Science.gov

Sample records for intelligent systems modeling

  1. Modeling methodologies for intelligent systems

    SciTech Connect

    Li, X.

    1988-01-01

    Attempts are made to solve real-world problems by developing problem-solving paradigms using artificial intelligence (AI) technology. An important concept permeating the dissertation is the view that considers most AI issues as modeling tasks. Based on this concept, the dissertation is organized around the notion of model: model of physical system, model of human mental knowledge, and model of human learning process. Thus, the problem-solving paradigms developed are called modeling methodologies. These modeling methodologies, although developed for two specific systems, i.e., (1) a Power Distribution Training System, and (2) a Statistical Process Control Advisory System, address several fundamental issues in AI. Qualitative modeling techniques are used for modeling physical systems, and a generic architecture is proposed and implemented for building qualitative simulation models for a variety of distribution networks. A complete example in the domain of power distribution systems is given. A rule-based expert system is implemented for modeling the instructor and student in the mode-based Power Distribution Training System.

  2. On modeling and controlling intelligent systems

    SciTech Connect

    Dress, W.B.

    1993-11-01

    The aim of this paper is to show how certain diverse and advanced techniques of information processing and system theory might be integrated into a model of an intelligent, complex entity capable of materially enhancing an advanced information management system. To this end, we first examine the notion of intelligence and ask whether a semblance thereof can arise in a system consisting of ensembles of finite-state automata. Our goal is to find a functional model of intelligence in an information-management setting that can be used as a tool. The purpose of this tool is to allow us to create systems of increasing complexity and utility, eventually reaching the goal of an intelligent information management system that provides and anticipates needed data and information. We base our attempt on the ideas of general system theory where the four topics of system identification, modeling, optimization, and control provide the theoretical framework for constructing a complex system that will be capable of interacting with complex systems in the real world. These four key topics are discussed within the purview of cellular automata, neural networks, and evolutionary programming. This is a report of ongoing work, and not yet a success story of a synthetic intelligent system.

  3. OFMTutor: An operator function model intelligent tutoring system

    NASA Technical Reports Server (NTRS)

    Jones, Patricia M.

    1989-01-01

    The design, implementation, and evaluation of an Operator Function Model intelligent tutoring system (OFMTutor) is presented. OFMTutor is intended to provide intelligent tutoring in the context of complex dynamic systems for which an operator function model (OFM) can be constructed. The human operator's role in such complex, dynamic, and highly automated systems is that of a supervisory controller whose primary responsibilities are routine monitoring and fine-tuning of system parameters and occasional compensation for system abnormalities. The automated systems must support the human operator. One potentially useful form of support is the use of intelligent tutoring systems to teach the operator about the system and how to function within that system. Previous research on intelligent tutoring systems (ITS) is considered. The proposed design for OFMTutor is presented, and an experimental evaluation is described.

  4. Assessing the impact of modeling limits on intelligent systems

    NASA Technical Reports Server (NTRS)

    Rouse, William B.; Hammer, John M.

    1990-01-01

    The knowledge bases underlying intelligent systems are validated. A general conceptual framework is provided for considering the roles in intelligent systems of models of physical, behavioral, and operational phenomena. A methodology is described for identifying limits in particular intelligent systems, and the use of the methodology is illustrated via an experimental evaluation of the pilot-vehicle interface within the Pilot's Associate. The requirements and functionality are outlined for a computer based knowledge engineering environment which would embody the approach advocated and illustrated in earlier discussions. Issues considered include the specific benefits of this functionality, the potential breadth of applicability, and technical feasibility.

  5. Modeling of biological intelligence for SCM system optimization.

    PubMed

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724

  6. Modeling of Biological Intelligence for SCM System Optimization

    PubMed Central

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724

  7. Systems in Science: Modeling Using Three Artificial Intelligence Concepts.

    ERIC Educational Resources Information Center

    Sunal, Cynthia Szymanski; Karr, Charles L.; Smith, Coralee; Sunal, Dennis W.

    2003-01-01

    Describes an interdisciplinary course focusing on modeling scientific systems. Investigates elementary education majors' applications of three artificial intelligence concepts used in modeling scientific systems before and after the course. Reveals a great increase in understanding of concepts presented but inconsistent application. (Author/KHR)

  8. A Model for Intelligent Computer-Aided Education Systems.

    ERIC Educational Resources Information Center

    Du Plessis, Johan P.; And Others

    1995-01-01

    Proposes a model for intelligent computer-aided education systems that is based on cooperative learning, constructive problem-solving, object-oriented programming, interactive user interfaces, and expert system techniques. Future research is discussed, and a prototype for teaching mathematics to 10- to 12-year-old students is appended. (LRW)

  9. A structure for maturing intelligent tutoring system student models

    NASA Technical Reports Server (NTRS)

    Holmes, Willard M.

    1990-01-01

    A special structure is examined for evolving a detached model of the user of an intelligent tutoring system. Tutoring is used in the context of education and training devices. A detached approach to populating the student model data structure is examined in the context of the need for time dependent reasoning about what the student knows about a particular concept in the domain of interest. This approach, to generating a data structure for the student model, allows an inference engine separate from the tutoring strategy determination to be used. This methodology has advantages in environments requiring real-time operation.

  10. Developmental Process Model for the Java Intelligent Tutoring System

    ERIC Educational Resources Information Center

    Sykes, Edward

    2007-01-01

    The Java Intelligent Tutoring System (JITS) was designed and developed to support the growing trend of Java programming around the world. JITS is an advanced web-based personalized tutoring system that is unique in several ways. Most programming Intelligent Tutoring Systems require the teacher to author problems with corresponding solutions. JITS,…

  11. TEx-Sys Model for Building Intelligent Tutoring Systems

    ERIC Educational Resources Information Center

    Stankov, Slavomir; Rosic, Marko; Zitko, Branko; Grubisic, Ani

    2008-01-01

    Special classes of asynchronous e-learning systems are the intelligent tutoring systems which represent an advanced learning and teaching environment adaptable to individual student's characteristics. Authoring shells have an environment that enables development of the intelligent tutoring systems. In this paper we present, in entirety, for the…

  12. Expert Systems as Cognitive Models for Intelligent Tutors.

    ERIC Educational Resources Information Center

    Randolph, Gary L.

    1988-01-01

    Evaluates present conditions and recognizes current methodology being used for rule-based systems and schema-based systems, and gives examples of these systems. Lists educational implications of artificial intelligence and expert systems. (MVL)

  13. A hierarchical distributed control model for coordinating intelligent systems

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1991-01-01

    A hierarchical distributed control (HDC) model for coordinating cooperative problem-solving among intelligent systems is described. The model was implemented using SOCIAL, an innovative object-oriented tool for integrating heterogeneous, distributed software systems. SOCIAL embeds applications in 'wrapper' objects called Agents, which supply predefined capabilities for distributed communication, control, data specification, and translation. The HDC model is realized in SOCIAL as a 'Manager'Agent that coordinates interactions among application Agents. The HDC Manager: indexes the capabilities of application Agents; routes request messages to suitable server Agents; and stores results in a commonly accessible 'Bulletin-Board'. This centralized control model is illustrated in a fault diagnosis application for launch operations support of the Space Shuttle fleet at NASA, Kennedy Space Center.

  14. A human performance modelling approach to intelligent decision support systems

    NASA Technical Reports Server (NTRS)

    Mccoy, Michael S.; Boys, Randy M.

    1987-01-01

    Manned space operations require that the many automated subsystems of a space platform be controllable by a limited number of personnel. To minimize the interaction required of these operators, artificial intelligence techniques may be applied to embed a human performance model within the automated, or semi-automated, systems, thereby allowing the derivation of operator intent. A similar application has previously been proposed in the domain of fighter piloting, where the demand for pilot intent derivation is primarily a function of limited time and high workload rather than limited operators. The derivation and propagation of pilot intent is presented as it might be applied to some programs.

  15. Modeling the prediction of business intelligence system effectiveness.

    PubMed

    Weng, Sung-Shun; Yang, Ming-Hsien; Koo, Tian-Lih; Hsiao, Pei-I

    2016-01-01

    Although business intelligence (BI) technologies are continually evolving, the capability to apply BI technologies has become an indispensable resource for enterprises running in today's complex, uncertain and dynamic business environment. This study performed pioneering work by constructing models and rules for the prediction of business intelligence system effectiveness (BISE) in relation to the implementation of BI solutions. For enterprises, effectively managing critical attributes that determine BISE to develop prediction models with a set of rules for self-evaluation of the effectiveness of BI solutions is necessary to improve BI implementation and ensure its success. The main study findings identified the critical prediction indicators of BISE that are important to forecasting BI performance and highlighted five classification and prediction rules of BISE derived from decision tree structures, as well as a refined regression prediction model with four critical prediction indicators constructed by logistic regression analysis that can enable enterprises to improve BISE while effectively managing BI solution implementation and catering to academics to whom theory is important. PMID:27376005

  16. Rainfall-runoff modeling through hybrid intelligent system

    NASA Astrophysics Data System (ADS)

    Nayak, P. C.; Sudheer, K. P.; Jain, S. K.

    2007-07-01

    This study explores the potential of integrating two different artificial intelligence techniques, namely neural network and fuzzy logic, effectively to model the rainfall-runoff process from rainfall and runoff information. The integration is achieved through representing fuzzy system computations in a generic artificial neural network (ANN) architecture, which is functionally equivalent to a fuzzy inference system. The model is initialized by a hyperellipsoidal fuzzy clustering (HEC) procedure, which identifies suitable numbers of fuzzy if-then rules through proper partition of the input space. The parameters of the membership functions are optimized using a nonlinear optimization procedure. The consequent functions are chosen to be linear in their parameters, and a standard least squares error method is employed for parameter estimation. The proposed model is tested on two case studies: Narmada basin in India and Kentucky basin in the United States. The results are highly encouraging as the model is able to explain more than 92% of the variance. The performance of the proposed model is found to be comparable to that of an adaptive neural based fuzzy inference system (ANFIS) developed for both the basins. The number of parameters in the proposed model is fewer compared to ANFIS, and the former can be trained in lesser time. It is also observed that the proposed model simulates the peak flow better than ANFIS. Overall, the study suggests that the proposed model can potentially be a viable alternative to ANFIS for use as an operational tool for rainfall runoff modeling purposes.

  17. Intelligent flight control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1993-01-01

    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.

  18. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations.

    PubMed

    Fernández-Isabel, Alberto; Fuentes-Fernández, Rubén

    2015-01-01

    Intelligent Transportation Systems (ITSs) integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use. PMID:26083232

  19. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations

    PubMed Central

    Fernández-Isabel, Alberto; Fuentes-Fernández, Rubén

    2015-01-01

    Intelligent Transportation Systems (ITSs) integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use. PMID:26083232

  20. Modelling intelligent behavior

    NASA Technical Reports Server (NTRS)

    Green, H. S.; Triffet, T.

    1993-01-01

    An introductory discussion of the related concepts of intelligence and consciousness suggests criteria to be met in the modeling of intelligence and the development of intelligent materials. Methods for the modeling of actual structure and activity of the animal cortex have been found, based on present knowledge of the ionic and cellular constitution of the nervous system. These have led to the development of a realistic neural network model, which has been used to study the formation of memory and the process of learning. An account is given of experiments with simple materials which exhibit almost all properties of biological synapses and suggest the possibility of a new type of computer architecture to implement an advanced type of artificial intelligence.

  1. An Intelligent Tutoring System.

    ERIC Educational Resources Information Center

    Corbett, Albert

    1988-01-01

    Discusses a research project that uses artificial intelligence techniques to help teach programing. Describes principles and implementation of the LISP Intelligent Tutoring System (LISPITS). Explains how the artificial intelligence technique was developed and possible future research. (MVL)

  2. Stupid Tutoring Systems, Intelligent Humans

    ERIC Educational Resources Information Center

    Baker, Ryan S.

    2016-01-01

    The initial vision for intelligent tutoring systems involved powerful, multi-faceted systems that would leverage rich models of students and pedagogies to create complex learning interactions. But the intelligent tutoring systems used at scale today are much simpler. In this article, I present hypotheses on the factors underlying this development,…

  3. Systems Intelligence Inventory

    ERIC Educational Resources Information Center

    Törmänen, Juha; Hämäläinen, Raimo P.; Saarinen, Esa

    2016-01-01

    Purpose: Systems intelligence (SI) (Saarinen and Hämäläinen, 2004) is a construct defined as a person's ability to act intelligently within complex systems involving interaction and feedback. SI relates to our ability to act in systems and reason about systems to adaptively carry out productive actions within and with respect to systems such as…

  4. Intelligent tutoring systems for systems engineering methodologies

    NASA Technical Reports Server (NTRS)

    Meyer, Richard J.; Toland, Joel; Decker, Louis

    1991-01-01

    The general goal is to provide the technology required to build systems that can provide intelligent tutoring in IDEF (Integrated Computer Aided Manufacturing Definition Method) modeling. The following subject areas are covered: intelligent tutoring systems for systems analysis methodologies; IDEF tutor architecture and components; developing cognitive skills for IDEF modeling; experimental software; and PC based prototype.

  5. Intelligent Integrated System Health Management

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    2012-01-01

    Intelligent Integrated System Health Management (ISHM) is the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system (Management: storage, distribution, sharing, maintenance, processing, reasoning, and presentation). Presentation discusses: (1) ISHM Capability Development. (1a) ISHM Knowledge Model. (1b) Standards for ISHM Implementation. (1c) ISHM Domain Models (ISHM-DM's). (1d) Intelligent Sensors and Components. (2) ISHM in Systems Design, Engineering, and Integration. (3) Intelligent Control for ISHM-Enabled Systems

  6. Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery

    PubMed Central

    Bosl, William J

    2007-01-01

    Background Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication. Results A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet. Conclusion This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists to build complex models from

  7. An Intelligent Tutoring System for Learning Chinese with a Cognitive Model of the Learner

    ERIC Educational Resources Information Center

    Kosek, Michal; Lison, Pierre

    2014-01-01

    We present an intelligent tutoring system that lets students of Chinese learn words and grammatical constructions. It relies on a Bayesian, linguistically motivated cognitive model that represents the learner's knowledge. This model is dynamically updated given observations about the learner's behaviour in the exercises, and employed at runtime to…

  8. Stages of vermicular cast iron properties modeling in the intelligent design system

    NASA Astrophysics Data System (ADS)

    Klochkova, K. V.; Petrovich, S. V.; Simonova, L. A.; Yusupov, L. R.

    2015-06-01

    This article presents the structure of intelligent system of the cast iron with vermicular graphite iron (CGI) design under the conditions of current production, the technique of the optimal process TP parameters of the production of CGI parts in the preparatory phase of production based on mental models is designed.

  9. Operator function modeling: Cognitive task analysis, modeling and intelligent aiding in supervisory control systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1990-01-01

    The design, implementation, and empirical evaluation of task-analytic models and intelligent aids for operators in the control of complex dynamic systems, specifically aerospace systems, are studied. Three related activities are included: (1) the models of operator decision making in complex and predominantly automated space systems were used and developed; (2) the Operator Function Model (OFM) was used to represent operator activities; and (3) Operator Function Model Expert System (OFMspert), a stand-alone knowledge-based system was developed, that interacts with a human operator in a manner similar to a human assistant in the control of aerospace systems. OFMspert is an architecture for an operator's assistant that uses the OFM as its system and operator knowledge base and a blackboard paradigm of problem solving to dynamically generate expectations about upcoming operator activities and interpreting actual operator actions. An experiment validated the OFMspert's intent inferencing capability and showed that it inferred the intentions of operators in ways comparable to both a human expert and operators themselves. OFMspert was also augmented with control capabilities. An interface allowed the operator to interact with OFMspert, delegating as much or as little control responsibility as the operator chose. With its design based on the OFM, OFMspert's control capabilities were available at multiple levels of abstraction and allowed the operator a great deal of discretion over the amount and level of delegated control. An experiment showed that overall system performance was comparable for teams consisting of two human operators versus a human operator and OFMspert team.

  10. Intelligent Tutoring Systems

    NASA Astrophysics Data System (ADS)

    Anderson, John R.; Boyle, C. Franklin; Reiser, Brian J.

    1985-04-01

    Cognitive psychology, artificial intelligence, and computer technology have advanced to the point where it is feasible to build computer systems that are as effective as intelligent human tutors. Computer tutors based on a set of pedagogical principles derived from the ACT theory of cognition have been developed for teaching students to do proofs in geometry and to write computer programs in the language LISP.

  11. Intelligent Tutoring Systems.

    ERIC Educational Resources Information Center

    Anderson, John R.; And Others

    1985-01-01

    Cognitive psychology, artificial intelligence, and computer technology have advanced so much that it is feasible to build computer systems that are as effective as intelligent human tutors. Computer tutors have been developed for teaching students to do proofs in geometry and to write computer programs in the LISP language. (JN)

  12. Intelligent Tutoring Systems.

    ERIC Educational Resources Information Center

    Ross, Peter

    1987-01-01

    Discusses intelligent tutoring systems (ITS), one application of artificial intelligence to computers used in education. Basic designs of ITSs are described; examples are given including PROUST, GREATERP, and the use of simulation with ITSs; protocol analysis is discussed; and 38 prototype ITSs are listed. (LRW)

  13. Cooperating intelligent systems

    NASA Technical Reports Server (NTRS)

    Rochowiak, Daniel

    1989-01-01

    Some of the issues connected to the development of a bureaucratic system are discussed. Emphasis is on a layer multiagent approach to distributed artificial intelligence (DAI). The division of labor in a bureaucracy is considered. The bureaucratic model seems to be a fertile model for further examination since it allows for the growth and change of system components and system protocols and rules. The first part of implementing the system would be the construction of a frame based reasoner and the appropriate B-agents and E-agents. The agents themselves should act as objects and the E-objects in particular should have the capability of taking on a different role. No effort was made to address the problems of automated failure recovery, problem decomposition, or implementation. Instead what has been achieved is a framework that can be developed in several distinct ways, and which provides a core set of metaphors and issues for further research.

  14. Cognitive-Operative Model of Intelligent Learning Systems Behavior

    ERIC Educational Resources Information Center

    Laureano-Cruces, Ana Lilia; Ramirez-Rodriguez, Javier; Mora-Torres, Martha; de Arriaga, Fernando; Escarela-Perez, Rafael

    2010-01-01

    In this paper behavior during the teaching-learning process is modeled by means of a fuzzy cognitive map. The elements used to model such behavior are part of a generic didactic model, which emphasizes the use of cognitive and operative strategies as part of the student-tutor interaction. Examples of possible initial scenarios for the…

  15. Intelligent test integration system

    NASA Technical Reports Server (NTRS)

    Sztipanovits, J.; Padalkar, S.; Rodriguez-Moscoso, J.; Kawamura, K.; Purves, B.; Williams, R.; Biglari, H.

    1988-01-01

    A new test technology is described which was developed for space system integration. The ultimate purpose of the system is to support the automatic generation of test systems in real time, distributed computing environments. The Intelligent Test Integration System (ITIS) is a knowledge based layer above the traditional test system components which can generate complex test configurations from the specification of test scenarios.

  16. Intelligent inspection system

    NASA Astrophysics Data System (ADS)

    May, Jeniece; Dale, Ken; Holloway, Mike; Gaby, Willard

    1997-01-01

    The intelligent inspection system is an advanced controller and analysis system for dimensional measuring machines dedicated to measuring surface of revolution mechanical parts. IIS was developed by the Lockheed Martin Energy Systems, Inc. Oak Ridge Y-12 plant because no commercial product was available to replace the obsolete computing systems on these important machines.

  17. A scaleable architecture for the modeling and simulation of intelligent transportation systems.

    SciTech Connect

    Ewing, T.; Tentner, A.

    1999-03-17

    A distributed, scaleable architecture for the modeling and simulation of Intelligent Transportation Systems on a network of workstations or a parallel computer has been developed at Argonne National Laboratory. The resulting capability provides a modular framework supporting plug-in models, hardware, and live data sources; visually realistic graphics displays to support training and human factors studies; and a set of basic ITS models. The models and capabilities are described, along with atypical scenario involving dynamic rerouting of smart vehicles which send probe reports to and receive traffic advisories from a traffic management center capable of incident detection.

  18. SmartWeld/SmartProcess - intelligent model based system for the design and validation of welding processes

    SciTech Connect

    Mitchner, J.

    1996-04-01

    Diagrams are presented on an intelligent model based system for the design and validation of welding processes. Key capabilities identified include `right the first time` manufacturing, continuous improvement, and on-line quality assurance.

  19. Methods and Technologies of XML Data Modeling for IP Mode Intelligent Measuring & Controlling System

    NASA Astrophysics Data System (ADS)

    Liu, G. X.; Hong, X. B.; Liu, J. G.

    2006-10-01

    This paper presents the IP mode intelligent measuring & controlling system (IMIMCS). Based on object-oriented modeling technology of UML and XML Schema, the innovative methods and technologies of some key problems for XML data modeling in the IMIMCS were especially discussed, including refinement for systemic business by means of use-case diagram of UML, the confirmation of the content of XML data model and logic relationship of the objects of XML Schema with the aid of class diagram of UML, the mapping rules from the UML object model to XML Schema. Finally, the application of the IMIMCS based on XML for a modern greenhouse was presented. The results show that the modeling methods of the measuring & controlling data in the IMIMCS involving the multi-layer structure and many operating systems process strong reliability and flexibility, guarantee uniformity of complex XML documents and meet the requirement of data communication across platform.

  20. Intelligence supportability in future systems

    NASA Astrophysics Data System (ADS)

    Gold, Brian; Watson, Mariah; Vayette, Corey; Fiduk, Francis

    2010-08-01

    Advanced weaponry is providing an exponential increase in intelligence data collection capabilities and the Intelligence Community (IC) is not properly positioned for the influx of intelligence supportabilitiy requirements the defense acquisition community is developing for it. The Air Force Material Command (AFMC) has initiated the Intelligence Supportability Analysis (ISA) process to allow the IC to triage programs for intelligence sensitivities as well as begin preparations within the IC for the transition of future programs to operational status. The ISA process is accomplished through system decomposition, allowing analysts to identify intelligence requirements and deficiencies. Early collaboration and engagement by program managers and intelligence analysts is crucial to the success of intelligence sensitive programs through the utilization of a repeatable analytical framework for evaluating and making cognizant trade-offs between cost, schedule and performance. Addressing intelligence supportability early in the acquisition process will also influence system design and provide the necessary lead time for intelligence community to react and resource new requirements.

  1. Using a scalable modeling and simulation framework to evaluate the benefits of intelligent transportation systems.

    SciTech Connect

    Ewing, T.; Tentner, A.

    2000-03-21

    A scalable, distributed modeling and simulation framework has been developed at Argonne National Laboratory to study Intelligent Transportation Systems. The framework can run on a single-processor workstation, or run distributed on a multiprocessor computer or network of workstations. The framework is modular and supports plug-in models, hardware, and live data sources. The initial set of models currently includes road network and traffic flow, probe and smart vehicles, traffic management centers, communications between vehicles and centers, in-vehicle navigation systems, roadway traffic advisories. The modeling and simulation capability has been used to examine proposed ITS concepts. Results are presented from modeling scenarios from the Advanced Driver and Vehicle Advisory Navigation Concept (ADVANCE) experimental program to demonstrate how the framework can be used to evaluate the benefits of ITS and to plan future ITS operational tests and deployment initiatives.

  2. Intelligence control systems

    NASA Technical Reports Server (NTRS)

    Saridis, G. N.

    1980-01-01

    The evolution of ideas of intelligent controls and their application to high level man machine interactive systems like general purpose manipulators, industrial robots, prosthetic devices for amputees, and orthotic devices for paralyzed persons are discussed. Some case studies are presented to demonstrate the feasibility of the approach.

  3. Intelligent Leak Detection System

    Energy Science and Technology Software Center (ESTSC)

    2014-10-27

    apability of underground carbon dioxide storage to confine and sustain injected CO2 for a very long time is the main concern for geologic CO2 sequestration. If a leakage from a geological CO2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak in order to implement proper remediation activity. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or nearmore » surface monitoring of the sequestered CO2. This study aims to monitor the integrity of CO2 storage at the reservoir level. This work proposes developing in-situ CO2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or “Smart Wells” along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered for this study. A reservoir simulation model for CO2 sequestration in the Citronelle field was developed and history matched. The presence of the PDGs were considered in the reservoir model at the injection well and an observation well. High frequency pressure data from sensors were collected based on different synthetic CO2 leakage scenarios in the model. Due to complexity of the pressure signal behaviors, a Machine Learning-based technology was introduced to build an Intelligent Leakage Detection System (ILDS). The ILDS was able to detect leakage characteristics in a short period of time (less than a day) demonstrating the capability of the system in quantifying leakage characteristics subject to complex rate behaviors. The performance of ILDS was examined under different conditions such as multiple well leakages, cap rock leakage, availability of an additional monitoring well, presence of pressure drift

  4. Intelligent Leak Detection System

    SciTech Connect

    Mohaghegh, Shahab D.

    2014-10-27

    apability of underground carbon dioxide storage to confine and sustain injected CO2 for a very long time is the main concern for geologic CO2 sequestration. If a leakage from a geological CO2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak in order to implement proper remediation activity. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO2. This study aims to monitor the integrity of CO2 storage at the reservoir level. This work proposes developing in-situ CO2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or “Smart Wells” along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered for this study. A reservoir simulation model for CO2 sequestration in the Citronelle field was developed and history matched. The presence of the PDGs were considered in the reservoir model at the injection well and an observation well. High frequency pressure data from sensors were collected based on different synthetic CO2 leakage scenarios in the model. Due to complexity of the pressure signal behaviors, a Machine Learning-based technology was introduced to build an Intelligent Leakage Detection System (ILDS). The ILDS was able to detect leakage characteristics in a short period of time (less than a day) demonstrating the capability of the system in quantifying leakage characteristics subject to complex rate behaviors. The performance of ILDS was examined under different conditions such as multiple well leakages, cap rock leakage, availability of an additional monitoring well, presence of pressure drift and noise

  5. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    SciTech Connect

    Isa, Nor Ashidi Mat

    2015-05-15

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  6. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    NASA Astrophysics Data System (ADS)

    Isa, Nor Ashidi Mat

    2015-05-01

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  7. Patterns and Intelligent Systems

    SciTech Connect

    Cordes, Gail A.

    2003-01-15

    The recognition and analysis of evolving patterns provides a unifying concept for studying and implementing intelligent information processing for open feedback control systems within the nuclear industry. Control is considered as influence of a large system to achieve the goals of the human (who might or might not be part of an open feedback loop) and is not limited to operation of a component within a nuclear power plant. The intelligent control system includes open logic and can automatically react to new data in an unprogrammed way. This application of evolving patterns integrates current research developments in human cognition and scientific semiotics with traditional feedback control. A preliminary implementation of such a system using existing computational techniques is postulated, and tools that are lacking at this time are identified. Proof-of-concept applications for the nuclear industry are referenced.

  8. Intelligent Control Systems Research

    NASA Technical Reports Server (NTRS)

    Loparo, Kenneth A.

    1994-01-01

    Results of a three phase research program into intelligent control systems are presented. The first phase looked at implementing the lowest or direct level of a hierarchical control scheme using a reinforcement learning approach assuming no a priori information about the system under control. The second phase involved the design of an adaptive/optimizing level of the hierarchy and its interaction with the direct control level. The third and final phase of the research was aimed at combining the results of the previous phases with some a priori information about the controlled system.

  9. Towards intelligent robot-assisted rehabilitation systems

    NASA Astrophysics Data System (ADS)

    Barkana, Duygun Erol

    2010-07-01

    This article presents an intelligent control architecture that is used to monitor the task and safety issues to provide assessment of the progress and to alter the task parameters. Additionally, a verbal feedback recognition system is integrated inside the intelligent control architecture to incorporate patients' and therapists' feedback to make necessary modifications to impart effective therapy during the execution of the task in an automated manner. Hybrid system modelling technique is used to design the intelligent control architecture. Experimental results are presented to demonstrate the efficacy of the intelligent control architecture.

  10. The NIST Real-Time Control System (RCS): A Reference Model Architecture for Computational Intelligence

    NASA Technical Reports Server (NTRS)

    Albus, James S.

    1996-01-01

    The Real-time Control System (RCS) developed at NIST and elsewhere over the past two decades defines a reference model architecture for design and analysis of complex intelligent control systems. The RCS architecture consists of a hierarchically layered set of functional processing modules connected by a network of communication pathways. The primary distinguishing feature of the layers is the bandwidth of the control loops. The characteristic bandwidth of each level is determined by the spatial and temporal integration window of filters, the temporal frequency of signals and events, the spatial frequency of patterns, and the planning horizon and granularity of the planners that operate at each level. At each level, tasks are decomposed into sequential subtasks, to be performed by cooperating sets of subordinate agents. At each level, signals from sensors are filtered and correlated with spatial and temporal features that are relevant to the control function being implemented at that level.

  11. Engineering intelligent tutoring systems

    NASA Technical Reports Server (NTRS)

    Warren, Kimberly C.; Goodman, Bradley A.

    1993-01-01

    We have defined an object-oriented software architecture for Intelligent Tutoring Systems (ITS's) to facilitate the rapid development, testing, and fielding of ITS's. This software architecture partitions the functionality of the ITS into a collection of software components with well-defined interfaces and execution concept. The architecture was designed to isolate advanced technology components, partition domain dependencies, take advantage of the increased availability of commercial software packages, and reduce the risks involved in acquiring ITS's. A key component of the architecture, the Executive, is a publish and subscribe message handling component that coordinates all communication between ITS components.

  12. Intelligent utility meter system

    SciTech Connect

    Frew, L.H.; Fuller, M.L.

    1989-02-07

    An intelligent utility meter system installation is described for measuring A.C. electric energy having repetitive A.C. cycles, comprising: (1) an ''outside'' principal meter unit including: (a) means for sampling current and voltage and for calculating power consumption at least 300 times per second; the sampling occurring asynchronously and not in any fixed time relationship with respect to the A.C. electricity cycles; (b) the outside unit further including means for determining the total kilowatt hours used, and the present billing status; and (c) alphanumeric display means for displaying power being used, total kilowatt hours and present billing status; (2) a remote ''inside'' unit including: (a) alphanumeric means for displaying the information displayed by the ''outside'' unit; (b) means for selectively retaining a desired continuously updated display; and (c) means for reading a credit card and automatically changing the billing status information within the intelligent utility meter as credit card information is read; and (3) the system including means for determining both the magnitude and direction of the electric power passing through the meter system.

  13. NA22 Model Cities Project - LL244T An Intelligent Transportation System-Based Radiation Alert and Detection System

    SciTech Connect

    Peglow, S

    2004-02-24

    The purpose of this project was twofold: first, provide an understanding of the technical foundation and planning required for deployment of Intelligent Transportation System (ITS)-based system architectures for the protection of New York City from a terrorist attack using a vehicle-deployed nuclear device; second, work with stakeholders to develop mutual understanding of the technologies and tactics required for threat detection/identification and establish guidelines for designing operational systems and procedures. During the course of this project we interviewed and coordinated analysis with people from the New Jersey State Attorney General's office, the New Jersey State Police, the Port Authority of New York/New Jersey, the Counterterrorism Division of the New York City Police Department, the New Jersey Transit Authority, the State of New Jersey Department of Transportation, TRANSCOM and a number of contractors involved with state and federal intelligent transportation development and implementation. The basic system architecture is shown in the figure below. In an actual system deployment, radiation sensors would be co-located with existing ITS elements and the data will be sent to the Traffic Operations Center. A key element of successful system operation is the integration of vehicle data, such as license plate, EZ pass ID, vehicle type/color and radiation signature. A threat data base can also be implemented and utilized in cases where there is a suspect vehicle identified from other intelligence sources or a mobile detector system. Another key aspect of an operational architecture is the procedures used to verify the threat and plan interdiction. This was a major focus of our work and discussed later in detail. In support of the operational analysis, we developed a detailed traffic simulation model that is described extensively in the body of the report.

  14. Fuzzy Logic, Neural Networks, Genetic Algorithms: Views of Three Artificial Intelligence Concepts Used in Modeling Scientific Systems

    ERIC Educational Resources Information Center

    Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.

    2003-01-01

    Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…

  15. Intelligent Computerized Training System

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Baffes, Paul; Loftin, R. Bowen; Hua, Grace C.

    1991-01-01

    Intelligent computer-aided training system gives trainees same experience gained from best on-the-job training. Automated system designed to emulate behavior of experienced teacher devoting full time and attention to training novice. Proposes challenging training scenarios, monitors and evaluates trainee's actions, makes meaningful comments in response to errors, reponds to requests for information, gives hints when appropriate, and remembers strengths and weaknesses so it designs suitable exercises. Used to train flight-dynamics officers in deploying satellites from Space Shuttle. Adapted to training for variety of tasks and situations, simply by modifying one or at most two of its five modules. Helps to ensure continuous supply of trained specialists despite scarcity of experienced and skilled human trainers.

  16. An endorsement-based approach to student modeling for planner-controlled intelligent tutoring systems

    NASA Technical Reports Server (NTRS)

    Murray, William R.

    1990-01-01

    An approach is described to student modeling for intelligent tutoring systems based on an explicit representation of the tutor's beliefs about the student and the arguments for and against those beliefs (called endorsements). A lexicographic comparison of arguments, sorted according to evidence reliability, provides a principled means of determining those beliefs that are considered true, false, or uncertain. Each of these beliefs is ultimately justified by underlying assessment data. The endorsement-based approach to student modeling is particularly appropriate for tutors controlled by instructional planners. These tutors place greater demands on a student model than opportunistic tutors. Numerical calculi approaches are less well-suited because it is difficult to correctly assign numbers for evidence reliability and rule plausibility. It may also be difficult to interpret final results and provide suitable combining functions. When numeric measures of uncertainty are used, arbitrary numeric thresholds are often required for planning decisions. Such an approach is inappropriate when robust context-sensitive planning decisions must be made. A TMS-based implementation of the endorsement-based approach to student modeling is presented, this approach is compared to alternatives, and a project history is provided describing the evolution of this approach.

  17. INN: An Intelligent Negotiating Neural Network for Information Systems: A Design Model.

    ERIC Educational Resources Information Center

    Meghabghab, George V.; Meghabghab, Dania B.

    1994-01-01

    Presents an Intelligent Negotiating Neural Network Design Model for solving the problem of poor information retrieval in subject searches of online catalogs. The purpose of the network, its architecture, and three different sessions of the user interface are described. Nineteen figures showing screens of the three sessions are appended. (Contains…

  18. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    PubMed Central

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  19. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    PubMed

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  20. Intelligent aircraft/airspace systems

    NASA Technical Reports Server (NTRS)

    Wangermann, John P.

    1995-01-01

    Projections of future air traffic predict at least a doubling of the number of revenue passenger miles flown by the year 2025. To meet this demand, an Intelligent Aircraft/Airspace System (IAAS) has been proposed. The IAAS operates on the basis of principled negotiation between intelligent agents. The aircraft/airspace system today consists of many agents, such as airlines, control facilities, and aircraft. All the agents are becoming increasingly capable as technology develops. These capabilities should be exploited to create an Intelligent Aircraft/Airspace System (IAAS) that would meet the predicted traffic levels of 2005.

  1. System for intelligent teleoperation research

    SciTech Connect

    Orlando, N.E.

    1983-10-25

    The Automation Technology Branch of NASA Langley Research Center is developing a research capability in the field of artificial intelligence, particularly as applicable in teleoperator/robotics development for remote space operations. As a testbed for experimentation in these areas, a system concept has been developed and is being implemented. This system, termed DAISIE (Distributed Artificially Intelligent System for Interacting with the Environment), interfaces the key processes of perception, reasoning, and manipulation by linking hardware sensors and manipulators to a modular artificial intelligence (AI) software system in a hierarchical control structure. Verification experiments have been performed: one experiment used a blocksworld database and planner embedded in the DAISIE system to intelligently manipulate a simple physical environment; the other experiment implemented a joint-space collision avoidance algorithm. Continued system development is planned.

  2. Study of the intelligent video surveillance system based on the staring ommateum model

    NASA Astrophysics Data System (ADS)

    Wu, Jianhui; Zhang, Nanyang; Zhang, Guoyun; Guo, Longyuan

    2011-11-01

    This paper proposed a method which based on "the ommateum" staring system with multi-lens that had intelligence function and nothing blind-zone surveillance. The system used six normal lens which the field of view has 65° to encircle evenly, and made the neighboring two lens' view field have 5° overlap angles. A high speed DSP chip of TMS320DM6446 was used to central processing the six route video which for scanning method from one to six video by turns to realize the intelligence and real time processing. The system could track and recognition the moving object, calculate and record the parameter of object like speed, size and moving azimuth angle. In this paper, the improved algorithms of Auto-adapted Renewal Background Subtraction (ARBS) and the Fuzzy Auto-adapted Median Filter (FAMF) had been studied which could be detected the movement object and filter the image noise. The experiment result indicated that the staring ommateum system could be surveillance 360° scope with nothing blind-zone. The FAMF algorithm could filter the noise effectively, and the ARBS algorithm could be detection the moving object well and truly for anyone video and the parameter of object in the field of view could be calculated accurately. It had been achieved the requirement of seamless intelligence video surveillance at ultra wide range.

  3. Study of the intelligent video surveillance system based on the staring ommateum model

    NASA Astrophysics Data System (ADS)

    Wu, Jianhui; Zhang, Nanyang; Zhang, Guoyun; Guo, Longyuan

    2012-01-01

    This paper proposed a method which based on "the ommateum" staring system with multi-lens that had intelligence function and nothing blind-zone surveillance. The system used six normal lens which the field of view has 65° to encircle evenly, and made the neighboring two lens' view field have 5° overlap angles. A high speed DSP chip of TMS320DM6446 was used to central processing the six route video which for scanning method from one to six video by turns to realize the intelligence and real time processing. The system could track and recognition the moving object, calculate and record the parameter of object like speed, size and moving azimuth angle. In this paper, the improved algorithms of Auto-adapted Renewal Background Subtraction (ARBS) and the Fuzzy Auto-adapted Median Filter (FAMF) had been studied which could be detected the movement object and filter the image noise. The experiment result indicated that the staring ommateum system could be surveillance 360° scope with nothing blind-zone. The FAMF algorithm could filter the noise effectively, and the ARBS algorithm could be detection the moving object well and truly for anyone video and the parameter of object in the field of view could be calculated accurately. It had been achieved the requirement of seamless intelligence video surveillance at ultra wide range.

  4. Overview of Intelligent Systems and Operations Development

    NASA Technical Reports Server (NTRS)

    Pallix, Joan; Dorais, Greg; Penix, John

    2004-01-01

    To achieve NASA's ambitious mission objectives for the future, aircraft and spacecraft will need intelligence to take the correct action in a variety of circumstances. Vehicle intelligence can be defined as the ability to "do the right thing" when faced with a complex decision-making situation. It will be necessary to implement integrated autonomous operations and low-level adaptive flight control technologies to direct actions that enhance the safety and success of complex missions despite component failures, degraded performance, operator errors, and environment uncertainty. This paper will describe the array of technologies required to meet these complex objectives. This includes the integration of high-level reasoning and autonomous capabilities with multiple subsystem controllers for robust performance. Future intelligent systems will use models of the system, its environment, and other intelligent agents with which it interacts. They will also require planners, reasoning engines, and adaptive controllers that can recommend or execute commands enabling the system to respond intelligently. The presentation will also address the development of highly dependable software, which is a key component to ensure the reliability of intelligent systems.

  5. Progress towards autonomous, intelligent systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry; Heer, Ewald

    1987-01-01

    An aggressive program has been initiated to develop, integrate, and implement autonomous systems technologies starting with today's expert systems and evolving to autonomous, intelligent systems by the end of the 1990s. This program includes core technology developments and demonstration projects for technology evaluation and validation. This paper discusses key operational frameworks in the content of systems autonomy applications and then identifies major technological challenges, primarily in artificial intelligence areas. Program content and progress made towards critical technologies and demonstrations that have been initiated to achieve the required future capabilities in the year 2000 era are discussed.

  6. Intelligent System Controller for remote systems

    SciTech Connect

    Harrigan, R.W.

    1992-01-01

    The US Department of Energy's Office of Technology Development (OTD) has sponsored the development of the Generic Intelligent System Controller (GISC) for application to the clean up of hazardous waste sites. Of primary interest to the OTD is the development of technologies which result in faster, safer, and cheaper cleanup of hazardous waste sites than possible using conventional approaches. An objective of the GISC development project is to achieve these goals by developing a modular robotics control approach which reduces the time and cost of development by allowing reuse of control system software and uses computer models to improve the safety of remote site cleanup while reducing the time and life cycle costs.

  7. Intelligent Systems for Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje; Clancey, Daniel (Technical Monitor)

    2002-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  8. Intelligent Systems For Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, K.

    2003-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  9. Developing Information Systems for Competitive Intelligence Support.

    ERIC Educational Resources Information Center

    Hohhof, Bonnie

    1994-01-01

    Discusses issues connected with developing information systems for competitive intelligence support; defines the elements of an effective competitive information system; and summarizes issues affecting system design and implementation. Highlights include intelligence information; information needs; information sources; decision making; and…

  10. Intelligent interfaces for expert systems

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.; Wang, Lui

    1988-01-01

    Vital to the success of an expert system is an interface to the user which performs intelligently. A generic intelligent interface is being developed for expert systems. This intelligent interface was developed around the in-house developed Expert System for the Flight Analysis System (ESFAS). The Flight Analysis System (FAS) is comprised of 84 configuration controlled FORTRAN subroutines that are used in the preflight analysis of the space shuttle. In order to use FAS proficiently, a person must be knowledgeable in the areas of flight mechanics, the procedures involved in deploying a certain payload, and an overall understanding of the FAS. ESFAS, still in its developmental stage, is taking into account much of this knowledge. The generic intelligent interface involves the integration of a speech recognizer and synthesizer, a preparser, and a natural language parser to ESFAS. The speech recognizer being used is capable of recognizing 1000 words of connected speech. The natural language parser is a commercial software package which uses caseframe instantiation in processing the streams of words from the speech recognizer or the keyboard. The systems configuration is described along with capabilities and drawbacks.

  11. Intelligent, autonomous systems in space

    NASA Technical Reports Server (NTRS)

    Lum, H.; Heer, E.

    1988-01-01

    The Space Station is expected to be equipped with intelligent, autonomous capabilities; to achieve and incorporate these capabilities, the required technologies need to be identitifed, developed and validated within realistic application scenarios. The critical technologies for the development of intelligent, autonomous systems are discussed in the context of a generalized functional architecture. The present state of this technology implies that it be introduced and applied in an evolutionary process which must start during the Space Station design phase. An approach is proposed to accomplish design information acquisition and management for knowledge-base development.

  12. Software for Intelligent System Health Management

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.

    2004-01-01

    This viewgraph presentation describes the characteristics and advantages of autonomy and artificial intelligence in systems health monitoring. The presentation lists technologies relevant to Intelligent System Health Management (ISHM), and some potential applications.

  13. Determining Difficulty of Questions in Intelligent Tutoring Systems

    ERIC Educational Resources Information Center

    Gunel, Korhan; Asliyan, Rifat

    2009-01-01

    The object of this study is to model the level of a question difficulty by a differential equation at a pre-specified domain knowledge, to be used in an educational support system. For this purpose, we have developed an intelligent tutoring system for mathematics education. Intelligent Tutoring Systems are computer systems designed for improvement…

  14. Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method.

    PubMed

    Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid

    2016-07-01

    Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink. PMID:26961319

  15. Intelligent Tutoring Systems for Scientific Inquiry Skills.

    ERIC Educational Resources Information Center

    Shute, Valerie; Bonar, Jeffrey

    Described are the initial prototypes of several intelligent tutoring systems designed to build students' scientific inquiry skills. These inquiry skills are taught in the context of acquiring knowledge of principles from a microworld that models a specific domain. This paper discusses microworlds that have been implemented for microeconomics,…

  16. Artificial Intelligence and Expert Systems.

    ERIC Educational Resources Information Center

    Lawlor, Joseph

    Artificial intelligence (AI) is the field of scientific inquiry concerned with designing machine systems that can simulate human mental processes. The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering. Some of the…

  17. Intelligent System for Radiogram Analysis

    NASA Astrophysics Data System (ADS)

    Sikora, R.; Chady, T.; Baniukiewicz, P.; Łopato, P.; Napierała, L.; Pietrusewicz, T.; Psuj, G.; Piekarczyk, B.

    2011-06-01

    In this paper we present a concept for an Intelligent System for Radiogram Analysis (ISAR) for welds quality inspection. Both, hardware and software solutions have been introduced in the system. The software operates with variety of scanner standards. It contains preliminary image processing (linear and nonlinear filtering algorithms) and some specialized functions, like Sauvola's tresholding or IQI detection. The aim of the ISAR system is to support a radiologist in his work.

  18. Modeling Evolutionary Change in Human Intelligence

    NASA Astrophysics Data System (ADS)

    Lower, T. A.

    2010-04-01

    A multivariate normal distribution model for predicting evolutionary change in intelligence within a species is described, based on the Flynn Effect, culture, and other phenomena known to impact intelligence.

  19. Blindness in designing intelligent systems

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    New investigations of the foundations of artificial intelligence are challenging the hypothesis that problem solving is the cornerstone of intelligence. New distinctions among three domains of concern for humans--description, action, and commitment--have revealed that the design process for programmable machines, such as expert systems, is based on descriptions of actions and induces blindness to nonanalytic action and commitment. Design processes focusing in the domain of description are likely to yield programs like burearcracies: rigid, obtuse, impersonal, and unable to adapt to changing circumstances. Systems that learn from their past actions, and systems that organize information for interpretation by human experts, are more likely to be successful in areas where expert systems have failed.

  20. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1991-01-01

    Significant advances have occurred during the last decade in intelligent systems technologies (a.k.a. knowledge-based systems, KBS) including research, feasibility demonstrations, and technology implementations in operational environments. Evaluation and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent systems technologies can be realized for Automated Rendezvous and Capture applications. The successful implementation of these technologies involve a complex system infrastructure integrating the requirements of transportation, vehicle checkout and health management, and communication systems without compromise to systems reliability and performance. The resources that must be invoked to accomplish these tasks include remote ground operations and control, built-in system fault management and control, and intelligent robotics. To ensure long-term evolution and integration of new validated technologies over the lifetime of the vehicle, system interfaces must also be addressed and integrated into the overall system interface requirements. An approach for defining and evaluating the system infrastructures including the testbed currently being used to support the on-going evaluations for the evolutionary Space Station Freedom Data Management System is presented and discussed. Intelligent system technologies discussed include artificial intelligence (real-time replanning and scheduling), high performance computational elements (parallel processors, photonic processors, and neural networks), real-time fault management and control, and system software development tools for rapid prototyping capabilities.

  1. The Fusion Model of Intelligent Transportation Systems Based on the Urban Traffic Ontology

    NASA Astrophysics Data System (ADS)

    Yang, Wang-Dong; Wang, Tao

    On these issues unified representation of urban transport information using urban transport ontology, it defines the statute and the algebraic operations of semantic fusion in ontology level in order to achieve the fusion of urban traffic information in the semantic completeness and consistency. Thus this paper takes advantage of the semantic completeness of the ontology to build urban traffic ontology model with which we resolve the problems as ontology mergence and equivalence verification in semantic fusion of traffic information integration. Information integration in urban transport can increase the function of semantic fusion, and reduce the amount of data integration of urban traffic information as well enhance the efficiency and integrity of traffic information query for the help, through the practical application of intelligent traffic information integration platform of Changde city, the paper has practically proved that the semantic fusion based on ontology increases the effect and efficiency of the urban traffic information integration, reduces the storage quantity, and improve query efficiency and information completeness.

  2. Toward intelligent information system

    NASA Astrophysics Data System (ADS)

    Komatsu, Sanzo

    NASA/RECON, the predecessor of DIALOG System, was originally designed as a user friendly system for astronauts, so that they should not miss-operate the machine in spite of tension in the outer space. Since then, DIALOG has endeavoured to develop a series of user friendly systems, such as knowledge index, inbound gateway, as well as Version II. In this so-called end user searching era, DIALOG has released a series of front end systems successively; DIALOG Business Connection, DIALOG Medical Connection and OneSearch in 1986, early and late 1987 respectively. They are all called expert systems. In this paper, the features of each system are described in some detail and the remaining critical issues are also discussed.

  3. Wireless intelligent monitoring and analysis systems

    NASA Astrophysics Data System (ADS)

    Berry, Nina; Djordjevich, Donna; Ko, Teresa; Coburn, Ben; Elliott, Stephen; Tsudama, Brett; Whitcomb, Melissa

    2004-04-01

    The wireless intelligent monitoring and analysis systems is a proof-of-concept directed at discovering solution(s) for providing decentralized intelligent data analysis and control for distributed containers equipped with wireless sensing units. The objective was to embed smart behavior directly within each wireless sensor container, through the incorporation of agent technology into each sensor suite. This approach provides intelligent directed fusion of data based on a social model of teaming behavior. This system demonstrates intelligent sensor behavior that converts raw sensor data into group knowledge to better understand the integrity of the complete container environment. The emergent team behavior is achieved with lightweight software agents that analyze sensor data based on their current behavior mode. When the system starts-up or is reconfigured the agents self-organize into virtual random teams based on the leader/member/lonely paradigm. The team leader collects sensor data from their members and investigates all abnormal situations to determine the legitimacy of high sensor readings. The team leaders flag critical situation and report this knowledge back to the user via a collection of base stations. This research provides insight into the integration issues and concerns associated with integrating multi-disciplinary fields of software agents, artificial life and autonomous sensor behavior into a complete system.

  4. Toward intelligent information system

    NASA Astrophysics Data System (ADS)

    Takano, Fumio; Hinatsu, Ken'ichi

    This article describes the indexing aid system and project at JICST, API, NLM and BIOSIS. They are dealing with the very broad domain of science, medicine and technological literatures and indexing is done by use of controlled terms, the indexing is routinely performed by highly skilled indexers. Because of the high cost of controlled indexing of bibliographic information they have designed automated indexing system and/or expert-like system to take advantage of many years of experienced indexing using knowledge bases and /on thesauri.

  5. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry

    1991-01-01

    A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.

  6. Intelligent Highway System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under contract to the Texas Department of Transportation, AlliedSignal Technical Services developed the Transportation Guidance System (TransGuide) used in San Antonio, Texas. The system monitors the passage of traffic over the sensors embedded in the roadways and detects incidents. Control center operators are alerted to the occurrence of an accident and the area of the occurrence is highlighted on a map display. TransGuide incorporates technology AlliedSignal developed under various contracts to NASA at Goddard Space Flight Center, Johnson Space Center and Jet Propulsion Laboratory, including the design of ground control centers.

  7. Human intelligence: the model is the message.

    PubMed

    Sternberg, R J

    1985-12-01

    Theories of intelligence, and some of the research testing them, are designed to answer three basic questions about intelligence: (i) What is the relation of intelligence to the internal world of the individual? (ii) What is the relation of intelligence to the external world of the individual? (iii) What is the relation of intelligence to experience? Various models of the mind underlying the theories have been proposed; the strengths and limitations of these models are assessed. A theory that addresses all three questions simultaneously is the triarchic theory. PMID:17739108

  8. Intelligent Engine Systems: Acoustics

    NASA Technical Reports Server (NTRS)

    Wojno, John; Martens, Steve; Simpson, Benjamin

    2008-01-01

    An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.

  9. Intelligent computational systems for space applications

    NASA Astrophysics Data System (ADS)

    Lum, Henry; Lau, Sonie

    Intelligent computational systems can be described as an adaptive computational system integrating both traditional computational approaches and artificial intelligence (AI) methodologies to meet the science and engineering data processing requirements imposed by specific mission objectives. These systems will be capable of integrating, interpreting, and understanding sensor input information; correlating that information to the "world model" stored within its data base and understanding the differences, if any; defining, verifying, and validating a command sequence to merge the "external world" with the "internal world model"; and, controlling the vehicle and/or platform to meet the scientific and engineering mission objectives. Performance and simulation data obtained to date indicate that the current flight processors baselined for many missions such as Space Station Freedom do not have the computational power to meet the challenges of advanced automation and robotics systems envisioned for the year 2000 era. Research issues which must be addressed to achieve greater than giga-flop performance for on-board intelligent computational systems have been identified, and a technology development program has been initiated to achieve the desired long-term system performance objectives.

  10. An intelligent simulation training system

    NASA Technical Reports Server (NTRS)

    Biegel, John E.

    1990-01-01

    The Department of Industrial Engineering at the University of Central Florida, Embry-Riddle Aeronautical University and General Electric (SCSD) have been funded by the State of Florida to build an Intelligent Simulation Training System. The objective was and is to make the system generic except for the domain expertise. Researchers accomplished this objective in their prototype. The system is modularized and therefore it is easy to make any corrections, expansions or adaptations. The funding by the state of Florida has exceeded $3 million over the past three years and through the 1990 fiscal year. UCF has expended in excess of 15 work years on the project. The project effort has been broken into three major tasks. General Electric provides the simulation. Embry-Riddle Aeronautical University provides the domain expertise. The University of Central Florida has constructed the generic part of the system which is comprised of several modules that perform the tutoring, evaluation, communication, status, etc. The generic parts of the Intelligent Simulation Training Systems (ISTS) are described.

  11. A Model for Intelligent Computer Assisted Language Instruction (MICALI).

    ERIC Educational Resources Information Center

    Farghaly, Ali

    1989-01-01

    States that Computer Assisted Language Instruction (CALI) software should be developed as an interactive natural language processing system. Describes artificial intelligence and proposes a model for intelligent CALI software (MICALI). Discusses MICALI's potential and current limitations due to the present state of the art. (Author/LS)

  12. Modeling the Effects of Light and Sucrose on In Vitro Propagated Plants: A Multiscale System Analysis Using Artificial Intelligence Technology

    PubMed Central

    Gago, Jorge; Martínez-Núñez, Lourdes; Landín, Mariana; Flexas, Jaume; Gallego, Pedro P.

    2014-01-01

    Background Plant acclimation is a highly complex process, which cannot be fully understood by analysis at any one specific level (i.e. subcellular, cellular or whole plant scale). Various soft-computing techniques, such as neural networks or fuzzy logic, were designed to analyze complex multivariate data sets and might be used to model large such multiscale data sets in plant biology. Methodology and Principal Findings In this study we assessed the effectiveness of applying neuro-fuzzy logic to modeling the effects of light intensities and sucrose content/concentration in the in vitro culture of kiwifruit on plant acclimation, by modeling multivariate data from 14 parameters at different biological scales of organization. The model provides insights through application of 14 sets of straightforward rules and indicates that plants with lower stomatal aperture areas and higher photoinhibition and photoprotective status score best for acclimation. The model suggests the best condition for obtaining higher quality acclimatized plantlets is the combination of 2.3% sucrose and photonflux of 122–130 µmol m−2 s−1. Conclusions Our results demonstrate that artificial intelligence models are not only successful in identifying complex non-linear interactions among variables, by integrating large-scale data sets from different levels of biological organization in a holistic plant systems-biology approach, but can also be used successfully for inferring new results without further experimental work. PMID:24465829

  13. GOLD: Integration of model-based control systems with artificial intelligence and workstations

    SciTech Connect

    Lee, M.; Clearwater, S.

    1987-08-01

    Our experience with model based accelerator control started at SPEAR. Since that time nearly all accelerator beam lines have been controlled using model-based application programs, for example, PEP and SLC at SLAC. In order to take advantage of state-of-the-art hardware and software technology, the design and implementation of the accelerator control programs have undergone radical change with time. Consequently, SPEAR, PEP, and SLC all use different control programs. Since many of these application programs are imbedded deep into the control system, they had to be rewritten each time. Each time this rewriting has occurred a great deal of time and effort has been spent on training physicists and programmers to do the job. Now, we have developed these application programs for a fourth time. This time, however, the programs we are developing are generic so that we will not have to do it again. We have developed an integrated system called GOLD (Generic Orbit and Lattice Debugger) for debugging and correcting trajectory errors in accelerator lattices. The system consists of a lattice modeling program (COMFORT), a beam simulator (PLUS), a graphical workstation environment (micro-VAX) and an expert system (ABLE). This paper will describe some of the features and applications of our integrated system with emphasis on the automation offered by expert systems. 5 refs.

  14. GOLD: Integration of model-based control systems with artificial intelligence and workstations

    SciTech Connect

    Lee, M.; Clearwater, S.

    1987-08-01

    Our experience with model-based accelerator control started at SPEAR. Since that time nearly all accelerator beamlines have been controlled using model-based application programs, for example, PEP and SLC at SLAC. In order to take advantage of state-of-the-art hardware and software technology, the design and implementation of the accelerator control programs have undergone radical changes with time. Consequently, SPEAR, PEP and SLC all use different control programs. Since many of these application programs are embedded deep into the control system, they had to be rewritten each time. Each time this rewriting has occurred a great deal of time and effort has been spent on training physicists and programmers to do the job. Now, we have developed an integrated system called GOLD (Genetic Orbit and Lattice Debugger) for debugging and correcting trajectory errors in accelerator lattices. The system consists of a lattice modeling program (COMFORT), a beam simulator (PLUS), a graphical workstation environment (micro-VAX) and an expert system (ABLE). This paper will describe some of the features and applications of our integrated system with emphasis on the automation offered by expert systems. 5 refs.

  15. Intelligently deciphering unintelligible designs: algorithmic algebraic model checking in systems biology

    PubMed Central

    Mishra, Bud

    2009-01-01

    Systems biology, as a subject, has captured the imagination of both biologists and systems scientists alike. But what is it? This review provides one researcher's somewhat idiosyncratic view of the subject, but also aims to persuade young scientists to examine the possible evolution of this subject in a rich historical context. In particular, one may wish to read this review to envision a subject built out of a consilience of many interesting concepts from systems sciences, logic and model theory, and algebra, culminating in novel tools, techniques and theories that can reveal deep principles in biology—seen beyond mere observations. A particular focus in this review is on approaches embedded in an embryonic program, dubbed ‘algorithmic algebraic model checking’, and its powers and limitations. PMID:19364723

  16. Business Intelligence Modeling in Launch Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-01-01

    This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation .based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations. process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations. and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce

  17. Business intelligence modeling in launch operations

    NASA Astrophysics Data System (ADS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-05-01

    The future of business intelligence in space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems. This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations, process models, systems and environment models, and cost models as a comprehensive disciplined

  18. Intelligent Work Process Engineering System

    NASA Technical Reports Server (NTRS)

    Williams, Kent E.

    2003-01-01

    Optimizing performance on work activities and processes requires metrics of performance for management to monitor and analyze in order to support further improvements in efficiency, effectiveness, safety, reliability and cost. Information systems are therefore required to assist management in making timely, informed decisions regarding these work processes and activities. Currently information systems regarding Space Shuttle maintenance and servicing do not exist to make such timely decisions. The work to be presented details a system which incorporates various automated and intelligent processes and analysis tools to capture organize and analyze work process related data, to make the necessary decisions to meet KSC organizational goals. The advantages and disadvantages of design alternatives to the development of such a system will be discussed including technologies, which would need to bedesigned, prototyped and evaluated.

  19. Sensor performance and weather effects modeling for intelligent transportation systems (ITS) applications

    NASA Astrophysics Data System (ADS)

    Everson, Jeffrey H.; Kopala, Edward W.; Lazofson, Laurence E.; Choe, Howard C.; Pomerleau, Dean A.

    1995-01-01

    Optical sensors are used for several ITS applications, including lateral control of vehicles, traffic sign recognition, car following, autonomous vehicle navigation, and obstacle detection. This paper treats the performance assessment of a sensor/image processor used as part of an on-board countermeasure system to prevent single vehicle roadway departure crashes. Sufficient image contrast between objects of interest and backgrounds is an essential factor influencing overall system performance. Contrast is determined by material properties affecting reflected/radiated intensities, as well as weather and visibility conditions. This paper discusses the modeling of these parameters and characterizes the contrast performance effects due to reduced visibility. The analysis process first involves generation of inherent road/off- road contrasts, followed by weather effects as a contrast modification. The sensor is modeled as a charge coupled device (CCD), with variable parameters. The results of the sensor/weather modeling are used to predict the performance on an in-vehicle warning system under various levels of adverse weather. Software employed in this effort was previously developed for the U.S. Air Force Wright Laboratory to determine target/background detection and recognition ranges for different sensor systems operating under various mission scenarios.

  20. Measuring the Performance and Intelligence of Systems: Proceedings of the 2002 PerMIS Workshop

    NASA Technical Reports Server (NTRS)

    Messina, E. R.; Meystel, A. M.

    2002-01-01

    Contents include the following: Performance Metrics; Performance of Multiple Agents; Performance of Mobility Systems; Performance of Planning Systems; General Discussion Panel 1; Uncertainty of Representation I; Performance of Robots in Hazardous Domains; Modeling Intelligence; Modeling of Mind; Measuring Intelligence; Grouping: A Core Procedure of Intelligence; Uncertainty in Representation II; Towards Universal Planning/Control Systems.

  1. Measuring the Performance and Intelligence of Systems: Proceedings of the 2002 PerMIS Workshop

    NASA Astrophysics Data System (ADS)

    Messina, E. R.; Meystel, A. M.

    2002-09-01

    Contents include the following: Performance Metrics; Performance of Multiple Agents; Performance of Mobility Systems; Performance of Planning Systems; General Discussion Panel 1; Uncertainty of Representation I; Performance of Robots in Hazardous Domains; Modeling Intelligence; Modeling of Mind; Measuring Intelligence; Grouping: A Core Procedure of Intelligence; Uncertainty in Representation II; Towards Universal Planning/Control Systems.

  2. Intelligent Systems Technologies for Ops

    NASA Technical Reports Server (NTRS)

    Smith, Ernest E.; Korsmeyer, David J.

    2012-01-01

    As NASA supports International Space Station assembly complete operations through 2020 (or later) and prepares for future human exploration programs, there is additional emphasis in the manned spaceflight program to find more efficient and effective ways of providing the ground-based mission support. Since 2006 this search for improvement has led to a significant cross-fertilization between the NASA advanced software development community and the manned spaceflight operations community. A variety of mission operations systems and tools have been developed over the past decades as NASA has operated the Mars robotic missions, the Space Shuttle, and the International Space Station. NASA Ames Research Center has been developing and applying its advanced intelligent systems research to mission operations tools for both unmanned Mars missions operations since 2001 and to manned operations with NASA Johnson Space Center since 2006. In particular, the fundamental advanced software development work under the Exploration Technology Program, and the experience and capabilities developed for mission operations systems for the Mars surface missions, (Spirit/Opportunity, Phoenix Lander, and MSL) have enhanced the development and application of advanced mission operation systems for the International Space Station and future spacecraft. This paper provides an update on the status of the development and deployment of a variety of intelligent systems technologies adopted for manned mission operations, and some discussion of the planned work for Autonomous Mission Operations in future human exploration. We discuss several specific projects between the Ames Research Center and the Johnson Space Centers Mission Operations Directorate, and how these technologies and projects are enhancing the mission operations support for the International Space Station, and supporting the current Autonomous Mission Operations Project for the mission operation support of the future human exploration

  3. Intelligent battery systems for automobiles

    NASA Astrophysics Data System (ADS)

    Bydder, E. L.; Witehira, P.

    A novel 'intelligent' battery has been developed for automotive applications. The product — known as the Powerbeat battery — consists of a dual, 12-V lead/acid arrangement: six cells are used to supply cranking current and six to supply auxiliary current. An innovative control device allows reliable switching between these two modes of operation. Two versions of the control system are presently in use: one is based on a motion sensor, the other on detecting the load change when the vehicle is started. The dual battery can be manufactured, at similar production rates, in conventional plants. Field trials are in progress in both Australia and New Zealand. Compared with traditional technology, the Powerbeat system offers improved and more reliable performance, greater flexibility in the management of vehicle electrical requirements, and reduced battery size and weight.

  4. The Intelligent Data Understanding Element of NASA's Intelligent Systems Program

    NASA Technical Reports Server (NTRS)

    Coughlan, Joseph C.; Tilton, James C.; Rood, Richard (Technical Monitor)

    2002-01-01

    Within the NASA Intelligent Systems Program, the Intelligent Data Understanding (IDU) element develops techniques for transforming data into scientific understanding. Automating such tools is critical for space science, space-based earth science, and planetary exploration with onboard scientific data analysis. Intelligent data understanding (IDU) is about extracting meaning from large, diverse science and engineering databases, via autonomous techniques that transform very large datasets into understanding. The earth science community in particular needs new tools for analyzing multi-formatted and geographically distributed datasets and for identifying cause-effect relationships in the complex data. Research within the IDU program element seeks to automate data analysis tasks so that humans can focus on creative hypothesis generation and knowledge synthesis. It may also enable NASA space missions in which autonomous agents must generate knowledge and take actions, and missions where limited bandwidth permits transmission of only the most interesting scientific observations, summaries, and conclusions. Twenty-seven research projects are-currently funded.

  5. Intelligent Learning Management Systems: Definition, Features and Measurement of Intelligence

    ERIC Educational Resources Information Center

    Fardinpour, Ali; Pedram, Mir Mohsen; Burkle, Martha

    2014-01-01

    Virtual Learning Environments have been the center of attention in the last few decades and help educators tremendously with providing students with educational resources. Since artificial intelligence was used for educational proposes, learning management system developers showed much interest in making their products smarter and more…

  6. Instructional Aspects of Intelligent Tutoring Systems.

    ERIC Educational Resources Information Center

    Pieters, Jules M., Ed.

    This collection contains three papers addressing the instructional aspects of intelligent tutoring systems (ITS): (1) "Some Experiences with Two Intelligent Tutoring Systems for Teaching Computer Programming: Proust and the LISP-Tutor" (van den Berg, Merrienboer, and Maaswinkel); (2) "Some Issues on the Construction of Cooperative ITS" (Kanselaar,…

  7. Artificial Intelligence Software Engineering (AISE) model

    NASA Technical Reports Server (NTRS)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a committee on standards for Artificial Intelligence. Presented are the initial efforts of one of the working groups of that committee. A candidate model is presented for the development life cycle of knowledge based systems (KBSs). The intent is for the model to be used by the aerospace community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are shown and detailed as are the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  8. Architecture for Adaptive Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Hayes-Roth, Barbara

    1993-01-01

    We identify a class of niches to be occupied by 'adaptive intelligent systems (AISs)'. In contrast with niches occupied by typical AI agents, AIS niches present situations that vary dynamically along several key dimensions: different combinations of required tasks, different configurations of available resources, contextual conditions ranging from benign to stressful, and different performance criteria. We present a small class hierarchy of AIS niches that exhibit these dimensions of variability and describe a particular AIS niche, ICU (intensive care unit) patient monitoring, which we use for illustration throughout the paper. We have designed and implemented an agent architecture that supports all of different kinds of adaptation by exploiting a single underlying theoretical concept: An agent dynamically constructs explicit control plans to guide its choices among situation-triggered behaviors. We illustrate the architecture and its support for adaptation with examples from Guardian, an experimental agent for ICU monitoring.

  9. Intelligent recognitive systems in nanomedicine

    PubMed Central

    Culver, Heidi; Daily, Adam; Khademhosseini, Ali

    2014-01-01

    There is a bright future in the development and utilization of nanoscale systems based on intelligent materials that can respond to external input providing a beneficial function. Specific functional groups can be incorporated into polymers to make them responsive to environmental stimuli such as pH, temperature, or varying concentrations of biomolecules. The fusion of such “intelligent” biomaterials with nanotechnology has led to the development of powerful therapeutic and diagnostic platforms. For example, targeted release of proteins and chemotherapeutic drugs has been achieved using pH-responsive nanocarriers while biosensors with ultra-trace detection limits are being made using nanoscale, molecularly imprinted polymers. The efficacy of therapeutics and the sensitivity of diagnostic platforms will continue to progress as unique combinations of responsive polymers and nanomaterials emerge. PMID:24860724

  10. Intelligent Engine Systems: Bearing System

    NASA Technical Reports Server (NTRS)

    Singh, Arnant P.

    2008-01-01

    The overall requirements necessary for sensing bearing distress and the related criteria to select a particular rotating sensor were established during the phase I. The current phase II efforts performed studies to evaluate the Robustness and Durability Enhancement of the rotating sensors, and to design, and develop the Built-in Telemetry System concepts for an aircraft engine differential sump. A generic test vehicle that can test the proposed bearing diagnostic system was designed, developed, and built. The Timken Company, who also assisted with testing the GE concept of using rotating sensors for the differential bearing diagnostics during previous phase, was selected as a subcontractor to assist General Electric (GE) for the design, and procurement of the test vehicle. A purchase order was prepared to define the different sub-tasks, and deliverables for this task. The University of Akron was selected to provide the necessary support for installing, and integrating the test vehicle with their newly designed test facility capable of simulating the operating environment for the planned testing. The planned testing with good and damaged bearings will be on hold pending further continuation of this effort during next phase.

  11. Design and validation of an intelligent patient monitoring and alarm system based on a fuzzy logic process model.

    PubMed

    Becker, K; Thull, B; Käsmacher-Leidinger, H; Stemmer, J; Rau, G; Kalff, G; Zimmermann, H J

    1997-09-01

    The process of patient care performed by an anaesthesiologist during high invasive surgery requires fundamental knowledge of the physiologic processes and a long standing experience in patient management to cope with the inter-individual variability of the patients. Biomedical engineering research improves the patient monitoring task by providing technical devices to measure a large number of a patient's vital parameters. These measurements improve the safety of the patient during the surgical procedure, because pathological states can be recognised earlier, but may also lead to an increased cognitive load of the physician. In order to reduce cognitive strain and to support intra-operative monitoring for the anaesthesiologist an intelligent patient monitoring and alarm system has been proposed and implemented which evaluates a patient's haemodynamic state on the basis of a current vital parameter constellation with a knowledge-based approach. In this paper general design aspects and evaluation of the intelligent patient monitoring and alarm system in the operating theatre are described. The validation of the inference engine of the intelligent patient monitoring and alarm system was performed in two steps. Firstly, the knowledge base was validated with real patient data which was acquired online in the operating theatre. Secondly, a research prototype of the whole system was implemented in the operating theatre. In the first step, the anaesthetists were asked to enter a state variable evaluation before a drug application or any other intervention on the patient into a recording system. These state variable evaluations were compared to those generated by the intelligent alarm system on the same vital parameter constellations. Altogether 641 state variable evaluations were entered by six different physicians. In total, the sensitivity of alarm recognition is 99.3%, the specificity is 66% and the predictability is 45%. The second step was performed using a research

  12. TARDEC's Intelligent Ground Systems overview

    NASA Astrophysics Data System (ADS)

    Jaster, Jeffrey F.

    2009-05-01

    The mission of the Intelligent Ground Systems (IGS) Area at the Tank Automotive Research, Development and Engineering Center (TARDEC) is to conduct technology maturation and integration to increase Soldier robot control/interface intuitiveness and robotic ground system robustness, functionality and overall system effectiveness for the Future Combat System Brigade Combat Team, Robotics Systems Joint Project Office and game changing capabilities to be fielded beyond the current force. This is accomplished through technology component development focused on increasing unmanned ground vehicle autonomy, optimizing crew interfaces and mission planners that capture commanders' intent, integrating payloads that provide 360 degree local situational awareness and expanding current UGV tactical behavior, learning and adaptation capabilities. The integration of these technology components into ground vehicle demonstrators permits engineering evaluation, User assessment and performance characterization in increasingly complex, dynamic and relevant environments to include high speed on road or cross country operations, all weather/visibility conditions and military operations in urban terrain (MOUT). Focused testing and experimentation is directed at reducing PM risk areas (safe operations, autonomous maneuver, manned-unmanned collaboration) and transitioning technology in the form of hardware, software algorithms, test and performance data, as well as User feedback and lessons learned.

  13. Instrumentation, Control, and Intelligent Systems

    SciTech Connect

    Not Available

    2005-09-01

    Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a major center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.

  14. Artificial Intelligence and Spacecraft Power Systems

    NASA Technical Reports Server (NTRS)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  15. IMIS: An intelligence microscope imaging system

    NASA Technical Reports Server (NTRS)

    Caputo, Michael; Hunter, Norwood; Taylor, Gerald

    1994-01-01

    Until recently microscope users in space relied on traditional microscopy techniques that required manual operation of the microscope and recording of observations in the form of written notes, drawings, or photographs. This method was time consuming and required the return of film and drawings from space for analysis. No real-time data analysis was possible. Advances in digital and video technologies along with recent developments in article intelligence will allow future space microscopists to have a choice of three additional modes of microscopy: remote coaching, remote control, and automation. Remote coaching requires manual operations of the microscope with instructions given by two-way audio/video transmission during critical phases of the experiment. When using the remote mode of microscopy, the Principal Investigator controls the microscope from the ground. The automated mode employs artificial intelligence to control microscope functions and is the only mode that can be operated in the other three modes as well. The purpose of this presentation is to discuss the advantages and disadvantages of the four modes of of microscopy and how the IMIS, a proposed intelligent microscope imaging system, can be used as a model for developing and testing concepts, operating procedures, and equipment design of specifications required to provide a comprehensive microscopy/imaging capability onboard Space Station Freedom.

  16. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  17. A Hierarchical Planner For Intelligent Systems

    NASA Astrophysics Data System (ADS)

    Adams, M.; Deutsch, O.; Harrison, J.

    1985-04-01

    An intelligent system is one that has the inherent capability to achieve specified ends in the face of variations, complexities and uncertainties posed by its task environment [1]. Consequently, an intelligent system must be able to integrate information from a variety of sources and, based on that information, plan and execute a course of action. The focus of this paper is on real-time planning for the class of intelligent systems which includes decision-support systems for piloted vehicles and completely autonomous vehicles.

  18. An intelligent CNC machine control system architecture

    SciTech Connect

    Miller, D.J.; Loucks, C.S.

    1996-10-01

    Intelligent, agile manufacturing relies on automated programming of digitally controlled processes. Currently, processes such as Computer Numerically Controlled (CNC) machining are difficult to automate because of highly restrictive controllers and poor software environments. It is also difficult to utilize sensors and process models for adaptive control, or to integrate machining processes with other tasks within a factory floor setting. As part of a Laboratory Directed Research and Development (LDRD) program, a CNC machine control system architecture based on object-oriented design and graphical programming has been developed to address some of these problems and to demonstrate automated agile machining applications using platform-independent software.

  19. Systematic Development of Intelligent Systems for Public Road Transport.

    PubMed

    García, Carmelo R; Quesada-Arencibia, Alexis; Cristóbal, Teresa; Padrón, Gabino; Alayón, Francisco

    2016-01-01

    This paper presents an architecture model for the development of intelligent systems for public passenger transport by road. The main objective of our proposal is to provide a framework for the systematic development and deployment of telematics systems to improve various aspects of this type of transport, such as efficiency, accessibility and safety. The architecture model presented herein is based on international standards on intelligent transport system architectures, ubiquitous computing and service-oriented architecture for distributed systems. To illustrate the utility of the model, we also present a use case of a monitoring system for stops on a public passenger road transport network. PMID:27438836

  20. Systematic Development of Intelligent Systems for Public Road Transport

    PubMed Central

    García, Carmelo R.; Quesada-Arencibia, Alexis; Cristóbal, Teresa; Padrón, Gabino; Alayón, Francisco

    2016-01-01

    This paper presents an architecture model for the development of intelligent systems for public passenger transport by road. The main objective of our proposal is to provide a framework for the systematic development and deployment of telematics systems to improve various aspects of this type of transport, such as efficiency, accessibility and safety. The architecture model presented herein is based on international standards on intelligent transport system architectures, ubiquitous computing and service-oriented architecture for distributed systems. To illustrate the utility of the model, we also present a use case of a monitoring system for stops on a public passenger road transport network. PMID:27438836

  1. Challenging Aerospace Problems for Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje; Kanashige, John; Satyadas, A.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    In this paper we highlight four problem domains that are well suited and challenging for intelligent system technologies. The problems are defined and an outline of a probable approach is presented. No attempt is made to define the problems as test cases. In other words, no data or set of equations that a user can code and get results are provided. The main idea behind this paper is to motivate intelligent system researchers to examine problems that will elevate intelligent system technologies and applications to a higher level.

  2. Autonomous intelligent cruise control system

    NASA Astrophysics Data System (ADS)

    Baret, Marc; Bomer, Thierry T.; Calesse, C.; Dudych, L.; L'Hoist, P.

    1995-01-01

    Autonomous intelligent cruise control (AICC) systems are not only controlling vehicles' speed but acting on the throttle and eventually on the brakes they could automatically maintain the relative speed and distance between two vehicles in the same lane. And more than just for comfort it appears that these new systems should improve the safety on highways. By applying a technique issued from the space research carried out by MATRA, a sensor based on a charge coupled device (CCD) was designed to acquire the reflected light on standard-mounted car reflectors of pulsed laser diodes emission. The CCD is working in a unique mode called flash during transfer (FDT) which allows identification of target patterns in severe optical environments. It provides high accuracy for distance and angular position of targets. The absence of moving mechanical parts ensures high reliability for this sensor. The large field of view and the high measurement rate give a global situation assessment and a short reaction time. Then, tracking and filtering algorithms have been developed in order to select the target, on which the equipped vehicle determines its safety distance and speed, taking into account its maneuvering and the behaviors of other vehicles.

  3. A system for intelligent teleoperation research

    NASA Technical Reports Server (NTRS)

    Orlando, N. E.

    1983-01-01

    The Automation Technology Branch of NASA Langley Research Center is developing a research capability in the field of artificial intelligence, particularly as applicable in teleoperator/robotics development for remote space operations. As a testbed for experimentation in these areas, a system concept has been developed and is being implemented. This system termed DAISIE (Distributed Artificially Intelligent System for Interacting with the Environment), interfaces the key processes of perception, reasoning, and manipulation by linking hardware sensors and manipulators to a modular artificial intelligence (AI) software system in a hierarchical control structure. Verification experiments have been performed: one experiment used a blocksworld database and planner embedded in the DAISIE system to intelligently manipulate a simple physical environment; the other experiment implemented a joint-space collision avoidance algorithm. Continued system development is planned.

  4. Intelligent Systems for Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2002-01-01

    The motivation behind an advanced technology program to develop intelligent power management and distribution (PMAD) systems is described. The program concentrates on developing digital control and distributed processing algorithms for PMAD components and systems to improve their size, weight, efficiency, and reliability. Specific areas of research in developing intelligent DC-DC converters and distributed switchgear are described. Results from recent development efforts are presented along with expected future benefits to the overall PMAD system performance.

  5. Intelligent Sensors: An Integrated Systems Approach

    NASA Technical Reports Server (NTRS)

    Mahajan, Ajay; Chitikeshi, Sanjeevi; Bandhil, Pavan; Utterbach, Lucas; Figueroa, Fernando

    2005-01-01

    The need for intelligent sensors as a critical component for Integrated System Health Management (ISHM) is fairly well recognized by now. Even the definition of what constitutes an intelligent sensor (or smart sensor) is well documented and stems from an intuitive desire to get the best quality measurement data that forms the basis of any complex health monitoring and/or management system. If the sensors, i.e. the elements closest to the measurand, are unreliable then the whole system works with a tremendous handicap. Hence, there has always been a desire to distribute intelligence down to the sensor level, and give it the ability to assess its own health thereby improving the confidence in the quality of the data at all times. This paper proposes the development of intelligent sensors as an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the NASA Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Intelligent Systems Health Monitoring (ISHM) vision. This paper outlines some fundamental issues in the development of intelligent sensors under the following two categories: Physical Intelligent Sensors (PIS) and Virtual Intelligent Sensors (VIS).

  6. Analysis and Modeling of the Galvanic Skin Response Spontaneous Component in the context of Intelligent Biofeedback Systems Development

    NASA Astrophysics Data System (ADS)

    Unakafov, A.

    2009-01-01

    The paper presents an approach to galvanic skin response (GSR) spontaneous component analysis and modeling. In the study a classification of biofeedback training methods is given, importance of intelligent methods development is shown. The INTENS method, which is perspective for intellectualization, is presented. An important problem of biofeedback training method intellectualization - estimation of the GSR spontaneous component - is solved in the main part of the work. Its main characteristics are described; results of GSR spontaneous component modeling are shown. Results of small research of an optimum material for GSR probes are presented.

  7. A general architecture for intelligent training systems

    NASA Technical Reports Server (NTRS)

    Loftin, R. Bowen

    1987-01-01

    A preliminary design of a general architecture for autonomous intelligent training systems was developed. The architecture integrates expert system technology with teaching/training methodologies to permit the production of systems suitable for use by NASA, other government agencies, industry, and academia in the training of personnel for the performance of complex, mission-critical tasks. The proposed architecture consists of five elements: a user interface, a domain expert, a training session manager, a trainee model, and a training scenario generator. The design of this architecture was guided and its efficacy tested through the development of a system for use by Mission Control Center Flight Dynamics Officers in training to perform Payload-Assist Module Deploys from the orbiter.

  8. Toward detecting deception in intelligent systems

    NASA Astrophysics Data System (ADS)

    Santos, Eugene, Jr.; Johnson, Gregory, Jr.

    2004-08-01

    Contemporary decision makers often must choose a course of action using knowledge from several sources. Knowledge may be provided from many diverse sources including electronic sources such as knowledge-based diagnostic or decision support systems or through data mining techniques. As the decision maker becomes more dependent on these electronic information sources, detecting deceptive information from these sources becomes vital to making a correct, or at least more informed, decision. This applies to unintentional disinformation as well as intentional misinformation. Our ongoing research focuses on employing models of deception and deception detection from the fields of psychology and cognitive science to these systems as well as implementing deception detection algorithms for probabilistic intelligent systems. The deception detection algorithms are used to detect, classify and correct attempts at deception. Algorithms for detecting unexpected information rely upon a prediction algorithm from the collaborative filtering domain to predict agent responses in a multi-agent system.

  9. Design Of An Intelligent Robotic System Organizer Via Expert System Tecniques

    NASA Astrophysics Data System (ADS)

    Yuan, Peter H.; Valavanis, Kimon P.

    1989-02-01

    Intelligent Robotic Systems are a special type of Intelligent Machines. When modeled based on Vle theory of Intelligent Controls, they are composed of three interactive levels, namely: organization, coordination, and execution, ordered according, to the ,Principle of Increasing, Intelligence with Decreasing Precl.sion. Expert System techniques, are used to design an Intelligent Robotic System Organizer with a dynamic Knowledge Base and an interactive Inference Engine. Task plans are formulated using, either or both of a Probabilistic Approach and Forward Chapling Methodology, depending on pertinent information associated with a spec;fic requested job. The Intelligent Robotic System, Organizer is implemented and tested on a prototype system operating in an uncertain environment. An evaluation of-the performance, of the prototype system is conducted based upon the probability of generating a successful task sequence versus the number of trials taken by the organizer.

  10. Integrated Systems Health Management for Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Melcher, Kevin

    2011-01-01

    The implementation of an integrated system health management (ISHM) capability is fundamentally linked to the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system. It is akin to having a team of experts who are all individually and collectively observing and analyzing a complex system, and communicating effectively with each other in order to arrive at an accurate and reliable assessment of its health. In this paper, concepts, procedures, and approaches are presented as a foundation for implementing an intelligent systems ]relevant ISHM capability. The capability stresses integration of DIaK from all elements of a system. Both ground-based (remote) and on-board ISHM capabilities are compared and contrasted. The information presented is the result of many years of research, development, and maturation of technologies, and of prototype implementations in operational systems.

  11. Development of an on-line diagnosis system for rotor vibration via model-based intelligent inference

    PubMed

    Bai; Hsiao; Tsai; Lin

    2000-01-01

    An on-line fault detection and isolation technique is proposed for the diagnosis of rotating machinery. The architecture of the system consists of a feature generation module and a fault inference module. Lateral vibration data are used for calculating the system features. Both continuous-time and discrete-time parameter estimation algorithms are employed for generating the features. A neural fuzzy network is exploited for intelligent inference of faults based on the extracted features. The proposed method is implemented on a digital signal processor. Experiments carried out for a rotor kit and a centrifugal fan indicate the potential of the proposed techniques in predictive maintenance. PMID:10641641

  12. Exploring complex dynamics in multi agent-based intelligent systems: Theoretical and experimental approaches using the Multi Agent-based Behavioral Economic Landscape (MABEL) model

    NASA Astrophysics Data System (ADS)

    Alexandridis, Konstantinos T.

    This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land

  13. Knowledge and intelligent computing system in medicine.

    PubMed

    Pandey, Babita; Mishra, R B

    2009-03-01

    Knowledge-based systems (KBS) and intelligent computing systems have been used in the medical planning, diagnosis and treatment. The KBS consists of rule-based reasoning (RBR), case-based reasoning (CBR) and model-based reasoning (MBR) whereas intelligent computing method (ICM) encompasses genetic algorithm (GA), artificial neural network (ANN), fuzzy logic (FL) and others. The combination of methods in KBS such as CBR-RBR, CBR-MBR and RBR-CBR-MBR and the combination of methods in ICM is ANN-GA, fuzzy-ANN, fuzzy-GA and fuzzy-ANN-GA. The combination of methods from KBS to ICM is RBR-ANN, CBR-ANN, RBR-CBR-ANN, fuzzy-RBR, fuzzy-CBR and fuzzy-CBR-ANN. In this paper, we have made a study of different singular and combined methods (185 in number) applicable to medical domain from mid 1970s to 2008. The study is presented in tabular form, showing the methods and its salient features, processes and application areas in medical domain (diagnosis, treatment and planning). It is observed that most of the methods are used in medical diagnosis very few are used for planning and moderate number in treatment. The study and its presentation in this context would be helpful for novice researchers in the area of medical expert system. PMID:19201398

  14. An Intelligent Pictorial Information System

    NASA Astrophysics Data System (ADS)

    Lee, Edward T.; Chang, B.

    1987-05-01

    In examining the history of computer application, we discover that early computer systems were developed primarily for applications related to scientific computation, as in weather prediction, aerospace applications, and nuclear physics applications. At this stage, the computer system served as a big calculator to perform, in the main, manipulation of numbers. Then it was found that computer systems could also be used for business applications, information storage and retrieval, word processing, and report generation. The history of computer application is summarized in Table I. The complexity of pictures makes picture processing much more difficult than number and alphanumerical processing. Therefore, new techniques, new algorithms, and above all, new pictorial knowledge, [1] are needed to overcome the limitatins of existing computer systems. New frontiers in designing computer systems are the ways to handle the representation,[2,3] classification, manipulation, processing, storage, and retrieval of pictures. Especially, the ways to deal with similarity measures and the meaning of the word "approximate" and the phrase "approximate reasoning" are an important and an indispensable part of an intelligent pictorial information system. [4,5] The main objective of this paper is to investigate the mathematical foundation for the effective organization and efficient retrieval of pictures in similarity-directed pictorial databases, [6] based on similarity retrieval techniques [7] and fuzzy languages [8]. The main advantage of this approach is that similar pictures are stored logically close to each other by using quantitative similarity measures. Thus, for answering queries, the amount of picture data needed to be searched can be reduced and the retrieval time can be improved. In addition, in a pictorial database, very often it is desired to find pictures (or feature vectors, histograms, etc.) that are most similar to or most dissimilar [9] to a test picture (or feature

  15. Application of intelligent systems to wind tunnel test facilities

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Steinle, Frank W., Jr.

    1988-01-01

    An approach to the application of intelligent-systems technology to the wind tunnel facilities at NASA Ames Research Center is outlined. To help fulfill the long-range goals of improving data quality and increasing personnel efficiency and management effectiveness, three major areas of intelligent systems application are recommended. The available state-of-the-art technology for developing the proposed systems is reviewed including the application of commercial software packages. The initial tasks and effort to develop these systems are recommended. A prototype expert system for selection of internal strain-gage balances has been built and is presented herein as an example model for the future systems.

  16. New and emerging models of human intelligence.

    PubMed

    Conway, Andrew R A; Kovacs, Kristof

    2015-01-01

    In the last decade, new models of human intelligence have altered the theoretical landscape in psychometrics and cognitive science. In the current article, we provide an overview of key distinguishing features of these new models. Compared to 20th century models of intelligence, the new models proposed in the 21st century are unique for three primary reasons; (1) new models interpret the general factor, or g, as an emergent property reflecting the pattern of positive correlations observed among test scores, not as a causal latent variable, and therefore challenge the notion of general ability, (2) new models bridge correlational and experimental psychology and account for inter-individual differences in behavior in terms of intra-individual psychological processes, and (3) new models make novel predictions about the neural correlates of intelligent behavior. PMID:26267702

  17. Diagnostic Assessment of Troubleshooting Skill in an Intelligent Tutoring System.

    ERIC Educational Resources Information Center

    Gitomer, Drew H.; And Others

    This paper lays out the rationale and implementation of student modeling and updating in the HYDRIVE intelligent tutoring system (ITS) for aircraft hydraulic systems. An epistemic level of modeling concerns the plans and goals students are using to guide their problem solving, as inferred from specific actions in specific contexts. These results…

  18. Performance Evaluation and Benchmarking of Intelligent Systems

    SciTech Connect

    Madhavan, Raj; Messina, Elena; Tunstel, Edward

    2009-09-01

    To design and develop capable, dependable, and affordable intelligent systems, their performance must be measurable. Scientific methodologies for standardization and benchmarking are crucial for quantitatively evaluating the performance of emerging robotic and intelligent systems technologies. There is currently no accepted standard for quantitatively measuring the performance of these systems against user-defined requirements; and furthermore, there is no consensus on what objective evaluation procedures need to be followed to understand the performance of these systems. The lack of reproducible and repeatable test methods has precluded researchers working towards a common goal from exchanging and communicating results, inter-comparing system performance, and leveraging previous work that could otherwise avoid duplication and expedite technology transfer. Currently, this lack of cohesion in the community hinders progress in many domains, such as manufacturing, service, healthcare, and security. By providing the research community with access to standardized tools, reference data sets, and open source libraries of solutions, researchers and consumers will be able to evaluate the cost and benefits associated with intelligent systems and associated technologies. In this vein, the edited book volume addresses performance evaluation and metrics for intelligent systems, in general, while emphasizing the need and solutions for standardized methods. To the knowledge of the editors, there is not a single book on the market that is solely dedicated to the subject of performance evaluation and benchmarking of intelligent systems. Even books that address this topic do so only marginally or are out of date. The research work presented in this volume fills this void by drawing from the experiences and insights of experts gained both through theoretical development and practical implementation of intelligent systems in a variety of diverse application domains. The book presents

  19. Student Models and Artificial Intelligence.

    ERIC Educational Resources Information Center

    Self, John A.

    1979-01-01

    Summarizes the role of student models in computer assisted learning (CAL); lists difficulties preventing their widespread use in practical teaching systems; and describes problems, using a simple subtraction model, associated with the representation, content, creation, change, growth, execution, comparison, use for planning and monitoring, and…

  20. Simulation and intelligent vehicle highway systems

    SciTech Connect

    Rathi, A.K. ); Santiago, A.J. )

    1992-01-01

    Intelligent Vehicle Highway Systems (IVHS) is based on the premise of using advanced technologies in telecommunication, electronics, and computers to improve the nature and quality of highway travel while making it safer and more efficient. The safety benefits of the IVHS systems are unquestioned; however, there are different levels of optimism about the operational benefits of these systems. While there is a broad consensus that IVHS can improve the flow of traffic, and thus mobility, currently there is very limited empirical evidence or analytical basis to support this optimism. The lack of analytical framework for design, analysis, and evaluation of IVHS concepts will continue to fuel the debate between the skeptics and the advocates of IVHS. Computer simulation is likely to play a major role in the analysis and assessment of the IVHS technologies. In this paper, we attempt to identify the simulation modelling needs to support the IVHS functional areas dealing with traffic flow on highway networks. The paper outlines the envisioned IVHS operational environment. Functional requirements for the simulation modelling system that could be used to support the development and testing of IVHS concepts, namely Advanced Traffic Management Systems (ATMS) and Advanced Traveller Information Systems (ATIS), are defined. Simulation modelling research and development needs to support the design and evaluations of IVHS concepts are described. The paper concludes by presenting on-going work on the traffic simulation models at the Oak Ridge National Laboratory.

  1. Simulation and intelligent vehicle highway systems

    SciTech Connect

    Rathi, A.K.; Santiago, A.J.

    1992-09-01

    Intelligent Vehicle Highway Systems (IVHS) is based on the premise of using advanced technologies in telecommunication, electronics, and computers to improve the nature and quality of highway travel while making it safer and more efficient. The safety benefits of the IVHS systems are unquestioned; however, there are different levels of optimism about the operational benefits of these systems. While there is a broad consensus that IVHS can improve the flow of traffic, and thus mobility, currently there is very limited empirical evidence or analytical basis to support this optimism. The lack of analytical framework for design, analysis, and evaluation of IVHS concepts will continue to fuel the debate between the skeptics and the advocates of IVHS. Computer simulation is likely to play a major role in the analysis and assessment of the IVHS technologies. In this paper, we attempt to identify the simulation modelling needs to support the IVHS functional areas dealing with traffic flow on highway networks. The paper outlines the envisioned IVHS operational environment. Functional requirements for the simulation modelling system that could be used to support the development and testing of IVHS concepts, namely Advanced Traffic Management Systems (ATMS) and Advanced Traveller Information Systems (ATIS), are defined. Simulation modelling research and development needs to support the design and evaluations of IVHS concepts are described. The paper concludes by presenting on-going work on the traffic simulation models at the Oak Ridge National Laboratory.

  2. Architecture for an Adaptive and Intelligent Tutoring System That Considers the Learner's Multiple Intelligences

    ERIC Educational Resources Information Center

    Hafidi, Mohamed; Bensebaa, Taher

    2015-01-01

    The majority of adaptive and intelligent tutoring systems (AITS) are dedicated to a specific domain, allowing them to offer accurate models of the domain and the learner. The analysis produced from traces left by the users is didactically very precise and specific to the domain in question. It allows one to guide the learner in case of difficulty…

  3. Implementation of an intelligent control system

    NASA Technical Reports Server (NTRS)

    Simon, D. L.; Wong, E.; Musgrave, J. L.

    1992-01-01

    A laboratory testbed facility which was constructed at NASA LeRC for the development of an Intelligent Control System (ICS) for reusable rocket engines is described. The framework of the ICS consists of a hierarchy of various control and diagnostic functions. The traditional high speed, closed-loop controller resides at the lowest level of the ICS hierarchy. Above this level resides the diagnostic functions which identify engine faults. The ICS top level consists of the coordination function which manages the interaction between an expert system and a traditional control system. The purpose of the testbed is to demonstrate the feasibility of the OCS concept by implementing the ICS as the primary controller in a simulation of the Space Shuttle Main Engine (SSME). The functions of the ICS which are implemented in the testbed are as follows: an SSME dynamic simulation with selected fault mode models, a reconfigurable controller, a neural network for sensor validation, a model-based failure detection algorithm, a rule based failure detection algorithm, a diagnostic expert system, an intelligent coordinator, and a user interface which provides a graphical representation of the event occurring within the testbed. The diverse nature of the ICS has led to the development of a distributed architecture consisting of specialized hardware and software for the implementation of the various functions. This testbed is made up of five different computer systems. These individual computers are discussed along with the schemes used to implement the various ICS components. The communication between computers and the timing and synchronization between components are also addressed.

  4. Intelligent tutoring systems for space applications

    NASA Technical Reports Server (NTRS)

    Luckhardt-Redfield, Carol A.

    1990-01-01

    Artificial Intelligence has been used in many space applications. Intelligent tutoring systems (ITSs) have only recently been developed for assisting training of space operations and skills. An ITS at Southwest Research Institute is described as an example of an ITS application for space operations, specifically, training console operations at mission control. A distinction is made between critical skills and knowledge versus routine skills. Other ITSs for space are also discussed and future training requirements and potential ITS solutions are described.

  5. A situation-response model for intelligent pilot aiding

    NASA Technical Reports Server (NTRS)

    Schudy, Robert; Corker, Kevin

    1987-01-01

    An intelligent pilot aiding system needs models of the pilot information processing to provide the computational basis for successful cooperation between the pilot and the aiding system. By combining artificial intelligence concepts with the human information processing model of Rasmussen, an abstraction hierarchy of states of knowledge, processing functions, and shortcuts are developed, which is useful for characterizing the information processing both of the pilot and of the aiding system. This approach is used in the conceptual design of a real time intelligent aiding system for flight crews of transport aircraft. One promising result was the tentative identification of a particular class of information processing shortcuts, from situation characterizations to appropriate responses, as the most important reliable pathway for dealing with complex time critical situations.

  6. Information Processing in Cognition Process and New Artificial Intelligent Systems

    NASA Astrophysics Data System (ADS)

    Zheng, Nanning; Xue, Jianru

    In this chapter, we discuss, in depth, visual information processing and a new artificial intelligent (AI) system that is based upon cognitive mechanisms. The relationship between a general model of intelligent systems and cognitive mechanisms is described, and in particular we explore visual information processing with selective attention. We also discuss a methodology for studying the new AI system and propose some important basic research issues that have emerged in the intersecting fields of cognitive science and information science. To this end, a new scheme for associative memory and a new architecture for an AI system with attractors of chaos are addressed.

  7. Intelligent Propulsion System Foundation Technology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Program Objectives: Fabricate a combustor incorporating advanced diagnostics and active combustor control to reduce NOx emissions by 85% relative to 1996 ICAO standards, while retaining the performance of existing commercial combustors. The University of Dayton has performing three major tasks: (1) Well-Stirred Reactor (WSR) Task, (2) Shock- Tube Task, and (3) TAPS Task. Technical work performed on these tasks will go towards meeting the objective set for the NASA Work Element 2.1: Intelligent Combustor.

  8. Making intelligent systems team players. A guide to developing intelligent monitoring systems

    NASA Technical Reports Server (NTRS)

    Land, Sherry A.; Malin, Jane T.; Thronesberry, Carroll; Schreckenghost, Debra L.

    1995-01-01

    This reference guide for developers of intelligent monitoring systems is based on lessons learned by developers of the DEcision Support SYstem (DESSY), an expert system that monitors Space Shuttle telemetry data in real time. DESSY makes inferences about commands, state transitions, and simple failures. It performs failure detection rather than in-depth failure diagnostics. A listing of rules from DESSY and cue cards from DESSY subsystems are included to give the development community a better understanding of the selected model system. The G-2 programming tool used in developing DESSY provides an object-oriented, rule-based environment, but many of the principles in use here can be applied to any type of monitoring intelligent system. The step-by-step instructions and examples given for each stage of development are in G-2, but can be used with other development tools. This guide first defines the authors' concept of real-time monitoring systems, then tells prospective developers how to determine system requirements, how to build the system through a combined design/development process, and how to solve problems involved in working with real-time data. It explains the relationships among operational prototyping, software evolution, and the user interface. It also explains methods of testing, verification, and validation. It includes suggestions for preparing reference documentation and training users.

  9. Comparison of Intelligent Systems in Detecting a Child's Mathematical Gift

    ERIC Educational Resources Information Center

    Pavlekovic, Margita; Zekic-Susac, Marijana; Djurdjevic, Ivana

    2009-01-01

    This paper compares the efficiency of two intelligent methods: expert systems and neural networks, in detecting children's mathematical gift at the fourth grade of elementary school. The input space for the expert system and the neural network model consisted of 60 variables describing five basic components of a child's mathematical gift…

  10. A Multi-Agent System for Intelligent Online Education.

    ERIC Educational Resources Information Center

    O'Riordan, Colm; Griffith, Josephine

    1999-01-01

    Describes the system architecture of an intelligent Web-based education system that includes user modeling agents, information filtering agents for automatic information gathering, and the multi-agent interaction. Discusses information management; user interaction; support for collaborative peer-peer learning; implementation; testing; and future…

  11. Learning models of intelligent agents

    SciTech Connect

    Carmel, D.; Markovitch, S.

    1996-12-31

    Agents that operate in a multi-agent system need an efficient strategy to handle their encounters with other agents involved. Searching for an optimal interactive strategy is a hard problem because it depends mostly on the behavior of the others. In this work, interaction among agents is represented as a repeated two-player game, where the agents` objective is to look for a strategy that maximizes their expected sum of rewards in the game. We assume that agents` strategies can be modeled as finite automata. A model-based approach is presented as a possible method for learning an effective interactive strategy. First, we describe how an agent should find an optimal strategy against a given model. Second, we present an unsupervised algorithm that infers a model of the opponent`s automaton from its input/output behavior. A set of experiments that show the potential merit of the algorithm is reported as well.

  12. Simulation framework for intelligent transportation systems

    SciTech Connect

    Ewing, T.; Doss, E.; Hanebutte, U.; Tentner, A.

    1996-10-01

    A simulation framework has been developed for a large-scale, comprehensive, scaleable simulation of an Intelligent Transportation System (ITS). The simulator is designed for running on parallel computers and distributed (networked) computer systems, but can run on standalone workstations for smaller simulations. The simulator currently models instrumented smart vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide two-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. Realistic modeling of variations of the posted driving speed are based on human factors studies that take into consideration weather, road conditions, driver personality and behavior, and vehicle type. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on parallel computers, such as ANL`s IBM SP-2, for large-scale problems. A novel feature of the approach is that vehicles are represented by autonomous computer processes which exchange messages with other processes. The vehicles have a behavior model which governs route selection and driving behavior, and can react to external traffic events much like real vehicles. With this approach, the simulation is scaleable to take advantage of emerging massively parallel processor (MPP) systems.

  13. Integrated Systems Health Management for Intelligent Systems

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Melcher, Kevin

    2011-01-01

    The implementation of an integrated system health management (ISHM) capability is fundamentally linked to the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system. Management implies storage, distribution, sharing, maintenance, processing, reasoning, and presentation. ISHM is akin to having a team of experts who are all individually and collectively observing and analyzing a complex system, and communicating effectively with each other in order to arrive at an accurate and reliable assessment of its health. In this chapter, concepts, procedures, and approaches are presented as a foundation for implementing an ISHM capability relevant to intelligent systems. The capability stresses integration of DIaK from all elements of a system, emphasizing an advance toward an on-board, autonomous capability. Both ground-based and on-board ISHM capabilities are addressed. The information presented is the result of many years of research, development, and maturation of technologies, and of prototype implementations in operational systems.

  14. Optimal design of magnetic system for the magnetorheological intelligent damper

    NASA Astrophysics Data System (ADS)

    Mei, De-Qing; Kong, Tian-Rong; Chen, Zi-Chen

    2005-12-01

    In the structure of Magnetorheological (MR) intelligent damper, the magnetic system is a pivotal part. It has direct influence on the damper's performance. In order to optimize damper's magnetic system, the parameter model of magnetic system was established, which included many factors such as radius of piston rod, radius of piston, number of coil, thickness of piston cylinder, gap length of the annular orifice, and effectual length of the annular orifice. Then the optimal model of magnetic system was established, which was based on the characteristic equation of MR fluid, the mechanical model of damper, the restrained dimension of damper's structure and the parameter model of magnetic system. And the optimal model was solved based on the large-scale optimizing algorithm. The optimized result was validated by FEM analysis. The results show that the optimizing method of magnetic system for MR intelligent damper is accurate and effective.

  15. Artificial intelligence and space power systems automation

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1987-01-01

    Various applications of artificial intelligence to space electrical power systems are discussed. An overview is given of completed, on-going, and planned knowledge-based system activities. These applications include the Nickel-Cadmium Battery Expert System (NICBES) (the expert system interfaced with the Hubble Space Telescope electrical power system test bed); the early work with the Space Station Experiment Scheduler (SSES); the three expert systems under development in the space station advanced development effort in the core module power management and distribution system test bed; planned cooperation of expert systems in the Core Module Power Management and Distribution (CM/PMAD) system breadboard with expert systems for the space station at other research centers; and the intelligent data reduction expert system under development.

  16. An intelligent robotic aid system for human services

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Bagchi, S.; Iskarous, M.; Pack, R. T.; Saad, A.

    1994-01-01

    The long term goal of our research at the Intelligent Robotic Laboratory at Vanderbilt University is to develop advanced intelligent robotic aid systems for human services. As a first step toward our goal, the current thrusts of our R&D are centered on the development of an intelligent robotic aid called the ISAC (Intelligent Soft Arm Control). In this paper, we describe the overall system architecture and current activities in intelligent control, adaptive/interactive control and task learning.

  17. Organisational Intelligence

    ERIC Educational Resources Information Center

    Yolles, Maurice

    2005-01-01

    Purpose: Seeks to explore the notion of organisational intelligence as a simple extension of the notion of the idea of collective intelligence. Design/methodology/approach: Discusses organisational intelligence using previous research, which includes the Purpose, Properties and Practice model of Dealtry, and the Viable Systems model. Findings: The…

  18. A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms.

    PubMed

    Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel

    2015-01-01

    In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced. PMID:26690164

  19. A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms

    PubMed Central

    Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel

    2015-01-01

    In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced. PMID:26690164

  20. F-15 IFCS: Intelligent Flight Control System

    NASA Technical Reports Server (NTRS)

    Bosworth, John

    2007-01-01

    This viewgraph presentation describes the F-15 Intelligent Flight Control System (IFCS). The goals of this project include: 1) Demonstrate revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions; and 2) Demonstrate advance neural network-based flight control technology for new aerospace systems designs.

  1. EXODUS: Integrating intelligent systems for launch operations support

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Cottman, Bruce H.

    1991-01-01

    Kennedy Space Center (KSC) is developing knowledge-based systems to automate critical operations functions for the space shuttle fleet. Intelligent systems will monitor vehicle and ground support subsystems for anomalies, assist in isolating and managing faults, and plan and schedule shuttle operations activities. These applications are being developed independently of one another, using different representation schemes, reasoning and control models, and hardware platforms. KSC has recently initiated the EXODUS project to integrate these stand alone applications into a unified, coordinated intelligent operations support system. EXODUS will be constructed using SOCIAL, a tool for developing distributed intelligent systems. EXODUS, SOCIAL, and initial prototyping efforts using SOCIAL to integrate and coordinate selected EXODUS applications are described.

  2. Design of Scale Intelligent Vehicle System

    NASA Astrophysics Data System (ADS)

    Wang, Junliang; Zhang, Zufeng; Jia, Peng; Luo, Shaohua; Zhang, Zufeng

    Nowadays, intelligent vehicle is widely studied all over the world. On considering cost and safety of test on real vehicle, it takes scale intelligent vehicle as a carrier platform, which uses visual sensors to capture the environmental information in a Wi-Fi wireless communication network environment, and creates a system including video surveillance system, monitoring command terminal, data server and three-dimensional simulating test traffic environment. The core algorithms, such as road recognition perception, image data processing, path planning and the implementation of motion control, have been completely designed and applying on the vehicle platform. The experimental results verified its good effects and the robustness and stability of the algorithm.

  3. High level intelligent control of telerobotics systems

    NASA Technical Reports Server (NTRS)

    Mckee, James

    1988-01-01

    A high level robot command language is proposed for the autonomous mode of an advanced telerobotics system and a predictive display mechanism for the teleoperational model. It is believed that any such system will involve some mixture of these two modes, since, although artificial intelligence can facilitate significant autonomy, a system that can resort to teleoperation will always have the advantage. The high level command language will allow humans to give the robot instructions in a very natural manner. The robot will then analyze these instructions to infer meaning so that is can translate the task into lower level executable primitives. If, however, the robot is unable to perform the task autonomously, it will switch to the teleoperational mode. The time delay between control movement and actual robot movement has always been a problem in teleoperations. The remote operator may not actually see (via a monitor) the results of high actions for several seconds. A computer generated predictive display system is proposed whereby the operator can see a real-time model of the robot's environment and the delayed video picture on the monitor at the same time.

  4. Design and Implementation of C-iLearning: A Cloud-Based Intelligent Learning System

    ERIC Educational Resources Information Center

    Xiao, Jun; Wang, Minjuan; Wang, Lamei; Zhu, Xiaoxiao

    2013-01-01

    The gradual development of intelligent learning (iLearning) systems has prompted the changes of teaching and learning. This paper presents the architecture of an intelligent learning (iLearning) system built upon the recursive iLearning model and the key technologies associated with this model. Based on this model and the technical structure of a…

  5. Methodology requirements for intelligent systems architecture

    NASA Technical Reports Server (NTRS)

    Grant, Terry; Colombano, Silvano

    1987-01-01

    The methodology required for the development of the 'intelligent system architecture' of distributed computer systems which integrate standard data processing capabilities with symbolic processing to provide powerful and highly autonomous adaptive processing capabilities must encompass three elements: (1) a design knowledge capture system, (2) computer-aided engineering, and (3) verification and validation metrics and tests. Emphasis must be put on the earliest possible definition of system requirements and the realistic definition of allowable system uncertainties. Methodologies must also address human factor issues.

  6. Building intelligent systems: Artificial intelligence research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, P.; Lum, H.

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a truly autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  7. Distributed intelligence for ground/space systems

    NASA Technical Reports Server (NTRS)

    Aarup, Mads; Munch, Klaus Heje; Fuchs, Joachim; Hartmann, Ralf; Baud, Tim

    1994-01-01

    DI is short for Distributed Intelligence for Ground/Space Systems and the DI Study is one in a series of ESA projects concerned with the development of new concepts and architectures for future autonomous spacecraft systems. The kick-off of DI was in January 1994 and the planned duration is three years. The background of DI is the desire to design future ground/space systems with a higher degree of autonomy than seen in today's missions. The aim of introducing autonomy in spacecraft systems is to: (1) lift the role of the spacecraft operators from routine work and basic troubleshooting to supervision; (2) ease access to and increase availability of spacecraft resources; (3) carry out basic mission planning for users; (4) enable missions which have not yet been feasible due to eg. propagation delays, insufficient ground station coverage etc.; and (5) possibly reduce mission cost. The study serves to identify the feasibility of using state-of-the-art technologies in the area of planning, scheduling, fault detection using model-based diagnosis and knowledge processing to obtain a higher level of autonomy in ground/space systems.

  8. Human Intelligence: The Model Is the Message.

    ERIC Educational Resources Information Center

    Sternberg, Robert J.

    1985-01-01

    Examines the relationship of intelligence to the internal and external world of the individual and to the experience of the individual. Also examines competing models and metaphors that have motivated questions about these relationships. Indicates that a theory that addressed all three areas simultaneously is the triarchic theory. (JN)

  9. Intelligent Integrated Health Management for a System of Systems

    NASA Technical Reports Server (NTRS)

    Smith, Harvey; Schmalzel, John; Figueroa, Fernando

    2008-01-01

    implemented in the present IIHMS, is to enable automated analysis of physical phenomena in imitation of human reasoning, including the use of qualitative methods. Intelligent integration is said to occur in a system in which all elements are intelligent and can acquire, maintain, and share knowledge and information. In the HDNIE of the present IIHMS, an SoS is represented as being operationally organized in a hierarchical-distributed format. The elements of the SoS are considered to be intelligent in that they determine their own conditions within an integrated scheme that involves consideration of data, information, knowledge bases, and methods that reside in all elements of the system. The conceptual framework of the HDNIE and the methodologies of implementing it enable the flow of information and knowledge among the elements so as to make possible the determination of the condition of each element. The necessary information and knowledge is made available to each affected element at the desired time, satisfying a need to prevent information overload while providing context-sensitive information at the proper level of detail. Provision of high-quality data is a central goal in designing this or any IIHMS. In pursuit of this goal, functionally related sensors are logically assigned to groups denoted processes. An aggregate of processes is considered to form a system. Alternatively or in addition to what has been said thus far, the HDNIE of this IIHMS can be regarded as consisting of a framework containing object models that encapsulate all elements of the system, their individual and relational knowledge bases, generic methods and procedures based on models of the applicable physics, and communication processes (Figure 2). The framework enables implementation of a paradigm inspired by how expert operators monitor the health of systems with the help of (1) DIaK from various sources, (2) software tools that assist in rapid visualization of the condition of the system, (3

  10. Distributed Self-Organizing Intelligent Control For Dendritic Robotic Systems

    NASA Astrophysics Data System (ADS)

    Chen, Alexander Y. K.

    1990-02-01

    A new control methodology is presented to effectively operate a robotic system with redundant degrees of freedom. The utilized Decomposed Optimization Technique (DOT) is part of the AISP (An Intelligent Spatial Planner) development. DOT considers the robotic system as several connected subsystems with locally distributed intelligence. Each subsystem has certain degrees of freedom to pursue local optimum state. The resulting parallel distributed processing architecture presents a flexible structure to accommodate sophisticated manipulators with higher level of difficulty. The employed robot dynamics model for each subsystem is generically simple such that the corresponded read-time control scheme can incorporate self-correction mechanism in parameter identification.

  11. Perception system with scene understanding capabilities upon network-symbolic models for intelligent tactical behavior of mobile robots in real-world environments

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2005-10-01

    Tactical behavior of UGVs, which is needed for successful autonomous off-road driving, can be in many cases achieved by covering most possible driving situations with a set of rules and switching into a "drive-me-away" semi-autonomous mode when no such rule exists. However, the unpredictable and rapidly changing nature of combat situations requires more intelligent tactical behavior that must be based on predictive situation awareness with ongoing scene understanding and fast autonomous decision making. The implementation of image understanding and active vision is possible in the form of biologically inspired Network-Symbolic models, which combine the power of Computational Intelligence with graph and diagrammatic representation of knowledge. A Network-Symbolic system converts image information into an "understandable" Network-Symbolic format, which is similar to relational knowledge models. The traditional linear bottom-up "segmentation-grouping-learning-recognition" approach cannot provide a reliable separation of an object from its background/clutter, while human vision unambiguously solves this problem. An Image/Video Analysis that is based on Network-Symbolic approach is a combination of recursive hierarchical bottom-up and top-down processes. Logic of visual scenes can be captured in the Network-Symbolic models and used for the reliable disambiguation of visual information, including object detection and identification. Such a system can better interpret images/video for situation awareness, target recognition, navigation and actions and seamlessly integrates into 4D/RCS architecture.

  12. Causal Model Progressions as a Foundation for Intelligent Learning Environments.

    ERIC Educational Resources Information Center

    White, Barbara Y.; Frederiksen, John R.

    This paper describes the theoretical underpinnings and architecture of a new type of learning environment that incorporates features of microworlds and of intelligent tutoring systems. The environment is based on a progression of increasingly sophisticated causal models that simulate domain phenomena, generate explanations, and serve as student…

  13. The highly intelligent virtual agents for modeling financial markets

    NASA Astrophysics Data System (ADS)

    Yang, G.; Chen, Y.; Huang, J. P.

    2016-02-01

    Researchers have borrowed many theories from statistical physics, like ensemble, Ising model, etc., to study complex adaptive systems through agent-based modeling. However, one fundamental difference between entities (such as spins) in physics and micro-units in complex adaptive systems is that the latter are usually with high intelligence, such as investors in financial markets. Although highly intelligent virtual agents are essential for agent-based modeling to play a full role in the study of complex adaptive systems, how to create such agents is still an open question. Hence, we propose three principles for designing high artificial intelligence in financial markets and then build a specific class of agents called iAgents based on these three principles. Finally, we evaluate the intelligence of iAgents through virtual index trading in two different stock markets. For comparison, we also include three other types of agents in this contest, namely, random traders, agents from the wealth game (modified on the famous minority game), and agents from an upgraded wealth game. As a result, iAgents perform the best, which gives a well support for the three principles. This work offers a general framework for the further development of agent-based modeling for various kinds of complex adaptive systems.

  14. Generic NOx Control Intelligent System

    Energy Science and Technology Software Center (ESTSC)

    1997-03-24

    GNOCIS is a system of programs designed to perform on-line closed-loop optimization of utility boilers. The major components of the system include: GNREAD A program which resides on the host digital control system (DCS) that retrieves data from the DCS and then transmits the collected data to the GNOCIS host system. GNWRITE A program which resides on the host DCS that receives data from the GNOCIS host platform and then sends this information to themore » DCS. GNARCH A program which resides on the GNOCIS host platform that receives data from GNREAD or GNCTL and then archives this data on a periodic basis. GNCTL A program which resides on the GNOCIS host platform that receives data from GNREAD and then executes the optimizer/combustion model. GNDCS Configuration changes to the DCS which allows automatic implementation of the GNOCIS recommendations and closed-loop operation. Substantial safeguards and constraints are imbedded in this component to prevent adverse impact on unit operation.« less

  15. Intelligent Tutoring Systems and Learning Outcomes: A Meta-Analysis

    ERIC Educational Resources Information Center

    Ma, Wenting; Adesope, Olusola O.; Nesbit, John C.; Liu, Qing

    2014-01-01

    Intelligent Tutoring Systems (ITS) are computer programs that model learners' psychological states to provide individualized instruction. They have been developed for diverse subject areas (e.g., algebra, medicine, law, reading) to help learners acquire domain-specific, cognitive and metacognitive knowledge. A meta-analysis was conducted on…

  16. A Conversational Intelligent Tutoring System to Automatically Predict Learning Styles

    ERIC Educational Resources Information Center

    Latham, Annabel; Crockett, Keeley; McLean, David; Edmonds, Bruce

    2012-01-01

    This paper proposes a generic methodology and architecture for developing a novel conversational intelligent tutoring system (CITS) called Oscar that leads a tutoring conversation and dynamically predicts and adapts to a student's learning style. Oscar aims to mimic a human tutor by implicitly modelling the learning style during tutoring, and…

  17. Research and Conceptualization of Ontologies in Intelligent Learning Systems

    ERIC Educational Resources Information Center

    Deliyska, Boryana; Manoilov, Peter

    2010-01-01

    The intelligent learning systems provide direct customized instruction to the learners without the intervention of human tutors on the basis of Semantic Web resources. Principal roles use ontologies as instruments for modeling learning processes, learners, learning disciplines and resources. This paper examines the variety, relationships, and…

  18. Software for Intelligent System Health Management (ISHM)

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.

    2004-01-01

    The slide presentation is a briefing in four areas: overview of health management paradigms; overview of the ARC-Houston Software Engineering Technology Workshop held on April 20-22, 2004; identified technologies relevant to technical themes of intelligent system health management; and the author's thoughts on these topics.

  19. Principles for Evaluating Intelligent Tutoring Systems.

    ERIC Educational Resources Information Center

    Shute, Valerie J.; Regian, J. Wesley

    1993-01-01

    Discussion of intelligent tutoring systems (ITS) focuses on what is required to evaluate the efficacy of an ITS. Research and development aspects of ITS are examined; and seven main principles that may be used to design, plan, and implement an effective ITS evaluation are described. (Contains 40 references.) (LRW)

  20. Intelligent Instructional Systems in Military Training.

    ERIC Educational Resources Information Center

    Fletcher, J.D.; Zdybel, Frank

    Intelligent instructional systems can be distinguished from more conventional approaches by the automation of instructional interaction and choice of strategy. This approach promises to reduce the costs of instructional materials preparation and to increase the adaptability and individualization of the instruction delivered. Tutorial simulation…

  1. Multiple Intelligences Theory in Turkish Education System

    ERIC Educational Resources Information Center

    Kaya, Osman Nafiz

    2006-01-01

    Turkey can be regarded as a cultural bridge between the East and the West. After Turkish Republic was established by Ataturk in 1923, many radical revolutions, including the Turkish Education System, were made in order for Turkey to reach the level of contemporary civilizations. In the last two decades, Multiple Intelligences (MI) theory has been…

  2. Evaluation Methods for Intelligent Tutoring Systems Revisited

    ERIC Educational Resources Information Center

    Greer, Jim; Mark, Mary

    2016-01-01

    The 1993 paper in "IJAIED" on evaluation methods for Intelligent Tutoring Systems (ITS) still holds up well today. Basic evaluation techniques described in that paper remain in use. Approaches such as kappa scores, simulated learners and learning curves are refinements on past evaluation techniques. New approaches have also arisen, in…

  3. Creating Business Intelligence from Course Management Systems

    ERIC Educational Resources Information Center

    van Dyk, Liezl; Conradie, Pieter

    2007-01-01

    Purpose: This article seeks to address the interface between individual learning facilitators that use course management systems (CMS) data to support decision-making and course design and institutional infrastructure providers that are responsible for institutional business intelligence. Design/methodology/approach: The design of a data warehouse…

  4. Machine intelligence and autonomy for aerospace systems

    NASA Technical Reports Server (NTRS)

    Heer, Ewald (Editor); Lum, Henry (Editor)

    1988-01-01

    The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.

  5. Argonne simulation framework for intelligent transportation systems

    SciTech Connect

    Ewing, T.; Doss, E.; Hanebutte, U.; Canfield, T.; Brown-VanHoozer, A.; Tentner, A.

    1996-04-01

    A simulation framework has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS). The simulator is designed to run on parallel computers and distributed (networked) computer systems; however, a version for a stand alone workstation is also available. The ITS simulator includes an Expert Driver Model (EDM) of instrumented ``smart`` vehicles with in-vehicle navigation units. The EDM is capable of performing optimal route planning and communicating with Traffic Management Centers (TMC). A dynamic road map data base is sued for optimum route planning, where the data is updated periodically to reflect any changes in road or weather conditions. The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces that includes human-factors studies to support safety and operational research. Realistic modeling of variations of the posted driving speed are based on human factor studies that take into consideration weather, road conditions, driver`s personality and behavior and vehicle type. The simulator has been developed on a distributed system of networked UNIX computers, but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of the developed simulator is that vehicles will be represented by autonomous computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. Vehicle processes interact with each other and with ITS components by exchanging messages. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  6. U.S.-Japan Workshop on Smart/Intelligent Materials and Systems, Honolulu, HI, Mar. 19-23, 1990, Proceedings

    NASA Technical Reports Server (NTRS)

    Ahmad, Iqbal (Editor); Crowson, Andrews (Editor); Rogers, Craig A. (Editor); Aizawa, Masuo (Editor)

    1990-01-01

    Topics presented include the concept of intelligent materials, the molecular engineering of channel proteins, the prospects, limitations, and requirements of intelligent micro motion systems, the modeling of a shape memory integrated actuator for vibration control of large space structures, and intelligent materials for future electronics. Also presented are the slewing of an active structure, the health monitoring of control system components, the numerical modeling of the microstructure of crystals with symmetry-related variants, and the intelligent material system concept.

  7. An Or Processing Multiprocessor System For Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Fu, Hsin-Chia; Chiang, Cheng-Chin

    1989-03-01

    In this paper, an OR-Parallel Execution model based multiprocessor system is proposed. Our OR-parallel execution model addresses the following features: (1) Run-time Intelligent Backtracking, (2) Distributed process control and execution, (3) Minimization of data communication between processors, and (4) Minimization of parallel processing management overhead. Special hardware modules such as Intelligent Backtracking Controller, and Forward Execution Controller are designed to further enhance these features in run-time. A bus connected multiprocessor system is designed to experience the proposed OR-parallel execution model. Recent simulation results indicate that the OR-parallel execution model can be successfully used to conduct the parallel processing of most non-deterministic Prolog applications such as database systems, rule-based expert systems, natural language processing and theorem proving, etc.

  8. Uncertainty management in intelligent design aiding systems

    NASA Technical Reports Server (NTRS)

    Brown, Donald E.; Gabbert, Paula S.

    1988-01-01

    A novel approach to uncertainty management which is particularly effective in intelligent design aiding systems for large-scale systems is presented. The use of this approach in the materials handling system design domain is discussed. It is noted that, during any point in the design process, a point value can be obtained for the evaluation of feasible designs; however, the techniques described provide unique solutions for these point values using only the current information about the design environment.

  9. Using generic tool kits to build intelligent systems

    NASA Technical Reports Server (NTRS)

    Miller, David J.

    1994-01-01

    The Intelligent Systems and Robots Center at Sandia National Laboratories is developing technologies for the automation of processes associated with environmental remediation and information-driven manufacturing. These technologies, which focus on automated planning and programming and sensor-based and model-based control, are used to build intelligent systems which are able to generate plans of action, program the necessary devices, and use sensors to react to changes in the environment. By automating tasks through the use of programmable devices tied to computer models which are augmented by sensing, requirements for faster, safer, and cheaper systems are being satisfied. However, because of the need for rapid cost-effect prototyping and multi-laboratory teaming, it is also necessary to define a consistent approach to the construction of controllers for such systems. As a result, the Generic Intelligent System Controller (GISC) concept has been developed. This concept promotes the philosophy of producing generic tool kits which can be used and reused to build intelligent control systems.

  10. Intelligent Robotic Systems Study (IRSS), phase 3

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This phase of the Intelligent Robotic Systems Study (IRSS) examines some basic dynamics and control issues for a space manipulator attached to its worksite through a compliant base. One example of this scenario is depicted, which is a simplified, planar representation of the Flight Telerobotic Servicer (FTS) Development Test Flight 2 (DTF-2) experiment. The system consists of 4 major components: (1) dual FTS arms to perform dextrous tasks; (2) the main body to house power and electronics; (3) an Attachment Stabilization and Positioning Subsystem (ASPS) to provide coarse positioning and stabilization of the arms, and (4) the Worksite Attachment Mechanism (WAM) which anchors the system to its worksite, such as a Space Station truss node or Shuttle bay platform. The analysis is limited to the DTF-2 scenario. The goal is to understand the basic interaction dynamics between the arm, the positioner and/or stabilizer, and the worksite. The dynamics and controls simulation model are described. Analysis and simulation results are presented.

  11. Intelligent systems: A semiotic perspective. Volume I: Theoretical semiotics

    SciTech Connect

    Albus, J.; Meystel, A.; Quintero, R.

    1996-12-31

    This report contains the papers from the Proceedings of the 1996 International Multidisciplinary Conference - Theoretical Semiotics. General topics covered are: semiotic in biology: biologically inspired complex systems; intelligence in constructed complex systems; intelligence of learning and evolution; fuzzy logic and the mechanisms of generalization; information representation for decision making; sematic foundations; syntactics of intelligent systems: the kind of logic available; intelligence of recognition: the semiotic tools; and multiresolutional methods.

  12. A review on intelligent sensory modelling

    NASA Astrophysics Data System (ADS)

    Tham, H. J.; Tang, S. Y.; Teo, K. T. K.; Loh, S. P.

    2016-06-01

    Sensory evaluation plays an important role in the quality control of food productions. Sensory data obtained through sensory evaluation are generally subjective, vague and uncertain. Classically, factorial multivariate methods such as Principle Component Analysis (PCA), Partial Least Square (PLS) method, Multiple Regression (MLR) method and Response Surface Method (RSM) are the common tools used to analyse sensory data. These methods can model some of the sensory data but may not be robust enough to analyse nonlinear data. In these situations, intelligent modelling techniques such as Fuzzy Logic and Artificial neural network (ANNs) emerged to solve the vagueness and uncertainty of sensory data. This paper outlines literature of intelligent sensory modelling on sensory data analysis.

  13. Representing System Behaviors and Expert Behaviors for Intelligent Tutoring. Technical Report No. 108.

    ERIC Educational Resources Information Center

    Towne, Douglas M.; And Others

    Simulation-based software tools that can infer system behaviors from a deep model of the system have the potential for automatically building the semantic representations required to support intelligent tutoring in fault diagnosis. The Intelligent Maintenance Training System (IMTS) is such a resource, designed for use in training troubleshooting…

  14. The Role of Intelligent Agents in Advanced Information Systems

    NASA Technical Reports Server (NTRS)

    Kerschberg, Larry

    1999-01-01

    In this presentation we review the current ongoing research within George Mason University's (GMU) Center for Information Systems Integration and Evolution (CISE). We define characteristics of advanced information systems, discuss a family of agents for such systems, and show how GMU's Domain modeling tools and techniques can be used to define a product line Architecture for configuring NASA missions. These concepts can be used to define Advanced Engineering Environments such as those envisioned for NASA's new initiative for intelligent design and synthesis environments.

  15. Forecasting rain events - Meteorological models or collective intelligence?

    NASA Astrophysics Data System (ADS)

    Arazy, Ofer; Halfon, Noam; Malkinson, Dan

    2015-04-01

    Collective intelligence is shared (or group) intelligence that emerges from the collective efforts of many individuals. Collective intelligence is the aggregate of individual contributions: from simple collective decision making to more sophisticated aggregations such as in crowdsourcing and peer-production systems. In particular, collective intelligence could be used in making predictions about future events, for example by using prediction markets to forecast election results, stock prices, or the outcomes of sport events. To date, there is little research regarding the use of collective intelligence for prediction of weather forecasting. The objective of this study is to investigate the extent to which collective intelligence could be utilized to accurately predict weather events, and in particular rainfall. Our analyses employ metrics of group intelligence, as well as compare the accuracy of groups' predictions against the predictions of the standard model used by the National Meteorological Services. We report on preliminary results from a study conducted over the 2013-2014 and 2014-2015 winters. We have built a web site that allows people to make predictions on precipitation levels on certain locations. During each competition participants were allowed to enter their precipitation forecasts (i.e. 'bets') at three locations and these locations changed between competitions. A precipitation competition was defined as a 48-96 hour period (depending on the expected weather conditions), bets were open 24-48 hours prior to the competition, and during betting period participants were allowed to change their bets with no limitation. In order to explore the effect of transparency, betting mechanisms varied across study's sites: full transparency (participants able to see each other's bets); partial transparency (participants see the group's average bet); and no transparency (no information of others' bets is made available). Several interesting findings emerged from

  16. An intelligent agent for optimal river-reservoir system management

    NASA Astrophysics Data System (ADS)

    Rieker, Jeffrey D.; Labadie, John W.

    2012-09-01

    A generalized software package is presented for developing an intelligent agent for stochastic optimization of complex river-reservoir system management and operations. Reinforcement learning is an approach to artificial intelligence for developing a decision-making agent that learns the best operational policies without the need for explicit probabilistic models of hydrologic system behavior. The agent learns these strategies experientially in a Markov decision process through observational interaction with the environment and simulation of the river-reservoir system using well-calibrated models. The graphical user interface for the reinforcement learning process controller includes numerous learning method options and dynamic displays for visualizing the adaptive behavior of the agent. As a case study, the generalized reinforcement learning software is applied to developing an intelligent agent for optimal management of water stored in the Truckee river-reservoir system of California and Nevada for the purpose of streamflow augmentation for water quality enhancement. The intelligent agent successfully learns long-term reservoir operational policies that specifically focus on mitigating water temperature extremes during persistent drought periods that jeopardize the survival of threatened and endangered fish species.

  17. System of Experts for Intelligent Data Management (SEIDAM)

    NASA Technical Reports Server (NTRS)

    Goodenough, David G.; Iisaka, Joji; Fung, KO

    1992-01-01

    It is proposed to conduct research and development on a system of expert systems for intelligent data management (SEIDAM). CCRS has much expertise in developing systems for integrating geographic information with space and aircraft remote sensing data and in managing large archives of remotely sensed data. SEIDAM will be composed of expert systems grouped in three levels. At the lowest level, the expert systems will manage and integrate data from diverse sources, taking account of symbolic representation differences and varying accuracies. Existing software can be controlled by these expert systems, without rewriting existing software into an Artificial Intelligence (AI) language. At the second level, SEIDAM will take the interpreted data (symbolic and numerical) and combine these with data models. At the top level, SEIDAM will respond to user goals for predictive outcomes given existing data. The SEIDAM Project will address the research areas of expert systems, data management, storage and retrieval, and user access and interfaces.

  18. System of experts for intelligent data management (SEIDAM)

    NASA Technical Reports Server (NTRS)

    Goodenough, David G.; Iisaka, Joji; Fung, KO

    1993-01-01

    A proposal to conduct research and development on a system of expert systems for intelligent data management (SEIDAM) is being developed. CCRS has much expertise in developing systems for integrating geographic information with space and aircraft remote sensing data and in managing large archives of remotely sensed data. SEIDAM will be composed of expert systems grouped in three levels. At the lowest level, the expert systems will manage and integrate data from diverse sources, taking account of symbolic representation differences and varying accuracies. Existing software can be controlled by these expert systems, without rewriting existing software into an Artificial Intelligence (AI) language. At the second level, SEIDAM will take the interpreted data (symbolic and numerical) and combine these with data models. at the top level, SEIDAM will respond to user goals for predictive outcomes given existing data. The SEIDAM Project will address the research areas of expert systems, data management, storage and retrieval, and user access and interfaces.

  19. An intelligent ground operator support system

    NASA Technical Reports Server (NTRS)

    Goerlach, Thomas; Ohlendorf, Gerhard; Plassmeier, Frank; Bruege, Uwe

    1994-01-01

    This paper presents first results of the project 'Technologien fuer die intelligente Kontrolle von Raumfahrzeugen' (TIKON). The TIKON objective was the demonstration of feasibility and profit of the application of artificial intelligence in the space business. For that purpose a prototype system has been developed and implemented for the operation support of the Roentgen Satellite (ROSAT), a scientific spacecraft designed to perform the first all-sky survey with a high-resolution X-ray telescope and to investigate the emission of specific celestial sources. The prototype integrates a scheduler and a diagnosis tool both based on artificial intelligence techniques. The user interface is menu driven and provides synoptic displays for the visualization of the system status. The prototype has been used and tested in parallel to an already existing operational system.

  20. A Framework for Intelligent Battlefield Treatment System

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Wu, Biao; Yi, Renjie; Zhu, Jie

    With the development of high technology weapon, the execution and precision of weapon have made great improvement, which arouse many new challenge for treatment of war wounds. It is very urgent to research how to reduce casualty of individual solider. However, researches focus only on daily application recently. This paper discusses Intelligent Battlefield Treatment System (IBTS), and designs the framework of the service-oriented system based on WCF. The system has the following functions: testing the physical condition of a solider, disposing the distress signals intelligently, dispatching rescuers and assisting self-rescue or mutual-rescue to the wounded. The IBTS characteristics of data aggregate, multi-platform operation and data sharing can improve the treatment efficiency.

  1. Intelligent Collection Environment for an Interpretation System

    SciTech Connect

    Maurer, W J

    2001-07-19

    An Intelligent Collection Environment for a data interpretation system is described. The environment accepts two inputs: A data model and a number between 0.0 and 1.0. The data model is as simple as a single word or as complex as a multi-level/multidimensional model. The number between 0.0 and 1.0 is a control knob to indicate the user's desire to allow loose matching of the data (things are ambiguous and unknown) versus strict matching of the data (things are precise and known). The environment produces a set of possible interpretations, a set of requirements to further strengthen or to differentiate a particular subset of the possible interpretation from the others, a set of inconsistencies, and a logic map that graphically shows the lines of reasoning used to derive the above output. The environment is comprised of a knowledge editor, model explorer, expertise server, and the World Wide Web. The Knowledge Editor is used by a subject matter expert to define Linguistic Types, Term Sets, detailed explanations, and dynamically created URI's, and to create rule bases using a straight forward hyper matrix representation. The Model Explorer allows rapid construction and browsing of multi-level models. A multi-level model is a model whose elements may also be models themselves. The Expertise Server is an inference engine used to interpret the data submitted. It incorporates a semantic network knowledge representation, an assumption based truth maintenance system, and a fuzzy logic calculus. It can be extended by employing any classifier (e.g. statistical/neural networks) of complex data types. The World Wide Web is an unstructured data space accessed by the URI's supplied as part of the output of the environment. By recognizing the input data model as a query, the environment serves as a deductive search engine. Applications include (but are not limited to) interpretation of geophysical phenomena, a navigation aid for very large web sites, monitoring of computer or

  2. Intelligent control system for 16-unit synchronous driving

    NASA Astrophysics Data System (ADS)

    Yuan, Ruwang; Jiang, Xiuming; Yang, Gongyuan

    2006-11-01

    This paper deals with intelligent control system with 16 unit A.C motor of synchronous-driving. It has dealt with the method of the system analysis and design. Mainly, this paper dwelt on the mathematic model of the take-up process. The configuration of the system based on the mathematic model. In the aspect of control algorithm, advance control strategy, including parameter adaptive, signal adaptive, multi-mode control and expert control, has been applied in the system. The control system is designed with IPC and OMRON C200HG PLC. The system has been put into production, from which the customer has been benefited economically and socially.

  3. Intelligent truck rollover advisory systems

    NASA Astrophysics Data System (ADS)

    Bergan, Arthur T.; Bushman, Robert J.; Taylor, Brian

    1998-01-01

    To address the serious problem of truck rollover accidents on freeway exit ramps a system was developed and implemented by the Federal Highway Administration (FHWA), a private consultant Bellomo-McGee, and a system integrator International Road Dynamics. The system utilizes several existing technologies to determine vehicle weight, vehicle type, vehicle speed, and vehicle declaration. The system uses the information gathered to evaluate each vehicle on a freeway exit ramp to determine if they are in danger of a rollover accident and provides a warning to vehicles in potential danger. The system was implemented at three sties in the Washington DC area that had a history of rollover accidents. A three year independent evaluation was conducted on behalf of the FHWA to determine the effectiveness of the system. The evaluation shows that the system has been effective in reducing speeds and reducing accidents at the three sites that were chosen and shows that the systems are economically beneficial.

  4. Intelligent control of a planning system for astronaut training.

    PubMed

    Ortiz, J; Chen, G

    1999-07-01

    This work intends to design, analyze and solve, from the systems control perspective, a complex, dynamic, and multiconstrained planning system for generating training plans for crew members of the NASA-led International Space Station. Various intelligent planning systems have been developed within the framework of artificial intelligence. These planning systems generally lack a rigorous mathematical formalism to allow a reliable and flexible methodology for their design, modeling, and performance analysis in a dynamical, time-critical, and multiconstrained environment. Formulating the planning problem in the domain of discrete-event systems under a unified framework such that it can be modeled, designed, and analyzed as a control system will provide a self-contained theory for such planning systems. This will also provide a means to certify various planning systems for operations in the dynamical and complex environments in space. The work presented here completes the design, development, and analysis of an intricate, large-scale, and representative mathematical formulation for intelligent control of a real planning system for Space Station crew training. This planning system has been tested and used at NASA-Johnson Space Center. PMID:12192682

  5. Intelligent systems for the molecular biologist

    SciTech Connect

    Brutlag, D.L.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. In this paper, one objective is to identify properties of DNA sequences that determine their function, by computer-aided statistical analysis and to accurately predict its function, given a new sequence. A related problem is to predict protein structure and function from the sequence.

  6. Adaptive Fuzzy Systems in Computational Intelligence

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1996-01-01

    In recent years, the interest in computational intelligence techniques, which currently includes neural networks, fuzzy systems, and evolutionary programming, has grown significantly and a number of their applications have been developed in the government and industry. In future, an essential element in these systems will be fuzzy systems that can learn from experience by using neural network in refining their performances. The GARIC architecture, introduced earlier, is an example of a fuzzy reinforcement learning system which has been applied in several control domains such as cart-pole balancing, simulation of to Space Shuttle orbital operations, and tether control. A number of examples from GARIC's applications in these domains will be demonstrated.

  7. An intelligent diagnosis model based on rough set theory

    NASA Astrophysics Data System (ADS)

    Li, Ze; Huang, Hong-Xing; Zheng, Ye-Lu; Wang, Zhou-Yuan

    2013-03-01

    Along with the popularity of computer and rapid development of information technology, how to increase the accuracy of the agricultural diagnosis becomes a difficult problem of popularizing the agricultural expert system. Analyzing existing research, baseing on the knowledge acquisition technology of rough set theory, towards great sample data, we put forward a intelligent diagnosis model. Extract rough set decision table from the samples property, use decision table to categorize the inference relation, acquire property rules related to inference diagnosis, through the means of rough set knowledge reasoning algorithm to realize intelligent diagnosis. Finally, we validate this diagnosis model by experiments. Introduce the rough set theory to provide the agricultural expert system of great sample data a effective diagnosis model.

  8. An intelligent tutoring system for space shuttle diagnosis

    NASA Technical Reports Server (NTRS)

    Johnson, William B.; Norton, Jeffrey E.; Duncan, Phillip C.

    1988-01-01

    An Intelligent Tutoring System (ITS) transcends conventional computer-based instruction. An ITS is capable of monitoring and understanding student performance thereby providing feedback, explanation, and remediation. This is accomplished by including models of the student, the instructor, and the expert technician or operator in the domain of interest. The space shuttle fuel cell is the technical domain for the project described below. One system, Microcomputer Intelligence for Technical Training (MITT), demonstrates that ITS's can be developed and delivered, with a reasonable amount of effort and in a short period of time, on a microcomputer. The MITT system capitalizes on the diagnostic training approach called Framework for Aiding the Understanding of Logical Troubleshooting (FAULT) (Johnson, 1987). The system's embedded procedural expert was developed with NASA's C-Language Integrated Production (CLIP) expert system shell (Cubert, 1987).

  9. Top-Down, Intelligent Reservoir Model

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Shahab

    2010-05-01

    Conventional reservoir simulation and modeling is a bottom-up approach. It starts with building a geological model of the reservoir that is populated with the best available petrophysical and geophysical information at the time of development. Engineering fluid flow principles are added and solved numerically so as to arrive at a dynamic reservoir model. The dynamic reservoir model is calibrated using the production history of multiple wells and the history matched model is used to strategize field development in order to improve recovery. Top-Down, Intelligent Reservoir Modeling approaches the reservoir simulation and modeling from an opposite angle by attempting to build a realization of the reservoir starting with the measured well production behavior (history). The production history is augmented by core, log, well test and seismic data in order to increase the accuracy of the Top-Down modeling technique. Although not intended as a substitute for the conventional reservoir simulation of large, complex fields, this novel approach to reservoir modeling can be used as an alternative (at a fraction of the cost) to conventional reservoir simulation and modeling in cases where performing conventional modeling is cost (and man-power) prohibitive. In cases where a conventional model of a reservoir already exists, Top-Down modeling should be considered as a compliment to, rather than a competition for the conventional technique, to provide an independent look at the data coming from the reservoir/wells for optimum development strategy and recovery enhancement. Top-Down, Intelligent Reservoir Modeling starts with well-known reservoir engineering techniques such as Decline Curve Analysis, Type Curve Matching, History Matching using single well numerical reservoir simulation, Volumetric Reserve Estimation and calculation of Recovery Factors for all the wells (individually) in the field. Using statistical techniques multiple Production Indicators (3, 6, and 9 months cum

  10. A Computer-Based Intelligent Assessment System for Numeric Disciplines.

    ERIC Educational Resources Information Center

    Patel, Ashok; Kinshuk; Russell, David

    1998-01-01

    Describes an intelligent assessment system for numeric disciplines that works in conjunction with the intelligent tutoring tools developed by Teaching and Learning Technology (TLTP) Byzantium, a consortium of six U.K. universities. Topics include intelligent tutoring tools based on cognitive apprenticeship framework, a history of computerized…

  11. Intelligent data reduction for autonomous power systems

    NASA Technical Reports Server (NTRS)

    Floyd, Stephen A.

    1988-01-01

    Since 1984 Marshall Space Flight Center was actively engaged in research and development concerning autonomous power systems. Much of the work in this domain has dealt with the development and application of knowledge-based or expert systems to perform tasks previously accomplished only through intensive human involvement. One such task is the health status monitoring of electrical power systems. Such monitoring is a manpower intensive task which is vital to mission success. The Hubble Space Telescope testbed and its associated Nickel Cadmium Battery Expert System (NICBES) were designated as the system on which the initial proof of concept for intelligent power system monitoing will be established. The key function performed by an engineer engaged in system monitoring is to analyze the raw telemetry data and identify from the whole only those elements which can be considered significant. This function requires engineering expertise on the functionality of the system, the mode of operation and the efficient and effective reading of the telemetry data. Application of this expertise to extract the significant components of the data is referred to as data reduction. Such a function possesses characteristics which make it a prime candidate for the application of knowledge-based systems' technologies. Such applications are investigated and recommendations are offered for the development of intelligent data reduction systems.

  12. An artificial neural network controller for intelligent transportation systems applications

    SciTech Connect

    Vitela, J.E.; Hanebutte, U.R.; Reifman, J.

    1996-04-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems applications. The AICC is based on a simple nonlinear model of the vehicle dynamics. A Neural Network Controller (NNC) code developed at Argonne National Laboratory to control discrete dynamical systems was used for this purpose. In order to test the NNC, an AICC-simulator containing graphical displays was developed for a system of two vehicles driving in a single lane. Two simulation cases are shown, one involving a lead vehicle with constant velocity and the other a lead vehicle with varying acceleration. More realistic vehicle dynamic models will be considered in future work.

  13. Nanosat Intelligent Power System Development

    NASA Technical Reports Server (NTRS)

    Johnson, Michael A.; Beaman, Robert G.; Mica, Joseph A.; Truszkowski, Walter F.; Rilee, Michael L.; Simm, David E.

    1999-01-01

    NASA Goddard Space Flight Center is developing a class of satellites called nano-satellites. The technologies developed for these satellites will enable a class of constellation missions for the NASA Space Science Sun-Earth Connections theme and will be of great benefit to other NASA enterprises. A major challenge for these missions is meeting significant scientific- objectives with limited onboard and ground-based resources. Total spacecraft power is limited by the small satellite size. Additionally, it is highly desirable to minimize operational costs by limiting the ground support required to manage the constellation. This paper will describe how these challenges are met in the design of the nanosat power system. We will address the factors considered and tradeoffs made in deriving the nanosat power system architecture. We will discuss how incorporating onboard fault detection and correction capability yields a robust spacecraft power bus without the mass and volume penalties incurred from redundant systems and describe how power system efficiency is maximized throughout the mission duration.

  14. A New Intelligent Tutoring System

    ERIC Educational Resources Information Center

    Ford, Lindsey

    2008-01-01

    Early in 1984, Logica started an ICAI research contract with MoD (Procurement Executive), which was to be undertaken in collaboration with the technical authority at the Royal Signals and Radar Establishment, Malvern. A prototype system, which has become known as TUTOR, was scheduled for delivery to the client later in 1985. Initially, and for…

  15. Intelligent Controlling System of Aquiculture Environment

    NASA Astrophysics Data System (ADS)

    Zhao, Deshen; Hu, Xuemei

    The paper has analyzed present aquiculture conditions and controlling problems of water environment factors of aquiculture, and constructed effective security aquiculture breeding intelligence controlling system suitable to Chinese situation, and presented the control strategy of neural network realizing dynamic decoupling for the factory aquiculture, and specially solved the water environment control and so on the key questions. The long term practice has shown that the system operation is simple and effective safe by applying some breeding bases in Zhenjiang, the system has met the requirements of culturists and enhanced international market competition for aquiculture.

  16. Intelligent onboard TV system TELAN

    NASA Astrophysics Data System (ADS)

    Antonov, Alexander A.

    2004-09-01

    On-board television system TELAN includes one or several monitors with fragmented screen space (for example with liquid crystals), three and more small-sized video cameras (color and/or monochrome), adaptive means of their switching and, possibly, means of video recording. The means of adaptive switching provide automatic lead-out to the screen of the monitor of information, optimum for current transport situation. Advantages of such television system are: (1) practically circular review, i.e. absence of "blind/dead" zones; (2) substantial increase of safety of driving, as it allows to boost the rate of the proper response of driver in pre-emergency and other critical situations; (3) effective protection against blinding by headlights of the going behind and/or overtaking automobile; (4) high quality of the image even under bad conditions of supervision (for example in complete darkness, fog); (5) broad-range functionalities, including opportunity of automatic recording of pre-emergency conditions, automatic recording followed by the command of alarm system etc.

  17. Swarm Intelligence for Urban Dynamics Modelling

    SciTech Connect

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gerard H. E.

    2009-04-16

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  18. Swarm Intelligence for Urban Dynamics Modelling

    NASA Astrophysics Data System (ADS)

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gérard H. E.

    2009-04-01

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  19. Intelligent Simulation Model To Facilitate EHR Training

    PubMed Central

    Mohan, Vishnu; Scholl, Gretchen; Gold, Jeffrey A.

    2015-01-01

    Despite the rapid growth of EHR use, there are currently no standardized protocols for EHR training. A simulation EHR environment may offer significant advantages with respect to EHR training, but optimizing the training paradigm requires careful consideration of the simulation model itself, and how it is to be deployed during training. In this paper, we propose Six Principles that are EHR-agnostic and provide the framework for the development of an intelligent simulation model that can optimize EHR training by replicating real-world clinical conditions and appropriate cognitive loads. PMID:26958229

  20. Intelligent Systems for Self-Healing Electronics

    NASA Technical Reports Server (NTRS)

    Latino, Carl D.

    2001-01-01

    For long duration missions it is imperative to be able to monitor and record critical information. The data acquisition systems used must therefore be fault tolerant. This usually meant having redundant copies of critical channels. Since each channel usually consists of various components, the parts count, cost, weight and complexity of the system could be very high. The Advanced Data Acquisition System (ADAS) has been developed as a proof of concept. The purpose was to demonstrate an architecture where individual spare parts can replace defective ones to repair a channel. By so doing entire channels do not need replication. This reduces the need of total redundancy and reduces the parts count. This has the added feature that in addition to spare parts, good components of a failed channel can be used as spares in another channel. In addition to reducing parts count and cost, this configuration, with an intelligent decision maker, can improve the reliability of the overall system. Another unique feature of ADAS is that it uses reconfigurable analog filters. These components can be programmed, by the smart system to meet the specific needs of the part they are to replace. This way one part can serve as spare for many different components. The hardware was built and now serves as a platform for developing intelligent algorithms. Another related project was a wireless data acquisition system. I was invited to participate in the meetings and issue suggestions. A brief description of this system will also be included.

  1. Intelligent hand-portable proliferation sensing system

    SciTech Connect

    Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.; Jendrzejczyk, J.A.; Ahuja, S.; Raptis, A.C.

    1997-08-01

    Argonne National Laboratory, with support from DOE`s Office of Nonproliferation and National Security, is currently developing an intelligent hand-portable sensor system. This system is designed specifically to support the intelligence community with the task of in-field sensing of nuclear proliferation and related activities. Based upon pulsed laser photo-ionization time-of-flight mass spectrometry technology, this novel sensing system is capable of quickly providing a molecular or atomic analysis of specimens. The system is capable of analyzing virtually any gas phase molecule, or molecule that can be induced into the gas phase by (for example) sample heating. This system has the unique advantages of providing unprecedented portability, excellent sensitivity, tremendous fieldability, and a high performance/cost ratio. The system will be capable of operating in a highly automated manner for on-site inspections, and easily modified for other applications such as perimeter monitoring aboard a plane or drone. The paper describes the sensing system.

  2. Intelligent Engine Systems: Adaptive Control

    NASA Technical Reports Server (NTRS)

    Gibson, Nathan

    2008-01-01

    We have studied the application of the baseline Model Predictive Control (MPC) algorithm to the control of main fuel flow rate (WF36), variable bleed valve (AE24) and variable stator vane (STP25) control of a simulated high-bypass turbofan engine. Using reference trajectories for thrust and turbine inlet temperature (T41) generated by a simulated new engine, we have examined MPC for tracking these two reference outputs while controlling a deteriorated engine. We have examined the results of MPC control for six different transients: two idle-to-takeoff transients at sea level static (SLS) conditions, one takeoff-to-idle transient at SLS, a Bode power command and reverse Bode power command at 20,000 ft/Mach 0.5, and a reverse Bode transient at 35,000 ft/Mach 0.84. For all cases, our primary focus was on the computational effort required by MPC for varying MPC update rates, control horizons, and prediction horizons. We have also considered the effects of these MPC parameters on the performance of the control, with special emphasis on the thrust tracking error, the peak T41, and the sizes of violations of the constraints on the problem, primarily the booster stall margin limit, which for most cases is the lone constraint that is violated with any frequency.

  3. EduTutor: An Intelligent Tutor System for a Learning Management System

    ERIC Educational Resources Information Center

    Rodrigues, Joel J. P. C.; Joao, Pedro F. N.; Vaidya, Binod

    2010-01-01

    Intelligent tutoring systems are any computer systems encompassing interactive applications with some intelligence that support and facilitate the teaching-learning process. The intelligence of these systems is the ability to adapt to each student throughout his/her learning process. This paper presents an intelligent tutoring system, called…

  4. Intelligence.

    PubMed

    Deary, Ian J

    2012-01-01

    Individual differences in human intelligence are of interest to a wide range of psychologists and to many people outside the discipline. This overview of contributions to intelligence research covers the first decade of the twenty-first century. There is a survey of some of the major books that appeared since 2000, at different levels of expertise and from different points of view. Contributions to the phenotype of intelligence differences are discussed, as well as some contributions to causes and consequences of intelligence differences. The major causal issues covered concern the environment and genetics, and how intelligence differences are being mapped to brain differences. The major outcomes discussed are health, education, and socioeconomic status. Aging and intelligence are discussed, as are sex differences in intelligence and whether twins and singletons differ in intelligence. More generally, the degree to which intelligence has become a part of broader research in neuroscience, health, and social science is discussed. PMID:21943169

  5. Intelligence, mapping, and geospatial exploitation system (IMAGES)

    NASA Astrophysics Data System (ADS)

    Moellman, Dennis E.; Cain, Joel M.

    1998-08-01

    This paper provides further detail to one facet of the battlespace visualization concept described in last year's paper Battlespace Situation Awareness for Force XXI. It focuses on the National Imagery and Mapping Agency (NIMA) goal to 'provide customers seamless access to tailorable imagery, imagery intelligence, and geospatial information.' This paper describes Intelligence, Mapping, and Geospatial Exploitation System (IMAGES), an exploitation element capable of CONUS baseplant operations or field deployment to provide NIMA geospatial information collaboratively into a reconnaissance, surveillance, and target acquisition (RSTA) environment through the United States Imagery and Geospatial Information System (USIGS). In a baseplant CONUS setting IMAGES could be used to produce foundation data to support mission planning. In the field it could be directly associated with a tactical sensor receiver or ground station (e.g. UAV or UGV) to provide near real-time and mission specific RSTA to support mission execution. This paper provides IMAGES functional level design; describes the technologies, their interactions and interdependencies; and presents a notional operational scenario to illustrate the system flexibility. Using as a system backbone an intelligent software agent technology, called Open Agent ArchitectureTM (OAATM), IMAGES combines multimodal data entry, natural language understanding, and perceptual and evidential reasoning for system management. Configured to be DII COE compliant, it would utilize, to the extent possible, COTS applications software for data management, processing, fusion, exploitation, and reporting. It would also be modular, scaleable, and reconfigurable. This paper describes how the OAATM achieves data synchronization and enables the necessary level of information to be rapidly available to various command echelons for making informed decisions. The reasoning component will provide for the best information to be developed in the timeline

  6. Modeling and simulating human teamwork behaviors using intelligent agents

    NASA Astrophysics Data System (ADS)

    Fan, Xiaocong; Yen, John

    2004-12-01

    Among researchers in multi-agent systems there has been growing interest in using intelligent agents to model and simulate human teamwork behaviors. Teamwork modeling is important for training humans in gaining collaborative skills, for supporting humans in making critical decisions by proactively gathering, fusing, and sharing information, and for building coherent teams with both humans and agents working effectively on intelligence-intensive problems. Teamwork modeling is also challenging because the research has spanned diverse disciplines from business management to cognitive science, human discourse, and distributed artificial intelligence. This article presents an extensive, but not exhaustive, list of work in the field, where the taxonomy is organized along two main dimensions: team social structure and social behaviors. Along the dimension of social structure, we consider agent-only teams and mixed human-agent teams. Along the dimension of social behaviors, we consider collaborative behaviors, communicative behaviors, helping behaviors, and the underpinning of effective teamwork-shared mental models. The contribution of this article is that it presents an organizational framework for analyzing a variety of teamwork simulation systems and for further studying simulated teamwork behaviors.

  7. Modular, Intelligent Power Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Button, Robert

    2006-01-01

    NASA's new Space Exploration Initiative demands that vehicles, habitats, and rovers achieve unprecedented levels of reliability, safety, effectiveness, and affordability. Modular and intelligent electrical power systems are critical to achieving those goals. Modular electrical power systems naturally increase reliability and safety through built-in fault tolerance. These modular systems also enable standardization across a multitude of systems, thereby greatly increasing affordability of the programs. Various technologies being developed to support this new paradigm for space power systems will be presented. Examples include the use of digital control in power electronics to enable better performance and advanced modularity functions such as distributed, master-less control and series input power conversion. Also, digital control and robust communication enables new levels of power system control, stability, fault detection, and health management. Summary results from recent development efforts are presented along with expected future technology development needs required to support NASA's ambitious space exploration goals.

  8. A novel AIDS/HIV intelligent medical consulting system based on expert systems

    PubMed Central

    Ebrahimi, Alireza Pour; Toloui Ashlaghi, Abbas; Mahdavy Rad, Maryam

    2013-01-01

    Background: The purpose of this paper is to propose a novel intelligent model for AIDS/HIV data based on expert system and using it for developing an intelligent medical consulting system for AIDS/HIV. Materials and Methods: In this descriptive research, 752 frequently asked questions (FAQs) about AIDS/HIV are gathered from numerous websites about this disease. To perform the data mining and extracting the intelligent model, the 6 stages of Crisp method has been completed for FAQs. The 6 stages include: Business understanding, data understanding, data preparation, modelling, evaluation and deployment. C5.0 Tree classification algorithm is used for modelling. Also, rational unified process (RUP) is used to develop the web-based medical consulting software. Stages of RUP are as follows: Inception, elaboration, construction and transition. The intelligent developed model has been used in the infrastructure of the software and based on client's inquiry and keywords related FAQs are displayed to the client, according to the rank. FAQs’ ranks are gradually determined considering clients reading it. Based on displayed FAQs, test and entertainment links are also displayed. Result: The accuracy of the AIDS/HIV intelligent web-based medical consulting system is estimated to be 78.76%. Conclusion: AIDS/HIV medical consulting systems have been developed using intelligent infrastructure. Being equipped with an intelligent model, providing consulting services on systematic textual data and providing side services based on client's activities causes the implemented system to be unique. The research has been approved by Iranian Ministry of Health and Medical Education for being practical. PMID:24251290

  9. Intelligent Systems: Shaping the Future of Aeronautics and Space Exploration

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje; Lohn, Jason; Kaneshige, John

    2004-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become important for NASA's future roles in Aeronautics and Space Exploration. Intelligent systems will enable safe, cost and mission-effective approaches to air& control, system design, spacecraft autonomy, robotic space exploration and human exploration of Moon, Mars, and beyond. In this talk, we will discuss intelligent system technologies and expand on the role of intelligent systems in NASA's missions. We will also present several examples of which some are highlighted m this extended abstract.

  10. Distributed knowledge model for multiple intelligent agents

    SciTech Connect

    Li, Y.P.

    1987-01-01

    In the Distributed AI context, there have been some general principles developed to manage the problem solving activities of multiple agents. But there is not yet a domain-independent structure available for organizing multiple agents and managing of the interactions among agents. An organization metaphor is proposed to establish the hierarchical organization as the preferable takes environment for the decision-oriented applications of Distributed AI. As such, distributed problem solving is modeled as organizational problem solving. A generic structure for multiple intelligent agents is then developed. The organization metaphor is a problem-solving method. It outlines the organizational principles for distributed problem solving. However, a problem-solving model does not specify how it itself is to be realized as a computational entity. Therefore, a distributed knowledge model (DKM) is proposed to define the computational constructs in order to realize a distributed problem-solving environment for multiple intelligent agents. A prototype was implemented to show the feasibility of building a multi-agent environment based on DKM.

  11. Dust-Tolerant Intelligent Electrical Connection System

    NASA Technical Reports Server (NTRS)

    Lewis, Mark; Dokos, Adam; Perotti, Jose; Calle, Carlos; Mueller, Robert; Bastin, Gary; Carlson, Jeffrey; Townsend, Ivan, III; Immer, Chirstopher; Medelius, Pedro

    2012-01-01

    Faults in wiring systems are a serious concern for the aerospace and aeronautic (commercial, military, and civilian) industries. Circuit failures and vehicle accidents have occurred and have been attributed to faulty wiring created by open and/or short circuits. Often, such circuit failures occur due to vibration during vehicle launch or operation. Therefore, developing non-intrusive fault-tolerant techniques is necessary to detect circuit faults and automatically route signals through alternate recovery paths while the vehicle or lunar surface systems equipment is in operation. Electrical connector concepts combining dust mitigation strategies and cable diagnostic technologies have significant application for lunar and Martian surface systems, as well as for dusty terrestrial applications. The dust-tolerant intelligent electrical connection system has several novel concepts and unique features. It combines intelligent cable diagnostics (health monitoring) and automatic circuit routing capabilities into a dust-tolerant electrical umbilical. It retrofits a clamshell protective dust cover to an existing connector for reduced gravity operation, and features a universal connector housing with three styles of dust protection: inverted cap, rotating cap, and clamshell. It uses a self-healing membrane as a dust barrier for electrical connectors where required, while also combining lotus leaf technology for applications where a dust-resistant coating providing low surface tension is needed to mitigate Van der Waals forces, thereby disallowing dust particle adhesion to connector surfaces. It also permits using a ruggedized iris mechanism with an embedded electrodynamic dust shield as a dust barrier for electrical connectors where required.

  12. The Minnesota Adaptive Instructional System: An Intelligent CBI System.

    ERIC Educational Resources Information Center

    Tennyson, Robert D.; And Others

    1984-01-01

    Briefly reviews theoretical developments in adaptive instructional systems, defines six characteristics of intelligent computer-based management systems, and presents theory and research of Minnesota Adaptive Instructional System (MAIS). Generic programing codes for amount and sequence of instruction, instructional display time, and advisement…

  13. The intelligent user interface for NASA's advanced information management systems

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.

  14. A new intelligent hierarchical fault diagnosis system

    SciTech Connect

    Huang, Y.C.; Huang, C.L.; Yang, H.T.

    1997-02-01

    As a part of a substation-level decision support system, a new intelligent Hierarchical Fault Diagnosis System for on-line fault diagnosis is presented in this paper. The proposed diagnosis system divides the fault diagnosis process into two phases. Using time-stamped information of relays and breakers, phase 1 identifies the possible fault sections through the Group Method of Data Handling (GMDH) networks, and phase 2 recognizes the types and detailed situations of the faults identified in phase 1 by using a fast bit-operation logical inference mechanism. The diagnosis system has been practically verified by testing on a typical Taiwan power secondary transmission system. Test results show that rapid and accurate diagnosis can be obtained with flexibility and portability for fault diagnosis purpose of diverse substations.

  15. Future Intelligent Transportation Systems and Sensors

    NASA Astrophysics Data System (ADS)

    Hosaka, Akio

    A road vehicle traffic contributes to the social improvement greatly, but it has big problems such as safety, congestion, environment, energy, elder people driving and adaptation to information society. ITS (Intelligent Transportation Systems) is expected as a direction solving these. The intellectual function about a road vehicle traffic depended on most of human beings. ITS helps intellectual functions such as information sensing, situation recognition, judgment, planning and operation. A sensor detecting information is an important key in ITS. I describe expectation to a sensor in ITS.

  16. Microcomputer Intelligence for Technical Training (MITT): The evolution of an intelligent tutoring system

    NASA Technical Reports Server (NTRS)

    Norton, Jeffrey E.; Wiederholt, Bradley J.; Johnson, William B.

    1990-01-01

    Microcomputer Intelligence for Technical Training (MITT) uses Intelligent Tutoring System (OTS) technology to deliver diagnostic training in a variety of complex technical domains. Over the past six years, MITT technology has been used to develop training systems for nuclear power plant diesel generator diagnosis, Space Shuttle fuel cell diagnosis, and message processing diagnosis for the Minuteman missile. Presented here is an overview of the MITT system, describing the evolution of the MITT software and the benefits of using the MITT system.

  17. An intelligent training system for space shuttle flight controllers

    NASA Technical Reports Server (NTRS)

    Loftin, R. Bowen; Wang, Lui; Baffles, Paul; Hua, Grace

    1988-01-01

    An autonomous intelligent training system which integrates expert system technology with training/teaching methodologies is described. The system was designed to train Mission Control Center (MCC) Flight Dynamics Officers (FDOs) to deploy a certain type of satellite from the Space Shuttle. The Payload-assist module Deploys/Intelligent Computer-Aided Training (PD/ICAT) system consists of five components: a user interface, a domain expert, a training session manager, a trainee model, and a training scenario generator. The interface provides the trainee with information of the characteristics of the current training session and with on-line help. The domain expert (Dep1Ex for Deploy Expert) contains the rules and procedural knowledge needed by the FDO to carry out the satellite deploy. The Dep1Ex also contains mal-rules which permit the identification and diagnosis of common errors made by the trainee. The training session manager (TSM) examines the actions of the trainee and compares them with the actions of Dep1Ex in order to determine appropriate responses. A trainee model is developed for each individual using the system. The model includes a history of the trainee's interactions with the training system and provides evaluative data on the trainee's current skill level. A training scenario generator (TSG) designs appropriate training exercises for each trainee based on the trainee model and the training goals. All of the expert system components of PD/ICAT communicate via a common blackboard. The PD/ICAT is currently being tested. Ultimately, this project will serve as a vehicle for developing a general architecture for intelligent training systems together with a software environment for creating such systems.

  18. An intelligent training system for space shuttle flight controllers

    NASA Technical Reports Server (NTRS)

    Loftin, R. Bowen; Wang, Lui; Baffes, Paul; Hua, Grace

    1988-01-01

    An autonomous intelligent training system which integrates expert system technology with training/teaching methodologies is described. The system was designed to train Mission Control Center (MCC) Flight Dynamics Officers (FDOs) to deploy a certain type of satellite from the Space Shuttle. The Payload-assist module Deploys/Intelligent Computer-Aided Training (PD/ICAT) system consists of five components: a user interface, a domain expert, a training session manager, a trainee model, and a training scenario generator. The interface provides the trainee with information of the characteristics of the current training session and with on-line help. The domain expert (DeplEx for Deploy Expert) contains the rules and procedural knowledge needed by the FDO to carry out the satellite deploy. The DeplEx also contains mal-rules which permit the identification and diagnosis of common errors made by the trainee. The training session manager (TSM) examines the actions of the trainee and compares them with the actions of DeplEx in order to determine appropriate responses. A trainee model is developed for each individual using the system. The model includes a history of the trainee's interactions with the training system and provides evaluative data on the trainee's current skill level. A training scenario generator (TSG) designs appropriate training exercises for each trainee based on the trainee model and the training goals. All of the expert system components of PD/ICAT communicate via a common blackboard. The PD/ICAT is currently being tested. Ultimately, this project will serve as a vehicle for developing a general architecture for intelligent training systems together with a software environment for creating such systems.

  19. Intelligent E-Learning Systems: Automatic Construction of Ontologies

    NASA Astrophysics Data System (ADS)

    Peso, Jesús del; de Arriaga, Fernando

    2008-05-01

    During the last years a new generation of Intelligent E-Learning Systems (ILS) has emerged with enhanced functionality due, mainly, to influences from Distributed Artificial Intelligence, to the use of cognitive modelling, to the extensive use of the Internet, and to new educational ideas such as the student-centered education and Knowledge Management. The automatic construction of ontologies provides means of automatically updating the knowledge bases of their respective ILS, and of increasing their interoperability and communication among them, sharing the same ontology. The paper presents a new approach, able to produce ontologies from a small number of documents such as those obtained from the Internet, without the assistance of large corpora, by using simple syntactic rules and some semantic information. The method is independent of the natural language used. The use of a multi-agent system increases the flexibility and capability of the method. Although the method can be easily improved, the results so far obtained, are promising.

  20. Mixed-initiative control of intelligent systems

    NASA Technical Reports Server (NTRS)

    Borchardt, G. C.

    1987-01-01

    Mixed-initiative user interfaces provide a means by which a human operator and an intelligent system may collectively share the task of deciding what to do next. Such interfaces are important to the effective utilization of real-time expert systems as assistants in the execution of critical tasks. Presented here is the Incremental Inference algorithm, a symbolic reasoning mechanism based on propositional logic and suited to the construction of mixed-initiative interfaces. The algorithm is similar in some respects to the Truth Maintenance System, but replaces the notion of 'justifications' with a notion of recency, allowing newer values to override older values yet permitting various interested parties to refresh these values as they become older and thus more vulnerable to change. A simple example is given of the use of the Incremental Inference algorithm plus an overview of the integration of this mechanism within the SPECTRUM expert system for geological interpretation of imaging spectrometer data.

  1. Social Intelligence in a Human-Machine Collaboration System

    NASA Astrophysics Data System (ADS)

    Nakajima, Hiroshi; Morishima, Yasunori; Yamada, Ryota; Brave, Scott; Maldonado, Heidy; Nass, Clifford; Kawaji, Shigeyasu

    In this information society of today, it is often argued that it is necessary to create a new way of human-machine interaction. In this paper, an agent with social response capabilities has been developed to achieve this goal. There are two kinds of information that is exchanged by two entities: objective and functional information (e.g., facts, requests, states of matters, etc.) and subjective information (e.g., feelings, sense of relationship, etc.). Traditional interactive systems have been designed to handle the former kind of information. In contrast, in this study social agents handling the latter type of information are presented. The current study focuses on sociality of the agent from the view point of Media Equation theory. This article discusses the definition, importance, and benefits of social intelligence as agent technology and argues that social intelligence has a potential to enhance the user's perception of the system, which in turn can lead to improvements of the system's performance. In order to implement social intelligence in the agent, a mind model has been developed to render affective expressions and personality of the agent. The mind model has been implemented in a human-machine collaborative learning system. One differentiating feature of the collaborative learning system is that it has an agent that performs as a co-learner with which the user interacts during the learning session. The mind model controls the social behaviors of the agent, thus making it possible for the user to have more social interactions with the agent. The experiment with the system suggested that a greater degree of learning was achieved when the students worked with the co-learner agent and that the co-learner agent with the mind model that expressed emotions resulted in a more positive attitude toward the system.

  2. A biological model for construction of meaning to serve as an interface between an intelligent system and its environments

    SciTech Connect

    Freeman, W.J.

    1996-12-31

    There are two main levels of neural function to be modeled with appropriate state variables and operations. Microscopic activity is seen in the fraction of the variance of single neuron pulse trains (>99.9%) that is largely random and uncorrelated with pulse trains of other neurons in the neuropil. Macroscopic activity is revealed in the >0.1% of the total variance of each neuron that is covariant with all other neurons in neuropil comprising a population. It is observed in dendritic potentials recorded as surface EEGs. The {open_quotes}spontaneous{close_quotes} background activity of neuropil at both levels arises from mutual excitation within a population of excitatory neurons. Its governing point attractor is set by the macroscopic state, which acts as an order parameter to regulate the contributing neurons. The point attractor manifests a homogeneous field of white noise, which can be modeled by a continuous time state variable for pulse density. Neuropil comprises both excitatory and inhibitory neurons Their interactions at the macroscopic level give oscillations, manifesting a limit cycle attractor. Multiple areas of neuropil comprising a sensory system interact. Due to their incommensurate characteristic frequencies and the long axonal delays between them, the system maintains a global chaotic attractor having multiple wings, one for each discriminable class of stimuli. Access to each wing is by stimulus- induced state transitions, causing construction of macroscopic chaotic patterns, that are carried to targets of cortical transmission by axon tracts. AM patterns of the carrier are extracted by the targets by spatiotemporal integration, thereby retrieving the covariance comprising the chaotic signal. In digital models, noise serves to stabilize the chaotic attractors. An example will be given of the model operating as an interface between the environment and a pattern classifier, which learns to form its own feature detectors.

  3. Intelligent Robotic Systems Study (IRSS), phase 4

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Under the Intelligent Robotics Systems Study (IRSS), a generalized robotic control architecture was developed for use with the ProtoFlight Manipulator Arm (PFMA). Based upon the NASREM system design concept, the controller built for the PFMA provides localized position based force control, teleoperation, and advanced path recording and playback capabilities. The PFMA has six computer controllable degrees of freedom (DOF) plus a 7th manually indexable DOF, making the manipulator a pseudo 7 DOF mechanism. Joints on the PFMA are driven via 7 pulse width modulated amplifiers. Digital control of the PFMA is implemented using a variety of single board computers. There were two major activities under the IRSS phase 4 study: (1) enhancement of the PFMA control system software functionality; and (2) evaluation of operating modes via a teleoperation performance study. These activities are described and results are given.

  4. Intelligent Automated Nuclear Fuel Pellet Inspection System

    SciTech Connect

    S. Keyvan

    1999-11-01

    At the present time, nuclear pellet inspection is performed manually using naked eyes for judgment and decisionmaking on accepting or rejecting pellets. This current practice of pellet inspection is tedious and subject to inconsistencies and error. Furthermore, unnecessary re-fabrication of pellets is costly and the presence of low quality pellets in a fuel assembly is unacceptable. To improve the quality control in nuclear fuel fabrication plants, an automated pellet inspection system based on advanced techniques is needed. Such a system addresses the following concerns of the current manual inspection method: (1) the reliability of inspection due to typical human errors, (2) radiation exposure to the workers, and (3) speed of inspection and its economical impact. The goal of this research is to develop an automated nuclear fuel pellet inspection system which is based on pellet video (photographic) images and uses artificial intelligence techniques.

  5. Intelligent Software for System Design and Documentation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In an effort to develop a real-time, on-line database system that tracks documentation changes in NASA's propulsion test facilities, engineers at Stennis Space Center teamed with ECT International of Brookfield, WI, through the NASA Dual-Use Development Program to create the External Data Program and Hyperlink Add-on Modules for the promis*e software. Promis*e is ECT's top-of-the-line intelligent software for control system design and documentation. With promis*e the user can make use of the automated design process to quickly generate control system schematics, panel layouts, bills of material, wire lists, terminal plans and more. NASA and its testing contractors currently use promis*e to create the drawings and schematics at the E2 Cell 2 test stand located at Stennis Space Center.

  6. Active and intelligent packaging systems for a modern society.

    PubMed

    Realini, Carolina E; Marcos, Begonya

    2014-11-01

    Active and intelligent packaging systems are continuously evolving in response to growing challenges from a modern society. This article reviews: (1) the different categories of active and intelligent packaging concepts and currently available commercial applications, (2) latest packaging research trends and innovations, and (3) the growth perspectives of the active and intelligent packaging market. Active packaging aiming at extending shelf life or improving safety while maintaining quality is progressing towards the incorporation of natural active agents into more sustainable packaging materials. Intelligent packaging systems which monitor the condition of the packed food or its environment are progressing towards more cost-effective, convenient and integrated systems to provide innovative packaging solutions. Market growth is expected for active packaging with leading shares for moisture absorbers, oxygen scavengers, microwave susceptors and antimicrobial packaging. The market for intelligent packaging is also promising with strong gains for time-temperature indicator labels and advancements in the integration of intelligent concepts into packaging materials. PMID:25034453

  7. Intelligent Sensors: Strategies for an Integrated Systems Approach

    NASA Technical Reports Server (NTRS)

    Chitikeshi, Sanjeevi; Mahajan, Ajay; Bandhil, Pavan; Utterbach, Lucas; Figueroa, Fernando

    2005-01-01

    This paper proposes the development of intelligent sensors as an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Intelligent Systems Health Monitoring (ISHM) vision. This paper outlines progress made in the development of intelligent sensors by describing the work done till date on Physical Intelligent Sensors (PIS) and Virtual Intelligent Sensors (VIS).

  8. Intelligent automated control of robotic systems for environmental restoration

    SciTech Connect

    Harrigan, R.W.

    1992-07-01

    The US Department of Energy`s Office of Technology Development (OTD) has sponsored the development of the Generic Intelligent System Controller (GISC) for application to remote system control. Of primary interest to the OTD is the development of technologies which result in faster, safer, and cheaper cleanup of hazardous waste sites than possible using conventional approaches. The objective of the GISC development project is to support these goals by developing a modular robotics control approach which reduces the time and cost of development by allowing reuse of control system software and uses computer models to improve the safety of remote site cleanup while reducing the time and life cycle costs.

  9. A Paradigmatic Example of an Artificially Intelligent Instructional System.

    ERIC Educational Resources Information Center

    Brown, John Seely; Burton, Richard R.

    1978-01-01

    Describes the philosophy of intelligent instructional systems and presents an example of such a system, BLOCKS. The notion of BLOCKS as a paradigmatic system is explicated from both the system development and educational points of view. (Author/VT)

  10. An Intelligent Systems Approach to Reservoir Characterization

    SciTech Connect

    Shahab D. Mohaghegh; Jaime Toro; Thomas H. Wilson; Emre Artun; Alejandro Sanchez; Sandeep Pyakurel

    2005-08-01

    Today, the major challenge in reservoir characterization is integrating data coming from different sources in varying scales, in order to obtain an accurate and high-resolution reservoir model. The role of seismic data in this integration is often limited to providing a structural model for the reservoir. Its relatively low resolution usually limits its further use. However, its areal coverage and availability suggest that it has the potential of providing valuable data for more detailed reservoir characterization studies through the process of seismic inversion. In this paper, a novel intelligent seismic inversion methodology is presented to achieve a desirable correlation between relatively low-frequency seismic signals, and the much higher frequency wireline-log data. Vertical seismic profile (VSP) is used as an intermediate step between the well logs and the surface seismic. A synthetic seismic model is developed by using real data and seismic interpretation. In the example presented here, the model represents the Atoka and Morrow formations, and the overlying Pennsylvanian sequence of the Buffalo Valley Field in New Mexico. Generalized regression neural network (GRNN) is used to build two independent correlation models between; (1) Surface seismic and VSP, (2) VSP and well logs. After generating virtual VSP's from the surface seismic, well logs are predicted by using the correlation between VSP and well logs. The values of the density log, which is a surrogate for reservoir porosity, are predicted for each seismic trace through the seismic line with a classification approach having a correlation coefficient of 0.81. The same methodology is then applied to real data taken from the Buffalo Valley Field, to predict inter-well gamma ray and neutron porosity logs through the seismic line of interest. The same procedure can be applied to a complete 3D seismic block to obtain 3D distributions of reservoir properties with less uncertainty than the geostatistical