., proteome) using the hypergeometric distribution. To assess MotifHound, we benchmarked it together with state-of-the-art algorithms. The benchmark consists of 11,880 sets of proteins from S. cerevisiae; in each set, we artificially spiked-in one motif varying in terms of three key parameters, (i) number of occurrences, (ii) length and (iii) the number of degenerate or “wildcard” positions. The benchmark enabled the evaluation of the impact of these three properties on the performance of the different algorithms. The results showed that MotifHound and SLiMFinder were the most accurate in detecting degenerate linear motifs. Interestingly, MotifHound was 15 to 20 times faster at comparable accuracy and performed best in the discovery of highly degenerate motifs. We complemented the benchmark by an analysis of proteins experimentally shown to bind the FUS1 SH3 domain from S. cerevisiae. Using the full-length protein partners as sole information, MotifHound recapitulated most experimentally determined motifs binding to the FUS1 SH3 domain. Moreover, these motifs exhibited properties typical of SH3 binding peptides, e.g., high intrinsic disorder and evolutionary conservation, despite the fact that none of these properties were used as prior information. MotifHound is available (http://michnick.bcm.umontreal.ca or http

  1. Characterization of the tandem CWCH2 sequence motif: a hallmark of inter-zinc finger interactions

    PubMed Central

    2010-01-01

    Background The C2H2 zinc finger (ZF) domain is widely conserved among eukaryotic proteins. In Zic/Gli/Zap1 C2H2 ZF proteins, the two N-terminal ZFs form a single structural unit by sharing a hydrophobic core. This structural unit defines a new motif comprised of two tryptophan side chains at the center of the hydrophobic core. Because each tryptophan residue is located between the two cysteine residues of the C2H2 motif, we have named this structure the tandem CWCH2 (tCWCH2) motif. Results Here, we characterized 587 tCWCH2-containing genes using data derived from public databases. We categorized genes into 11 classes including Zic/Gli/Glis, Arid2/Rsc9, PacC, Mizf, Aebp2, Zap1/ZafA, Fungl, Zfp106, Twincl, Clr1, and Fungl-4ZF, based on sequence similarity, domain organization, and functional similarities. tCWCH2 motifs are mostly found in organisms belonging to the Opisthokonta (metazoa, fungi, and choanoflagellates) and Amoebozoa (amoeba, Dictyostelium discoideum). By comparison, the C2H2 ZF motif is distributed widely among the eukaryotes. The structure and organization of the tCWCH2 motif, its phylogenetic distribution, and molecular phylogenetic analysis suggest that prototypical tCWCH2 genes existed in the Opisthokonta ancestor. Within-group or between-group comparisons of the tCWCH2 amino acid sequence identified three additional sequence features (site-specific amino acid frequencies, longer linker sequence between two C2H2 ZFs, and frequent extra-sequences within C2H2 ZF motifs). Conclusion These features suggest that the tCWCH2 motif is a specialized motif involved in inter-zinc finger interactions. PMID:20167128

  2. Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding and Transcriptional Regulation in Eukaryotic Cells

    PubMed Central

    Boeva, Valentina

    2016-01-01

    Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites, and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation. PMID:26941778

  3. Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding and Transcriptional Regulation in Eukaryotic Cells.

    PubMed

    Boeva, Valentina

    2016-01-01

    Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites, and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation. PMID:26941778

  4. Repulsive parallel MCMC algorithm for discovering diverse motifs from large sequence sets

    PubMed Central

    Ikebata, Hisaki; Yoshida, Ryo

    2015-01-01

    Motivation: The motif discovery problem consists of finding recurring patterns of short strings in a set of nucleotide sequences. This classical problem is receiving renewed attention as most early motif discovery methods lack the ability to handle large data of recent genome-wide ChIP studies. New ChIP-tailored methods focus on reducing computation time and pay little regard to the accuracy of motif detection. Unlike such methods, our method focuses on increasing the detection accuracy while maintaining the computation efficiency at an acceptable level. The major advantage of our method is that it can mine diverse multiple motifs undetectable by current methods. Results: The repulsive parallel Markov chain Monte Carlo (RPMCMC) algorithm that we propose is a parallel version of the widely used Gibbs motif sampler. RPMCMC is run on parallel interacting motif samplers. A repulsive force is generated when different motifs produced by different samplers near each other. Thus, different samplers explore different motifs. In this way, we can detect much more diverse motifs than conventional methods can. Through application to 228 transcription factor ChIP-seq datasets of the ENCODE project, we show that the RPMCMC algorithm can find many reliable cofactor interacting motifs that existing methods are unable to discover. Availability and implementation: A C++ implementation of RPMCMC and discovered cofactor motifs for the 228 ENCODE ChIP-seq datasets are available from http://daweb.ism.ac.jp/yoshidalab/motif. Contact: ikebata.hisaki@ism.ac.jp, yoshidar@ism.ac.jp Supplementary information: Supplementary data are available from Bioinformatics online. PMID:25583120

  5. An artificial intelligence approach to motif discovery in protein sequences: application to steriod dehydrogenases.

    PubMed

    Bailey, T L; Baker, M E; Elkan, C P

    1997-05-01

    MEME (Multiple Expectation-maximization for Motif Elicitation) is a unique new software tool that uses artificial intelligence techniques to discover motifs shared by a set of protein sequences in a fully automated manner. This paper is the first detailed study of the use of MEME to analyse a large, biologically relevant set of sequences, and to evaluate the sensitivity and accuracy of MEME in identifying structurally important motifs. For this purpose, we chose the short-chain alcohol dehydrogenase superfamily because it is large and phylogenetically diverse, providing a test of how well MEME can work on sequences with low amino acid similarity. Moreover, this dataset contains enzymes of biological importance, and because several enzymes have known X-ray crystallographic structures, we can test the usefulness of MEME for structural analysis. The first six motifs from MEME map onto structurally important alpha-helices and beta-strands on Streptomyces hydrogenans 20beta-hydroxysteroid dehydrogenase. We also describe MAST (Motif Alignment Search Tool), which conveniently uses output from MEME for searching databases such as SWISS-PROT and Genpept. MAST provides statistical measures that permit a rigorous evaluation of the significance of database searches with individual motifs or groups of motifs. A database search of Genpept90 by MAST with the log-odds matrix of the first six motifs obtained from MEME yields a bimodal output, demonstrating the selectivity of MAST. We show for the first time, using primary sequence analysis, that bacterial sugar epimerases are homologs of short-chain dehydrogenases. MEME and MAST will be increasingly useful as genome sequencing provides large datasets of phylogenetically divergent sequences of biomedical interest. PMID:9366496

  6. The BsaHI restriction-modification system: Cloning, sequencing and analysis of conserved motifs

    PubMed Central

    Neely, Robert K; Roberts, Richard J

    2008-01-01

    Background Restriction and modification enzymes typically recognise short DNA sequences of between two and eight bases in length. Understanding the mechanism of this recognition represents a significant challenge that we begin to address for the BsaHI restriction-modification system, which recognises the six base sequence GRCGYC. Results The DNA sequences of the genes for the BsaHI methyltransferase, bsaHIM, and restriction endonuclease, bsaHIR, have been determined (GenBank accession #EU386360), cloned and expressed in E. coli. Both the restriction endonuclease and methyltransferase enzymes share significant similarity with a group of 6 other enzymes comprising the restriction-modification systems HgiDI and HgiGI and the putative HindVP, NlaCORFDP, NpuORFC228P and SplZORFNP restriction-modification systems. A sequence alignment of these homologues shows that their amino acid sequences are largely conserved and highlights several motifs of interest. We target one such conserved motif, reading SPERRFD, at the C-terminal end of the bsaHIR gene. A mutational analysis of these amino acids indicates that the motif is crucial for enzymatic activity. Sequence alignment of the methyltransferase gene reveals a short motif within the target recognition domain that is conserved among enzymes recognising the same sequences. Thus, this motif may be used as a diagnostic tool to define the recognition sequences of the cytosine C5 methyltransferases. Conclusion We have cloned and sequenced the BsaHI restriction and modification enzymes. We have identified a region of the R. BsaHI enzyme that is crucial for its activity. Analysis of the amino acid sequence of the BsaHI methyltransferase enzyme led us to propose two new motifs that can be used in the diagnosis of the recognition sequence of the cytosine C5-methyltransferases. PMID:18479503

  7. Predicting candidate genomic sequences that correspond to synthetic functional RNA motifs

    PubMed Central

    Laserson, Uri; Gan, Hin Hark; Schlick, Tamar

    2005-01-01

    Riboswitches and RNA interference are important emerging mechanisms found in many organisms to control gene expression. To enhance our understanding of such RNA roles, finding small regulatory motifs in genomes presents a challenge on a wide scale. Many simple functional RNA motifs have been found by in vitro selection experiments, which produce synthetic target-binding aptamers as well as catalytic RNAs, including the hammerhead ribozyme. Motivated by the prediction of Piganeau and Schroeder [(2003) Chem. Biol., 10, 103–104] that synthetic RNAs may have natural counterparts, we develop and apply an efficient computational protocol for identifying aptamer-like motifs in genomes. We define motifs from the sequence and structural information of synthetic aptamers, search for sequences in genomes that will produce motif matches, and then evaluate the structural stability and statistical significance of the potential hits. Our application to aptamers for streptomycin, chloramphenicol, neomycin B and ATP identifies 37 candidate sequences (in coding and non-coding regions) that fold to the target aptamer structures in bacterial and archaeal genomes. Further energetic screening reveals that several candidates exhibit energetic properties and sequence conservation patterns that are characteristic of functional motifs. Besides providing candidates for experimental testing, our computational protocol offers an avenue for expanding natural RNA's functional repertoire. PMID:16254081

  8. REPdenovo: Inferring De Novo Repeat Motifs from Short Sequence Reads

    PubMed Central

    Chu, Chong; Nielsen, Rasmus; Wu, Yufeng

    2016-01-01

    Repeat elements are important components of eukaryotic genomes. One limitation in our understanding of repeat elements is that most analyses rely on reference genomes that are incomplete and often contain missing data in highly repetitive regions that are difficult to assemble. To overcome this problem we develop a new method, REPdenovo, which assembles repeat sequences directly from raw shotgun sequencing data. REPdenovo can construct various types of repeats that are highly repetitive and have low sequence divergence within copies. We show that REPdenovo is substantially better than existing methods both in terms of the number and the completeness of the repeat sequences that it recovers. The key advantage of REPdenovo is that it can reconstruct long repeats from sequence reads. We apply the method to human data and discover a number of potentially new repeats sequences that have been missed by previous repeat annotations. Many of these sequences are incorporated into various parasite genomes, possibly because the filtering process for host DNA involved in the sequencing of the parasite genomes failed to exclude the host derived repeat sequences. REPdenovo is a new powerful computational tool for annotating genomes and for addressing questions regarding the evolution of repeat families. The software tool, REPdenovo, is available for download at https://github.com/Reedwarbler/REPdenovo. PMID:26977803

  9. Sequence Motifs in Transit Peptides Act as Independent Functional Units and Can Be Transferred to New Sequence Contexts.

    PubMed

    Lee, Dong Wook; Woo, Seungjin; Geem, Kyoung Rok; Hwang, Inhwan

    2015-09-01

    A large number of nuclear-encoded proteins are imported into chloroplasts after they are translated in the cytosol. Import is mediated by transit peptides (TPs) at the N termini of these proteins. TPs contain many small motifs, each of which is critical for a specific step in the process of chloroplast protein import; however, it remains unknown how these motifs are organized to give rise to TPs with diverse sequences. In this study, we generated various hybrid TPs by swapping domains between Rubisco small subunit (RbcS) and chlorophyll a/b-binding protein, which have highly divergent sequences, and examined the abilities of the resultant TPs to deliver proteins into chloroplasts. Subsequently, we compared the functionality of sequence motifs in the hybrid TPs with those of wild-type TPs. The sequence motifs in the hybrid TPs exhibited three different modes of functionality, depending on their domain composition, as follows: active in both wild-type and hybrid TPs, active in wild-type TPs but inactive in hybrid TPs, and inactive in wild-type TPs but active in hybrid TPs. Moreover, synthetic TPs, in which only three critical motifs from RbcS or chlorophyll a/b-binding protein TPs were incorporated into an unrelated sequence, were able to deliver clients to chloroplasts with a comparable efficiency to RbcS TP. Based on these results, we propose that diverse sequence motifs in TPs are independent functional units that interact with specific translocon components at various steps during protein import and can be transferred to new sequence contexts. PMID:26149569

  10. Improved detection of helix-turn-helix DNA-binding motifs in protein sequences.

    PubMed Central

    Dodd, I B; Egan, J B

    1990-01-01

    We present an update of our method for systematic detection and evaluation of potential helix-turn-helix DNA-binding motifs in protein sequences [Dodd, I. and Egan, J. B. (1987) J. Mol. Biol. 194, 557-564]. The new method is considerably more powerful, detecting approximately 50% more likely helix-turn-helix sequences without an increase in false predictions. This improvement is due almost entirely to the use of a much larger reference set of 91 presumed helix-turn-helix sequences. The scoring matrix derived from this reference set has been calibrated against a large protein sequence database so that the score obtained by a sequence can be used to give a practical estimation of the probability that the sequence is a helix-turn-helix motif. PMID:2402433

  11. Creation of Hybrid Nanorods From Sequences of Natural Trimeric Fibrous Proteins Using the Fibritin Trimerization Motif

    NASA Astrophysics Data System (ADS)

    Papanikolopoulou, Katerina; van Raaij, Mark J.; Mitraki, Anna

    Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, β-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple β-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.

  12. Classification of protein motifs based on subcellular localization uncovers evolutionary relationships at both sequence and functional levels

    PubMed Central

    2013-01-01

    Background Most proteins have evolved in specific cellular compartments that limit their functions and potential interactions. On the other hand, motifs define amino acid arrangements conserved between protein family members and represent powerful tools for assigning function to protein sequences. The ideal motif would identify all members of a protein family but in practice many motifs identify both family members and unrelated proteins, referred to as True Positive (TP) and False Positive (FP) sequences, respectively. Results To address the relationship between protein motifs, protein function and cellular localization, we systematically assigned subcellular localization data to motif sequences from the comprehensive PROSITE sequence motif database. Using this data we analyzed relationships between localization and function. We find that TPs and FPs have a strong tendency to localize in different compartments. When multiple localizations are considered, TPs are usually distributed between related cellular compartments. We also identified cases where FPs are concentrated in particular subcellular regions, indicating possible functional or evolutionary relationships with TP sequences of the same motif. Conclusions Our findings suggest that the systematic examination of subcellular localization has the potential to uncover evolutionary and functional relationships between motif-containing sequences. We believe that this type of analysis complements existing motif annotations and could aid in their interpretation. Our results shed light on the evolution of cellular organelles and potentially establish the basis for new subcellular localization and function prediction algorithms. PMID:23865897

  13. Discovering active motifs in sets of related protein sequences and using them for classification.

    PubMed Central

    Wang, J T; Marr, T G; Shasha, D; Shapiro, B A; Chirn, G W

    1994-01-01

    We describe a method for discovering active motifs in a set of related protein sequences. The method is an automatic two step process: (1) find candidate motifs in a small sample of the sequences; (2) test whether these motifs are approximately present in all the sequences. To reduce the running time, we develop two optimization heuristics based on statistical estimation and pattern matching techniques. Experimental results obtained by running these algorithms on generated data and functionally related proteins demonstrate the good performance of the presented method compared with visual method of O'Farrell and Leopold. By combining the discovered motifs with an existing fingerprint technique, we develop a protein classifier. When we apply the classifier to the 698 groups of related proteins in the PROSITE catalog, it gives information that is complementary to the BLOCKS protein classifier of Henikoff and Henikoff. Thus, using our classifier in conjunction with theirs, one can obtain high confidence classifications (if BLOCKS and our classifier agree) or suggest a new hypothesis (if the two disagree). PMID:8052532

  14. Identification of potential regulatory motifs in odorant receptor genes by analysis of promoter sequences

    PubMed Central

    Michaloski, Jussara S.; Galante, Pedro A.F.

    2006-01-01

    Mouse odorant receptors (ORs) are encoded by >1000 genes dispersed throughout the genome. Each olfactory neuron expresses one single OR gene, while the rest of the genes remain silent. The mechanisms underlying OR gene expression are poorly understood. Here, we investigated if OR genes share common cis-regulatory sequences in their promoter regions. We carried out a comprehensive analysis in which the upstream regions of a large number of OR genes were compared. First, using RLM-RACE, we generated cDNAs containing the complete 5′-untranslated regions (5′-UTRs) for a total number of 198 mouse OR genes. Then, we aligned these cDNA sequences to the mouse genome so that the 5′ structure and transcription start sites (TSSs) of the OR genes could be precisely determined. Sequences upstream of the TSSs were retrieved and browsed for common elements. We found DNA sequence motifs that are overrepresented in the promoter regions of the OR genes. Most motifs resemble O/E-like sites and are preferentially localized within 200 bp upstream of the TSSs. Finally, we show that these motifs specifically interact with proteins extracted from nuclei prepared from the olfactory epithelium, but not from brain or liver. Our results show that the OR genes share common promoter elements. The present strategy should provide information on the role played by cis-regulatory sequences in OR gene regulation. PMID:16902085

  15. Defining a Conformational Consensus Motif in Cotransin-Sensitive Signal Sequences: A Proteomic and Site-Directed Mutagenesis Study

    PubMed Central

    Klein, Wolfgang; Westendorf, Carolin; Schmidt, Antje; Conill-Cortés, Mercè; Rutz, Claudia; Blohs, Marcus; Beyermann, Michael; Protze, Jonas; Krause, Gerd; Krause, Eberhard; Schülein, Ralf

    2015-01-01

    The cyclodepsipeptide cotransin was described to inhibit the biosynthesis of a small subset of proteins by a signal sequence-discriminatory mechanism at the Sec61 protein-conducting channel. However, it was not clear how selective cotransin is, i.e. how many proteins are sensitive. Moreover, a consensus motif in signal sequences mediating cotransin sensitivity has yet not been described. To address these questions, we performed a proteomic study using cotransin-treated human hepatocellular carcinoma cells and the stable isotope labelling by amino acids in cell culture technique in combination with quantitative mass spectrometry. We used a saturating concentration of cotransin (30 micromolar) to identify also less-sensitive proteins and to discriminate the latter from completely resistant proteins. We found that the biosynthesis of almost all secreted proteins was cotransin-sensitive under these conditions. In contrast, biosynthesis of the majority of the integral membrane proteins was cotransin-resistant. Cotransin sensitivity of signal sequences was neither related to their length nor to their hydrophobicity. Instead, in the case of signal anchor sequences, we identified for the first time a conformational consensus motif mediating cotransin sensitivity. PMID:25806945

  16. Using machine learning to predict gene expression and discover sequence motifs

    NASA Astrophysics Data System (ADS)

    Li, Xuejing

    Recently, large amounts of experimental data for complex biological systems have become available. We use tools and algorithms from machine learning to build data-driven predictive models. We first present a novel algorithm to discover gene sequence motifs associated with temporal expression patterns of genes. Our algorithm, which is based on partial least squares (PLS) regression, is able to directly model the flow of information, from gene sequence to gene expression, to learn cis regulatory motifs and characterize associated gene expression patterns. Our algorithm outperforms traditional computational methods e.g. clustering in motif discovery. We then present a study of extending a machine learning model for transcriptional regulation predictive of genetic regulatory response to Caenorhabditis elegans. We show meaningful results both in terms of prediction accuracy on the test experiments and biological information extracted from the regulatory program. The model discovers DNA binding sites ab initio. We also present a case study where we detect a signal of lineage-specific regulation. Finally we present a comparative study on learning predictive models for motif discovery, based on different boosting algorithms: Adaptive Boosting (AdaBoost), Linear Programming Boosting (LPBoost) and Totally Corrective Boosting (TotalBoost). We evaluate and compare the performance of the three boosting algorithms via both statistical and biological validation, for hypoxia response in Saccharomyces cerevisiae.

  17. Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates.

    PubMed

    Strisovsky, Kvido; Sharpe, Hayley J; Freeman, Matthew

    2009-12-25

    Members of the widespread rhomboid family of intramembrane proteases cleave transmembrane domain (TMD) proteins to regulate processes as diverse as EGF receptor signaling, mitochondrial dynamics, and invasion by apicomplexan parasites. However, lack of information about their substrates means that the biological role of most rhomboids remains obscure. Knowledge of how rhomboids recognize their substrates would illuminate their mechanism and might also allow substrate prediction. Previous work has suggested that rhomboid substrates are specified by helical instability in their TMD. Here we demonstrate that rhomboids instead primarily recognize a specific sequence surrounding the cleavage site. This recognition motif is necessary for substrate cleavage, it determines the cleavage site, and it is more strictly required than TM helix-destabilizing residues. Our work demonstrates that intramembrane proteases can be sequence specific and that genome-wide substrate prediction based on their recognition motifs is feasible. PMID:20064469

  18. A Convex Atomic-Norm Approach to Multiple Sequence Alignment and Motif Discovery

    PubMed Central

    Yen, Ian E. H.; Lin, Xin; Zhang, Jiong; Ravikumar, Pradeep; Dhillon, Inderjit S.

    2016-01-01

    Multiple Sequence Alignment and Motif Discovery, known as NP-hard problems, are two fundamental tasks in Bioinformatics. Existing approaches to these two problems are based on either local search methods such as Expectation Maximization (EM), Gibbs Sampling or greedy heuristic methods. In this work, we develop a convex relaxation approach to both problems based on the recent concept of atomic norm and develop a new algorithm, termed Greedy Direction Method of Multiplier, for solving the convex relaxation with two convex atomic constraints. Experiments show that our convex relaxation approach produces solutions of higher quality than those standard tools widely-used in Bioinformatics community on the Multiple Sequence Alignment and Motif Discovery problems. PMID:27559428

  19. CyanoLyase: a database of phycobilin lyase sequences, motifs and functions

    PubMed Central

    Bretaudeau, Anthony; Coste, François; Humily, Florian; Garczarek, Laurence; Le Corguillé, Gildas; Six, Christophe; Ratin, Morgane; Collin, Olivier; Schluchter, Wendy M.; Partensky, Frédéric

    2013-01-01

    CyanoLyase (http://cyanolyase.genouest.org/) is a manually curated sequence and motif database of phycobilin lyases and related proteins. These enzymes catalyze the covalent ligation of chromophores (phycobilins) to specific binding sites of phycobiliproteins (PBPs). The latter constitute the building bricks of phycobilisomes, the major light-harvesting systems of cyanobacteria and red algae. Phycobilin lyases sequences are poorly annotated in public databases. Sequences included in CyanoLyase were retrieved from all available genomes of these organisms and a few others by similarity searches using biochemically characterized enzyme sequences and then classified into 3 clans and 32 families. Amino acid motifs were computed for each family using Protomata learner. CyanoLyase also includes BLAST and a novel pattern matching tool (Protomatch) that allow users to rapidly retrieve and annotate lyases from any new genome. In addition, it provides phylogenetic analyses of all phycobilin lyases families, describes their function, their presence/absence in all genomes of the database (phyletic profiles) and predicts the chromophorylation of PBPs in each strain. The site also includes a thorough bibliography about phycobilin lyases and genomes included in the database. This resource should be useful to scientists and companies interested in natural or artificial PBPs, which have a number of biotechnological applications, notably as fluorescent markers. PMID:23175607

  20. Gapped alignment of protein sequence motifs through Monte Carlo optimization of a hidden Markov model

    PubMed Central

    Neuwald, Andrew F; Liu, Jun S

    2004-01-01

    Background Certain protein families are highly conserved across distantly related organisms and belong to large and functionally diverse superfamilies. The patterns of conservation present in these protein sequences presumably are due to selective constraints maintaining important but unknown structural mechanisms with some constraints specific to each family and others shared by a larger subset or by the entire superfamily. To exploit these patterns as a source of functional information, we recently devised a statistically based approach called contrast hierarchical alignment and interaction network (CHAIN) analysis, which infers the strengths of various categories of selective constraints from co-conserved patterns in a multiple alignment. The power of this approach strongly depends on the quality of the multiple alignments, which thus motivated development of theoretical concepts and strategies to improve alignment of conserved motifs within large sets of distantly related sequences. Results Here we describe a hidden Markov model (HMM), an algebraic system, and Markov chain Monte Carlo (MCMC) sampling strategies for alignment of multiple sequence motifs. The MCMC sampling strategies are useful both for alignment optimization and for adjusting position specific background amino acid frequencies for alignment uncertainties. Associated statistical formulations provide an objective measure of alignment quality as well as automatic gap penalty optimization. Improved alignments obtained in this way are compared with PSI-BLAST based alignments within the context of CHAIN analysis of three protein families: Giα subunits, prolyl oligopeptidases, and transitional endoplasmic reticulum (p97) AAA+ ATPases. Conclusion While not entirely replacing PSI-BLAST based alignments, which likewise may be optimized for CHAIN analysis using this approach, these motif-based methods often more accurately align very distantly related sequences and thus can provide a better measure of

  1. CDR3β sequence motifs regulate autoreactivity of human invariant NKT cell receptors.

    PubMed

    Chamoto, Kenji; Guo, Tingxi; Imataki, Osamu; Tanaka, Makito; Nakatsugawa, Munehide; Ochi, Toshiki; Yamashita, Yuki; Saito, Akiko M; Saito, Toshiki I; Butler, Marcus O; Hirano, Naoto

    2016-04-01

    Invariant natural killer T (iNKT) cells are a subset of T lymphocytes that recognize lipid ligands presented by monomorphic CD1d. Human iNKT T cell receptor (TCR) is largely composed of invariant Vα24 (Vα24i) TCRα chain and semi-variant Vβ11 TCRβ chain, where complementarity-determining region (CDR)3β is the sole variable region. One of the characteristic features of iNKT cells is that they retain autoreactivity even after the thymic selection. However, the molecular features of human iNKT TCR CDR3β sequences that regulate autoreactivity remain unknown. Since the numbers of iNKT cells with detectable autoreactivity in peripheral blood is limited, we introduced the Vα24i gene into peripheral T cells and generated a de novo human iNKT TCR repertoire. By stimulating the transfected T cells with artificial antigen presenting cells (aAPCs) presenting self-ligands, we enriched strongly autoreactive iNKT TCRs and isolated a large panel of human iNKT TCRs with a broad range autoreactivity. From this panel of unique iNKT TCRs, we deciphered three CDR3β sequence motifs frequently encoded by strongly-autoreactive iNKT TCRs: a VD region with 2 or more acidic amino acids, usage of the Jβ2-5 allele, and a CDR3β region of 13 amino acids in length. iNKT TCRs encoding 2 or 3 sequence motifs also exhibit higher autoreactivity than those encoding 0 or 1 motifs. These data facilitate our understanding of the molecular basis for human iNKT cell autoreactivity involved in immune responses associated with human disease. PMID:26748722

  2. Identification of sequence motifs involved in Dengue virus-host interactions.

    PubMed

    Asnet Mary, J; Paramasivan, R; Shenbagarathai, R

    2016-03-01

    Dengue fever is a rapidly spreading mosquito-borne virus infection, which remains a serious global public health problem. As there is no specific treatment or commercial vaccine available for effective control of the disease, the attempts on developing novel control strategies are underway. Viruses utilize the surface receptor proteins of host to enter into the cells. Though various proteins were said to be receptors of Dengue virus (DENV) using Virus Overlay Protein Binding Assay, the precise interaction between DENV and host is not explored. Understanding the structural features of domain III envelope glycoprotein would help in developing efficient antiviral inhibitors. Therefore, an attempt was made to identify the sequence motifs present in domain III envelope glycoprotein of Dengue virus. Computational analysis revealed that the NGR motif is present in the domain III envelope glycoprotein of DENV-1 and DENV-3. Similarly, DENV-1, DENV-2 and DENV-4 were found to contain Yxxphi motif which is a tyrosine-based sorting signal responsible for the interaction with a mu subunit of adaptor protein complex. High-throughput virtual screening resulted in five compounds as lead molecules based on glide score, which ranges from -4.664 to -6.52 kcal/Mol. This computational prediction provides an additional tool for understanding the virus-host interactions and helps to identify potential targets in the host. Further, experimental evidence is warranted to confirm the virus-host interactions and also inhibitory activity of reported lead compounds. PMID:25905427

  3. Sequence-motif Detection of NAD(P)-binding Proteins: Discovery of a Unique Antibacterial Drug Target

    NASA Astrophysics Data System (ADS)

    Hua, Yun Hao; Wu, Chih Yuan; Sargsyan, Karen; Lim, Carmay

    2014-09-01

    Many enzymes use nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate (NAD(P)) as essential coenzymes. These enzymes often do not share significant sequence identity and cannot be easily detected by sequence homology. Previously, we determined all distinct locally conserved pyrophosphate-binding structures (3d motifs) from NAD(P)-bound protein structures, from which 1d sequence motifs were derived. Here, we aim to establish the precision of these 3d and 1d motifs to annotate NAD(P)-binding proteins. We show that the pyrophosphate-binding 3d motifs are characteristic of NAD(P)-binding proteins, as they are rarely found in nonNAD(P)-binding proteins. Furthermore, several 1d motifs could distinguish between proteins that bind only NAD and those that bind only NADP. They could also distinguish between NAD(P)-binding proteins from nonNAD(P)-binding ones. Interestingly, one of the pyrophosphate-binding 3d and corresponding 1d motifs was found only in enoyl-acyl carrier protein reductases, which are enzymes essential for bacterial fatty acid biosynthesis. This unique 3d motif serves as an attractive novel drug target, as it is conserved across many bacterial species and is not found in human proteins.

  4. Sequence-motif Detection of NAD(P)-binding Proteins: Discovery of a Unique Antibacterial Drug Target

    PubMed Central

    Hua, Yun Hao; Wu, Chih Yuan; Sargsyan, Karen; Lim, Carmay

    2014-01-01

    Many enzymes use nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate (NAD(P)) as essential coenzymes. These enzymes often do not share significant sequence identity and cannot be easily detected by sequence homology. Previously, we determined all distinct locally conserved pyrophosphate-binding structures (3d motifs) from NAD(P)-bound protein structures, from which 1d sequence motifs were derived. Here, we aim to establish the precision of these 3d and 1d motifs to annotate NAD(P)-binding proteins. We show that the pyrophosphate-binding 3d motifs are characteristic of NAD(P)-binding proteins, as they are rarely found in nonNAD(P)-binding proteins. Furthermore, several 1d motifs could distinguish between proteins that bind only NAD and those that bind only NADP. They could also distinguish between NAD(P)-binding proteins from nonNAD(P)-binding ones. Interestingly, one of the pyrophosphate-binding 3d and corresponding 1d motifs was found only in enoyl-acyl carrier protein reductases, which are enzymes essential for bacterial fatty acid biosynthesis. This unique 3d motif serves as an attractive novel drug target, as it is conserved across many bacterial species and is not found in human proteins. PMID:25253464

  5. Role of two sequence motifs of mesencephalic astrocyte-derived neurotrophic factor in its survival-promoting activity

    PubMed Central

    Mätlik, K; Yu, Li-ying; Eesmaa, A; Hellman, M; Lindholm, P; Peränen, J; Galli, E; Anttila, J; Saarma, M; Permi, P; Airavaara, M; Arumäe, U

    2015-01-01

    Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a prosurvival protein that protects the cells when applied intracellularly in vitro or extracellularly in vivo. Its protective mechanisms are poorly known. Here we studied the role of two short sequence motifs within the carboxy-(C) terminal domain of MANF in its neuroprotective activity: the CKGC sequence (a CXXC motif) that could be involved in redox reactions, and the C-terminal RTDL sequence, an endoplasmic reticulum (ER) retention signal. We mutated these motifs and analyzed the antiapoptotic effect and intracellular localization of these mutants of MANF when overexpressed in cultured sympathetic or sensory neurons. As an in vivo model for studying the effect of these mutants after their extracellular application, we used the rat model of cerebral ischemia. Even though we found no evidence for oxidoreductase activity of MANF, the mutation of CXXC motif completely abolished its protective effect, showing that this motif is crucial for both MANF's intracellular and extracellular activity. The RTDL motif was not needed for the neuroprotective activity of MANF after its extracellular application in the stroke model in vivo. However, in vitro the deletion of RTDL motif inactivated MANF in the sympathetic neurons where the mutant protein localized to Golgi, but not in the sensory neurons where the mutant localized to the ER, showing that intracellular MANF protects these peripheral neurons in vitro only when localized to the ER. PMID:26720341

  6. qPMS7: a fast algorithm for finding (ℓ, d)-motifs in DNA and protein sequences.

    PubMed

    Dinh, Hieu; Rajasekaran, Sanguthevar; Davila, Jaime

    2012-01-01

    Detection of rare events happening in a set of DNA/protein sequences could lead to new biological discoveries. One kind of such rare events is the presence of patterns called motifs in DNA/protein sequences. Finding motifs is a challenging problem since the general version of motif search has been proven to be intractable. Motifs discovery is an important problem in biology. For example, it is useful in the detection of transcription factor binding sites and transcriptional regulatory elements that are very crucial in understanding gene function, human disease, drug design, etc. Many versions of the motif search problem have been proposed in the literature. One such is the (ℓ, d)-motif search (or Planted Motif Search (PMS)). A generalized version of the PMS problem, namely, Quorum Planted Motif Search (qPMS), is shown to accurately model motifs in real data. However, solving the qPMS problem is an extremely difficult task because a special case of it, the PMS Problem, is already NP-hard, which means that any algorithm solving it can be expected to take exponential time in the worse case scenario. In this paper, we propose a novel algorithm named qPMS7 that tackles the qPMS problem on real data as well as challenging instances. Experimental results show that our Algorithm qPMS7 is on an average 5 times faster than the state-of-art algorithm. The executable program of Algorithm qPMS7 is freely available on the web at http://pms.engr.uconn.edu/downloads/qPMS7.zip. Our online motif discovery tools that use Algorithm qPMS7 are freely available at http://pms.engr.uconn.edu or http://motifsearch.com. PMID:22848493

  7. Unique Structural Features and Sequence Motifs of Proline Utilization A (PutA)

    PubMed Central

    Singh, Ranjan K.; Tanner, John J.

    2013-01-01

    Proline utilization A proteins (PutAs) are bifunctional enzymes that catalyze the oxidation of proline to glutamate using spatially separated proline dehydrogenase and pyrroline-5-carboxylate dehydrogenase active sites. Here we use the crystal structure of the minimalist PutA from Bradyrhizobium japonicum (BjPutA) along with sequence analysis to identify unique structural features of PutAs. This analysis shows that PutAs have secondary structural elements and domains not found in the related monofunctional enzymes. Some of these extra features are predicted to be important for substrate channeling in BjPutA. Multiple sequence alignment analysis shows that some PutAs have a 17-residue conserved motif in the C-terminal 20–30 residues of the polypeptide chain. The BjPutA structure shows that this motif helps seal the internal substrate-channeling cavity from the bulk medium. Finally, it is shown that some PutAs have a 100–200 residue domain of unknown function in the C-terminus that is not found in minimalist PutAs. Remote homology detection suggests that this domain is homologous to the oligomerization beta-hairpin and Rossmann fold domain of BjPutA. PMID:22201760

  8. Unique structural features and sequence motifs of proline utilization A (PutA).

    PubMed

    Singh, Ranjan K; Tanner, John J

    2012-01-01

    Proline utilization A proteins (PutAs) are bifunctional enzymes that catalyze the oxidation of proline to glutamate using spatially separated proline dehydrogenase and pyrroline-5-carboxylate dehydrogenase active sites. Here we use the crystal structure of the minimalist PutA from Bradyrhizobium japonicum (BjPutA) along with sequence analysis to identify unique structural features of PutAs. This analysis shows that PutAs have secondary structural elements and domains not found in the related monofunctional enzymes. Some of these extra features are predicted to be important for substrate channeling in BjPutA. Multiple sequence alignment analysis shows that some PutAs have a 17-residue conserved motif in the C-terminal 20-30 residues of the polypeptide chain. The BjPutA structure shows that this motif helps seal the internal substrate-channeling cavity from the bulk medium. Finally, it is shown that some PutAs have a 100-200 residue domain of unknown function in the C-terminus that is not found in minimalist PutAs. Remote homology detection suggests that this domain is homologous to the oligomerization beta-hairpin and Rossmann fold domain of BjPutA. PMID:22201760

  9. Quadfinder: server for identification and analysis of quadruplex-forming motifs in nucleotide sequences

    PubMed Central

    Scaria, Vinod; Hariharan, Manoj; Arora, Amit; Maiti, Souvik

    2006-01-01

    G-quadruplex secondary structures, which play a structural role in repetitive DNA such as telomeres, may also play a functional role at other genomic locations as targetable regulatory elements which control gene expression. The recent interest in application of quadruplexes in biological systems prompted us to develop a tool for the identification and analysis of quadruplex-forming nucleotide sequences especially in the RNA. Here we present Quadfinder, an online server for prediction and bioinformatics of uni-molecular quadruplex-forming nucleotide sequences. The server is designed to be user-friendly and needs minimal intervention by the user, while providing flexibility of defining the variants of the motif. The server is freely available at URL . PMID:16845097

  10. Sequence Analysis and Domain Motifs in the Porcine Skin Decorin Glycosaminoglycan Chain*

    PubMed Central

    Zhao, Xue; Yang, Bo; Solakylidirim, Kemal; Joo, Eun Ji; Toida, Toshihiko; Higashi, Kyohei; Linhardt, Robert J.; Li, Lingyun

    2013-01-01

    Decorin proteoglycan is comprised of a core protein containing a single O-linked dermatan sulfate/chondroitin sulfate glycosaminoglycan (GAG) chain. Although the sequence of the decorin core protein is determined by the gene encoding its structure, the structure of its GAG chain is determined in the Golgi. The recent application of modern MS to bikunin, a far simpler chondroitin sulfate proteoglycans, suggests that it has a single or small number of defined sequences. On this basis, a similar approach to sequence the decorin of porcine skin much larger and more structurally complex dermatan sulfate/chondroitin sulfate GAG chain was undertaken. This approach resulted in information on the consistency/variability of its linkage region at the reducing end of the GAG chain, its iduronic acid-rich domain, glucuronic acid-rich domain, and non-reducing end. A general motif for the porcine skin decorin GAG chain was established. A single small decorin GAG chain was sequenced using MS/MS analysis. The data obtained in the study suggest that the decorin GAG chain has a small or a limited number of sequences. PMID:23423381

  11. A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation

    PubMed Central

    Geissmann, Thomas; Chevalier, Clément; Cros, Marie-Josée; Boisset, Sandrine; Fechter, Pierre; Noirot, Céline; Schrenzel, Jacques; François, Patrice; Vandenesch, François; Gaspin, Christine; Romby, Pascale

    2009-01-01

    Bioinformatic analysis of the intergenic regions of Staphylococcus aureus predicted multiple regulatory regions. From this analysis, we characterized 11 novel noncoding RNAs (RsaA‐K) that are expressed in several S. aureus strains under different experimental conditions. Many of them accumulate in the late-exponential phase of growth. All ncRNAs are stable and their expression is Hfq-independent. The transcription of several of them is regulated by the alternative sigma B factor (RsaA, D and F) while the expression of RsaE is agrA-dependent. Six of these ncRNAs are specific to S. aureus, four are conserved in other Staphylococci, and RsaE is also present in Bacillaceae. Transcriptomic and proteomic analysis indicated that RsaE regulates the synthesis of proteins involved in various metabolic pathways. Phylogenetic analysis combined with RNA structure probing, searches for RsaE‐mRNA base pairing, and toeprinting assays indicate that a conserved and unpaired UCCC sequence motif of RsaE binds to target mRNAs and prevents the formation of the ribosomal initiation complex. This study unexpectedly shows that most of the novel ncRNAs carry the conserved C−rich motif, suggesting that they are members of a class of ncRNAs that target mRNAs by a shared mechanism. PMID:19786493

  12. Sequence motifs and prokaryotic expression of the reptilian paramyxovirus fusion protein

    USGS Publications Warehouse

    Franke, J.; Batts, W.N.; Ahne, W.; Kurath, G.; Winton, J.R.

    2006-01-01

    Fourteen reptilian paramyxovirus isolates were chosen to represent the known extent of genetic diversity among this novel group of viruses. Selected regions of the fusion (F) gene were sequenced, analyzed and compared. The F gene of all isolates contained conserved motifs homologous to those described for other members of the family Paramyxoviridae including: signal peptide, transmembrane domain, furin cleavage site, fusion peptide, N-linked glycosylation sites, and two heptad repeats, the second of which (HRB-LZ) had the characteristics of a leucine zipper. Selected regions of the fusion gene of isolate Gono-GER85 were inserted into a prokaryotic expression system to generate three recombinant protein fragments of various sizes. The longest recombinant protein was cleaved by furin into two fragments of predicted length. Western blot analysis with virus-neutralizing rabbit-antiserum against this isolate demonstrated that only the longest construct reacted with the antiserum. This construct was unique in containing 30 additional C-terminal amino acids that included most of the HRB-LZ. These results indicate that the F genes of reptilian paramyxoviruses contain highly conserved motifs typical of other members of the family and suggest that the HRB-LZ domain of the reptilian paramyxovirus F protein contains a linear antigenic epitope. ?? Springer-Verlag 2005.

  13. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences.

    PubMed

    Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2013-11-01

    Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals' attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter's hypothesis to temporal networks. PMID:24145424

  14. Exceptional motifs in different Markov chain models for a statistical analysis of DNA sequences.

    PubMed

    Schbath, S; Prum, B; de Turckheim, E

    1995-01-01

    Identifying exceptional motifs is often used for extracting information from long DNA sequences. The two difficulties of the method are the choice of the model that defines the expected frequencies of words and the approximation of the variance of the difference T(W) between the number of occurrences of a word W and its estimation. We consider here different Markov chain models, either with stationary or periodic transition probabilities. We estimate the variance of the difference T(W) by the conditional variance of the number of occurrences of W given the oligonucleotides counts that define the model. Two applications show how to use asymptotically standard normal statistics associated with the counts to describe a given sequence in terms of its outlying words. Sequences of Escherichia coli and of Bacillus subtilis are compared with respect to their exceptional tri- and tetranucleotides. For both bacteria, exceptional 3-words are mainly found in the coding frame. E. coli palindrome counts are analyzed in different models, showing that many overabundant words are one-letter mutations of avoided palindromes. PMID:8521272

  15. Platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling and vascular integrity.

    PubMed

    Boulaftali, Yacine; Hess, Paul R; Kahn, Mark L; Bergmeier, Wolfgang

    2014-03-28

    Platelets are well-known for their critical role in hemostasis, that is, the prevention of blood loss at sites of mechanical vessel injury. Inappropriate platelet activation and adhesion, however, can lead to thrombotic complications, such as myocardial infarction and stroke. To fulfill its role in hemostasis, the platelet is equipped with various G protein-coupled receptors that mediate the response to soluble agonists such as thrombin, ADP, and thromboxane A2. In addition to G protein-coupled receptors, platelets express 3 glycoproteins that belong to the family of immunoreceptor tyrosine-based activation motif receptors: Fc receptor γ chain, which is noncovalently associated with the glycoprotein VI collagen receptor, C-type lectin 2, the receptor for podoplanin, and Fc receptor γII A, a low-affinity receptor for immune complexes. Although both genetic and chemical approaches have documented a critical role for platelet G protein-coupled receptors in hemostasis, the contribution of immunoreceptor tyrosine-based activation motif receptors to this process is less defined. Studies performed during the past decade, however, have identified new roles for platelet immunoreceptor tyrosine-based activation motif signaling in vascular integrity in utero and at sites of inflammation. The purpose of this review is to summarize recent findings on how platelet immunoreceptor tyrosine-based activation motif signaling controls vascular integrity, both in the presence and absence of mechanical injury. PMID:24677237

  16. The nature of actinomycin D binding to d(AACCAXYG) sequence motifs

    PubMed Central

    Chen, Fu-Ming; Sha, Feng; Chin, Ko-Hsin; Chou, Shan-Ho

    2004-01-01

    Earlier studies by others had indicated that actinomycin D (ACTD) binds well to d(AACCATAG) and the end sequence TAG-3′ is essential for its strong binding. In an effort to verify these assertions and to uncover other possible strong ACTD binding sequences as well as to elucidate the nature of their binding, systematic studies have been carried out with oligomers of d(AACCAXYG) sequence motifs, where X and Y can be any DNA base. The results indicate that in addition to TAG-3′, oligomers ending with XAG-3′ and XCG-3′ all provide binding constants ≥1 × 107 M–1 and even sequences ending with XTG-3′ and XGG-3′ exhibit binding affinities in the range 1–8 × 106 M–1. The nature of the strong ACTD affinity of the sequences d(A1A2C3C4A5X6Y7G8) was delineated via comparative binding studies of d(AACCAAAG), d(AGCCAAAG) and their base substituted derivatives. Two binding modes are proposed to coexist, with the major component consisting of the 3′-terminus G base folding back to base pair with C4 and the ACTD inserting at A2C3C4 by looping out the C3 while both faces of the chromophore are stacked by A and G bases, respectively. The minor mode is for the G to base pair with C3 and to have the same A/chromophore/G stacking but without a looped out base. These assertions are supported by induced circular dichroic and fluorescence spectral measurements. PMID:14715925

  17. Exploiting topological constraints to reveal buried sequence motifs in the membrane-bound N-linked oligosaccharyl transferases.

    PubMed

    Jaffee, Marcie B; Imperiali, Barbara

    2011-09-01

    The central enzyme in N-linked glycosylation is the oligosaccharyl transferase (OTase), which catalyzes glycan transfer from a polyprenyldiphosphate-linked carrier to select asparagines within acceptor proteins. PglB from Campylobacter jejuni is a single-subunit OTase with homology to the Stt3 subunit of the complex multimeric yeast OTase. Sequence identity between PglB and Stt3 is low (17.9%); however, both have a similar predicted architecture and contain the conserved WWDxG motif. To investigate the relationship between PglB and other Stt3 proteins, sequence analysis was performed using 28 homologues from evolutionarily distant organisms. Since detection of small conserved motifs within large membrane-associated proteins is complicated by divergent sequences surrounding the motifs, we developed a program to parse sequences according to predicted topology and then analyze topologically related regions. This approach identified three conserved motifs that served as the basis for subsequent mutagenesis and functional studies. This work reveals that several inter-transmembrane loop regions of PglB/Stt3 contain strictly conserved motifs that are essential for PglB function. The recent publication of a 3.4 Å resolution structure of full-length C. lari OTase provides clear structural evidence that these loops play a fundamental role in catalysis [ Lizak , C. ; ( 2011 ) Nature 474 , 350 - 355 ]. The current study provides biochemical support for the role of the inter-transmembrane domain loops in OTase catalysis and demonstrates the utility of combining topology prediction and sequence analysis for exposing buried pockets of homology in large membrane proteins. The described approach allowed detection of the catalytic motifs prior to availability of structural data and reveals additional catalytically relevant residues that are not predicted by structural data alone. PMID:21812456

  18. Identification of Internal Transcribed Spacer Sequence Motifs in Truffles: a First Step toward Their DNA Bar Coding▿ †

    PubMed Central

    El Karkouri, Khalid; Murat, Claude; Zampieri, Elisa; Bonfante, Paola

    2007-01-01

    This work presents DNA sequence motifs from the internal transcribed spacer (ITS) of the nuclear rRNA repeat unit which are useful for the identification of five European and Asiatic truffles (Tuber magnatum, T. melanosporum, T. indicum, T. aestivum, and T. mesentericum). Truffles are edible mycorrhizal ascomycetes that show similar morphological characteristics but that have distinct organoleptic and economic values. A total of 36 out of 46 ITS1 or ITS2 sequence motifs have allowed an accurate in silico distinction of the five truffles to be made (i.e., by pattern matching and/or BLAST analysis on downloaded GenBank sequences and directly against GenBank databases). The motifs considered the intraspecific genetic variability of each species, including rare haplotypes, and assigned their respective species from either the ascocarps or ectomycorrhizas. The data indicate that short ITS1 or ITS2 motifs (≤50 bp in size) can be considered promising tools for truffle species identification. A dot blot hybridization analysis of T. magnatum and T. melanosporum compared with other close relatives or distant lineages allowed at least one highly specific motif to be identified for each species. These results were confirmed in a blind test which included new field isolates. The current work has provided a reliable new tool for a truffle oligonucleotide bar code and identification in ecological and evolutionary studies. PMID:17601808

  19. Identification of internal transcribed spacer sequence motifs in truffles: a first step toward their DNA bar coding.

    PubMed

    El Karkouri, Khalid; Murat, Claude; Zampieri, Elisa; Bonfante, Paola

    2007-08-01

    This work presents DNA sequence motifs from the internal transcribed spacer (ITS) of the nuclear rRNA repeat unit which are useful for the identification of five European and Asiatic truffles (Tuber magnatum, T. melanosporum, T. indicum, T. aestivum, and T. mesentericum). Truffles are edible mycorrhizal ascomycetes that show similar morphological characteristics but that have distinct organoleptic and economic values. A total of 36 out of 46 ITS1 or ITS2 sequence motifs have allowed an accurate in silico distinction of the five truffles to be made (i.e., by pattern matching and/or BLAST analysis on downloaded GenBank sequences and directly against GenBank databases). The motifs considered the intraspecific genetic variability of each species, including rare haplotypes, and assigned their respective species from either the ascocarps or ectomycorrhizas. The data indicate that short ITS1 or ITS2 motifs (< or = 50 bp in size) can be considered promising tools for truffle species identification. A dot blot hybridization analysis of T. magnatum and T. melanosporum compared with other close relatives or distant lineages allowed at least one highly specific motif to be identified for each species. These results were confirmed in a blind test which included new field isolates. The current work has provided a reliable new tool for a truffle oligonucleotide bar code and identification in ecological and evolutionary studies. PMID:17601808

  20. Protospacer Adjacent Motif (PAM)-Distal Sequences Engage CRISPR Cas9 DNA Target Cleavage

    PubMed Central

    Ethier, Sylvain; Schmeing, T. Martin; Dostie, Josée; Pelletier, Jerry

    2014-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)-associated enzyme Cas9 is an RNA-guided nuclease that has been widely adapted for genome editing in eukaryotic cells. However, the in vivo target specificity of Cas9 is poorly understood and most studies rely on in silico predictions to define the potential off-target editing spectrum. Using chromatin immunoprecipitation followed by sequencing (ChIP-seq), we delineate the genome-wide binding panorama of catalytically inactive Cas9 directed by two different single guide (sg) RNAs targeting the Trp53 locus. Cas9:sgRNA complexes are able to load onto multiple sites with short seed regions adjacent to 5′NGG3′ protospacer adjacent motifs (PAM). Yet among 43 ChIP-seq sites harboring seed regions analyzed for mutational status, we find editing only at the intended on-target locus and one off-target site. In vitro analysis of target site recognition revealed that interactions between the 5′ end of the guide and PAM-distal target sequences are necessary to efficiently engage Cas9 nucleolytic activity, providing an explanation for why off-target editing is significantly lower than expected from ChIP-seq data. PMID:25275497

  1. Identification of an Electrostatic Ruler Motif for Sequence-Specific Binding of Collagenase to Collagen.

    PubMed

    Subramanian, Sundar Raman; Singam, Ettayapuram Ramaprasad Azhagiya; Berinski, Michael; Subramanian, Venkatesan; Wade, Rebecca C

    2016-08-25

    Sequence-specific cleavage of collagen by mammalian collagenase plays a pivotal role in cell function. Collagenases are matrix metalloproteinases that cleave the peptide bond at a specific position on fibrillar collagen. The collagenase Hemopexin-like (HPX) domain has been proposed to be responsible for substrate recognition, but the mechanism by which collagenases identify the cleavage site on fibrillar collagen is not clearly understood. In this study, Brownian dynamics simulations coupled with atomic-detail and coarse-grained molecular dynamics simulations were performed to dock matrix metalloproteinase-1 (MMP-1) on a collagen IIIα1 triple helical peptide. We find that the HPX domain recognizes the collagen triple helix at a conserved R-X11-R motif C-terminal to the cleavage site to which the HPX domain of collagen is guided electrostatically. The binding of the HPX domain between the two arginine residues is energetically stabilized by hydrophobic contacts with collagen. From the simulations and analysis of the sequences and structural flexibility of collagen and collagenase, a mechanistic scheme by which MMP-1 can recognize and bind collagen for proteolysis is proposed. PMID:27245212

  2. Sequence, structure, and cooperativity in folding of elementary protein structural motifs

    PubMed Central

    Lai, Jason K.; Kubelka, Ginka S.; Kubelka, Jan

    2015-01-01

    Residue-level unfolding of two helix-turn-helix proteins—one naturally occurring and one de novo designed—is reconstructed from multiple sets of site-specific 13C isotopically edited infrared (IR) and circular dichroism (CD) data using Ising-like statistical-mechanical models. Several model variants are parameterized to test the importance of sequence-specific interactions (approximated by Miyazawa–Jernigan statistical potentials), local structural flexibility (derived from the ensemble of NMR structures), interhelical hydrogen bonds, and native contacts separated by intervening disordered regions (through the Wako–Saitô–Muñoz–Eaton scheme, which disallows such configurations). The models are optimized by directly simulating experimental observables: CD ellipticity at 222 nm for model proteins and their fragments and 13C-amide I′ bands for multiple isotopologues of each protein. We find that data can be quantitatively reproduced by the model that allows two interacting segments flanking a disordered loop (double sequence approximation) and incorporates flexibility in the native contact maps, but neither sequence-specific interactions nor hydrogen bonds are required. The near-identical free energy profiles as a function of the global order parameter are consistent with expected similar folding kinetics for nearly identical structures. However, the predicted folding mechanism for the two motifs is different, reflecting the order of local stability. We introduce free energy profiles for “experimental” reaction coordinates—namely, the degree of local folding as sensed by site-specific 13C-edited IR, which highlight folding heterogeneity and contrast its overall, average description with the detailed, local picture. PMID:26216963

  3. Sequence, structure, and cooperativity in folding of elementary protein structural motifs.

    PubMed

    Lai, Jason K; Kubelka, Ginka S; Kubelka, Jan

    2015-08-11

    Residue-level unfolding of two helix-turn-helix proteins--one naturally occurring and one de novo designed--is reconstructed from multiple sets of site-specific (13)C isotopically edited infrared (IR) and circular dichroism (CD) data using Ising-like statistical-mechanical models. Several model variants are parameterized to test the importance of sequence-specific interactions (approximated by Miyazawa-Jernigan statistical potentials), local structural flexibility (derived from the ensemble of NMR structures), interhelical hydrogen bonds, and native contacts separated by intervening disordered regions (through the Wako-Saitô-Muñoz-Eaton scheme, which disallows such configurations). The models are optimized by directly simulating experimental observables: CD ellipticity at 222 nm for model proteins and their fragments and (13)C-amide I' bands for multiple isotopologues of each protein. We find that data can be quantitatively reproduced by the model that allows two interacting segments flanking a disordered loop (double sequence approximation) and incorporates flexibility in the native contact maps, but neither sequence-specific interactions nor hydrogen bonds are required. The near-identical free energy profiles as a function of the global order parameter are consistent with expected similar folding kinetics for nearly identical structures. However, the predicted folding mechanism for the two motifs is different, reflecting the order of local stability. We introduce free energy profiles for "experimental" reaction coordinates--namely, the degree of local folding as sensed by site-specific (13)C-edited IR, which highlight folding heterogeneity and contrast its overall, average description with the detailed, local picture. PMID:26216963

  4. AptaTRACE Elucidates RNA Sequence-Structure Motifs from Selection Trends in HT-SELEX Experiments.

    PubMed

    Dao, Phuong; Hoinka, Jan; Takahashi, Mayumi; Zhou, Jiehua; Ho, Michelle; Wang, Yijie; Costa, Fabrizio; Rossi, John J; Backofen, Rolf; Burnett, John; Przytycka, Teresa M

    2016-07-01

    Aptamers, short RNA or DNA molecules that bind distinct targets with high affinity and specificity, can be identified using high-throughput systematic evolution of ligands by exponential enrichment (HT-SELEX), but scalable analytic tools for understanding sequence-function relationships from diverse HT-SELEX data are not available. Here we present AptaTRACE, a computational approach that leverages the experimental design of the HT-SELEX protocol, RNA secondary structure, and the potential presence of many secondary motifs to identify sequence-structure motifs that show a signature of selection. We apply AptaTRACE to identify nine motifs in C-C chemokine receptor type 7 targeted by aptamers in an in vitro cell-SELEX experiment. We experimentally validate two aptamers whose binding required both sequence and structural features. AptaTRACE can identify low-abundance motifs, and we show through simulations that, because of this, it could lower HT-SELEX cost and time by reducing the number of selection cycles required. PMID:27467247

  5. Finishing and Special Motifs: Lessons Learned from CRISPR Analysis Using Next-Generation Draft Sequences ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema

    Campbell, Catherine [Noblis

    2013-03-22

    Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  6. Finishing and Special Motifs: Lessons Learned from CRISPR Analysis Using Next-Generation Draft Sequences ( 7th Annual SFAF Meeting, 2012)

    SciTech Connect

    Campbell, Catherine

    2012-06-01

    Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  7. Viroids: From Genotype to Phenotype Just Relying on RNA Sequence and Structural Motifs

    PubMed Central

    Flores, Ricardo; Serra, Pedro; Minoia, Sofía; Di Serio, Francesco; Navarro, Beatriz

    2012-01-01

    As a consequence of two unique physical properties, small size and circularity, viroid RNAs do not code for proteins and thus depend on RNA sequence/structural motifs for interacting with host proteins that mediate their invasion, replication, spread, and circumvention of defensive barriers. Viroid genomes fold up on themselves adopting collapsed secondary structures wherein stretches of nucleotides stabilized by Watson–Crick pairs are flanked by apparently unstructured loops. However, compelling data show that they are instead stabilized by alternative non-canonical pairs and that specific loops in the rod-like secondary structure, characteristic of Potato spindle tuber viroid and most other members of the family Pospiviroidae, are critical for replication and systemic trafficking. In contrast, rather than folding into a rod-like secondary structure, most members of the family Avsunviroidae adopt multibranched conformations occasionally stabilized by kissing-loop interactions critical for viroid viability in vivo. Besides these most stable secondary structures, viroid RNAs alternatively adopt during replication transient metastable conformations containing elements of local higher-order structure, prominent among which are the hammerhead ribozymes catalyzing a key replicative step in the family Avsunviroidae, and certain conserved hairpins that also mediate replication steps in the family Pospiviroidae. Therefore, different RNA structures – either global or local – determine different functions, thus highlighting the need for in-depth structural studies on viroid RNAs. PMID:22719735

  8. Modeling of the Ebola virus delta peptide reveals a potential lytic sequence motif.

    PubMed

    Gallaher, William R; Garry, Robert F

    2015-01-01

    Filoviruses, such as Ebola and Marburg viruses, cause severe outbreaks of human infection, including the extensive epidemic of Ebola virus disease (EVD) in West Africa in 2014. In the course of examining mutations in the glycoprotein gene associated with 2014 Ebola virus (EBOV) sequences, a differential level of conservation was noted between the soluble form of glycoprotein (sGP) and the full length glycoprotein (GP), which are both encoded by the GP gene via RNA editing. In the region of the proteins encoded after the RNA editing site sGP was more conserved than the overlapping region of GP when compared to a distant outlier species, Tai Forest ebolavirus. Half of the amino acids comprising the "delta peptide", a 40 amino acid carboxy-terminal fragment of sGP, were identical between otherwise widely divergent species. A lysine-rich amphipathic peptide motif was noted at the carboxyl terminus of delta peptide with high structural relatedness to the cytolytic peptide of the non-structural protein 4 (NSP4) of rotavirus. EBOV delta peptide is a candidate viroporin, a cationic pore-forming peptide, and may contribute to EBOV pathogenesis. PMID:25609303

  9. Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs

    PubMed Central

    Pandey, Kailash N.

    2015-01-01

    The targeted endocytosis and redistribution of transmembrane receptors among membrane-bound subcellular organelles are vital for their correct signaling and physiological functions. Membrane receptors committed for internalization and trafficking pathways are sorted into coated vesicles. Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP) bind to guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and elicit the generation of intracellular second messenger cyclic guanosine 3',5'-monophosphate (cGMP), which lowers blood pressure and incidence of heart failure. After ligand binding, the receptor is rapidly internalized, sequestrated, and redistributed into intracellular locations. Thus, NPRA is considered a dynamic cellular macromolecule that traverses different subcellular locations through its lifetime. The utilization of pharmacologic and molecular perturbants has helped in delineating the pathways of endocytosis, trafficking, down-regulation, and degradation of membrane receptors in intact cells. This review describes the investigation of the mechanisms of internalization, trafficking, and redistribution of NPRA compared with other cell surface receptors from the plasma membrane into the cell interior. The roles of different short-signal peptide sequence motifs in the internalization and trafficking of other membrane receptors have been briefly reviewed and their potential significance in the internalization and trafficking of NPRA is discussed. PMID:26151885

  10. Defining RNA motif-aminoglycoside interactions via two-dimensional combinatorial screening and structure-activity relationships through sequencing.

    PubMed

    Velagapudi, Sai Pradeep; Disney, Matthew D

    2013-10-15

    RNA is an extremely important target for the development of chemical probes of function or small molecule therapeutics. Aminoglycosides are the most well studied class of small molecules to target RNA. However, the RNA motifs outside of the bacterial rRNA A-site that are likely to be bound by these compounds in biological systems is largely unknown. If such information were known, it could allow for aminoglycosides to be exploited to target other RNAs and, in addition, could provide invaluable insights into potential bystander targets of these clinically used drugs. We utilized two-dimensional combinatorial screening (2DCS), a library-versus-library screening approach, to select the motifs displayed in a 3×3 nucleotide internal loop library and in a 6-nucleotide hairpin library that bind with high affinity and selectivity to six aminoglycoside derivatives. The selected RNA motifs were then analyzed using structure-activity relationships through sequencing (StARTS), a statistical approach that defines the privileged RNA motif space that binds a small molecule. StARTS allowed for the facile annotation of the selected RNA motif-aminoglycoside interactions in terms of affinity and selectivity. The interactions selected by 2DCS generally have nanomolar affinities, which is higher affinity than the binding of aminoglycosides to a mimic of their therapeutic target, the bacterial rRNA A-site. PMID:23719281

  11. DNA recognition for virus assembly through multiple sequence-independent interactions with a helix-turn-helix motif

    PubMed Central

    Greive, Sandra J.; Fung, Herman K.H.; Chechik, Maria; Jenkins, Huw T.; Weitzel, Stephen E.; Aguiar, Pedro M.; Brentnall, Andrew S.; Glousieau, Matthieu; Gladyshev, Grigory V.; Potts, Jennifer R.; Antson, Alfred A.

    2016-01-01

    The helix-turn-helix (HTH) motif features frequently in protein DNA-binding assemblies. Viral pac site-targeting small terminase proteins possess an unusual architecture in which the HTH motifs are displayed in a ring, distinct from the classical HTH dimer. Here we investigate how such a circular array of HTH motifs enables specific recognition of the viral genome for initiation of DNA packaging during virus assembly. We found, by surface plasmon resonance and analytical ultracentrifugation, that individual HTH motifs of the Bacillus phage SF6 small terminase bind the packaging regions of SF6 and related SPP1 genome weakly, with little local sequence specificity. Nuclear magnetic resonance chemical shift perturbation studies with an arbitrary single-site substrate suggest that the HTH motif contacts DNA similarly to how certain HTH proteins contact DNA non-specifically. Our observations support a model where specificity is generated through conformational selection of an intrinsically bent DNA segment by a ring of HTHs which bind weakly but cooperatively. Such a system would enable viral gene regulation and control of the viral life cycle, with a minimal genome, conferring a major evolutionary advantage for SPP1-like viruses. PMID:26673721

  12. DNA recognition for virus assembly through multiple sequence-independent interactions with a helix-turn-helix motif.

    PubMed

    Greive, Sandra J; Fung, Herman K H; Chechik, Maria; Jenkins, Huw T; Weitzel, Stephen E; Aguiar, Pedro M; Brentnall, Andrew S; Glousieau, Matthieu; Gladyshev, Grigory V; Potts, Jennifer R; Antson, Alfred A

    2016-01-29

    The helix-turn-helix (HTH) motif features frequently in protein DNA-binding assemblies. Viral pac site-targeting small terminase proteins possess an unusual architecture in which the HTH motifs are displayed in a ring, distinct from the classical HTH dimer. Here we investigate how such a circular array of HTH motifs enables specific recognition of the viral genome for initiation of DNA packaging during virus assembly. We found, by surface plasmon resonance and analytical ultracentrifugation, that individual HTH motifs of the Bacillus phage SF6 small terminase bind the packaging regions of SF6 and related SPP1 genome weakly, with little local sequence specificity. Nuclear magnetic resonance chemical shift perturbation studies with an arbitrary single-site substrate suggest that the HTH motif contacts DNA similarly to how certain HTH proteins contact DNA non-specifically. Our observations support a model where specificity is generated through conformational selection of an intrinsically bent DNA segment by a ring of HTHs which bind weakly but cooperatively. Such a system would enable viral gene regulation and control of the viral life cycle, with a minimal genome, conferring a major evolutionary advantage for SPP1-like viruses. PMID:26673721

  13. A survey of DNA motif finding algorithms

    PubMed Central

    Das, Modan K; Dai, Ho-Kwok

    2007-01-01

    Background Unraveling the mechanisms that regulate gene expression is a major challenge in biology. An important task in this challenge is to identify regulatory elements, especially the binding sites in deoxyribonucleic acid (DNA) for transcription factors. These binding sites are short DNA segments that are called motifs. Recent advances in genome sequence availability and in high-throughput gene expression analysis technologies have allowed for the development of computational methods for motif finding. As a result, a large number of motif finding algorithms have been implemented and applied to various motif models over the past decade. This survey reviews the latest developments in DNA motif finding algorithms. Results Earlier algorithms use promoter sequences of coregulated genes from single genome and search for statistically overrepresented motifs. Recent algorithms are designed to use phylogenetic footprinting or orthologous sequences and also an integrated approach where promoter sequences of coregulated genes and phylogenetic footprinting are used. All the algorithms studied have been reported to correctly detect the motifs that have been previously detected by laboratory experimental approaches, and some algorithms were able to find novel motifs. However, most of these motif finding algorithms have been shown to work successfully in yeast and other lower organisms, but perform significantly worse in higher organisms. Conclusion Despite considerable efforts to date, DNA motif finding remains a complex challenge for biologists and computer scientists. Researchers have taken many different approaches in developing motif discovery tools and the progress made in this area of research is very encouraging. Performance comparison of different motif finding tools and identification of the best tools have proven to be a difficult task because tools are designed based on algorithms and motif models that are diverse and complex and our incomplete understanding of

  14. Fine Scale Analysis of Crossover and Non-Crossover and Detection of Recombination Sequence Motifs in the Honeybee (Apis mellifera)

    PubMed Central

    Bessoltane, Nadia; Toffano-Nioche, Claire; Solignac, Michel; Mougel, Florence

    2012-01-01

    Background Meiotic exchanges are non-uniformly distributed across the genome of most studied organisms. This uneven distribution suggests that recombination is initiated by specific signals and/or regulations. Some of these signals were recently identified in humans and mice. However, it is unclear whether or not sequence signals are also involved in chromosomal recombination of insects. Methodology We analyzed recombination frequencies in the honeybee, in which genome sequencing provided a large amount of SNPs spread over the entire set of chromosomes. As the genome sequences were obtained from a pool of haploid males, which were the progeny of a single queen, an oocyte method (study of recombination on haploid males that develop from unfertilized eggs and hence are the direct reflect of female gametes haplotypes) was developed to detect recombined pairs of SNP sites. Sequences were further compared between recombinant and non-recombinant fragments to detect recombination-specific motifs. Conclusions Recombination events between adjacent SNP sites were detected at an average distance of 92 bp and revealed the existence of high rates of recombination events. This study also shows the presence of conversion without crossover (i. e. non-crossover) events, the number of which largely outnumbers that of crossover events. Furthermore the comparison of sequences that have undergone recombination with sequences that have not, led to the discovery of sequence motifs (CGCA, GCCGC, CCGCA), which may correspond to recombination signals. PMID:22567142

  15. Sequence and Spatiotemporal Expression Analysis of CLE-Motif Containing Genes from the Reniform Nematode (Rotylenchulus reniformis Linford & Oliveira)

    PubMed Central

    Wubben, Martin J.; Gavilano, Lily; Baum, Thomas J.; Davis, Eric L.

    2015-01-01

    The reniform nematode, Rotylenchulus reniformis, is a sedentary semi-endoparasitic species with a host range that encompasses more than 77 plant families. Nematode effector proteins containing plant-ligand motifs similar to CLAVATA3/ESR (CLE) peptides have been identified in the Heterodera, Globodera, and Meloidogyne genera of sedentary endoparasites. Here, we describe the isolation, sequence analysis, and spatiotemporal expression of three R. reniformis genes encoding putative CLE motifs named Rr-cle-1, Rr-cle-2, and Rr-cle-3. The Rr-cle cDNAs showed >98% identity with each other and the predicted peptides were identical with the exception of a short stretch of residues at the carboxy(C)-terminus of the variable domain (VD). Each RrCLE peptide possessed an amino-terminal signal peptide for secretion and a single C-terminal CLE motif that was most similar to Heterodera CLE motifs. Aligning the Rr-cle cDNAs with their corresponding genomic sequences showed three exons with an intron separating the signal peptide from the VD and a second intron separating the VD from the CLE motif. An alignment of the RrCLE1 peptide with Heterodera glycines and Heterodera schachtii CLE proteins revealed a high level of homology within the VD region associated with regulating in planta trafficking of the processed CLE peptide. Quantitative RT-PCR (qRT-PCR) showed similar expression profiles for each Rr-cle transcript across the R. reniformis life-cycle with the greatest transcript abundance being in sedentary parasitic female nematodes. In situ hybridization showed specific Rr-cle expression within the dorsal esophageal gland cell of sedentary parasitic females. PMID:26170479

  16. Sequence and Spatiotemporal Expression Analysis of CLE-Motif Containing Genes from the Reniform Nematode (Rotylenchulus reniformis Linford & Oliveira).

    PubMed

    Wubben, Martin J; Gavilano, Lily; Baum, Thomas J; Davis, Eric L

    2015-06-01

    The reniform nematode, Rotylenchulus reniformis, is a sedentary semi-endoparasitic species with a host range that encompasses more than 77 plant families. Nematode effector proteins containing plant-ligand motifs similar to CLAVATA3/ESR (CLE) peptides have been identified in the Heterodera, Globodera, and Meloidogyne genera of sedentary endoparasites. Here, we describe the isolation, sequence analysis, and spatiotemporal expression of three R. reniformis genes encoding putative CLE motifs named Rr-cle-1, Rr-cle-2, and Rr-cle-3. The Rr-cle cDNAs showed >98% identity with each other and the predicted peptides were identical with the exception of a short stretch of residues at the carboxy(C)-terminus of the variable domain (VD). Each RrCLE peptide possessed an amino-terminal signal peptide for secretion and a single C-terminal CLE motif that was most similar to Heterodera CLE motifs. Aligning the Rr-cle cDNAs with their corresponding genomic sequences showed three exons with an intron separating the signal peptide from the VD and a second intron separating the VD from the CLE motif. An alignment of the RrCLE1 peptide with Heterodera glycines and Heterodera schachtii CLE proteins revealed a high level of homology within the VD region associated with regulating in planta trafficking of the processed CLE peptide. Quantitative RT-PCR (qRT-PCR) showed similar expression profiles for each Rr-cle transcript across the R. reniformis life-cycle with the greatest transcript abundance being in sedentary parasitic female nematodes. In situ hybridization showed specific Rr-cle expression within the dorsal esophageal gland cell of sedentary parasitic females. PMID:26170479

  17. Application of PCR amplicon sequencing using a single primer pair in PCR amplification to assess variations in Helicobacter pylori CagA EPIYA tyrosine phosphorylation motifs

    PubMed Central

    2010-01-01

    Background The presence of various EPIYA tyrosine phosphorylation motifs in the CagA protein of Helicobacter pylori has been suggested to contribute to pathogenesis in adults. In this study, a unique PCR assay and sequencing strategy was developed to establish the number and variation of cagA EPIYA motifs. Findings MDA-DNA derived from gastric biopsy specimens from eleven subjects with gastritis was used with M13- and T7-sequence-tagged primers for amplification of the cagA EPIYA motif region. Automated capillary electrophoresis using a high resolution kit and amplicon sequencing confirmed variations in the cagA EPIYA motif region. In nine cases, sequencing revealed the presence of AB, ABC, or ABCC (Western type) cagA EPIYA motif, respectively. In two cases, double cagA EPIYA motifs were detected (ABC/ABCC or ABC/AB), indicating the presence of two H. pylori strains in the same biopsy. Conclusion Automated capillary electrophoresis and Amplicon sequencing using a single, M13- and T7-sequence-tagged primer pair in PCR amplification enabled a rapid molecular typing of cagA EPIYA motifs. Moreover, the techniques described allowed for a rapid detection of mixed H. pylori strains present in the same biopsy specimen. PMID:20181142

  18. A self-assembling peptide RADA16-I integrated with spider fibroin uncrystalline motifs

    PubMed Central

    Sun, Lijuan; Zhao, Xiaojun

    2012-01-01

    Mechanical strength of nanofiber scaffolds formed by the self-assembling peptide RADA16-I or its derivatives is not very good and limits their application. To address this problem, we inserted spidroin uncrystalline motifs, which confer incomparable elasticity and hydrophobicity to spider silk GGAGGS or GPGGY, into the C-terminus of RADA16-I to newly design two peptides: R3 (n-RADARADARADARADA-GGAGGS-c) and R4 (n-RADARADARADARADA-GPGGY-c), and then observed the effect of these motifs on biophysical properties of the peptide. Atomic force microscopy, transmitting electron microscopy, and circular dichroism spectroscopy confirm that R3 and R4 display β-sheet structure and self-assemble into long nanofibers. Compared with R3, the β-sheet structure and nanofibers formed by R4 are more stable; they change to random coil and unordered aggregation at higher temperature. Rheology measurements indicate that novel peptides form hydrogel when induced by DMEM, and the storage modulus of R3 and R4 hydrogel is 0.5 times and 3 times higher than that of RADA16-I, respectively. Furthermore, R4 hydrogel remarkably promotes growth of liver cell L02 and liver cancer cell SMCC7721 compared with 2D culture, determined by MTT assay. Novel peptides still have potential as hydrophobic drug carriers; they can stabilize pyrene microcrystals in aqueous solution and deliver this into a lipophilic environment, identified by fluorescence emission spectra. Altogether, the spider fibroin motif GPGGY most effectively enhances mechanical strength and hydrophobicity of the peptide. This study provides a new method in the design of nanobiomaterials and helps us to understand the role of the amino acid sequence in nanofiber formation. PMID:22346352

  19. An approach to delineate primers for a group of poorly conserved sequences incorporating the common motif region.

    PubMed

    Sahu, Mousumi; Sahu, Jagajjit; Sahoo, Smita; Dehury, Budheswar; Sarma, Kishore; Sarmah, Ranjan; Sen, Priyabrata; Modi, Mahendra Kumar; Barooah, Madhumita

    2012-01-01

    Glutathione synthetase (gshB) has previously been reported to confer tolerance to acidic soil condition in Rhizobium species. Cloning the gene coding for this enzyme necessitates the designing of proper primer sets which in turn depends on the identification of high quality sequence similarity in multiple global alignments. In this experiment, a group of homologous gene sequences related to gshB gene (accession no: gi-86355669:327589-328536) of Rhizobium etli CFN 42, were extracted from NCBI nucleotide sequence databases using BLASTN and were analyzed for designing degenerate primers. However, the T-coffee multiple global alignment results did not show any block of conserved region for the above sequence set to design the primers. Therefore, we attempted to identify the location of common motif region based on multiple local alignments employing the MEME algorithm supported with MAST and Primer3. The results revealed some common motif regions that enabled us to design the primer sets for related gshB gene sequences. The result will be validated in wet lab. PMID:22419837

  20. Composite motifs integrating multiple protein structures increase sensitivity for function prediction.

    PubMed

    Chen, Brian Y; Bryant, Drew H; Cruess, Amanda E; Bylund, Joseph H; Fofanov, Viacheslav Y; Kristensen, David M; Kimmel, Marek; Lichtarge, Olivier; Kavraki, Lydia E

    2007-01-01

    The study of disease often hinges on the biological function of proteins, but determining protein function is a difficult experimental process. To minimize duplicated effort, algorithms for function prediction seek characteristics indicative of possible protein function. One approach is to identify substructural matches of geometric and chemical similarity between motifs representing known active sites and target protein structures with unknown function. In earlier work, statistically significant matches of certain effective motifs have identified functionally related active sites. Effective motifs must be carefully designed to maintain similarity to functionally related sites (sensitivity) and avoid incidental similarities to functionally unrelated protein geometry (specificity). Existing motif design techniques use the geometry of a single protein structure. Poor selection of this structure can limit motif effectiveness if the selected functional site lacks similarity to functionally related sites. To address this problem, this paper presents composite motifs, which combine structures of functionally related active sites to potentially increase sensitivity. Our experimentation compares the effectiveness of composite motifs with simple motifs designed from single protein structures. On six distinct families of functionally related proteins, leave-one-out testing showed that composite motifs had sensitivity comparable to the most sensitive of all simple motifs and specificity comparable to the average simple motif. On our data set, we observed that composite motifs simultaneously capture variations in active site conformation, diminish the problem of selecting motif structures, and enable the fusion of protein structures from diverse data sources. PMID:17951837

  1. Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences.

    PubMed

    Siebert, Matthias; Söding, Johannes

    2016-07-27

    Position weight matrices (PWMs) are the standard model for DNA and RNA regulatory motifs. In PWMs nucleotide probabilities are independent of nucleotides at other positions. Models that account for dependencies need many parameters and are prone to overfitting. We have developed a Bayesian approach for motif discovery using Markov models in which conditional probabilities of order k - 1 act as priors for those of order k This Bayesian Markov model (BaMM) training automatically adapts model complexity to the amount of available data. We also derive an EM algorithm for de-novo discovery of enriched motifs. For transcription factor binding, BaMMs achieve significantly (P    =  1/16) higher cross-validated partial AUC than PWMs in 97% of 446 ChIP-seq ENCODE datasets and improve performance by 36% on average. BaMMs also learn complex multipartite motifs, improving predictions of transcription start sites, polyadenylation sites, bacterial pause sites, and RNA binding sites by 26-101%. BaMMs never performed worse than PWMs. These robust improvements argue in favour of generally replacing PWMs by BaMMs. PMID:27288444

  2. Two structurally distinct {kappa}B sequence motifs cooperatively control LPS-induced KC gene transcription in mouse macrophages

    SciTech Connect

    Ohmori, Y.; Fukumoto, S.; Hamilton, T.A.

    1995-10-01

    The mouse KC gene is an {alpha}-chemokine gene whose transcription is induced in mononuclear phagocytes by LPS. DNA sequences necessary for transcriptional control of KC by LPS were identified in the region flanking the transcription start site. Transient transfection analysis in macrophages using deletion mutants of a 1.5-kb sequence placed in front of the chloramphenicol acetyl transferase (CAT) gene identified an LPS-responsive region between residues -104 and +30. This region contained two {kappa}B sequence motifs. The first motif (position -70 to -59, {kappa}B1) is highly conserved in all three human GRO genes and in the mouse macrophage inflammatory protein-2 (MIP-2) gene. The second {kappa}B motif (position -89 to -78, {kappa}B2) was conserved only between the mouse and the rat KC genes. Consistent with previous reports, the highly conserved {kappa}B site ({kappa}B1) was essential for LPS inducibility. Surprisingly, the distal {kappa}B site ({kappa}B2) was also necessary for optimal response; mutation of either {kappa}B site markedly reduced sensitivity to LPS in RAW264.7 cells and to TNF-{alpha} in NIH 3T3 fibroblasts. Although both {kappa}B1 and {kappa}B2 sequences were able to bind members of the Rel homology family, including NF{kappa}B1 (P50), RelA (65), and c-Rel, the {kappa}B1 site bound these factors with higher affinity and functioned more effectively than the {kappa}B2 site in a heterologous promoter. These findings demonstrate that transcriptional control of the KC gene requires cooperation between two {kappa}B sites and is thus distinct from that of the three human GRO genes and the mouse MIP-2 gene. 71 refs., 8 figs.

  3. Sequence-Specific Recognition of DNA by Proteins: Binding Motifs Discovered Using a Novel Statistical/Computational Analysis.

    PubMed

    Jakubec, David; Laskowski, Roman A; Vondrasek, Jiri

    2016-01-01

    Decades of intensive experimental studies of the recognition of DNA sequences by proteins have provided us with a view of a diverse and complicated world in which few to no features are shared between individual DNA-binding protein families. The originally conceived direct readout of DNA residue sequences by amino acid side chains offers very limited capacity for sequence recognition, while the effects of the dynamic properties of the interacting partners remain difficult to quantify and almost impossible to generalise. In this work we investigated the energetic characteristics of all DNA residue-amino acid side chain combinations in the conformations found at the interaction interface in a very large set of protein-DNA complexes by the means of empirical potential-based calculations. General specificity-defining criteria were derived and utilised to look beyond the binding motifs considered in previous studies. Linking energetic favourability to the observed geometrical preferences, our approach reveals several additional amino acid motifs which can distinguish between individual DNA bases. Our results remained valid in environments with various dielectric properties. PMID:27384774

  4. Sequence-Specific Recognition of DNA by Proteins: Binding Motifs Discovered Using a Novel Statistical/Computational Analysis

    PubMed Central

    Jakubec, David; Laskowski, Roman A.; Vondrasek, Jiri

    2016-01-01

    Decades of intensive experimental studies of the recognition of DNA sequences by proteins have provided us with a view of a diverse and complicated world in which few to no features are shared between individual DNA-binding protein families. The originally conceived direct readout of DNA residue sequences by amino acid side chains offers very limited capacity for sequence recognition, while the effects of the dynamic properties of the interacting partners remain difficult to quantify and almost impossible to generalise. In this work we investigated the energetic characteristics of all DNA residue—amino acid side chain combinations in the conformations found at the interaction interface in a very large set of protein—DNA complexes by the means of empirical potential-based calculations. General specificity-defining criteria were derived and utilised to look beyond the binding motifs considered in previous studies. Linking energetic favourability to the observed geometrical preferences, our approach reveals several additional amino acid motifs which can distinguish between individual DNA bases. Our results remained valid in environments with various dielectric properties. PMID:27384774

  5. Incorporating substrate sequence motifs and spatial amino acid composition to identify kinase-specific phosphorylation sites on protein three-dimensional structures

    PubMed Central

    2013-01-01

    sites with similar sequenced motifs, this work also integrates the 3D structural information to improve the cross classifying specificity. PMID:24564522

  6. A Glance at Microsatellite Motifs from 454 Sequencing Reads of Watermelon Genomic DNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A single 454 (Life Sciences Sequencing Technology) run of Charleston Gray watermelon (Citrullus lanatus var. lanatus) genomic DNA was performed and sequence data were assembled. A large scale identification of simple sequence repeat (SSR) was performed and SSR sequence data were used for the develo...

  7. In planta analysis of a cis-regulatory cytokinin response motif in Arabidopsis and identification of a novel enhancer sequence.

    PubMed

    Ramireddy, Eswarayya; Brenner, Wolfram G; Pfeifer, Andreas; Heyl, Alexander; Schmülling, Thomas

    2013-07-01

    The phytohormone cytokinin plays a key role in regulating plant growth and development, and is involved in numerous physiological responses to environmental changes. The type-B response regulators, which regulate the transcription of cytokinin response genes, are a part of the cytokinin signaling system. Arabidopsis thaliana encodes 11 type-B response regulators (type-B ARRs), and some of them were shown to bind in vitro to the core cytokinin response motif (CRM) 5'-(A/G)GAT(T/C)-3' or, in the case of ARR1, to an extended motif (ECRM), 5'-AAGAT(T/C)TT-3'. Here we obtained in planta proof for the functionality of the latter motif. Promoter deletion analysis of the primary cytokinin response gene ARR6 showed that a combination of two extended motifs within the promoter is required to mediate the full transcriptional activation by ARR1 and other type-B ARRs. CRMs were found to be over-represented in the vicinity of ECRMs in the promoters of cytokinin-regulated genes, suggesting their functional relevance. Moreover, an evolutionarily conserved 27 bp long T-rich region between -220 and -193 bp was identified and shown to be required for the full activation by type-B ARRs and the response to cytokinin. This novel enhancer is not bound by the DNA-binding domain of ARR1, indicating that additional proteins might be involved in mediating the transcriptional cytokinin response. Furthermore, genome-wide expression profiling identified genes, among them ARR16, whose induction by cytokinin depends on both ARR1 and other specific type-B ARRs. This together with the ECRM/CRM sequence clustering indicates cooperative action of different type-B ARRs for the activation of particular target genes. PMID:23620480

  8. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements.

    PubMed

    Karvelis, Tautvydas; Gasiunas, Giedrius; Young, Joshua; Bigelyte, Greta; Silanskas, Arunas; Cigan, Mark; Siksnys, Virginijus

    2015-01-01

    To expand the repertoire of Cas9s available for genome targeting, we present a new in vitro method for the simultaneous examination of guide RNA and protospacer adjacent motif (PAM) requirements. The method relies on the in vitro cleavage of plasmid libraries containing a randomized PAM as a function of Cas9-guide RNA complex concentration. Using this method, we accurately reproduce the canonical PAM preferences for Streptococcus pyogenes, Streptococcus thermophilus CRISPR3 (Sth3), and CRISPR1 (Sth1). Additionally, PAM and sgRNA solutions for a novel Cas9 protein from Brevibacillus laterosporus are provided by the assay and are demonstrated to support functional activity in vitro and in plants. PMID:26585795

  9. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs.

    PubMed Central

    Birnbaum, M J; Clem, R J; Miller, L K

    1994-01-01

    Two different baculovirus genes are known to be able to block apoptosis triggered upon infection of Spodoptera frugiperda cells with p35 mutants of the insect baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV):p35 (P35-encoding gene) of AcMNPV (R. J. Clem, M. Fechheimer, and L. K. Miller, Science 254:1388-1390, 1991) and iap (inhibitor of apoptosis gene) of Cydia pomonella granulosis virus (CpGV) (N. E. Crook, R. J. Clem, and L. K. Miller, J. Virol. 67:2168-2174, 1993). Using a genetic complementation assay to identify additional genes which inhibit apoptosis during infection with a p35 mutant, we have isolated a gene from Orgyia pseudotsugata NPV (OpMNPV) that was able to functionally substitute for AcMNPV p35. The nucleotide sequence of this gene, Op-iap, predicted a 30-kDa polypeptide product with approximately 58% amino acid sequence identity to the product of CpGV iap, Cp-IAP. Like Cp-IAP, the predicted product of Op-iap has a carboxy-terminal C3HC4 zinc finger-like motif. In addition, a pair of additional cysteine/histidine motifs were found in the N-terminal regions of both polypeptide sequences. Recombinant p35 mutant viruses carrying either Op-iap or Cp-iap appeared to have a normal phenotype in S. frugiperda cells. Thus, Cp-IAP and Op-IAP appear to be functionally analogous to P35 but are likely to block apoptosis by a different mechanism which may involve direct interaction with DNA. Images PMID:8139034

  10. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs.

    PubMed

    Birnbaum, M J; Clem, R J; Miller, L K

    1994-04-01

    Two different baculovirus genes are known to be able to block apoptosis triggered upon infection of Spodoptera frugiperda cells with p35 mutants of the insect baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV):p35 (P35-encoding gene) of AcMNPV (R. J. Clem, M. Fechheimer, and L. K. Miller, Science 254:1388-1390, 1991) and iap (inhibitor of apoptosis gene) of Cydia pomonella granulosis virus (CpGV) (N. E. Crook, R. J. Clem, and L. K. Miller, J. Virol. 67:2168-2174, 1993). Using a genetic complementation assay to identify additional genes which inhibit apoptosis during infection with a p35 mutant, we have isolated a gene from Orgyia pseudotsugata NPV (OpMNPV) that was able to functionally substitute for AcMNPV p35. The nucleotide sequence of this gene, Op-iap, predicted a 30-kDa polypeptide product with approximately 58% amino acid sequence identity to the product of CpGV iap, Cp-IAP. Like Cp-IAP, the predicted product of Op-iap has a carboxy-terminal C3HC4 zinc finger-like motif. In addition, a pair of additional cysteine/histidine motifs were found in the N-terminal regions of both polypeptide sequences. Recombinant p35 mutant viruses carrying either Op-iap or Cp-iap appeared to have a normal phenotype in S. frugiperda cells. Thus, Cp-IAP and Op-IAP appear to be functionally analogous to P35 but are likely to block apoptosis by a different mechanism which may involve direct interaction with DNA. PMID:8139034

  11. Identification of Promoter Motifs Involved in the Network of Phytochrome A-Regulated Gene Expression by Combined Analysis of Genomic Sequence and Microarray Data1[w

    PubMed Central

    Hudson, Matthew E.; Quail, Peter H.

    2003-01-01

    Several hundred Arabidopsis genes, transcriptionally regulated by phytochrome A (phyA), were previously identified using an oligonucleotide microarray. We have now identified, in silico, conserved sequence motifs in the promoters of these genes by comparing the promoter sequences to those of all the genes present on the microarray from which they were sampled. This was done using a Perl script (called Sift) that identifies over-represented motifs using an enumerative approach. The utility of Sift was verified by analysis of circadian-regulated promoters known to contain a biologically significant motif. Several elements were then identified in phyA-responsive promoters by their over-representation. Five previously undescribed motifs were detected in the promoters of phyA-induced genes. Four novel motifs were found in phyA-repressed promoters, plus a motif that strongly resembles the DE1 element. The G-box, CACGTG, was a prominent hit in both induced and repressed phyA-responsive promoters. Intriguingly, two distinct flanking consensus sequences were observed adjacent to the G-box core sequence: one predominating in phyA-induced promoters, the other in phyA-repressed promoters. Such different conserved flanking nucleotides around the core motif in these two sets of promoters may indicate that different members of the same family of DNA-binding proteins mediate phyA induction and repression. An increased abundance of G-box sequences was observed in the most rapidly phyA-responsive genes and in the promoters of phyA-regulated transcription factors, indicating that G-box-binding transcription factors are upstream components in a transcriptional cascade that mediates phyA-regulated development. PMID:14681527

  12. Gibbs motif sampling: detection of bacterial outer membrane protein repeats.

    PubMed Central

    Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.

    1995-01-01

    The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488

  13. Cross-reactivity between the rheumatoid arthritis-associated motif EQKRAA and structurally related sequences found in Proteus mirabilis.

    PubMed

    Tiwana, H; Wilson, C; Alvarez, A; Abuknesha, R; Bansal, S; Ebringer, A

    1999-06-01

    Cross-reactivity or molecular mimicry may be one of the underlying mechanisms involved in the etiopathogenesis of rheumatoid arthritis (RA). Antiserum against the RA susceptibility sequence EQKRAA was shown to bind to a similar peptide ESRRAL present in the hemolysin of the gram-negative bacterium Proteus mirabilis, and an anti-ESRRAL serum reacted with EQKRAA. There was no reactivity with either anti-EQKRAA or anti-ESRRAL to a peptide containing the EDERAA sequence which is present in HLA-DRB1*0402, an allele not associated with RA. Furthermore, the EQKRAA and ESRRAL antisera bound to a mouse fibroblast transfectant cell line (Dap.3) expressing HLA-DRB1*0401 but not to DRB1*0402. However, peptide sequences structurally related to the RA susceptibility motif LEIEKDFTTYGEE (P. mirabilis urease), VEIRAEGNRFTY (collagen type II) and DELSPETSPYVKE (collagen type XI) did not bind significantly to cell lines expressing HLA-DRB1*0401 or HLA-DRB1*0402 compared to the control peptide YASGASGASGAS. It is suggested here that molecular mimicry between HLA alleles associated with RA and P. mirabilis may be relevant in the etiopathogenesis of the disease. PMID:10338479

  14. Structural Analysis of a Repetitive Protein Sequence Motif in Strepsirrhine Primate Amelogenin

    PubMed Central

    Bromley, Keith M.; Hacia, Joseph G.; Bromage, Timothy G.; Snead, Malcolm L.; Moradian-Oldak, Janet; Paine, Michael L.

    2011-01-01

    Strepsirrhines are members of a primate suborder that has a distinctive set of features associated with the development of the dentition. Amelogenin (AMEL), the better known of the enamel matrix proteins, forms 90% of the secreted organic matrix during amelogenesis. Although AMEL has been sequenced in numerous mammalian lineages, the only reported strepsirrhine AMEL sequences are those of the ring-tailed lemur and galago, which contain a set of additional proline-rich tandem repeats absent in all other primates species analyzed to date, but present in some non-primate mammals. Here, we first determined that these repeats are present in AMEL from three additional lemur species and thus are likely to be widespread throughout this group. To evaluate the functional relevance of these repeats in strepsirrhines, we engineered a mutated murine amelogenin sequence containing a similar proline-rich sequence to that of Lemur catta. In the monomeric form, the MQP insertions had no influence on the secondary structure or refolding properties, whereas in the assembled form, the insertions increased the hydrodynamic radii. We speculate that increased AMEL nanosphere size may influence enamel formation in strepsirrhine primates. PMID:21437261

  15. Structural analysis of a repetitive protein sequence motif in strepsirrhine primate amelogenin.

    PubMed

    Lacruz, Rodrigo S; Lakshminarayanan, Rajamani; Bromley, Keith M; Hacia, Joseph G; Bromage, Timothy G; Snead, Malcolm L; Moradian-Oldak, Janet; Paine, Michael L

    2011-01-01

    Strepsirrhines are members of a primate suborder that has a distinctive set of features associated with the development of the dentition. Amelogenin (AMEL), the better known of the enamel matrix proteins, forms 90% of the secreted organic matrix during amelogenesis. Although AMEL has been sequenced in numerous mammalian lineages, the only reported strepsirrhine AMEL sequences are those of the ring-tailed lemur and galago, which contain a set of additional proline-rich tandem repeats absent in all other primates species analyzed to date, but present in some non-primate mammals. Here, we first determined that these repeats are present in AMEL from three additional lemur species and thus are likely to be widespread throughout this group. To evaluate the functional relevance of these repeats in strepsirrhines, we engineered a mutated murine amelogenin sequence containing a similar proline-rich sequence to that of Lemur catta. In the monomeric form, the MQP insertions had no influence on the secondary structure or refolding properties, whereas in the assembled form, the insertions increased the hydrodynamic radii. We speculate that increased AMEL nanosphere size may influence enamel formation in strepsirrhine primates. PMID:21437261

  16. MPS Editor - An Integrated Sequencing Environment

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; O'Reilly, Taifun; Schrock, Mitchell; Catchen, Jaime

    2010-01-01

    In today's operations environment, the teams are smaller and need to be more efficient while still ensuring the safety and success of the mission. In addition, teams often begin working on a mission in its early development phases and continue on the team through actual operations. For these reasons the operations teams want to be presented with a software environment that integrates multiple needed software applications as well as providing them with context sensitive editing support for entering commands and sequences of commands. At Jet Propulsion Laboratory, the Multi-Mission Planning and Sequencing (MPS) Editor provided by the Multi-Mission Ground Systems and Services (MGSS) supports those operational needs.

  17. High-throughput sequencing enhanced phage display enables the identification of patient-specific epitope motifs in serum

    PubMed Central

    Christiansen, Anders; Kringelum, Jens V.; Hansen, Christian S.; Bøgh, Katrine L.; Sullivan, Eric; Patel, Jigar; Rigby, Neil M.; Eiwegger, Thomas; Szépfalusi, Zsolt; Masi, Federico de; Nielsen, Morten; Lund, Ole; Dufva, Martin

    2015-01-01

    Phage display is a prominent screening technique with a multitude of applications including therapeutic antibody development and mapping of antigen epitopes. In this study, phages were selected based on their interaction with patient serum and exhaustively characterised by high-throughput sequencing. A bioinformatics approach was developed in order to identify peptide motifs of interest based on clustering and contrasting to control samples. Comparison of patient and control samples confirmed a major issue in phage display, namely the selection of unspecific peptides. The potential of the bioinformatic approach was demonstrated by identifying epitopes of a prominent peanut allergen, Ara h 1, in sera from patients with severe peanut allergy. The identified epitopes were confirmed by high-density peptide micro-arrays. The present study demonstrates that high-throughput sequencing can empower phage display by (i) enabling the analysis of complex biological samples, (ii) circumventing the traditional laborious picking and functional testing of individual phage clones and (iii) reducing the number of selection rounds. PMID:26246327

  18. CpG island erosion, polycomb occupancy and sequence motif enrichment at bivalent promoters in mammalian embryonic stem cells

    PubMed Central

    Mantsoki, Anna; Devailly, Guillaume; Joshi, Anagha

    2015-01-01

    In embryonic stem (ES) cells, developmental regulators have a characteristic bivalent chromatin signature marked by simultaneous presence of both activation (H3K4me3) and repression (H3K27me3) signals and are thought to be in a ‘poised’ state for subsequent activation or silencing during differentiation. We collected eleven pairs (H3K4me3 and H3K27me3) of ChIP sequencing datasets in human ES cells and eight pairs in murine ES cells, and predicted high-confidence (HC) bivalent promoters. Over 85% of H3K27me3 marked promoters were bivalent in human and mouse ES cells. We found that (i) HC bivalent promoters were enriched for developmental factors and were highly likely to be differentially expressed upon transcription factor perturbation; (ii) murine HC bivalent promoters were occupied by both polycomb repressive component classes (PRC1 and PRC2) and grouped into four distinct clusters with different biological functions; (iii) HC bivalent and active promoters were CpG rich while H3K27me3-only promoters lacked CpG islands. Binding enrichment of distinct sets of regulators distinguished bivalent from active promoters. Moreover, a ‘TCCCC’ sequence motif was specifically enriched in bivalent promoters. Finally, this analysis will serve as a resource for future studies to further understand transcriptional regulation during embryonic development. PMID:26582124

  19. On the Concept of Cis-regulatory Information: From Sequence Motifs to Logic Functions

    NASA Astrophysics Data System (ADS)

    Tarpine, Ryan; Istrail, Sorin

    The regulatory genome is about the “system level organization of the core genomic regulatory apparatus, and how this is the locus of causality underlying the twin phenomena of animal development and animal evolution” (E.H. Davidson. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution, Academic Press, 2006). Information processing in the regulatory genome is done through regulatory states, defined as sets of transcription factors (sequence-specific DNA binding proteins which determine gene expression) that are expressed and active at the same time. The core information processing machinery consists of modular DNA sequence elements, called cis-modules, that interact with transcription factors. The cis-modules “read” the information contained in the regulatory state of the cell through transcription factor binding, “process” it, and directly or indirectly communicate with the basal transcription apparatus to determine gene expression. This endowment of each gene with the information-receiving capacity through their cis-regulatory modules is essential for the response to every possible regulatory state to which it might be exposed during all phases of the life cycle and in all cell types. We present here a set of challenges addressed by our CYRENE research project aimed at studying the cis-regulatory code of the regulatory genome. The CYRENE Project is devoted to (1) the construction of a database, the cis-Lexicon, containing comprehensive information across species about experimentally validated cis-regulatory modules; and (2) the software development of a next-generation genome browser, the cis-Browser, specialized for the regulatory genome. The presentation is anchored on three main computational challenges: the Gene Naming Problem, the Consensus Sequence Bottleneck Problem, and the Logic Function Inference Problem.

  20. Integrating bioinformatic resources to predict transcription factors interacting with cis-sequences conserved in co-regulated genes

    PubMed Central

    2014-01-01

    Background Using motif detection programs it is fairly straightforward to identify conserved cis-sequences in promoters of co-regulated genes. In contrast, the identification of the transcription factors (TFs) interacting with these cis-sequences is much more elaborate. To facilitate this, we explore the possibility of using several bioinformatic and experimental approaches for TF identification. This starts with the selection of co-regulated gene sets and leads first to the prediction and then to the experimental validation of TFs interacting with cis-sequences conserved in the promoters of these co-regulated genes. Results Using the PathoPlant database, 32 up-regulated gene groups were identified with microarray data for drought-responsive gene expression from Arabidopsis thaliana. Application of the binding site estimation suite of tools (BEST) discovered 179 conserved sequence motifs within the corresponding promoters. Using the STAMP web-server, 49 sequence motifs were classified into 7 motif families for which similarities with known cis-regulatory sequences were identified. All motifs were subjected to a footprintDB analysis to predict interacting DNA binding domains from plant TF families. Predictions were confirmed by using a yeast-one-hybrid approach to select interacting TFs belonging to the predicted TF families. TF-DNA interactions were further experimentally validated in yeast and with a Physcomitrella patens transient expression system, leading to the discovery of several novel TF-DNA interactions. Conclusions The present work demonstrates the successful integration of several bioinformatic resources with experimental approaches to predict and validate TFs interacting with conserved sequence motifs in co-regulated genes. PMID:24773781

  1. Flow Cytometry-assisted Cloning of Specific Sequence Motifs fromComplex 16S ribosomal RNA Gene Libraries.

    SciTech Connect

    Nielsen, J.L.; Schramm, A.; Bernhard, A.E.; van den Engh, G.J.; Stahl, D.A.

    2004-07-21

    A flow cytometry method was developed for rapid screeningand recovery of cloned DNA containing common sequence motifs. Thisapproach, termed fluorescence-activated cell sorting-assisted cloning,was used to recover sequences affiliated with a unique lineage within theBacteroidetes not abundant in a clone library of environmental 16S rRNAgenes. Retrieval and sequence analysis of phylogenetically informativegenes has become a standard cultivation-independent technique toinvestigate microbial diversity in nature (7, 18). Genes encoding the 16SrRNA, because of the relative ease of their selective amplification, havebeen most frequently employed for general diversity surveys (16).Environmental studies have also focused on specific subpopulationsaffiliated with a phylogenetic group or identified by genes encodingspecific metabolic functions (e.g., ammonia oxidation, sulfaterespiration, and nitrate reduction) (8,15,20). However, specificpopulations may be of low abundance (1,23), or the genes encodingspecific metabolic functions may be insufficiently conserved to providepriming sites for general PCR amplification. Three general approacheshave been used to obtain 16S rRNA sequence information from low-abundancepopulations: screening hundreds to thousands of clones in a general 16SrRNA gene library (21), flow cytometric sorting of a subpopulation ofenvironmentally derived cells labeled by fluorescent in situhybridization (FISH) (27), or selective PCR amplification using primersspecific for the subpopulation (2,23). While the first approach is simplytime-consuming and tedious, the second has been restricted to fairlylarge and strongly fluorescent cells from aquatic samples (5, 27). Thethird approach often generates fragments of only a few hundred bases dueto the limited number of specific priming sites. Partial sequenceinformation often degrades analysis, obscuring or distorting thephylogenetic placement of the new sequences (11, 20). A more robustcharacterization of environ

  2. Identification of G and P genotype-specific motifs in the predicted VP7 and VP4 amino acid sequences.

    PubMed

    Ma, Yongping

    2015-12-01

    Equine rotavirus (ERV) strain L338 (G13P[18]) has a unique G and P genotype. However, the evolutionary relationship of L338 with other ERVs is still unknown. Here whole genome analysis of the L338 ERV strain was independently performed. Its genotype constellations were determined as G13-P[18]-I6-R9-C9-M6-A6-N9-T12-E14-H11, confirming previous genotype assignments. The L338 strain only shared the P[18] and I6 genotypes with other ERVs. The nucleotide sequences of the other 9 RNA segments were different from those of cogent genes of all other group A rotavirus (RVA) strains including ERVs and formed unique phylogenetic lineages. The L338 evolutionary footprints were tentatively identified in both VP7 and VP4 amino acid sequences: two regions were found in VP7 and twelve in VP4. The conserved regions shared between L338 and other group A rotavirus strains (RVAs) indicated that L338 was more closely related genomically to animal and human RVAs other than ERVs, suggesting that L338 may not be an endogenous equine RV but have emerged as an interspecies reassortant with other RVA strains. Furthermore, genotype-specific motifs of all 27 G and 37 P types were identified in regions 7-1a (aa 91-100) of VP7 and regions 8-1 (aa146-151) and 8-3 (aa113-118 and 125-135) of VP4 (VP8*). PMID:26321159

  3. Rare k-mer DNA: Identification of sequence motifs and prediction of CpG island and promoter.

    PubMed

    Mohamed Hashim, Ezzeddin Kamil; Abdullah, Rosni

    2015-12-21

    Empirical analysis on k-mer DNA has been proven as an effective tool in finding unique patterns in DNA sequences which can lead to the discovery of potential sequence motifs. In an extensive study of empirical k-mer DNA on hundreds of organisms, the researchers found unique multi-modal k-mer spectra occur in the genomes of organisms from the tetrapod clade only which includes all mammals. The multi-modality is caused by the formation of the two lowest modes where k-mers under them are referred as the rare k-mers. The suppression of the two lowest modes (or the rare k-mers) can be attributed to the CG dinucleotide inclusions in them. Apart from that, the rare k-mers are selectively distributed in certain genomic features of CpG Island (CGI), promoter, 5' UTR, and exon. We correlated the rare k-mers with hundreds of annotated features using several bioinformatic tools, performed further intrinsic rare k-mer analyses within the correlated features, and modeled the elucidated rare k-mer clustering feature into a classifier to predict the correlated CGI and promoter features. Our correlation results show that rare k-mers are highly associated with several annotated features of CGI, promoter, 5' UTR, and open chromatin regions. Our intrinsic results show that rare k-mers have several unique topological, compositional, and clustering properties in CGI and promoter features. Finally, the performances of our RWC (rare-word clustering) method in predicting the CGI and promoter features are ranked among the top three, in eight of the CGI and promoter evaluations, among eight of the benchmarked datasets. PMID:26427337

  4. Integrative visual analysis of protein sequence mutations

    PubMed Central

    2014-01-01

    Background An important aspect of studying the relationship between protein sequence, structure and function is the molecular characterization of the effect of protein mutations. To understand the functional impact of amino acid changes, the multiple biological properties of protein residues have to be considered together. Results Here, we present a novel visual approach for analyzing residue mutations. It combines different biological visualizations and integrates them with molecular data derived from external resources. To show various aspects of the biological information on different scales, our approach includes one-dimensional sequence views, three-dimensional protein structure views and two-dimensional views of residue interaction networks as well as aggregated views. The views are linked tightly and synchronized to reduce the cognitive load of the user when switching between them. In particular, the protein mutations are mapped onto the views together with further functional and structural information. We also assess the impact of individual amino acid changes by the detailed analysis and visualization of the involved residue interactions. We demonstrate the effectiveness of our approach and the developed software on the data provided for the BioVis 2013 data contest. Conclusions Our visual approach and software greatly facilitate the integrative and interactive analysis of protein mutations based on complementary visualizations. The different data views offered to the user are enriched with information about molecular properties of amino acid residues and further biological knowledge. PMID:25237389

  5. Identification of a Novel Calcium Binding Motif Based on the Detection of Sequence Insertions in the Animal Peroxidase Domain of Bacterial Proteins

    PubMed Central

    Santamaría-Hernando, Saray

    2012-01-01

    Proteins of the animal heme peroxidase (ANP) superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20), where it was found to be involved in Ca2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33–79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca2+ binding with a KD of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821) is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of life. PMID

  6. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    PubMed

    Santamaría-Hernando, Saray; Krell, Tino; Ramos-González, María-Isabel

    2012-01-01

    Proteins of the animal heme peroxidase (ANP) superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20), where it was found to be involved in Ca(2+) coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+) binding with a K(D) of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821) is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of life. PMID

  7. Temporal Integration Windows for Naturalistic Visual Sequences

    PubMed Central

    Fairhall, Scott L.; Albi, Angela; Melcher, David

    2014-01-01

    There is increasing evidence that the brain possesses mechanisms to integrate incoming sensory information as it unfolds over time-periods of 2–3 seconds. The ubiquity of this mechanism across modalities, tasks, perception and production has led to the proposal that it may underlie our experience of the subjective present. A critical test of this claim is that this phenomenon should be apparent in naturalistic visual experiences. We tested this using movie-clips as a surrogate for our day-to-day experience, temporally scrambling them to require (re-) integration within and beyond the hypothesized 2–3 second interval. Two independent experiments demonstrate a step-wise increase in the difficulty to follow stimuli at the hypothesized 2–3 second scrambling condition. Moreover, only this difference could not be accounted for by low-level visual properties. This provides the first evidence that this 2–3 second integration window extends to complex, naturalistic visual sequences more consistent with our experience of the subjective present. PMID:25010517

  8. Formation and Dissociation of the Interstrand i-Motif by the Sequences d(XnC4Ym) Monitored with Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cao, Yanwei; Qin, Yujiao; Bruist, Michael; Gao, Shang; Wang, Bing; Wang, Huixin; Guo, Xinhua

    2015-06-01

    Formation and dissociation of the interstrand i-motifs by DNA with the sequence d(XnC4Ym) (X and Y represent thymine, adenine, or guanine, and n, m range from 0 to 2) are studied with electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), and UV spectrophotometry. The ion complexes detected in the gas phase and the melting temperatures (Tm) obtained in solution show that a non-C base residue located at 5' end favors formation of the four-stranded structures, with T > A > G for imparting stability. Comparatively, no rule is found when a non-C base is located at the 3' end. Detection of penta- and hexa-stranded ions indicates the formation of i-motifs with more than four strands. In addition, the i-motifs seen in our mass spectra are accompanied by single-, double-, and triple-stranded ions, and the trimeric ions were always less abundant during annealing and heat-induced dissociation process of the DNA strands in solution (pH = 4.5). This provides a direct evidence of a strand-by-strand formation and dissociation pathway of the interstrand i-motif and formation of the triple strands is the rate-limiting step. In contrast, the trimeric ions are abundant when the tetramolecular ions are subjected to collision-induced dissociation (CID) in the gas phase, suggesting different dissociation behaviors of the interstrand i-motif in the gas phase and in solution. Furthermore, hysteretic UV absorption melting and cooling curves reveal an irreversible dissociation and association kinetic process of the interstrand i-motif in solution.

  9. Integration of Cyanine, Merocyanine and Styryl Dye Motifs with Synthetic Bacteriochlorins.

    PubMed

    Yang, Eunkyung; Zhang, Nuonuo; Krayer, Michael; Taniguchi, Masahiko; Diers, James R; Kirmaier, Christine; Lindsey, Jonathan S; Bocian, David F; Holten, Dewey

    2016-01-01

    Understanding the effects of substituents on spectral properties is essential for the rational design of tailored bacteriochlorins for light-harvesting and other applications. Toward this goal, three new bacteriochlorins containing previously unexplored conjugating substituents have been prepared and characterized. The conjugating substituents include two positively charged species, 2-(N-ethyl 2-quinolinium)vinyl- (B-1) and 2-(N-ethyl 4-pyridinium)vinyl- (B-2), and a neutral group, acroleinyl- (B-3); the charged species resemble cyanine (or styryl) dye motifs whereas the neutral unit resembles a merocyanine dye motif. The three bacteriochlorins are examined by static and time-resolved absorption and emission spectroscopy and density functional theoretical calculations. B-1 and B-2 have Qy absorption bathochromically shifted well into the NIR region (822 and 852 nm), farther than B-3 (793 nm) and other 3,13-disubstituted bacteriochlorins studied previously. B-1 and B-2 have broad Qy absorption and fluorescence features with large peak separation (Stokes shift), low fluorescence yields, and shortened S1 (Qy ) excited-state lifetimes (~700 ps and ~100 ps). More typical spectra and S1 lifetime (~2.3 ns) are found for B-3. The combined photophysical and molecular-orbital characteristics suggest the altered spectra and enhanced nonradiative S1 decay of B-1 and B-2 derive from excited-state configurations in which electron density is shifted between the macrocycle and the substituents. PMID:26505265

  10. Modeling and analysis of MH1 domain of Smads and their interaction with promoter DNA sequence motif.

    PubMed

    Makkar, Pooja; Metpally, Raghu Prasad R; Sangadala, Sreedhara; Reddy, Boojala Vijay B

    2009-04-01

    The Smads are a group of related intracellular proteins critical for transmitting the signals to the nucleus from the transforming growth factor-beta (TGF-beta) superfamily of proteins at the cell surface. The prototypic members of the Smad family, Mad and Sma, were first described in Drosophila and Caenorhabditis elegans, respectively. Related proteins in Xenopus, Humans, Mice and Rats were subsequently identified, and are now known as Smads. Smad protein family members act downstream in the TGF-beta signaling pathway mediating various biological processes, including cell growth, differentiation, matrix production, apoptosis and development. Smads range from about 400-500 amino acids in length and are grouped into the receptor-regulated Smads (R-Smads), the common Smads (Co-Smads) and the inhibitory Smads (I-Smads). There are eight Smads in mammals, Smad1/5/8 (bone morphogenetic protein regulated) and Smad2/3 (TGF-beta/activin regulated) are termed R-Smads, Smad4 is denoted as Co-Smad and Smad6/7 are inhibitory Smads. A typical Smad consists of a conserved N-terminal Mad Homology 1 (MH1) domain and a C-terminal Mad Homology 2 (MH2) domain connected by a proline rich linker. The MH1 domain plays key role in DNA recognition and also facilitates the binding of Smad4 to the phosphorylated C-terminus of R-Smads to form activated complex. The MH2 domain exhibits transcriptional activation properties. In order to understand the structural basis of interaction of various Smads with their target proteins and the promoter DNA, we modeled MH1 domain of the remaining mammalian Smads based on known crystal structures of Smad3-MH1 domain bound to GTCT Smad box DNA sequence (1OZJ). We generated a B-DNA structure using average base-pair parameters of Twist, Tilt, Roll and base Slide angles. We then modeled interaction pose of the MH1 domain of Smad1/5/8 to their corresponding DNA sequence motif GCCG. These models provide the structural basis towards understanding functional

  11. Using Weeder, Pscan, and PscanChIP for the Discovery of Enriched Transcription Factor Binding Site Motifs in Nucleotide Sequences.

    PubMed

    Zambelli, Federico; Pesole, Graziano; Pavesi, Giulio

    2014-01-01

    One of the greatest challenges facing modern molecular biology is understanding the complex mechanisms regulating gene expression. A fundamental step in this process requires the characterization of sequence motifs involved in the regulation of gene expression at transcriptional and post-transcriptional levels. In particular, transcription is modulated by the interaction of transcription factors (TFs) with their corresponding binding sites. Weeder, Pscan, and PscanChIP are software tools freely available for noncommercial users as a stand-alone or Web-based applications for the automatic discovery of conserved motifs in a set of DNA sequences likely to be bound by the same TFs. Input for the tools can be promoter sequences from co-expressed or co-regulated genes (for which Weeder and Pscan are suitable), or regions identified through genome wide ChIP-seq or similar experiments (Weeder and PscanChIP). The motifs are either found by a de novo approach (Weeder) or by using descriptors of the binding specificity of TFs (Pscan and PscanChIP). PMID:25199791

  12. Loop Sequence Context Influences the Formation and Stability of the i-Motif for DNA Oligomers of Sequence (CCCXXX)4, where X = A and/or T, under Slightly Acidic Conditions.

    PubMed

    McKim, Mikeal; Buxton, Alexander; Johnson, Courtney; Metz, Amanda; Sheardy, Richard D

    2016-08-11

    The structure and stability of DNA is highly dependent upon the sequence context of the bases (A, G, C, and T) and the environment under which the DNA is prepared (e.g., buffer, temperature, pH, ionic strength). Understanding the factors that influence structure and stability of the i-motif conformation can lead to the design of DNA sequences with highly tunable properties. We have been investigating the influence of pH and temperature on the conformations and stabilities for all permutations of the DNA sequence (CCCXXX)4, where X = A and/or T, using spectroscopic approaches. All oligomers undergo transitions from single-stranded structures at pH 7.0 to i-motif conformations at pH 5.0 as evidenced by circular dichroism (CD) studies. These folded structures possess stacked C:CH(+) base pairs joined by loops of 5'-XXX-3'. Although the pH at the midpoint of the transition (pHmp) varies slightly with loop sequence, the linkage between pH and log K for the proton induced transition is highly loop sequence dependent. All oligomers also undergo the thermally induced i-motif to single-strand transition at pH 5.0 as the temperature is increased from 25 to 95 °C. The temperature at the midpoint of this transition (Tm) is also highly dependent on loop sequence context effects. For seven of eight possible permutations, the pH induced, and thermally induced transitions appear to be highly cooperative and two state. Analysis of the CD optical melting profiles via a van't Hoff approach reveals sequence-dependent thermodynamic parameters for the unfolding as well. Together, these data reveal that the i-motif conformation exhibits exquisite sensitivity to loop sequence context with respect to formation and stability. PMID:27438583

  13. Secondary structure model of the Mason-Pfizer monkey virus 5' leader sequence: identification of a structural motif common to a variety of retroviruses.

    PubMed Central

    Harrison, G P; Hunter, E; Lever, A M

    1995-01-01

    A stable secondary structure model is presented for the region 3' of the primer-binding site to 130 bases into the gag sequence of the prototype type D retrovirus Mason-Pfizer monkey virus. Using biochemical probing of RNA from this region in association with free energy minimization, we have identified a stem-loop structure in the region, which from other studies has been shown to be important for genomic RNA encapsidation. The structure involves a highly stable stem of five G-C pairs terminating in a heptaloop. Comparison of the Mason-Pfizer monkey virus structure with one predicted for squirrel monkey retrovirus demonstrates an identical stem and a common ACC motif in the loop. Free energy studies of the secondary structure of the 5' regions of eight other retroviruses predict stem loops which have similar GAYC motifs. We believe this may represent a common structural and sequence motif which among other functions may be involved in genomic RNA packaging in these viruses. PMID:7884866

  14. Functional analysis reveals the possible role of the C-terminal sequences and PI motif in the function of lily (Lilium longiflorum) PISTILLATA (PI) orthologues

    PubMed Central

    Chen, Ming-Kun; Hsieh, Wen-Ping; Yang, Chang-Hsien

    2012-01-01

    Two lily (Lilium longiflorum) PISTILLATA (PI) genes, Lily MADS Box Gene 8 and 9 (LMADS8/9), were characterized. LMADS9 lacked 29 C-terminal amino acids including the PI motif that was present in LMADS8. Both LMADS8/9 mRNAs were prevalent in the first and second whorl tepals during all stages of development and were expressed in the stamen only in young flower buds. LMADS8/9 could both form homodimers, but the ability of LMADS8 homodimers to bind to CArG1 was relatively stronger than that of LMADS9 homodimers. 35S:LMADS8 completely, and 35S:LMADS9 only partially, rescued the second whorl petal formation and partially converted the first whorl sepal into a petal-like structure in Arabidopsis pi-1 mutants. Ectopic expression of LMADS8-C (with deletion of the 29 amino acids of the C-terminal sequence) or LMADS8-PI (with only the PI motif deleted) only partially rescued petal formation in pi mutants, which was similar to what was observed in 35S:LMADS9/pi plants. In contrast, 35:LMADS9+L8C (with the addition of the 29 amino acids of the LMADS8 C-terminal sequence) or 35S:LMADS9+L8PI (with the addition of the LMADS8 PI motif) demonstrated an increased ability to rescue petal formation in pi mutants, which was similar to what was observed in 35S:LMADS8/pi plants. Furthermore, ectopic expression of LMADS8-M (with the MADS domain truncated) generated more severe dominant negative phenotypes than those seen in 35S:LMADS9-M flowers. These results revealed that the 29 amino acids including the PI motif in the C-terminal region of the lily PI orthologue are valuable for its function in regulating perianth organ formation. PMID:22068145

  15. Identification of the First Prokaryotic Collagen Sequence Motif That Mediates Binding to Human Collagen Receptors, Integrins α2β1 and α11β1*

    PubMed Central

    Caswell, Clayton C.; Barczyk, Malgorzata; Keene, Douglas R.; Lukomska, Ewa; Gullberg, Donald E.; Lukomski, Slawomir

    2008-01-01

    Many pathogenic bacteria interact with human integrins to enter host cells and to augment host colonization. Group A Streptococcus (GAS) employs molecular mimicry by direct interactions between the cell surface streptococcal collagen-like protein-1 (Scl1) and the human collagen receptor, integrin α2β1. The collagen-like (CL) region of the Scl1 protein mediates integrin-binding, although, the integrin binding motif was not defined. Here, we used molecular cloning and site-directed mutagenesis to identify the GLPGER sequence as the α2β1 and the α11β1 binding motif. Electron microscopy experiments mapped binding sites of the recombinant α2-integrin-inserted domain to the GLPGER motif of the recombinant Scl (rScl) protein. rScl proteins and a synthetic peptide harboring the GLPGER motif mediated the attachment of C2C12-α2 + myoblasts expressing the α2β1 integrin as the sole collagen receptor. The C2C12-α11 + myoblasts expressing the α11β1 integrin also attached to GLPGER-harboring rScl proteins. Furthermore, the C2C12-α11 + cells attached to rScl1 more efficiently than C2C12-α2 + cells, suggesting that the α11β1 integrin may have a higher binding affinity for the GLPGER sequence. Human endothelial cells and dermal fibroblasts adhered to rScl proteins, indicating that multiple cell types may recognize and bind the Scl proteins via their collagen receptors. This work is a stepping stone toward defining the utilization of collagen receptors by microbial collagen-like proteins that are expressed by pathogenic bacteria. PMID:18990704

  16. Sequence and spatiotemporal expression analysis of CLE-motif containing genes from the reniform nematode (Rotylenchulus reniformis Linford & Oliveira)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reniform nematode, Rotylenchulus reniformis, is a sedentary semi-endoparasitic species with a host range that encompasses more than 77 plant families. Nematode effector proteins containing plant-ligand motifs similar to CLAVATA3/ESR (CLE) peptides have been identified in the Heterodera, Globode...

  17. Highly Divergent Integration Profile of Adeno-Associated Virus Serotype 5 Revealed by High-Throughput Sequencing

    PubMed Central

    Janovitz, Tyler; Oliveira, Thiago; Sadelain, Michel

    2014-01-01

    ABSTRACT Adeno-associated virus serotype 5 (AAV-5) is a human parvovirus that infects a high percentage of the population. It is the most divergent AAV, the DNA sequence cleaved by the viral endonuclease is distinct from all other described serotypes and, uniquely, AAV-5 does not cross-complement the replication of other serotypes. In contrast to the well-characterized integration of AAV-2, no published studies have investigated the genomic integration of AAV-5. In this study, we analyzed more than 660,000 AAV-5 integration junctions using high-throughput integrant capture sequencing of infected human cells. The integration activity of AAV-5 was 99.7% distinct from AAV-2 and favored intronic sequences. Genome-wide integration was highly correlated with viral replication protein binding and endonuclease sites, and a 39-bp consensus integration motif was revealed that included these features. Algorithmic scanning identified 126 AAV-5 hot spots, the largest of which encompassed 3.3% of all integration events. The unique aspects of AAV-5 integration may provide novel tools for biotechnology and gene therapy. IMPORTANCE Viral integration into the host genome is an important aspect of virus host cell biology. Genomic integration studies of the small single-stranded AAVs have largely focused on site preferential integration of AAV-2, which depends on the viral replication protein (Rep). We have now established the first genome wide integration profile of the highly divergent AAV-5 serotype. Using integrant capture sequencing, more than 600,000 AAV-5 integration junctions in human cells were analyzed. AAV-5 integration hot spots were 99.7% distinct from AAV-2. Integration favored intronic sequences, occurred on all chromosomes, and integration hot spot distribution was correlated with human genomic GAGC repeats and transcriptional activity. These features support expansion of AAV-5 based vectors for gene transfer considerations. PMID:24335317

  18. PscanChIP: finding over-represented transcription factor-binding site motifs and their correlations in sequences from ChIP-Seq experiments

    PubMed Central

    Zambelli, Federico; Pesole, Graziano; Pavesi, Giulio

    2013-01-01

    Chromatin immunoprecipitation followed by sequencing with next-generation technologies (ChIP-Seq) has become the de facto standard for building genome-wide maps of regions bound by a given transcription factor (TF). The regions identified, however, have to be further analyzed to determine the actual DNA-binding sites for the TF, as well as sites for other TFs belonging to the same TF complex or in general co-operating or interacting with it in transcription regulation. PscanChIP is a web server that, starting from a collection of genomic regions derived from a ChIP-Seq experiment, scans them using motif descriptors like JASPAR or TRANSFAC position-specific frequency matrices, or descriptors uploaded by users, and it evaluates both motif enrichment and positional bias within the regions according to different measures and criteria. PscanChIP can successfully identify not only the actual binding sites for the TF investigated by a ChIP-Seq experiment but also secondary motifs corresponding to other TFs that tend to bind the same regions, and, if present, precise positional correlations among their respective sites. The web interface is free for use, and there is no login requirement. It is available at http://www.beaconlab.it/pscan_chip_dev. PMID:23748563

  19. A unique transactivation sequence motif is found in the carboxyl-terminal domain of the single-strand-binding protein FBP.

    PubMed Central

    Duncan, R; Collins, I; Tomonaga, T; Zhang, T; Levens, D

    1996-01-01

    The far-upstream element-binding protein (FBP) is one of several recently described factors which bind to a single strand of DNA in the 5' region of the c-myc gene. Although cotransfection of FBP increases expression from a far-upstream element-bearing c-myc promoter reporter, the mechanism of this stimulation is heretofore unknown. Can a single-strand-binding protein function as a classical transactivator, or are these proteins restricted to stabilizing or altering the conformation of DNA in an architectural role? Using chimeric GAL4-FBP fusion proteins we have shown that the carboxyl-terminal region (residues 448 to 644) is a potent transcriptional activation domain. This region contains three copies of a unique amino acid sequence motif containing tyrosine diads. Analysis of deletion mutants demonstrated that a single tyrosine motif alone (residues 609 to 644) was capable of activating transcription. The activation property of the C-terminal domain is repressed by the N-terminal 107 amino acids of FBP. These results show that FBP contains a transactivation domain which can function alone, suggesting that FBP contributes directly to c-myc transcription while bound to a single-strand site. Furthermore, activation is mediated by a new motif which can be negatively regulated by a repression domain of FBP. PMID:8628294

  20. Integration of bioinformatics and synthetic promoters leads to the discovery of novel elicitor-responsive cis-regulatory sequences in Arabidopsis.

    PubMed

    Koschmann, Jeannette; Machens, Fabian; Becker, Marlies; Niemeyer, Julia; Schulze, Jutta; Bülow, Lorenz; Stahl, Dietmar J; Hehl, Reinhard

    2012-09-01

    A combination of bioinformatic tools, high-throughput gene expression profiles, and the use of synthetic promoters is a powerful approach to discover and evaluate novel cis-sequences in response to specific stimuli. With Arabidopsis (Arabidopsis thaliana) microarray data annotated to the PathoPlant database, 732 different queries with a focus on fungal and oomycete pathogens were performed, leading to 510 up-regulated gene groups. Using the binding site estimation suite of tools, BEST, 407 conserved sequence motifs were identified in promoter regions of these coregulated gene sets. Motif similarities were determined with STAMP, classifying the 407 sequence motifs into 37 families. A comparative analysis of these 37 families with the AthaMap, PLACE, and AGRIS databases revealed similarities to known cis-elements but also led to the discovery of cis-sequences not yet implicated in pathogen response. Using a parsley (Petroselinum crispum) protoplast system and a modified reporter gene vector with an internal transformation control, 25 elicitor-responsive cis-sequences from 10 different motif families were identified. Many of the elicitor-responsive cis-sequences also drive reporter gene expression in an Agrobacterium tumefaciens infection assay in Nicotiana benthamiana. This work significantly increases the number of known elicitor-responsive cis-sequences and demonstrates the successful integration of a diverse set of bioinformatic resources combined with synthetic promoter analysis for data mining and functional screening in plant-pathogen interaction. PMID:22744985

  1. Integration of Bioinformatics and Synthetic Promoters Leads to the Discovery of Novel Elicitor-Responsive cis-Regulatory Sequences in Arabidopsis1[C][W][OA

    PubMed Central

    Koschmann, Jeannette; Machens, Fabian; Becker, Marlies; Niemeyer, Julia; Schulze, Jutta; Bülow, Lorenz; Stahl, Dietmar J.; Hehl, Reinhard

    2012-01-01

    A combination of bioinformatic tools, high-throughput gene expression profiles, and the use of synthetic promoters is a powerful approach to discover and evaluate novel cis-sequences in response to specific stimuli. With Arabidopsis (Arabidopsis thaliana) microarray data annotated to the PathoPlant database, 732 different queries with a focus on fungal and oomycete pathogens were performed, leading to 510 up-regulated gene groups. Using the binding site estimation suite of tools, BEST, 407 conserved sequence motifs were identified in promoter regions of these coregulated gene sets. Motif similarities were determined with STAMP, classifying the 407 sequence motifs into 37 families. A comparative analysis of these 37 families with the AthaMap, PLACE, and AGRIS databases revealed similarities to known cis-elements but also led to the discovery of cis-sequences not yet implicated in pathogen response. Using a parsley (Petroselinum crispum) protoplast system and a modified reporter gene vector with an internal transformation control, 25 elicitor-responsive cis-sequences from 10 different motif families were identified. Many of the elicitor-responsive cis-sequences also drive reporter gene expression in an Agrobacterium tumefaciens infection assay in Nicotiana benthamiana. This work significantly increases the number of known elicitor-responsive cis-sequences and demonstrates the successful integration of a diverse set of bioinformatic resources combined with synthetic promoter analysis for data mining and functional screening in plant-pathogen interaction. PMID:22744985

  2. Sequence and peptide-binding motif for a variant of HLA-A*0214 (A*02142) in an HIV-1-resistant individual from the Nairobi Sex Worker cohort.

    PubMed

    Luscher, M A; MacDonald, K S; Bwayo, J J; Plummer, F A; Barber, B H

    2001-02-01

    As part of the ongoing study of natural HIV-1 resistance in the women of the Nairobi Sex Workers' study, we have examined a resistance-associated HLA class I allele at the molecular level. Typing by polymerase chain reaction using sequence-specific primers determined that this molecule is closely related to HLA-A*0214, one of a family of HLA-A2 supertype alleles which correlate with HIV-1 resistance in this population. Direct nucleotide sequencing shows that this molecule differs from A*0214, having a silent nucleotide substitution. We therefore propose to designate it HLA-A*02142. We have determined the peptide-binding motif of HLA-A*0214/02142 by peptide elution and bulk Edman degradative sequencing. The resulting motif, X-[Q,V]-X-X-X-K-X-X-[V,L], includes lysine as an anchor at position 6. The data complement available information on the peptide-binding characteristics of this molecule, and will be of use in identifying antigenic peptides from HIV-1 and other pathogens. PMID:11261925

  3. Sequence motif upstream of the Hendra virus fusion protein cleavage site is not sufficient to promote efficient proteolytic processing

    SciTech Connect

    Craft, Willie Warren; Dutch, Rebecca Ellis . E-mail: rdutc2@uky.edu

    2005-10-10

    The Hendra virus fusion (HeV F) protein is synthesized as a precursor, F{sub 0}, and proteolytically cleaved into the mature F{sub 1} and F{sub 2} heterodimer, following an HDLVDGVK{sub 109} motif. This cleavage event is required for fusogenic activity. To determine the amino acid requirements for processing of the HeV F protein, we constructed multiple mutants. Individual and simultaneous alanine substitutions of the eight residues immediately upstream of the cleavage site did not eliminate processing. A chimeric SV5 F protein in which the furin site was substituted for the VDGVK{sub 109} motif of the HeV F protein was not processed but was expressed on the cell surface. Another chimeric SV5 F protein containing the HDLVDGVK{sub 109} motif of the HeV F protein underwent partial cleavage. These data indicate that the upstream region can play a role in protease recognition, but is neither absolutely required nor sufficient for efficient processing of the HeV F protein.

  4. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions.

    PubMed

    Besemer, J; Lomsadze, A; Borodovsky, M

    2001-06-15

    Improving the accuracy of prediction of gene starts is one of a few remaining open problems in computer prediction of prokaryotic genes. Its difficulty is caused by the absence of relatively strong sequence patterns identifying true translation initiation sites. In the current paper we show that the accuracy of gene start prediction can be improved by combining models of protein-coding and non-coding regions and models of regulatory sites near gene start within an iterative Hidden Markov model based algorithm. The new gene prediction method, called GeneMarkS, utilizes a non-supervised training procedure and can be used for a newly sequenced prokaryotic genome with no prior knowledge of any protein or rRNA genes. The GeneMarkS implementation uses an improved version of the gene finding program GeneMark.hmm, heuristic Markov models of coding and non-coding regions and the Gibbs sampling multiple alignment program. GeneMarkS predicted precisely 83.2% of the translation starts of GenBank annotated Bacillus subtilis genes and 94.4% of translation starts in an experimentally validated set of Escherichia coli genes. We have also observed that GeneMarkS detects prokaryotic genes, in terms of identifying open reading frames containing real genes, with an accuracy matching the level of the best currently used gene detection methods. Accurate translation start prediction, in addition to the refinement of protein sequence N-terminal data, provides the benefit of precise positioning of the sequence region situated upstream to a gene start. Therefore, sequence motifs related to transcription and translation regulatory sites can be revealed and analyzed with higher precision. These motifs were shown to possess a significant variability, the functional and evolutionary connections of which are discussed. PMID:11410670

  5. Analysis of BAC-end sequences in common bean (Phaseolus vulgaris L.) towards the development and characterization of long motifs SSRs.

    PubMed

    Müller, Bárbara Salomão de Faria; Sakamoto, Tetsu; de Menezes, Ivandilson Pessoa Pinto; Prado, Guilherme Souza; Martins, Wellington Santos; Brondani, Claudio; de Barros, Everaldo Gonçalves; Vianello, Rosana Pereira

    2014-11-01

    The increasing volume of genomic data on the Phaseolus vulgaris species have contributed to its importance as a model genetic species and positively affected the investigation of other legumes of scientific and economic value. To expand and gain a more in-depth knowledge of the common bean genome, the ends of a number of bacterial artificial chromosome (BAC) were sequenced, annotated and the presence of repetitive sequences was determined. In total, 52,270 BESs (BAC-end sequences), equivalent to 32 Mbp (~6 %) of the genome, were processed. In total, 3,789 BES-SSRs were identified, with a distribution of one SSR (simple sequence repeat) per 8.36 kbp and 2,000 were suitable for the development of SSRs, of which 194 were evaluated in low-resolution screening. From 40 BES-SSRs based on long motifs SSRs (≥ trinucleotides) analyzed in high-resolution genotyping, 34 showed an equally good amplification for the Andean and for the Mesoamerican genepools, exhibiting an average gene diversity (H E) of 0.490 and 5.59 alleles/locus, of which six classified as Class I showed a H E ≥ 0.7. The PCoA and structure analysis allowed to discriminate the gene pools (K = 2, FST = 0.733). From the 52,270 BESs, 2 % corresponded to transcription factors and 3 % to transposable elements. Putative functions for 24,321 BESs were identified and for 19,363 were assigned functional categories (gene ontology). This study identified highly polymorphic BES-SSRs containing tri- to hexanucleotides motifs and bringing together relevant genetic characteristics useful for breeding programs. Additionally, the BESs were incorporated into the international genome-sequencing project for the common bean. PMID:25164100

  6. Structural alphabet motif discovery and a structural motif database.

    PubMed

    Ku, Shih-Yen; Hu, Yuh-Jyh

    2012-01-01

    This study proposes a general framework for structural motif discovery. The framework is based on a modular design in which the system components can be modified or replaced independently to increase its applicability to various studies. It is a two-stage approach that first converts protein 3D structures into structural alphabet sequences, and then applies a sequence motif-finding tool to these sequences to detect conserved motifs. We named the structural motif database we built the SA-Motifbase, which provides the structural information conserved at different hierarchical levels in SCOP. For each motif, SA-Motifbase presents its 3D view; alphabet letter preference; alphabet letter frequency distribution; and the significance. SA-Motifbase is available at http://bioinfo.cis.nctu.edu.tw/samotifbase/. PMID:22099701

  7. Role of GxxxG Motifs in Transmembrane Domain Interactions.

    PubMed

    Teese, Mark G; Langosch, Dieter

    2015-08-25

    Transmembrane (TM) helices of integral membrane proteins can facilitate strong and specific noncovalent protein-protein interactions. Mutagenesis and structural analyses have revealed numerous examples in which the interaction between TM helices of single-pass membrane proteins is dependent on a GxxxG or (small)xxx(small) motif. It is therefore tempting to use the presence of these simple motifs as an indicator of TM helix interactions. In this Current Topic review, we point out that these motifs are quite common, with more than 50% of single-pass TM domains containing a (small)xxx(small) motif. However, the actual interaction strength of motif-containing helices depends strongly on sequence context and membrane properties. In addition, recent studies have revealed several GxxxG-containing TM domains that interact via alternative interfaces involving hydrophobic, polar, aromatic, or even ionizable residues that do not form recognizable motifs. In multipass membrane proteins, GxxxG motifs can be important for protein folding, and not just oligomerization. Our current knowledge thus suggests that the presence of a GxxxG motif alone is a weak predictor of protein dimerization in the membrane. PMID:26244771

  8. Relation between mRNA expression and sequence information in Desulfovibrio vulgaris: Combinatorial contributions of upstream regulatory motifs and coding sequence features to variations in mRNA abundance

    SciTech Connect

    Wu, Gang; Nie, Lei; Zhang, Weiwen

    2006-05-26

    ABSTRACT-The context-dependent expression of genes is the core for biological activities, and significant attention has been given to identification of various factors contributing to gene expression at genomic scale. However, so far this type of analysis has been focused whether on relation between mRNA expression and non-coding sequence features such as upstream regulatory motifs or on correlation between mRN abundance and non-random features in coding sequences (e.g. codon usage and amino acid usage). In this study multiple regression analyses of the mRNA abundance and all sequence information in Desulfovibrio vulgaris were performed, with the goal to investigate how much coding and non-coding sequence features contribute to the variations in mRNA expression, and in what manner they act together...

  9. Clinical Integration of Next Generation Sequencing Technology

    PubMed Central

    Gullapalli, R.R.; Lyons-Weiler, M.; Petrosko, P.; Dhir, R.; Becich, M.J.; LaFramboise, W.A.

    2012-01-01

    Abstract/Synopsis Recent technological advances in Next Generation Sequencing (NGS) methods have substantially reduced cost and operational complexity leading to the production of bench top sequencers and commercial software solutions for implementation in small research and clinical laboratories. This chapter summarizes requirements and hurdles to the successful implementation of these systems including 1) calibration, validation and optimization of the instrumentation, experimental paradigm and primary readout, 2) secure transfer, storage and secondary processing of the data, 3) implementation of software tools for targeted analysis, and 4) training of research and clinical personnel to evaluate data fidelity and interpret the molecular significance of the genomic output. In light of the commercial and technological impetus to bring NGS technology into the clinical domain, it is critical that novel tests incorporate rigid protocols with built-in calibration standards and that data transfer and processing occur under exacting security measures for interpretation by clinicians with specialized training in molecular diagnostics. PMID:23078661

  10. Identification of a Novel Sequence Motif Recognized by the Ankyrin Repeat Domain of zDHHC17/13 S-Acyltransferases.

    PubMed

    Lemonidis, Kimon; Sanchez-Perez, Maria C; Chamberlain, Luke H

    2015-09-01

    S-Acylation is a major post-translational modification affecting several cellular processes. It is particularly important for neuronal functions. This modification is catalyzed by a family of transmembrane S-acyltransferases that contain a conserved zinc finger DHHC (zDHHC) domain. Typically, eukaryote genomes encode for 7-24 distinct zDHHC enzymes, with two members also harboring an ankyrin repeat (AR) domain at their cytosolic N termini. The AR domain of zDHHC enzymes is predicted to engage in numerous interactions and facilitates both substrate recruitment and S-acylation-independent functions; however, the sequence/structural features recognized by this module remain unknown. The two mammalian AR-containing S-acyltransferases are the Golgi-localized zDHHC17 and zDHHC13, also known as Huntingtin-interacting proteins 14 and 14-like, respectively; they are highly expressed in brain, and their loss in mice leads to neuropathological deficits that are reminiscent of Huntington's disease. Here, we report that zDHHC17 and zDHHC13 recognize, via their AR domain, evolutionary conserved and closely related sequences of a [VIAP][VIT]XXQP consensus in SNAP25, SNAP23, cysteine string protein, Huntingtin, cytoplasmic linker protein 3, and microtubule-associated protein 6. This novel AR-binding sequence motif is found in regions predicted to be unstructured and is present in a number of zDHHC17 substrates and zDHHC17/13-interacting S-acylated proteins. This is the first study to identify a motif recognized by AR-containing zDHHCs. PMID:26198635

  11. Integrating Sequence Evolution into Probabilistic Orthology Analysis.

    PubMed

    Ullah, Ikram; Sjöstrand, Joel; Andersson, Peter; Sennblad, Bengt; Lagergren, Jens

    2015-11-01

    Orthology analysis, that is, finding out whether a pair of homologous genes are orthologs - stemming from a speciation - or paralogs - stemming from a gene duplication - is of central importance in computational biology, genome annotation, and phylogenetic inference. In particular, an orthologous relationship makes functional equivalence of the two genes highly likely. A major approach to orthology analysis is to reconcile a gene tree to the corresponding species tree, (most commonly performed using the most parsimonious reconciliation, MPR). However, most such phylogenetic orthology methods infer the gene tree without considering the constraints implied by the species tree and, perhaps even more importantly, only allow the gene sequences to influence the orthology analysis through the a priori reconstructed gene tree. We propose a sound, comprehensive Bayesian Markov chain Monte Carlo-based method, DLRSOrthology, to compute orthology probabilities. It efficiently sums over the possible gene trees and jointly takes into account the current gene tree, all possible reconciliations to the species tree, and the, typically strong, signal conveyed by the sequences. We compare our method with PrIME-GEM, a probabilistic orthology approach built on a probabilistic duplication-loss model, and MrBayesMPR, a probabilistic orthology approach that is based on conventional Bayesian inference coupled with MPR. We find that DLRSOrthology outperforms these competing approaches on synthetic data as well as on biological data sets and is robust to incomplete taxon sampling artifacts. PMID:26130236

  12. Efficient exact motif discovery

    PubMed Central

    Marschall, Tobias; Rahmann, Sven

    2009-01-01

    Motivation: The motif discovery problem consists of finding over-represented patterns in a collection of biosequences. It is one of the classical sequence analysis problems, but still has not been satisfactorily solved in an exact and efficient manner. This is partly due to the large number of possibilities of defining the motif search space and the notion of over-representation. Even for well-defined formalizations, the problem is frequently solved in an ad hoc manner with heuristics that do not guarantee to find the best motif. Results: We show how to solve the motif discovery problem (almost) exactly on a practically relevant space of IUPAC generalized string patterns, using the p-value with respect to an i.i.d. model or a Markov model as the measure of over-representation. In particular, (i) we use a highly accurate compound Poisson approximation for the null distribution of the number of motif occurrences. We show how to compute the exact clump size distribution using a recently introduced device called probabilistic arithmetic automaton (PAA). (ii) We define two p-value scores for over-representation, the first one based on the total number of motif occurrences, the second one based on the number of sequences in a collection with at least one occurrence. (iii) We describe an algorithm to discover the optimal pattern with respect to either of the scores. The method exploits monotonicity properties of the compound Poisson approximation and is by orders of magnitude faster than exhaustive enumeration of IUPAC strings (11.8 h compared with an extrapolated runtime of 4.8 years). (iv) We justify the use of the proposed scores for motif discovery by showing our method to outperform other motif discovery algorithms (e.g. MEME, Weeder) on benchmark datasets. We also propose new motifs on Mycobacterium tuberculosis. Availability and Implementation: The method has been implemented in Java. It can be obtained from http://ls11-www

  13. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA

    PubMed Central

    Mitrea, Diana M; Cika, Jaclyn A; Guy, Clifford S; Ban, David; Banerjee, Priya R; Stanley, Christopher B; Nourse, Amanda; Deniz, Ashok A; Kriwacki, Richard W

    2016-01-01

    The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus. DOI: http://dx.doi.org/10.7554/eLife.13571.001 PMID:26836305

  14. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA.

    PubMed

    Mitrea, Diana M; Cika, Jaclyn A; Guy, Clifford S; Ban, David; Banerjee, Priya R; Stanley, Christopher B; Nourse, Amanda; Deniz, Ashok A; Kriwacki, Richard W

    2016-01-01

    The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus. PMID:26836305

  15. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA

    DOE PAGESBeta

    Mitrea, Diana M.; Cika, Jaclyn A.; Guy, Clifford S.; Ban, David; Banerjee, Priya R.; Stanley, Christopher B.; Nourse, Amanda; Deniz, Ashok A.; Kriwacki, Richard W.

    2016-02-02

    The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidicmore » tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus.« less

  16. Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P

    PubMed Central

    Peil, Lauri; Starosta, Agata L.; Lassak, Jürgen; Atkinson, Gemma C.; Virumäe, Kai; Spitzer, Michaela; Tenson, Tanel; Jung, Kirsten; Remme, Jaanus; Wilson, Daniel N.

    2013-01-01

    Ribosomes are the protein synthesizing factories of the cell, polymerizing polypeptide chains from their constituent amino acids. However, distinct combinations of amino acids, such as polyproline stretches, cannot be efficiently polymerized by ribosomes, leading to translational stalling. The stalled ribosomes are rescued by the translational elongation factor P (EF-P), which by stimulating peptide-bond formation allows translation to resume. Using metabolic stable isotope labeling and mass spectrometry, we demonstrate in vivo that EF-P is important for expression of not only polyproline-containing proteins, but also for specific subsets of proteins containing diprolyl motifs (XPP/PPX). Together with a systematic in vitro and in vivo analysis, we provide a distinct hierarchy of stalling triplets, ranging from strong stallers, such as PPP, DPP, and PPN to weak stallers, such as CPP, PPR, and PPH, all of which are substrates for EF-P. These findings provide mechanistic insight into how the characteristics of the specific amino acid substrates influence the fundamentals of peptide bond formation. PMID:24003132

  17. Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins

    PubMed Central

    Foulk, Michael S.; Urban, John M.; Casella, Cinzia; Gerbi, Susan A.

    2015-01-01

    Nascent strand sequencing (NS-seq) is used to discover DNA replication origins genome-wide, allowing identification of features for their specification. NS-seq depends on the ability of lambda exonuclease (λ-exo) to efficiently digest parental DNA while leaving RNA-primer protected nascent strands intact. We used genomics and biochemical approaches to determine if λ-exo digests all parental DNA sequences equally. We report that λ-exo does not efficiently digest G-quadruplex (G4) structures in a plasmid. Moreover, λ-exo digestion of nonreplicating genomic DNA (LexoG0) enriches GC-rich DNA and G4 motifs genome-wide. We used LexoG0 data to control for nascent strand–independent λ-exo biases in NS-seq and validated this approach at the rDNA locus. The λ-exo–controlled NS-seq peaks are not GC-rich, and only 35.5% overlap with 6.8% of all G4s, suggesting that G4s are not general determinants for origin specification but may play a role for a subset. Interestingly, we observed a periodic spacing of G4 motifs and nucleosomes around the peak summits, suggesting that G4s may position nucleosomes at this subset of origins. Finally, we demonstrate that use of Na+ instead of K+ in the λ-exo digestion buffer reduced the effect of G4s on λ-exo digestion and discuss ways to increase both the sensitivity and specificity of NS-seq. PMID:25695952

  18. RNAPattMatch: a web server for RNA sequence/structure motif detection based on pattern matching with flexible gaps

    PubMed Central

    Drory Retwitzer, Matan; Polishchuk, Maya; Churkin, Elena; Kifer, Ilona; Yakhini, Zohar; Barash, Danny

    2015-01-01

    Searching for RNA sequence-structure patterns is becoming an essential tool for RNA practitioners. Novel discoveries of regulatory non-coding RNAs in targeted organisms and the motivation to find them across a wide range of organisms have prompted the use of computational RNA pattern matching as an enhancement to sequence similarity. State-of-the-art programs differ by the flexibility of patterns allowed as queries and by their simplicity of use. In particular—no existing method is available as a user-friendly web server. A general program that searches for RNA sequence-structure patterns is RNA Structator. However, it is not available as a web server and does not provide the option to allow flexible gap pattern representation with an upper bound of the gap length being specified at any position in the sequence. Here, we introduce RNAPattMatch, a web-based application that is user friendly and makes sequence/structure RNA queries accessible to practitioners of various background and proficiency. It also extends RNA Structator and allows a more flexible variable gaps representation, in addition to analysis of results using energy minimization methods. RNAPattMatch service is available at http://www.cs.bgu.ac.il/rnapattmatch. A standalone version of the search tool is also available to download at the site. PMID:25940619

  19. Limb body wall complex, amniotic band sequence, or new syndrome caused by mutation in IQ Motif containing K (IQCK)?

    PubMed

    Kruszka, Paul; Uwineza, Annette; Mutesa, Leon; Martinez, Ariel F; Abe, Yu; Zackai, Elaine H; Ganetzky, Rebecca; Chung, Brian; Stevenson, Roger E; Adelstein, Robert S; Ma, Xuefei; Mullikin, James C; Hong, Sung-Kook; Muenke, Maximilian

    2015-09-01

    Limb body wall complex (LBWC) and amniotic band sequence (ABS) are multiple congenital anomaly conditions with craniofacial, limb, and ventral wall defects. LBWC and ABS are considered separate entities by some, and a continuum of severity of the same condition by others. The etiology of LBWC/ABS remains unknown and multiple hypotheses have been proposed. One individual with features of LBWC and his unaffected parents were whole exome sequenced and Sanger sequenced as confirmation of the mutation. Functional studies were conducted using morpholino knockdown studies followed by human mRNA rescue experiments. Using whole exome sequencing, a de novo heterozygous mutation was found in the gene IQCK: c.667C>G; p.Q223E and confirmed by Sanger sequencing in an individual with LBWC. Morpholino knockdown of iqck mRNA in the zebrafish showed ventral defects including failure of ventral fin to develop and cardiac edema. Human wild-type IQCK mRNA rescued the zebrafish phenotype, whereas human p.Q223E IQCK mRNA did not, but worsened the phenotype of the morpholino knockdown zebrafish. This study supports a genetic etiology for LBWC/ABS, or potentially a new syndrome. PMID:26436108

  20. Limb body wall complex, amniotic band sequence, or new syndrome caused by mutation in IQ Motif containing K (IQCK)?

    PubMed Central

    Kruszka, Paul; Uwineza, Annette; Mutesa, Leon; Martinez, Ariel F; Abe, Yu; Zackai, Elaine H; Ganetzky, Rebecca; Chung, Brian; Stevenson, Roger E; Adelstein, Robert S; Ma, Xuefei; Mullikin, James C; Hong, Sung-Kook; Muenke, Maximilian

    2015-01-01

    Limb body wall complex (LBWC) and amniotic band sequence (ABS) are multiple congenital anomaly conditions with craniofacial, limb, and ventral wall defects. LBWC and ABS are considered separate entities by some, and a continuum of severity of the same condition by others. The etiology of LBWC/ABS remains unknown and multiple hypotheses have been proposed. One individual with features of LBWC and his unaffected parents were whole exome sequenced and Sanger sequenced as confirmation of the mutation. Functional studies were conducted using morpholino knockdown studies followed by human mRNA rescue experiments. Using whole exome sequencing, a de novo heterozygous mutation was found in the gene IQCK: c.667C>G; p.Q223E and confirmed by Sanger sequencing in an individual with LBWC. Morpholino knockdown of iqck mRNA in the zebrafish showed ventral defects including failure of ventral fin to develop and cardiac edema. Human wild-type IQCK mRNA rescued the zebrafish phenotype, whereas human p.Q223E IQCK mRNA did not, but worsened the phenotype of the morpholino knockdown zebrafish. This study supports a genetic etiology for LBWC/ABS, or potentially a new syndrome. PMID:26436108

  1. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data.

    PubMed

    Tran, Ngoc Tam L; Huang, Chun-Hsi

    2014-01-01

    ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data. PMID:24555784

  2. Nucleotide sequence and organization of the human S-protein gene: repeating peptide motifs in the pexin family and a model for their evolution

    SciTech Connect

    Jenne, D.; Stanley, K.K.

    1987-10-20

    The S-protein/vitronectin gene was isolated from a human genomic DNA library, and its sequence of about 5.3 kilobases including the adjacent 5' and 3' flanking regions was established. Alignment of the genomic DNA nucleotide sequence and the cDNA sequence indicated that the gene consisted of eight exons and seven introns. The intron positions in the S-protein gene and their phase type were compared to those in the hemopexin gene which shares amino acid sequence homologies with transin and the S-protein. Three introns have been found at equivalent positions; two other introns are very close to these positions and are interpreted as cases of intron sliding. Introns 3-7 occur at a conserved glycine residue within repeating peptide segments, whereas introns 1 and 2 are at the boundaries of the Somatomedin B domain of S-protein. The analysis of the exon structure in relations to repeating peptide motifs within the S-protein strongly suggest that it contains only seven repeats, one less than the hemopexin molecule. A very similar repeat pattern like that in hemopexin is shown to be present also in two other related proteins, transin and interstitial collagenase. An evolutionary model for the generation of the repeat pattern in the S-protein and the other members of this novel pexin gene family is proposed, and the sequence modifications for some of the repeats during divergent evolution are discussed in relation to know unique functional properties of hemopexin and S-protein.

  3. Construction of an integrated database to support genomic sequence analysis

    SciTech Connect

    Gilbert, W.; Overbeek, R.

    1994-11-01

    The central goal of this project is to develop an integrated database to support comparative analysis of genomes including DNA sequence data, protein sequence data, gene expression data and metabolism data. In developing the logic-based system GenoBase, a broader integration of available data was achieved due to assistance from collaborators. Current goals are to easily include new forms of data as they become available and to easily navigate through the ensemble of objects described within the database. This report comments on progress made in these areas.

  4. The role of context in RNA structure: flanking sequences reconfigure CAG motif folding in huntingtin exon 1 transcripts

    PubMed Central

    Busan, Steven; Weeks, Kevin M.

    2016-01-01

    The length of the CAG repeat region in the huntingtin messenger RNA is predictive of Huntington’s disease. Structural studies of CAG repeat-containing RNAs suggest that these sequences form simple hairpin structures; however, in the context of the full-length huntingtin mRNA, CAG repeats may form complex structures that could be targeted for therapeutic intervention. We examined the structures of transcripts spanning the first exon of the huntingtin mRNA with both healthy and disease-prone repeat lengths. In transcripts with 17 to 70 repeats, the CAG sequences base paired extensively with bases in the 5′ UTR and with a conserved region downstream of the CCG repeat region. In huntingtin transcripts with healthy numbers of repeats, the previously observed CAG hairpin was either absent or short. In contrast, in transcripts with disease-associated numbers of repeats, a CAG hairpin was present and extended from a three-helix junction. Our findings demonstrate the profound importance of sequence context in RNA folding and identify specific structural differences between healthy and disease-inducing huntingtin alleles that may be targets for therapeutic intervention. PMID:24199621

  5. Sequence databases: integrated information retrieval and data submission.

    PubMed

    Weisemann, J M; Boguski, M S; Ouellette, B F

    2001-05-01

    This unit describes the NCBI's Entrez database browser. Entrez integrates DNA and protein sequence data, three dimensional structures, and taxonomic information with its associated abstracts and citations contained in PubMed (MEDLINE). It is possible to search the Entrez information space using conventional search queries (authors, gene names, map location) as well as by bibliographic associations (articles that are related to one another) and sequence homology. Also described are the procedures for submission of new data, updates, and corrections to the sequence databases. PMID:18428302

  6. An integrated semiconductor device enabling non-optical genome sequencing.

    PubMed

    Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James

    2011-07-21

    The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome. PMID:21776081

  7. Core sequence in the RNA motif recognized by the ErmE methyltransferase revealed by relaxing the fidelity of the enzyme for its target.

    PubMed Central

    Hansen, L H; Vester, B; Douthwaite, S

    1999-01-01

    Under physiological conditions, the ErmE methyltransferase specifically modifies a single adenosine within ribosomal RNA (rRNA), and thereby confers resistance to multiple antibiotics. The adenosine (A2058 in Escherichia coli 23S rRNA) lies within a highly conserved structure, and is methylated efficiently, and with equally high fidelity, in rRNAs from phylogenetically diverse bacteria. However, the fidelity of ErmE is reduced when magnesium is removed, and over twenty new sites of ErmE methylation appear in E. coli 16S and 23S rRNAs. These sites show widely different degrees of reactivity to ErmE. The canonical A2058 site is largely unaffected by magnesium depletion and remains the most reactive site in the rRNA. This suggests that methylation at the new sites results from changes in the RNA substrate rather than the methyltransferase. Chemical probing confirms that the rRNA structure opens upon magnesium depletion, exposing potential new interaction sites to the enzyme. The new ErmE sites show homology with the canonical A2058 site, and have the consensus sequence aNNNcgGAHAg (ErmE methylation occurs exclusively at adenosines (underlined); these are preceded by a guanosine, equivalent to G2057; there is a high preference for the adenosine equivalent to A2060; H is any nucleotide except G; N is any nucleotide; and there are slight preferences for the nucleotides shown in lower case). This consensus is believed to represent the core of the motif that Erm methyltransferases recognize at their canonical A2058 site. The data also reveal constraints on the higher order structure of the motif that affect methyltransferase recognition. PMID:9917069

  8. Rice MEL2, the RNA recognition motif (RRM) protein, binds in vitro to meiosis-expressed genes containing U-rich RNA consensus sequences in the 3'-UTR.

    PubMed

    Miyazaki, Saori; Sato, Yutaka; Asano, Tomoya; Nagamura, Yoshiaki; Nonomura, Ken-Ichi

    2015-10-01

    Post-transcriptional gene regulation by RNA recognition motif (RRM) proteins through binding to cis-elements in the 3'-untranslated region (3'-UTR) is widely used in eukaryotes to complete various biological processes. Rice MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2) is the RRM protein that functions in the transition to meiosis in proper timing. The MEL2 RRM preferentially associated with the U-rich RNA consensus, UUAGUU[U/A][U/G][A/U/G]U, dependently on sequences and proportionally to MEL2 protein amounts in vitro. The consensus sequences were located in the putative looped structures of the RNA ligand. A genome-wide survey revealed a tendency of MEL2-binding consensus appearing in 3'-UTR of rice genes. Of 249 genes that conserved the consensus in their 3'-UTR, 13 genes spatiotemporally co-expressed with MEL2 in meiotic flowers, and included several genes whose function was supposed in meiosis; such as Replication protein A and OsMADS3. The proteome analysis revealed that the amounts of small ubiquitin-related modifier-like protein and eukaryotic translation initiation factor3-like protein were dramatically altered in mel2 mutant anthers. Taken together with transcriptome and gene ontology results, we propose that the rice MEL2 is involved in the translational regulation of key meiotic genes on 3'-UTRs to achieve the faithful transition of germ cells to meiosis. PMID:26319516

  9. Radiation Desiccation Response Motif-Like Sequences Are Involved in Transcriptional Activation of the Deinococcal ssb Gene by Ionizing Radiation but Not by Desiccation▿

    PubMed Central

    Ujaoney, Aman Kumar; Potnis, Akhilesh A.; Kane, Pratiksha; Mukhopadhyaya, Rita; Apte, Shree Kumar

    2010-01-01

    Single-stranded-DNA binding protein (SSB) levels during poststress recovery of Deinococcus radiodurans were significantly enhanced by 60Co gamma rays or mitomycin C treatment but not by exposure to UV rays, hydrogen peroxide (H2O2), or desiccation. Addition of rifampin prior to postirradiation recovery blocked such induction. In silico analysis of the ssb promoter region revealed a 17-bp palindromic radiation/desiccation response motif (RDRM1) at bp −114 to −98 and a somewhat similar sequence (RDRM2) at bp −213 to −197, upstream of the ssb open reading frame. Involvement of these cis elements in radiation-responsive ssb gene expression was assessed by constructing transcriptional fusions of edited versions of the ssb promoter region with a nonspecific acid phosphatase encoding reporter gene, phoN. Recombinant D. radiodurans strains carrying such constructs clearly revealed (i) transcriptional induction of the ssb promoter upon irradiation and mitomycin C treatment but not upon UV or H2O2 treatment and (ii) involvement of both RDRM-like sequences in such activation of SSB expression, in an additive manner. PMID:20802034

  10. Sequence analysis of mouse vomeronasal receptor gene clusters reveals common promoter motifs and a history of recent expansion

    PubMed Central

    Lane, Robert P.; Cutforth, Tyler; Axel, Richard; Hood, Leroy; Trask, Barbara J.

    2002-01-01

    We have analyzed the organization and sequence of 73 V1R genes encoding putative pheromone receptors to identify regulatory features and characterize the evolutionary history of the V1R family. The 73 V1Rs arose from seven ancestral genes around the time of mouse–rat speciation through large local duplications, and this expansion may contribute to speciation events. Orthologous V1R genes appear to have been lost during primate evolution. Exceptional noncoding homology is observed across four V1R subfamilies at one cluster and thus may be important for locus-specific transcriptional regulation. PMID:11752409

  11. Cooperative Hybridization of γPNA Miniprobes to a Repeating Sequence Motif and Application to Telomere Analysis

    PubMed Central

    Sureshkumar, Gopalsamy; Ly, Danith H.; Opresko, Patricia L.; Armitage, Bruce A.

    2014-01-01

    GammaPNA oligomers having one or two repeats of the sequence AATCCC were designed to hybridize to DNA having one or more repeats of the complementary TTAGGG sequence found in the human telomere. UV melting curves and surface plasmon resonance experiments demonstrate high affinity and cooperativity for hybridization of these miniprobes to DNA having multiple complementary repeats. Fluorescence spectroscopy for Cy3-labeled miniprobes demonstrate increases in fluorescence intensity for assembling multiple short probes on a DNA target compared with fewer longer probes. The fluorescent γPNA miniprobes were then used to stain telomeres in metaphase chromosomes derived from U2OS cells possessing heterogeneous long telomeres and Jurkat cells harboring homogenous short telomeres. The miniprobes yielded comparable fluorescence intensity to a commercially available PNA 18mer probe in U2OS cells, but significantly brighter fluorescence was observed for telomeres in Jurkat cells. These results suggest that γPNA miniprobes can be effective telomere-staining reagents with applications toward analysis of critically short telomeres, which have been implicated in a range of human diseases. PMID:25115693

  12. Identification of amino acid sequence motifs in desmocollin, a desmosomal glycoprotein, that are required for plakoglobin binding and plaque formation.

    PubMed

    Troyanovsky, S M; Troyanovsky, R B; Eshkind, L G; Leube, R E; Franke, W W

    1994-11-01

    By transfecting epithelial cells with gene constructs encoding chimeric proteins of the transmembrane part of the gap junction protein connexin 32 in combination with various segments of the cytoplasmic part of the desmosomal cadherin desmocollin 1a, we have determined that a relatively short sequence element is necessary for the formation of desmosome-like plaques and for the specific anchorage of bundles of intermediate-sized filaments (IFs). Deletion of as little as the carboxyl-terminal 37 aa resulted in a lack of IF anchorage and binding of the plaque protein plakoglobin, as shown by immunolocalization and immunoprecipitation experiments. In addition, we show that the sequence requirements for the recruitment of desmoplakin, another desmosomal plaque protein, differ and that a short (10 aa) segment of the desmocollin 1a tail, located close to the plasma membrane, is also required for the binding of plakoglobin, as well as of desmoplakin, and also for IF anchorage. The importance of the carboxyl-terminal domain, homologous in diverse types of cadherins, is emphasized, as it must harbor, in a mutually exclusive pattern, the information for assembly of the IF-anchoring desmosomal plaque in desmocollins and for formation of the alpha-/beta-catenin- and vinculin-containing, actin filament-anchoring plaque in E- and N-cadherin. PMID:7971964

  13. An Integrated Enzyme Kinetics Laboratory Sequence for Undergraduates.

    ERIC Educational Resources Information Center

    Bucholtz, Michael L.

    1988-01-01

    Describes a three-week sequence to take undergraduate students through the study of enzyme kinetics in an integrated manner that reinforces the basic concepts of initial velocity and the effects of varying operational parameters. Discusses laboratory sessions and the use of a microcomputer in instruction. (CW)

  14. Pegasys: software for executing and integrating analyses of biological sequences

    PubMed Central

    Shah, Sohrab P; He, David YM; Sawkins, Jessica N; Druce, Jeffrey C; Quon, Gerald; Lett, Drew; Zheng, Grace XY; Xu, Tao; Ouellette, BF Francis

    2004-01-01

    Background We present Pegasys – a flexible, modular and customizable software system that facilitates the execution and data integration from heterogeneous biological sequence analysis tools. Results The Pegasys system includes numerous tools for pair-wise and multiple sequence alignment, ab initio gene prediction, RNA gene detection, masking repetitive sequences in genomic DNA as well as filters for database formatting and processing raw output from various analysis tools. We introduce a novel data structure for creating workflows of sequence analyses and a unified data model to store its results. The software allows users to dynamically create analysis workflows at run-time by manipulating a graphical user interface. All non-serial dependent analyses are executed in parallel on a compute cluster for efficiency of data generation. The uniform data model and backend relational database management system of Pegasys allow for results of heterogeneous programs included in the workflow to be integrated and exported into General Feature Format for further analyses in GFF-dependent tools, or GAME XML for import into the Apollo genome editor. The modularity of the design allows for new tools to be added to the system with little programmer overhead. The database application programming interface allows programmatic access to the data stored in the backend through SQL queries. Conclusions The Pegasys system enables biologists and bioinformaticians to create and manage sequence analysis workflows. The software is released under the Open Source GNU General Public License. All source code and documentation is available for download at . PMID:15096276

  15. A Short Sequence Motif in the 5′ Leader of the HIV-1 Genome Modulates Extended RNA Dimer Formation and Virus Replication*

    PubMed Central

    van Bel, Nikki; Das, Atze T.; Cornelissen, Marion; Abbink, Truus E. M.; Berkhout, Ben

    2014-01-01

    The 5′ leader of the HIV-1 RNA genome encodes signals that control various steps in the replication cycle, including the dimerization initiation signal (DIS) that triggers RNA dimerization. The DIS folds a hairpin structure with a palindromic sequence in the loop that allows RNA dimerization via intermolecular kissing loop (KL) base pairing. The KL dimer can be stabilized by including the DIS stem nucleotides in the intermolecular base pairing, forming an extended dimer (ED). The role of the ED RNA dimer in HIV-1 replication has hardly been addressed because of technical challenges. We analyzed a set of leader mutants with a stabilized DIS hairpin for in vitro RNA dimerization and virus replication in T cells. In agreement with previous observations, DIS hairpin stability modulated KL and ED dimerization. An unexpected previous finding was that mutation of three nucleotides immediately upstream of the DIS hairpin significantly reduced in vitro ED formation. In this study, we tested such mutants in vivo for the importance of the ED in HIV-1 biology. Mutants with a stabilized DIS hairpin replicated less efficiently than WT HIV-1. This defect was most severe when the upstream sequence motif was altered. Virus evolution experiments with the defective mutants yielded fast replicating HIV-1 variants with second site mutations that (partially) restored the WT hairpin stability. Characterization of the mutant and revertant RNA molecules and the corresponding viruses confirmed the correlation between in vitro ED RNA dimer formation and efficient virus replication, thus indicating that the ED structure is important for HIV-1 replication. PMID:25368321

  16. Function of a unique sequence motif in the long terminal repeat of feline leukemia virus isolated from an unusual set of naturally occurring tumors.

    PubMed

    Athas, G B; Lobelle-Rich, P; Levy, L S

    1995-06-01

    Feline leukemia virus (FeLV) proviruses have been characterized from naturally occurring non-B-cell, non-T-cell tumors occurring in the spleens of infected cats. These proviruses exhibit a unique sequence motif in the long terminal repeat (LTR), namely, a 21-bp tandem triplication beginning 25 bp downstream of the enhancer. The repeated finding of the triplication-containing LTR in non-B-cell, non-T-cell lymphomas of the spleen suggests that the unique LTR is an essential participant in the development of tumors of this particular phenotype. The nucleotide sequence of the triplication-containing LTR most closely resembles that of FeLV subgroup C. Studies performed to measure the ability of the triplication-containing LTR to modulate gene expression indicate that the 21-bp triplication provides transcriptional enhancer function to the LTR that contains it and that it substitutes at least in part for the duplication of the enhancer. The 21-bp triplication confers a bona fide enhancer function upon LTR-directed reporter gene expression; however, the possibility of a spacer function was not eliminated. The studies demonstrate further that the triplication-containing LTR acts preferentially in a cell-type-specific manner, i.e., it is 12-fold more active in K-562 cells than is an LTR lacking the triplication. A recombinant, infectious FeLV bearing the 21-bp triplication in U3 was constructed. Cells infected with the recombinant were shown to accumulate higher levels of viral RNA transcripts and virus particles in culture supernatants than did cells infected with the parental type. The triplication-containing LTR is implicated in the induction of tumors of a particular phenotype, perhaps through transcriptional regulation of the virus and/or adjacent cellular genes, in the appropriate target cell. PMID:7745680

  17. DILIMOT: discovery of linear motifs in proteins.

    PubMed

    Neduva, Victor; Russell, Robert B

    2006-07-01

    Discovery of protein functional motifs is critical in modern biology. Small segments of 3-10 residues play critical roles in protein interactions, post-translational modifications and trafficking. DILIMOT (DIscovery of LInear MOTifs) is a server for the prediction of these short linear motifs within a set of proteins. Given a set of sequences sharing a common functional feature (e.g. interaction partner or localization) the method finds statistically over-represented motifs likely to be responsible for it. The input sequences are first passed through a set of filters to remove regions unlikely to contain instances of linear motifs. Motifs are then found in the remaining sequence and ranked according to a statistic that measure over-representation and conservation across homologues in related species. The results are displayed via a visual interface for easy perusal. The server is available at http://dilimot.embl.de. PMID:16845024

  18. Binding of Actinomycin D to Single-Stranded DNA of Sequence Motifs d(TGTCTnG) and d(TGTnGTCT)

    PubMed Central

    Chen, Fu-Ming; Sha, Feng; Chin, Ko-Hsin; Chou, Shan-Ho

    2003-01-01

    Our recent binding studies with oligomers derived from base replacements on d(CGTCGTCG) had led to the finding that actinomycin D (ACTD) binds strongly to d(TGTCATTG) of apparent single-stranded conformation without GpC sequence. A fold-back binding model was speculated in which the planar phenoxazone inserts at the GTC site with a loop-out T base whereas the G base at the 3′-terminus folds back to form a basepair with the internal C and stacks on the opposite face of the chromophore. To provide a more concrete support for such a model, ACTD equilibrium binding studies were carried out and the results are reported herein on oligomers of sequence motifs d(TGTCTnG) and d(TGTnGTC). These oligomers are not expected to form dimeric duplexes and contain no canonical GpC sequences. It was found that ACTD binds strongly to d(TGTCTTTTG), d(TGTTTTGTC), and d(TGTTTTTGTC), all exhibiting 1:1 drug/strand binding stoichiometry. The fold-back binding model with displaced T base is further supported by the finding that appending TC and TCA at the 3′-terminus of d(TGTCTTTTG) results in oligomers that exhibit enhanced ACTD affinities, consequence of the added basepairing to facilitate the hairpin formation of d(TGTCTTTTGTC) and d(TGTCTTTTGTCA) in stabilizing the GTC/GTC binding site for juxtaposing the two G bases for easy stacking on both faces of the phenoxazone chromophore. Further support comes from the observation of considerable reduction in ACTD affinity when GTC is replaced by GTTC in an oligomer, in line with the reasoning that displacing two T bases to form a bulge for ACTD binding is more difficult than displacing a single base. Based on the elucidated binding principle of phenoxazone ring requiring its opposite faces to be stacked by the 3′-sides of two G bases for tight ACTD binding, several oligonucleotide sequences have been designed and found to bind well. PMID:12524296

  19. Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas

    SciTech Connect

    Duerst, M.; Croce, C.M.; Gissmann, L.; Schwarz, E.; Huebner, K.

    1987-02-01

    The chromosomal locations of cellular sequences flanking integrated papillomavirus DNA in four cervical cell lines and a primary cervical carcinoma have been determined. The two human papillomavirus (HPV) 16 flanking sequences derived from the tumor were localized to chromosomes regions 20pter..-->..20q13 and 3p25..-->..3qter, regions that also contain the protooncogenes c-src-1 and c-raf-1, respectively. The HPV 16 integration site in the SiHa cervical carcinoma-derived cell line is in chromosome region 13q14..-->..13q32. The HPV 18 integration site in SW756 cervical carcinoma cells is in chromosome 12 but is not closely linked to the Ki-ras2 gene. Finally, in two cervical carcinoma cell lines, HeLa and C4-I, HPV 18 DNA is integrated in chromosome 8, 5' of the c-myc gene. The HeLaHPV 18 integration site is within 40 kilobases 5' of the c-myc gene, inside the HL60 amplification unit surrounding and including the c-myc gene. Additionally, steady-state levels of c-myc mRNA are elevated in HeLa and C4-I cells relative to other cervical carcinoma cell lines. Thus, in at least some genital tumors, cis-activation of cellular oncogenes by HPV may be involved in malignant transformation of cervical cells.

  20. MotifMiner: A Table Driven Greedy Algorithm for DNA Motif Mining

    NASA Astrophysics Data System (ADS)

    Seeja, K. R.; Alam, M. A.; Jain, S. K.

    DNA motif discovery is a much explored problem in functional genomics. This paper describes a table driven greedy algorithm for discovering regulatory motifs in the promoter sequences of co-expressed genes. The proposed algorithm searches both DNA strands for the common patterns or motifs. The inputs to the algorithm are set of promoter sequences, the motif length and minimum Information Content. The algorithm generates subsequences of given length from the shortest input promoter sequence. It stores these subsequences and their reverse complements in a table. Then it searches the remaining sequences for good matches of these subsequences. The Information Content score is used to measure the goodness of the motifs. The algorithm has been tested with synthetic data and real data. The results are found promising. The algorithm could discover meaningful motifs from the muscle specific regulatory sequences.

  1. Perspectives of integrative cancer genomics in next generation sequencing era.

    PubMed

    Kwon, So Mee; Cho, Hyunwoo; Choi, Ji Hye; Jee, Byul A; Jo, Yuna; Woo, Hyun Goo

    2012-06-01

    The explosive development of genomics technologies including microarrays and next generation sequencing (NGS) has provided comprehensive maps of cancer genomes, including the expression of mRNAs and microRNAs, DNA copy numbers, sequence variations, and epigenetic changes. These genome-wide profiles of the genetic aberrations could reveal the candidates for diagnostic and/or prognostic biomarkers as well as mechanistic insights into tumor development and progression. Recent efforts to establish the huge cancer genome compendium and integrative omics analyses, so-called "integromics", have extended our understanding on the cancer genome, showing its daunting complexity and heterogeneity. However, the challenges of the structured integration, sharing, and interpretation of the big omics data still remain to be resolved. Here, we review several issues raised in cancer omics data analysis, including NGS, focusing particularly on the study design and analysis strategies. This might be helpful to understand the current trends and strategies of the rapidly evolving cancer genomics research. PMID:23105932

  2. Music and language perception: expectations, structural integration, and cognitive sequencing.

    PubMed

    Tillmann, Barbara

    2012-10-01

    Music can be described as sequences of events that are structured in pitch and time. Studying music processing provides insight into how complex event sequences are learned, perceived, and represented by the brain. Given the temporal nature of sound, expectations, structural integration, and cognitive sequencing are central in music perception (i.e., which sounds are most likely to come next and at what moment should they occur?). This paper focuses on similarities in music and language cognition research, showing that music cognition research provides insight into the understanding of not only music processing but also language processing and the processing of other structured stimuli. The hypothesis of shared resources between music and language processing and of domain-general dynamic attention has motivated the development of research to test music as a means to stimulate sensory, cognitive, and motor processes. PMID:22760955

  3. Selection against spurious promoter motifs correlates withtranslational efficiency across bacteria

    SciTech Connect

    Froula, Jeffrey L.; Francino, M. Pilar

    2007-05-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the {sigma}{sup 70} subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also implies that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.

  4. MEME Suite: tools for motif discovery and searching

    PubMed Central

    Bailey, Timothy L.; Boden, Mikael; Buske, Fabian A.; Frith, Martin; Grant, Charles E.; Clementi, Luca; Ren, Jingyuan; Li, Wilfred W.; Noble, William S.

    2009-01-01

    The MEME Suite web server provides a unified portal for online discovery and analysis of sequence motifs representing features such as DNA binding sites and protein interaction domains. The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps. Three sequence scanning algorithms—MAST, FIMO and GLAM2SCAN—allow scanning numerous DNA and protein sequence databases for motifs discovered by MEME and GLAM2. Transcription factor motifs (including those discovered using MEME) can be compared with motifs in many popular motif databases using the motif database scanning algorithm Tomtom. Transcription factor motifs can be further analyzed for putative function by association with Gene Ontology (GO) terms using the motif-GO term association tool GOMO. MEME output now contains sequence LOGOS for each discovered motif, as well as buttons to allow motifs to be conveniently submitted to the sequence and motif database scanning algorithms (MAST, FIMO and Tomtom), or to GOMO, for further analysis. GLAM2 output similarly contains buttons for further analysis using GLAM2SCAN and for rerunning GLAM2 with different parameters. All of the motif-based tools are now implemented as web services via Opal. Source code, binaries and a web server are freely available for noncommercial use at http://meme.nbcr.net. PMID:19458158

  5. The Annotation of RNA Motifs

    PubMed Central

    2002-01-01

    The recent deluge of new RNA structures, including complete atomic-resolution views of both subunits of the ribosome, has on the one hand literally overwhelmed our individual abilities to comprehend the diversity of RNA structure, and on the other hand presented us with new opportunities for comprehensive use of RNA sequences for comparative genetic, evolutionary and phylogenetic studies. Two concepts are key to understanding RNA structure: hierarchical organization of global structure and isostericity of local interactions. Global structure changes extremely slowly, as it relies on conserved long-range tertiary interactions. Tertiary RNA–RNA and quaternary RNA–protein interactions are mediated by RNA motifs, defined as recurrent and ordered arrays of non-Watson–Crick base-pairs. A single RNA motif comprises a family of sequences, all of which can fold into the same three-dimensional structure and can mediate the same interaction(s). The chemistry and geometry of base pairing constrain the evolution of motifs in such a way that random mutations that occur within motifs are accepted or rejected insofar as they can mediate a similar ordered array of interactions. The steps involved in the analysis and annotation of RNA motifs in 3D structures are: (a) decomposition of each motif into non-Watson–Crick base-pairs; (b) geometric classification of each basepair; (c) identification of isosteric substitutions for each basepair by comparison to isostericity matrices; (d) alignment of homologous sequences using the isostericity matrices to identify corresponding positions in the crystal structure; (e) acceptance or rejection of the null hypothesis that the motif is conserved. PMID:18629252

  6. DNA motifs determining the accuracy of repeat duplication during CRISPR adaptation in Haloarcula hispanica.

    PubMed

    Wang, Rui; Li, Ming; Gong, Luyao; Hu, Songnian; Xiang, Hua

    2016-05-19

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) acquire new spacers to generate adaptive immunity in prokaryotes. During spacer integration, the leader-preceded repeat is always accurately duplicated, leading to speculations of a repeat-length ruler. Here in Haloarcula hispanica, we demonstrate that the accurate duplication of its 30-bp repeat requires two conserved mid-repeat motifs, AACCC and GTGGG. The AACCC motif was essential and needed to be ∼10 bp downstream from the leader-repeat junction site, where duplication consistently started. Interestingly, repeat duplication terminated sequence-independently and usually with a specific distance from the GTGGG motif, which seemingly served as an anchor site for a molecular ruler. Accordingly, altering the spacing between the two motifs led to an aberrant duplication size (29, 31, 32 or 33 bp). We propose the adaptation complex may recognize these mid-repeat elements to enable measuring the repeat DNA for spacer integration. PMID:27085805

  7. DNA motifs determining the accuracy of repeat duplication during CRISPR adaptation in Haloarcula hispanica

    PubMed Central

    Wang, Rui; Li, Ming; Gong, Luyao; Hu, Songnian; Xiang, Hua

    2016-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) acquire new spacers to generate adaptive immunity in prokaryotes. During spacer integration, the leader-preceded repeat is always accurately duplicated, leading to speculations of a repeat-length ruler. Here in Haloarcula hispanica, we demonstrate that the accurate duplication of its 30-bp repeat requires two conserved mid-repeat motifs, AACCC and GTGGG. The AACCC motif was essential and needed to be ∼10 bp downstream from the leader-repeat junction site, where duplication consistently started. Interestingly, repeat duplication terminated sequence-independently and usually with a specific distance from the GTGGG motif, which seemingly served as an anchor site for a molecular ruler. Accordingly, altering the spacing between the two motifs led to an aberrant duplication size (29, 31, 32 or 33 bp). We propose the adaptation complex may recognize these mid-repeat elements to enable measuring the repeat DNA for spacer integration. PMID:27085805

  8. The Pichia pastoris PER6 gene product is a peroxisomal integral membrane protein essential for peroxisome biogenesis and has sequence similarity to the Zellweger syndrome protein PAF-1.

    PubMed Central

    Waterham, H R; de Vries, Y; Russel, K A; Xie, W; Veenhuis, M; Cregg, J M

    1996-01-01

    We report the cloning of PER6, a gene essential for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. The PER6 sequence predicts that its product Per6p is a 52-kDa polypeptide with the cysteine-rich C3HC4 motif. Per6p has significant overall sequence similarity with the human peroxisome assembly factor PAF-1, a protein that is defective in certain patients suffering from the peroxisomal disorder Zellweger syndrome, and with car1, a protein required for peroxisome biogenesis and caryogamy in the filamentous fungus Podospora anserina. In addition, the C3HC4 motif and two of the three membrane-spanning segments predicted for Per6p align with the C3HC4 motifs and the two membrane-spanning segments predicted for PAF-1 and car1. Like PAF-1, Per6p is a peroxisomal integral membrane protein. In methanol- or oleic acid-induced cells of per6 mutants, morphologically recognizable peroxisomes are absent. Instead, peroxisomal remnants are observed. In addition, peroxisomal matrix proteins are synthesized but located in the cytosol. The similarities between Per6p and PAF-1 in amino acid sequence and biochemical properties, and between mutants defective in their respective genes, suggest that Per6p is the putative yeast homolog of PAF-1. PMID:8628321

  9. Ovodefensins, an Oviduct-Specific Antimicrobial Gene Family, Have Evolved in Birds and Reptiles to Protect the Egg by Both Sequence and Intra-Six-Cysteine Sequence Motif Spacing.

    PubMed

    Whenham, Natasha; Lu, Tian Chee; Maidin, Maisarah B M; Wilson, Peter W; Bain, Maureen M; Stevenson, M Lynn; Stevens, Mark P; Bedford, Michael R; Dunn, Ian C

    2015-06-01

    Ovodefensins are a novel beta defensin-related family of antimicrobial peptides containing conserved glycine and six cysteine residues. Originally thought to be restricted to the albumen-producing region of the avian oviduct, expression was found in chicken, turkey, duck, and zebra finch in large quantities in many parts of the oviduct, but this varied between species and between gene forms in the same species. Using new search strategies, the ovodefensin family now has 35 members, including reptiles, but no representatives outside birds and reptiles have been found. Analysis of their evolution shows that ovodefensins divide into six groups based on the intra-cysteine amino acid spacing, representing a unique mechanism alongside traditional evolution of sequence. The groups have been used to base a nomenclature for the family. Antimicrobial activity for three ovodefensins from chicken and duck was confirmed against Escherichia coli and a pathogenic E. coli strain as well as a Gram-positive organism, Staphylococcus aureus, for the first time. However, activity varied greatly between peptides, with Gallus gallus OvoDA1 being the most potent, suggesting a link with the different structures. Expression of Gallus gallus OvoDA1 (gallin) in the oviduct was increased by estrogen and progesterone and in the reproductive state. Overall, the results support the hypothesis that ovodefensins evolved to protect the egg, but they are not necessarily restricted to the egg white. Therefore, divergent motif structure and sequence present an interesting area of research for antimicrobial peptide design and understanding protection of the cleidoic egg. PMID:25972010

  10. Stochastic motif extraction using hidden Markov model

    SciTech Connect

    Fujiwara, Yukiko; Asogawa, Minoru; Konagaya, Akihiko

    1994-12-31

    In this paper, we study the application of an HMM (hidden Markov model) to the problem of representing protein sequences by a stochastic motif. A stochastic protein motif represents the small segments of protein sequences that have a certain function or structure. The stochastic motif, represented by an HMM, has conditional probabilities to deal with the stochastic nature of the motif. This HMM directive reflects the characteristics of the motif, such as a protein periodical structure or grouping. In order to obtain the optimal HMM, we developed the {open_quotes}iterative duplication method{close_quotes} for HMM topology learning. It starts from a small fully-connected network and iterates the network generation and parameter optimization until it achieves sufficient discrimination accuracy. Using this method, we obtained an HMM for a leucine zipper motif. Compared to the accuracy of a symbolic pattern representation with accuracy of 14.8 percent, an HMM achieved 79.3 percent in prediction. Additionally, the method can obtain an HMM for various types of zinc finger motifs, and it might separate the mixed data. We demonstrated that this approach is applicable to the validation of the protein databases; a constructed HMM b as indicated that one protein sequence annotated as {open_quotes}lencine-zipper like sequence{close_quotes} in the database is quite different from other leucine-zipper sequences in terms of likelihood, and we found this discrimination is plausible.

  11. Temporal motifs in time-dependent networks

    NASA Astrophysics Data System (ADS)

    Kovanen, Lauri; Karsai, Márton; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2011-11-01

    Temporal networks are commonly used to represent systems where connections between elements are active only for restricted periods of time, such as telecommunication, neural signal processing, biochemical reaction and human social interaction networks. We introduce the framework of temporal motifs to study the mesoscale topological-temporal structure of temporal networks in which the events of nodes do not overlap in time. Temporal motifs are classes of similar event sequences, where the similarity refers not only to topology but also to the temporal order of the events. We provide a mapping from event sequences to coloured directed graphs that enables an efficient algorithm for identifying temporal motifs. We discuss some aspects of temporal motifs, including causality and null models, and present basic statistics of temporal motifs in a large mobile call network.

  12. Integrated sequence and immunology filovirus database at Los Alamos

    SciTech Connect

    Yusim, Karina; Yoon, Hyejin; Foley, Brian; Feng, Shihai; Macke, Jennifer; Dimitrijevic, Mira; Abfalterer, Werner; Szinger, James; Fischer, Will; Kuiken, Carla; Korber, Bette

    2016-01-01

    The Ebola outbreak of 2013–15 infected more than 28,000 people and claimed more lives than all previous filovirus outbreaks combined. Governmental agencies, clinical teams, and the world scientific community pulled together in a multifaceted response ranging from prevention and disease control, to evaluating vaccines and therapeutics in human trials. We report that as this epidemic is finally coming to a close, refocusing on long-term prevention strategies becomes paramount. Given the very real threat of future filovirus outbreaks, and the inherent uncertainty of the next outbreak virus and geographic location, it is prudent to consider the extent and implications of known natural diversity in advancing vaccines and therapeutic approaches. To facilitate such consideration, we have updated and enhanced the content of the filovirus portion of Los Alamos Hemorrhagic Fever Viruses Database. We have integrated and performed baseline analysis of all family Filoviridae sequences deposited into GenBank, with associated immune response data, and metadata, and we have added new computational tools with web-interfaces to assist users with analysis. Here, we (i) describe the main features of updated database, (ii) provide integrated views and some basic analyses summarizing evolutionary patterns as they relate to geo-temporal data captured in the database and (iii) highlight the most conserved regions in the proteome that may be useful for a T cell vaccine strategy.

  13. Integrated sequence and immunology filovirus database at Los Alamos

    DOE PAGESBeta

    Yusim, Karina; Yoon, Hyejin; Foley, Brian; Feng, Shihai; Macke, Jennifer; Dimitrijevic, Mira; Abfalterer, Werner; Szinger, James; Fischer, Will; Kuiken, Carla; et al

    2016-01-01

    The Ebola outbreak of 2013–15 infected more than 28,000 people and claimed more lives than all previous filovirus outbreaks combined. Governmental agencies, clinical teams, and the world scientific community pulled together in a multifaceted response ranging from prevention and disease control, to evaluating vaccines and therapeutics in human trials. We report that as this epidemic is finally coming to a close, refocusing on long-term prevention strategies becomes paramount. Given the very real threat of future filovirus outbreaks, and the inherent uncertainty of the next outbreak virus and geographic location, it is prudent to consider the extent and implications of knownmore » natural diversity in advancing vaccines and therapeutic approaches. To facilitate such consideration, we have updated and enhanced the content of the filovirus portion of Los Alamos Hemorrhagic Fever Viruses Database. We have integrated and performed baseline analysis of all family Filoviridae sequences deposited into GenBank, with associated immune response data, and metadata, and we have added new computational tools with web-interfaces to assist users with analysis. Here, we (i) describe the main features of updated database, (ii) provide integrated views and some basic analyses summarizing evolutionary patterns as they relate to geo-temporal data captured in the database and (iii) highlight the most conserved regions in the proteome that may be useful for a T cell vaccine strategy.« less

  14. Integrated sequence and immunology filovirus database at Los Alamos

    PubMed Central

    Yoon, Hyejin; Foley, Brian; Feng, Shihai; Macke, Jennifer; Dimitrijevic, Mira; Abfalterer, Werner; Szinger, James; Fischer, Will; Kuiken, Carla; Korber, Bette

    2016-01-01

    The Ebola outbreak of 2013–15 infected more than 28 000 people and claimed more lives than all previous filovirus outbreaks combined. Governmental agencies, clinical teams, and the world scientific community pulled together in a multifaceted response ranging from prevention and disease control, to evaluating vaccines and therapeutics in human trials. As this epidemic is finally coming to a close, refocusing on long-term prevention strategies becomes paramount. Given the very real threat of future filovirus outbreaks, and the inherent uncertainty of the next outbreak virus and geographic location, it is prudent to consider the extent and implications of known natural diversity in advancing vaccines and therapeutic approaches. To facilitate such consideration, we have updated and enhanced the content of the filovirus portion of Los Alamos Hemorrhagic Fever Viruses Database. We have integrated and performed baseline analysis of all family Filoviridae sequences deposited into GenBank, with associated immune response data, and metadata, and we have added new computational tools with web-interfaces to assist users with analysis. Here, we (i) describe the main features of updated database, (ii) provide integrated views and some basic analyses summarizing evolutionary patterns as they relate to geo-temporal data captured in the database and (iii) highlight the most conserved regions in the proteome that may be useful for a T cell vaccine strategy. Database URL: www.hfv.lanl.gov PMID:27103629

  15. Single base pair differences in a shared motif determine differential Rhodopsin expression

    PubMed Central

    Rister, Jens; Razzaq, Ansa; Boodram, Pamela; Desai, Nisha; Tsanis, Cleopatra; Chen, Hongtao; Jukam, David; Desplan, Claude

    2016-01-01

    The final identity and functional properties of a neuron are specified by terminal differentiation genes, which are controlled by specific motifs in compact regulatory regions. To determine how these sequences integrate inputs from transcription factors that specify cell types, we compared the regulatory mechanism of Drosophila Rhodopsin genes that are expressed in subsets of photoreceptors to that of phototransduction genes that are expressed broadly, in all photoreceptors. Both sets of genes share an 11bp activator motif. Broadly expressed genes contain a palindromic version that mediates expression in all photoreceptors. In contrast, each Rhodopsin exhibits unique single bp substitutions that break the symmetry of the palindrome and generate activator or repressor motifs critical for restricting expression to photoreceptor subsets. Novel sensory neuron subtypes can therefore evolve through single base pair changes in short regulatory motifs, allowing the discrimination of a wide spectrum of stimuli. PMID:26785491

  16. Mining Conditional Phosphorylation Motifs.

    PubMed

    Liu, Xiaoqing; Wu, Jun; Gong, Haipeng; Deng, Shengchun; He, Zengyou

    2014-01-01

    Phosphorylation motifs represent position-specific amino acid patterns around the phosphorylation sites in the set of phosphopeptides. Several algorithms have been proposed to uncover phosphorylation motifs, whereas the problem of efficiently discovering a set of significant motifs with sufficiently high coverage and non-redundancy still remains unsolved. Here we present a novel notion called conditional phosphorylation motifs. Through this new concept, the motifs whose over-expressiveness mainly benefits from its constituting parts can be filtered out effectively. To discover conditional phosphorylation motifs, we propose an algorithm called C-Motif for a non-redundant identification of significant phosphorylation motifs. C-Motif is implemented under the Apriori framework, and it tests the statistical significance together with the frequency of candidate motifs in a single stage. Experiments demonstrate that C-Motif outperforms some current algorithms such as MMFPh and Motif-All in terms of coverage and non-redundancy of the results and efficiency of the execution. The source code of C-Motif is available at: https://sourceforge. net/projects/cmotif/. PMID:26356863

  17. RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets.

    PubMed

    Thomas-Chollier, Morgane; Herrmann, Carl; Defrance, Matthieu; Sand, Olivier; Thieffry, Denis; van Helden, Jacques

    2012-02-01

    ChIP-seq is increasingly used to characterize transcription factor binding and chromatin marks at a genomic scale. Various tools are now available to extract binding motifs from peak data sets. However, most approaches are only available as command-line programs, or via a website but with size restrictions. We present peak-motifs, a computational pipeline that discovers motifs in peak sequences, compares them with databases, exports putative binding sites for visualization in the UCSC genome browser and generates an extensive report suited for both naive and expert users. It relies on time- and memory-efficient algorithms enabling the treatment of several thousand peaks within minutes. Regarding time efficiency, peak-motifs outperforms all comparable tools by several orders of magnitude. We demonstrate its accuracy by analyzing data sets ranging from 4000 to 1,28,000 peaks for 12 embryonic stem cell-specific transcription factors. In all cases, the program finds the expected motifs and returns additional motifs potentially bound by cofactors. We further apply peak-motifs to discover tissue-specific motifs in peak collections for the p300 transcriptional co-activator. To our knowledge, peak-motifs is the only tool that performs a complete motif analysis and offers a user-friendly web interface without any restriction on sequence size or number of peaks. PMID:22156162

  18. RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond.

    PubMed

    Gama-Castro, Socorro; Salgado, Heladia; Santos-Zavaleta, Alberto; Ledezma-Tejeida, Daniela; Muñiz-Rascado, Luis; García-Sotelo, Jair Santiago; Alquicira-Hernández, Kevin; Martínez-Flores, Irma; Pannier, Lucia; Castro-Mondragón, Jaime Abraham; Medina-Rivera, Alejandra; Solano-Lira, Hilda; Bonavides-Martínez, César; Pérez-Rueda, Ernesto; Alquicira-Hernández, Shirley; Porrón-Sotelo, Liliana; López-Fuentes, Alejandra; Hernández-Koutoucheva, Anastasia; Del Moral-Chávez, Víctor; Rinaldi, Fabio; Collado-Vides, Julio

    2016-01-01

    RegulonDB (http://regulondb.ccg.unam.mx) is one of the most useful and important resources on bacterial gene regulation,as it integrates the scattered scientific knowledge of the best-characterized organism, Escherichia coli K-12, in a database that organizes large amounts of data. Its electronic format enables researchers to compare their results with the legacy of previous knowledge and supports bioinformatics tools and model building. Here, we summarize our progress with RegulonDB since our last Nucleic Acids Research publication describing RegulonDB, in 2013. In addition to maintaining curation up-to-date, we report a collection of 232 interactions with small RNAs affecting 192 genes, and the complete repertoire of 189 Elementary Genetic Sensory-Response units (GENSOR units), integrating the signal, regulatory interactions, and metabolic pathways they govern. These additions represent major progress to a higher level of understanding of regulated processes. We have updated the computationally predicted transcription factors, which total 304 (184 with experimental evidence and 120 from computational predictions); we updated our position-weight matrices and have included tools for clustering them in evolutionary families. We describe our semiautomatic strategy to accelerate curation, including datasets from high-throughput experiments, a novel coexpression distance to search for 'neighborhood' genes to known operons and regulons, and computational developments. PMID:26527724

  19. RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond

    PubMed Central

    Gama-Castro, Socorro; Salgado, Heladia; Santos-Zavaleta, Alberto; Ledezma-Tejeida, Daniela; Muñiz-Rascado, Luis; García-Sotelo, Jair Santiago; Alquicira-Hernández, Kevin; Martínez-Flores, Irma; Pannier, Lucia; Castro-Mondragón, Jaime Abraham; Medina-Rivera, Alejandra; Solano-Lira, Hilda; Bonavides-Martínez, César; Pérez-Rueda, Ernesto; Alquicira-Hernández, Shirley; Porrón-Sotelo, Liliana; López-Fuentes, Alejandra; Hernández-Koutoucheva, Anastasia; Moral-Chávez, Víctor Del; Rinaldi, Fabio; Collado-Vides, Julio

    2016-01-01

    RegulonDB (http://regulondb.ccg.unam.mx) is one of the most useful and important resources on bacterial gene regulation,as it integrates the scattered scientific knowledge of the best-characterized organism, Escherichia coli K-12, in a database that organizes large amounts of data. Its electronic format enables researchers to compare their results with the legacy of previous knowledge and supports bioinformatics tools and model building. Here, we summarize our progress with RegulonDB since our last Nucleic Acids Research publication describing RegulonDB, in 2013. In addition to maintaining curation up-to-date, we report a collection of 232 interactions with small RNAs affecting 192 genes, and the complete repertoire of 189 Elementary Genetic Sensory-Response units (GENSOR units), integrating the signal, regulatory interactions, and metabolic pathways they govern. These additions represent major progress to a higher level of understanding of regulated processes. We have updated the computationally predicted transcription factors, which total 304 (184 with experimental evidence and 120 from computational predictions); we updated our position-weight matrices and have included tools for clustering them in evolutionary families. We describe our semiautomatic strategy to accelerate curation, including datasets from high-throughput experiments, a novel coexpression distance to search for ‘neighborhood’ genes to known operons and regulons, and computational developments. PMID:26527724

  20. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas

    PubMed Central

    Petrov, Anton I.; Zirbel, Craig L.; Leontis, Neocles B.

    2013-01-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access. PMID:23970545

  1. Localization of Daucus carota NMCP1 to the nuclear periphery: the role of the N-terminal region and an NLS-linked sequence motif, RYNLRR, in the tail domain

    PubMed Central

    Kimura, Yuta; Fujino, Kaien; Ogawa, Kana; Masuda, Kiyoshi

    2014-01-01

    Recent ultrastructural studies revealed that a structure similar to the vertebrate nuclear lamina exists in the nuclei of higher plants. However, plant genomes lack genes for lamins and intermediate-type filament proteins, and this suggests that plant-specific nuclear coiled-coil proteins make up the lamina-like structure in plants. NMCP1 is a protein, first identified in Daucus carota cells, that localizes exclusively to the nuclear periphery in interphase cells. It has a tripartite structure comprised of head, rod, and tail domains, and includes putative nuclear localization signal (NLS) motifs. We identified the functional NLS of DcNMCP1 (carrot NMCP1) and determined the protein regions required for localizing to the nuclear periphery using EGFP-fused constructs transiently expressed in Apium graveolens epidermal cells. Transcription was driven under a CaMV35S promoter, and the genes were introduced into the epidermal cells by a DNA-coated microprojectile delivery system. Of the NLS motifs, KRRRK and RRHK in the tail domain were highly functional for nuclear localization. Addition of the N-terminal 141 amino acids from DcNMCP1 shifted the localization of a region including these NLSs from the entire nucleus to the nuclear periphery. Using this same construct, the replacement of amino acids in RRHK or its preceding sequence, YNL, with alanine residues abolished localization to the nuclear periphery, while replacement of KRRRK did not affect localization. The sequence R/Q/HYNLRR/H, including YNL and the first part of the sequence of RRHK, is evolutionarily conserved in a subclass of NMCP1 sequences from many plant species. These results show that NMCP1 localizes to the nuclear periphery by a combined action of a sequence composed of R/Q/HYNLRR/H, NLS, and the N-terminal region including the head and a portion of the rod domain, suggesting that more than one binding site is implicated in localization of NMCP1. PMID:24616728

  2. Integration of Temporal and Ordinal Information During Serial Interception Sequence Learning

    PubMed Central

    Gobel, Eric W.; Sanchez, Daniel J.; Reber, Paul J.

    2011-01-01

    The expression of expert motor skills typically involves learning to perform a precisely timed sequence of movements (e.g., language production, music performance, athletic skills). Research examining incidental sequence learning has previously relied on a perceptually-cued task that gives participants exposure to repeating motor sequences but does not require timing of responses for accuracy. Using a novel perceptual-motor sequence learning task, learning a precisely timed cued sequence of motor actions is shown to occur without explicit instruction. Participants learned a repeating sequence through practice and showed sequence-specific knowledge via a performance decrement when switched to an unfamiliar sequence. In a second experiment, the integration of representation of action order and timing sequence knowledge was examined. When either action order or timing sequence information was selectively disrupted, performance was reduced to levels similar to completely novel sequences. Unlike prior sequence-learning research that has found timing information to be secondary to learning action sequences, when the task demands require accurate action and timing information, an integrated representation of these types of information is acquired. These results provide the first evidence for incidental learning of fully integrated action and timing sequence information in the absence of an independent representation of action order, and suggest that this integrative mechanism may play a material role in the acquisition of complex motor skills. PMID:21417511

  3. Integration of temporal and ordinal information during serial interception sequence learning.

    PubMed

    Gobel, Eric W; Sanchez, Daniel J; Reber, Paul J

    2011-07-01

    The expression of expert motor skills typically involves learning to perform a precisely timed sequence of movements. Research examining incidental sequence learning has relied on a perceptually cued task that gives participants exposure to repeating motor sequences but does not require timing of responses for accuracy. In the 1st experiment, a novel perceptual-motor sequence learning task was used, and learning a precisely timed cued sequence of motor actions was shown to occur without explicit instruction. Participants learned a repeating sequence through practice and showed sequence-specific knowledge via a performance decrement when switched to an unfamiliar sequence. In the 2nd experiment, the integration of representation of action order and timing sequence knowledge was examined. When either action order or timing sequence information was selectively disrupted, performance was reduced to levels similar to completely novel sequences. Unlike prior sequence-learning research that has found timing information to be secondary to learning action sequences, when the task demands require accurate action and timing information, an integrated representation of these types of information is acquired. These results provide the first evidence for incidental learning of fully integrated action and timing sequence information in the absence of an independent representation of action order and suggest that this integrative mechanism may play a material role in the acquisition of complex motor skills. PMID:21417511

  4. Integrated and Independent Learning of Hand-Related Constituent Sequences

    ERIC Educational Resources Information Center

    Berner, Michael P.; Hoffmann, Joachim

    2009-01-01

    In almost all daily activities fingers of both hands are used in coordinated succession. The present experiments explored whether learning in such tasks pertains not only to the overall sequence spanning both hands but also to the constituent sequences of each hand. In a serial reaction time task, 2 repeating hand-related sequences were…

  5. Sampling Motif-Constrained Ensembles of Networks

    NASA Astrophysics Data System (ADS)

    Fischer, Rico; Leitão, Jorge C.; Peixoto, Tiago P.; Altmann, Eduardo G.

    2015-10-01

    The statistical significance of network properties is conditioned on null models which satisfy specified properties but that are otherwise random. Exponential random graph models are a principled theoretical framework to generate such constrained ensembles, but which often fail in practice, either due to model inconsistency or due to the impossibility to sample networks from them. These problems affect the important case of networks with prescribed clustering coefficient or number of small connected subgraphs (motifs). In this Letter we use the Wang-Landau method to obtain a multicanonical sampling that overcomes both these problems. We sample, in polynomial time, networks with arbitrary degree sequences from ensembles with imposed motifs counts. Applying this method to social networks, we investigate the relation between transitivity and homophily, and we quantify the correlation between different types of motifs, finding that single motifs can explain up to 60% of the variation of motif profiles.

  6. Deep sequencing of the hepatitis B virus in hepatocellular carcinoma patients reveals enriched integration events, structural alterations and sequence variations.

    PubMed

    Toh, Soo Ting; Jin, Yu; Liu, Lizhen; Wang, Jingbo; Babrzadeh, Farbod; Gharizadeh, Baback; Ronaghi, Mostafa; Toh, Han Chong; Chow, Pierce Kah-Hoe; Chung, Alexander Y-F; Ooi, London L-P-J; Lee, Caroline G-L

    2013-04-01

    Chronic hepatitis B virus (HBV) infection is epidemiologically associated with hepatocellular carcinoma (HCC), but its role in HCC remains poorly understood due to technological limitations. In this study, we systematically characterize HBV in HCC patients. HBV sequences were enriched from 48 HCC patients using an oligo-bead-based strategy, pooled together and sequenced using the FLX-Genome-Sequencer. In the tumors, preferential integration of HBV into promoters of genes (P < 0.001) and significant enrichment of integration into chromosome 10 (P < 0.01) were observed. Integration into chromosome 10 was significantly associated with poorly differentiated tumors (P < 0.05). Notably, in the tumors, recurrent integration into the promoter of the human telomerase reverse transcriptase (TERT) gene was found to correlate with increased TERT expression. The preferred region within the HBV genome involved in integration and viral structural alteration is at the 3'-end of hepatitis B virus X protein (HBx), where viral replication/transcription initiates. Upon integration, the 3'-end of the HBx is often deleted. HBx-human chimeric transcripts, the most common type of chimeric transcripts, can be expressed as chimeric proteins. Sequence variation resulting in non-conservative amino acid substitutions are commonly observed in HBV genome. This study highlights HBV as highly mutable in HCC patients with preferential regions within the host and virus genome for HBV integration/structural alterations. PMID:23276797

  7. ATtRACT—a database of RNA-binding proteins and associated motifs

    PubMed Central

    Giudice, Girolamo; Sánchez-Cabo, Fátima; Torroja, Carlos; Lara-Pezzi, Enrique

    2016-01-01

    RNA-binding proteins (RBPs) play a crucial role in key cellular processes, including RNA transport, splicing, polyadenylation and stability. Understanding the interaction between RBPs and RNA is key to improve our knowledge of RNA processing, localization and regulation in a global manner. Despite advances in recent years, a unified non-redundant resource that includes information on experimentally validated motifs, RBPs and integrated tools to exploit this information is lacking. Here, we developed a database named ATtRACT (available at http://attract.cnic.es) that compiles information on 370 RBPs and 1583 RBP consensus binding motifs, 192 of which are not present in any other database. To populate ATtRACT we (i) extracted and hand-curated experimentally validated data from CISBP-RNA, SpliceAid–F, RBPDB databases, (ii) integrated and updated the unavailable ASD database and (iii) extracted information from Protein-RNA complexes present in Protein Data Bank database through computational analyses. ATtRACT provides also efficient algorithms to search a specific motif and scan one or more RNA sequences at a time. It also allows discovering de novo motifs enriched in a set of related sequences and compare them with the motifs included in the database. Database URL: http:// attract. cnic. es PMID:27055826

  8. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data

    PubMed Central

    2014-01-01

    Abstract ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data. Reviewers This article was reviewed by Prof. Sandor Pongor, Dr. Yuriy Gusev, and Dr. Shyam Prabhakar (nominated by Prof. Limsoon Wong). PMID:24555784

  9. Sequence and structural analysis of the Asp-box motif and Asp-box beta-propellers; a widespread propeller-type characteristic of the Vps10 domain family and several glycoside hydrolase families

    PubMed Central

    Quistgaard, Esben M; Thirup, Søren S

    2009-01-01

    Background The Asp-box is a short sequence and structure motif that folds as a well-defined β-hairpin. It is present in different folds, but occurs most prominently as repeats in β-propellers. Asp-box β-propellers are known to be characteristically irregular and to occur in many medically important proteins, most of which are glycosidase enzymes, but they are otherwise not well characterized and are only rarely treated as a distinct β-propeller family. We have analyzed the sequence, structure, function and occurrence of the Asp-box and s-Asp-box -a related shorter variant, and provide a comprehensive classification and computational analysis of the Asp-box β-propeller family. Results We find that all conserved residues of the Asp-box support its structure, whereas the residues in variable positions are generally used for other purposes. The Asp-box clearly has a structural role in β-propellers and is highly unlikely to be involved in ligand binding. Sequence analysis of the Asp-box β-propeller family reveals it to be very widespread especially in bacteria and suggests a wide functional range. Disregarding the Asp-boxes, sequence conservation of the propeller blades is very low, but a distinct pattern of residues with specific properties have been identified. Interestingly, Asp-boxes are occasionally found very close to other propeller-associated repeats in extensive mixed-motif stretches, which strongly suggests the existence of a novel class of hybrid β-propellers. Structural analysis reveals that the top and bottom faces of Asp-box β-propellers have striking and consistently different loop properties; the bottom is structurally conserved whereas the top shows great structural variation. Interestingly, only the top face is used for functional purposes in known structures. A structural analysis of the 10-bladed β-propeller fold, which has so far only been observed in the Asp-box family, reveals that the inner strands of the blades are unusually far apart

  10. DNA Motif Databases and Their Uses.

    PubMed

    Stormo, Gary D

    2015-01-01

    Transcription factors (TFs) recognize and bind to specific DNA sequences. The specificity of a TF is usually represented as a position weight matrix (PWM). Several databases of DNA motifs exist and are used in biological research to address important biological questions. This overview describes PWMs and some of the most commonly used motif databases, as well as a few of their common applications. PMID:26334922

  11. Integrating alignment-based and alignment-free sequence similarity measures for biological sequence classification

    PubMed Central

    Borozan, Ivan; Watt, Stuart; Ferretti, Vincent

    2015-01-01

    Motivation: Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Results: Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. Availability and implementation: All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. Contact: ivan.borozan@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573913

  12. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, Paulina M.; Ciszak, Ewa M.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits, two catalytic centers, common amino acid sequence, and specific contacts to provide a flip-flop, or alternate site, mechanism of action. Each catalytic center [PP:PYR] is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and aminopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core [PP:PYR]* within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GX@&(G)@XXGQ, and GDGX25-30 within the PP- domain, and the E&(G)@XXG@ within the PYR-domain, where Q, corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  13. NG6: Integrated next generation sequencing storage and processing environment

    PubMed Central

    2012-01-01

    Background Next generation sequencing platforms are now well implanted in sequencing centres and some laboratories. Upcoming smaller scale machines such as the 454 junior from Roche or the MiSeq from Illumina will increase the number of laboratories hosting a sequencer. In such a context, it is important to provide these teams with an easily manageable environment to store and process the produced reads. Results We describe a user-friendly information system able to manage large sets of sequencing data. It includes, on one hand, a workflow environment already containing pipelines adapted to different input formats (sff, fasta, fastq and qseq), different sequencers (Roche 454, Illumina HiSeq) and various analyses (quality control, assembly, alignment, diversity studies,…) and, on the other hand, a secured web site giving access to the results. The connected user will be able to download raw and processed data and browse through the analysis result statistics. The provided workflows can easily be modified or extended and new ones can be added. Ergatis is used as a workflow building, running and monitoring system. The analyses can be run locally or in a cluster environment using Sun Grid Engine. Conclusions NG6 is a complete information system designed to answer the needs of a sequencing platform. It provides a user-friendly interface to process, store and download high-throughput sequencing data. PMID:22958229

  14. Expression and characterization of EF-hand I loop mutants of aequorin replaced with other loop sequences of Ca2+-binding proteins: an approach to studying the EF-hand motif of proteins.

    PubMed

    Inouye, Satoshi; Sahara-Miura, Yuiko

    2016-07-01

    The binding properties of Ca(2+) to EF-hand I of aequorin (AQ) were characterized by replacing the loop sequence of EF-hand I (AQ[I]) with other known loop sequences of Ca(2+)-binding proteins, including photoproteins (aequorin, clytin-I, clytin-II and mitrocomin), Renilla luciferin-binding protein (RLBP) and calmodulin (CaM). For evaluation of the binding affinity of Ca(2+) to AQ[I] mutants, the half-decay time of the maximum intensity in the luminescence reaction triggered by Ca(2+) was used as an indicator and 22 kinds of AQ[I] mutants were expressed in Escherichia coli cells. AQ[I] mutants replaced with the EF-hand I and EF-hand III from photoproteins showed sufficient luminescence activity, but it was not shown by other EF-hands from RLBP and CaM. An AQ[I] mutant with a lysine or arginine residue at the second position of the non-conserved amino acid residue showed a slow-decay pattern of luminescence, indicating that the Ca(2+)-binding affinity to aequorin was reduced by a positive charge at the second position of the loop sequence. The specific loop sequence of the EF-hand I motif in aequorin caused the specific Ca(2+)-triggered luminescence pattern. PMID:26896488

  15. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets

    PubMed Central

    2012-01-01

    Background To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. Results We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. Conclusions SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery

  16. A systematic evaluation of sorting motifs in the sodium-iodide symporter (NIS).

    PubMed

    Darrouzet, Elisabeth; Graslin, Fanny; Marcellin, Didier; Tcheremisinova, Iulia; Marchetti, Charles; Salleron, Lisa; Pognonec, Philippe; Pourcher, Thierry

    2016-04-01

    The sodium-iodide symporter (NIS) is an integral membrane protein that plays a crucial role in iodide accumulation, especially in the thyroid. As for many other membrane proteins, its intracellular sorting and distribution have a tremendous effect on its function, and constitute an important aspect of its regulation. Many short sequences have been shown to contribute to protein trafficking along the sorting or endocytic pathways. Using bioinformatics tools, we identified such potential sites on human NIS [tyrosine-based motifs, SH2-(Src homology 2), SH3- and PDZ (post-synaptic density-95/discs large tumour suppressor/zonula occludens-1)-binding motifs, and diacidic, dibasic and dileucine motifs] and analysed their roles using mutagenesis. We found that several of these sites play a role in protein stability and/or targeting to the membrane. Aside from the mutation at position 178 (SH2 plus tyrosine-based motif) that affects iodide uptake, the most drastic effect is associated with the mutation of an internal PDZ-binding motif at position 121 that completely abolishes NIS expression at the plasma membrane. Mutating the sites located on the C-terminal domain of the protein has no effect except for the creation of a diacidic motif that decreases the total NIS protein level without affecting its expression at the plasma membrane. PMID:26831514

  17. Integrating sequence, evolution and functional genomics in regulatory genomics

    PubMed Central

    Vingron, Martin; Brazma, Alvis; Coulson, Richard; van Helden, Jacques; Manke, Thomas; Palin, Kimmo; Sand, Olivier; Ukkonen, Esko

    2009-01-01

    With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome. PMID:19226437

  18. Selection against spurious promoter motifs correlates with translational efficiency across bacteria.

    PubMed

    Froula, Jeffrey L; Francino, M Pilar

    2007-01-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the sigma(70) subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also confirms previous results indicating that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria. PMID:17710145

  19. Characterization of DNA sequences that mediate nuclear protein binding to the regulatory region of the Pisum sativum (pea) chlorophyl a/b binding protein gene AB80: identification of a repeated heptamer motif.

    PubMed

    Argüello, G; García-Hernández, E; Sánchez, M; Gariglio, P; Herrera-Estrella, L; Simpson, J

    1992-05-01

    Two protein factors binding to the regulatory region of the pea chlorophyl a/b binding protein gene AB80 have been identified. One of these factors is found only in green tissue but not in etiolated or root tissue. The second factor (denominated ABF-2) binds to a DNA sequence element that contains a direct heptamer repeat TCTCAAA. It was found that presence of both of the repeats is essential for binding. ABF-2 is present in both green and etiolated tissue and in roots and factors analogous to ABF-2 are present in several plant species. Computer analysis showed that the TCTCAAA motif is present in the regulatory region of several plant genes. PMID:1303797

  20. Fast approximate motif statistics.

    PubMed

    Nicodème, P

    2001-01-01

    We present in this article a fast approximate method for computing the statistics of a number of non-self-overlapping matches of motifs in a random text in the nonuniform Bernoulli model. This method is well suited for protein motifs where the probability of self-overlap of motifs is small. For 96% of the PROSITE motifs, the expectations of occurrences of the motifs in a 7-million-amino-acids random database are computed by the approximate method with less than 1% error when compared with the exact method. Processing of the whole PROSITE takes about 30 seconds with the approximate method. We apply this new method to a comparison of the C. elegans and S. cerevisiae proteomes. PMID:11535175

  1. MannDB – A microbial database of automated protein sequence analyses and evidence integration for protein characterization

    PubMed Central

    Zhou, Carol L Ecale; Lam, Marisa W; Smith, Jason R; Zemla, Adam T; Dyer, Matthew D; Kuczmarski, Thomas A; Vitalis, Elizabeth A; Slezak, Thomas R

    2006-01-01

    Background MannDB was created to meet a need for rapid, comprehensive automated protein sequence analyses to support selection of proteins suitable as targets for driving the development of reagents for pathogen or protein toxin detection. Because a large number of open-source tools were needed, it was necessary to produce a software system to scale the computations for whole-proteome analysis. Thus, we built a fully automated system for executing software tools and for storage, integration, and display of automated protein sequence analysis and annotation data. Description MannDB is a relational database that organizes data resulting from fully automated, high-throughput protein-sequence analyses using open-source tools. Types of analyses provided include predictions of cleavage, chemical properties, classification, features, functional assignment, post-translational modifications, motifs, antigenicity, and secondary structure. Proteomes (lists of hypothetical and known proteins) are downloaded and parsed from Genbank and then inserted into MannDB, and annotations from SwissProt are downloaded when identifiers are found in the Genbank entry or when identical sequences are identified. Currently 36 open-source tools are run against MannDB protein sequences either on local systems or by means of batch submission to external servers. In addition, BLAST against protein entries in MvirDB, our database of microbial virulence factors, is performed. A web client browser enables viewing of computational results and downloaded annotations, and a query tool enables structured and free-text search capabilities. When available, links to external databases, including MvirDB, are provided. MannDB contains whole-proteome analyses for at least one representative organism from each category of biological threat organism listed by APHIS, CDC, HHS, NIAID, USDA, USFDA, and WHO. Conclusion MannDB comprises a large number of genomes and comprehensive protein sequence analyses

  2. Control of Integrated Task Sequences Shapes Components of Reaching.

    PubMed

    Viswanathan, Priya; Whitall, Jill; Kagerer, Florian A

    2016-01-01

    Reaching toward an object usually consists of a sequence of elemental actions. Using a reaching task sequence, the authors investigated how task elements of that sequence affected feedforward and feedback components of the reaching phase of the movement. Nine right-handed adults performed, with their dominant and nondominant hands, 4 tasks of different complexities: a simple reaching task; a reach-to-grasp task; a reach-to-grasp and lift object task; and a reach-to-grasp, lift, and place object task. Results showed that in the reach-to-grasp and lift object task more time was allocated to the feedforward component of the reach phase, while latency between the task elements decreased. We also found between-hand differences, supporting previous findings of increased efficiency of processing planning-related information in the preferred hand. The presence of task-related modifications supports the concept of contextual effects when planning a movement. PMID:27254601

  3. The highly conserved amino acid sequence motif Tyr-Gly-Asp-Thr-Asp-Ser in alpha-like DNA polymerases is required by phage phi 29 DNA polymerase for protein-primed initiation and polymerization.

    PubMed Central

    Bernad, A; Lázaro, J M; Salas, M; Blanco, L

    1990-01-01

    The alpha-like DNA polymerases from bacteriophage phi 29 and other viruses, prokaryotes and eukaryotes contain an amino acid consensus sequence that has been proposed to form part of the dNTP binding site. We have used site-directed mutants to study five of the six highly conserved consecutive amino acids corresponding to the most conserved C-terminal segment (Tyr-Gly-Asp-Thr-Asp-Ser). Our results indicate that in phi 29 DNA polymerase this consensus sequence, although irrelevant for the 3'----5' exonuclease activity, is essential for initiation and elongation. Based on these results and on its homology with known or putative metal-binding amino acid sequences, we propose that in phi 29 DNA polymerase the Tyr-Gly-Asp-Thr-Asp-Ser consensus motif is part of the dNTP binding site, involved in the synthetic activities of the polymerase (i.e., initiation and polymerization), and that it is involved particularly in the metal binding associated with the dNTP site. Images PMID:2191296

  4. Common sequence motifs coding for higher-plant and prokaryotic O-acetylserine (thiol)-lyases: bacterial origin of a chloroplast transit peptide?

    PubMed

    Rolland, N; Job, D; Douce, R

    1993-08-01

    A comparison of the amino acid sequence of O-acetylserine (thiol)-lyase (EC 4.2.99.8) from Escherichia coli and the isoforms of this enzyme found in the cytosolic and chloroplastic compartments of spinach (Spinacia oleracea) leaf cells allows the essential lysine residue involved in the binding of the pyridoxal 5'-phosphate cofactor to be identified. The results of further sequence comparison of cDNAs coding for these proteins are discussed in the frame of the endosymbiotic theory of chloroplast evolution. The results are compatible with a mechanism in which the chloroplast enzyme originated from the cytosolic enzyme and both plant genes originated from a common prokaryotic ancestor. The comparison also suggests that the 5'-non-coding sequence of the bacterial gene was transferred to the plant cell nucleus and that it has been used to create the N-terminal portions of both plant enzymes, and possibly the transit peptide of the chloroplast enzyme. PMID:7916619

  5. Integrating Information Literacy with a Sequenced English Composition Curriculum

    ERIC Educational Resources Information Center

    Holliday, Wendy; Fagerheim, Britt

    2006-01-01

    This article details the process of implementing a sequenced information literacy program for two core English composition courses at Utah State University. An extensive needs assessment guided the project, leading to a curriculum design process with the goal of building a foundation for deeper critical thinking skills. The curriculum development…

  6. Envelope formation is blocked by mutation of a sequence related to the HKD phospholipid metabolism motif in the vaccinia virus F13L protein.

    PubMed

    Roper, R L; Moss, B

    1999-02-01

    The outer envelope of the extracellular form of vaccinia virus is derived from Golgi membranes that have been modified by the insertion of specific viral proteins, of which the major component is the 37-kDa, palmitylated, nonglycosylated product of the F13L gene. The F13L protein contains a variant of the HKD (His-Lys-Asp) motif, which is conserved in numerous enzymes of phospholipid metabolism. Vaccinia virus mutants with a conservative substitution of either the K (K314R) or the D (D319E) residue of the F13L protein formed only tiny plaques similar to those produced by an F13L deletion mutant, were unable to produce extracellular enveloped virions, and failed to mediate low-pH-induced fusion of infected cells. Membrane-wrapped forms of intracellular virus were rarely detected in electron microscopic images of cells infected with either of the mutants. Western blotting and pulse-chase experiments demonstrated that the D319E protein was less stable than either the K314R or wild-type F13L protein. Most striking, however, was the failure of either of the two mutated proteins to concentrate in the Golgi compartment. Palmitylation, oleation, and partitioning of the F13L protein in Triton X-114 detergent were unaffected by the K314R substitution. These results indicated that the F13L protein must retain the K314 and D319 for it to localize in the Golgi compartment and function in membrane envelopment of vaccinia virus. PMID:9882312

  7. Evolutionary Analysis and Classification of OATs, OCTs, OCTNs, and Other SLC22 Transporters: Structure-Function Implications and Analysis of Sequence Motifs

    PubMed Central

    Date, Rishabh C.; Bush, Kevin T.; Springer, Stevan A.; Saier, Milton H.; Wu, Wei; Nigam, Sanjay K.

    2015-01-01

    The SLC22 family includes organic anion transporters (OATs), organic cation transporters (OCTs) and organic carnitine and zwitterion transporters (OCTNs). These are often referred to as drug transporters even though they interact with many endogenous metabolites and signaling molecules (Nigam, S.K., Nature Reviews Drug Discovery, 14:29–44, 2015). Phylogenetic analysis of SLC22 supports the view that these transporters may have evolved over 450 million years ago. Many OAT members were found to appear after a major expansion of the SLC22 family in mammals, suggesting a physiological and/or toxicological role during the mammalian radiation. Putative SLC22 orthologs exist in worms, sea urchins, flies, and ciona. At least six groups of SLC22 exist. OATs and OCTs form two Major clades of SLC22, within which (apart from Oat and Oct subclades), there are also clear Oat-like, Octn, and Oct-related subclades, as well as a distantly related group we term “Oat-related” (which may have different functions). Based on available data, it is arguable whether SLC22A18, which is related to bacterial drug-proton antiporters, should be assigned to SLC22. Disease-causing mutations, single nucleotide polymorphisms (SNPs) and other functionally analyzed mutations in OAT1, OAT3, URAT1, OCT1, OCT2, OCTN1, and OCTN2 map to the first extracellular domain, the large central intracellular domain, and transmembrane domains 9 and 10. These regions are highly conserved within subclades, but not between subclades, and may be necessary for SLC22 transporter function and functional diversification. Our results not only link function to evolutionarily conserved motifs but indicate the need for a revised sub-classification of SLC22. PMID:26536134

  8. Cloning, Expression, and Sequencing of a Cell Surface Antigen Containing a Leucine-Rich Repeat Motif from Bacteroides forsythus ATCC 43037

    PubMed Central

    Sharma, Ashu; Sojar, Hakimuddin T.; Glurich, Ingrid; Honma, Kiyonobu; Kuramitsu, Howard K.; Genco, Robert J.

    1998-01-01

    Bacteroides forsythus is a recently recognized human periodontopathogen associated with advanced, as well as recurrent, periodontitis. However, very little is known about the mechanism of pathogenesis of this organism. The present study was undertaken to identify the surface molecules of this bacterium that may play roles in its adherence to oral tissues or triggering of a host immune response(s). The gene (bspA) encoding a cell surface-associated protein of B. forsythus with an apparent molecular mass of 98 kDa was isolated by immunoscreening of a B. forsythus gene library constructed in a lambda ZAP II vector. The encoded 98-kDa protein (BspA) contains 14 complete repeats of 23 amino acid residues that show partial homology to leucine-rich repeat motifs. A recombinant protein containing the repeat region was expressed in Escherichia coli, purified, and utilized for antibody production, as well as in vitro binding studies. The purified recombinant protein bound strongly to fibronectin and fibrinogen in a dose-dependent manner and further inhibited the binding of B. forsythus cells to these extracellular matrix (ECM) components. In addition, adult patients with B. forsythus-associated periodontitis expressed specific antibodies against the BspA protein. We report here the cloning and expression of an immunogenic cell surface-associated protein (BspA) of B. forsythus and speculate that it mediates the binding of bacteria to ECM components and clotting factors (fibronectin and fibrinogen, respectively), which may be important in the colonization of the oral cavity by this bacterium and is also a target for the host immune response. PMID:9826345

  9. Comparative analysis of the full genome sequence of European bat lyssavirus type 1 and type 2 with other lyssaviruses and evidence for a conserved transcription termination and polyadenylation motif in the G-L 3' non-translated region.

    PubMed

    Marston, D A; McElhinney, L M; Johnson, N; Müller, T; Conzelmann, K K; Tordo, N; Fooks, A R

    2007-04-01

    We report the first full-length genomic sequences for European bat lyssavirus type-1 (EBLV-1) and type-2 (EBLV-2). The EBLV-1 genomic sequence was derived from a virus isolated from a serotine bat in Hamburg, Germany, in 1968 and the EBLV-2 sequence was derived from a virus isolate from a human case of rabies that occurred in Scotland in 2002. A long-distance PCR strategy was used to amplify the open reading frames (ORFs), followed by standard and modified RACE (rapid amplification of cDNA ends) techniques to amplify the 3' and 5' ends. The lengths of each complete viral genome for EBLV-1 and EBLV-2 were 11 966 and 11 930 base pairs, respectively, and follow the standard rhabdovirus genome organization of five viral proteins. Comparison with other lyssavirus sequences demonstrates variation in degrees of homology, with the genomic termini showing a high degree of complementarity. The nucleoprotein was the most conserved, both intra- and intergenotypically, followed by the polymerase (L), matrix and glyco- proteins, with the phosphoprotein being the most variable. In addition, we have shown that the two EBLVs utilize a conserved transcription termination and polyadenylation (TTP) motif, approximately 50 nt upstream of the L gene start codon. All available lyssavirus sequences to date, with the exception of Pasteur virus (PV) and PV-derived isolates, use the second TTP site. This observation may explain differences in pathogenicity between lyssavirus strains, dependent on the length of the untranslated region, which might affect transcriptional activity and RNA stability. PMID:17374776

  10. Integration of new alternative reference strain genome sequences into the Saccharomyces genome database.

    PubMed

    Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C; Dalusag, Kyla; Demeter, Janos; Engel, Stacia; Hellerstedt, Sage T; Karra, Kalpana; Hitz, Benjamin C; Nash, Robert S; Paskov, Kelley; Sheppard, Travis; Skrzypek, Marek; Weng, Shuai; Wong, Edith; Michael Cherry, J

    2016-01-01

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. To provide a wider scope of genetic and phenotypic variation in yeast, the genome sequences and their corresponding annotations from 11 alternative S. cerevisiae reference strains have been integrated into SGD. Genomic and protein sequence information for genes from these strains are now available on the Sequence and Protein tab of the corresponding Locus Summary pages. We illustrate how these genome sequences can be utilized to aid our understanding of strain-specific functional and phenotypic differences.Database URL: www.yeastgenome.org. PMID:27252399

  11. Integration of new alternative reference strain genome sequences into the Saccharomyces genome database

    PubMed Central

    Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C.; Dalusag, Kyla; Demeter, Janos; Engel, Stacia; Hellerstedt, Sage T.; Karra, Kalpana; Hitz, Benjamin C.; Nash, Robert S.; Paskov, Kelley; Sheppard, Travis; Skrzypek, Marek; Weng, Shuai; Wong, Edith; Michael Cherry, J.

    2016-01-01

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. To provide a wider scope of genetic and phenotypic variation in yeast, the genome sequences and their corresponding annotations from 11 alternative S. cerevisiae reference strains have been integrated into SGD. Genomic and protein sequence information for genes from these strains are now available on the Sequence and Protein tab of the corresponding Locus Summary pages. We illustrate how these genome sequences can be utilized to aid our understanding of strain-specific functional and phenotypic differences. Database URL: www.yeastgenome.org PMID:27252399

  12. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, P.; Ciszak, E.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits and two catalytic centers. Each catalytic center (PP:PYR) is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and amhopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core (PP:PYR)(sub 2) within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GXPhiX(sub 4)(G)PhiXXGQ and GDGX(sub 25-30)NN in the PP-domain, and the EX(sub 4)(G)PhiXXGPhi in the PYR-domain, where Phi corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  13. Comparison of SIV and HIV-1 genomic RNA structures reveals impact of sequence evolution on conserved and non-conserved structural motifs.

    PubMed

    Pollom, Elizabeth; Dang, Kristen K; Potter, E Lake; Gorelick, Robert J; Burch, Christina L; Weeks, Kevin M; Swanstrom, Ronald

    2013-01-01

    RNA secondary structure plays a central role in the replication and metabolism of all RNA viruses, including retroviruses like HIV-1. However, structures with known function represent only a fraction of the secondary structure reported for HIV-1(NL4-3). One tool to assess the importance of RNA structures is to examine their conservation over evolutionary time. To this end, we used SHAPE to model the secondary structure of a second primate lentiviral genome, SIVmac239, which shares only 50% sequence identity at the nucleotide level with HIV-1NL4-3. Only about half of the paired nucleotides are paired in both genomic RNAs and, across the genome, just 71 base pairs form with the same pairing partner in both genomes. On average the RNA secondary structure is thus evolving at a much faster rate than the sequence. Structure at the Gag-Pro-Pol frameshift site is maintained but in a significantly altered form, while the impact of selection for maintaining a protein binding interaction can be seen in the conservation of pairing partners in the small RRE stems where Rev binds. Structures that are conserved between SIVmac239 and HIV-1(NL4-3) also occur at the 5' polyadenylation sequence, in the plus strand primer sites, PPT and cPPT, and in the stem-loop structure that includes the first splice acceptor site. The two genomes are adenosine-rich and cytidine-poor. The structured regions are enriched in guanosines, while unpaired regions are enriched in adenosines, and functionaly important structures have stronger base pairing than nonconserved structures. We conclude that much of the secondary structure is the result of fortuitous pairing in a metastable state that reforms during sequence evolution. However, secondary structure elements with important function are stabilized by higher guanosine content that allows regions of structure to persist as sequence evolution proceeds, and, within the confines of selective pressure, allows structures to evolve. PMID:23593004

  14. The Thiamine-Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Dominiak, Paulina

    2004-01-01

    Thiamin pyrophosphate (TPP), a derivative of vitamin B1, is a cofactor for enzymes performing catalysis in pathways of energy production including the well known decarboxylation of a-keto acid dehydrogenases followed by transketolation. TPP-dependent enzymes constitute a structurally and functionally diverse group exhibiting multimeric subunit organization, multiple domains and two chemically equivalent catalytic centers. Annotation of functional TPP-dependcnt enzymes, therefore, has not been trivial due to low sequence similarity related to this complex organization. Our approach to analysis of structures of known TPP-dependent enzymes reveals for the first time features common to this group, which we have termed the TPP-motif. The TPP-motif consists of specific spatial arrangements of structural elements and their specific contacts to provide for a flip-flop, or alternate site, enzymatic mechanism of action. Analysis of structural elements entrained in the flip-flop action displayed by TPP-dependent enzymes reveals a novel definition of the common amino acid sequences. These sequences allow for annotation of TPP-dependent enzymes, thus advancing functional proteomics. Further details of three-dimensional structures of TPP-dependent enzymes will be discussed.

  15. Process sequence optimization for digital microfluidic integration using EWOD technique

    NASA Astrophysics Data System (ADS)

    Yadav, Supriya; Joyce, Robin; Sharma, Akash Kumar; Sharma, Himani; Sharma, Niti Nipun; Varghese, Soney; Akhtar, Jamil

    2016-04-01

    Micro/nano-fluidic MEMS biosensors are the devices that detects the biomolecules. The emerging micro/nano-fluidic devices provide high throughput and high repeatability with very low response time and reduced device cost as compared to traditional devices. This article presents the experimental details for process sequence optimization of digital microfluidics (DMF) using "electrowetting-on-dielectric" (EWOD). Stress free thick film deposition of silicon dioxide using PECVD and subsequent process for EWOD techniques have been optimized in this work.

  16. Integrated visual analysis of protein structures, sequences, and feature data

    PubMed Central

    2015-01-01

    Background To understand the molecular mechanisms that give rise to a protein's function, biologists often need to (i) find and access all related atomic-resolution 3D structures, and (ii) map sequence-based features (e.g., domains, single-nucleotide polymorphisms, post-translational modifications) onto these structures. Results To streamline these processes we recently developed Aquaria, a resource offering unprecedented access to protein structure information based on an all-against-all comparison of SwissProt and PDB sequences. In this work, we provide a requirements analysis for several frequently occuring tasks in molecular biology and describe how design choices in Aquaria meet these requirements. Finally, we show how the interface can be used to explore features of a protein and gain biologically meaningful insights in two case studies conducted by domain experts. Conclusions The user interface design of Aquaria enables biologists to gain unprecedented access to molecular structures and simplifies the generation of insight. The tasks involved in mapping sequence features onto structures can be conducted easier and faster using Aquaria. PMID:26329268

  17. Overlapping CRE and E Box Motifs in the Enhancer Sequences of the Bovine Leukemia Virus 5′ Long Terminal Repeat Are Critical for Basal and Acetylation-Dependent Transcriptional Activity of the Viral Promoter: Implications for Viral Latency

    PubMed Central

    Calomme, Claire; Dekoninck, Ann; Nizet, Séverine; Adam, Emmanuelle; Nguyên, Thi Liên-Anh; Van Den Broeke, Anne; Willems, Luc; Kettmann, Richard; Burny, Arsène; Lint, Carine Van

    2004-01-01

    Bovine leukemia virus (BLV) infection is characterized by viral latency in a large proportion of cells containing an integrated provirus. In this study, we postulated that mechanisms directing the recruitment of deacetylases to the BLV 5′ long terminal repeat (LTR) could explain the transcriptional repression of viral expression in vivo. Accordingly, we showed that BLV promoter activity was induced by several deacetylase inhibitors (such as trichostatin A [TSA]) in the context of episomal LTR constructs and in the context of an integrated BLV provirus. Moreover, treatment of BLV-infected cells with TSA increased H4 acetylation at the viral promoter, showing a close correlation between the level of histone acetylation and transcriptional activation of the BLV LTR. Among the known cis-regulatory DNA elements located in the 5′ LTR, three E box motifs overlapping cyclic AMP responsive elements (CREs) in U3 were shown to be involved in transcriptional repression of BLV basal gene expression. Importantly, the combined mutations of these three E box motifs markedly reduced the inducibility of the BLV promoter by TSA. E boxes are susceptible to recognition by transcriptional repressors such as Max-Mad-mSin3 complexes that repress transcription by recruiting deacetylases. However, our in vitro binding studies failed to reveal the presence of Mad-Max proteins in the BLV LTR E box-specific complexes. Remarkably, TSA increased the occupancy of the CREs by CREB/ATF. Therefore, we postulated that the E box-specific complexes exerted their negative cooperative effect on BLV transcription by steric hindrance with the activators CREB/ATF and/or their transcriptional coactivators possessing acetyltransferase activities. Our results thus suggest that the overlapping CRE and E box elements in the BLV LTR were selected during evolution as a novel strategy for BLV to allow better silencing of viral transcription and to escape from the host immune response. PMID:15564493

  18. Sequence-Based Screening for Rare Enzymes: New Insights into the World of AMDases Reveal a Conserved Motif and 58 Novel Enzymes Clustering in Eight Distinct Families

    PubMed Central

    Maimanakos, Janine; Chow, Jennifer; Gaßmeyer, Sarah K.; Güllert, Simon; Busch, Florian; Kourist, Robert; Streit, Wolfgang R.

    2016-01-01

    Arylmalonate Decarboxylases (AMDases, EC 4.1.1.76) are very rare and mostly underexplored enzymes. Currently only four known and biochemically characterized representatives exist. However, their ability to decarboxylate α-disubstituted malonic acid derivatives to optically pure products without cofactors makes them attractive and promising candidates for the use as biocatalysts in industrial processes. Until now, AMDases could not be separated from other members of the aspartate/glutamate racemase superfamily based on their gene sequences. Within this work, a search algorithm was developed that enables a reliable prediction of AMDase activity for potential candidates. Based on specific sequence patterns and screening methods 58 novel AMDase candidate genes could be identified in this work. Thereby, AMDases with the conserved sequence pattern of Bordetella bronchiseptica’s prototype appeared to be limited to the classes of Alpha-, Beta-, and Gamma-proteobacteria. Amino acid homologies and comparison of gene surrounding sequences enabled the classification of eight enzyme clusters. Particularly striking is the accumulation of genes coding for different transporters of the tripartite tricarboxylate transporters family, TRAP transporters and ABC transporters as well as genes coding for mandelate racemases/muconate lactonizing enzymes that might be involved in substrate uptake or degradation of AMDase products. Further, three novel AMDases were characterized which showed a high enantiomeric excess (>99%) of the (R)-enantiomer of flurbiprofen. These are the recombinant AmdA and AmdV from Variovorax sp. strains HH01 and HH02, originated from soil, and AmdP from Polymorphum gilvum found by a data base search. Altogether our findings give new insights into the class of AMDases and reveal many previously unknown enzyme candidates with high potential for bioindustrial processes. PMID:27610105

  19. Sequence-Based Screening for Rare Enzymes: New Insights into the World of AMDases Reveal a Conserved Motif and 58 Novel Enzymes Clustering in Eight Distinct Families.

    PubMed

    Maimanakos, Janine; Chow, Jennifer; Gaßmeyer, Sarah K; Güllert, Simon; Busch, Florian; Kourist, Robert; Streit, Wolfgang R

    2016-01-01

    Arylmalonate Decarboxylases (AMDases, EC 4.1.1.76) are very rare and mostly underexplored enzymes. Currently only four known and biochemically characterized representatives exist. However, their ability to decarboxylate α-disubstituted malonic acid derivatives to optically pure products without cofactors makes them attractive and promising candidates for the use as biocatalysts in industrial processes. Until now, AMDases could not be separated from other members of the aspartate/glutamate racemase superfamily based on their gene sequences. Within this work, a search algorithm was developed that enables a reliable prediction of AMDase activity for potential candidates. Based on specific sequence patterns and screening methods 58 novel AMDase candidate genes could be identified in this work. Thereby, AMDases with the conserved sequence pattern of Bordetella bronchiseptica's prototype appeared to be limited to the classes of Alpha-, Beta-, and Gamma-proteobacteria. Amino acid homologies and comparison of gene surrounding sequences enabled the classification of eight enzyme clusters. Particularly striking is the accumulation of genes coding for different transporters of the tripartite tricarboxylate transporters family, TRAP transporters and ABC transporters as well as genes coding for mandelate racemases/muconate lactonizing enzymes that might be involved in substrate uptake or degradation of AMDase products. Further, three novel AMDases were characterized which showed a high enantiomeric excess (>99%) of the (R)-enantiomer of flurbiprofen. These are the recombinant AmdA and AmdV from Variovorax sp. strains HH01 and HH02, originated from soil, and AmdP from Polymorphum gilvum found by a data base search. Altogether our findings give new insights into the class of AMDases and reveal many previously unknown enzyme candidates with high potential for bioindustrial processes. PMID:27610105

  20. Self-association motifs in the enteroaggregative Escherichia coli heat-resistant agglutinin 1.

    PubMed

    Glaubman, Jessica; Hofmann, Jennifer; Bonney, Megan E; Park, Sumin; Thomas, Jessica M; Kokona, Bashkim; Ramos Falcón, Laura I; Chung, Yoonjie K; Fairman, Robert; Okeke, Iruka N

    2016-07-01

    The heat-resistant agglutinin 1 (Hra1) is an integral outer membrane protein found in strains of Escherichia coli that are exceptional colonizers. Hra1 from enteroaggregative E. coli strain 042 is sufficient to confer adherence to human epithelial cells and to cause bacterial autoaggregation. Hra1 is closely related to the Tia invasin, which also confers adherence, but not autoaggregation. Here, we have demonstrated that Hra1 mediates autoaggregation by self-association and we hypothesize that at least some surface-exposed amino acid sequences that are present in Hra1, but absent in Tia, represent autoaggregation motifs. We inserted FLAG tags along the length of Hra1 and used immune-dot blots to verify that four in silico-predicted outer loops were indeed surface exposed. In Hra1 we swapped nine candidate motifs in three of these loops, ranging from one to ten amino acids in length, to the corresponding sequences in Tia. Three of the motifs were required for Hra1-mediated autoaggregation. The database was searched for other surface proteins containing these motifs; the GGXWRDDXK motif was also present in a surface-exposed region of Rck, a Salmonella enterica serotype Typhimurium complement resistance protein. Cloning and site-specific mutagenesis demonstrated that Rck can confer weak, GGXWRDDXK-dependent autoaggregation by self-association. Hra1 and Rck appear to form heterologous associations and GGXWRDDXK is required on both molecules for Hra1-Rck association. However, a GGYWRDDLKE peptide was not sufficient to interfere with Hra1-mediated autoaggregation. In the present study, three autoaggregation motifs in an integral outer membrane protein have been identified and it was demonstrated that at least one of them works in the context of a different cell surface. PMID:27166217

  1. ATtRACT-a database of RNA-binding proteins and associated motifs.

    PubMed

    Giudice, Girolamo; Sánchez-Cabo, Fátima; Torroja, Carlos; Lara-Pezzi, Enrique

    2016-01-01

    RNA-binding proteins (RBPs) play a crucial role in key cellular processes, including RNA transport, splicing, polyadenylation and stability. Understanding the interaction between RBPs and RNA is key to improve our knowledge of RNA processing, localization and regulation in a global manner. Despite advances in recent years, a unified non-redundant resource that includes information on experimentally validated motifs, RBPs and integrated tools to exploit this information is lacking. Here, we developed a database named ATtRACT (available athttp://attract.cnic.es) that compiles information on 370 RBPs and 1583 RBP consensus binding motifs, 192 of which are not present in any other database. To populate ATtRACT we (i) extracted and hand-curated experimentally validated data from CISBP-RNA, SpliceAid-F, RBPDB databases, (ii) integrated and updated the unavailable ASD database and (iii) extracted information from Protein-RNA complexes present in Protein Data Bank database through computational analyses. ATtRACT provides also efficient algorithms to search a specific motif and scan one or more RNA sequences at a time. It also allows discoveringde novomotifs enriched in a set of related sequences and compare them with the motifs included in the database.Database URL:http:// attract. cnic. es. PMID:27055826

  2. Evidence for multiple mechanisms for membrane binding and integration via carboxyl-terminal insertion sequences.

    PubMed

    Kim, P K; Janiak-Spens, F; Trimble, W S; Leber, B; Andrews, D W

    1997-07-22

    Subcellular localization of proteins with carboxyl-terminal insertion sequences requires the molecule be both targeted to and integrated into the correct membrane. The mechanism of membrane integration of cytochrome b5 has been shown to be promiscuous, spontaneous, nonsaturable, and independent of membrane proteins. Thus endoplasmic reticulum localization for cytochrome b5 depends primarily on accurate targeting to the appropriate membrane. Here direct comparison of this mechanism with that of three other proteins integrated into membranes via carboxyl-terminal insertion sequences [vesicle-associated membrane protein 1(Vamp1), polyomavirus middle-T antigen, and Bcl-2] revealed that, unlike cytochrome b5, membrane selectivity for these molecules is conferred at least in part by the mechanisms of membrane integration. Bcl-2 membrane integration was similar to that of cytochrome b5 except that insertion into lipid vesicles was inefficient. Unlike cytochrome b5 and Bcl-2, Vamp1 binding to canine pancreatic microsomes was saturable, ATP-dependent, and abolished by mild trypsin treatment of microsomes. Surprisingly, although the insertion sequence of polyomavirus middle-T antigen was sufficient to mediate electrostatic binding to membranes, binding did not lead to integration into the bilayer. Together these results demonstrate that there are at least two different mechanisms for correct membrane integration of proteins with insertion sequences, one mediated primarily by targeting and one relying on factors in the target membrane to mediate selective integration. Our results also demonstrate that, contrary to expectation, hydrophobicity is not sufficient for insertion sequence-mediated membrane integration. We suggest that the structure of the insertion sequence determines whether or not specific membrane-bound receptor proteins are required for membrane integration. PMID:9220974

  3. Clinical integration of next generation sequencing: a policy analysis.

    PubMed

    Kaufman, David; Curnutte, Margaret; McGuire, Amy L

    2014-01-01

    Clinical next generation sequencing (NGS) technologies are challenging existing regulatory paradigms. We advocate a coordinate policy approach, which first requires a comprehensive understanding of the existing regulatory and legal structures. This paper introduces four key policy domains - including quality assurance, insurance coverage, intellectual property management, and data sharing - that must be addressed to ensure high quality clinical NGS. In bringing these policy issues into conversation through this special issue for the Journal of Law, Medicine & Ethics, we hope to lay the foundation for further discussion by a range of stakeholder groups with diverse and strong interests in the governance of NGS. PMID:25298287

  4. Encoded Expansion: An Efficient Algorithm to Discover Identical String Motifs

    PubMed Central

    Azmi, Aqil M.; Al-Ssulami, Abdulrakeeb

    2014-01-01

    A major task in computational biology is the discovery of short recurring string patterns known as motifs. Most of the schemes to discover motifs are either stochastic or combinatorial in nature. Stochastic approaches do not guarantee finding the correct motifs, while the combinatorial schemes tend to have an exponential time complexity with respect to motif length. To alleviate the cost, the combinatorial approach exploits dynamic data structures such as trees or graphs. Recently (Karci (2009) Efficient automatic exact motif discovery algorithms for biological sequences, Expert Systems with Applications 36:7952–7963) devised a deterministic algorithm that finds all the identical copies of string motifs of all sizes in theoretical time complexity of and a space complexity of where is the length of the input sequence and is the length of the longest possible string motif. In this paper, we present a significant improvement on Karci's original algorithm. The algorithm that we propose reports all identical string motifs of sizes that occur at least times. Our algorithm starts with string motifs of size 2, and at each iteration it expands the candidate string motifs by one symbol throwing out those that occur less than times in the entire input sequence. We use a simple array and data encoding to achieve theoretical worst-case time complexity of and a space complexity of Encoding of the substrings can speed up the process of comparison between string motifs. Experimental results on random and real biological sequences confirm that our algorithm has indeed a linear time complexity and it is more scalable in terms of sequence length than the existing algorithms. PMID:24871320

  5. Integration of hepatitis B virus DNA in chromosome-specific satellite sequences

    SciTech Connect

    Shaul, Y.; Garcia, P.D.; Schonberg, S.; Rutter, W.J.

    1986-09-01

    The authors previously reported the cloning and detailed analysis of the integrated hepatitis B virus sequences in a human hepatoma cell line. They report here the integration of at least one of hepatitis B virus at human satellite DNA sequences. The majority of the cellular sequences identified by this satellite were organized as a multimeric composition of a 0.6-kilobase EcoRI fragment. This clone hybridized in situ almost exclusively to the centromeric heterochromatin of chromosomes 1 and 16 and to a lower extent to chromosome 2 and to the heterochromatic region of the Y chromosome. The immediate flanking host sequence appeared as a hierarchy of repeating units which were almost identical to a previously reported human satellite III DNA sequence.

  6. Integrative analysis of next generation sequencing for small non-coding RNAs and transcriptional regulation in Myelodysplastic Syndromes

    PubMed Central

    2011-01-01

    Background Myelodysplastic Syndromes (MDSS) are pre-leukemic disorders with increasing incident rates worldwide, but very limited treatment options. Little is known about small regulatory RNAs and how they contribute to pathogenesis, progression and transcriptome changes in MDS. Methods Patients' primary marrow cells were screened for short RNAs (RNA-seq) using next generation sequencing. Exon arrays from the same cells were used to profile gene expression and additional measures on 98 patients obtained. Integrative bioinformatics algorithms were proposed, and pathway and ontology analysis performed. Results In low-grade MDS, observations implied extensive post-transcriptional regulation via microRNAs (miRNA) and the recently discovered Piwi interacting RNAs (piRNA). Large expression differences were found for MDS-associated and novel miRNAs, including 48 sequences matching to miRNA star (miRNA*) motifs. The detected species were predicted to regulate disease stage specific molecular functions and pathways, including apoptosis and response to DNA damage. In high-grade MDS, results suggested extensive post-translation editing via transfer RNAs (tRNAs), providing a potential link for reduced apoptosis, a hallmark for this disease stage. Bioinformatics analysis confirmed important regulatory roles for MDS linked miRNAs and TFs, and strengthened the biological significance of miRNA*. The "RNA polymerase II promoters" were identified as the tightest controlled biological function. We suggest their control by a miRNA dominated feedback loop, which might be linked to the dramatically different miRNA amounts seen between low and high-grade MDS. Discussion The presented results provide novel findings that build a basis of further investigations of diagnostic biomarkers, targeted therapies and studies on MDS pathogenesis. PMID:21342535

  7. Phage randomization in a charybdotoxin scaffold leads to CD4-mimetic recognition motifs that bind HIV-1 envelope through non-aromatic sequences.

    PubMed

    Li, C; Dowd, C S; Zhang, W; Chaiken, I M

    2001-06-01

    Binding of HIV-1 gp120 to T-cell receptor CD4 initiates conformational changes in the viral envelope that trigger viral entry into host cells. Phage epitope randomization of a beta-turn loop of a charybdotoxin-based miniprotein scaffold was used to identify peptides that can bind gp120 and block the gp120-CD4 interaction. We describe here the display of the charybdotoxin scaffold on the filamentous phage fUSE5, its use to construct a beta-turn library, and miniprotein sequences identified through library panning with immobilized Env gp120. Competition enzyme-linked immunosorbent assay (ELISA) identified high-frequency phage selectants for which specific gp120 binding was competed by sCD4. Several of these selectants contain hydrophobic residues in place of the Phe that occurs in the gp120-binding beta-turns of both CD4 and previously identified scorpion toxin CD4 mimetics. One of these selectants, denoted TXM[24GQTL27], contains GQTL in place of the CD4 beta-turn sequence 40QGSF43. TXM[24GQTL27] peptide was prepared using solid-phase chemical synthesis, its binding to gp120 demonstrated by optical biosensor kinetics analysis and its affinity for the CD4 binding site of gp120 confirmed by competition ELISA. The results demonstrate that aromatic-less loop-containing CD4 recognition mimetics can be formed with detectable envelope protein binding within a beta-turn of the charybdotoxin miniprotein scaffold. The results of this work establish a methodology for phage display of a charybdotoxin miniprotein scaffold and point to the potential value of phage-based epitope randomization of this miniprotein for identifying novel CD4 mimetics. The latter are potentially useful in deconvoluting structural determinants of CD4-HIV envelope recognition and possibly in designing antagonists of viral entry. PMID:11437954

  8. Integrated sequence and immunology filovirus database at Los Alamos.

    PubMed

    Yusim, Karina; Yoon, Hyejin; Foley, Brian; Feng, Shihai; Macke, Jennifer; Dimitrijevic, Mira; Abfalterer, Werner; Szinger, James; Fischer, Will; Kuiken, Carla; Korber, Bette

    2016-01-01

    The Ebola outbreak of 2013-15 infected more than 28 000 people and claimed more lives than all previous filovirus outbreaks combined. Governmental agencies, clinical teams, and the world scientific community pulled together in a multifaceted response ranging from prevention and disease control, to evaluating vaccines and therapeutics in human trials. As this epidemic is finally coming to a close, refocusing on long-term prevention strategies becomes paramount. Given the very real threat of future filovirus outbreaks, and the inherent uncertainty of the next outbreak virus and geographic location, it is prudent to consider the extent and implications of known natural diversity in advancing vaccines and therapeutic approaches. To facilitate such consideration, we have updated and enhanced the content of the filovirus portion of Los Alamos Hemorrhagic Fever Viruses Database. We have integrated and performed baseline analysis of all family ITALIC! Filoviridaesequences deposited into GenBank, with associated immune response data, and metadata, and we have added new computational tools with web-interfaces to assist users with analysis. Here, we (i) describe the main features of updated database, (ii) provide integrated views and some basic analyses summarizing evolutionary patterns as they relate to geo-temporal data captured in the database and (iii) highlight the most conserved regions in the proteome that may be useful for a T cell vaccine strategy.Database URL:www.hfv.lanl.gov. PMID:27103629

  9. A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase.

    PubMed

    Hertz, Emil Peter Thrane; Kruse, Thomas; Davey, Norman E; López-Méndez, Blanca; Sigurðsson, Jón Otti; Montoya, Guillermo; Olsen, Jesper V; Nilsson, Jakob

    2016-08-18

    Dynamic protein phosphorylation is a fundamental mechanism regulating biological processes in all organisms. Protein phosphatase 2A (PP2A) is the main source of phosphatase activity in the cell, but the molecular details of substrate recognition are unknown. Here, we report that a conserved surface-exposed pocket on PP2A regulatory B56 subunits binds to a consensus sequence on interacting proteins, which we term the LxxIxE motif. The composition of the motif modulates the affinity for B56, which in turn determines the phosphorylation status of associated substrates. Phosphorylation of amino acid residues within the motif increases B56 binding, allowing integration of kinase and phosphatase activity. We identify conserved LxxIxE motifs in essential proteins throughout the eukaryotic domain of life and in human viruses, suggesting that the motifs are required for basic cellular function. Our study provides a molecular description of PP2A binding specificity with broad implications for understanding signaling in eukaryotes. PMID:27453045

  10. RMOD: a tool for regulatory motif detection in signaling network.

    PubMed

    Kim, Jinki; Yi, Gwan-Su

    2013-01-01

    Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod. PMID:23874612

  11. Golden Ratio Versus Pi as Random Sequence Sources for Monte Carlo Integration

    NASA Technical Reports Server (NTRS)

    Sen, S. K.; Agarwal, Ravi P.; Shaykhian, Gholam Ali

    2007-01-01

    We discuss here the relative merits of these numbers as possible random sequence sources. The quality of these sequences is not judged directly based on the outcome of all known tests for the randomness of a sequence. Instead, it is determined implicitly by the accuracy of the Monte Carlo integration in a statistical sense. Since our main motive of using a random sequence is to solve real world problems, it is more desirable if we compare the quality of the sequences based on their performances for these problems in terms of quality/accuracy of the output. We also compare these sources against those generated by a popular pseudo-random generator, viz., the Matlab rand and the quasi-random generator ha/ton both in terms of error and time complexity. Our study demonstrates that consecutive blocks of digits of each of these numbers produce a good random sequence source. It is observed that randomly chosen blocks of digits do not have any remarkable advantage over consecutive blocks for the accuracy of the Monte Carlo integration. Also, it reveals that pi is a better source of a random sequence than theta when the accuracy of the integration is concerned.

  12. Serial number tagging reveals a prominent sequence preference of retrotransposon integration.

    PubMed

    Chatterjee, Atreyi Ghatak; Esnault, Caroline; Guo, Yabin; Hung, Stevephen; McQueen, Philip G; Levin, Henry L

    2014-07-01

    Transposable elements (TE) have both negative and positive impact on the biology of their host. As a result, a balance is struck between the host and the TE that relies on directing integration to specific genome territories. The extraordinary capacity of DNA sequencing can create ultra dense maps of integration that are being used to study the mechanisms that position integration. Unfortunately, the great increase in the numbers of insertion sites detected comes with the cost of not knowing which positions are rare targets and which sustain high numbers of insertions. To address this problem we developed the serial number system, a TE tagging method that measures the frequency of integration at single nucleotide positions. We sequenced 1 million insertions of retrotransposon Tf1 in the genome of Schizosaccharomyces pombe and obtained the first profile of integration with frequencies for each individual position. Integration levels at individual nucleotides varied over two orders of magnitude and revealed that sequence recognition plays a key role in positioning integration. The serial number system is a general method that can be applied to determine precise integration maps for retroviruses and gene therapy vectors. PMID:24948612

  13. Protein chaperones Q8ZP25_SALTY from Salmonella typhimurium and HYAE_ECOLI from Escherichia coli exhibit thioredoxin-like structures despite lack of canonical thioredoxin active site sequence motif.

    PubMed

    Parish, David; Benach, Jordi; Liu, Goahua; Singarapu, Kiran Kumar; Xiao, Rong; Acton, Thomas; Su, Min; Bansal, Sonal; Prestegard, James H; Hunt, John; Montelione, Gaetano T; Szyperski, Thomas

    2008-12-01

    The structure of the 142-residue protein Q8ZP25_SALTY encoded in the genome of Salmonella typhimurium LT2 was determined independently by NMR and X-ray crystallography, and the structure of the 140-residue protein HYAE_ECOLI encoded in the genome of Escherichia coli was determined by NMR. The two proteins belong to Pfam (Finn et al. 34:D247-D251, 2006) PF07449, which currently comprises 50 members, and belongs itself to the 'thioredoxin-like clan'. However, protein HYAE_ECOLI and the other proteins of Pfam PF07449 do not contain the canonical Cys-X-X-Cys active site sequence motif of thioredoxin. Protein HYAE_ECOLI was previously classified as a [NiFe] hydrogenase-1 specific chaperone interacting with the twin-arginine translocation (Tat) signal peptide. The structures presented here exhibit the expected thioredoxin-like fold and support the view that members of Pfam family PF07449 specifically interact with Tat signal peptides. PMID:19039680

  14. Protein Chaperones Q8ZP25_SALTY from Salmonella Typhimurium and HYAE_ECOLI from Escherichia coli Exhibit Thioredoxin-like Structures Despite Lack of Canonical Thioredoxin Active Site Sequence Motif

    SciTech Connect

    Parish, D.; Benach, J; Liu, G; Singarapu, K; Xiao, R; Acton, T; Hunt, J; Montelione, G; Szyperski, T; et. al.

    2008-01-01

    The structure of the 142-residue protein Q8ZP25 SALTY encoded in the genome of Salmonella typhimurium LT2 was determined independently by NMR and X-ray crystallography, and the structure of the 140-residue protein HYAE ECOLI encoded in the genome of Escherichia coli was determined by NMR. The two proteins belong to Pfam (Finn et al. 34:D247-D251, 2006) PF07449, which currently comprises 50 members, and belongs itself to the 'thioredoxin-like clan'. However, protein HYAE ECOLI and the other proteins of Pfam PF07449 do not contain the canonical Cys-X-X-Cys active site sequence motif of thioredoxin. Protein HYAE ECOLI was previously classified as a (NiFe) hydrogenase-1 specific chaperone interacting with the twin-arginine translocation (Tat) signal peptide. The structures presented here exhibit the expected thioredoxin-like fold and support the view that members of Pfam family PF07449 specifically interact with Tat signal peptides.

  15. Differences in local genomic context of bound and unbound motifs

    PubMed Central

    Hansen, Loren; Mariño-Ramírez, Leonardo; Landsman, David

    2012-01-01

    Understanding gene regulation is a major objective in molecular biology research. Frequently, transcription is driven by transcription factors (TFs) that bind to specific DNA sequences. These motifs are usually short and degenerate, rendering the likelihood of multiple copies occurring throughout the genome due to random chance as high. Despite this, TFs only bind to a small subset of sites, thus prompting our investigation into the differences between motifs that are bound by TFs and those that remain unbound. Here we constructed vectors representing various chromatin- and sequence-based features for a published set of bound and unbound motifs representing nine TFs in the budding yeast Saccharomyces cerevisiae. Using a machine learning approach, we identified a set of features that can be used to discriminate between bound and unbound motifs. We also discovered that some TFs bind most or all of their strong motifs in intergenic regions. Our data demonstrate that local sequence context can be strikingly different around motifs that are bound compared to motifs that are unbound. We concluded that there are multiple combinations of genomic features that characterize bound or unbound motifs. PMID:22692006

  16. An Integrated SNP Mining and Utilization (ISMU) Pipeline for Next Generation Sequencing Data

    PubMed Central

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M.; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A. V. S. K.; Varshney, Rajeev K.

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone

  17. Amplification, Next-generation Sequencing, and Genomic DNA Mapping of Retroviral Integration Sites.

    PubMed

    Serrao, Erik; Cherepanov, Peter; Engelman, Alan N

    2016-01-01

    Retroviruses exhibit signature integration preferences on both the local and global scales. Here, we present a detailed protocol for (1) generation of diverse libraries of retroviral integration sites using ligation-mediated PCR (LM-PCR) amplification and next-generation sequencing (NGS), (2) mapping the genomic location of each virus-host junction using BEDTools, and (3) analyzing the data for statistical relevance. Genomic DNA extracted from infected cells is fragmented by digestion with restriction enzymes or by sonication. After suitable DNA end-repair, double-stranded linkers are ligated onto the DNA ends, and semi-nested PCR is conducted using primers complementary to both the long terminal repeat (LTR) end of the virus and the ligated linker DNA. The PCR primers carry sequences required for DNA clustering during NGS, negating the requirement for separate adapter ligation. Quality control (QC) is conducted to assess DNA fragment size distribution and adapter DNA incorporation prior to NGS. Sequence output files are filtered for LTR-containing reads, and the sequences defining the LTR and the linker are cropped away. Trimmed host cell sequences are mapped to a reference genome using BLAT and are filtered for minimally 97% identity to a unique point in the reference genome. Unique integration sites are scrutinized for adjacent nucleotide (nt) sequence and distribution relative to various genomic features. Using this protocol, integration site libraries of high complexity can be constructed from genomic DNA in three days. The entire protocol that encompasses exogenous viral infection of susceptible tissue culture cells to integration site analysis can therefore be conducted in approximately one to two weeks. Recent applications of this technology pertain to longitudinal analysis of integration sites from HIV-infected patients. PMID:27023428

  18. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    PubMed Central

    2011-01-01

    Background The HIV surface glycoprotein gp120 (SU, gp120) and the Plasmodium vivax Duffy binding protein (PvDBP) bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM). Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC). A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans. PMID:22122911

  19. Sequence motifs of tissue inhibitor of metalloproteinases 2 (TIMP-2) determining progelatinase A (proMMP-2) binding and activation by membrane-type metalloproteinase 1 (MT1-MMP).

    PubMed Central

    Worley, Joanna R; Thompkins, Philip B; Lee, Meng H; Hutton, Mike; Soloway, Paul; Edwards, Dylan R; Murphy, Gillian; Knäuper, Vera

    2003-01-01

    Fundamental cellular processes including angiogenesis and cell migration require a proteolytic cascade driven by interactions of membrane-type matrix metalloproteinase 1 (MT1-MMP) and progelatinase A (proMMP-2) that are dependent on the presence of tissue inhibitor of metalloproteinases 2 (TIMP-2). There are unique interactions between TIMP-2 and MT1-MMP, which we have previously defined, and here we identify TIMP-2 sequence motifs specific for proMMP-2 binding in the context of its activation by MT1-MMP. A TIMP-2 mutant encoding the C-terminal domain of TIMP-4 showed loss of proMMP-2 activation, indicating that the C-terminal domain of TIMP-2 is important in establishing the trimolecular complex between MT1-MMP, TIMP-2 and proMMP-2. This was confirmed by analysis of a TIMP-4 mutant encoding the C-terminal domain of TIMP-2, which formed a trimolecular complex and promoted proMMP-2 processing to the intermediate form. Mutants encoding TIMP-4 from Cys(1) to Leu(185) and partial tail sequence of TIMP-2 showed some gain of activating capability relative to TIMP-4. The identified residues were subsequently mutated in TIMP-2 (E(192)-D(193) to I(192)-Q(193)) and this inhibitor showed a significantly reduced ability to facilitate proMMP-2 processing by MT1-MMP. Furthermore, the tail-deletion mutant Delta(186-194)TIMP-2 was completely incapable of promoting proMMP-2 activation by MT1-MMP. Thus the C-terminal tail residues of TIMP-2 are important determinants for stable trimolecular complex formation between TIMP-2, proMMP-2 and MT1-MMP and play an important role in MT1-MMP-mediated processing to the intermediate and final active forms of MMP-2 at the cell surface. PMID:12630911

  20. Using the Gibbs Motif Sampler for Phylogenetic Footprinting

    SciTech Connect

    Thompson, William; Conlan, Sean; McCue, Lee Ann; Lawrence, Charles

    2007-07-01

    The Gibbs Motif Sampler (Gibbs) (1) is a software package used to predict conserved elements in biopolymer sequences. While the software can be used to locate conserved motifs in protein sequences, its most common use is the prediction of transcription factor binding sites (TFBSs) in promoters upstream of gene sequences. We will describe approaches that use Gibbs to locate TFBSs in a collection of orthologous nucleotide sequences, i.e. phylogenetic footprinting. To illustrate this technique, we present examples that use Gibbs to detect binding sites for the transcription factor LexA in orthologous sequence data from representative species belonging to two different proteobacterial divisions.

  1. [Personal motif in art].

    PubMed

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy. PMID:26202617

  2. ET-Motif: Solving the Exact (l, d)-Planted Motif Problem Using Error Tree Structure.

    PubMed

    Al-Okaily, Anas; Huang, Chun-Hsi

    2016-07-01

    Motif finding is an important and a challenging problem in many biological applications such as discovering promoters, enhancers, locus control regions, transcription factors, and more. The (l, d)-planted motif search, PMS, is one of several variations of the problem. In this problem, there are n given sequences over alphabets of size [Formula: see text], each of length m, and two given integers l and d. The problem is to find a motif m of length l, where in each sequence there is at least an l-mer at a Hamming distance of [Formula: see text] of m. In this article, we propose ET-Motif, an algorithm that can solve the PMS problem in [Formula: see text] time and [Formula: see text] space. The time bound can be further reduced by a factor of m with [Formula: see text] space. In case the suffix tree that is built for the input sequences is balanced, the problem can be solved in [Formula: see text] time and [Formula: see text] space. Similarly, the time bound can be reduced by a factor of m using [Formula: see text] space. Moreover, the variations of the problem, namely the edit distance PMS and edited PMS (Quorum), can be solved using ET-Motif with simple modifications but upper bands of space and time. For edit distance PMS, the time and space bounds will be increased by [Formula: see text], while for edited PMS the increase will be of [Formula: see text] in the time bound. PMID:27152692

  3. Identifying combinatorial regulation of transcription factors and binding motifs

    PubMed Central

    Kato, Mamoru; Hata, Naoya; Banerjee, Nilanjana; Futcher, Bruce; Zhang, Michael Q

    2004-01-01

    Background Combinatorial interaction of transcription factors (TFs) is important for gene regulation. Although various genomic datasets are relevant to this issue, each dataset provides relatively weak evidence on its own. Developing methods that can integrate different sequence, expression and localization data have become important. Results Here we use a novel method that integrates chromatin immunoprecipitation (ChIP) data with microarray expression data and with combinatorial TF-motif analysis. We systematically identify combinations of transcription factors and of motifs. The various combinations of TFs involved multiple binding mechanisms. We reconstruct a new combinatorial regulatory map of the yeast cell cycle in which cell-cycle regulation can be drawn as a chain of extended TF modules. We find that the pairwise combination of a TF for an early cell-cycle phase and a TF for a later phase is often used to control gene expression at intermediate times. Thus the number of distinct times of gene expression is greater than the number of transcription factors. We also see that some TF modules control branch points (cell-cycle entry and exit), and in the presence of appropriate signals they can allow progress along alternative pathways. Conclusions Combining different data sources can increase statistical power as demonstrated by detecting TF interactions and composite TF-binding motifs. The original picture of a chain of simple cell-cycle regulators can be extended to a chain of composite regulatory modules: different modules may share a common TF component in the same pathway or a TF component cross-talking to other pathways. PMID:15287978

  4. Cloning and sequencing of viral integration site in human fibroblasts immortalized by simian virus 40.

    PubMed

    Yano, O; Hirano, H; Karasaki, Y; Higashi, K; Nakamura, H; Akiya, S; Gotoh, S

    1991-02-01

    We have analyzed cellular DNA sequences at the viral genome integration site in a human fibroblast cell line VA13 immortalized by simian virus 40 (SV40). The computer analysis of the junctional cellular DNA sequences did not show any homology to the DNA sequences previously reported. This suggests that immortalization by SV40 was not induced by the destruction of any known oncogene or anti-oncogene at the integration site. We did not find the precise substantial sequence homology at the junctional site between the cellular DNA and SV40 DNA, indicating that the recombination mechanism involved does not require precise sequence homology and therefore, SV40 genome was probably not integrated by homologous recombination. Short direct and inverted repeats of 5 to 29 nucleotides were found in the junctional cellular and SV40 DNA. Cellular DNA abutting SV40 DNA was found by the Northern blot analysis to be expressed in diploid human fibroblasts and SV40-transformed cells. The nature of this RNA is now under study. PMID:1851675

  5. CDinFusion--submission-ready, on-line integration of sequence and contextual data.

    PubMed

    Hankeln, Wolfgang; Wendel, Norma Johanna; Gerken, Jan; Waldmann, Jost; Buttigieg, Pier Luigi; Kostadinov, Ivaylo; Kottmann, Renzo; Yilmaz, Pelin; Glöckner, Frank Oliver

    2011-01-01

    State of the art (DNA) sequencing methods applied in "Omics" studies grant insight into the 'blueprints' of organisms from all domains of life. Sequencing is carried out around the globe and the data is submitted to the public repositories of the International Nucleotide Sequence Database Collaboration. However, the context in which these studies are conducted often gets lost, because experimental data, as well as information about the environment are rarely submitted along with the sequence data. If these contextual or metadata are missing, key opportunities of comparison and analysis across studies and habitats are hampered or even impossible. To address this problem, the Genomic Standards Consortium (GSC) promotes checklists and standards to better describe our sequence data collection and to promote the capturing, exchange and integration of sequence data with contextual data. In a recent community effort the GSC has developed a series of recommendations for contextual data that should be submitted along with sequence data. To support the scientific community to significantly enhance the quality and quantity of contextual data in the public sequence data repositories, specialized software tools are needed. In this work we present CDinFusion, a web-based tool to integrate contextual and sequence data in (Multi)FASTA format prior to submission. The tool is open source and available under the Lesser GNU Public License 3. A public installation is hosted and maintained at the Max Planck Institute for Marine Microbiology at http://www.megx.net/cdinfusion. The tool may also be installed locally using the open source code available at http://code.google.com/p/cdinfusion. PMID:21935468

  6. CDinFusion – Submission-Ready, On-Line Integration of Sequence and Contextual Data

    PubMed Central

    Hankeln, Wolfgang; Wendel, Norma Johanna; Gerken, Jan; Waldmann, Jost; Buttigieg, Pier Luigi; Kostadinov, Ivaylo; Kottmann, Renzo; Yilmaz, Pelin; Glöckner, Frank Oliver

    2011-01-01

    State of the art (DNA) sequencing methods applied in “Omics” studies grant insight into the ‘blueprints’ of organisms from all domains of life. Sequencing is carried out around the globe and the data is submitted to the public repositories of the International Nucleotide Sequence Database Collaboration. However, the context in which these studies are conducted often gets lost, because experimental data, as well as information about the environment are rarely submitted along with the sequence data. If these contextual or metadata are missing, key opportunities of comparison and analysis across studies and habitats are hampered or even impossible. To address this problem, the Genomic Standards Consortium (GSC) promotes checklists and standards to better describe our sequence data collection and to promote the capturing, exchange and integration of sequence data with contextual data. In a recent community effort the GSC has developed a series of recommendations for contextual data that should be submitted along with sequence data. To support the scientific community to significantly enhance the quality and quantity of contextual data in the public sequence data repositories, specialized software tools are needed. In this work we present CDinFusion, a web-based tool to integrate contextual and sequence data in (Multi)FASTA format prior to submission. The tool is open source and available under the Lesser GNU Public License 3. A public installation is hosted and maintained at the Max Planck Institute for Marine Microbiology at http://www.megx.net/cdinfusion. The tool may also be installed locally using the open source code available at http://code.google.com/p/cdinfusion. PMID:21935468

  7. Evidence for integration of retroviral vectors in a novel human repeat sequence

    SciTech Connect

    Kurdi-Haidar, B.; Friedmann, T.

    1994-09-01

    Retroviruses have become attractive vehicles for the introduction of foreign genes into mammalian cells not only for gene therapy but also to serve as anchor points for long-range mapping purposes. The information relating to retroviral integration in mammalian cells is derived mostly from studies of rodent genomes. The absence of information regarding integration sites of murine-based retroviral vectors in human cells has prompted us to investigate the characteristics of integration sites in the human genome. We have constructed a Moloney murine leukemia virus-based retroviral vector that carries the pUC8 origin of replication and the chloramphenicol resistance gene to allow the rescue of the flanking genomic sequences in plasmid form. We have infected human primary fibroblasts and myoblasts with this retroviral vector and isolated independently transduced clones. Genomic DNA was obtained from independent clones and the genomic fragment carrying the provirus-host sequence boundary was isolated after digestion of the genomic DNA, circularization, and transformation by electroporation of E. coli C cells to chloramphenicol resistance. Restriction map and nucleotide sequence analysis of the rescued plasmids showed that a number of the clones shared the same integration site within the human genome. We have used the nucleotide sequence information about the human DNA adjacent to the 3{prime}LTR to design a PCR-based assay diagnostic for this common integration site. Analysis revealed the presence of the same integration site in four out of twelve human primary fibroblast clones infected with this specific retroviral vector, and in one out of twelve human primary myoblast clones infected with a second retroviral vector. Further analysis revealed the common integration site to be a previously unreported primate repeat present in monkey and human genomes and absent from rodent, bovine and avian genomes.

  8. Sequenced Integration and the Identification of a Problem-Solving Approach through a Learning Process

    ERIC Educational Resources Information Center

    Cormas, Peter C.

    2016-01-01

    Preservice teachers (N = 27) in two sections of a sequenced, methodological and process integrated mathematics/science course solved a levers problem with three similar learning processes and a problem-solving approach, and identified a problem-solving approach through one different learning process. Similar learning processes used included:…

  9. Characterization of evolutionarily conserved motifs involved in activity and regulation of the ABA-INSENSITIVE (ABI) 4 transcription factor.

    PubMed

    Gregorio, Josefat; Hernández-Bernal, Alma Fabiola; Cordoba, Elizabeth; León, Patricia

    2014-02-01

    In recent years, the transcription factor ABI4 has emerged as an important node of integration for external and internal signals such as nutrient status and hormone signaling that modulates critical transitions during the growth and development of plants. For this reason, understanding the mechanism of action and regulation of this protein represents an important step towards the elucidation of crosstalk mechanisms in plants. However, this understanding has been hindered due to the negligible levels of this protein as a result of multiple posttranscriptional regulations. To better understand the function and regulation of the ABI4 protein in this work, we performed a functional analysis of several evolutionarily conserved motifs. Based on these conserved motifs, we identified ortholog genes of ABI4 in different plant species. The functionality of the putative ortholog from Theobroma cacao was demonstrated in transient expression assays and in complementation studies in plants. The function of the highly conserved motifs was analyzed after their deletion or mutagenesis in the Arabidopsis ABI4 sequence using mesophyll protoplasts. This approach permitted us to immunologically detect the ABI4 protein and identify some of the mechanisms involved in its regulation. We identified sequences required for the nuclear localization (AP2-associated motif) as well as those for transcriptional activation function (LRP motif). Moreover, this approach showed that the protein stability of this transcription factor is controlled through protein degradation and subcellular localization and involves the AP2-associated and the PEST motifs. We demonstrated that the degradation of ABI4 protein through the PEST motif is mediated by the 26S proteasome in response to changes in the sugar levels. PMID:24046063

  10. Integration of complete chloroplast genome sequences with small amplicon datasets improves phylogenetic resolution in Acacia.

    PubMed

    Williams, Anna V; Miller, Joseph T; Small, Ian; Nevill, Paul G; Boykin, Laura M

    2016-03-01

    Combining whole genome data with previously obtained amplicon sequences has the potential to increase the resolution of phylogenetic analyses, particularly at low taxonomic levels or where recent divergence, rapid speciation or slow genome evolution has resulted in limited sequence variation. However, the integration of these types of data for large scale phylogenetic studies has rarely been investigated. Here we conduct a phylogenetic analysis of the whole chloroplast genome and two nuclear ribosomal loci for 65 Acacia species from across the most recent Acacia phylogeny. We then combine this data with previously generated amplicon sequences (four chloroplast loci and two nuclear ribosomal loci) for 508 Acacia species. We use several phylogenetic methods, including maximum likelihood bootstrapping (with and without constraint) and ExaBayes, in order to determine the success of combining a dataset of 4000bp with one of 189,000bp. The results of our study indicate that the inclusion of whole genome data gave a far better resolved and well supported representation of the phylogenetic relationships within Acacia than using only amplicon sequences, with the greatest support observed when using a whole genome phylogeny as a constraint on the amplicon sequences. Our study therefore provides methods for optimal integration of genomic and amplicon sequences. PMID:26702955

  11. Multimodal phylogeny for taxonomy: integrating information from nucleotide and amino acid sequences.

    PubMed

    Bicego, Manuele; Dellaglio, Franco; Felis, Giovanna E

    2007-10-01

    The crucial role played by the analysis of microbial diversity in biotechnology-based innovations has increased the interest in the microbial taxonomy research area. Phylogenetic sequence analyses have contributed significantly to the advances in this field, also in the view of the large amount of sequence data collected in recent years. Phylogenetic analyses could be realized on the basis of protein-encoding nucleotide sequences or encoded amino acid molecules: these two mechanisms present different peculiarities, still starting from two alternative representations of the same information. This complementarity could be exploited to achieve a multimodal phylogenetic scheme that is able to integrate gene and protein information in order to realize a single final tree. This aspect has been poorly addressed in the literature. In this paper, we propose to integrate the two phylogenetic analyses using basic schemes derived from the multimodality fusion theory (or multiclassifier systems theory), a well-founded and rigorous branch for which its powerfulness has already been demonstrated in other pattern recognition contexts. The proposed approach could be applied to distance matrix-based phylogenetic techniques (like neighbor joining), resulting in a smart and fast method. The proposed methodology has been tested in a real case involving sequences of some species of lactic acid bacteria. With this dataset, both nucleotide sequence- and amino acid sequence-based phylogenetic analyses present some drawbacks, which are overcome with the multimodal analysis. PMID:17933011

  12. Integrable maps from Galois differential algebras, Borel transforms and number sequences

    NASA Astrophysics Data System (ADS)

    Tempesta, Piergiulio

    A new class of integrable maps, obtained as lattice versions of polynomial dynamical systems is introduced. These systems are obtained by means of a discretization procedure that preserves several analytic and algebraic properties of a given differential equation, in particular symmetries and integrability (see Tempesta, 2010 [40]). Our approach is based on the properties of a suitable Galois differential algebra, that we shall call a Rota algebra. A formulation of the procedure in terms of category theory is proposed. In order to render the lattice dynamics confined, a Borel regularization is also adopted. As a byproduct of the theory, a connection between number sequences and integrability is discussed.

  13. Bioinformatics Approaches for Predicting Disordered Protein Motifs.

    PubMed

    Bhowmick, Pallab; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Short, linear motifs (SLiMs) in proteins are functional microdomains consisting of contiguous residue segments along the protein sequence, typically not more than 10 consecutive amino acids in length with less than 5 defined positions. Many positions are 'degenerate' thus offering flexibility in terms of the amino acid types allowed at those positions. Their short length and degenerate nature confers evolutionary plasticity meaning that SLiMs often evolve convergently. Further, SLiMs have a propensity to occur within intrinsically unstructured protein segments and this confers versatile functionality to unstructured regions of the proteome. SLiMs mediate multiple types of protein interactions based on domain-peptide recognition and guide functions including posttranslational modifications, subcellular localization of proteins, and ligand binding. SLiMs thus behave as modular interaction units that confer versatility to protein function and SLiM-mediated interactions are increasingly being recognized as therapeutic targets. In this chapter we start with a brief description about the properties of SLiMs and their interactions and then move on to discuss algorithms and tools including several web-based methods that enable the discovery of novel SLiMs (de novo motif discovery) as well as the prediction of novel occurrences of known SLiMs. Both individual amino acid sequences as well as sets of protein sequences can be scanned using these methods to obtain statistically overrepresented sequence patterns. Lists of putatively functional SLiMs are then assembled based on parameters such as evolutionary sequence conservation, disorder scores, structural data, gene ontology terms and other contextual information that helps to assess the functional credibility or significance of these motifs. These bioinformatics methods should certainly guide experiments aimed at motif discovery. PMID:26387106

  14. Ballast: A Ball-based Algorithm for Structural Motifs

    PubMed Central

    He, Lu; Vandin, Fabio; Pandurangan, Gopal

    2013-01-01

    Abstract Structural motifs encapsulate local sequence-structure-function relationships characteristic of related proteins, enabling the prediction of functional characteristics of new proteins, providing molecular-level insights into how those functions are performed, and supporting the development of variants specifically maintaining or perturbing function in concert with other properties. Numerous computational methods have been developed to search through databases of structures for instances of specified motifs. However, it remains an open problem how best to leverage the local geometric and chemical constraints underlying structural motifs in order to develop motif-finding algorithms that are both theoretically and practically efficient. We present a simple, general, efficient approach, called Ballast (ball-based algorithm for structural motifs), to match given structural motifs to given structures. Ballast combines the best properties of previously developed methods, exploiting the composition and local geometry of a structural motif and its possible instances in order to effectively filter candidate matches. We show that on a wide range of motif-matching problems, Ballast efficiently and effectively finds good matches, and we provide theoretical insights into why it works well. By supporting generic measures of compositional and geometric similarity, Ballast provides a powerful substrate for the development of motif-matching algorithms. PMID:23383999

  15. Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins.

    PubMed

    Wang, Ying; Ding, Jun; Daniell, Henry; Hu, Haiyan; Li, Xiaoman

    2012-09-01

    Chloroplasts play critical roles in land plant cells. Despite their importance and the availability of at least 200 sequenced chloroplast genomes, the number of known DNA regulatory sequences in chloroplast genomes are limited. In this paper, we designed computational methods to systematically study putative DNA regulatory sequences in intergenic regions near chloroplast genes in seven plant species and in promoter sequences of nuclear genes in Arabidopsis and rice. We found that -35/-10 elements alone cannot explain the transcriptional regulation of chloroplast genes. We also concluded that there are unlikely motifs shared by intergenic sequences of most of chloroplast genes, indicating that these genes are regulated differently. Finally and surprisingly, we found five conserved motifs, each of which occurs in no more than six chloroplast intergenic sequences, are significantly shared by promoters of nuclear-genes encoding chloroplast proteins. By integrating information from gene function annotation, protein subcellular localization analyses, protein-protein interaction data, and gene expression data, we further showed support of the functionality of these conserved motifs. Our study implies the existence of unknown nuclear-encoded transcription factors that regulate both chloroplast genes and nuclear genes encoding chloroplast protein, which sheds light on the understanding of the transcriptional regulation of chloroplast genes. PMID:22733202

  16. cWINNOWER Algorithm for Finding Fuzzy DNA Motifs

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan

    2003-01-01

    The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if multiple mutated copies of the motif (i.e., the signals) are present in the DNA sequence in sufficient abundance. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum number of detectable motifs qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc, by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12000 for (l,d) = (15,4).

  17. A physical map of the papaya genome with integrated genetic map and genome sequence

    PubMed Central

    2009-01-01

    Background Papaya is a major fruit crop in tropical and subtropical regions worldwide and has primitive sex chromosomes controlling sex determination in this trioecious species. The papaya genome was recently sequenced because of its agricultural importance, unique biological features, and successful application of transgenic papaya for resistance to papaya ringspot virus. As a part of the genome sequencing project, we constructed a BAC-based physical map using a high information-content fingerprinting approach to assist whole genome shotgun sequence assembly. Results The physical map consists of 963 contigs, representing 9.4× genome equivalents, and was integrated with the genetic map and genome sequence using BAC end sequences and a sequence-tagged high-density genetic map. The estimated genome coverage of the physical map is about 95.8%, while 72.4% of the genome was aligned to the genetic map. A total of 1,181 high quality overgo (overlapping oligonucleotide) probes representing conserved sequences in Arabidopsis and genetically mapped loci in Brassica were anchored on the physical map, which provides a foundation for comparative genomics in the Brassicales. The integrated genetic and physical map aligned with the genome sequence revealed recombination hotspots as well as regions suppressed for recombination across the genome, particularly on the recently evolved sex chromosomes. Suppression of recombination spread to the adjacent region of the male specific region of the Y chromosome (MSY), and recombination rates were recovered gradually and then exceeded the genome average. Recombination hotspots were observed at about 10 Mb away on both sides of the MSY, showing 7-fold increase compared with the genome wide average, demonstrating the dynamics of recombination of the sex chromosomes. Conclusion A BAC-based physical map of papaya was constructed and integrated with the genetic map and genome sequence. The integrated map facilitated the draft genome assembly

  18. IMSA: integrated metagenomic sequence analysis for identification of exogenous reads in a host genomic background.

    PubMed

    Dimon, Michelle T; Wood, Henry M; Rabbitts, Pamela H; Arron, Sarah T

    2013-01-01

    Metagenomics, the study of microbial genomes within diverse environments, is a rapidly developing field. The identification of microbial sequences within a host organism enables the study of human intestinal, respiratory, and skin microbiota, and has allowed the identification of novel viruses in diseases such as Merkel cell carcinoma. There are few publicly available tools for metagenomic high throughput sequence analysis. We present Integrated Metagenomic Sequence Analysis (IMSA), a flexible, fast, and robust computational analysis pipeline that is available for public use. IMSA takes input sequence from high throughput datasets and uses a user-defined host database to filter out host sequence. IMSA then aligns the filtered reads to a user-defined universal database to characterize exogenous reads within the host background. IMSA assigns a score to each node of the taxonomy based on read frequency, and can output this as a taxonomy report suitable for cluster analysis or as a taxonomy map (TaxMap). IMSA also outputs the specific sequence reads assigned to a taxon of interest for downstream analysis. We demonstrate the use of IMSA to detect pathogens and normal flora within sequence data from a primary human cervical cancer carrying HPV16, a primary human cutaneous squamous cell carcinoma carrying HPV 16, the CaSki cell line carrying HPV16, and the HeLa cell line carrying HPV18. PMID:23717627

  19. Unexpected Inheritance: Multiple Integrations of Ancient Bornavirus and Ebolavirus/Marburgvirus Sequences in Vertebrate Genomes

    PubMed Central

    Belyi, Vladimir A.; Levine, Arnold J.; Skalka, Anna Marie

    2010-01-01

    Vertebrate genomes contain numerous copies of retroviral sequences, acquired over the course of evolution. Until recently they were thought to be the only type of RNA viruses to be so represented, because integration of a DNA copy of their genome is required for their replication. In this study, an extensive sequence comparison was conducted in which 5,666 viral genes from all known non-retroviral families with single-stranded RNA genomes were matched against the germline genomes of 48 vertebrate species, to determine if such viruses could also contribute to the vertebrate genetic heritage. In 19 of the tested vertebrate species, we discovered as many as 80 high-confidence examples of genomic DNA sequences that appear to be derived, as long ago as 40 million years, from ancestral members of 4 currently circulating virus families with single strand RNA genomes. Surprisingly, almost all of the sequences are related to only two families in the Order Mononegavirales: the Bornaviruses and the Filoviruses, which cause lethal neurological disease and hemorrhagic fevers, respectively. Based on signature landmarks some, and perhaps all, of the endogenous virus-like DNA sequences appear to be LINE element-facilitated integrations derived from viral mRNAs. The integrations represent genes that encode viral nucleocapsid, RNA-dependent-RNA-polymerase, matrix and, possibly, glycoproteins. Integrations are generally limited to one or very few copies of a related viral gene per species, suggesting that once the initial germline integration was obtained (or selected), later integrations failed or provided little advantage to the host. The conservation of relatively long open reading frames for several of the endogenous sequences, the virus-like protein regions represented, and a potential correlation between their presence and a species' resistance to the diseases caused by these pathogens, are consistent with the notion that their products provide some important biological

  20. Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation

    PubMed Central

    Coppe, Alessandro; Ferrari, Francesco; Bisognin, Andrea; Danieli, Gian Antonio; Ferrari, Sergio; Bicciato, Silvio; Bortoluzzi, Stefania

    2009-01-01

    Genes co-expressed may be under similar promoter-based and/or position-based regulation. Although data on expression, position and function of human genes are available, their true integration still represents a challenge for computational biology, hampering the identification of regulatory mechanisms. We carried out an integrative analysis of genomic position, functional annotation and promoters of genes expressed in myeloid cells. Promoter analysis was conducted by a novel multi-step method for discovering putative regulatory elements, i.e. over-represented motifs, in a selected set of promoters, as compared with a background model. The combination of transcriptional, structural and functional data allowed the identification of sets of promoters pertaining to groups of genes co-expressed and co-localized in regions of the human genome. The application of motif discovery to 26 groups of genes co-expressed in myeloid cells differentiation and co-localized in the genome showed that there are more over-represented motifs in promoters of co-expressed and co-localized genes than in promoters of simply co-expressed genes (CEG). Motifs, which are similar to the binding sequences of known transcription factors, non-uniformly distributed along promoter sequences and/or occurring in highly co-expressed subset of genes were identified. Co-expressed and co-localized gene sets were grouped in two co-expressed genomic meta-regions, putatively representing functional domains of a high-level expression regulation. PMID:19059999

  1. Accelerated Integrated Science Sequence: An Interdisciplinary Introductory Course for Science Majors

    PubMed Central

    Copp, Newton H.; Black, Kersey; Gould, Scot

    2012-01-01

    We report here on our development of an introductory science course sequence that integrates biology, chemistry and physics in order to foster an interdisciplinary perspective in future science majors. Accelerated Integrated Science Sequence (AISS) is a two semester, double credit sequence co-taught by a biologist, a physicist and a chemist to first year undergraduates who plan to major in a natural science field. Topics are organized within a thematic framework. The course sequence also features integration of various pedagogical approaches as students shift from one type of activity to another within the same class session. The presence of AISS in our curriculum over the past five years has been correlated with increased recruitment and graduation of students in science majors and a perception within the department that AISS has helped improve the culture of learning. These benefits outweigh the difficulties of developing such a course and encourage us that interdisciplinary introductory courses can make important contributions to training versatile scientists. PMID:23494601

  2. Preparation of Nucleic Acid Libraries for Personalized Sequencing Systems Using an Integrated Microfluidic Hub Technology (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Patel, Kamlesh D [Ken]; SNL,

    2013-01-25

    Kamlesh (Ken) Patel from Sandia National Laboratories (Livermore, California) presents "Preparation of Nucleic Acid Libraries for Personalized Sequencing Systems Using an Integrated Microfluidic Hub Technology " at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  3. Integrating Sequencing Technologies in Personal Genomics: Optimal Low Cost Reconstruction of Structural Variants

    PubMed Central

    Du, Jiang; Bjornson, Robert D.; Zhang, Zhengdong D.; Kong, Yong; Snyder, Michael; Gerstein, Mark B.

    2009-01-01

    The goal of human genome re-sequencing is obtaining an accurate assembly of an individual's genome. Recently, there has been great excitement in the development of many technologies for this (e.g. medium and short read sequencing from companies such as 454 and SOLiD, and high-density oligo-arrays from Affymetrix and NimbelGen), with even more expected to appear. The costs and sensitivities of these technologies differ considerably from each other. As an important goal of personal genomics is to reduce the cost of re-sequencing to an affordable point, it is worthwhile to consider optimally integrating technologies. Here, we build a simulation toolbox that will help us optimally combine different technologies for genome re-sequencing, especially in reconstructing large structural variants (SVs). SV reconstruction is considered the most challenging step in human genome re-sequencing. (It is sometimes even harder than de novo assembly of small genomes because of the duplications and repetitive sequences in the human genome.) To this end, we formulate canonical problems that are representative of issues in reconstruction and are of small enough scale to be computationally tractable and simulatable. Using semi-realistic simulations, we show how we can combine different technologies to optimally solve the assembly at low cost. With mapability maps, our simulations efficiently handle the inhomogeneous repeat-containing structure of the human genome and the computational complexity of practical assembly algorithms. They quantitatively show how combining different read lengths is more cost-effective than using one length, how an optimal mixed sequencing strategy for reconstructing large novel SVs usually also gives accurate detection of SNPs/indels, how paired-end reads can improve reconstruction efficiency, and how adding in arrays is more efficient than just sequencing for disentangling some complex SVs. Our strategy should facilitate the sequencing of human genomes at

  4. Does the proposed DSE motif form the active center in the Hermes transposase?

    PubMed

    Michel, K; O'Brochta, D A; Atkinson, P W

    2002-10-01

    Donor cleavage and strand transfer are two functions performed by transposases during transposition of class II transposable elements. Within transposable elements, the only active center described, to date, facilitating both functions, is the so-called DDE motif. A second motif, R-K-H/K-R-H/W-Y, is found in the site-specific recombinases of the tyrosine recombinase family. While present in many bacterial insertion sequences as well as in the eukaryotic family of mariner/Tc1 elements, the DDE motif was considered absent in other classes of eukaryotic class II elements such as P, and hAT and piggyBac. Based on sequence alignments of a hobo-like element from the nematode Caenorhabditis elegans, to a variety of other hAT transposases and several members of the mariner/Tc1 group, Bigot et al. [Gene 174 (1996) 265] proposed the presence of a DSE motif in hAT transposases. In the present study we tested if each of these three residues is required for transposition of the Hermes element, a member of the hAT family commonly used for insect transformation. While D402N and E572Q mutations lead to knock-out of Hermes function, mutations S535A and S535D did not affect transposition frequency or the choice of integration sites. These data give the first experimental support that D402 and E572 are indeed required for transposition of Hermes. Furthermore, this study indicates that the active center of the Hermes transposase differs from the proposed DSE motif. It remains to be shown if other residues also form the active site of this transposase. PMID:12426102

  5. Sequencing and beyond: integrating molecular ‘omics for microbial community profiling

    PubMed Central

    Franzosa, Eric A.; Hsu, Tiffany; Sirota-Madi, Alexandra; Shafquat, Afrah; Abu-Ali, Galeb; Morgan, Xochitl C.

    2016-01-01

    High-throughput DNA sequencing has proven invaluable for investigating diverse environmental and host-associated microbial communities. In this Review, we discuss emerging strategies for microbial community analysis that complement and expand traditional metagenomic profiling. These include novel DNA sequencing strategies for identifying strain-level microbial variation and community temporal dynamics; measuring additional multi'omic data types that better capture community functional activity, such as transcriptomics, proteomics, and metabolomics; and combining multiple forms of multi'omic data in an integrated framework. We highlight studies in which the multi'omics approach has led to improved mechanistic models of microbial community structure and function. PMID:25915636

  6. An integrated computational pipeline and database to support whole-genome sequence annotation

    PubMed Central

    Mungall, CJ; Misra, S; Berman, BP; Carlson, J; Frise, E; Harris, N; Marshall, B; Shu, S; Kaminker, JS; Prochnik, SE; Smith, CD; Smith, E; Tupy, JL; Wiel, C; Rubin, GM; Lewis, SE

    2002-01-01

    We describe here our experience in annotating the Drosophila melanogaster genome sequence, in the course of which we developed several new open-source software tools and a database schema to support large-scale genome annotation. We have developed these into an integrated and reusable software system for whole-genome annotation. The key contributions to overall annotation quality are the marshalling of high-quality sequences for alignments and the design of a system with an adaptable and expandable flexible architecture. PMID:12537570

  7. Vy-PER: eliminating false positive detection of virus integration events in next generation sequencing data

    PubMed Central

    Forster, Michael; Szymczak, Silke; Ellinghaus, David; Hemmrich, Georg; Rühlemann, Malte; Kraemer, Lars; Mucha, Sören; Wienbrandt, Lars; Stanulla, Martin; Franke, Andre

    2015-01-01

    Several pathogenic viruses such as hepatitis B and human immunodeficiency viruses may integrate into the host genome. These virus/host integrations are detectable using paired-end next generation sequencing. However, the low number of expected true virus integrations may be difficult to distinguish from the noise of many false positive candidates. Here, we propose a novel filtering approach that increases specificity without compromising sensitivity for virus/host chimera detection. Our detection pipeline termed Vy-PER (Virus integration detection bY Paired End Reads) outperforms existing similar tools in speed and accuracy. We analysed whole genome data from childhood acute lymphoblastic leukemia (ALL), which is characterised by genomic rearrangements and usually associated with radiation exposure. This analysis was motivated by the recently reported virus integrations at genomic rearrangement sites and association with chromosomal instability in liver cancer. However, as expected, our analysis of 20 tumour and matched germline genomes from ALL patients finds no significant evidence for integrations by known viruses. Nevertheless, our method eliminates 12,800 false positives per genome (80× coverage) and only our method detects singleton human-phiX174-chimeras caused by optical errors of the Illumina HiSeq platform. This high accuracy is useful for detecting low virus integration levels as well as non-integrated viruses. PMID:26166306

  8. Vy-PER: eliminating false positive detection of virus integration events in next generation sequencing data.

    PubMed

    Forster, Michael; Szymczak, Silke; Ellinghaus, David; Hemmrich, Georg; Rühlemann, Malte; Kraemer, Lars; Mucha, Sören; Wienbrandt, Lars; Stanulla, Martin; Franke, Andre

    2015-01-01

    Several pathogenic viruses such as hepatitis B and human immunodeficiency viruses may integrate into the host genome. These virus/host integrations are detectable using paired-end next generation sequencing. However, the low number of expected true virus integrations may be difficult to distinguish from the noise of many false positive candidates. Here, we propose a novel filtering approach that increases specificity without compromising sensitivity for virus/host chimera detection. Our detection pipeline termed Vy-PER (Virus integration detection bY Paired End Reads) outperforms existing similar tools in speed and accuracy. We analysed whole genome data from childhood acute lymphoblastic leukemia (ALL), which is characterised by genomic rearrangements and usually associated with radiation exposure. This analysis was motivated by the recently reported virus integrations at genomic rearrangement sites and association with chromosomal instability in liver cancer. However, as expected, our analysis of 20 tumour and matched germline genomes from ALL patients finds no significant evidence for integrations by known viruses. Nevertheless, our method eliminates 12,800 false positives per genome (80× coverage) and only our method detects singleton human-phiX174-chimeras caused by optical errors of the Illumina HiSeq platform. This high accuracy is useful for detecting low virus integration levels as well as non-integrated viruses. PMID:26166306

  9. SPIC: A novel similarity metric for comparing transcription factor binding site motifs based on information contents

    PubMed Central

    2013-01-01

    Background Discovering transcription factor binding sites (TFBS) is one of primary challenges to decipher complex gene regulatory networks encrypted in a genome. A set of short DNA sequences identified by a transcription factor (TF) is known as a motif, which can be expressed accurately in matrix form such as a position-specific scoring matrix (PSSM) and a position frequency matrix. Very frequently, we need to query a motif in a database of motifs by seeking its similar motifs, merge similar TFBS motifs possibly identified by the same TF, separate irrelevant motifs, or filter out spurious motifs. Therefore, a novel metric is required to seize slight differences between irrelevant motifs and highlight the similarity between motifs of the same group in all these applications. While there are already several metrics for motif similarity proposed before, their performance is still far from satisfactory for these applications. Methods A novel metric has been proposed in this paper with name as SPIC (Similarity with Position Information Contents) for measuring the similarity between a column of a motif and a column of another motif. When defining this similarity score, we consider the likelihood that the column of the first motif's PFM can be produced by the column of the second motif's PSSM, and multiply the likelihood by the information content of the column of the second motif's PSSM, and vise versa. We evaluated the performance of SPIC combined with a local or a global alignment method having a function for affine gap penalty, for computing the similarity between two motifs. We also compared SPIC with seven existing state-of-the-arts metrics for their capability of clustering motifs from the same group and retrieving motifs from a database on three datasets. Results When used jointly with the Smith-Waterman local alignment method with an affine gap penalty function (gap open penalty is equal to1, gap extension penalty is equal to 0.5), SPIC outperforms the seven

  10. Integrating ChIP-sequencing and digital gene expression profiling to identify BRD7 downstream genes and construct their regulating network.

    PubMed

    Xu, Ke; Xiong, Wei; Zhou, Ming; Wang, Heran; Yang, Jing; Li, Xiayu; Chen, Pan; Liao, Qianjin; Deng, Hao; Li, Xiaoling; Li, Guiyuan; Zeng, Zhaoyang

    2016-01-01

    BRD7 is a single bromodomain-containing protein that functions as a subunit of the SWI/SNF chromatin-remodeling complex to regulate transcription. It also interacts with the well-known tumor suppressor protein p53 to trans-activate genes involved in cell cycle arrest. In this paper, we report an integrative analysis of genome-wide chromatin occupancy of BRD7 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and digital gene expression (DGE) profiling by RNA-sequencing upon the overexpression of BRD7 in human cells. We localized 156 BRD7-binding peaks representing 184 genes by ChIP-sequencing, and most of these peaks were co-localized with histone modification sites. Four novel motifs were significantly represented in these BRD7-enriched regions. Ingenuity pathway analysis revealed that 22 of these BRD7 target genes were involved in a network regulating cell death and survival. DGE profiling identified 560 up-regulated genes and 1088 down-regulated genes regulated by BRD7. Using Gene Ontology and pathway analysis, we found significant enrichment of the cell cycle and apoptosis pathway genes. For the integrative analysis of the ChIP-seq and DEG data, we constructed a regulating network of BRD7 downstream genes, and this network suggests multiple feedback regulations of the pathways. Furthermore, we validated BIRC2, BIRC3, TXN2, and NOTCH1 genes as direct, functional BRD7 targets, which were involved in the cell cycle and apoptosis pathways. These results provide a genome-wide view of chromatin occupancy and the gene regulation network of the BRD7 signaling pathway. PMID:26407966

  11. The building blocks and motifs of RNA architecture

    PubMed Central

    Leontis, Neocles B; Lescoute, Aurelie; Westhof, Eric

    2010-01-01

    RNA motifs can be defined broadly as recurrent structural elements containing multiple intramolecular RNA–RNA interactions, as observed in atomic-resolution RNA structures. They constitute the modular building blocks of RNA architecture, which is organized hierarchically. Recent work has focused on analyzing RNA backbone conformations to identify, define and search for new instances of recurrent motifs in X-ray structures. One current view asserts that recurrent RNA strand segments with characteristic backbone configurations qualify as independent motifs. Other considerations indicate that, to characterize modular motifs, one must take into account the larger structural context of such strand segments. This follows the biologically relevant motivation, which is to identify RNA structural characteristics that are subject to sequence constraints and that thus relate RNA architectures to sequences. PMID:16713707

  12. ELM: the status of the 2010 eukaryotic linear motif resource

    PubMed Central

    Gould, Cathryn M.; Diella, Francesca; Via, Allegra; Puntervoll, Pål; Gemünd, Christine; Chabanis-Davidson, Sophie; Michael, Sushama; Sayadi, Ahmed; Bryne, Jan Christian; Chica, Claudia; Seiler, Markus; Davey, Norman E.; Haslam, Niall; Weatheritt, Robert J.; Budd, Aidan; Hughes, Tim; Paś, Jakub; Rychlewski, Leszek; Travé, Gilles; Aasland, Rein; Helmer-Citterich, Manuela; Linding, Rune; Gibson, Toby J.

    2010-01-01

    Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a ‘Bar Code’ format, which also displays known instances from homologous proteins through a novel ‘Instance Mapper’ protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation. PMID:19920119

  13. An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments.

    PubMed

    Duitama, Jorge; Quintero, Juan Camilo; Cruz, Daniel Felipe; Quintero, Constanza; Hubmann, Georg; Foulquié-Moreno, Maria R; Verstrepen, Kevin J; Thevelein, Johan M; Tohme, Joe

    2014-04-01

    Recent advances in high-throughput sequencing (HTS) technologies and computing capacity have produced unprecedented amounts of genomic data that have unraveled the genetics of phenotypic variability in several species. However, operating and integrating current software tools for data analysis still require important investments in highly skilled personnel. Developing accurate, efficient and user-friendly software packages for HTS data analysis will lead to a more rapid discovery of genomic elements relevant to medical, agricultural and industrial applications. We therefore developed Next-Generation Sequencing Eclipse Plug-in (NGSEP), a new software tool for integrated, efficient and user-friendly detection of single nucleotide variants (SNVs), indels and copy number variants (CNVs). NGSEP includes modules for read alignment, sorting, merging, functional annotation of variants, filtering and quality statistics. Analysis of sequencing experiments in yeast, rice and human samples shows that NGSEP has superior accuracy and efficiency, compared with currently available packages for variants detection. We also show that only a comprehensive and accurate identification of repeat regions and CNVs allows researchers to properly separate SNVs from differences between copies of repeat elements. We expect that NGSEP will become a strong support tool to empower the analysis of sequencing data in a wide range of research projects on different species. PMID:24413664

  14. An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments

    PubMed Central

    Duitama, Jorge; Quintero, Juan Camilo; Cruz, Daniel Felipe; Quintero, Constanza; Hubmann, Georg; Foulquié-Moreno, Maria R.; Verstrepen, Kevin J.; Thevelein, Johan M.; Tohme, Joe

    2014-01-01

    Recent advances in high-throughput sequencing (HTS) technologies and computing capacity have produced unprecedented amounts of genomic data that have unraveled the genetics of phenotypic variability in several species. However, operating and integrating current software tools for data analysis still require important investments in highly skilled personnel. Developing accurate, efficient and user-friendly software packages for HTS data analysis will lead to a more rapid discovery of genomic elements relevant to medical, agricultural and industrial applications. We therefore developed Next-Generation Sequencing Eclipse Plug-in (NGSEP), a new software tool for integrated, efficient and user-friendly detection of single nucleotide variants (SNVs), indels and copy number variants (CNVs). NGSEP includes modules for read alignment, sorting, merging, functional annotation of variants, filtering and quality statistics. Analysis of sequencing experiments in yeast, rice and human samples shows that NGSEP has superior accuracy and efficiency, compared with currently available packages for variants detection. We also show that only a comprehensive and accurate identification of repeat regions and CNVs allows researchers to properly separate SNVs from differences between copies of repeat elements. We expect that NGSEP will become a strong support tool to empower the analysis of sequencing data in a wide range of research projects on different species. PMID:24413664

  15. Hierarchical Bayesian model for rare variant association analysis integrating genotype uncertainty in human sequence data.

    PubMed

    He, Liang; Pitkäniemi, Janne; Sarin, Antti-Pekka; Salomaa, Veikko; Sillanpää, Mikko J; Ripatti, Samuli

    2015-02-01

    Next-generation sequencing (NGS) has led to the study of rare genetic variants, which possibly explain the missing heritability for complex diseases. Most existing methods for rare variant (RV) association detection do not account for the common presence of sequencing errors in NGS data. The errors can largely affect the power and perturb the accuracy of association tests due to rare observations of minor alleles. We developed a hierarchical Bayesian approach to estimate the association between RVs and complex diseases. Our integrated framework combines the misclassification probability with shrinkage-based Bayesian variable selection. It allows for flexibility in handling neutral and protective RVs with measurement error, and is robust enough for detecting causal RVs with a wide spectrum of minor allele frequency (MAF). Imputation uncertainty and MAF are incorporated into the integrated framework to achieve the optimal statistical power. We demonstrate that sequencing error does significantly affect the findings, and our proposed model can take advantage of it to improve statistical power in both simulated and real data. We further show that our model outperforms existing methods, such as sequence kernel association test (SKAT). Finally, we illustrate the behavior of the proposed method using a Finnish low-density lipoprotein cholesterol study, and show that it identifies an RV known as FH North Karelia in LDLR gene with three carriers in 1,155 individuals, which is missed by both SKAT and Granvil. PMID:25395270

  16. Development and Assessment of a Horizontally Integrated Biological Sciences Course Sequence for Pharmacy Education

    PubMed Central

    Wright, Nicholas J.D.; Alston, Gregory L.

    2015-01-01

    Objective. To design and assess a horizontally integrated biological sciences course sequence and to determine its effectiveness in imparting the foundational science knowledge necessary to successfully progress through the pharmacy school curriculum and produce competent pharmacy school graduates. Design. A 2-semester course sequence integrated principles from several basic science disciplines: biochemistry, molecular biology, cellular biology, anatomy, physiology, and pathophysiology. Each is a 5-credit course taught 5 days per week, with 50-minute class periods. Assessment. Achievement of outcomes was determined with course examinations, student lecture, and an annual skills mastery assessment. The North American Pharmacist Licensure Examination (NAPLEX) results were used as an indicator of competency to practice pharmacy. Conclusion. Students achieved course objectives and program level outcomes. The biological sciences integrated course sequence was successful in providing students with foundational basic science knowledge required to progress through the pharmacy program and to pass the NAPLEX. The percentage of the school’s students who passed the NAPLEX was not statistically different from the national percentage. PMID:26430276

  17. De Novo Regulatory Motif Discovery Identifies Significant Motifs in Promoters of Five Classes of Plant Dehydrin Genes

    PubMed Central

    Zolotarov, Yevgen; Strömvik, Martina

    2015-01-01

    Plants accumulate dehydrins in response to osmotic stresses. Dehydrins are divided into five different classes, which are thought to be regulated in different manners. To better understand differences in transcriptional regulation of the five dehydrin classes, de novo motif discovery was performed on 350 dehydrin promoter sequences from a total of 51 plant genomes. Overrepresented motifs were identified in the promoters of five dehydrin classes. The Kn dehydrin promoters contain motifs linked with meristem specific expression, as well as motifs linked with cold/dehydration and abscisic acid response. KS dehydrin promoters contain a motif with a GATA core. SKn and YnSKn dehydrin promoters contain motifs that match elements connected with cold/dehydration, abscisic acid and light response. YnKn dehydrin promoters contain motifs that match abscisic acid and light response elements, but not cold/dehydration response elements. Conserved promoter motifs are present in the dehydrin classes and across different plant lineages, indicating that dehydrin gene regulation is likely also conserved. PMID:26114291

  18. Integrated genome and transcriptome sequencing identifies a novel form of hybrid and aggressive prostate cancer.

    PubMed

    Wu, Chunxiao; Wyatt, Alexander W; Lapuk, Anna V; McPherson, Andrew; McConeghy, Brian J; Bell, Robert H; Anderson, Shawn; Haegert, Anne; Brahmbhatt, Sonal; Shukin, Robert; Mo, Fan; Li, Estelle; Fazli, Ladan; Hurtado-Coll, Antonio; Jones, Edward C; Butterfield, Yaron S; Hach, Faraz; Hormozdiari, Fereydoun; Hajirasouliha, Iman; Boutros, Paul C; Bristow, Robert G; Jones, Steven Jm; Hirst, Martin; Marra, Marco A; Maher, Christopher A; Chinnaiyan, Arul M; Sahinalp, S Cenk; Gleave, Martin E; Volik, Stanislav V; Collins, Colin C

    2012-05-01

    Next-generation sequencing is making sequence-based molecular pathology and personalized oncology viable. We selected an individual initially diagnosed with conventional but aggressive prostate adenocarcinoma and sequenced the genome and transcriptome from primary and metastatic tissues collected prior to hormone therapy. The histology-pathology and copy number profiles were remarkably homogeneous, yet it was possible to propose the quadrant of the prostate tumour that likely seeded the metastatic diaspora. Despite a homogeneous cell type, our transcriptome analysis revealed signatures of both luminal and neuroendocrine cell types. Remarkably, the repertoire of expressed but apparently private gene fusions, including C15orf21:MYC, recapitulated this biology. We hypothesize that the amplification and over-expression of the stem cell gene MSI2 may have contributed to the stable hybrid cellular identity. This hybrid luminal-neuroendocrine tumour appears to represent a novel and highly aggressive case of prostate cancer with unique biological features and, conceivably, a propensity for rapid progression to castrate-resistance. Overall, this work highlights the importance of integrated analyses of genome, exome and transcriptome sequences for basic tumour biology, sequence-based molecular pathology and personalized oncology. PMID:22294438

  19. cWINNOWER algorithm for finding fuzzy dna motifs

    NASA Technical Reports Server (NTRS)

    Liang, S.; Samanta, M. P.; Biegel, B. A.

    2004-01-01

    The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if a clique consisting of a sufficiently large number of mutated copies of the motif (i.e., the signals) is present in the DNA sequence. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum detectable clique size qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12,000 for (l, d) = (15, 4). Copyright Imperial College Press.

  20. Finding specific RNA motifs: Function in a zeptomole world?

    PubMed Central

    KNIGHT, ROB; YARUS, MICHAEL

    2003-01-01

    We have developed a new method for estimating the abundance of any modular (piecewise) RNA motif within a longer random region. We have used this method to estimate the size of the active motifs available to modern SELEX experiments (picomoles of unique sequences) and to a plausible RNA World (zeptomoles of unique sequences: 1 zmole = 602 sequences). Unexpectedly, activities such as specific isoleucine binding are almost certainly present in zeptomoles of molecules, and even ribozymes such as self-cleavage motifs may appear (depending on assumptions about the minimal structures). The number of specified nucleotides is not the only important determinant of a motif’s rarity: The number of modules into which it is divided, and the details of this division, are also crucial. We propose three maxims for easily isolated motifs: the Maxim of Minimization, the Maxim of Multiplicity, and the Maxim of the Median. These maxims together state that selected motifs should be small and composed of as many separate, equally sized modules as possible. For evenly divided motifs with four modules, the largest accessible activity in picomole scale (1–1000 pmole) pools of length 100 is about 34 nucleotides; while for zeptomole scale (1–1000 zmole) pools it is about 20 specific nucleotides (50% probability of occurrence). This latter figure includes some ribozymes and aptamers. Consequently, an RNA metabolism apparently could have begun with only zeptomoles of RNA molecules. PMID:12554865

  1. Modulation of RGD sequence motifs regulates disintegrin recognition of alphaIIb beta3 and alpha5 beta1 integrin complexes. Replacement of elegantin alanine-50 with proline, N-terminal to the RGD sequence, diminishes recognition of the alpha5 beta1 complex with restoration induced by Mn2+ cation.

    PubMed Central

    Rahman, S; Aitken, A; Flynn, G; Formstone, C; Savidge, G F

    1998-01-01

    Several recent studies have demonstrated that the amino acid residues flanking the RGD sequence of high-affinity ligands modulate their specificity of interaction with integrin complexes. The present study has addressed the role of the residues flanking the RGD sequence in regulating the recognition by disintegrin of the alphaIIb beta3 and alpha5beta1 complexes by construction of a panel of recombinant molecules of Elegantin (the platelet aggregation inhibitor from the venom of Trimerasurus elegans) expressing specific RGD sequence motifs. Wild-type Elegantin (ARGDNP) and several variants including Eleg. AM (ARGDMP), Eleg. PM (PRGDMP) and Eleg. PN (PRGDNP) were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli. The inhibitory efficacies of the panel of Elegantin variants were analysed in platelet adhesion assays with substrates immobilized with fibrinogen and fibronectin. Elegantin molecules containing an Ala residue N-terminal to the RGD sequence (wild-type Elegantin and Eleg. AM) showed strong inhibitory activity towards alphaIIbbeta3-dependent platelet adhesion on fibronectin, whereas a Pro residue in this position (Eleg. PM and Kistrin, the inhibitor from the venom of Calloselasma rhodostoma) engendered lower activity. The decreased activity could not be attributed to a decrease in the affinity of the disintegrin for the alphaIIb beta3 complex because both Eleg. AM and Eleg. PM had similar Kd (app) values. In contrast, Elegantin molecules into which a Met residue was introduced in place of the Asn residue C-terminal to the RGD sequence showed 10-13-fold elevated inhibitory activity towards platelet adhesion on fibrinogen and this was maintained with either a Pro or Ala residue N-terminal to the RGD sequence. In experiments with the alpha5 beta1 complex on K562 cells, the inhibitory efficacies of the panel of Elegantin molecules were analysed under two different cation conditions. First, in the presence of Ca2+/Mg2+, K562 cell

  2. The Molecular Evolution of the Qo Motif

    PubMed Central

    Kao, Wei-Chun; Hunte, Carola

    2014-01-01

    Quinol oxidation in the catalytic quinol oxidation site (Qo site) of cytochrome (cyt) bc1 complexes is the key step of the Q cycle mechanism, which laid the ground for Mitchell’s chemiosmotic theory of energy conversion. Bifurcated electron transfer upon quinol oxidation enables proton uptake and release on opposite membrane sides, thus generating a proton gradient that fuels ATP synthesis in cellular respiration and photosynthesis. The Qo site architecture formed by cyt b and Rieske iron–sulfur protein (ISP) impedes harmful bypass reactions. Catalytic importance is assigned to four residues of cyt b formerly described as PEWY motif in the context of mitochondrial complexes, which we now denominate Qo motif as comprehensive evolutionary sequence analysis of cyt b shows substantial natural variance of the motif with phylogenetically specific patterns. In particular, the Qo motif is identified as PEWY in mitochondria, α- and ε-Proteobacteria, Aquificae, Chlorobi, Cyanobacteria, and chloroplasts. PDWY is present in Gram-positive bacteria, Deinococcus–Thermus and haloarchaea, and PVWY in β- and γ-Proteobacteria. PPWF only exists in Archaea. Distinct patterns for acidophilic organisms indicate environment-specific adaptations. Importantly, the presence of PDWY and PEWY is correlated with the redox potential of Rieske ISP and quinone species. We propose that during evolution from low to high potential electron-transfer systems in the emerging oxygenic atmosphere, cyt bc1 complexes with PEWY as Qo motif prevailed to efficiently use high potential ubiquinone as substrate, whereas cyt b with PDWY operate best with low potential Rieske ISP and menaquinone, with the latter being the likely composition of the ancestral cyt bc1 complex. PMID:25115012

  3. DNA nanotechnology based on i-motif structures.

    PubMed

    Dong, Yuanchen; Yang, Zhongqiang; Liu, Dongsheng

    2014-06-17

    CONSPECTUS: Most biological processes happen at the nanometer scale, and understanding the energy transformations and material transportation mechanisms within living organisms has proved challenging. To better understand the secrets of life, researchers have investigated artificial molecular motors and devices over the past decade because such systems can mimic certain biological processes. DNA nanotechnology based on i-motif structures is one system that has played an important role in these investigations. In this Account, we summarize recent advances in functional DNA nanotechnology based on i-motif structures. The i-motif is a DNA quadruplex that occurs as four stretches of cytosine repeat sequences form C·CH(+) base pairs, and their stabilization requires slightly acidic conditions. This unique property has produced the first DNA molecular motor driven by pH changes. The motor is reliable, and studies show that it is capable of millisecond running speeds, comparable to the speed of natural protein motors. With careful design, the output of these types of motors was combined to drive micrometer-sized cantilevers bend. Using established DNA nanostructure assembly and functionalization methods, researchers can easily integrate the motor within other DNA assembled structures and functional units, producing DNA molecular devices with new functions such as suprahydrophobic/suprahydrophilic smart surfaces that switch, intelligent nanopores triggered by pH changes, molecular logic gates, and DNA nanosprings. Recently, researchers have produced motors driven by light and electricity, which have allowed DNA motors to be integrated within silicon-based nanodevices. Moreover, some devices based on i-motif structures have proven useful for investigating processes within living cells. The pH-responsiveness of the i-motif structure also provides a way to control the stepwise assembly of DNA nanostructures. In addition, because of the stability of the i-motif, this

  4. Motifs, modules and games in bacteria

    SciTech Connect

    Wolf, Denise M.; Arkin, Adam P.

    2003-04-01

    Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment. Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.

  5. Integrated on-line system for DNA sequencing by capillary electrophoresis: From template to called bases

    SciTech Connect

    Ton, H.; Yeung, E.S.

    1997-02-15

    An integrated on-line prototype for coupling a microreactor to capillary electrophoresis for DNA sequencing has been demonstrated. A dye-labeled terminator cycle-sequencing reaction is performed in a fused-silica capillary. Subsequently, the sequencing ladder is directly injected into a size-exclusion chromatographic column operated at nearly 95{degree}C for purification. On-line injection to a capillary for electrophoresis is accomplished at a junction set at nearly 70{degree}C. High temperature at the purification column and injection junction prevents the renaturation of DNA fragments during on-line transfer without affecting the separation. The high solubility of DNA in and the relatively low ionic strength of 1 x TE buffer permit both effective purification and electrokinetic injection of the DNA sample. The system is compatible with highly efficient separations by a replaceable poly(ethylene oxide) polymer solution in uncoated capillary tubes. Future automation and adaptation to a multiple-capillary array system should allow high-speed, high-throughput DNA sequencing from templates to called bases in one step. 32 refs., 5 figs.

  6. Integrated circoviral rep-like sequences in the genome of cyprinid fish.

    PubMed

    Fehér, Enikő; Székely, Csaba; Lőrincz, Márta; Cech, Gábor; Tuboly, Tamás; Singh, Hridaya Shanker; Bányai, Krisztián; Farkas, Szilvia L

    2013-10-01

    Recently a new group of circoviruses have been detected in tissues of Barbel fish and European catfish in Hungary. In our study circovirus genomes were screened in eight additional fish species for the detection and characterization of circoviruses. Two species of these bore circoviral sequences based on conventional PCR assay targeting the replication-associated protein coding gene fragments. Interestingly, the methods successfully used before failed to amplify other parts of the circular viral genome, suggesting the presence of partial, integrated genetic elements in the genome of the host. The successfully sequenced fragments of the Indian rohu (Labeo rohita) encoded mutations which may cause frameshifts or termination in the coding region described previously in other vertebrates. Phylogenetic analyses presumed that integration of the viral genetic elements might have progressed concurrently or following the diversification of cyprinid fish. Further studies on the nature of whole circovirus genomes and integrated elements may help to understand their potential role and evolution in different fish species. PMID:23780219

  7. Integrative clinical sequencing in the management of children and young adults with refractory or relapsed cancer

    PubMed Central

    Mody, Rajen J.; Wu, Yi-Mi; Lonigro, Robert J.; Cao, Xuhong; Roychowdhury, Sameek; Vats, Pankaj; Frank, Kevin M.; Prensner, John R.; Asangani, Irfan; Palanisamy, Nallasivam; Dillman, Jonathan R.; Rabah, Raja M.; Kunju, Laxmi Priya; Everett, Jessica; Raymond, Victoria M.; Ning, Yu; Su, Fengyun; Wang, Rui; Stoffel, Elena M.; Innis, Jeffrey W.; Roberts, J. Scott; Robertson, Patricia L.; Yanik, Gregory; Chamdin, Aghiad; Connelly, James A.; Choi, Sung; Harris, Andrew C.; Kitko, Carrie; Rao, Rama Jasty; Levine, John E.; Castle, Valerie P.; Hutchinson, Raymond J.; Talpaz, Moshe; Robinson, Dan R.; Chinnaiyan, Arul M.

    2016-01-01

    Importance Cancer is caused by a diverse array of somatic and germline genomic aberrations. Advances in genomic sequencing technologies have improved the ability to detect these molecular aberrations with greater sensitivity. However, integrating them into clinical management in an individualized manner has proven challenging. Objective To evaluate the use of integrative clinical sequencing and genetic counseling in the assessment and treatment of children and young adults with cancer. Design, Settings and Participants An observational, consecutive case series (May 2012–October 2014) of 102 children and young adults (mean age, 10.6; median age, 11.5, range: 0–22 years) with relapsed, refractory, or rare cancer at a single major academic medical center. Exposures Each participant underwent integrative clinical exome (tumor and germline DNA) and transcriptome (tumor RNA) sequencing along with genetic counseling. Results were discussed in a multi-disciplinary Precision Medicine Tumor Board (PMTB) and recommendations were reported to treating physicians and families. Main Outcomes and Measures Proportion of patients with potentially actionable findings (PAF), results of clinical actions based on integrative clinical sequencing (ICS), and estimated proportion of patients or their families at risk for future cancer. PAF was defined as any genomic findings discovered during sequencing analysis that could lead to a 1) change in patient management by providing a targetable molecular aberration, 2) change in diagnosis or risk stratification or 3) provides cancer-related germline findings, which inform patients/families about a potential future risk of various cancers; Results We screened 104 patients and enrolled 102 patients of which 91 (89%) had adequate tumor tissue available to complete sequencing and only these patients were included in all subsequent calculations, including 28 (31%) with hematological malignancies and 63 (69%) with solid tumors. Overall, 42 (46

  8. A novel predictor for protein structural class based on integrated information of the secondary structure sequence.

    PubMed

    Zhang, Lichao; Zhao, Xiqiang; Kong, Liang; Liu, Shuxia

    2014-08-01

    The structural class has become one of the most important features for characterizing the overall folding type of a protein and played important roles in many aspects of protein research. At present, it is still a challenging problem to accurately predict protein structural class for low-similarity sequences. In this study, an 18-dimensional integrated feature vector is proposed by fusing the information about content and position of the predicted secondary structure elements. The consistently high accuracies of jackknife and 10-fold cross-validation tests on different low-similarity benchmark datasets show that the proposed method is reliable and stable. Comparison of our results with other methods demonstrates that our method is an effective computational tool for protein structural class prediction, especially for low-similarity sequences. PMID:24859536

  9. Mining tertiary structural motifs for assessment of designability.

    PubMed

    Zhang, Jian; Grigoryan, Gevorg

    2013-01-01

    The observation of a limited secondary-structural alphabet in native proteins, with significant sequence preferences, has profoundly influenced the fields of protein design and structure prediction (Simons, Kooperberg, Huang, & Baker, 1997; Verschueren et al., 2011). In the era of structural genomics, as the size of the structural dataset continues to grow rapidly, it is becoming possible to extend this analysis to tertiary structural motifs and their sequences. For a hypothetical tertiary motif, the rate of its utilization in natural proteins may be used to assess its designability-the ease with which the motif can be realized with natural amino acids. This requires a structural similarity search methodology, which rather than looking for global topological agreement (more appropriate for categorization of full proteins or domains), identifies detailed geometric matches. In this chapter, we introduce such a method, called MaDCaT, and demonstrate its use by assessing the designability landscapes of two tertiary structural motifs. We also show that such analysis can establish structure/sequence links by providing the sequence constraints necessary to encode designable motifs. As logical extension of their secondary-structure counterparts, tertiary structural preferences will likely prove extremely useful in de novo protein design and structure prediction. PMID:23422424

  10. Multiple Weak Linear Motifs Enhance Recruitment and Processivity in SPOP-Mediated Substrate Ubiquitination.

    PubMed

    Pierce, Wendy K; Grace, Christy R; Lee, Jihun; Nourse, Amanda; Marzahn, Melissa R; Watson, Edmond R; High, Anthony A; Peng, Junmin; Schulman, Brenda A; Mittag, Tanja

    2016-03-27

    Primary sequence motifs, with millimolar affinities for binding partners, are abundant in disordered protein regions. In multivalent interactions, such weak linear motifs can cooperate to recruit binding partners via avidity effects. If linear motifs recruit modifying enzymes, optimal placement of weak motifs may regulate access to modification sites. Weak motifs may thus exert physiological relevance stronger than that suggested by their affinities, but molecular mechanisms of their function are still poorly understood. Herein, we use the N-terminal disordered region of the Hedgehog transcriptional regulator Gli3 (Gli3(1-90)) to determine the role of weak motifs encoded in its primary sequence for the recruitment of its ubiquitin ligase CRL3(SPOP) and the subsequent effect on ubiquitination efficiency. The substrate adaptor SPOP binds linear motifs through its MATH (meprin and TRAF homology) domain and forms higher-order oligomers through its oligomerization domains, rendering SPOP multivalent for its substrates. Gli3 has multiple weak SPOP binding motifs. We map three such motifs in Gli3(1-90), the weakest of which has a millimolar dissociation constant. Multivalency of ligase and substrate for each other facilitates enhanced ligase recruitment and stimulates Gli3(1-90) ubiquitination in in vitro ubiquitination assays. We speculate that the weak motifs enable processivity through avidity effects and by providing steric access to lysine residues that are otherwise not prioritized for polyubiquitination. Weak motifs may generally be employed in multivalent systems to act as gatekeepers regulating post-translational modification. PMID:26475525

  11. The RNA 3D Motif Atlas: Computational methods for extraction, organization and evaluation of RNA motifs.

    PubMed

    Parlea, Lorena G; Sweeney, Blake A; Hosseini-Asanjan, Maryam; Zirbel, Craig L; Leontis, Neocles B

    2016-07-01

    RNA 3D motifs occupy places in structured RNA molecules that correspond to the hairpin, internal and multi-helix junction "loops" of their secondary structure representations. As many as 40% of the nucleotides of an RNA molecule can belong to these structural elements, which are distinct from the regular double helical regions formed by contiguous AU, GC, and GU Watson-Crick basepairs. With the large number of atomic- or near atomic-resolution 3D structures appearing in a steady stream in the PDB/NDB structure databases, the automated identification, extraction, comparison, clustering and visualization of these structural elements presents an opportunity to enhance RNA science. Three broad applications are: (1) identification of modular, autonomous structural units for RNA nanotechnology, nanobiology and synthetic biology applications; (2) bioinformatic analysis to improve RNA 3D structure prediction from sequence; and (3) creation of searchable databases for exploring the binding specificities, structural flexibility, and dynamics of these RNA elements. In this contribution, we review methods developed for computational extraction of hairpin and internal loop motifs from a non-redundant set of high-quality RNA 3D structures. We provide a statistical summary of the extracted hairpin and internal loop motifs in the most recent version of the RNA 3D Motif Atlas. We also explore the reliability and accuracy of the extraction process by examining its performance in clustering recurrent motifs from homologous ribosomal RNA (rRNA) structures. We conclude with a summary of remaining challenges, especially with regard to extraction of multi-helix junction motifs. PMID:27125735

  12. Genetic counselors' views and experiences with the clinical integration of genome sequencing.

    PubMed

    Machini, Kalotina; Douglas, Jessica; Braxton, Alicia; Tsipis, Judith; Kramer, Kate

    2014-08-01

    In recent years, new sequencing technologies known as next generation sequencing (NGS) have provided scientists the ability to rapidly sequence all known coding as well as non-coding sequences in the human genome. As the two emerging approaches, whole exome (WES) and whole genome (WGS) sequencing, have started to be integrated in the clinical arena, we sought to survey health care professionals who are likely to be involved in the implementation process now and/or in the future (e.g., genetic counselors, geneticists and nurse practitioners). Two hundred twenty-one genetic counselors- one third of whom currently offer WES/WGS-participated in an anonymous online survey. The aims of the survey were first, to identify barriers to the implementation of WES/WGS, as perceived by survey participants; second, to provide the first systematic report of current practices regarding the integration of WES/WGS in clinic and/or research across the US and Canada and to illuminate the roles and challenges of genetic counselors participating in this process; and third to evaluate the impact of WES/WGS on patient care. Our results showed that genetic counseling practices with respect to WES/WGS are consistent with the criteria set forth in the ACMG 2012 policy statement, which highlights indications for testing, reporting, and pre/post test considerations. Our respondents described challenges related to offering WES/WGS, which included billing issues, the duration and content of the consent process, result interpretation and disclosure of incidental findings and variants of unknown significance. In addition, respondents indicated that specialty area (i.e., prenatal and cancer), lack of clinical utility of WES/WGS and concerns about interpretation of test results were factors that prevented them from offering this technology to patients. Finally, study participants identified the aspects of their professional training which have been most beneficial in aiding with the integration of

  13. Robust and Adaptive MicroRNA-Mediated Incoherent Feedforward Motifs

    NASA Astrophysics Data System (ADS)

    Xu, Feng-Dan; Liu, Zeng-Rong; Zhang, Zhi-Yong; Shen, Jian-Wei

    2009-02-01

    We integrate transcriptional and post-transcriptional regulation into microRNA-mediated incoherent feedforward motifs and analyse their dynamical behaviour and functions. The analysis show that the behaviour of the system is almost uninfluenced by the varying input in certain ranges and by introducing of delay and noise. The results indicate that microRNA-mediated incoherent feedforward motifs greatly enhance the robustness of gene regulation.

  14. A fast weak motif-finding algorithm based on community detection in graphs

    PubMed Central

    2013-01-01

    Background Identification of transcription factor binding sites (also called ‘motif discovery’) in DNA sequences is a basic step in understanding genetic regulation. Although many successful programs have been developed, the problem is far from being solved on account of diversity in gene expression/regulation and the low specificity of binding sites. State-of-the-art algorithms have their own constraints (e.g., high time or space complexity for finding long motifs, low precision in identification of weak motifs, or the OOPS constraint: one occurrence of the motif instance per sequence) which limit their scope of application. Results In this paper, we present a novel and fast algorithm we call TFBSGroup. It is based on community detection from a graph and is used to discover long and weak (l,d) motifs under the ZOMOPS constraint (zero, one or multiple occurrence(s) of the motif instance(s) per sequence), where l is the length of a motif and d is the maximum number of mutations between a motif instance and the motif itself. Firstly, TFBSGroup transforms the (l, d) motif search in sequences to focus on the discovery of dense subgraphs within a graph. It identifies these subgraphs using a fast community detection method for obtaining coarse-grained candidate motifs. Next, it greedily refines these candidate motifs towards the true motif within their own communities. Empirical studies on synthetic (l, d) samples have shown that TFBSGroup is very efficient (e.g., it can find true (18, 6), (24, 8) motifs within 30 seconds). More importantly, the algorithm has succeeded in rapidly identifying motifs in a large data set of prokaryotic promoters generated from the Escherichia coli database RegulonDB. The algorithm has also accurately identified motifs in ChIP-seq data sets for 12 mouse transcription factors involved in ES cell pluripotency and self-renewal. Conclusions Our novel heuristic algorithm, TFBSGroup, is able to quickly identify nearly exact matches for long

  15. A Basic Set of Homeostatic Controller Motifs

    PubMed Central

    Drengstig, T.; Jolma, I.W.; Ni, X.Y.; Thorsen, K.; Xu, X.M.; Ruoff, P.

    2012-01-01

    Adaptation and homeostasis are essential properties of all living systems. However, our knowledge about the reaction kinetic mechanisms leading to robust homeostatic behavior in the presence of environmental perturbations is still poor. Here, we describe, and provide physiological examples of, a set of two-component controller motifs that show robust homeostasis. This basic set of controller motifs, which can be considered as complete, divides into two operational work modes, termed as inflow and outflow control. We show how controller combinations within a cell can integrate uptake and metabolization of a homeostatic controlled species and how pathways can be activated and lead to the formation of alternative products, as observed, for example, in the change of fermentation products by microorganisms when the supply of the carbon source is altered. The antagonistic character of hormonal control systems can be understood by a combination of inflow and outflow controllers. PMID:23199928

  16. Robust design of an optical router based on a tapered side-coupled integrated spaced sequence of optical resonators.

    PubMed

    Bettotti, P; Mancinelli, M; Guider, R; Masi, M; Vanacharla, M Rao; Pavesi, L

    2011-04-15

    A novel (to our knowledge) scheme of an optical router/switch element, composed of a tapered side-coupled integrated spaced sequence of optical resonators, is proposed. It is based on a modified design of the ring sequence in which the resonance conditions are set by the single ring resonance and by the coherent feedback of the sequence of rings. This double condition yields robustness against fabrication defects, dense routing capability, and high switching efficiency. PMID:21499394

  17. [Unusual motifs of the nucleotide sequence adjacent to the putative transcription initiation site in the rDNA intergenic spacer of diploid wheat Triticum urartu Thum. ex Gandil, T. boeoticum Boiss, and T. monococcum L].

    PubMed

    Akhunov, E D; Chemeris, A V; Vakhitov, V A

    1997-11-01

    In the intergenic spacer (IGS) of rDNA of diploid wheats Triticum urartu, T. boeoticum, and T. monococcum, the uncommon motives adjacent to the site of transcription initiation (TIS) are revealed. They are located in the region from -6 to +1 relative to the putative TIS and are not encountered in cereals studied earlier. In T. urartu and T. boeoticum, the motif TACTATG has been revealed, in T. monococcum--TATTATG, while diploid Aegilops speltoides has the motif TATAGTA, typical of the remaining cereal species. The TIS-surrounding rDNA IGS region of diploid wheats was compared to the correspondent known rDNA IGS regions of different plant and animal species. PMID:9480224

  18. An integrative approach for efficient analysis of whole genome bisulfite sequencing data

    PubMed Central

    2015-01-01

    Background Whole genome bisulfite sequencing (WGBS) is a high-throughput technique for profiling genome-wide DNA methylation at single nucleotide resolution. However, the applications of WGBS are limited by low accuracy resulting from bisulfite-induced damage on DNA fragments. Although many computer programs have been developed for accurate detecting, most of the programs have barely succeeded in improving either quantity or quality of the methylation results. To improve both, we attempted to develop a novel integration of most widely used bisulfite-read mappers: Bismark, BSMAP, and BS-seeker2. Results A comprehensive analysis of the three mappers revealed that the mapping results of the mappers were mutually complementary under diverse read conditions. Therefore, we sought to integrate the characteristics of the mappers by scoring them to gain robustness against artifacts. As a result, the integration significantly increased detection accuracy compared with the individual mappers. In addition, the amount of detected cytosine was higher than that by Bismark. Furthermore, the integration successfully reduced the fluctuation of detection accuracy induced by read conditions. We applied the integration to real WGBS samples and succeeded in classifying the samples according to the originated tissues by both CpG and CpH methylation patterns. Conclusions In this study, we improved both quality and quantity of methylation results from WGBS data by integrating the mapping results of three bisulfite-read mappers. Also, we succeeded in combining and comparing WGBS samples by reducing the effects of read heterogeneity on methylation detection. This study contributes to DNA methylation researches by improving efficiency of methylation detection from WGBS data and facilitating the comprehensive analysis of public WGBS data. PMID:26680746

  19. An Integrated System for DNA Sequencing by Synthesis Using Novel Nucleotide Analogues

    PubMed Central

    Guo, Jia; Yu, Lin; Turro, Nicholas J.; Ju, Jingyue

    2010-01-01

    via click chemistry is unambiguously identified with this chip-SBS system. The second generation (G-2) SBS system was developed based on the concept that the closer the structures of the added nucleotide and the primer are to their natural counterparts, the more faithfully the polymerase would incorporate the nucleotide. In this approach, the polymerase reaction is performed with the combination of 3′-capped nucleotide reversible terminators (NRTs) and cleavable fluorescent dideoxynucleotides (ddNTPs). By sacrificing a small amount of the primers permanently terminated by ddNTPs, the majority of the primers extended by the reversible terminators are reverted to the natural ones after each sequencing cycle. We have also developed the 3′-capped nucleotide reversible terminators to solve the problem of deciphering the homopolymeric regions of the template in conventional pyrosequencing. The 3′-capping moiety on the DNA extension product temporarily terminates the polymerase reaction, which allows only one nucleotide to be incorporated during each sequencing cycle. Thus, the number of nucleotides in the homopolymeric regions are unambiguously determined using the 3′-capped NRTs. It has been established that millions of DNA templates can be immobilized on a chip surface through a variety of approaches. Therefore, the integration of these high-density DNA chips with the molecular-level SBS approaches described in this Account is expected to generate a high-throughput and accurate DNA sequencing system with wide applications in biological research and health care. PMID:20121268

  20. Agonist and antagonist switch DNA motifs recognized by human androgen receptor in prostate cancer

    PubMed Central

    Chen, Zhong; Lan, Xun; Thomas-Ahner, Jennifer M; Wu, Dayong; Liu, Xiangtao; Ye, Zhenqing; Wang, Liguo; Sunkel, Benjamin; Grenade, Cassandra; Chen, Junsheng; Zynger, Debra L; Yan, Pearlly S; Huang, Jiaoti; Nephew, Kenneth P; Huang, Tim H-M; Lin, Shili; Clinton, Steven K; Li, Wei; Jin, Victor X; Wang, Qianben

    2015-01-01

    Human transcription factors recognize specific DNA sequence motifs to regulate transcription. It is unknown whether a single transcription factor is able to bind to distinctly different motifs on chromatin, and if so, what determines the usage of specific motifs. By using a motif-resolution chromatin immunoprecipitation-exonuclease (ChIP-exo) approach, we find that agonist-liganded human androgen receptor (AR) and antagonist-liganded AR bind to two distinctly different motifs, leading to distinct transcriptional outcomes in prostate cancer cells. Further analysis on clinical prostate tissues reveals that the binding of AR to these two distinct motifs is involved in prostate carcinogenesis. Together, these results suggest that unique ligands may switch DNA motifs recognized by ligand-dependent transcription factors in vivo. Our findings also provide a broad mechanistic foundation for understanding ligand-specific induction of gene expression profiles. PMID:25535248

  1. Agonist and antagonist switch DNA motifs recognized by human androgen receptor in prostate cancer.

    PubMed

    Chen, Zhong; Lan, Xun; Thomas-Ahner, Jennifer M; Wu, Dayong; Liu, Xiangtao; Ye, Zhenqing; Wang, Liguo; Sunkel, Benjamin; Grenade, Cassandra; Chen, Junsheng; Zynger, Debra L; Yan, Pearlly S; Huang, Jiaoti; Nephew, Kenneth P; Huang, Tim H-M; Lin, Shili; Clinton, Steven K; Li, Wei; Jin, Victor X; Wang, Qianben

    2015-02-12

    Human transcription factors recognize specific DNA sequence motifs to regulate transcription. It is unknown whether a single transcription factor is able to bind to distinctly different motifs on chromatin, and if so, what determines the usage of specific motifs. By using a motif-resolution chromatin immunoprecipitation-exonuclease (ChIP-exo) approach, we find that agonist-liganded human androgen receptor (AR) and antagonist-liganded AR bind to two distinctly different motifs, leading to distinct transcriptional outcomes in prostate cancer cells. Further analysis on clinical prostate tissues reveals that the binding of AR to these two distinct motifs is involved in prostate carcinogenesis. Together, these results suggest that unique ligands may switch DNA motifs recognized by ligand-dependent transcription factors in vivo. Our findings also provide a broad mechanistic foundation for understanding ligand-specific induction of gene expression profiles. PMID:25535248

  2. Homology of pCS1 Plasmid Sequences with Chromosomal DNA in Clavibacter michiganense subsp. sepedonicum: Evidence for the Presence of a Repeated Sequence and Plasmid Integration

    PubMed Central

    Mogen, Bradley D.; Oleson, Arland E.

    1987-01-01

    Restriction fragments of pCS1, a 50.6-kilobase (kb) plasmid present in many strains of Clavibacter michiganense subsp. sepedonicum (“Corynebacterium sepedonicum”), have been cloned in an M13mp11 phage vector. Radiolabeled forms of these cloned fragments have been used as Southern hybridization probes for the presence of plasmid sequences in chromosomal DNA of this organism. These studies have shown that all tested strains lacking the covalently closed circular form of pCS1 contain the plasmid in integrated form. In each case the site of integration exists on a single plasmid restriction fragment with a size of 5.1 kb. Southern hybridizations with these probes have also revealed the existence of a major repeated sequence in C. michiganense subsp. sepedonicum. Hybridizations of chromosomal DNA with deletion subclones of a 2.9-kb plasmid fragment containing the repeated sequence indicate that the size of the repeated sequence is approximately 1.3 kb. One of the copies of the repeated sequence is on the plasmid fragment containing the site of integration. Images PMID:16347464

  3. BALSA: integrated secondary analysis for whole-genome and whole-exome sequencing, accelerated by GPU.

    PubMed

    Luo, Ruibang; Wong, Yiu-Lun; Law, Wai-Chun; Lee, Lap-Kei; Cheung, Jeanno; Liu, Chi-Man; Lam, Tak-Wah

    2014-01-01

    This paper reports an integrated solution, called BALSA, for the secondary analysis of next generation sequencing data; it exploits the computational power of GPU and an intricate memory management to give a fast and accurate analysis. From raw reads to variants (including SNPs and Indels), BALSA, using just a single computing node with a commodity GPU board, takes 5.5 h to process 50-fold whole genome sequencing (∼750 million 100 bp paired-end reads), or just 25 min for 210-fold whole exome sequencing. BALSA's speed is rooted at its parallel algorithms to effectively exploit a GPU to speed up processes like alignment, realignment and statistical testing. BALSA incorporates a 16-genotype model to support the calling of SNPs and Indels and achieves competitive variant calling accuracy and sensitivity when compared to the ensemble of six popular variant callers. BALSA also supports efficient identification of somatic SNVs and CNVs; experiments showed that BALSA recovers all the previously validated somatic SNVs and CNVs, and it is more sensitive for somatic Indel detection. BALSA outputs variants in VCF format. A pileup-like SNAPSHOT format, while maintaining the same fidelity as BAM in variant calling, enables efficient storage and indexing, and facilitates the App development of downstream analyses. BALSA is available at: http://sourceforge.net/p/balsa. PMID:24949238

  4. [Conserved motifs in voltage sensing proteins].

    PubMed

    Wang, Chang-He; Xie, Zhen-Li; Lv, Jian-Wei; Yu, Zhi-Dan; Shao, Shu-Li

    2012-08-25

    This paper was aimed to study conserved motifs of voltage sensing proteins (VSPs) and establish a voltage sensing model. All VSPs were collected from the Uniprot database using a comprehensive keyword search followed by manual curation, and the results indicated that there are only two types of known VSPs, voltage gated ion channels and voltage dependent phosphatases. All the VSPs have a common domain of four helical transmembrane segments (TMS, S1-S4), which constitute the voltage sensing module of the VSPs. The S1 segment was shown to be responsible for membrane targeting and insertion of these proteins, while S2-S4 segments, which can sense membrane potential, for protein properties. Conserved motifs/residues and their functional significance of each TMS were identified using profile-to-profile sequence alignments. Conserved motifs in these four segments are strikingly similar for all VSPs, especially, the conserved motif [RK]-X(2)-R-X(2)-R-X(2)-[RK] was presented in all the S4 segments, with positively charged arginine (R) alternating with two hydrophobic or uncharged residues. Movement of these arginines across the membrane electric field is the core mechanism by which the VSPs detect changes in membrane potential. The negatively charged aspartate (D) in the S3 segment is universally conserved in all the VSPs, suggesting that the aspartate residue may be involved in voltage sensing properties of VSPs as well as the electrostatic interactions with the positively charged residues in the S4 segment, which may enhance the thermodynamic stability of the S4 segments in plasma membrane. PMID:22907298

  5. In vivo analysis of Caenorhabditis elegans noncoding RNA promoter motifs

    PubMed Central

    Li, Tiantian; He, Housheng; Wang, Yunfei; Zheng, Haixia; Skogerbø, Geir; Chen, Runsheng

    2008-01-01

    Background Noncoding RNAs (ncRNAs) play important roles in a variety of cellular processes. Characterizing the transcriptional activity of ncRNA promoters is therefore a critical step toward understanding the complex cellular roles of ncRNAs. Results Here we present an in vivo transcriptional analysis of three C. elegans ncRNA upstream motifs (UM1-3). Transcriptional activity of all three motifs has been demonstrated, and mutational analysis revealed differential contributions of different parts of each motif. We showed that upstream motif 1 (UM1) can drive the expression of green fluorescent protein (GFP), and utilized this for detailed analysis of temporal and spatial expression patterns of 5 SL2 RNAs. Upstream motifs 2 and 3 do not drive GFP expression, and termination at consecutive T runs suggests transcription by RNA polymerase III. The UM2 sequence resembles the tRNA promoter, and is actually embedded within its own short-lived, primary transcript. This is a structure which is also found at a few plant and yeast loci, and may indicate an evolutionarily very old dicistronic transcription pattern in which a tRNA serves as a promoter for an adjacent snoRNA. Conclusion The study has demonstrated that the three upstream motifs UM1-3 have promoter activity. The UM1 sequence can drive expression of GFP, which allows for the use of UM1::GFP fusion constructs to study temporal-spatial expression patterns of UM1 ncRNA loci. The UM1 loci appear to act in concert with other upstream sequences, whereas the transcriptional activities of the UM2 and UM3 are confined to the motifs themselves. PMID:18680611

  6. Direct vs 2-stage approaches to structured motif finding

    PubMed Central

    2012-01-01

    Background The notion of DNA motif is a mathematical abstraction used to model regions of the DNA (known as Transcription Factor Binding Sites, or TFBSs) that are bound by a given Transcription Factor to regulate gene expression or repression. In turn, DNA structured motifs are a mathematical counterpart that models sets of TFBSs that work in concert in the gene regulations processes of higher eukaryotic organisms. Typically, a structured motif is composed of an ordered set of isolated (or simple) motifs, separated by a variable, but somewhat constrained number of “irrelevant” base-pairs. Discovering structured motifs in a set of DNA sequences is a computationally hard problem that has been addressed by a number of authors using either a direct approach, or via the preliminary identification and successive combination of simple motifs. Results We describe a computational tool, named SISMA, for the de-novo discovery of structured motifs in a set of DNA sequences. SISMA is an exact, enumerative algorithm, meaning that it finds all the motifs conforming to the specifications. It does so in two stages: first it discovers all the possible component simple motifs, then combines them in a way that respects the given constraints. We developed SISMA mainly with the aim of understanding the potential benefits of such a 2-stage approach w.r.t. direct methods. In fact, no 2-stage software was available for the general problem of structured motif discovery, but only a few tools that solved restricted versions of the problem. We evaluated SISMA against other published tools on a comprehensive benchmark made of both synthetic and real biological datasets. In a significant number of cases, SISMA outperformed the competitors, exhibiting a good performance also in most of the cases in which it was inferior. Conclusions A reflection on the results obtained lead us to conclude that a 2-stage approach can be implemented with many advantages over direct approaches. Some of these

  7. A novel zinc-binding motif found in two ubiquitous deaminase families.

    PubMed Central

    Reizer, J.; Buskirk, S.; Bairoch, A.; Reizer, A.; Saier, M. H.

    1994-01-01

    Two families of deaminases, one specific for cytidine, the other for deoxycytidylate, are shown to possess a novel zinc-binding motif, here designated ZBS. We have (1) identified the protein members of these 2 families, (2) carried out sequence analyses that allow specification of this zinc-binding motif, and (3) determined signature sequences that will allow identification of additional members of these families as their sequences become available. PMID:8061614

  8. Motif-based analysis of large nucleotide data sets using MEME-ChIP

    PubMed Central

    Ma, Wenxiu; Noble, William S; Bailey, Timothy L

    2014-01-01

    MEME-ChIP is a web-based tool for analyzing motifs in large DNA or RNA data sets. It can analyze peak regions identified by ChIP-seq, cross-linking sites identified by cLIP-seq and related assays, as well as sets of genomic regions selected using other criteria. MEME-ChIP performs de novo motif discovery, motif enrichment analysis, motif location analysis and motif clustering, providing a comprehensive picture of the DNA or RNA motifs that are enriched in the input sequences. MEME-ChIP performs two complementary types of de novo motif discovery: weight matrix–based discovery for high accuracy; and word-based discovery for high sensitivity. Motif enrichment analysis using DNA or RNA motifs from human, mouse, worm, fly and other model organisms provides even greater sensitivity. MEME-ChIP’s interactive HTML output groups and aligns significant motifs to ease interpretation. this protocol takes less than 3 h, and it provides motif discovery approaches that are distinct and complementary to other online methods. PMID:24853928

  9. Network motif-based method for identifying coronary artery disease

    PubMed Central

    LI, YIN; CONG, YAN; ZHAO, YUN

    2016-01-01

    The present study aimed to develop a more efficient method for identifying coronary artery disease (CAD) than the conventional method using individual differentially expressed genes (DEGs). GSE42148 gene microarray data were downloaded, preprocessed and screened for DEGs. Additionally, based on transcriptional regulation data obtained from ENCODE database and protein-protein interaction data from the HPRD, the common genes were downloaded and compared with genes annotated from gene microarrays to screen additional common genes in order to construct an integrated regulation network. FANMOD was then used to detect significant three-gene network motifs. Subsequently, GlobalAncova was used to screen differential three-gene network motifs between the CAD group and the normal control data from GSE42148. Genes involved in the differential network motifs were then subjected to functional annotation and pathway enrichment analysis. Finally, clustering analysis of the CAD and control samples was performed based on individual DEGs and the top 20 network motifs identified. In total, 9,008 significant three-node network motifs were detected from the integrated regulation network; these were categorized into 22 interaction modes, each containing a minimum of one transcription factor. Subsequently, 1,132 differential network motifs involving 697 genes were screened between the CAD and control group. The 697 genes were enriched in 154 gene ontology terms, including 119 biological processes, and 14 KEGG pathways. Identifying patients with CAD based on the top 20 network motifs provided increased accuracy compared with the conventional method based on individual DEGs. The results of the present study indicate that the network motif-based method is more efficient and accurate for identifying CAD patients than the conventional method based on individual DEGs. PMID:27347046

  10. D-MATRIX: A web tool for constructing weight matrix of conserved DNA motifs

    PubMed Central

    Sen, Naresh; Mishra, Manoj; Khan, Feroz; Meena, Abha; Sharma, Ashok

    2009-01-01

    Despite considerable efforts to date, DNA motif prediction in whole genome remains a challenge for researchers. Currently the genome wide motif prediction tools required either direct pattern sequence (for single motif) or weight matrix (for multiple motifs). Although there are known motif pattern databases and tools for genome level prediction but no tool for weight matrix construction. Considering this, we developed a D-MATRIX tool which predicts the different types of weight matrix based on user defined aligned motif sequence set and motif width. For retrieval of known motif sequences user can access the commonly used databases such as TFD, RegulonDB, DBTBS, Transfac. D­MATRIX program uses a simple statistical approach for weight matrix construction, which can be converted into different file formats according to user requirement. It provides the possibility to identify the conserved motifs in the co­regulated genes or whole genome. As example, we successfully constructed the weight matrix of LexA transcription factor binding site with the help of known sos­box cis­regulatory elements in Deinococcus radiodurans genome. The algorithm is implemented in C-Sharp and wrapped in ASP.Net to maintain a user friendly web interface. D­MATRIX tool is accessible through the CIMAP domain network. Availability http://203.190.147.116/dmatrix/ PMID:19759861

  11. WordSpy: identifying transcription factor binding motifs by building a dictionary and learning a grammar

    PubMed Central

    Wang, Guandong; Yu, Taotao; Zhang, Weixiong

    2005-01-01

    Transcription factor (TF) binding sites or motifs (TFBMs) are functional cis-regulatory DNA sequences that play an essential role in gene transcriptional regulation. Although many experimental and computational methods have been developed, finding TFBMs remains a challenging problem. We propose and develop a novel dictionary based motif finding algorithm, which we call WordSpy. One significant feature of WordSpy is the combination of a word counting method and a statistical model which consists of a dictionary of motifs and a grammar specifying their usage. The algorithm is suitable for genome-wide motif finding; it is capable of discovering hundreds of motifs from a large set of promoters in a single run. We further enhance WordSpy by applying gene expression information to separate true TFBMs from spurious ones, and by incorporating negative sequences to identify discriminative motifs. In addition, we also use randomly selected promoters from the genome to evaluate the significance of the discovered motifs. The output from WordSpy consists of an ordered list of putative motifs and a set of regulatory sequences with motif binding sites highlighted. The web server of WordSpy is available at . PMID:15980501

  12. Integrating sequence stratigraphy and rock-physics to interpret seismic amplitudes and predict reservoir quality

    NASA Astrophysics Data System (ADS)

    Dutta, Tanima

    This dissertation focuses on the link between seismic amplitudes and reservoir properties. Prediction of reservoir properties, such as sorting, sand/shale ratio, and cement-volume from seismic amplitudes improves by integrating knowledge from multiple disciplines. The key contribution of this dissertation is to improve the prediction of reservoir properties by integrating sequence stratigraphy and rock physics. Sequence stratigraphy has been successfully used for qualitative interpretation of seismic amplitudes to predict reservoir properties. Rock physics modeling allows quantitative interpretation of seismic amplitudes. However, often there is uncertainty about selecting geologically appropriate rock physics model and its input parameters, away from the wells. In the present dissertation, we exploit the predictive power of sequence stratigraphy to extract the spatial trends of sedimentological parameters that control seismic amplitudes. These spatial trends of sedimentological parameters can serve as valuable constraints in rock physics modeling, especially away from the wells. Consequently, rock physics modeling, integrated with the trends from sequence stratigraphy, become useful for interpreting observed seismic amplitudes away from the wells in terms of underlying sedimentological parameters. We illustrate this methodology using a comprehensive dataset from channelized turbidite systems, deposited in minibasin settings in the offshore Equatorial Guinea, West Africa. First, we present a practical recipe for using closed-form expressions of effective medium models to predict seismic velocities in unconsolidated sandstones. We use an effective medium model that combines perfectly rough and smooth grains (the extended Walton model), and use that model to derive coordination number, porosity, and pressure relations for P and S wave velocities from experimental data. Our recipe provides reasonable fits to other experimental and borehole data, and specifically

  13. Heparin-Binding Motifs and Biofilm Formation by Candida albicans

    PubMed Central

    Green, Julianne V.; Orsborn, Kris I.; Zhang, Minlu; Tan, Queenie K. G.; Greis, Kenneth D.; Porollo, Alexey; Andes, David R.; Long Lu, Jason; Hostetter, Margaret K.

    2013-01-01

    Candida albicans is a leading pathogen in infections of central venous catheters, which are frequently infused with heparin. Binding of C. albicans to medically relevant concentrations of soluble and plate-bound heparin was demonstrable by confocal microscopy and enzyme-linked immunosorbent assay (ELISA). A sequence-based search identified 34 C. albicans surface proteins containing ≥1 match to linear heparin-binding motifs. The virulence factor Int1 contained the most putative heparin-binding motifs (n = 5); peptides encompassing 2 of 5 motifs bound to heparin-Sepharose. Alanine substitution of lysine residues K805/K806 in 804QKKHQIHK811 (motif 1 of Int1) markedly attenuated biofilm formation in central venous catheters in rats, whereas alanine substitution of K1595/R1596 in 1593FKKRFFKL1600 (motif 4 of Int1) did not impair biofilm formation. Affinity-purified immunoglobulin G (IgG) recognizing motif 1 abolished biofilm formation in central venous catheters; preimmune IgG had no effect. After heparin treatment of C. albicans, soluble peptides from multiple C. albicans surface proteins were detected, such as Eno1, Pgk1, Tdh3, and Ssa1/2 but not Int1, suggesting that heparin changes candidal surface structures and may modify some antigens critical for immune recognition. These studies define a new mechanism of biofilm formation for C. albicans and a novel strategy for inhibiting catheter-associated biofilms. PMID:23904295

  14. An integrated sequence stratigraphic and chronostratigraphic analysis of the Pliocene, Tiburon Basin succession, Mejillones Peninsula, Chile

    NASA Astrophysics Data System (ADS)

    Tapia, Claudio A.; Wilson, Gary S.; Ishman, Scott E.; Wilke, Hans G.; Wartho, Jo-Anne; Winter, Diane; Martínez-Pardo, Rubén

    2015-08-01

    We present new findings from Pliocene marine sediments from the Mejillones Peninsula Tiburon Basin of the northern Chile continental margin that provide constraints for the global sea level record. Sedimentologic and sequence stratigraphic studies reveal facies associations of a continental shelf setting. Textural variations indicate that coarsening and fining up of the succession are due to relative sea level rise and fall, respectively. Magnetostratigraphy was integrated with bio- and tephro- stratigraphic data to construct a record of high-resolution chronology. The age model constrains the Tiburon Basin lower section between 4.2 Ma and 2.8 Ma. The record is likely to be controlled in part by sea level change with orbital periodicities of obliquity (∼ 40 ka of frequency) and, between 3.2 Ma and 2.9 Ma a high-amplitude sea level fall is correlated to global climatic deterioration and the onset of major Northern Hemisphere glaciations.

  15. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    PubMed Central

    2012-01-01

    Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR) are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas. PMID:23256920

  16. The HIVToolbox 2 Web System Integrates Sequence, Structure, Function and Mutation Analysis

    PubMed Central

    Sargeant, David P.; Deverasetty, Sandeep; Strong, Christy L.; Alaniz, Izua J.; Bartlett, Alexandria; Brandon, Nicholas R.; Brooks, Steven B.; Brown, Frederick A.; Bufi, Flaviona; Chakarova, Monika; David, Roxanne P.; Dobritch, Karlyn M.; Guerra, Horacio P.; Hedden, Michael W.; Kumra, Rma; Levitt, Kelvy S.; Mathew, Kiran R.; Matti, Ray; Maza, Dorothea Q.; Mistry, Sabyasachy; Novakovic, Nemanja; Pomerantz, Austin; Portillo, Josue; Rafalski, Timothy F.; Rathnayake, Viraj R.; Rezapour, Noura; Songao, Sarah; Tuggle, Sean L.; Yousif, Sandy; Dorsky, David I.; Schiller, Martin R.

    2014-01-01

    There is enormous interest in studying HIV pathogenesis for improving the treatment of patients with HIV infection. HIV infection has become one of the best-studied systems for understanding how a virus can hijack a cell. To help facilitate discovery, we previously built HIVToolbox, a web system for visual data mining. The original HIVToolbox integrated information for HIV protein sequence, structure, functional sites, and sequence conservation. This web system has been used for almost 40,000 searches. We report improvements to HIVToolbox including new functions and workflows, data updates, and updates for ease of use. HIVToolbox2, is an improvement over HIVToolbox with new functions. HIVToolbox2 has new functionalities focused on HIV pathogenesis including drug-binding sites, drug-resistance mutations, and immune epitopes. The integrated, interactive view enables visual mining to generate hypotheses that are not readily revealed by other approaches. Most HIV proteins form multimers, and there are posttranslational modification and protein-protein interaction sites at many of these multimerization interfaces. Analysis of protease drug binding sites reveals an anatomy of drug resistance with different types of drug-resistance mutations regionally localized on the surface of protease. Some of these drug-resistance mutations have a high prevalence in specific HIV-1 M subtypes. Finally, consolidation of Tat functional sites reveals a hotspot region where there appear to be 30 interactions or posttranslational modifications. A cursory analysis with HIVToolbox2 has helped to identify several global patterns for HIV proteins. An initial analysis with this tool identifies homomultimerization of almost all HIV proteins, functional sites that overlap with multimerization sites, a global drug resistance anatomy for HIV protease, and specific distributions of some DRMs in specific HIV M subtypes. HIVToolbox2 is an open-access web application available at [http://hivtoolbox2

  17. The HIVToolbox 2 web system integrates sequence, structure, function and mutation analysis.

    PubMed

    Sargeant, David P; Deverasetty, Sandeep; Strong, Christy L; Alaniz, Izua J; Bartlett, Alexandria; Brandon, Nicholas R; Brooks, Steven B; Brown, Frederick A; Bufi, Flaviona; Chakarova, Monika; David, Roxanne P; Dobritch, Karlyn M; Guerra, Horacio P; Hedden, Michael W; Kumra, Rma; Levitt, Kelvy S; Mathew, Kiran R; Matti, Ray; Maza, Dorothea Q; Mistry, Sabyasachy; Novakovic, Nemanja; Pomerantz, Austin; Portillo, Josue; Rafalski, Timothy F; Rathnayake, Viraj R; Rezapour, Noura; Songao, Sarah; Tuggle, Sean L; Yousif, Sandy; Dorsky, David I; Schiller, Martin R

    2014-01-01

    There is enormous interest in studying HIV pathogenesis for improving the treatment of patients with HIV infection. HIV infection has become one of the best-studied systems for understanding how a virus can hijack a cell. To help facilitate discovery, we previously built HIVToolbox, a web system for visual data mining. The original HIVToolbox integrated information for HIV protein sequence, structure, functional sites, and sequence conservation. This web system has been used for almost 40,000 searches. We report improvements to HIVToolbox including new functions and workflows, data updates, and updates for ease of use. HIVToolbox2, is an improvement over HIVToolbox with new functions. HIVToolbox2 has new functionalities focused on HIV pathogenesis including drug-binding sites, drug-resistance mutations, and immune epitopes. The integrated, interactive view enables visual mining to generate hypotheses that are not readily revealed by other approaches. Most HIV proteins form multimers, and there are posttranslational modification and protein-protein interaction sites at many of these multimerization interfaces. Analysis of protease drug binding sites reveals an anatomy of drug resistance with different types of drug-resistance mutations regionally localized on the surface of protease. Some of these drug-resistance mutations have a high prevalence in specific HIV-1 M subtypes. Finally, consolidation of Tat functional sites reveals a hotspot region where there appear to be 30 interactions or posttranslational modifications. A cursory analysis with HIVToolbox2 has helped to identify several global patterns for HIV proteins. An initial analysis with this tool identifies homomultimerization of almost all HIV proteins, functional sites that overlap with multimerization sites, a global drug resistance anatomy for HIV protease, and specific distributions of some DRMs in specific HIV M subtypes. HIVToolbox2 is an open-access web application available at [http://hivtoolbox2

  18. A novel in vitro replication system for Dengue virus. Initiation of RNA synthesis at the 3'-end of exogenous viral RNA templates requires 5'- and 3'-terminal complementary sequence motifs of the viral RNA.

    PubMed

    You, S; Padmanabhan, R

    1999-11-19

    Positive strand viral replicases are membrane-bound complexes of viral and host proteins. The mechanism of viral replication and the role of host proteins are not well understood. To understand this mechanism, a viral replicase assay that utilizes extracts from dengue virus-infected mosquito (C6/36) cells and exogenous viral RNA templates is reported in this study. The 5'- and 3'-terminal regions (TR) of the template RNAs contain the conserved elements including the complementary (cyclization) motifs and stem-loop structures. RNA synthesis in vitro requires both 5'- and 3'-TR present in the same template molecule or when the 5'-TR RNA was added in trans to the 3'-untranslated region (UTR) RNA. However, the 3'-UTR RNA alone is not active. RNA synthesis occurs by elongation of the 3'-end of the template RNA to yield predominantly a double-stranded hairpin-like RNA product, twice the size of the template RNA. These results suggest that an interaction between 5'- and 3'-TR of the viral RNA that modulates the 3'-UTR RNA structure is required for RNA synthesis by the viral replicase. The complementary cyclization motifs of the viral genome also seem to play an important role in this interaction. PMID:10559263

  19. Microelectrophoresis devices with integrated fluorescence detectors and reactors for high-throughput DNA sequencing

    NASA Astrophysics Data System (ADS)

    Soper, Steven A.; Ford, Sean M.; Davies, Jack; Williams, Daryl C.; Cheng, Benxu; Klopf, J. Michael; Calderon, Gina M.; Saile, Volker

    1997-05-01

    This work describes the development of micro-devices for high-throughput DNA sequencing applications. Basically, two research efforts will be discussed; (1) fabrication and characterization of micro-reactors to prepare Sanger chain terminated DNA sequencing fragments on a nanoliter scale and; (2) x-ray photolithography of PMMA substrates for the high aspect ratio preparation of electrophoresis devices. The micro-reactor consisted of a 5'-biotinylated catfish olfactory gene, which was amplified by PCR, and attached to the interior wall of an aminoalkylisilane derivatized fused- silica capillary tube via a streptavidin/biotin linkage. Coverage of the interior capillary wall with biotinylated DNA averaged 77 percent. Stability of the anchored template under pressure and electroosmotic rinsing was favorable, requiring approximately 150 h of continuous rinsing to reduce the coverage by only 50 percent. The capillary micro- reactor was placed inside an air thermocycler to control temperature during Sanger ddNTP chain extension and directly coupled to a capillary separation column filled with a LPA solution via low dead volume capillary interlocks. The complimentary DNA fragments generated in the reactor were heat denatured from the immobilized template and directly injected onto a gel-filled capillary using electropumping for size fractionation and detection using NIR-LIF analysis. The total amount of termination fragments in the 31 nL reactor volume was estimated to be 5.2 X 1013 moles and sequencing was shown to produce read lengths on the order to 400 bases. Work will also be described concerning the development of micro-electrophoresis devices in x-ray sensitive photoresists using LIGA techniques. An electrophoresis device with an integrated fluorescence detector was constructed for the high resolution separation of DNA oligonucleotides. The choice of substrate for the electrophoresis was PMMA, due to its intrinsic low electroosmotic flow. Using x-ray lithography in

  20. Integrated Next-Generation Sequencing and Avatar Mouse Models for Personalized Cancer Treatment

    PubMed Central

    Garralda, Elena; Paz, Keren; López-Casas, Pedro P.; Jones, Siân; Katz, Amanda; Kann, Lisa M.; López-Rios, Fernando; Sarno, Francesca; Al-Shahrour, Fátima; Vasquez, David; Bruckheimer, Elizabeth; Angiuoli, Samuel V.; Calles, Antonio; Diaz, Luis A.; Velculescu, Victor E.; Valencia, Alfonso; Sidransky, David; Hidalgo, Manuel

    2015-01-01

    Background Current technology permits an unbiased massive analysis of somatic genetic alterations from tumor DNA as well as the generation of individualized mouse xenografts (Avatar models). This work aimed to evaluate our experience integrating these two strategies to personalize the treatment of patients with cancer. Methods We performed whole-exome sequencing analysis of 25 patients with advanced solid tumors to identify putatively actionable tumor-specific genomic alterations. Avatar models were used as an in vivo platform to test proposed treatment strategies. Results Successful exome sequencing analyses have been obtained for 23 patients. Tumor-specific mutations and copy-number variations were identified. All samples profiled contained relevant genomic alterations. Tumor was implanted to create an Avatar model from 14 patients and 10 succeeded. Occasionally, actionable alterations such as mutations in NF1, PI3KA, and DDR2 failed to provide any benefit when a targeted drug was tested in the Avatar and, accordingly, treatment of the patients with these drugs was not effective. To date, 13 patients have received a personalized treatment and 6 achieved durable partial remissions. Prior testing of candidate treatments in Avatar models correlated with clinical response and helped to select empirical treatments in some patients with no actionable mutations. Conclusion The use of full genomic analysis for cancer care is encouraging but presents important challenges that will need to be solved for broad clinical application. Avatar models are a promising investigational platform for therapeutic decision making. While limitations still exist, this strategy should be further tested. PMID:24634382

  1. MSIplus for Integrated Colorectal Cancer Molecular Testing by Next-Generation Sequencing.

    PubMed

    Hempelmann, Jennifer A; Scroggins, Sheena M; Pritchard, Colin C; Salipante, Stephen J

    2015-11-01

    Molecular analysis of colon cancers currently requires multiphasic testing that uses various assays with different performance characteristics, adding cost and time to patient care. We have developed a single, next-generation sequencing assay to simultaneously evaluate colorectal cancers for mutations in relevant cancer genes (KRAS, NRAS, and BRAF) and for tumor microsatellite instability (MSI). In a sample set of 61 cases, the assay demonstrated overall sensitivity of 100% and specificity of 100% for identifying cancer-associated mutations, with a practical limit of detection at 2% mutant allele fraction. MSIplus was 97% sensitive (34 of 35 MSI-positive cases) and 100% specific (42 of 42 MSI-negative cases) for ascertaining MSI phenotype in a cohort of 78 tumor specimens. These performance characteristics were slightly better than for conventional multiplex PCR MSI testing (97% sensitivity and 95% specificity), which is based on comparison of microsatellite loci amplified from tumor and matched normal material, applied to the same specimen cohort. Because the assay uses an amplicon sequencing approach, it is rapid and appropriate for specimens with limited available material or fragmented DNA. This integrated testing strategy offers several advantages over existing methods, including a lack of need for matched normal material, sensitive and unbiased detection of variants in target genes, and an automated analysis pipeline enabling principled and reproducible identification of cancer-associated mutations and MSI status simultaneously. PMID:26322950

  2. STAR: an integrated solution to management and visualization of sequencing data

    PubMed Central

    Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W.; Ecker, Joseph R.; Millar, A. Harvey; Ren, Bing; Wang, Wei

    2013-01-01

    Motivation: Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. Results: STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. Availability and implementation: STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser. Contact: wei-wang@ucsd.edu PMID:24078702

  3. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks*

    PubMed Central

    Krumholz, Elias W.; Libourel, Igor G. L.

    2015-01-01

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. PMID:26041773

  4. An RNA motif that binds ATP

    NASA Technical Reports Server (NTRS)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  5. Redox active motifs in selenoproteins.

    PubMed

    Li, Fei; Lutz, Patricia B; Pepelyayeva, Yuliya; Arnér, Elias S J; Bayse, Craig A; Rozovsky, Sharon

    2014-05-13

    Selenoproteins use the rare amino acid selenocysteine (Sec) to act as the first line of defense against oxidants, which are linked to aging, cancer, and neurodegenerative diseases. Many selenoproteins are oxidoreductases in which the reactive Sec is connected to a neighboring Cys and able to form a ring. These Sec-containing redox motifs govern much of the reactivity of selenoproteins. To study their fundamental properties, we have used (77)Se NMR spectroscopy in concert with theoretical calculations to determine the conformational preferences and mobility of representative motifs. This use of (77)Se as a probe enables the direct recording of the properties of Sec as its environment is systematically changed. We find that all motifs have several ring conformations in their oxidized state. These ring structures are most likely stabilized by weak, nonbonding interactions between the selenium and the amide carbon. To examine how the presence of selenium and ring geometric strain governs the motifs' reactivity, we measured the redox potentials of Sec-containing motifs and their corresponding Cys-only variants. The comparisons reveal that for C-terminal motifs the redox potentials increased between 20-25 mV when the selenenylsulfide bond was changed to a disulfide bond. Changes of similar magnitude arose when we varied ring size or the motifs' flanking residues. This suggests that the presence of Sec is not tied to unusually low redox potentials. The unique roles of selenoproteins in human health and their chemical reactivities may therefore not necessarily be explained by lower redox potentials, as has often been claimed. PMID:24769567

  6. [Prediction of Promoter Motifs in Virophages].

    PubMed

    Gong, Chaowen; Zhou, Xuewen; Pan, Yingjie; Wang, Yongjie

    2015-07-01

    Virophages have crucial roles in ecosystems and are the transport vectors of genetic materials. To shed light on regulation and control mechanisms in virophage--host systems as well as evolution between virophages and their hosts, the promoter motifs of virophages were predicted on the upstream regions of start codons using an analytical tool for prediction of promoter motifs: Multiple EM for Motif Elicitation. Seventeen potential promoter motifs were identified based on the E-value, location, number and length of promoters in genomes. Sputnik and zamilon motif 2 with AT-rich regions were distributed widely on genomes, suggesting that these motifs may be associated with regulation of the expression of various genes. Motifs containing the TCTA box were predicted to be late promoter motif in mavirus; motifs containing the ATCT box were the potential late promoter motif in the Ace Lake mavirus . AT-rich regions were identified on motif 2 in the Organic Lake virophage, motif 3 in Yellowstone Lake virophage (YSLV)1 and 2, motif 1 in YSLV3, and motif 1 and 2 in YSLV4, respectively. AT-rich regions were distributed widely on the genomes of virophages. All of these motifs may be promoter motifs of virophages. Our results provide insights into further exploration of temporal expression of genes in virophages as well as associations between virophages and giant viruses. PMID:26524912

  7. A physical map of the highly heterozygous Populus genome: integration with the genome sequence and genetic map

    SciTech Connect

    Kelleher, Colin; CHIU, Dr. R.; Shin, Dr. H.; Krywinski, Martin; Fjell, Chris; Wilkin, Jennifer; Yin, Tongming; Difazio, Stephen P.

    2007-01-01

    As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the few such maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2802 contigs, was constructed from fingerprinted bacterial artificial chromosome (BAC) clones. The map represents approximately 9.4-fold coverage of the Populus genome, which has been estimated from the genome sequence assembly to be 485 {+-} 10 Mb in size. BAC ends were sequenced to assist long-range assembly of whole-genome shotgun sequence scaffolds and to anchor the physical map to the genome sequence. Simple sequence repeat-based markers were derived from the end sequences and used to initiate integration of the BAC and genetic maps. A total of 2411 physical map contigs, representing 97% of all clones assigned to contigs, were aligned to the sequence assembly (JGI Populus trichocarpa, version 1.0). These alignments represent a total coverage of 384 Mb (79%) of the entire poplar sequence assembly and 295 Mb (96%) of linkage group sequence assemblies. A striking result of the physical map contig alignments to the sequence assembly was the co-localization of multiple contigs across numerous regions of the 19 linkage groups. Targeted sequencing of BAC clones and genetic analysis in a small number of representative regions showed that these co-aligning contigs represent distinct haplotypes in the heterozygous individual sequenced, and revealed the nature of these haplotype sequence differences.

  8. MALISAM: a database of structurally analogous motifs in proteins.

    PubMed

    Cheng, Hua; Kim, Bong-Hyun; Grishin, Nick V

    2008-01-01

    MALISAM (manual alignments for structurally analogous motifs) represents the first database containing pairs of structural analogs and their alignments. To find reliable analogs, we developed an approach based on three ideas. First, an insertion together with a part of the evolutionary core of one domain family (a hybrid motif) is analogous to a similar motif contained within the core of another domain family. Second, a motif at an interface, formed by secondary structural elements (SSEs) contributed by two or more domains or subunits contacting along that interface, is analogous to a similar motif present in the core of a single domain. Third, an artificial protein obtained through selection from random peptides or in sequence design experiments not biased by sequences of a particular homologous family, is analogous to a structurally similar natural protein. Each analogous pair is superimposed and aligned manually, as well as by several commonly used programs. Applications of this database may range from protein evolution studies, e.g. development of remote homology inference tools and discriminators between homologs and analogs, to protein-folding research, since in the absence of evolutionary reasons, similarity between proteins is caused by structural and folding constraints. The database is publicly available at http://prodata.swmed.edu/malisam. PMID:17855399

  9. Construction of a Three-Dimensional Motif Dictionary for Protein Structural Data Mining

    NASA Astrophysics Data System (ADS)

    Hiroaki, Kato; Tadokoro, Tetsuo; Miyata, Hiroyuki; Chikamatsu, Shin-Ichi; Takahashi, Yoshimasa; Abe, Hidetsugu

    With the rapidly increasing number of proteins of which three-dimensional (3D) structures are known, the protein structure database is one of the key elements in many attempts being made to derive the knowledge of structure-function relationships of proteins. In this work, the authors have developed a software tool to assist in constructing the 3D protein motif dictionary that is closely related to the PROSITE sequence motif database. In the PROSITE, a structural feature called motif is described by a sequence pattern of amino acid residues with the regular expression defined in the database. The present system allows us to automatically find the related sites for all the 3D protein structures taken from a protein structure database such as the Protein Data Bank (PDB), and to make a dictionary of the 3D motifs related to the PROSITE sequence motif patterns. A computational trial was carried out for a subset of the PDB's structure data file. The structural feature analysis resulted with the tool showed that there are many different 3D motif patterns but having a particular PROSITE sequence pattern. For this reason, the authors also tried to classify the 3D motif patterns into several groups on the basis of distance similarity matrix, and to determine a representative pattern for each group in preparing the dictionary. The usefulness of the additional approach for preparing the 3D motif dictionary is also discussed with an illustrative example.

  10. Sequencing formally defined reactions for robotic activity: integrating RAPS and GAPPS

    NASA Astrophysics Data System (ADS)

    Slack, Marc G.

    1992-11-01

    Construction of robots which operate in unstructured environments has of late produced a number of approaches for transforming sensor readings into activity in the world. Most of these approaches provide no formal semantics for discussing the way in which the internal state of the robot maps to the desired state of the world. We have been investigating the use of the GAPPS programming language as a mechanism for defining robotic reactions. This work has resulted in the creation of reactive modules which mediate between discrete statements about world states to achieve or maintain and the required continuous activity. While relatively complex goals have been achieved with this approach, the syntax and semantics of the GAPPS language is inappropriate for complicated dynamically changing goals. As a result, we have begun investigating the use of Reactive Action Packages (RAPs) as a mechanism for sequencing the activation of GAPPS-based reactive skills. The motivation for using RAPs is twofold. First, the syntax and semantics of the RAPs language integrates smoothly with a traditional non-linear planning system, allowing the construction and execution of plans for increasingly complex tasks. Second, GAPPS-based reactions fulfill a missing component of a RAPs-based controller system, namely the transformation of discrete RAP primitives (e.g., (maintain grasp ?thing)) into continuous physical activity. This paper presents the approach we are taking and discusses some of the issues involved in integrating these two systems.

  11. Genome-guided transcript assembly from integrative analysis of RNA sequence data

    PubMed Central

    Boley, Nathan; Stoiber, Marcus H.; Booth, Benjamin W.; Wan, Kenneth H.; Hoskins, Roger A.; Bickel, Peter J.; Celniker, Susan E.; Brown, James B.

    2014-01-01

    The identification of full length transcripts entirely from short-read RNA sequencing data (RNA-seq) remains a challenge in genome annotation pipelines. Here we describe an automated pipeline for genome annotation that integrates RNA-seq and gene-boundary data sets, which we call generalized RNA integration tool, or GRIT. By applying GRIT to Drosophila melanogaster short-read RNA-seq, cap analysis of gene expression (CAGE) and poly(A)-site-seq data collected for the modENCODE project, we recover the vast majority of previously annotated transcripts and double the total number of transcripts cataloged. We find that 20% of protein coding genes encode multiple protein-localization signals, and that, in 20 day old adult fly heads, genes with multiple poly-adenylation sites are more common than genes with alternate splicing or alternate promoters. When compared to the most widely used transcript assembly tools, GRIT recovers a larger fraction of annotated transcripts at higher precision. GRIT will enable the automated generation of high-quality genome annotations without necessitating extensive manual annotation. PMID:24633242

  12. Interaction of the Spo20 Membrane-Sensor Motif with Phosphatidic Acid and Other Anionic Lipids, and Influence of the Membrane Environment

    PubMed Central

    Horchani, Habib; de Saint-Jean, Maud; Barelli, Hélène; Antonny, Bruno

    2014-01-01

    The yeast protein Spo20 contains a regulatory amphipathic motif that has been suggested to recognize phosphatidic acid, a lipid involved in signal transduction, lipid metabolism and membrane fusion. We have investigated the interaction of the Spo20 amphipathic motif with lipid membranes using a bioprobe strategy that consists in appending this motif to the end of a long coiled-coil, which can be coupled to a GFP reporter for visualization in cells. The resulting construct is amenable to in vitro and in vivo experiments and allows unbiased comparison between amphipathic helices of different chemistry. In vitro, the Spo20 bioprobe responded to small variations in the amount of phosphatidic acid. However, this response was not specific. The membrane binding of the probe depended on the presence of phosphatidylethanolamine and also integrated the contribution of other anionic lipids, including phosphatidylserine and phosphatidyl-inositol-(4,5)bisphosphate. Inverting the sequence of the Spo20 motif neither affected the ability of the probe to interact with anionic liposomes nor did it modify its cellular localization, making a stereo-specific mode of phosphatidic acid recognition unlikely. Nevertheless, the lipid binding properties and the cellular localization of the Spo20 alpha-helix differed markedly from that of another amphipathic motif, Amphipathic Lipid Packing Sensor (ALPS), suggesting that even in the absence of stereo specific interactions, amphipathic helices can act as subcellular membrane targeting determinants in a cellular context. PMID:25426975

  13. Motif types, motif locations and base composition patterns around the RNA polyadenylation site in microorganisms, plants and animals

    PubMed Central

    2014-01-01

    Background The polyadenylation of RNA is critical for gene functioning, but the conserved sequence motifs (often called signal or signature motifs), motif locations and abundances, and base composition patterns around mRNA polyadenylation [poly(A)] sites are still uncharacterized in most species. The evolutionary tendency for poly(A) site selection is still largely unknown. Results We analyzed the poly(A) site regions of 31 species or phyla. Different groups of species showed different poly(A) signal motifs: UUACUU at the poly(A) site in the parasite Trypanosoma cruzi; UGUAAC (approximately 13 bases upstream of the site) in the alga Chlamydomonas reinhardtii; UGUUUG (or UGUUUGUU) at mainly the fourth base downstream of the poly(A) site in the parasite Blastocystis hominis; and AAUAAA at approximately 16 bases and approximately 19 bases upstream of the poly(A) site in animals and plants, respectively. Polyadenylation signal motifs are usually several hundred times more abundant around poly(A) sites than in whole genomes. These predominant motifs usually had very specific locations, whether upstream of, at, or downstream of poly(A) sites, depending on the species or phylum. The poly(A) site was usually an adenosine (A) in all analyzed species except for B. hominis, and there was weak A predominance in C. reinhardtii. Fungi, animals, plants, and the protist Phytophthora infestans shared a general base abundance pattern (or base composition pattern) of “U-rich—A-rich—U-rich—Poly(A) site—U-rich regions”, or U-A-U-A-U for short, with some variation for each kingdom or subkingdom. Conclusion This study identified the poly(A) signal motifs, motif locations, and base composition patterns around mRNA poly(A) sites in protists, fungi, plants, and animals and provided insight into poly(A) site evolution. PMID:25052519

  14. Interstitial Telomeric Motifs in Squamate Reptiles: When the Exceptions Outnumber the Rule

    PubMed Central

    Rovatsos, Michail; Kratochvíl, Lukáš; Altmanová, Marie; Johnson Pokorná, Martina

    2015-01-01

    Telomeres are nucleoprotein complexes protecting the physical ends of linear eukaryotic chromosomes and therefore helping to ensure their stability and integrity. Additionally, telomeric sequences can be localized in non-terminal regions of chromosomes, forming so-called interstitial telomeric sequences (ITSs). ITSs are traditionally considered to be relics of chromosomal rearrangements and thus very informative in the reconstruction of the evolutionary history of karyotype formation. We examined the distribution of the telomeric motifs (TTAGGG)n using fluorescence in situ hybridization (FISH) in 30 species, representing 17 families of squamate reptiles, and compared them with the collected data from another 38 species from literature. Out of the 68 squamate species analyzed, 35 possess ITSs in pericentromeric regions, centromeric regions and/or within chromosome arms. We conclude that the occurrence of ITSs is rather common in squamates, despite their generally conserved karyotypes, suggesting frequent and independent cryptic chromosomal rearrangements in this vertebrate group. PMID:26252002

  15. Integration of Bombyx mori R2 Sequences into the 28S Ribosomal RNA Genes of Drosophila melanogaster

    PubMed Central

    Eickbush, Danna G.; Luan, Dongmei D.; Eickbush, Thomas H.

    2000-01-01

    R2 non-long-terminal-repeat retrotransposable elements integrate into a precise location in the 28S rRNA genes of arthropods. The purified protein encoded by R2 can cleave the 28S gene target site and use the 3′ hydroxyl group generated by this cleavage to prime reverse transcription of its own RNA, a process called target-primed reverse transcription. An integration system is described here in which components from the R2 element of the silkmoth, Bombyx mori, are injected into the preblastoderm embryo of Drosophila melanogaster. Silkmoth R2 sequences were readily detected in the 28S rRNA genes of the surviving adults as well as in the genes of their progeny. The 3′ junctions of these insertions were similar to those seen in our in vitro assays, as well as those from endogenous R2 retrotransposition events. The 5′ junctions of the insertions originally contained major deletions of both R2 and 28S gene sequences, a problem overcome by the inclusion of upstream 28S gene sequences at the 5′ end of the injected RNA. The resulting 5′ junctions suggested a recombination event between the cDNA and the upstream target sequences. This in vivo integration system should help determine the mechanism of R2 retrotransposition and be useful as a delivery system to integrate defined DNA sequences into the rRNA genes of organisms. PMID:10594024

  16. Sequential visibility-graph motifs

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Lacasa, Lucas

    2016-04-01

    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of sequential visibility-graph motifs, smaller substructures of n consecutive nodes that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated with general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable of distinguishing among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification and description of physical, biological, and financial time series.

  17. Comparative genomic analysis of upstream miRNA regulatory motifs in Caenorhabditis.

    PubMed

    Jovelin, Richard; Krizus, Aldis; Taghizada, Bakhtiyar; Gray, Jeremy C; Phillips, Patrick C; Claycomb, Julie M; Cutter, Asher D

    2016-07-01

    MicroRNAs (miRNAs) comprise a class of short noncoding RNA molecules that play diverse developmental and physiological roles by controlling mRNA abundance and protein output of the vast majority of transcripts. Despite the importance of miRNAs in regulating gene function, we still lack a complete understanding of how miRNAs themselves are transcriptionally regulated. To fill this gap, we predicted regulatory sequences by searching for abundant short motifs located upstream of miRNAs in eight species of Caenorhabditis nematodes. We identified three conserved motifs across the Caenorhabditis phylogeny that show clear signatures of purifying selection from comparative genomics, patterns of nucleotide changes in motifs of orthologous miRNAs, and correlation between motif incidence and miRNA expression. We then validated our predictions with transgenic green fluorescent protein reporters and site-directed mutagenesis for a subset of motifs located in an enhancer region upstream of let-7 We demonstrate that a CT-dinucleotide motif is sufficient for proper expression of GFP in the seam cells of adult C. elegans, and that two other motifs play incremental roles in combination with the CT-rich motif. Thus, functional tests of sequence motifs identified through analysis of molecular evolutionary signatures provide a powerful path for efficiently characterizing the transcriptional regulation of miRNA genes. PMID:27140965

  18. Onco-Regulon: an integrated database and software suite for site specific targeting of transcription factors of cancer genes

    PubMed Central

    Tomar, Navneet; Mishra, Akhilesh; Mrinal, Nirotpal; Jayaram, B.

    2016-01-01

    Transcription factors (TFs) bind at multiple sites in the genome and regulate expression of many genes. Regulating TF binding in a gene specific manner remains a formidable challenge in drug discovery because the same binding motif may be present at multiple locations in the genome. Here, we present Onco-Regulon (http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm), an integrated database of regulatory motifs of cancer genes clubbed with Unique Sequence-Predictor (USP) a software suite that identifies unique sequences for each of these regulatory DNA motifs at the specified position in the genome. USP works by extending a given DNA motif, in 5′→3′, 3′ →5′ or both directions by adding one nucleotide at each step, and calculates the frequency of each extended motif in the genome by Frequency Counter programme. This step is iterated till the frequency of the extended motif becomes unity in the genome. Thus, for each given motif, we get three possible unique sequences. Closest Sequence Finder program predicts off-target drug binding in the genome. Inclusion of DNA-Protein structural information further makes Onco-Regulon a highly informative repository for gene specific drug development. We believe that Onco-Regulon will help researchers to design drugs which will bind to an exclusive site in the genome with no off-target effects, theoretically. Database URL: http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm PMID:27515825

  19. Onco-Regulon: an integrated database and software suite for site specific targeting of transcription factors of cancer genes.

    PubMed

    Tomar, Navneet; Mishra, Akhilesh; Mrinal, Nirotpal; Jayaram, B

    2016-01-01

    Transcription factors (TFs) bind at multiple sites in the genome and regulate expression of many genes. Regulating TF binding in a gene specific manner remains a formidable challenge in drug discovery because the same binding motif may be present at multiple locations in the genome. Here, we present Onco-Regulon (http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm), an integrated database of regulatory motifs of cancer genes clubbed with Unique Sequence-Predictor (USP) a software suite that identifies unique sequences for each of these regulatory DNA motifs at the specified position in the genome. USP works by extending a given DNA motif, in 5'→3', 3' →5' or both directions by adding one nucleotide at each step, and calculates the frequency of each extended motif in the genome by Frequency Counter programme. This step is iterated till the frequency of the extended motif becomes unity in the genome. Thus, for each given motif, we get three possible unique sequences. Closest Sequence Finder program predicts off-target drug binding in the genome. Inclusion of DNA-Protein structural information further makes Onco-Regulon a highly informative repository for gene specific drug development. We believe that Onco-Regulon will help researchers to design drugs which will bind to an exclusive site in the genome with no off-target effects, theoretically.Database URL: http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm. PMID:27515825

  20. Distance conservation of transcriptional and splicing regulatory motifs

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Ding, Changjiang

    2012-09-01

    The distance conservation is a new kind of genomic evolutionary conservation. The transcriptional and splicing regulatory k-mer motifs are functionally important DNA sequence elements. We demonstrated that there exist the evolutionarily conservation of the distance between these k-mer pairs in genomic sequences. This kind of conservation is not based on the strict location of bases in genome sequences, and does not depend on excess frequency of occurrence of k-mers. By utilizing the conservation of k-mer distance it is possible to design a non-alignment-based approach to quickly identify transcriptional or splicing regulatory motifs on the genome-wide scale. In this paper we will summarize our previous studies on distance conservation, introduce the method of distance conservation and indicate the prospects of its application.

  1. A comprehensive analysis of the La-motif protein superfamily

    PubMed Central

    Bousquet-Antonelli, Cécile; Deragon, Jean-Marc

    2009-01-01

    The extremely well-conserved La motif (LAM), in synergy with the immediately following RNA recognition motif (RRM), allows direct binding of the (genuine) La autoantigen to RNA polymerase III primary transcripts. This motif is not only found on La homologs, but also on La-related proteins (LARPs) of unrelated function. LARPs are widely found amongst eukaryotes and, although poorly characterized, appear to be RNA-binding proteins fulfilling crucial cellular functions. We searched the fully sequenced genomes of 83 eukaryotic species scattered along the tree of life for the presence of LAM-containing proteins. We observed that these proteins are absent from archaea and present in all eukaryotes (except protists from the Plasmodium genus), strongly suggesting that the LAM is an ancestral motif that emerged early after the archaea-eukarya radiation. A complete evolutionary and structural analysis of these proteins resulted in their classification into five families: the genuine La homologs and four LARP families. Unexpectedly, in each family a conserved domain representing either a classical RRM or an RRM-like motif immediately follows the LAM of most proteins. An evolutionary analysis of the LAM-RRM/RRM-L regions shows that these motifs co-evolved and should be used as a single entity to define the functional region of interaction of LARPs with their substrates. We also found two extremely well conserved motifs, named LSA and DM15, shared by LARP6 and LARP1 family members, respectively. We suggest that members of the same family are functional homologs and/or share a common molecular mode of action on different RNA baits. PMID:19299548

  2. Teaching Note--Integrating Theory and Research Methods in a First-Year Doctoral Sequence or Program

    ERIC Educational Resources Information Center

    Pollio, David E.; MacNeil, Gordon; Womack, Bethany; Brazeal, Michelle; Church, Wesley T., II

    2016-01-01

    This teaching note describes an innovative process in which faculty members worked collaboratively to create an integrated three-course sequence of requisite course content in a PhD program, developed complementary assignments, and coordinated a classroom experience that led to the creation of an individualized area statement and eventual…

  3. Mice and Men Environmental Balance, Parts Three and Four of an Integrated Science Sequence, Teacher's Guide, 1970 Edition.

    ERIC Educational Resources Information Center

    Portland Project Committee, OR.

    This teacher's guide contains parts three and four of the four-part first year Portland Project, a three-year secondary integrated science curriculum sequence. Part three of the guide deals with topics such as the cell, reproduction, embryology, genetics, genetic diseases, genetics and change, populations, effects of density on populations,…

  4. Chemistry of Living Matter, Energy Capture & Growth, Parts Three & Four of an Integrated Science Sequence, Teacher's Guide, 1973 Edition.

    ERIC Educational Resources Information Center

    Portland Project Committee, OR.

    This teacher's guide includes parts three and four of the four-part third year Portland Project, a three-year integrated secondary science curriculum sequence. The underlying intention of the third year is to study energy and its importance to life. Energy-related concepts considered in year one and two, and the concepts related to atomic…

  5. Motion and Energy Chemical Reactions, Parts One and Two of an Integrated Science Sequence, Teacher's Guide, 1973 Edition.

    ERIC Educational Resources Information Center

    Portland Project Committee, OR.

    This teacher's guide is for the second year of the Portland Project, a three-year integrated secondary science curriculum sequence. The first of two parts in this volume, "Motion and Energy," begins with the study of motion, going from the quantitative description to a consideration of what causes motion and a discussion of Newton's laws. There…

  6. Waves and Particles, The Orbital Atom, Parts One and Two of an Integrated Science Sequence, Teacher's Guide, 1973 Edition.

    ERIC Educational Resources Information Center

    Portland Project Committee, OR.

    This teacher's guide includes parts one and two of the four-part third year Portland Project, a three-year integrated secondary science curriculum sequence. The Harvard Project Physics textbook is used for reading assignments for part one. Assignments relate to waves, light, electricity, magnetic fields, Faraday and the electrical age,…

  7. Description of the PMAD DC test bed architecture and integration sequence

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Trash, L.; Fong, D.; Bolerjack, B.

    1991-01-01

    NASA-Lewis is responsible for the development, fabrication, and assembly of the electric power system (EPS) for the Space Station Freedom (SSF). The SSF power system is radically different from previous spacecraft power systems in both the size and complexity of the system. Unlike past spacecraft power system the SSF EPS will grow and be maintained on orbit and must be flexible to meet changing user power needs. The SSF power system is also unique in comparison with terrestrial power systems because it is dominated by power electronic converters which regulate and control the power. Although spacecraft historically have used power converters for regulation they typically involved only a single series regulating element. The SSF EPS involves multiple regulating elements, two or more in series, prior to the load. These unique system features required the construction of a testbed which would allow the development of spacecraft power system technology. A description is provided of the Power Management and Distribution (PMAD) DC Testbed which was assembled to support the design and early evaluation of the SSF EPS. A description of the integration process used in the assembly sequence is also given along with a description of the support facility.

  8. An integrative approach to predicting the functional effects of non-coding and coding sequence variation

    PubMed Central

    Shihab, Hashem A.; Rogers, Mark F.; Gough, Julian; Mort, Matthew; Cooper, David N.; Day, Ian N. M.; Gaunt, Tom R.; Campbell, Colin

    2015-01-01

    Motivation: Technological advances have enabled the identification of an increasingly large spectrum of single nucleotide variants within the human genome, many of which may be associated with monogenic disease or complex traits. Here, we propose an integrative approach, named FATHMM-MKL, to predict the functional consequences of both coding and non-coding sequence variants. Our method utilizes various genomic annotations, which have recently become available, and learns to weight the significance of each component annotation source. Results: We show that our method outperforms current state-of-the-art algorithms, CADD and GWAVA, when predicting the functional consequences of non-coding variants. In addition, FATHMM-MKL is comparable to the best of these algorithms when predicting the impact of coding variants. The method includes a confidence measure to rank order predictions. Availability and implementation: The FATHMM-MKL webserver is available at: http://fathmm.biocompute.org.uk Contact: H.Shihab@bristol.ac.uk or Mark.Rogers@bristol.ac.uk or C.Campbell@bristol.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25583119

  9. Biophysical analysis of binding of WW domains of the YAP2 transcriptional regulator to PPXY motifs within WBP1 and WBP2 adaptors.

    PubMed

    McDonald, Caleb B; McIntosh, Samantha K N; Mikles, David C; Bhat, Vikas; Deegan, Brian J; Seldeen, Kenneth L; Saeed, Ali M; Buffa, Laura; Sudol, Marius; Nawaz, Zafar; Farooq, Amjad

    2011-11-01

    The YAP2 transcriptional regulator mediates a plethora of cellular functions, including the newly discovered Hippo tumor suppressor pathway, by virtue of its ability to recognize WBP1 and WBP2 signaling adaptors among a wide variety of other ligands. Herein, using isothermal titration calorimery and circular dichroism in combination with molecular modeling and molecular dynamics, we provide evidence that the WW1 and WW2 domains of YAP2 recognize various PPXY motifs within WBP1 and WBP2 in a highly promiscuous and subtle manner. Thus, although both WW domains strictly require the integrity of the consensus PPXY sequence, nonconsensus residues within and flanking this motif are not critical for high-affinity binding, implying that they most likely play a role in stabilizing the polyproline type II helical conformation of the PPXY ligands. Of particular interest is the observation that both WW domains bind to a PPXYXG motif with highest affinity, implicating a preference for a nonbulky and flexible glycine one residue to the C-terminal side of the consensus tyrosine. Importantly, a large set of residues within both WW domains and the PPXY motifs appear to undergo rapid fluctuations on a nanosecond time scale, suggesting that WW-ligand interactions are highly dynamic and that such conformational entropy may be an integral part of the reversible and temporal nature of cellular signaling cascades. Collectively, our study sheds light on the molecular determinants of a key WW-ligand interaction pertinent to cellular functions in health and disease. PMID:21981024

  10. Redox active motifs in selenoproteins

    PubMed Central

    Li, Fei; Lutz, Patricia B.; Pepelyayeva, Yuliya; Arnér, Elias S. J.; Bayse, Craig A.; Rozovsky, Sharon

    2014-01-01

    Selenoproteins use the rare amino acid selenocysteine (Sec) to act as the first line of defense against oxidants, which are linked to aging, cancer, and neurodegenerative diseases. Many selenoproteins are oxidoreductases in which the reactive Sec is connected to a neighboring Cys and able to form a ring. These Sec-containing redox motifs govern much of the reactivity of selenoproteins. To study their fundamental properties, we have used 77Se NMR spectroscopy in concert with theoretical calculations to determine the conformational preferences and mobility of representative motifs. This use of 77Se as a probe enables the direct recording of the properties of Sec as its environment is systematically changed. We find that all motifs have several ring conformations in their oxidized state. These ring structures are most likely stabilized by weak, nonbonding interactions between the selenium and the amide carbon. To examine how the presence of selenium and ring geometric strain governs the motifs’ reactivity, we measured the redox potentials of Sec-containing motifs and their corresponding Cys-only variants. The comparisons reveal that for C-terminal motifs the redox potentials increased between 20–25 mV when the selenenylsulfide bond was changed to a disulfide bond. Changes of similar magnitude arose when we varied ring size or the motifs’ flanking residues. This suggests that the presence of Sec is not tied to unusually low redox potentials. The unique roles of selenoproteins in human health and their chemical reactivities may therefore not necessarily be explained by lower redox potentials, as has often been claimed. PMID:24769567

  11. BC1 RNA motifs required for dendritic transport in vivo

    PubMed Central

    Robeck, Thomas; Skryabin, Boris V.; Rozhdestvensky, Timofey S.; Skryabin, Anastasiya B.; Brosius, Jürgen

    2016-01-01

    BC1 RNA is a small brain specific non-protein coding RNA. It is transported from the cell body into dendrites where it is involved in the fine-tuning translational control. Due to its compactness and established secondary structure, BC1 RNA is an ideal model for investigating the motifs necessary for dendritic localization. Previously, microinjection of in vitro transcribed BC1 RNA mutants into the soma of cultured primary neurons suggested the importance of RNA motifs for dendritic targeting. These ex vivo experiments identified a single bulged nucleotide (U22) and a putative K-turn (GA motif) structure required for dendritic localization or distal transport, respectively. We generated six transgenic mouse lines (three founders each) containing neuronally expressing BC1 RNA variants on a BC1 RNA knockout mouse background. In contrast to ex vivo data, we did not find indications of reduction or abolition of dendritic BC1 RNA localization in the mutants devoid of the GA motif or the bulged nucleotide. We confirmed the ex vivo data, which showed that the triloop terminal sequence had no consequence on dendritic transport. Interestingly, changing the triloop supporting structure completely abolished dendritic localization of BC1 RNA. We propose a novel RNA motif important for dendritic transport in vivo. PMID:27350115

  12. BC1 RNA motifs required for dendritic transport in vivo.

    PubMed

    Robeck, Thomas; Skryabin, Boris V; Rozhdestvensky, Timofey S; Skryabin, Anastasiya B; Brosius, Jürgen

    2016-01-01

    BC1 RNA is a small brain specific non-protein coding RNA. It is transported from the cell body into dendrites where it is involved in the fine-tuning translational control. Due to its compactness and established secondary structure, BC1 RNA is an ideal model for investigating the motifs necessary for dendritic localization. Previously, microinjection of in vitro transcribed BC1 RNA mutants into the soma of cultured primary neurons suggested the importance of RNA motifs for dendritic targeting. These ex vivo experiments identified a single bulged nucleotide (U22) and a putative K-turn (GA motif) structure required for dendritic localization or distal transport, respectively. We generated six transgenic mouse lines (three founders each) containing neuronally expressing BC1 RNA variants on a BC1 RNA knockout mouse background. In contrast to ex vivo data, we did not find indications of reduction or abolition of dendritic BC1 RNA localization in the mutants devoid of the GA motif or the bulged nucleotide. We confirmed the ex vivo data, which showed that the triloop terminal sequence had no consequence on dendritic transport. Interestingly, changing the triloop supporting structure completely abolished dendritic localization of BC1 RNA. We propose a novel RNA motif important for dendritic transport in vivo. PMID:27350115

  13. Integration of Seismic Sequence Analysis and High Resolution Sequence Stratigraphy for Delineating the Sedimentation Characteristics and Modeling of Baltim Area, Off-Shore Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Nasr El-Deen Badawy, A. M. E. S.; Abu El-Ata, A. S. A.; El-Gendy, N. H.

    2014-12-01

    The current study is aiming to discuss the Messinian Prospectivity of the concerned area, which is located in the offshore Nile Delta, about 25 Km from the Mediterranean Sea shoreline. An integrated exploration approach applied, using a variety of the 2D/3D seismic data, subsurface borehole geologic and log data of the selected wells distributed in the study area, as well as the geophysical and biostratigraphic data. The well data comprise well markers, and electric logs, where the geological data represented by litho-stratigraphic information, as well as ditch samples analysis of the studied interval. The geophysical data include check shots, VSP, velocity cubes and 3D seismic lines. Biostratigraphic data include biozones, benthonic to planktonic ratios, nannofossils and foraminiferal data. Seismic interpretation and seismic stratigraphic analysis, in the form of seismic sequence analysis, seismic facies analysis, seismic unit analysis and geologic confirmation have been done by the aid of Petrel and Kingdom computer softwares. The seismic lines were interpreted for defining the different parasequences and picking the various smaller sequences for mapping, after picking each sequence from the seismic correlation, it is facilitated the mapping of every sequence laterally. In addition, the interpretation of structures and isopach of every sequence has been carried out, and the seismic attributes for every sequence were possible, to extract the sands present in each sequence, and to study the extensions of these sands that act as a reservoir. The integration of all results was taken as a base to produce the various models for the study area. The first one was the depositional environmental model, which showed that, the area varies from intertidal-littoral southward at Nidoco wells to inner-middle neritic at Baltim East wells then to outer neritic, and changes to bathyal and then to abyssal at the extreme north. The geologic model for the area was constructed

  14. Integration of Temporal and Ordinal Information during Serial Interception Sequence Learning

    ERIC Educational Resources Information Center

    Gobel, Eric W.; Sanchez, Daniel J.; Reber, Paul J.

    2011-01-01

    The expression of expert motor skills typically involves learning to perform a precisely timed sequence of movements. Research examining incidental sequence learning has relied on a perceptually cued task that gives participants exposure to repeating motor sequences but does not require timing of responses for accuracy. In the 1st experiment, a…

  15. Conservation defines functional motifs in the squint/nodal-related 1 RNA dorsal localization element

    PubMed Central

    Gilligan, Patrick C.; Kumari, Pooja; Lim, Shimin; Cheong, Albert; Chang, Alex; Sampath, Karuna

    2011-01-01

    RNA localization is emerging as a general principle of sub-cellular protein localization and cellular organization. However, the sequence and structural requirements in many RNA localization elements remain poorly understood. Whereas transcription factor-binding sites in DNA can be recognized as short degenerate motifs, and consensus binding sites readily inferred, protein-binding sites in RNA often contain structural features, and can be difficult to infer. We previously showed that zebrafish squint/nodal-related 1 (sqt/ndr1) RNA localizes to the future dorsal side of the embryo. Interestingly, mammalian nodal RNA can also localize to dorsal when injected into zebrafish embryos, suggesting that the sequence motif(s) may be conserved, even though the fish and mammal UTRs cannot be aligned. To define potential sequence and structural features, we obtained ndr1 3′-UTR sequences from approximately 50 fishes that are closely, or distantly, related to zebrafish, for high-resolution phylogenetic footprinting. We identify conserved sequence and structural motifs within the zebrafish/carp family and catfish. We find that two novel motifs, a single-stranded AGCAC motif and a small stem-loop, are required for efficient sqt RNA localization. These findings show that comparative sequencing in the zebrafish/carp family is an efficient approach for identifying weak consensus binding sites for RNA regulatory proteins. PMID:21149265

  16. BEAUTY: an enhanced BLAST-based search tool that integrates multiple biological information resources into sequence similarity search results.

    PubMed

    Worley, K C; Wiese, B A; Smith, R F

    1995-09-01

    BEAUTY (BLAST enhanced alignment utility) is an enhanced version of the NCBI's BLAST data base search tool that facilitates identification of the functions of matched sequences. We have created new data bases of conserved regions and functional domains for protein sequences in NCBI's Entrez data base, and BEAUTY allows this information to be incorporated directly into BLAST search results. A Conserved Regions Data Base, containing the locations of conserved regions within Entrez protein sequences, was constructed by (1) clustering the entire data base into families, (2) aligning each family using our PIMA multiple sequence alignment program, and (3) scanning the multiple alignments to locate the conserved regions within each aligned sequence. A separate Annotated Domains Data Base was constructed by extracting the locations of all annotated domains and sites from sequences represented in the Entrez, PROSITE, BLOCKS, and PRINTS data bases. BEAUTY performs a BLAST search of those Entrez sequences with conserved regions and/or annotated domains. BEAUTY then uses the information from the Conserved Regions and Annotated Domains data bases to generate, for each matched sequence, a schematic display that allows one to directly compare the relative locations of (1) the conserved regions, (2) annotated domains and sites, and (3) the locally aligned regions matched in the BLAST search. In addition, BEAUTY search results include World-Wide Web hypertext links to a number of external data bases that provide a variety of additional types of information on the function of matched sequences. This convenient integration of protein families, conserved regions, annotated domains, alignment displays, and World-Wide Web resources greatly enhances the biological informativeness of sequence similarity searches. BEAUTY searches can be performed remotely on our system using the "BCM Search Launcher" World-Wide Web pages (URL is < http:/ /gc.bcm.tmc.edu:8088/ search

  17. Identification of high-molecular-weight proteins with multiple EGF-like motifs by motif-trap screening.

    PubMed

    Nakayama, M; Nakajima, D; Nagase, T; Nomura, N; Seki, N; Ohara, O

    1998-07-01

    To identify large proteins with an EGF-like-motif in a systematic manner, we developed a computer-assisted method called motif-trap screening. The method exploits 5'-end single-pass sequence data obtained from a pool of cDNAs whose sizes exceed 5 kb. Using this screening procedure, we were able to identify five known and nine new genes for proteins with multiple EGF-like-motifs from 8000 redundant human brain cDNA clones. These new genes were found to encode a novel mammalian homologue of Drosophila fat protein, two seven-transmembrane proteins containing multiple cadherin and EGF-like motifs, two mammalian homologues of Drosophila slit protein, an unidentified LDL receptor-like protein, and three totally uncharacterized proteins. The organization of the domains in the proteins, together with their expression profiles and fine chromosomal locations, has indicated their biological significance, demonstrating that motif-trap screening is a powerful tool for the discovery of new genes that have been difficult to identify by conventional methods. PMID:9693030

  18. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies

    PubMed Central

    Dong, Chengliang; Wei, Peng; Jian, Xueqiu; Gibbs, Richard; Boerwinkle, Eric; Wang, Kai; Liu, Xiaoming

    2015-01-01

    Accurate deleteriousness prediction for nonsynonymous variants is crucial for distinguishing pathogenic mutations from background polymorphisms in whole exome sequencing (WES) studies. Although many deleteriousness prediction methods have been developed, their prediction results are sometimes inconsistent with each other and their relative merits are still unclear in practical applications. To address these issues, we comprehensively evaluated the predictive performance of 18 current deleteriousness-scoring methods, including 11 function prediction scores (PolyPhen-2, SIFT, MutationTaster, Mutation Assessor, FATHMM, LRT, PANTHER, PhD-SNP, SNAP, SNPs&GO and MutPred), 3 conservation scores (GERP++, SiPhy and PhyloP) and 4 ensemble scores (CADD, PON-P, KGGSeq and CONDEL). We found that FATHMM and KGGSeq had the highest discriminative power among independent scores and ensemble scores, respectively. Moreover, to ensure unbiased performance evaluation of these prediction scores, we manually collected three distinct testing datasets, on which no current prediction scores were tuned. In addition, we developed two new ensemble scores that integrate nine independent scores and allele frequency. Our scores achieved the highest discriminative power compared with all the deleteriousness prediction scores tested and showed low false-positive prediction rate for benign yet rare nonsynonymous variants, which demonstrated the value of combining information from multiple orthologous approaches. Finally, to facilitate variant prioritization in WES studies, we have pre-computed our ensemble scores for 87 347 044 possible variants in the whole-exome and made them publicly available through the ANNOVAR software and the dbNSFP database. PMID:25552646

  19. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies.

    PubMed

    Dong, Chengliang; Wei, Peng; Jian, Xueqiu; Gibbs, Richard; Boerwinkle, Eric; Wang, Kai; Liu, Xiaoming

    2015-04-15

    Accurate deleteriousness prediction for nonsynonymous variants is crucial for distinguishing pathogenic mutations from background polymorphisms in whole exome sequencing (WES) studies. Although many deleteriousness prediction methods have been developed, their prediction results are sometimes inconsistent with each other and their relative merits are still unclear in practical applications. To address these issues, we comprehensively evaluated the predictive performance of 18 current deleteriousness-scoring methods, including 11 function prediction scores (PolyPhen-2, SIFT, MutationTaster, Mutation Assessor, FATHMM, LRT, PANTHER, PhD-SNP, SNAP, SNPs&GO and MutPred), 3 conservation scores (GERP++, SiPhy and PhyloP) and 4 ensemble scores (CADD, PON-P, KGGSeq and CONDEL). We found that FATHMM and KGGSeq had the highest discriminative power among independent scores and ensemble scores, respectively. Moreover, to ensure unbiased performance evaluation of these prediction scores, we manually collected three distinct testing datasets, on which no current prediction scores were tuned. In addition, we developed two new ensemble scores that integrate nine independent scores and allele frequency. Our scores achieved the highest discriminative power compared with all the deleteriousness prediction scores tested and showed low false-positive prediction rate for benign yet rare nonsynonymous variants, which demonstrated the value of combining information from multiple orthologous approaches. Finally, to facilitate variant prioritization in WES studies, we have pre-computed our ensemble scores for 87 347 044 possible variants in the whole-exome and made them publicly available through the ANNOVAR software and the dbNSFP database. PMID:25552646

  20. Event-related potential indices of congruency sequence effects without feature integration or contingency learning confounds.

    PubMed

    Larson, Michael J; Clayson, Peter E; Kirwan, C Brock; Weissman, Daniel H

    2016-06-01

    The congruency effect in Stroop-like tasks (i.e., increased response time and reduced accuracy in incongruent relative to congruent trials) is often smaller when the previous trial was incongruent as compared to congruent. This congruency sequence effect (CSE) is thought to reflect cognitive control processes that shift attention to the target and/or modulate the response engendered by the distracter differently after incongruent relative to congruent trials. The neural signatures of CSEs are therefore usually attributed to cognitive control processes that minimize distraction from irrelevant stimuli. However, CSEs in previous functional neuroimaging studies were ubiquitously confounded with feature integration and/or contingency learning processes. We therefore investigated whether a neural CSE can be observed without such confounds in a group of healthy young adults (n = 56). To this end, we combined a prime-probe task that lacks such confounds with high-density ERPs to identify, for the first time, the neural time course of confound-minimized CSEs. Replicating recent behavioral findings, we observed strong CSEs in this task for mean response time and mean accuracy. Critically, conceptually replicating prior ERP results from confounded tasks, we also observed a CSE in both the parietal conflict slow potential (conflict SP) and the frontomedial N450. These findings indicate for the first time that neural CSEs as indexed by ERPs can be observed without the typical confounds. More broadly, the present study provides a confound-minimized protocol that will help future researchers to better isolate the neural bases of control processes that minimize distraction from irrelevant stimuli. PMID:26854028

  1. A general approach for discriminative de novo motif discovery from high-throughput data

    PubMed Central

    Grau, Jan; Posch, Stefan; Grosse, Ivo; Keilwagen, Jens

    2013-01-01

    De novo motif discovery has been an important challenge of bioinformatics for the past two decades. Since the emergence of high-throughput techniques like ChIP-seq, ChIP-exo and protein-binding microarrays (PBMs), the focus of de novo motif discovery has shifted to runtime and accuracy on large data sets. For this purpose, specialized algorithms have been designed for discovering motifs in ChIP-seq or PBM data. However, none of the existing approaches work perfectly for all three high-throughput techniques. In this article, we propose Dimont, a general approach for fast and accurate de novo motif discovery from high-throughput data. We demonstrate that Dimont yields a higher number of correct motifs from ChIP-seq data than any of the specialized approaches and achieves a higher accuracy for predicting PBM intensities from probe sequence than any of the approaches specifically designed for that purpose. Dimont also reports the expected motifs for several ChIP-exo data sets. Investigating differences between in vitro and in vivo binding, we find that for most transcription factors, the motifs discovered by Dimont are in good accordance between techniques, but we also find notable exceptions. We also observe that modeling intra-motif dependencies may increase accuracy, which indicates that more complex motif models are a worthwhile field of research. PMID:24057214

  2. A structural-alphabet-based strategy for finding structural motifs across protein families.

    PubMed

    Wu, Chih Yuan; Chen, Yao Chi; Lim, Carmay

    2010-08-01

    Proteins with insignificant sequence and overall structure similarity may still share locally conserved contiguous structural segments; i.e. structural/3D motifs. Most methods for finding 3D motifs require a known motif to search for other similar structures or functionally/structurally crucial residues. Here, without requiring a query motif or essential residues, a fully automated method for discovering 3D motifs of various sizes across protein families with different folds based on a 16-letter structural alphabet is presented. It was applied to structurally non-redundant proteins bound to DNA, RNA, obligate/non-obligate proteins as well as free DNA-binding proteins (DBPs) and proteins with known structures but unknown function. Its usefulness was illustrated by analyzing the 3D motifs found in DBPs. A non-specific motif was found with a 'corner' architecture that confers a stable scaffold and enables diverse interactions, making it suitable for binding not only DNA but also RNA and proteins. Furthermore, DNA-specific motifs present 'only' in DBPs were discovered. The motifs found can provide useful guidelines in detecting binding sites and computational protein redesign. PMID:20525797

  3. Comprehensive discovery of DNA motifs in 349 human cells and tissues reveals new features of motifs

    PubMed Central

    Zheng, Yiyu; Li, Xiaoman; Hu, Haiyan

    2015-01-01

    Comprehensive motif discovery under experimental conditions is critical for the global understanding of gene regulation. To generate a nearly complete list of human DNA motifs under given conditions, we employed a novel approach to de novo discover significant co-occurring DNA motifs in 349 human DNase I hypersensitive site datasets. We predicted 845 to 1325 motifs in each dataset, for a total of 2684 non-redundant motifs. These 2684 motifs contained 54.02 to 75.95% of the known motifs in seven large collections including TRANSFAC. In each dataset, we also discovered 43 663 to 2 013 288 motif modules, groups of motifs with their binding sites co-occurring in a significant number of short DNA regions. Compared with known interacting transcription factors in eight resources, the predicted motif modules on average included 84.23% of known interacting motifs. We further showed new features of the predicted motifs, such as motifs enriched in proximal regions rarely overlapped with motifs enriched in distal regions, motifs enriched in 5′ distal regions were often enriched in 3′ distal regions, etc. Finally, we observed that the 2684 predicted motifs classified the cell or tissue types of the datasets with an accuracy of 81.29%. The resources generated in this study are available at http://server.cs.ucf.edu/predrem/. PMID:25505144

  4. SEQCHIP: a powerful method to integrate sequence and genotype data for the detection of rare variant associations

    PubMed Central

    Liu, Dajiang J.; Leal, Suzanne M.

    2012-01-01

    Motivation: Next-generation sequencing greatly increases the capacity to detect rare-variant complex-trait associations. However, it is still expensive to sequence a large number of samples and therefore often small datasets are used. Given cost constraints, a potentially more powerful two-step strategy is to sequence a subset of the sample to discover variants, and genotype the identified variants in the remaining sample. If only cases are sequenced, directly combining sequence and genotype data will lead to inflated type-I errors in rare-variant association analysis. Although several methods have been developed to correct for the bias, they are either underpowered or theoretically invalid. We proposed a new method SEQCHIP to integrate genotype and sequence data, which can be used with most existing rare-variant tests. Results: It is demonstrated using both simulated and real datasets that the SEQCHIP method has controlled type-I errors, and is substantially more powerful than all other currently available methods. Availability: SEQCHIP is implemented in an R-Package and is available at http://linkage.rockefeller.edu/suzanne/seqchip/Seqchip.htm Contacts: dajiang@umich.edu or sleal@bcm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22556370

  5. Fully Phosphorothioate-Modified CpG ODN with PolyG Motif Inhibits the Adhesion of B16 Melanoma Cells In Vitro and Tumorigenesis In Vivo

    PubMed Central

    Wang, Xueju; Wang, Liying; Wan, Min; Wu, Xiuli; Yu, Yongli

    2013-01-01

    Adhesion to the extracellular matrix and endothelial lining of blood vessels is critical for tumor cells to grow at original or metastatic sites. Inhibition of tumor cell adhesion can be an antitumor strategy. Guanosine-rich (G-rich) oligodeoxynucleotides (ODNs) can inhibit the adhesion of certain tumor cells. However, no data exist on how inclusion of the CpG motif in the G-rich sequence influences tumor cell adhesion and subsequent tumorigenesis. In this study, in vitro and in vivo assays were used to evaluate how a panel of ODN-containing contiguous guanosines and the CpG motif influenced adhesion of B16 melanoma cells. The results showed that a self-designed ODN, named BW001, containing the polyG motif and a full phosphorothioate modification backbone could inhibit B16 melanoma cell adhesion on a culture plate or on a plate coated with various substances. In vivo data revealed that B16 melanoma cells co-administered with BW001 and intraperitoneally injected into mice formed fewer tumor colonies in peritoneal cavities. This effect was related to the polyG motif and the full phosphorothioate modification backbone and enhanced by the existence of the CpG motif. Additional in vivo data showed that survival of tumor-bearing mice in the BW001 group was significantly prolonged, subcutaneous melanoma developed much more slowly, and lung dissemination colonies formed much less often than in mice inoculated with B16 melanoma cells only. The effect was CpG motif-dependent. These results suggest that BW001 may exert an integrated antitumor effect. PMID:23848522

  6. Miz-1 Activates Gene Expression via a Novel Consensus DNA Binding Motif

    PubMed Central

    Barrilleaux, Bonnie L.; Burow, Dana; Lockwood, Sarah H.; Yu, Abigail; Segal, David J.; Knoepfler, Paul S.

    2014-01-01

    The transcription factor Miz-1 can either activate or repress gene expression in concert with binding partners including the Myc oncoprotein. The genomic binding of Miz-1 includes both core promoters and more distal sites, but the preferred DNA binding motif of Miz-1 has been unclear. We used a high-throughput in vitro technique, Bind-n-Seq, to identify two Miz-1 consensus DNA binding motif sequences—ATCGGTAATC and ATCGAT (Mizm1 and Mizm2)—bound by full-length Miz-1 and its zinc finger domain, respectively. We validated these sequences directly as high affinity Miz-1 binding motifs. Competition assays using mutant probes indicated that the binding affinity of Miz-1 for Mizm1 and Mizm2 is highly sequence-specific. Miz-1 strongly activates gene expression through the motifs in a Myc-independent manner. MEME-ChIP analysis of Miz-1 ChIP-seq data in two different cell types reveals a long motif with a central core sequence highly similar to the Mizm1 motif identified by Bind-n-Seq, validating the in vivo relevance of the findings. Miz-1 ChIP-seq peaks containing the long motif are predominantly located outside of proximal promoter regions, in contrast to peaks without the motif, which are highly concentrated within 1.5 kb of the nearest transcription start site. Overall, our results indicate that Miz-1 may be directed in vivo to the novel motif sequences we have identified, where it can recruit its specific binding partners to control gene expression and ultimately regulate cell fate. PMID:24983942

  7. Analysis of interactions between ribosomal proteins and RNA structural motifs

    PubMed Central

    2010-01-01

    Background One important goal of structural bioinformatics is to recognize and predict the interactions between protein binding sites and RNA. Recently, a comprehensive analysis of ribosomal proteins and their interactions with rRNA has been done. Interesting results emerged from the comparison of r-proteins within the small subunit in T. thermophilus and E. coli, supporting the idea of a core made by both RNA and proteins, conserved by evolution. Recent work showed also that ribosomal RNA is modularly composed. Motifs are generally single-stranded sequences of consecutive nucleotides (ssRNA) with characteristic folding. The role of these motifs in protein-RNA interactions has been so far only sparsely investigated. Results This work explores the role of RNA structural motifs in the interaction of proteins with ribosomal RNA (rRNA). We analyze composition, local geometries and conformation of interface regions involving motifs such as tetraloops, kink turns and single extruded nucleotides. We construct an interaction map of protein binding sites that allows us to identify the common types of shared 3-D physicochemical binding patterns for tetraloops. Furthermore, we investigate the protein binding pockets that accommodate single extruded nucleotides either involved in kink-turns or in arbitrary RNA strands. This analysis reveals a new structural motif, called tripod. It corresponds to small pockets consisting of three aminoacids arranged at the vertices of an almost equilateral triangle. We developed a search procedure for the recognition of tripods, based on an empirical tripod fingerprint. Conclusion A comparative analysis with the overall RNA surface and interfaces shows that contact surfaces involving RNA motifs have distinctive features that may be useful for the recognition and prediction of interactions. PMID:20122215

  8. PlantMirnaT: miRNA and mRNA integrated analysis fully utilizing characteristics of plant sequencing data.

    PubMed

    Rhee, S; Chae, H; Kim, S

    2015-07-15

    miRNA is known to regulate up to several hundreds coding genes, thus the integrated analysis of miRNA and mRNA expression data is an important problem. Unfortunately, the integrated analysis is challenging since it needs to consider expression data of two different types, miRNA and mRNA, and target relationship between miRNA and mRNA is not clear, especially when microarray data is used. Fortunately, due to the low sequencing cost, small RNA and RNA sequencing are routinely processed and we may be able to infer regulation relationships between miRNAs and mRNAs more accurately by using sequencing data. However, no method is developed specifically for sequencing data. Thus we developed PlantMirnaT, a new miRNA-mRNA integrated analysis system. To fully leverage the power of sequencing data, three major features are developed and implemented in PlantMirnaT. First, we implemented a plant-specific short read mapping tool based on recent discoveries on miRNA target relationship in plant. Second, we designed and implemented an algorithm considering miRNA targets in the full intragenic region, not just 3' UTR. Lastly but most importantly, our algorithm is designed to consider quantity of miRNA expression and its distribution on target mRNAs. The new algorithm was used to characterize rice under drought condition using our proprietary data. Our algorithm successfully discovered that two miRNAs, miRNA1425-5p, miRNA 398b, that are involved in suppression of glucose pathway in a naturally drought resistant rice, Vandana. The system can be downloaded at https://sites.google.com/site/biohealthinformaticslab/resources. PMID:25863133

  9. Identification and preliminary characterization of a protein motif related to the zinc finger.

    PubMed Central

    Lovering, R; Hanson, I M; Borden, K L; Martin, S; O'Reilly, N J; Evan, G I; Rahman, D; Pappin, D J; Trowsdale, J; Freemont, P S

    1993-01-01

    We have identified a protein motif, related to the zinc finger, which defines a newly discovered family of proteins. The motif was found in the sequence of the human RING1 gene, which is proximal to the major histocompatibility complex region on chromosome six. We propose naming this motif the "RING finger" and it is found in 27 proteins, all of which have putative DNA binding functions. We have synthesized a peptide corresponding to the RING1 motif and examined a number of properties, including metal and DNA binding. We provide evidence to support the suggestion that the RING finger motif is the DNA binding domain of this newly defined family of proteins. Images Fig. 1 Fig. 4 PMID:7681583

  10. The Host Targeting motif in exported Plasmodium proteins is cleaved in the parasite endoplasmic reticulum

    PubMed Central

    Osborne, Andrew R.; Speicher, Kaye D.; Tamez, Pamela A.; Bhattacharjee, Souvik; Speicher, David W.; Haldar, Kasturi

    2010-01-01

    During the blood stage of its lifecycle, the malaria parasite resides and replicates inside a membrane vacuole within its host cell, the human erythrocyte. The parasite exports many proteins across the vacuole membrane and into the host cell cytoplasm. Most exported proteins are characterized by the presence of a Host Targeting (HT) motif, also referred to as a Plasmodium Export Element (PEXEL), which corresponds to the consensus sequence RxLxE/D/Q. During export the HT motif is cleaved by an unknown protease. Here, we generate parasite lines expressing HT motif containing proteins that are localized to different compartments within the parasite or host cell. We find that the HT motif in a protein that is retained in the parasite endoplasmic reticulum, is cleaved and N-acetylated as efficiently as a protein that is exported. This shows that cleavage of the HT motif occurs early in the secretory pathway, in the parasite endoplasmic reticulum. PMID:20117149

  11. Transcription factor and microRNA-regulated network motifs for cancer and signal transduction networks

    PubMed Central

    2015-01-01

    Abstract Background Molecular networks are the basis of biological processes. Such networks can be decomposed into smaller modules, also known as network motifs. These motifs show interesting dynamical behaviors, in which co-operativity effects between the motif components play a critical role in human diseases. We have developed a motif-searching algorithm, which is able to identify common motif types from the cancer networks and signal transduction networks (STNs). Some of the network motifs are interconnected which can be merged together and form more complex structures, the so-called coupled motif structures (CMS). These structures exhibit mixed dynamical behavior, which may lead biological organisms to perform specific functions. Results In this study, we integrate transcription factors (TFs), microRNAs (miRNAs), miRNA targets and network motifs information to build the cancer-related TF-miRNA-motif networks (TMMN). This allows us to examine the role of network motifs in cancer formation at different levels of regulation, i.e. transcription initiation (TF → miRNA), gene-gene interaction (CMS), and post-transcriptional regulation (miRNA → target genes). Among the cancer networks and STNs we considered, it is found that there is a substantial amount of crosstalking through motif interconnections, in particular, the crosstalk between prostate cancer network and PI3K-Akt STN. Conclusions To validate the role of network motifs in cancer formation, several examples are presented which demonstrated the effectiveness of the present approach. A web-based platform has been set up which can be accessed at: http://ppi.bioinfo.asia.edu.tw/pathway/. It is very likely that our results can supply very specific CMS missing information for certain cancer types, it is an indispensable tool for cancer biology research. PMID:25707690

  12. Genomic RNAs of Borna disease virus are elongated on internal template motifs after realignment of the 3′ termini

    PubMed Central

    Martin, Arnold; Hoefs, Nadja; Tadewaldt, Josefine; Staeheli, Peter; Schneider, Urs

    2011-01-01

    The terminal structures of the Borna disease virus (BDV) genome (vRNA) and antigenome (cRNA) differ from those of other negative strand RNA viruses, as both molecules possess four nucleotides at the 3′ terminus without an apparent template at the 5′ end of the opposite strand. Consequently, the v- and cRNA molecules are not perfect mirror images, a situation that is not compatible with conventional strategies to maintain genetic information. We show here that recombinant viruses recovered from cDNA lacking the nontemplated nucleotides efficiently reconstitute the 3′ overhangs. Analyses of recombinant viruses encoding genetic markers in potential alternative template sequences demonstrated that the BDV v- and cRNA molecules are extended by a realign-and-elongation process on internal template motifs located in close proximity to the 3′ ends of v- and cRNA, respectively. The data further suggest that cRNA elongation is restricted to a single template motif of the nascent strand, whereas elongation of vRNA might use multiple template motifs. We propose that the elongation of the 3′ termini supports the terminal integrity of the genomic RNA molecules during BDV persistence, and furthermore provides an elegant strategy to eliminate the triphosphate groups from the 5′ termini of the BDV v- and cRNA without compromising the genetic information of the virus. PMID:21482759

  13. Integrated protein function prediction by mining function associations, sequences, and protein–protein and gene–gene interaction networks

    PubMed Central

    Cao, Renzhi; Cheng, Jianlin

    2016-01-01

    Motivations Protein function prediction is an important and challenging problem in bioinformatics and computational biology. Functionally relevant biological information such as protein sequences, gene expression, and protein–protein interactions has been used mostly separately for protein function prediction. One of the major challenges is how to effectively integrate multiple sources of both traditional and new information such as spatial gene–gene interaction networks generated from chromosomal conformation data together to improve protein function prediction. Results In this work, we developed three different probabilistic scores (MIS, SEQ, and NET score) to combine protein sequence, function associations, and protein–protein interaction and spatial gene–gene interaction networks for protein function prediction. The MIS score is mainly generated from homologous proteins found by PSI-BLAST search, and also association rules between Gene Ontology terms, which are learned by mining the Swiss-Prot database. The SEQ score is generated from protein sequences. The NET score is generated from protein–protein interaction and spatial gene–gene interaction networks. These three scores were combined in a new Statistical Multiple Integrative Scoring System (SMISS) to predict protein function. We tested SMISS on the data set of 2011 Critical Assessment of Function Annotation (CAFA). The method performed substantially better than three base-line methods and an advanced method based on protein profile–sequence comparison, profile–profile comparison, and domain co-occurrence networks according to the maximum F-measure. PMID:26370280

  14. An Integrated View of the Mw 6 Earthquake Sequence at Parkfield

    NASA Astrophysics Data System (ADS)

    Lapusta, N.; Barbot, S.; Avouac, J.

    2011-12-01

    propagation (including the radiation of seismic waves) and the afterslip transient that follows the main shocks. Our model gives rise to a sequence of Mw~6 earthquakes that can explain the observed variability of hypocenters and reproduce the geodetic observations of surface deformation in the co- and postseismic periods associated with the 2004 event. The change of hypocenter between 1966 and 2004 and the delay of the latest event is consistent with the occurrence of a swarm of smaller-magnitude earthquakes during the 1992-1994 period and these two locations being close to the boundary of the seismogenic zone. Our study introduces a methodology capable of integrating seismological and geodetic observations into a coherent physical model of the earthquake cycle. Our approach can serve as an important tool to investigate the effect of other components of earthquake physics and to help understand and mitigate seismic hazards around active faults.

  15. Integrating mapping and sequencing around the human iduronate-2-sulfate sulfatase locus

    SciTech Connect

    Timms, K.; Lu, F.; Shen, Y.

    1994-09-01

    The logical progression of the human genome project is from mapping to sequencing. However, the criteria for accurate sequencing and mapping are different and consequently, sequencing can reveal unexpected or erroneous relationships between cosmid clones that appear overlapping by hybridization. We are sequencing a 1 Mb region of human Xq28 spanning the genes for fragile X (fraxA) and iduronate-2-sulfate sulfatase (IDS). To date, seven cosmids from this region have been completed and another five are currently being sequenced. One of the completed cosmids contains the complete IDS gene, while another cosmid contains 4 of the 9 IDS exons. The exon sequences in both cosmids are identical, but corresponding introns have proved to be highly variant. This raises the possibility of either a second IDS gene or unusual pseudogene. In addition, one of the cosmids contains a microsatellite marker which has been mapped 150 kb distant from the gene for IDS. This indicates that either two cosmids containing IDS exons are separated by at least 100 kb, or a rearrangement in one of the cosmids prior to library construction. To simplify the development of sequence-ready cosmids, we have developed a rapid method of cosmid walking to select additional clones that are minimally overlapping.

  16. The role of integrated databases in microbial genome sequence analysis and metabolic reconstruction

    SciTech Connect

    Gaasterland, T., Maltsev, N., Overbeek, R.

    1997-02-01

    This paper provides an overview of the PUMA system which provides access to data about metabolic pathways, enzymes, compounds, organisms, encoded activity, and assay condition information for enzymes in particular organisms and multiple sequence alignments.

  17. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel.

    PubMed

    Delaneau, Olivier; Marchini, Jonathan

    2014-01-01

    A major use of the 1000 Genomes Project (1000 GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000 GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. PMID:25653097

  18. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation

    NASA Astrophysics Data System (ADS)

    Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.

    2016-06-01

    Mass spectrometry–based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications.

  19. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation.

    PubMed

    Sheynkman, Gloria M; Shortreed, Michael R; Cesnik, Anthony J; Smith, Lloyd M

    2016-06-12

    Mass spectrometry-based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications. PMID:27049631

  20. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation

    PubMed Central

    Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.

    2016-01-01

    Mass spectrometry–based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications. PMID:27049631

  1. Application of targeted enrichment to next-generation sequencing of retroviruses integrated into the host human genome

    PubMed Central

    Miyazato, Paola; Katsuya, Hiroo; Fukuda, Asami; Uchiyama, Yoshikazu; Matsuo, Misaki; Tokunaga, Michiyo; Hino, Shinjiro; Nakao, Mitsuyoshi; Satou, Yorifumi

    2016-01-01

    The recent development and advancement of next-generation sequencing (NGS) technologies have enabled the characterization of the human genome at extremely high resolution. In the retrovirology field, NGS technologies have been applied to integration-site analysis and deep sequencing of viral genomes in combination with PCR amplification using virus-specific primers. However, virus-specific primers are not available for some epigenetic analyses, like chromatin immunoprecipitation sequencing (ChIP-seq) assays. Viral sequences are poorly detected without specific PCR amplification because proviral DNA is very scarce compared to human genomic DNA. Here, we have developed and evaluated the use of biotinylated DNA probes for the capture of viral genetic fragments from a library prepared for NGS. Our results demonstrated that viral sequence detection was hundreds or thousands of times more sensitive after enrichment, enabling us to reduce the economic burden that arises when attempting to analyze the epigenetic landscape of proviruses by NGS. In addition, the method is versatile enough to analyze proviruses that have mismatches compared to the DNA probes. Taken together, we propose that this approach is a powerful tool to clarify the mechanisms of transcriptional and epigenetic regulation of retroviral proviruses that have, until now, remained elusive. PMID:27321866

  2. Prioritization Of Nonsynonymous Single Nucleotide Variants For Exome Sequencing Studies Via Integrative Learning On Multiple Genomic Data

    PubMed Central

    Wu, Mengmeng; Wu, Jiaxin; Chen, Ting; Jiang, Rui

    2015-01-01

    The rapid advancement of next generation sequencing technology has greatly accelerated the progress for understanding human inherited diseases via such innovations as exome sequencing. Nevertheless, the identification of causative variants from sequencing data remains a great challenge. Traditional statistical genetics approaches such as linkage analysis and association studies have limited power in analyzing exome sequencing data, while relying on simply filtration strategies and predicted functional implications of mutations to pinpoint pathogenic variants are prone to produce false positives. To overcome these limitations, we herein propose a supervised learning approach, termed snvForest, to prioritize candidate nonsynonymous single nucleotide variants for a specific type of disease by integrating 11 functional scores at the variant level and 8 association scores at the gene level. We conduct a series of large-scale in silico validation experiments, demonstrating the effectiveness of snvForest across 2,511 diseases of different inheritance styles and the superiority of our approach over two state-of-the-art methods. We further apply snvForest to three real exome sequencing data sets of epileptic encephalophathies and intellectual disability to show the ability of our approach to identify causative de novo mutations for these complex diseases. The online service and standalone software of snvForest are found at http://bioinfo.au.tsinghua.edu.cn/jianglab/snvforest. PMID:26459872

  3. Application of targeted enrichment to next-generation sequencing of retroviruses integrated into the host human genome.

    PubMed

    Miyazato, Paola; Katsuya, Hiroo; Fukuda, Asami; Uchiyama, Yoshikazu; Matsuo, Misaki; Tokunaga, Michiyo; Hino, Shinjiro; Nakao, Mitsuyoshi; Satou, Yorifumi

    2016-01-01

    The recent development and advancement of next-generation sequencing (NGS) technologies have enabled the characterization of the human genome at extremely high resolution. In the retrovirology field, NGS technologies have been applied to integration-site analysis and deep sequencing of viral genomes in combination with PCR amplification using virus-specific primers. However, virus-specific primers are not available for some epigenetic analyses, like chromatin immunoprecipitation sequencing (ChIP-seq) assays. Viral sequences are poorly detected without specific PCR amplification because proviral DNA is very scarce compared to human genomic DNA. Here, we have developed and evaluated the use of biotinylated DNA probes for the capture of viral genetic fragments from a library prepared for NGS. Our results demonstrated that viral sequence detection was hundreds or thousands of times more sensitive after enrichment, enabling us to reduce the economic burden that arises when attempting to analyze the epigenetic landscape of proviruses by NGS. In addition, the method is versatile enough to analyze proviruses that have mismatches compared to the DNA probes. Taken together, we propose that this approach is a powerful tool to clarify the mechanisms of transcriptional and epigenetic regulation of retroviral proviruses that have, until now, remained elusive. PMID:27321866

  4. Prioritization Of Nonsynonymous Single Nucleotide Variants For Exome Sequencing Studies Via Integrative Learning On Multiple Genomic Data.

    PubMed

    Wu, Mengmeng; Wu, Jiaxin; Chen, Ting; Jiang, Rui

    2015-01-01

    The rapid advancement of next generation sequencing technology has greatly accelerated the progress for understanding human inherited diseases via such innovations as exome sequencing. Nevertheless, the identification of causative variants from sequencing data remains a great challenge. Traditional statistical genetics approaches such as linkage analysis and association studies have limited power in analyzing exome sequencing data, while relying on simply filtration strategies and predicted functional implications of mutations to pinpoint pathogenic variants are prone to produce false positives. To overcome these limitations, we herein propose a supervised learning approach, termed snvForest, to prioritize candidate nonsynonymous single nucleotide variants for a specific type of disease by integrating 11 functional scores at the variant level and 8 association scores at the gene level. We conduct a series of large-scale in silico validation experiments, demonstrating the effectiveness of snvForest across 2,511 diseases of different inheritance styles and the superiority of our approach over two state-of-the-art methods. We further apply snvForest to three real exome sequencing data sets of epileptic encephalophathies and intellectual disability to show the ability of our approach to identify causative de novo mutations for these complex diseases. The online service and standalone software of snvForest are found at http://bioinfo.au.tsinghua.edu.cn/jianglab/snvforest. PMID:26459872

  5. Integrated platform for detection of DNA sequence variants using capillary array electrophoresis

    SciTech Connect

    Qingbro, Li; Liu, Zhaowei; Monroe, Heidi M; Culiat, Cymbeline T

    2002-08-01

    We have developed a highly versatile platform that performs temperature gradient capillary electrophoresis (TGCE) for mutation/single-nucleotide polymorphism (SNP) detection, sequencing and mutation/SNP genotyping for identification of sequence variants on an automated 24-, 96- or 192-capillary array instrument. In the first mode, multiple DNA samples consisting of homoduplexes and heteroduplexes are separated by CE, during which a temperature gradient is applied that covers all possible temperatures of 50% melting equilibrium (Tms) for the samples. The differences in Tms result in separation of homoduplexes from heteroduplexes, thereby identifying the presence of DNA variants. The sequencing mode is then used to determine the exact location of the mutation/SNPs in the DNA variants. The first two modes allow the rapid identification of variants from the screening of a large number of samples. Only the variants need to be sequenced. The third mode utilizes multiplexed single-base extensions (SBEs) to survey mutations and SNPs at the known sites of DNA sequence. The TGCE approach combined with sequencing and SBE is fast and cost-effective for high-throughput mutation/SNP detection.

  6. A Catalytically Essential Motif in External Loop 5 of the Bacterial Oligosaccharyltransferase PglB*

    PubMed Central

    Lizak, Christian; Gerber, Sabina; Zinne, Daria; Michaud, Gaëlle; Schubert, Mario; Chen, Fan; Bucher, Monika; Darbre, Tamis; Zenobi, Renato; Reymond, Jean-Louis; Locher, Kaspar P.

    2014-01-01

    Asparagine-linked glycosylation is a post-translational protein modification that is conserved in all domains of life. The initial transfer of a lipid-linked oligosaccharide (LLO) onto acceptor asparagines is catalyzed by the integral membrane protein oligosaccharyltransferase (OST). The previously reported structure of a single-subunit OST enzyme, the Campylobacter lari protein PglB, revealed a partially disordered external loop (EL5), whose role in catalysis was unclear. We identified a new and functionally important sequence motif in EL5 containing a conserved tyrosine residue (Tyr293) whose aromatic side chain is essential for catalysis. A synthetic peptide containing the conserved motif can partially but specifically rescue in vitro activity of mutated PglB lacking Tyr293. Using site-directed disulfide cross-linking, we show that disengagement of the structurally ordered part of EL5 is an essential step of the glycosylation reaction, probably by allowing sequon binding or glyco-product release. Our findings define two distinct mechanistic roles of EL5 in OST-catalyzed glycosylation. These functions, exerted by the two halves of EL5, are independent, because the loop can be cleaved by specific proteolysis with only slight reduction in activity. PMID:24275651

  7. A catalytically essential motif in external loop 5 of the bacterial oligosaccharyltransferase PglB.

    PubMed

    Lizak, Christian; Gerber, Sabina; Zinne, Daria; Michaud, Gaëlle; Schubert, Mario; Chen, Fan; Bucher, Monika; Darbre, Tamis; Zenobi, Renato; Reymond, Jean-Louis; Locher, Kaspar P

    2014-01-10

    Asparagine-linked glycosylation is a post-translational protein modification that is conserved in all domains of life. The initial transfer of a lipid-linked oligosaccharide (LLO) onto acceptor asparagines is catalyzed by the integral membrane protein oligosaccharyltransferase (OST). The previously reported structure of a single-subunit OST enzyme, the Campylobacter lari protein PglB, revealed a partially disordered external loop (EL5), whose role in catalysis was unclear. We identified a new and functionally important sequence motif in EL5 containing a conserved tyrosine residue (Tyr293) whose aromatic side chain is essential for catalysis. A synthetic peptide containing the conserved motif can partially but specifically rescue in vitro activity of mutated PglB lacking Tyr293. Using site-directed disulfide cross-linking, we show that disengagement of the structurally ordered part of EL5 is an essential step of the glycosylation reaction, probably by allowing sequon binding or glyco-product release. Our findings define two distinct mechanistic roles of EL5 in OST-catalyzed glycosylation. These functions, exerted by the two halves of EL5, are independent, because the loop can be cleaved by specific proteolysis with only slight reduction in activity. PMID:24275651

  8. Fast, Sensitive Discovery of Conserved Genome-Wide Motifs

    PubMed Central

    Ihuegbu, Nnamdi E.; Buhler, Jeremy

    2012-01-01

    Abstract Regulatory sites that control gene expression are essential to the proper functioning of cells, and identifying them is critical for modeling regulatory networks. We have developed Magma (Multiple Aligner of Genomic Multiple Alignments), a software tool for multiple species, multiple gene motif discovery. Magma identifies putative regulatory sites that are conserved across multiple species and occur near multiple genes throughout a reference genome. Magma takes as input multiple alignments that can include gaps. It uses efficient clustering methods that make it about 70 times faster than PhyloNet, a previous program for this task, with slightly greater sensitivity. We ran Magma on all non-coding DNA conserved between Caenorhabditis elegans and five additional species, about 70 Mbp in total, in <4 h. We obtained 2,309 motifs with lengths of 6–20 bp, each occurring at least 10 times throughout the genome, which collectively covered about 566 kbp of the genomes, approximately 0.8% of the input. Predicted sites occurred in all types of non-coding sequence but were especially enriched in the promoter regions. Comparisons to several experimental datasets show that Magma motifs correspond to a variety of known regulatory motifs. PMID:22300316

  9. Gender-specific effects on food intake but no inhibition of age-related fat accretion in transgenic mice overexpressing human IGFBP-2 lacking the Cardin-Weintraub sequence motif.

    PubMed

    Wiedmer, Petra; Schwarz, Franziska; Große, Birgit; Schindler, Nancy; Tuchscherer, Armin; Russo, Vincenzo C; Tschöp, Matthias H; Hoeflich, Andreas

    2015-06-01

    IGFBP-2 affects growth and metabolism and is thought to impact on energy homeostasis and the accretion of body fat via its heparin binding domains (HBD). In order to assess the function of the HBD present in the linker domain (HBD1) we have generated transgenic mice overexpressing mutant human IGFBP-2 lacking the PKKLRP sequence and carrying a PNNLAP sequence instead. Transgenic mice expressed high amounts of human IGFBP-2, while endogenous IGFBP-2 or IGF-I serum concentrations were not affected. In both genders we performed a longitudinal analysis of growth and metabolism including at least 4 separate time points between the age of 10 and 52 weeks. Body composition was assessed by nuclear magnetic resonance (NMR) analysis. Food intake was recorded by an automated online-monitoring. We describe negative effects of mutant human IGFBP-2 on body weight, longitudinal growth and lean body mass (p < 0.05). Very clearly, negative effects of mutant IGFBP-2 were not observed for fat mass accretion throughout life. Instead, relative fat mass was increased in transgenic mice of both genders (p < 0.05). In male mice transgene expression significantly increased absolute mass of total body fat over all age groups (p < 0.05). Food intake was increased in female but decreased in male transgenic mice at an age of 11 weeks. Thus our study clearly provides gender- and time-specific effects of HBD1-deficient hIGFBP-2 (H1d-BP-2) on fat mass accretion and food intake. While our data are in principal agreement with current knowledge on the role of HB-domains for fat accretion we now may also speculate on a role of HBD1 for the control of eating behavior. PMID:25663268

  10. A Fast Cluster Motif Finding Algorithm for ChIP-Seq Data Sets.

    PubMed

    Zhang, Yipu; Wang, Ping

    2015-01-01

    New high-throughput technique ChIP-seq, coupling chromatin immunoprecipitation experiment with high-throughput sequencing technologies, has extended the identification of binding locations of a transcription factor to the genome-wide regions. However, the most existing motif discovery algorithms are time-consuming and limited to identify binding motifs in ChIP-seq data which normally has the significant characteristics of large scale data. In order to improve the efficiency, we propose a fast cluster motif finding algorithm, named as FCmotif, to identify the (l,  d) motifs in large scale ChIP-seq data set. It is inspired by the emerging substrings mining strategy to find the enriched substrings and then searching the neighborhood instances to construct PWM and cluster motifs in different length. FCmotif is not following the OOPS model constraint and can find long motifs. The effectiveness of proposed algorithm has been proved by experiments on the ChIP-seq data sets from mouse ES cells. The whole detection of the real binding motifs and processing of the full size data of several megabytes finished in a few minutes. The experimental results show that FCmotif has advantageous to deal with the (l,  d) motif finding in the ChIP-seq data; meanwhile it also demonstrates better performance than other current widely-used algorithms such as MEME, Weeder, ChIPMunk, and DREME. PMID:26236718

  11. Toward an Integrated BAC Library Resource for Genome Sequencing and Analysis

    SciTech Connect

    Simon, M. I.; Kim, U.-J.

    2002-02-26

    We developed a great deal of expertise in building large BAC libraries from a variety of DNA sources including humans, mice, corn, microorganisms, worms, and Arabidopsis. We greatly improved the technology for screening these libraries rapidly and for selecting appropriate BACs and mapping BACs to develop large overlapping contigs. We became involved in supplying BACs and BAC contigs to a variety of sequencing and mapping projects and we began to collaborate with Drs. Adams and Venter at TIGR and with Dr. Leroy Hood and his group at University of Washington to provide BACs for end sequencing and for mapping and sequencing of large fragments of chromosome 16. Together with Dr. Ian Dunham and his co-workers at the Sanger Center we completed the mapping and they completed the sequencing of the first human chromosome, chromosome 22. This was published in Nature in 1999 and our BAC contigs made a major contribution to this sequencing effort. Drs. Shizuya and Ding invented an automated highly accurate BAC mapping technique. We also developed long-term collaborations with Dr. Uli Weier at UCSF in the design of BAC probes for characterization of human tumors and specific chromosome deletions and breakpoints. Finally the contribution of our work to the human genome project has been recognized in the publication both by the international consortium and the NIH of a draft sequence of the human genome in Nature last year. Dr. Shizuya was acknowledged in the authorship of that landmark paper. Dr. Simon was also an author on the Venter/Adams Celera project sequencing the human genome that was published in Science last year.

  12. Coagulase and Efb of Staphylococcus aureus Have a Common Fibrinogen Binding Motif

    PubMed Central

    Ko, Ya-Ping; Kang, Mingsong; Ganesh, Vannakambadi K.; Ravirajan, Dharmanand; Li, Bin

    2016-01-01

    ABSTRACT Coagulase (Coa) and Efb, secreted Staphylococcus aureus proteins, are important virulence factors in staphylococcal infections. Coa interacts with fibrinogen (Fg) and induces the formation of fibrin(ogen) clots through activation of prothrombin. Efb attracts Fg to the bacterial surface and forms a shield to protect the bacteria from phagocytic clearance. This communication describes the use of an array of synthetic peptides to identify variants of a linear Fg binding motif present in Coa and Efb which are responsible for the Fg binding activities of these proteins. This motif represents the first Fg binding motif identified for any microbial protein. We initially located the Fg binding sites to Coa’s C-terminal disordered segment containing tandem repeats by using recombinant fragments of Coa in enzyme-linked immunosorbent assay-type binding experiments. Sequence analyses revealed that this Coa region contained shorter segments with sequences similar to the Fg binding segments in Efb. An alanine scanning approach allowed us to identify the residues in Coa and Efb that are critical for Fg binding and to define the Fg binding motifs in the two proteins. In these motifs, the residues required for Fg binding are largely conserved, and they therefore constitute variants of a common Fg binding motif which binds to Fg with high affinity. Defining a specific motif also allowed us to identify a functional Fg binding register for the Coa repeats that is different from the repeat unit previously proposed. PMID:26733070

  13. Synthetic biology with RNA motifs.

    PubMed

    Saito, Hirohide; Inoue, Tan

    2009-02-01

    Structural motifs in naturally occurring RNAs and RNPs can be employed as new molecular parts for synthetic biology to facilitate the development of novel devices and systems that modulate cellular functions. In this review, we focus on the following: (i) experimental evolution techniques of RNA molecules in vitro and (ii) their applications for regulating gene expression systems in vivo. For experimental evolution, new artificial RNA aptamers and RNA enzymes (ribozymes) have been selected in vitro. These functional RNA molecules are likely to be applicable in the reprogramming of existing gene regulatory systems. Furthermore, they may be used for designing hypothetical RNA-based living systems in the so-called RNA world. For the regulation of gene expressions in living cells, the development of new riboswitches allows us to modulate the target gene expression in a tailor-made manner. Moreover, recently RNA-based synthetic genetic circuits have been reported by employing functional RNA molecules, expanding the repertory of synthetic biology with RNA motifs. PMID:18775792

  14. miRBase: integrating microRNA annotation and deep-sequencing data.

    PubMed

    Kozomara, Ana; Griffiths-Jones, Sam

    2011-01-01

    miRBase is the primary online repository for all microRNA sequences and annotation. The current release (miRBase 16) contains over 15,000 microRNA gene loci in over 140 species, and over 17,000 distinct mature microRNA sequences. Deep-sequencing technologies have delivered a sharp rise in the rate of novel microRNA discovery. We have mapped reads from short RNA deep-sequencing experiments to microRNAs in miRBase and developed web interfaces to view these mappings. The user can view all read data associated with a given microRNA annotation, filter reads by experiment and count, and search for microRNAs by tissue- and stage-specific expression. These data can be used as a proxy for relative expression levels of microRNA sequences, provide detailed evidence for microRNA annotations and alternative isoforms of mature microRNAs, and allow us to revisit previous annotations. miRBase is available online at: http://www.mirbase.org/. PMID:21037258

  15. SoftSearch: Integration of Multiple Sequence Features to Identify Breakpoints of Structural Variations

    PubMed Central

    Hart, Steven N.; Sarangi, Vivekananda; Moore, Raymond; Baheti, Saurabh; Bhavsar, Jaysheel D.; Couch, Fergus J.; Kocher, Jean-Pierre A.

    2013-01-01

    Background Structural variation (SV) represents a significant, yet poorly understood contribution to an individual’s genetic makeup. Advanced next-generation sequencing technologies are widely used to discover such variations, but there is no single detection tool that is considered a community standard. In an attempt to fulfil this need, we developed an algorithm, SoftSearch, for discovering structural variant breakpoints in Illumina paired-end next-generation sequencing data. SoftSearch combines multiple strategies for detecting SV including split-read, discordant read-pair, and unmated pairs. Co-localized split-reads and discordant read pairs are used to refine the breakpoints. Results We developed and validated SoftSearch using real and synthetic datasets. SoftSearch’s key features are 1) not requiring secondary (or exhaustive primary) alignment, 2) portability into established sequencing workflows, and 3) is applicable to any DNA-sequencing experiment (e.g. whole genome, exome, custom capture, etc.). SoftSearch identifies breakpoints from a small number of soft-clipped bases from split reads and a few discordant read-pairs which on their own would not be sufficient to make an SV call. Conclusions We show that SoftSearch can identify more true SVs by combining multiple sequence features. SoftSearch was able to call clinically relevant SVs in the BRCA2 gene not reported by other tools while offering significantly improved overall performance. PMID:24358278

  16. SBH and the integration of complementary approaches in the mapping, sequencing, and understanding of complex genomes

    SciTech Connect

    Drmanac, R.; Drmanac, S.; Labat, I.; Vicentic, A.; Gemmell, A.; Stavropoulos, N.; Jarvis, J.

    1992-12-01

    A variant of sequencing by hybridization (SBH) is being developed with a potential to inexpensively determine up to 100 million base pairs per year. The method comprises (1) arraying short clones in 864-well plates; (2) growth of the M13 clones or PCR of the inserts; (3) automated spotting of DNAs by corresponding pin-arrays; (4) hybridization of dotted samples with 200-3000 {sup 32}P- or {sup 33}P-labeled 6- to 8-mer probes; and (5) scoring hybridization signals using storage phosphor plates. Some 200 7- to 8-mers can provide an inventory of the genes if CDNA clones are hybridized, or can define the order of 2-kb genomic clones, creating physical and structural maps with 100-bp resolution; the distribution of G+C, LINEs, SINEs, and gene families would be revealed. cDNAs that represent new genes and genomic clones in regions of interest selected by SBH can be sequenced by a gel method. Uniformly distributed clones from the previous step will be hybridized with 2000--3000 6- to 8-mers. As a result, approximately 50--60% of the genomic regions containing members of large repetitive and gene families and those families represented in GenBank would be completely sequenced. In the less redundant regions, every base pair is expected to be read with 3-4 probes, but the complete sequence can not be reconstructed. Such partial sequences allow the inference of similarity and the recognition of coding, regulatory, and repetitive sequences, as well as study of the evolutionary processes all the way up to the species delineation.

  17. SBH and the integration of complementary approaches in the mapping, sequencing, and understanding of complex genomes

    SciTech Connect

    Drmanac, R.; Drmanac, S.; Labat, I.; Vicentic, A.; Gemmell, A.; Stavropoulos, N.; Jarvis, J.

    1992-01-01

    A variant of sequencing by hybridization (SBH) is being developed with a potential to inexpensively determine up to 100 million base pairs per year. The method comprises (1) arraying short clones in 864-well plates; (2) growth of the M13 clones or PCR of the inserts; (3) automated spotting of DNAs by corresponding pin-arrays; (4) hybridization of dotted samples with 200-3000 [sup 32]P- or [sup 33]P-labeled 6- to 8-mer probes; and (5) scoring hybridization signals using storage phosphor plates. Some 200 7- to 8-mers can provide an inventory of the genes if CDNA clones are hybridized, or can define the order of 2-kb genomic clones, creating physical and structural maps with 100-bp resolution; the distribution of G+C, LINEs, SINEs, and gene families would be revealed. cDNAs that represent new genes and genomic clones in regions of interest selected by SBH can be sequenced by a gel method. Uniformly distributed clones from the previous step will be hybridized with 2000--3000 6- to 8-mers. As a result, approximately 50--60% of the genomic regions containing members of large repetitive and gene families and those families represented in GenBank would be completely sequenced. In the less redundant regions, every base pair is expected to be read with 3-4 probes, but the complete sequence can not be reconstructed. Such partial sequences allow the inference of similarity and the recognition of coding, regulatory, and repetitive sequences, as well as study of the evolutionary processes all the way up to the species delineation.

  18. The Role of Heterologous Chloroplast Sequence Elements in Transgene Integration and Expression1[W][OA

    PubMed Central

    Ruhlman, Tracey; Verma, Dheeraj; Samson, Nalapalli; Daniell, Henry

    2010-01-01

    Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5′ untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5′ UTR and 3′ UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5′ UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5′ UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation. PMID:20130101

  19. Construction of an Integrated High Density Simple Sequence Repeat Linkage Map in Cultivated Strawberry (Fragaria × ananassa) and its Applicability

    PubMed Central

    Isobe, Sachiko N.; Hirakawa, Hideki; Sato, Shusei; Maeda, Fumi; Ishikawa, Masami; Mori, Toshiki; Yamamoto, Yuko; Shirasawa, Kenta; Kimura, Mitsuhiro; Fukami, Masanobu; Hashizume, Fujio; Tsuji, Tomoko; Sasamoto, Shigemi; Kato, Midori; Nanri, Keiko; Tsuruoka, Hisano; Minami, Chiharu; Takahashi, Chika; Wada, Tsuyuko; Ono, Akiko; Kawashima, Kumiko; Nakazaki, Naomi; Kishida, Yoshie; Kohara, Mitsuyo; Nakayama, Shinobu; Yamada, Manabu; Fujishiro, Tsunakazu; Watanabe, Akiko; Tabata, Satoshi

    2013-01-01

    The cultivated strawberry (Fragaria× ananassa) is an octoploid (2n = 8x = 56) of the Rosaceae family whose genomic architecture is still controversial. Several recent studies support the AAA′A′BBB′B′ model, but its complexity has hindered genetic and genomic analysis of this important crop. To overcome this difficulty and to assist genome-wide analysis of F. × ananassa, we constructed an integrated linkage map by organizing a total of 4474 of simple sequence repeat (SSR) markers collected from published Fragaria sequences, including 3746 SSR markers [Fragaria vesca expressed sequence tag (EST)-derived SSR markers] derived from F. vesca ESTs, 603 markers (F. × ananassa EST-derived SSR markers) from F. × ananassa ESTs, and 125 markers (F. × ananassa transcriptome-derived SSR markers) from F. × ananassa transcripts. Along with the previously published SSR markers, these markers were mapped onto five parent-specific linkage maps derived from three mapping populations, which were then assembled into an integrated linkage map. The constructed map consists of 1856 loci in 28 linkage groups (LGs) that total 2364.1 cM in length. Macrosynteny at the chromosome level was observed between the LGs of F. × ananassa and the genome of F. vesca. Variety distinction on 129 F. × ananassa lines was demonstrated using 45 selected SSR markers. PMID:23248204

  20. A Systems Approach towards an Intelligent and Self-Controlling Platform for Integrated Continuous Reaction Sequences**

    PubMed Central

    Ingham, Richard J; Battilocchio, Claudio; Fitzpatrick, Daniel E; Sliwinski, Eric; Hawkins, Joel M; Ley, Steven V

    2015-01-01

    Performing reactions in flow can offer major advantages over batch methods. However, laboratory flow chemistry processes are currently often limited to single steps or short sequences due to the complexity involved with operating a multi-step process. Using new modular components for downstream processing, coupled with control technologies, more advanced multi-step flow sequences can be realized. These tools are applied to the synthesis of 2-aminoadamantane-2-carboxylic acid. A system comprising three chemistry steps and three workup steps was developed, having sufficient autonomy and self-regulation to be managed by a single operator. PMID:25377747

  1. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information

    PubMed Central

    2012-01-01

    Background Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding cotton genomes will provide the ultimate reference and resource for research and utilization of the species. Integration of high-density genetic maps with genomic sequence information will largely accelerate the process of whole-genome assembly in cotton. Results In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new marker types, InDel (insertion-deletion) and SNP (single nucleotide polymorphism) developed from gene information, and REMAP (retrotransposon-microsatellite amplified polymorphism), were used to increase map density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and 195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243 ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of these genes. Higher-level sequence conservation between different cotton species and between the A- and D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and paralogous loci in Gossypium. Conclusion This study will serve as a valuable genomic resource

  2. Bridge and brick motifs in complex networks

    NASA Astrophysics Data System (ADS)

    Huang, Chung-Yuan; Sun, Chuen-Tsai; Cheng, Chia-Ying; Hsieh, Ji-Lung

    2007-04-01

    Acknowledging the expanding role of complex networks in numerous scientific contexts, we examine significant functional and topological differences between bridge and brick motifs for predicting network behaviors and functions. After observing similarities between social networks and their genetic, ecological, and engineering counterparts, we identify a larger number of brick motifs in social networks and bridge motifs in the other three types. We conclude that bridge and brick motif content analysis can assist researchers in understanding the small-world and clustering properties of network structures when investigating network functions and behaviors.

  3. In Vitro HIV-1 LTR Integration into T-Cell Activation Gene CD27 Segment and the Decoy Effect of Modified-Sequence DNA

    PubMed Central

    Ohmori, Rei; Tsuruyama, Tatsuaki

    2012-01-01

    Integration into the host genome is an essential step in the HIV-1 life cycle. However, the host genome sequence that is favored by HIV-1 during integration has never been documented. Here, we report that CD27, a T cell activation gene, includes a sequence that is a target for in vitro HIV-1 cDNA integration. This sequence has a high affinity for integrase, and the target nucleotides responsible for this higher affinity were identified using a crystal microbalance assay. In experiments involving a segment of the CD27 gene, integration converged in the target nucleotides and flanking sequence DNA, indicating that integration is probably dependent upon the secondary structure of the substrate DNA. Notably, decoy modified CD27 sequence DNAs in which the target nucleotides were replaced suppressed integration when accompanying the original CD27 sequence DNA. Our identified CD27 sequence DNA is useful for investigating the biochemistry of integrase and for in vitro assessment of integrase-binding inhibitors. PMID:23209625

  4. Automation and integration of multiplexed on-line sample preparation with capillary electrophoresis for DNA sequencing

    SciTech Connect

    Tan, H.

    1999-03-31

    The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performed in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.

  5. Incorporating Writing in an Integrated Calculus, Linear Algebra, and Differential Equations Sequence.

    ERIC Educational Resources Information Center

    Kelly, Susan E.; LeDocq, Rebecca Lewin

    2001-01-01

    Describes the specific courses in a sequence along with how the writing has been implemented in each course. Provides ideas for how to efficiently handle the additional paper load so students receive the necessary feedback while keeping the grading time reasonable. (Author/ASK)

  6. Wasabi: An Integrated Platform for Evolutionary Sequence Analysis and Data Visualization.

    PubMed

    Veidenberg, Andres; Medlar, Alan; Löytynoja, Ari

    2016-04-01

    Wasabi is an open source, web-based environment for evolutionary sequence analysis. Wasabi visualizes sequence data together with a phylogenetic tree within a modern, user-friendly interface: The interface hides extraneous options, supports context sensitive menus, drag-and-drop editing, and displays additional information, such as ancestral sequences, associated with specific tree nodes. The Wasabi environment supports reproducibility by automatically storing intermediate analysis steps and includes built-in functions to share data between users and publish analysis results. For computational analysis, Wasabi supports PRANK and PAGAN for phylogeny-aware alignment and alignment extension, and it can be easily extended with other tools. Along with drag-and-drop import of local files, Wasabi can access remote data through URL and import sequence data, GeneTrees and EPO alignments directly from Ensembl. To demonstrate a typical workflow using Wasabi, we reproduce key findings from recent comparative genomics studies, including a reanalysis of the EGLN1 gene from the tiger genome study: These case studies can be browsed within Wasabi at http://wasabiapp.org:8000?id=usecases. Wasabi runs inside a web browser and does not require any installation. One can start using it at http://wasabiapp.org. All source code is licensed under the AGPLv3. PMID:26635364

  7. High-resolution typing by integration of genome sequencing data in a large tuberculosis cluster.

    PubMed

    Schürch, Anita C; Kremer, Kristin; Daviena, Olaf; Kiers, Albert; Boeree, Martin J; Siezen, Roland J; van Soolingen, Dick

    2010-09-01

    To investigate whether genome sequencing yields more useful markers than those currently used to study the epidemiology of tuberculosis, it was applied to three Mycobacterium tuberculosis isolates of the Harlingen outbreak. Our findings suggest that single nucleotide polymorphisms can be used to identify transmission chains in restriction fragment length polymorphism clusters. PMID:20592143

  8. High-Resolution Typing by Integration of Genome Sequencing Data in a Large Tuberculosis Cluster▿

    PubMed Central

    Schürch, Anita C.; Kremer, Kristin; Daviena, Olaf; Kiers, Albert; Boeree, Martin J.; Siezen, Roland J.; van Soolingen, Dick

    2010-01-01

    To investigate whether genome sequencing yields more useful markers than those currently used to study the epidemiology of tuberculosis, it was applied to three Mycobacterium tuberculosis isolates of the Harlingen outbreak. Our findings suggest that single nucleotide polymorphisms can be used to identify transmission chains in restriction fragment length polymorphism clusters. PMID:20592143

  9. Integration of Two Diploid Potato Linkage Maps with the Potato Genome Sequence

    PubMed Central

    Felcher, Kimberly J.; Coombs, Joseph J.; Massa, Alicia N.; Hansey, Candice N.; Hamilton, John P.; Veilleux, Richard E.; Buell, C. Robin; Douches, David S.

    2012-01-01

    To facilitate genome-guided breeding in potato, we developed an 8303 Single Nucleotide Polymorphism (SNP) marker array using potato genome and transcriptome resources. To validate the Infinium 8303 Potato Array, we developed linkage maps from two diploid populations (DRH and D84) and compared these maps with the assembled potato genome sequence. Both populations used the doubled monoploid reference genotype DM1-3 516 R44 as the female parent but had different heterozygous diploid male parents (RH89-039-16 and 84SD22). Over 4,400 markers were mapped (1,960 in DRH and 2,454 in D84, 787 in common) resulting in map sizes of 965 (DRH) and 792 (D84) cM, covering 87% (DRH) and 88% (D84) of genome sequence length. Of the mapped markers, 33.5% were in candidate genes selected for the array, 4.5% were markers from existing genetic maps, and 61% were selected based on distribution across the genome. Markers with distorted segregation ratios occurred in blocks in both linkage maps, accounting for 4% (DRH) and 9% (D84) of mapped markers. Markers with distorted segregation ratios were unique to each population with blocks on chromosomes 9 and 12 in DRH and 3, 4, 6 and 8 in D84. Chromosome assignment of markers based on linkage mapping differed from sequence alignment with the Potato Genome Sequencing Consortium (PGSC) pseudomolecules for 1% of the mapped markers with some disconcordant markers attributable to paralogs. In total, 126 (DRH) and 226 (D84) mapped markers were not anchored to the pseudomolecules and provide new scaffold anchoring data to improve the potato genome assembly. The high degree of concordance between the linkage maps and the pseudomolecules demonstrates both the quality of the potato genome sequence and the functionality of the Infinium 8303 Potato Array. The broad genome coverage of the Infinium 8303 Potato Array compared to other marker sets will enable numerous downstream applications. PMID:22558443

  10. Integration of two diploid potato linkage maps with the potato genome sequence.

    PubMed

    Felcher, Kimberly J; Coombs, Joseph J; Massa, Alicia N; Hansey, Candice N; Hamilton, John P; Veilleux, Richard E; Buell, C Robin; Douches, David S

    2012-01-01

    To facilitate genome-guided breeding in potato, we developed an 8303 Single Nucleotide Polymorphism (SNP) marker array using potato genome and transcriptome resources. To validate the Infinium 8303 Potato Array, we developed linkage maps from two diploid populations (DRH and D84) and compared these maps with the assembled potato genome sequence. Both populations used the doubled monoploid reference genotype DM1-3 516 R44 as the female parent but had different heterozygous diploid male parents (RH89-039-16 and 84SD22). Over 4,400 markers were mapped (1,960 in DRH and 2,454 in D84, 787 in common) resulting in map sizes of 965 (DRH) and 792 (D84) cM, covering 87% (DRH) and 88% (D84) of genome sequence length. Of the mapped markers, 33.5% were in candidate genes selected for the array, 4.5% were markers from existing genetic maps, and 61% were selected based on distribution across the genome. Markers with distorted segregation ratios occurred in blocks in both linkage maps, accounting for 4% (DRH) and 9% (D84) of mapped markers. Markers with distorted segregation ratios were unique to each population with blocks on chromosomes 9 and 12 in DRH and 3, 4, 6 and 8 in D84. Chromosome assignment of markers based on linkage mapping differed from sequence alignment with the Potato Genome Sequencing Consortium (PGSC) pseudomolecules for 1% of the mapped markers with some disconcordant markers attributable to paralogs. In total, 126 (DRH) and 226 (D84) mapped markers were not anchored to the pseudomolecules and provide new scaffold anchoring data to improve the potato genome assembly. The high degree of concordance between the linkage maps and the pseudomolecules demonstrates both the quality of the potato genome sequence and the functionality of the Infinium 8303 Potato Array. The broad genome coverage of the Infinium 8303 Potato Array compared to other marker sets will enable numerous downstream applications. PMID:22558443

  11. GxxxG motifs hold the TIM23 complex together.

    PubMed

    Demishtein-Zohary, Keren; Marom, Milit; Neupert, Walter; Mokranjac, Dejana; Azem, Abdussalam

    2015-06-01

    Approximately 99% of the mitochondrial proteome is nucleus-encoded, synthesized in the cytosol, and subsequently imported into and sorted to the correct compartment in the organelle. The translocase of the inner mitochondrial membrane 23 (TIM23) complex is the major protein translocase of the inner membrane, and is responsible for translocation of proteins across the inner membrane and their insertion into the inner membrane. Tim23 is the central component of the complex that forms the import channel. A high-resolution structure of the import channel is still missing, and structural elements important for its function are unknown. In the present study, we analyzed the importance of the highly abundant GxxxG motifs in the transmembrane segments of Tim23 for the structural integrity of the TIM23 complex. Of 10 glycines present in the GxxxG motifs in the first, second and third transmembrane segments of Tim23, mutations of three of them in transmembrane segments 1 and 2 resulted in a lethal phenotype, and mutations of three others in a temperature-sensitive phenotype. The remaining four caused no obvious growth phenotype. Importantly, none of the mutations impaired the import and membrane integration of Tim23 precursor into mitochondria. However, the severity of growth impairment correlated with the destabilization of the TIM23 complex. We conclude that the GxxxG motifs found in the first and second transmembrane segments of Tim23 are necessary for the structural integrity of the TIM23 complex. PMID:25765297

  12. A structure-based flexible search method for motifs in RNA.

    PubMed

    Veksler-Lublinsky, Isana; Ziv-Ukelson, Michal; Barash, Danny; Kedem, Klara

    2007-09-01

    The discovery of non-coding RNA (ncRNA) motifs and their role in regulating gene expression has recently attracted considerable attention. The goal is to discover these motifs in a sequence database. Current RNA motif search methods start from the primary sequence and only then take into account secondary structure considerations. One can think of developing a flexible structure-based motif search method that will filter datasets based on secondary structure first, while allowing extensive primary sequence factors and additional factors such as potential pseudoknots as constraints. Since different motifs vary in structure rigidity and in local sequence constraints, there is a need for algorithms and tools that can be fine-tuned according to the searched RNA motif, but differ in their approach from the RNAMotif descriptor language. We present an RNA motif search tool called STRMS (Structural RNA Motif Search), which takes as input the secondary structure of the query, including local sequence and structure constraints, and a target sequence database. It reports all occurrences of the query in the target, ranked by their similarity to the query, and produces an html file that displays graphical images of the predicted structures for both the query and the candidate hits. Our tool is flexible and takes into account a large number of sequence options and existence of potential pseudoknots as dictated by specific queries. Our approach combines pre-folding and an O(m n) RNA pattern matching algorithm based on subtree homeomorphism for ordered, rooted trees. An O(n(2) log n) extension is described that allows the search engine to take into account the pseudoknots typical to riboswitches. We employed STRMS in search for both new and known RNA motifs (riboswitches and tRNAs) in large target databases. Our results point to a number of additional purine bacterial riboswitch candidates in newly sequenced bacteria, and demonstrate high sensitivity on known riboswitches and t

  13. Errors of analysis of parameters of complex oscillation regimes using point sequences of the integrate-and-fire model

    NASA Astrophysics Data System (ADS)

    Pavlov, A. N.; Pavlova, O. N.; Mohammad, Ya. Kh.

    2015-11-01

    The problem of calculation of dynamical parameters of chaotic regimes of self-sustained oscillations using point processes is discussed. The "integrate-and-fire" model is used to exemplify the constraints of the method for attractor reconstruction using a sequence of time intervals between the time instants of pulse generation. The conditions of validity for calculation of the largest Lyapunov exponent and recommendations for the most accurate determination of dynamical parameters for complex oscillatory regimes in dynamical systems reconstruction using point processes are formulated.

  14. An improved poly(A) motifs recognition method based on decision level fusion.

    PubMed

    Zhang, Shanxin; Han, Jiuqiang; Liu, Jun; Zheng, Jiguang; Liu, Ruiling

    2015-02-01

    Polyadenylation is the process of addition of poly(A) tail to mRNA 3' ends. Identification of motifs controlling polyadenylation plays an essential role in improving genome annotation accuracy and better understanding of the mechanisms governing gene regulation. The bioinformatics methods used for poly(A) motifs recognition have demonstrated that information extracted from sequences surrounding the candidate motifs can differentiate true motifs from the false ones greatly. However, these methods depend on either domain features or string kernels. To date, methods combining information from different sources have not been found yet. Here, we proposed an improved poly(A) motifs recognition method by combing different sources based on decision level fusion. First of all, two novel prediction methods was proposed based on support vector machine (SVM): one method is achieved by using the domain-specific features and principle component analysis (PCA) method to eliminate the redundancy (PCA-SVM); the other method is based on Oligo string kernel (Oligo-SVM). Then we proposed a novel machine-learning method for poly(A) motif prediction by marrying four poly(A) motifs recognition methods, including two state-of-the-art methods (Random Forest (RF) and HMM-SVM), and two novel proposed methods (PCA-SVM and Oligo-SVM). A decision level information fusion method was employed to combine the decision values of different classifiers by applying the DS evidence theory. We evaluated our method on a comprehensive poly(A) dataset that consists of 14,740 samples on 12 variants of poly(A) motifs and 2750 samples containing none of these motifs. Our method has achieved accuracy up to 86.13%. Compared with the four classifiers, our evidence theory based method reduces the average error rate by about 30%, 27%, 26% and 16%, respectively. The experimental results suggest that the proposed method is more effective for poly(A) motif recognition. PMID:25594576

  15. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications

    PubMed Central

    Mathieson, Iain; Iqbal, Zamin; Twigg, Stephen R F; Wilkie, Andrew O M; McVean, Gil; Lunter, Gerton

    2016-01-01

    High-throughput DNA sequencing technology has transformed genetic research and is starting to make an impact on clinical practice. However, analyzing high-throughput sequencing data remains challenging, particularly in clinical settings where accuracy and turnaround times are critical. We present a new approach to this problem, implemented in a software package called Platypus. Platypus achieves high sensitivity and specificity for SNPs, indels and complex polymorphisms by using local de novo assembly to generate candidate variants, followed by local realignment and probabilistic haplotype estimation. It is an order of magnitude faster than existing tools and generates calls from raw aligned read data without preprocessing. We demonstrate the performance of Platypus in clinically relevant experimental designs by comparing with SAMtools and GATK on whole-genome and exome-capture data, by identifying de novo variation in 15 parent-offspring trios with high sensitivity and specificity, and by estimating human leukocyte antigen genotypes directly from variant calls. PMID:25017105

  16. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications.

    PubMed

    Rimmer, Andy; Phan, Hang; Mathieson, Iain; Iqbal, Zamin; Twigg, Stephen R F; Wilkie, Andrew O M; McVean, Gil; Lunter, Gerton

    2014-08-01

    High-throughput DNA sequencing technology has transformed genetic research and is starting to make an impact on clinical practice. However, analyzing high-throughput sequencing data remains challenging, particularly in clinical settings where accuracy and turnaround times are critical. We present a new approach to this problem, implemented in a software package called Platypus. Platypus achieves high sensitivity and specificity for SNPs, indels and complex polymorphisms by using local de novo assembly to generate candidate variants, followed by local realignment and probabilistic haplotype estimation. It is an order of magnitude faster than existing tools and generates calls from raw aligned read data without preprocessing. We demonstrate the performance of Platypus in clinically relevant experimental designs by comparing with SAMtools and GATK on whole-genome and exome-capture data, by identifying de novo variation in 15 parent-offspring trios with high sensitivity and specificity, and by estimating human leukocyte antigen genotypes directly from variant calls. PMID:25017105

  17. Complete Genome Sequence of Streptomyces parvulus 2297, Integrating Site-Specifically with Actinophage R4

    PubMed Central

    Miura, Takamasa; Harada, Chizuko; Guo, Yong; Narisawa, Kazuhiko; Ohta, Hiroyuki; Takahashi, Hideo; Shirai, Makoto

    2016-01-01

    Streptomyces parvulus 2297, which is a host for site-specific recombination according to actinophage R4, is derived from the type strain ATCC 12434. Species of S. parvulus are known as producers of polypeptide antibiotic actinomycins and have been considered for industrial applications. We herein report for the first time the complete genome sequence of S. parvulus 2297. PMID:27563047

  18. Complete Genome Sequence of Streptomyces parvulus 2297, Integrating Site-Specifically with Actinophage R4.

    PubMed

    Nishizawa, Tomoyasu; Miura, Takamasa; Harada, Chizuko; Guo, Yong; Narisawa, Kazuhiko; Ohta, Hiroyuki; Takahashi, Hideo; Shirai, Makoto

    2016-01-01

    Streptomyces parvulus 2297, which is a host for site-specific recombination according to actinophage R4, is derived from the type strain ATCC 12434. Species of S. parvulus are known as producers of polypeptide antibiotic actinomycins and have been considered for industrial applications. We herein report for the first time the complete genome sequence of S. parvulus 2297. PMID:27563047

  19. An integrated multiple capillary array electrophoresis system for high-throughput DNA sequencing

    SciTech Connect

    Lu, X.

    1998-03-27

    A capillary array electrophoresis system was chosen to perform DNA sequencing because of several advantages such as rapid heat dissipation, multiplexing capabilities, gel matrix filling simplicity, and the mature nature of the associated manufacturing technologies. There are two major concerns for the multiple capillary systems. One concern is inter-capillary cross-talk, and the other concern is excitation and detection efficiency. Cross-talk is eliminated through proper optical coupling, good focusing and immersing capillary array into index matching fluid. A side-entry excitation scheme with orthogonal detection was established for large capillary array. Two 100 capillary array formats were used for DNA sequencing. One format is cylindrical capillary with 150 {micro}m o.d., 75 {micro}m i.d and the other format is square capillary with 300 {micro}m out edge and 75 {micro}m inner edge. This project is focused on the development of excitation and detection of DNA as well as performing DNA sequencing. The DNA injection schemes are discussed for the cases of single and bundled capillaries. An individual sampling device was designed. The base-calling was performed for a capillary from the capillary array with the accuracy of 98%.

  20. Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA.

    PubMed Central

    Seiki, M; Hattori, S; Hirayama, Y; Yoshida, M

    1983-01-01

    Human retrovirus adult T-cell leukemia virus (ATLV) has been shown to be closely associated with human adult T-cell leukemia (ATL) [Yoshida, M., Miyoshi, I. & Hinuma, Y. (1982) Proc. Natl. Acad. Sci. USA 79, 2031-2035]. The provirus of ATLV integrated in DNA of leukemia T cells from a patient with ATL was molecularly cloned and the complete nucleotide sequence of 9,032 bases of the proviral genome was determined. The provirus DNA contains two long terminal repeats (LTRs) consisting of 755 bases, one at each end, which are flanked by a 6-base direct repeat of the cellular DNA sequence. The nucleotides in the LTR could be arranged into a unique secondary structure, which could explain transcriptional termination within the 3' LTR but not in the 5' LTR. The nucleotide sequence of the provirus contains three large open reading frames, which are capable of coding for proteins of 48,000, 99,000, and 54,000 daltons. The three open frames are in this order from the 5' end of the viral genome and the predicted 48,000-dalton polypeptide is a precursor of gag proteins, because it has an identical amino acid sequence to that of the NH2 terminus of human T-cell leukemia virus (HTLV) p24. The open frames coding for 99,000- and 54,000-dalton polypeptides are thought to be the pol and env genes, respectively. On the 3' side of these three open frames, the ATLV sequence has four smaller open frames in various phases; these frames may code for 10,000-, 11,000-, 12,000-, and 27,000-dalton polypeptides. Although one or some of these open frames could be the transforming gene of this virus, in preliminary analysis, DNA of this region has no homology with the normal human genome. PMID:6304725

  1. Upstream stimulatory factors stimulate transcription through E-box motifs in the PF4 gene in megakaryocytes.

    PubMed

    Okada, Yoshiaki; Matsuura, Eri; Tozuka, Zenzaburo; Nagai, Ryohei; Watanabe, Ayako; Matsumoto, Kayoko; Yasui, Kazuta; Jackman, Robert W; Nakano, Toru; Doi, Takefumi

    2004-10-01

    Platelet factor 4 (PF4) is expressed during megakaryocytic differentiation. We previously demonstrated that the homeodomain proteins (myeloid ecotropic integration site 1 [MEIS1], Pbx-regulating protein 1 [PREP1], and pre-B-cell leukemia transcription factors [PBXs]) bind to the novel regulatory element tandem repeat of MEIS1 binding element [TME] and transactivate the rat PF4 promoter. In the present study, we investigated and identified other TME binding proteins in megakaryocytic HEL cells using mass spectrometry. Among identified proteins, we focused on upstream stimulatory factor (USF1) and USF2 and investigated their effects on the PF4 promoter. USF1 and 2 bound to the E-box motif in the TME and strongly transactivated the PF4 promoter. Furthermore, physiologic bindings of USF1 and 2 to the TME in rat megakaryocytes were demonstrated by the chromatin immunoprecipitation (ChIP) assay. Interestingly, the E-box motif in the TME was conserved in TME-like sequences of both the human and mouse PF4 promoters. USF1 and 2 also bound to the human TME-like sequence and transactivated the human PF4 promoter. Expressions of USF1 and 2 were detected by reverse-transcriptase-polymerase chain reaction (RT-PCR) in the human megakaryocytes derived from CD34+ cells. Thus, these studies demonstrate that the novel TME binding transcription factors, USF1 and 2, transactivate rat and human PF4 promoters and may play an important role in megakaryocytic gene expression. PMID:15187018

  2. An AU-Rich Sequence Element (UUUN[A/U]U) Downstream of the Edited C in Apolipoprotein B mRNA Is a High-Affinity Binding Site for Apobec-1: Binding of Apobec-1 to This Motif in the 3′ Untranslated Region of c-myc Increases mRNA Stability

    PubMed Central

    Anant, Shrikant; Davidson, Nicholas O.

    2000-01-01

    Apobec-1, the catalytic subunit of the mammalian apolipoprotein B (apoB) mRNA-editing enzyme, is a cytidine deaminase with RNA binding activity for AU-rich sequences. This RNA binding activity is required for Apobec-1 to mediate C-to-U RNA editing. Filter binding assays, using immobilized Apobec-1, demonstrate saturable binding to a 105-nt apoB RNA with a Kd of ∼435 nM. A series of AU-rich templates was used to identify a high-affinity (∼50 nM) binding site of consensus sequence UUUN[A/U]U, with multiple copies of this sequence constituting the high-affinity binding site. In order to determine whether this consensus site could be functionally demonstrated from within an apoB RNA, circular-permutation analysis was performed, revealing one major (UUUGAU) and one minor (UU) site located 3 and 16 nucleotides, respectively, downstream of the edited base. Secondary-structure predictions reveal a stem-loop flanking the edited base with Apobec-1 binding to the consensus site(s) at an open loop. A similar consensus (AUUUA) is present in the 3′ untranslated regions of several mRNAs, including that of c-myc, that are known to undergo rapid degradation. In this context, it is presumed that the consensus motif acts as a destabilizing element. As an independent test of the ability of Apobec-1 to bind to this sequence, F442A cells were transfected with Apobec-1 and the half-life of c-myc mRNA was determined following actinomycin D treatment. These studies demonstrated an increase in the half-life of c-myc mRNA from 90 to 240 min in control versus Apobec-1-expressing cells. Apobec-1 expression mutants, in which RNA binding activity is eliminated, failed to alter c-myc mRNA turnover. Taken together, the data establish a consensus binding site for Apobec-1 embedded in proximity to the edited base in apoB RNA. Binding to this site in other target RNAs raises the possibility that Apobec-1 may be involved in other aspects of RNA metabolism, independent of its role as an apoB RNA

  3. The Locus Lookup Tool at MaizeGDB: Identification of Genomic Regions in Maize by Integrating Sequence Information with Physical and Genetic Maps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to automatically integrate sequence information with physical and genetic maps are scarce. The Locus Lookup Tool enables researchers to define windows of genomic sequence likely to contain loci of interest where only genetic or physical mapping associations are reported. Using the Locus Look...

  4. Heat, Energy, and Order, Part Two of an Integrated Science Sequence, Student Guide, 1970 Edition.

    ERIC Educational Resources Information Center

    Portland Project Committee, OR.

    Part two of the first year in the Portland Project, a three-year high school integrated science curriculum, is contained in this student guide. This volume, one of four parts in the year course, involves activities relating to what is considered the most powerful unifying concept in science: energy. The macroscopic aspects of heat as embodied in…

  5. Demonstrating the Effectiveness of an Integrated and Intensive Research Methods and Statistics Course Sequence

    ERIC Educational Resources Information Center

    Pliske, Rebecca M.; Caldwell, Tracy L.; Calin-Jageman, Robert J.; Taylor-Ritzler, Tina

    2015-01-01

    We developed a two-semester series of intensive (six-contact hours per week) behavioral research methods courses with an integrated statistics curriculum. Our approach includes the use of team-based learning, authentic projects, and Excel and SPSS. We assessed the effectiveness of our approach by examining our students' content area scores on the…

  6. qPMS9: An Efficient Algorithm for Quorum Planted Motif Search

    NASA Astrophysics Data System (ADS)

    Nicolae, Marius; Rajasekaran, Sanguthevar

    2015-01-01

    Discovering patterns in biological sequences is a crucial problem. For example, the identification of patterns in DNA sequences has resulted in the determination of open reading frames, identification of gene promoter elements, intron/exon splicing sites, and SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have led to domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, discovery of short functional motifs, etc. In this paper we focus on the identification of an important class of patterns, namely, motifs. We study the (l, d) motif search problem or Planted Motif Search (PMS). PMS receives as input n strings and two integers l and d. It returns all sequences M of length l that occur in each input string, where each occurrence differs from M in at most d positions. Another formulation is quorum PMS (qPMS), where the motif appears in at least q% of the strings. We introduce qPMS9, a parallel exact qPMS algorithm that offers significant runtime improvements on DNA and protein datasets. qPMS9 solves the challenging DNA (l, d)-instances (28, 12) and (30, 13). The source code is available at https://code.google.com/p/qpms9/.

  7. Ensuring critical event sequences in high integrity software by applying path expressions

    SciTech Connect

    Kidd, M.E.C.

    1996-07-01

    The goal of this work is to extend the use of existing path expression theory and methodologies to ensure that critical software event sequences are maintained even in the face of malevolent attacks and harsh or unstable operating environments. This will be accomplished by providing dynamic fault management measures directly to the software developer and to their varied development environments. This paper discusses the perceived problems, a brief overview of path expressions, and the author`s proposed extension areas. The authors discuss how the traditional path expression usage and implementation differs from the intended usage and implementation.

  8. Integration of Expressed Sequence Tag Data Flanking Predicted RNA Secondary Structures Facilitates Novel Non-Coding RNA Discovery

    PubMed Central

    Krzyzanowski, Paul M.; Price, Feodor D.; Muro, Enrique M.; Rudnicki, Michael A.; Andrade-Navarro, Miguel A.

    2011-01-01

    Many computational methods have been used to predict novel non-coding RNAs (ncRNAs), but none, to our knowledge, have explicitly investigated the impact of integrating existing cDNA-based Expressed Sequence Tag (EST) data that flank structural RNA predictions. To determine whether flanking EST data can assist in microRNA (miRNA) prediction, we identified genomic sites encoding putative miRNAs by combining functional RNA predictions with flanking ESTs data in a model consistent with miRNAs undergoing cleavage during maturation. In both human and mouse genomes, we observed that the inclusion of flanking ESTs adjacent to and not overlapping predicted miRNAs significantly improved the performance of various methods of miRNA prediction, including direct high-throughput sequencing of small RNA libraries. We analyzed the expression of hundreds of miRNAs predicted to be expressed during myogenic differentiation using a customized microarray and identified several known and predicted myogenic miRNA hairpins. Our results indicate that integrating ESTs flanking structural RNA predictions improves the quality of cleaved miRNA predictions and suggest that this strategy can be used to predict other non-coding RNAs undergoing cleavage during maturation. PMID:21698286

  9. Integration of expressed sequence tag data flanking predicted RNA secondary structures facilitates novel non-coding RNA discovery.

    PubMed

    Krzyzanowski, Paul M; Price, Feodor D; Muro, Enrique M; Rudnicki, Michael A; Andrade-Navarro, Miguel A

    2011-01-01

    Many computational methods have been used to predict novel non-coding RNAs (ncRNAs), but none, to our knowledge, have explicitly investigated the impact of integrating existing cDNA-based Expressed Sequence Tag (EST) data that flank structural RNA predictions. To determine whether flanking EST data can assist in microRNA (miRNA) prediction, we identified genomic sites encoding putative miRNAs by combining functional RNA predictions with flanking ESTs data in a model consistent with miRNAs undergoing cleavage during maturation. In both human and mouse genomes, we observed that the inclusion of flanking ESTs adjacent to and not overlapping predicted miRNAs significantly improved the performance of various methods of miRNA prediction, including direct high-throughput sequencing of small RNA libraries. We analyzed the expression of hundreds of miRNAs predicted to be expressed during myogenic differentiation using a customized microarray and identified several known and predicted myogenic miRNA hairpins. Our results indicate that integrating ESTs flanking structural RNA predictions improves the quality of cleaved miRNA predictions and suggest that this strategy can be used to predict other non-coding RNAs undergoing cleavage during maturation. PMID:21698286

  10. Newly identified motifs in Candida albicans Cdr1 protein nucleotide binding domains are pleiotropic drug resistance subfamily-specific and functionally asymmetric.

    PubMed

    Rawal, Manpreet Kaur; Banerjee, Atanu; Shah, Abdul Haseeb; Khan, Mohammad Firoz; Sen, Sobhan; Saxena, Ajay Kumar; Monk, Brian C; Cannon, Richard D; Bhatnagar, Rakesh; Mondal, Alok Kumar; Prasad, Rajendra

    2016-01-01

    An analysis of Candida albicans ABC transporters identified conserved related α-helical sequence motifs immediately C-terminal of each Walker A sequence. Despite the occurrence of these motifs in ABC subfamilies of other yeasts and higher eukaryotes, their roles in protein function remained unexplored. In this study we have examined the functional significance of these motifs in the C. albicans PDR transporter Cdr1p. The motifs present in NBD1 and NBD2 were subjected to alanine scanning mutagenesis, deletion, or replacement of an entire motif. Systematic replacement of individual motif residues with alanine did not affect the function of Cdr1p but deletion of the M1-motif in NBD1 (M1-Del) resulted in Cdr1p being trapped within the endoplasmic reticulum. In contrast, deletion of the M2-motif in NBD2 (M2-Del) yielded a non-functional protein with normal plasma membrane localization. Replacement of the motif in M1-Del with six alanines (M1-Ala) significantly improved localization of the protein and partially restored function. Conversely, replacement of the motif in M2-Del with six alanines (M2-Ala) did not reverse the phenotype and susceptibility to antifungal substrates of Cdr1p was unchanged. Together, the M1 and M2 motifs contribute to the functional asymmetry of NBDs and are important for maturation of Cdr1p and ATP catalysis, respectively. PMID:27251950

  11. Newly identified motifs in Candida albicans Cdr1 protein nucleotide binding domains are pleiotropic drug resistance subfamily-specific and functionally asymmetric

    PubMed Central

    Rawal, Manpreet Kaur; Banerjee, Atanu; Shah, Abdul Haseeb; Khan, Mohammad Firoz; Sen, Sobhan; Saxena, Ajay Kumar; Monk, Brian C.; Cannon, Richard D.; Bhatnagar, Rakesh; Mondal, Alok Kumar; Prasad, Rajendra

    2016-01-01

    An analysis of Candida albicans ABC transporters identified conserved related α-helical sequence motifs immediately C-terminal of each Walker A sequence. Despite the occurrence of these motifs in ABC subfamilies of other yeasts and higher eukaryotes, their roles in protein function remained unexplored. In this study we have examined the functional significance of these motifs in the C. albicans PDR transporter Cdr1p. The motifs present in NBD1 and NBD2 were subjected to alanine scanning mutagenesis, deletion, or replacement of an entire motif. Systematic replacement of individual motif residues with alanine did not affect the function of Cdr1p but deletion of the M1-motif in NBD1 (M1-Del) resulted in Cdr1p being trapped within the endoplasmic reticulum. In contrast, deletion of the M2-motif in NBD2 (M2-Del) yielded a non-functional protein with normal plasma membrane localization. Replacement of the motif in M1-Del with six alanines (M1-Ala) significantly improved localization of the protein and partially restored function. Conversely, replacement of the motif in M2-Del with six alanines (M2-Ala) did not reverse the phenotype and susceptibility to antifungal substrates of Cdr1p was unchanged. Together, the M1 and M2 motifs contribute to the functional asymmetry of NBDs and are important for maturation of Cdr1p and ATP catalysis, respectively. PMID:27251950

  12. SeqFold: genome-scale reconstruction of RNA secondary structure integrating high-throughput sequencing data.

    PubMed

    Ouyang, Zhengqing; Snyder, Michael P; Chang, Howard Y

    2013-02-01

    We present an integrative approach, SeqFold, that combines high-throughput RNA structure profiling data with computational prediction for genome-scale reconstruction of RNA secondary structures. SeqFold transforms experimental RNA structure information into a structure preference profile (SPP) and uses it to select stable RNA structure candidates representing the structure ensemble. Under a high-dimensional classification framework, SeqFold efficiently matches a given SPP to the most likely cluster of structures sampled from the Boltzmann-weighted ensemble. SeqFold is able to incorporate diverse types of RNA structure profiling data, including parallel analysis of RNA structure (PARS), selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq), fragmentation sequencing (FragSeq) data generated by deep sequencing, and conventional SHAPE data. Using the known structures of a wide range of mRNAs and noncoding RNAs as benchmarks, we demonstrate that SeqFold outperforms or matches existing approaches in accuracy and is more robust to noise in experimental data. Application of SeqFold to reconstruct the secondary structures of the yeast transcriptome reveals the diverse impact of RNA secondary structure on gene regulation, including translation efficiency, transcription initiation, and protein-RNA interactions. SeqFold can be easily adapted to incorporate any new types of high-throughput RNA structure profiling data and is widely applicable to analyze RNA structures in any transcriptome. PMID:23064747

  13. RefNetBuilder: a platform for construction of integrated reference gene regulatory networks from expressed sequence tags

    PubMed Central

    2011-01-01

    Background Gene Regulatory Networks (GRNs) provide integrated views of gene interactions that control biological processes. Many public databases contain biological interactions extracted from experimentally validated literature reports, but most furnish only information for a few genetic model organisms. In order to provide a bioinformatic tool for researchers who work with non-model organisms, we developed RefNetBuilder, a new platform that allows construction of putative reference pathways or GRNs from expressed sequence tags (ESTs). Results RefNetBuilder was designed to have the flexibility to extract and archive pathway or GRN information from public databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG). It features sequence alignment tools such as BLAST to allow mapping ESTs to pathways and GRNs in model organisms. A scoring algorithm was incorporated to rank and select the best match for each query EST. We validated RefNetBuilder using DNA sequences of Caenorhabditis elegans, a model organism having manually curated KEGG pathways. Using the earthworm Eisenia fetida as an example, we demonstrated the functionalities and features of RefNetBuilder. Conclusions The RefNetBuilder provides a standalone application for building reference GRNs for non-model organisms on a number of operating system platforms with standard desktop computer hardware. As a new bioinformatic tool aimed for constructing putative GRNs for non-model organisms that have only ESTs available, RefNetBuilder is especially useful to explore pathway- or network-related information in these organisms. PMID:22166047

  14. Mars Exploration 2003 to 2013 - An Integrated Perspective: Time Sequencing the Missions

    NASA Technical Reports Server (NTRS)

    Briggs, G.; McKay, C.

    2000-01-01

    The science goals for the Mars exploration program, together with the HEDS precursor environmental and technology needs, serve as a solid starting point for re-planning the program in an orderly way. Most recently, the community has recognized the significance of subsurface sampling as a key component in "following the water". Accessing samples from hundreds and even thousands of meters beneath the surface is a challenge that will call for technology development and for one or more demonstration missions. Recent mission failures and concerns about the complexity of the previously planned MSR missions indicate that, before we are ready to undertake sample return and deep sampling, the Mars exploration program needs to include: 1) technology development missions; and 2) basic landing site assessment missions. These precursor missions should demonstrate the capability for reliable & accurate soft landing and in situ propellant production. The precursor missions will need to carry out close-up site observations, ground-penetrating radar mapping from orbit and conduct seismic surveys. Clearly the programs should be planned as a single, continuous exploration effort. A prudent minimum list of missions, including surface rovers with ranges of more than 10 km, can be derived from the numerous goals and requirements; they can be sequenced in an orderly way to ensure that time is available to feed forward the results of the precursor missions. One such sequence of missions is proposed for the decade beginning in 2003.

  15. Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant.

    PubMed

    Wu, Pingzhi; Zhou, Changpin; Cheng, Shifeng; Wu, Zhenying; Lu, Wenjia; Han, Jinli; Chen, Yanbo; Chen, Yan; Ni, Peixiang; Wang, Ying; Xu, Xun; Huang, Ying; Song, Chi; Wang, Zhiwen; Shi, Nan; Zhang, Xudong; Fang, Xiaohua; Yang, Qing; Jiang, Huawu; Chen, Yaping; Li, Meiru; Wang, Ying; Chen, Fan; Wang, Jun; Wu, Guojiang

    2015-03-01

    The family Euphorbiaceae includes some of the most efficient biomass accumulators. Whole genome sequencing and the development of genetic maps of these species are important components in molecular breeding and genetic improvement. Here we report the draft genome of physic nut (Jatropha curcas L.), a biodiesel plant. The assembled genome has a total length of 320.5 Mbp and contains 27,172 putative protein-coding genes. We established a linkage map containing 1208 markers and anchored the genome assembly (81.7%) to this map to produce 11 pseudochromosomes. After gene family clustering, 15,268 families were identified, of which 13,887 existed in the castor bean genome. Analysis of the genome highlighted specific expansion and contraction of a number of gene families during the evolution of this species, including the ribosome-inactivating proteins and oil biosynthesis pathway enzymes. The genomic sequence and linkage map provide a valuable resource not only for fundamental and applied research on physic nut but also for evolutionary and comparative genomics analysis, particularly in the Euphorbiaceae. PMID:25603894

  16. Integrating next-generation sequencing and traditional tongue diagnosis to determine tongue coating microbiome

    PubMed Central

    Jiang, Bai; Liang, Xujun; Chen, Yang; Ma, Tao; Liu, Liyang; Li, Junfeng; Jiang, Rui; Chen, Ting; Zhang, Xuegong; Li, Shao

    2012-01-01

    Tongue diagnosis is a unique method in traditional Chinese medicine (TCM). This is the first investigation on the association between traditional tongue diagnosis and the tongue coating microbiome using next-generation sequencing. The study included 19 gastritis patients with a typical white-greasy or yellow-dense tongue coating corresponding to TCM Cold or Hot Syndrome respectively, as well as eight healthy volunteers. An Illumina paired-end, double-barcode 16S rRNA sequencing protocol was designed to profile the tongue-coating microbiome, from which approximately 3.7 million V6 tags for each sample were obtained. We identified 123 and 258 species-level OTUs that were enriched in patients with Cold/Hot Syndromes, respectively, representing "Cold Microbiota" and "Hot Microbiota". We further constructed the tongue microbiota-imbalanced networks associated with Cold/Hot Syndromes. The results reveal an important connection between the tongue-coating microbiome and traditional tongue diagnosis, and illustrate the potential of the tongue-coating microbiome as a novel holistic biomarker for characterizing patient subtypes. PMID:23226834

  17. CoffeebEST: an integrated resource for Coffea spp expressed sequence tags.

    PubMed

    Paschoal, A R; Fernandes, E D M; Silva, J C; Lopes, F M; Pereira, L F P; Domingues, D S

    2014-01-01

    Coffee is one of the most important commodities in the world, and its production relies mainly on two species, Coffea arabica and Coffea canephora. Although there are diverse transcriptome datasets available for coffee trees, few research groups have exploited the potential knowledge contained in these data, especially with respect to fruit and seed development. Here, we present a comparative analysis of the transcriptomes of Coffea arabica and Coffea canephora with a focus on fruit development using publicly available expressed sequence tags (ESTs). Most of the fruit and seed EST data has been obtained from C. canephora. Therefore, we performed a fruit EST analysis of the 5 developmental stages of this species (18, 22, 30, 42, and 46 weeks after flowering) comprising 29,009 sequences. We compared C. canephora fruit ESTs to reference unigenes of C. canephora (7710 contigs and 8955 singletons) and C. arabica (15,656 contigs and 16,351 singletons). Additional analyses included functional annotation based on Gene Onthology, as well as an annotation using PlantCyc, a curated plant protein database. The Coffee Bean EST (CoffeebEST) is a public database available at http://bioinfo-02.cp.utfpr.edu.br/. This database represents an additional resource for the coffee scientific community, offering a user-friendly collection of information for non-specialists in coffee molecular biology to support experimental research on comparative and functional genomics. PMID:25526212

  18. Functional characterization of transcription factor motifs using cross-species comparison across large evolutionary distances.

    PubMed

    Kim, Jaebum; Cunningham, Ryan; James, Brian; Wyder, Stefan; Gibson, Joshua D; Niehuis, Oliver; Zdobnov, Evgeny M; Robertson, Hugh M; Robinson, Gene E; Werren, John H; Sinha, Saurabh

    2010-01-01

    We address the problem of finding statistically significant associations between cis-regulatory motifs and functional gene sets, in order to understand the biological roles of transcription factors. We develop a computational framework for this task, whose features include a new statistical score for motif scanning, the use of different scores for predicting targets of different motifs, and new ways to deal with redundancies among significant motif-function associations. This framework is applied to the recently sequenced genome of the jewel wasp, Nasonia vitripennis, making use of the existing knowledge of motifs and gene annotations in another insect genome, that of the fruitfly. The framework uses cross-species comparison to improve the specificity of its predictions, and does so without relying upon non-coding sequence alignment. It is therefore well suited for comparative genomics across large evolutionary divergences, where existing alignment-based methods are not applicable. We also apply the framework to find motifs associated with socially regulated gene sets in the honeybee, Apis mellifera, using comparisons with Nasonia, a solitary species, to identify honeybee-specific associations. PMID:20126523

  19. Structural characterization of a capping protein interaction motif defines a family of actin filament regulators

    PubMed Central

    Hernandez-Valladares, Maria; Kim, Taekyung; Kannan, Balakrishnan; Tung, Alvin; Aguda, Adeleke H; Larsson, Mårten; Cooper, John A; Robinson, Robert C

    2011-01-01

    Capping protein (CP) regulates actin dynamics by binding the barbed ends of actin filaments. Removal of CP may be one means to harness actin polymerization for processes such as cell movement and endocytosis. Here we structurally and biochemically investigated a CP interaction (CPI) motif present in the otherwise unrelated proteins CARMIL and CD2AP. The CPI motif wraps around the stalk of the mushroom-shaped CP at a site distant from the actin-binding interface, which lies on the top of the mushroom cap. We propose that the CPI motif may act as an allosteric modulator, restricting CP to a low-affinity, filament-binding conformation. Structure-based sequence alignments extend the CPI motif–containing family to include CIN85, CKIP-1, CapZIP and a relatively uncharacterized protein, WASHCAP (FAM21). Peptides comprising these CPI motifs are able to inhibit CP and to uncap CP-bound actin filaments. PMID:20357771

  20. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.

    PubMed

    Sarver, Michael; Zirbel, Craig L; Stombaugh, Jesse; Mokdad, Ali; Leontis, Neocles B

    2008-01-01

    geometric discrepancy with respect to the query motif falls below a user-specified cutoff discrepancy. This technique can be applied to RMSD searches. Candidate motifs identified geometrically may be further screened symbolically to identify those that contain particular basepair types or base-stacking arrangements or that conform to sequence continuity or nucleotide identity constraints. Purely symbolic searches for motifs containing user-defined sequence, continuity and interaction constraints have also been implemented. We demonstrate that FR3D finds all occurrences, both local and composite and with nucleotide substitutions, of sarcin/ricin and kink-turn motifs in the 23S and 5S ribosomal RNA 3D structures of the H. marismortui 50S ribosomal subunit and assigns the lowest discrepancy scores to bona fide examples of these motifs. The search algorithms have been optimized for speed to allow users to search the non-redundant RNA 3D structure database on a personal computer in a matter of minutes. PMID:17694311