Science.gov

Sample records for intense terahertz radiation

  1. Intense terahertz radiation and their applications

    NASA Astrophysics Data System (ADS)

    Hafez, H. A.; Chai, X.; Ibrahim, A.; Mondal, S.; Férachou, D.; Ropagnol, X.; Ozaki, T.

    2016-09-01

    In this paper, we will review both past and recent progresses in the generation, detection and application of intense terahertz (THz) radiation. We will restrict the review to laser based intense few-cycle THz sources, and thus will not include sources such as synchrotron-based or narrowband sources. We will first review the various methods used for generating intense THz radiation, including photoconductive antennas (PCAs), optical rectification sources (especially the tilted-pulse-front lithium niobate source and the DAST source, but also those using other crystals), air plasma THz sources and relativistic laser–plasma sources. Next, we will give a brief introduction on the common methods for coherent THz detection techniques (namely the PCA technique and the electro-optic sampling), and point out the limitations of these techniques for measuring intense THz radiation. We will then review three techniques that are highly suited for detecting intense THz radiation, namely the air breakdown coherent detection technique, various single-shot THz detection techniques, and the spectral-domain interferometry technique. Finally, we will give an overview of the various applications that have been made possible with such intense THz sources, including nonlinear THz spectroscopy of condensed matter (optical-pump/THz-probe, THz-pump/THz-probe, THz-pump/optical-probe), nonlinear THz optics, resonant and non-resonant control of material (such as switching of superconductivity, magnetic and polarization switching) and controlling the nonlinear response of metamaterials. We will also provide a short perspective on the future of intense THz sources and their applications.

  2. Investigation of the Frohlich hypothesis with high intensity terahertz radiation

    NASA Astrophysics Data System (ADS)

    Weightman, Peter

    2014-03-01

    This article provides an update to recent reviews of the Frohlich hypothesis that biological organisation is facilitated by the creation of coherent excited states driven by a flow of free energy provided by metabolic processes and mediated by molecular motions in the terahertz range. Sources of intense terahertz radiation have the potential to test this hypothesis since if it is true the growth and development of sensitive systems such as stem cells should be influenced by irradiation with intense terahertz radiation. A brief survey of recent work shows that it is not yet possible to make an assessment of the validity of the Frohlich hypothesis. Under some conditions a variety of cell types respond to irradiation with intense THz radiation in ways that involve changes in the activity of their DNA. In other experiments very intense and prolonged THz radiation has no measureable effect on the behavior of very sensitive systems such as stem cells. The wide variation in experimental conditions makes it impossible to draw any conclusions as to characteristics of THz radiation that will induce a response in living cells. It is possible that in environments suitable for their maintenance and growth cells are capable of compensating for any effects caused by exposure to THz radiation up to some currently unknown level of THz peak power.

  3. Intense terahertz pulses from SPARC_LAB coherent radiation source

    NASA Astrophysics Data System (ADS)

    Giorgianni, F.; Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Cianchi, A.; Daniele, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Lupi, S.; Mostacci, A.; Petrarca, M.; Pompili, R.; Shpakov, V.; Villa, F.

    2015-05-01

    The linac-based Terahertz source at the SPARC_LAB test facility is able to generate highly intense Terahertz broadband pulses via coherent transition radiation (CTR) from high brightness electron beams. The THz pulse duration is typically down to 100 fs RMS and can be tuned through the electron bunch duration and shaping. The measured stored energy in a single THz pulse has reached 40 μJ, which corresponds to a peak electric field of 1.6 MV/cm at the THz focus. Here we present the main features, in particular spatial and spectral distributions and energy characterizations of the SPARC_LAB THz source, which is very competitive for investigations in Condensed Matter, as well as a valid tool for electron beam longitudinal diagnostics.

  4. Terahertz radiation from a wire target irradiated by an ultra-intense laser pulse

    SciTech Connect

    Li Zhichao; Zheng Jian

    2007-05-15

    When an ultra-intense laser pulse impacts the tip of a wire whose other end is grounded, a strong return current can be driven along the wire because some energetic electrons generated in ultra-intense laser matter interaction can escape from the target and an electric field builds up. The wire then behaves like a current-carrying antenna that can emit electromagnetic radiations. If the duration of the driving pulse is several tens of femtoseconds, the radiation spectrum reaches a maximum at terahertz region, and the radiation power per solid angle could be as high as 10{sup 9} W/rad.

  5. Experimental study of intense radiation in terahertz region based on cylindrical surface wave resonator

    SciTech Connect

    Gong, Shaoyan; Ogura, Kazuo; Yambe, Kiyoyuki; Nomizu, Shintaro; Shirai, Akihiro; Yamazaki, Kosuke; Kawamura, Jun; Miura, Takuro; Takanashi, Sho; San, Min Thu

    2015-09-28

    Periodical corrugations structured on a cylindrical conductor have cylindrical surface waves (CSWs), which are reflected at the corrugation ends and form a CSW-resonator. In this paper, intense radiations in terahertz region based on the CSW-resonator are reported. The CSW-resonators with upper cut off frequencies in the modern IEEE G-band (110–300 GHz) are excited by a coaxially injected annular beam in a weakly relativistic region less than 100 kV. It is shown that there exists an oscillation starting energy for the CSW-resonator. Above the starting energy, very intense terahertz radiations on the order of kW are obtained. The operation frequencies in the range of 166–173 GHz and 182–200 GHz are obtained using two types of CSW-resonator with the different corrugation amplitude. Electromagnetic properties of the CSW-resonator can be controlled by the artificial structure and may play an important role in high-intensity terahertz generations and applications.

  6. Generation of Intense Narrow-Band Tunable Terahertz Radiation from Highly Bunched Electron Pulse Train

    NASA Astrophysics Data System (ADS)

    Li, Heting; Lu, Yalin; He, Zhigang; Jia, Qika; Wang, Lin

    2016-07-01

    We present the analysis and start-to-end simulation of an intense narrow-band terahertz (THz) source with a broad tuning range of radiation frequency, using a single-pass free electron laser (FEL) driven by a THz-pulse-train photoinjector. The fundamental radiation frequency, corresponding to the spacing between the electron microbunches, can be easily tuned by varying the spacing time between the laser micropulses. Since the prebunched electron beam is highly bunched at the first several harmonics, with the harmonic generation technique, the radiation frequency range can be further enlarged by several times. The start-to-end simulation results show that this FEL is capable of generating a few tens megawatts power, several tens micro-joules pulse energy, and a few percent bandwidth at the frequencies of 0.5-5 THz. In addition, several practical issues are considered.

  7. Observation of intense terahertz-wave coherent synchrotron radiation at LEBRA

    NASA Astrophysics Data System (ADS)

    Sei, Norihiro; Ogawa, Hiroshi; Hayakawa, Ken; Tanaka, Toshinari; Hayakawa, Yasushi; Nakao, Keisuke; Sakai, Takeshi; Nogami, Kyoko; Inagaki, Manabu

    2013-01-01

    We observed intense coherent synchrotron radiation (CSR) in the terahertz region using an S-band linac at the Laboratory for Electron Beam Research and Application at Nihon University. The evolution of the CSR power was measured, and the CSR reflected in the vacuum chamber of the bending magnet could be extracted through the quartz window for a few tens of picoseconds. The long wave packet of the delayed CSR in the autocorrelation suggests that the delayed CSR was the non-resonant ring-down of the vacuum chamber of the bending magnet. To design a high-energy accelerator, it is necessary to decrease high-energy photons resulting from Compton backscattering with intense CSR.

  8. Electronic response of graphene to an ultrashort intense terahertz radiation pulse

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenichi L.

    2013-05-01

    We have recently reported a study (Ishikawa 2010 Phys. Rev. B 82 201402) on a nonlinear optical response of graphene to a normally incident terahertz radiation pulse within the massless Dirac fermion (MDF) picture, where we have derived physically transparent graphene Bloch equations (GBE). Here we extend it to the tight-binding (TB) model and oblique incidence. The derived equations indicate that interband transitions are governed by the temporal variation of the spinor phase along the electron path in the momentum space and predominantly take place when the electron passes near the Dirac point. At normal incidence, the equations for electron dynamics within the TB model can be cast into the same form of GBE as for the MDF model. At oblique incidence, the equations automatically incorporate photon drag and satisfy the continuity equation for electron density. Single-electron dynamics strongly depend on the model and pulse parameters, but the rapid variations are averaged out after momentum-space integration. Direct current remaining after the pulse is generated in graphene irradiated by an intense monocycle terahertz pulse, even if it is linearly polarized and normally incident. The generated current depends on the carrier-envelope phase, pulse intensity and Fermi energy in a complex manner.

  9. Proposal of coherent Cherenkov radiation matched to circular plane wave for intense terahertz light source

    NASA Astrophysics Data System (ADS)

    Sei, Norihiro; Sakai, Takeshi; Hayakawa, Ken; Tanaka, Toshinari; Hayakawa, Yasushi; Nakao, Keisuke; Nogami, Kyoko; Inagaki, Manabu

    2015-10-01

    We propose a high-peak-power terahertz-wave source based on an electron accelerator. By passing an electron beam through a hollow conical dielectric with apex facing the incident electron beam, the wave front of coherent Cherenkov radiation generated on the inner surface of the hollow conical dielectric matches the basal plane. Using the electron beam generated at the Laboratory for Electron Beam Research and Application at Nihon University, the calculated power of coherent Cherenkov radiation that matched the circular plane (CCR-MCP) was above 1 MW per micropulse with a short interval of 350 ps, for wavelengths ranging from 0.5 to 5 mm. The electron beam is not lost for generating the CCR-MCP beam by using the hollow conical dielectric. It is possible to combine the CCR-MCP beams with other light sources based on an accelerator.

  10. Terahertz radiation mixer

    DOEpatents

    Wanke, Michael C.; Allen, S. James; Lee, Mark

    2008-05-20

    A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.

  11. High-intensity terahertz radiation from a microstructured large-area photoconductor

    NASA Astrophysics Data System (ADS)

    Dreyhaupt, A.; Winnerl, S.; Dekorsy, T.; Helm, M.

    2005-03-01

    We present a planar large-area photoconducting emitter for impulsive generation of terahertz (THz) radiation. The device consists of an interdigitated electrode metal-semiconductor-metal (MSM) structure which is masked by a second metallization layer isolated from the MSM electrodes. The second layer blocks optical excitation in every second period of the MSM finger structure. Hence charge carriers are excited only in those periods of the MSM structure which exhibit a unidirectional electric field. Constructive interference of the THz emission from accelerated carriers leads to THz electric field amplitudes up to 85V/cm when excited with fs optical pulses from a Ti:sapphire oscillator with an average power of 100mW at a bias voltage of 65V applied to the MSM structure. The proposed device structure has a large potential for large-area high-power THz emitters.

  12. Effects of laser-plasma interactions on terahertz radiation from solid targets irradiated by ultrashort intense laser pulses

    SciTech Connect

    Li Chun; Zhou Mulin; Ding Wenjun; Du Fei; Liu Feng; Li Yutong; Wang Weimin; Ma Jinglong; Chen Liming; Lu Xin; Dong Quanli; Wang Zhaohua; Wei Zhiyi; Sheng Zhengming; Zhang Jie; Lou Zheng; Shi Shengcai

    2011-09-15

    Interactions of 100-fs laser pulses with solid targets at intensities of 10{sup 18} W/cm{sup 2} and resultant terahertz (THz) radiation are studied under different laser contrast ratio conditions. THz emission is measured in the specular reflection direction, which appears to decrease as the laser contrast ratio varies from 10{sup -8} to 10{sup -6}. Correspondingly, the frequency spectra of the reflected light are observed changing from second harmonic dominant, three-halves harmonic dominant, to vanishing of both harmonics. Two-dimensional particle-in-cell simulation also suggests that this observation is correlated with the plasma density scale length change. The results demonstrate that the THz emission is closely related to the laser-plasma interaction processes. The emission is strong when resonance absorption is a key feature of the interaction, and becomes much weaker when parametric instabilities dominate.

  13. Terahertz radiation by beating Langmuir waves

    SciTech Connect

    Son, S.; Moon, Sung Joon; Park, J. Y.

    2012-11-15

    An intense terahertz (THz) radiation generated by the beating of two Langmuir waves, which are excited by the forward Raman scattering, is analyzed theoretically. The radiation energy per shot can be as high as 0.1 J, with the duration of 10 ps. Appropriate plasma density and the laser characteristics are examined.

  14. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  15. Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation

    NASA Astrophysics Data System (ADS)

    Gayduchenko, I.; Kardakova, A.; Fedorov, G.; Voronov, B.; Finkel, M.; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G.

    2015-11-01

    Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.

  16. Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation

    SciTech Connect

    Gayduchenko, I. E-mail: gefedorov@mail.ru; Kardakova, A.; Voronov, B.; Finkel, M.; Fedorov, G. E-mail: gefedorov@mail.ru; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G.

    2015-11-21

    Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.

  17. The influence of high intensity terahertz radiation on mammalian cell adhesion, proliferation and differentiation

    NASA Astrophysics Data System (ADS)

    Williams, Rachel; Schofield, Amy; Holder, Gareth; Downes, Joan; Edgar, David; Harrison, Paul; Siggel-King, Michele; Surman, Mark; Dunning, David; Hill, Stephen; Holder, David; Jackson, Frank; Jones, James; McKenzie, Julian; Saveliev, Yuri; Thomsen, Neil; Williams, Peter; Weightman, Peter

    2013-01-01

    Understanding the influence of exposure of biological systems to THz radiation is becoming increasingly important. There is some evidence to suggest that THz radiation can influence important activities within mammalian cells. This study evaluated the influence of the high peak power, low average power THz radiation produced by the ALICE (Daresbury Laboratory, UK) synchrotron source on human epithelial and embryonic stem cells. The cells were maintained under standard tissue culture conditions, during which the THz radiation was delivered directly into the incubator for various exposure times. The influence of the THz radiation on cell morphology, attachment, proliferation and differentiation was evaluated. The study demonstrated that there was no difference in any of these parameters between irradiated and control cell cultures. It is suggested that under these conditions the cells are capable of compensating for any effects caused by exposure to THz radiation with the peak powers levels employed in these studies.

  18. Terahertz radiation from a laser plasma filament.

    PubMed

    Wu, H-C; Meyer-Ter-Vehn, J; Ruhl, H; Sheng, Z-M

    2011-03-01

    By the use of two-dimensional particle-in-cell simulations, we clarify the terahertz (THz) radiation mechanism from a plasma filament formed by an intense femtosecond laser pulse. The nonuniform plasma density of the filament leads to a net radiating current for THz radiation. This current is mainly located within the pulse and the first cycle of the wakefield. As the laser pulse propagates, a single-cycle and radially polarized THz pulse is constructively built up forward. The single-cycle shape is mainly due to radiation damping effect. PMID:21517604

  19. Terahertz polarization imaging based on the continuous wave terahertz radiations

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Shen, Yanchun; Zhao, Guozhong

    2015-08-01

    Terahertz (THz) imaging is a hot topic in the current imaging technology. THz imaging has the advantage to penetrate most of non-metal and non-polar materials for the detection of concealed objects, while it is harmless to biological organism. Continuous wave terahertz (THz) imaging is enable to offer a safe and noninvasive imaging for the investigated objects. In this paper, THz real-time polarization imaging system is demonstrated based on the SIFIR-50 THz laser as a radiation source and a NEC Terahertz Imager as an array detector. The experimental system employs two wire grid polarizers to acquire the intensity images in four different directions. The polarization information of the measured object is obtained based on the Stokes-Mueller matrix. Imaging experiments on the currency with water mark and the hollowed-out metal ring have been done. Their polarization images are acquired and analyzed. The results show that the extracted polarization images include the valuable information which can effectively detect and recognize the different kinds of objects.

  20. Intense coherent terahertz generation from accelerator-based sources

    NASA Astrophysics Data System (ADS)

    Hama, Hiroyuki; Yasuda, Mafuyu; Kawai, Masayuki; Hinode, Fujio; Nanbu, Kenichi; Miyahara, Fusashi

    2011-05-01

    The development of terahertz (THz) technology and science relevant to accelerator-based sources has been rapid, based on laser and semiconductor physics. To assure further progress of this scientific field, extremely intense radiation, involving gigawatt-class peak power, is needed. In addition to discussing the prospects for typical accelerator-based THz sources, such as coherent synchrotron radiation (CSR) and free electron lasers (FELs), novel, advanced THz sources employing isochronous-ring and bunched-FEL approaches are proposed.

  1. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects

    NASA Astrophysics Data System (ADS)

    González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.

    2016-06-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.

  2. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects

    PubMed Central

    González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.

    2016-01-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689

  3. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects.

    PubMed

    González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L

    2016-01-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689

  4. Direct detector for terahertz radiation

    DOEpatents

    Wanke, Michael C.; Lee, Mark; Shaner, Eric A.; Allen, S. James

    2008-09-02

    A direct detector for terahertz radiation comprises a grating-gated field-effect transistor with one or more quantum wells that provide a two-dimensional electron gas in the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating gate to near pinch-off greatly increases the detector's resonant response magnitude over prior QW FET detectors while maintaining frequency selectivity. The split-grating-gated QW FET shows a tunable resonant plasmon response to FIR radiation that makes possible an electrically sweepable spectrometer-on-a-chip with no moving mechanical optical parts. Further, the narrow spectral response and signal-to-noise are adequate for use of the split-grating-gated QW FET in a passive, multispectral terahertz imaging system. The detector can be operated in a photoconductive or a photovoltaic mode. Other embodiments include uniform front and back gates to independently vary the carrier densities in the channel region, a thinned substrate to increase bolometric responsivity, and a resistive shunt to connect the fingers of the grating gate in parallel and provide a uniform gate-channel voltage along the length of the channel to increase the responsivity and improve the spectral resolution.

  5. Damage thresholds for terahertz radiation

    NASA Astrophysics Data System (ADS)

    Dalzell, Danielle R.; McQuade, Jill; Vincelette, Rebecca; Ibey, Bennet; Payne, Jason; Thomas, Robert; Roach, W. P.; Roth, Caleb L.; Wilmink, Gerald J.

    2010-02-01

    Several international organizations establish minimum safety standards to ensure that workers and the general population are protected against adverse health effects associated with electromagnetic radiation. Suitable standards are typically defined using published experimental data. To date, few experimental studies have been conducted at Terahertz (THz) frequencies, and as a result, current THz standards have been defined using extrapolated estimates from neighboring spectral regions. In this study, we used computational modeling and experimental approaches to determine tissue-damage thresholds at THz frequencies. For the computational modeling efforts, we used the Arrhenius damage integral to predict damage-thresholds. We determined thresholds experimentally for both long (minutes) and short (seconds) THz exposures. For the long exposure studies, we used an in-house molecular gas THz laser (υ= 1.89 THz, 189.92 mW/cm2, 10 minutes) and excised porcine skin. For the short exposure studies, we used the Free Electron Laser (FEL) at Jefferson Laboratory (υ= 0.1-1.0 THz, 2.0-14.0 mW/cm2, 2 seconds) and wet chamois cloths. Thresholds were determined using conventional damage score determination and probit analysis techniques, and tissue temperatures were measured using infrared thermographic techniques. We found that the FEL was ideal for tissue damage studies, while our in-house THz source was not suitable to determine tissue damage thresholds. Using experimental data, the tissue damage threshold (ED50) was determined to be 7.16 W/cm2. This value was in well agreement with that predicted using our computational models. We hope that knowledge of tissue-damage thresholds at THz frequencies helps to ensure the safe use of THz radiation.

  6. Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam

    SciTech Connect

    Liu, Shenggang Hu, Min; Chen, Xiaoxing; Zhang, Ping; Gong, Sen; Zhao, Tao; Zhong, Renbin; Zhang, Chao

    2014-05-19

    Although surface plasmon polaritons (SPPs) resonance in graphene can be tuned in the terahertz regime, transforming such SPPs into coherent terahertz radiation has not been achieved. Here, we propose a graphene-based coherent terahertz radiation source with greatly enhanced intensity. The radiation works at room temperature, it is tunable and can cover the whole terahertz regime. The radiation intensity generated with this method is 400 times stronger than that from SPPs at a conventional dielectric or semiconducting surface and is comparable to that from the most advanced photonics source such as a quantum cascade laser. The physical mechanism for this strong radiation is presented. The phase diagrams defining the parameters range for the occurrence of radiation is also shown.

  7. Impact of terahertz radiation on the epithelialization rate of scarified cornea

    NASA Astrophysics Data System (ADS)

    Geyko, I. A.; Smolyanskaya, O. A.; Sulatsky, M. I.; Parakhuda, S. E.; Sedykh, E. A.; Odlyanitskiy, E. L.; Khodzitsky, M. K.; Zabolotniy, A. G.

    2015-07-01

    We revealed that after exposure of scarified cornea of rabbits to low-intensity pulsed terahertz radiation 0.1 to 1.8 THz a positive effect on epithelization triggered within the first hours was higher compared to non-irradiated cornea. However, while elevating power of terahertz radiation up to 60.8 nW it resulted in retarding epithelialization process. At that, irradiation did not affect timeframe of complete corneal epithelialization. During experiments it was found that terahertz radiation was well tolerated, exhibited no toxic and allergic reactions or resulted in pathohistological changes in the eye tissues. Also, low-intensity terahertz radiation did not affect normal physiological functions of the eyes and facilitated to re-epithelialization of scarified eyes in rabbits.

  8. Quadrupole radiation from terahertz dipole antennas.

    PubMed

    Rudd, J V; Johnson, J L; Mittleman, D M

    2000-10-15

    We report what is to our knowledge the first detailed investigation of the polarization state of radiation from lens-coupled terahertz dipole antennas. The radiation exhibits a weak but measurable component that is polarized orthogonally to the orientation of the emitter dipole. The angular radiation pattern of this cross-polarized emission reveals that it is quadrupolar, rather than dipolar, in nature. One can understand this result by taking into account the photocurrent flowing in the strip lines that feed the dipole antenna. A Fresnel-Kirchhoff scalar diffraction calculation is used for calculating the frequency-dependent angular distribution of the radiation pattern, providing satisfactory agreement with the measurements. PMID:18066277

  9. Strong emission of terahertz radiation from nanostructured Ge surfaces

    SciTech Connect

    Kang, Chul; Maeng, Inhee; Kee, Chul-Sik; Leem, Jung Woo; Yu, Jae Su; Kim, Tae Heon; Lee, Jong Seok

    2015-06-29

    Indirect band gap semiconductors are not efficient emitters of terahertz radiation. Here, we report strong emission of terahertz radiation from germanium wafers with nanostructured surfaces. The amplitude of THz radiation from an array of nano-bullets (nano-cones) is more than five (three) times larger than that from a bare-Ge wafer. The power of the terahertz radiation from a Ge wafer with an array of nano-bullets is comparable to that from n-GaAs wafers, which have been widely used as a terahertz source. We find that the THz radiation from Ge wafers with the nano-bullets is even more powerful than that from n-GaAs for frequencies below 0.6 THz. Our results suggest that introducing properly designed nanostructures on indirect band gap semiconductor wafers is a simple and cheap method to improve the terahertz emission efficiency of the wafers significantly.

  10. Elliptically polarized terahertz radiation from a chiral oxide

    SciTech Connect

    Takeda, R.; Kida, N. Sotome, M.; Okamoto, H.

    2015-09-28

    Polarization control of terahertz wave is a challenging subject in terahertz science and technology. Here, we report a simple method to control polarization state of the terahertz wave in terahertz generation process. At room temperature, terahertz radiation from a noncentrosymmetric and chiral oxide, sillenite Bi{sub 12}GeO{sub 20}, is observed by the irradiation of linearly polarized femtosecond laser pulses at 800 nm. The polarization state of the emitted terahertz wave is found to be elliptic with an ellipticity of ∼0.37 ± 0.10. Furthermore, the ellipticity was altered to a nearly zero (∼0.01 ± 0.01) by changing the polarization of the incident linearly polarized femtosecond laser pulses. Such a terahertz radiation characteristic is attributable to variation of the polarization state of the emitted terahertz waves, which is induced by retardation due to the velocity mismatch between the incident femtosecond laser pulse and generated terahertz wave and by the polarization tilting due to the optical activity at 800 nm.

  11. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    SciTech Connect

    Angeluts, A A; Esaulkov, M N; Kosareva, O G; Solyankin, P M; Shkurinov, A P; Gapeyev, A B; Pashovkin, T N; Matyunin, S N; Nazarov, M M; Cherkasova, O P

    2014-03-28

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 – 200 μW cm{sup -2} within the frequency range of 0.1 – 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes. (biophotonics)

  12. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    NASA Astrophysics Data System (ADS)

    Angeluts, A. A.; Gapeyev, A. B.; Esaulkov, M. N.; Kosareva, O. G.; Matyunin, S. N.; Nazarov, M. M.; Pashovkin, T. N.; Solyankin, P. M.; Cherkasova, O. P.; Shkurinov, A. P.

    2014-03-01

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 - 200 μW cm-2 within the frequency range of 0.1 - 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes.

  13. Laser beat wave excitation of terahertz radiation in a plasma slab

    SciTech Connect

    Chauhan, Santosh; Parashar, Jetendra

    2014-10-15

    Terahertz (THz) radiation generation by nonlinear mixing of lasers, obliquely incident on a plasma slab is investigated. Two cases are considered: (i) electron density profile is parabolic but density peak is below the critical density corresponding to the beat frequency, (ii) plasma boundaries are sharp and density is uniform. In both cases, nonlinearity arises through the ponderomotive force that gives rise to electron drift at the beat frequency. In the case of inhomogeneous plasma, non zero curl of the nonlinear current density gives rise to electromagnetic THz generation. In case of uniform plasma, the sharp density variation at the plasma boundaries leads to radiation generation. In a slab width of less than a terahertz wavelength, plasma density one fourth of terahertz critical density, laser intensities ∼10{sup 17 }W/cm{sup 2} at 1 μm, one obtains the THz intensity ∼1 GW/cm{sup 2} at 3 THz radiation frequency.

  14. Prospects for the study of biological systems with high power sources of terahertz radiation

    NASA Astrophysics Data System (ADS)

    Weightman, Peter

    2012-10-01

    The emergence of intense sources of terahertz radiation based on lasers and electron accelerators has considerable potential for research on biological systems. This perspective gives a brief survey of theoretical work and the results of experiments on biological molecules and more complex biological systems. Evidence is accumulating that terahertz radiation influences biological systems and this needs to be clarified in order to establish safe levels of human exposure to this radiation. The use of strong sources of terahertz radiation may contribute to the resolution of controversies over the mechanism of biological organization. However the potential of these sources will only be realized if they are accompanied by the development of sophisticated pump-probe and multidimensional experimental techniques and by the study of biological systems in the controlled environments necessary for their maintenance and viability.

  15. Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna.

    PubMed

    Hirota, Yuichi; Hattori, Ryo; Tani, Masahiko; Hangyo, Masanori

    2006-05-15

    Generation and modulation of circularly polarized terahertz electromagnetic radiation have been demonstrated by using a four-contact photoconductive antenna and a total-reflection Si prism. The quality of the circularly polarized terahertz pulsed radiation has been evaluated by using a polarization sensitive terahertz time-domain spectroscopy system. The characteristic of the dynamic modulation between the left and right circularly polarized states of the THz radiation is also evaluated. The ellipticity of the modulated circularly polarized THz radiation without a polarizer is not as good as that of the non-modulated because of the non-uniform bias field distribution and the asymmetric pump laser intensity profile on the photoconductive gap. PMID:19516602

  16. Dependence of terahertz power from laser-produced plasma on laser intensity

    SciTech Connect

    Shin, J.-H.; Zhidkov, A.; Jin, Z.; Hosokai, T.; Kodama, R.

    2012-07-11

    Power of terahertz radiation from plasma which is generated from air irradiated by coupled ({omega}, 2{omega}) femtosecond laser pulses is analyzed for high laser intensities, for which non-linear plasma effects on the pulse propagation become essential, with multidimensional particle-in-cell simulations including the self-consistent plasma kinetics. The growth rate of THz power becomes slower as the laser intensity increases. A reason of such a lowering of efficiency in THz emission is found to be ionization of air by the laser pulse, which results in poor focusing of laser pulses.

  17. Production of high power femtosecond terahertz radiation

    SciTech Connect

    Neil, George R.; Carr, G.L.; Gubeli III, Joseph F.; Jordan, K.; Martin, Michael C.; McKinney, Wayne R.; Shinn, Michelle; Tani, Masahiko; Williams, G.P.; Zhang, X.-C.

    2003-07-11

    The terahertz (THz) region of the electromagnetic spectrum is attracting interest for a broad range of applications ranging from diagnosing electron beams to biological imaging. Most sources of short pulse THz radiation utilize excitation of biased semiconductors or electro-optic crystals by high peak power lasers. For example, this was done by using an un-doped InAs wafer irradiated by a femtosecond free-electron laser (FEL) at the Thomas Jefferson National Accelerator Facility. Microwatt levels of THz radiation were detected when excited with FEL pulses at 1.06 mm wavelength and 10W average power. Recently substantially higher powers of femtosecond THz pulses produced by synchrotron emission were extracted from the electron beamline. Calculations and measurements confirm the production of coherent broadband THz radiation from relativistic electrons with an average power of nearly 20W, a world record in this wavelength range by a factor of 10,000. We describe the source, presenting theoretical calculations and their experimental verification. Potential applications of this exciting new source include driving new non-linear phenomena, performing pump-probe studies of dynamical properties of novel materials, and studying molecular vibrations and rotations, low frequency protein motions, phonons, superconductor band gaps, electronic scattering, collective electronic excitations (e.g., charge density waves), and spintronics.

  18. Production of high power femtosecond terahertz radiation

    NASA Astrophysics Data System (ADS)

    Neil, George R.; Carr, G. L.; Gubeli, Joseph F.; Jordan, K.; Martin, Michael C.; McKinney, Wayne R.; Shinn, Michelle; Tani, Masahiko; Williams, G. P.; Zhang, X.-C.

    2003-07-01

    The terahertz (THz) region of the electromagnetic spectrum is attracting interest for a broad range of applications ranging from diagnosing electron beams to biological imaging. Most sources of short pulse THz radiation utilize excitation of biased semiconductors or electro-optic crystals by high peak power lasers. For example, this was done by using an un-doped InAs wafer irradiated by a femtosecond free-electron laser (FEL) at the Thomas Jefferson National Accelerator Facility. Microwatt levels of THz radiation were detected when excited with FEL pulses at 1.06 μm wavelength and 10 W average power. Recently substantially higher powers of femtosecond THz pulses produced by synchrotron emission were extracted from the electron beamline. Calculations and measurements confirm the production of coherent broadband THz radiation from relativistic electrons with an average power of nearly 20 W, a world record in this wavelength range by a factor of 10,000. We describe the source, presenting theoretical calculations and their experimental verification. Potential applications of this exciting new source include driving new non-linear phenomena, performing pump-probe studies of dynamical properties of novel materials, and studying molecular vibrations and rotations, low frequency protein motions, phonons, superconductor bandgaps, electronic scattering, collective electronic excitations (e.g., charge density waves), and spintronics.

  19. High density terahertz frequency comb produced by coherent synchrotron radiation

    PubMed Central

    Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-01-01

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10−10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile. PMID:26190043

  20. Radiation from laser accelerated electron bunches: Coherent terahertz and femtosecond X-rays

    SciTech Connect

    Leemans, W.P.; Esarey, E.; van Tilborg, J.; Michel, P.A.; Schroeder, C.B.; Toth, Cs.; Geddes, C.G.R.; Shadwick, B.A.

    2004-10-01

    Electron beam based radiation sources provide electromagnetic radiation for countless applications. The properties of the radiation are primarily determined by the properties of the electron beam. Compact laser driven accelerators are being developed that can provide ultra-short electron bunches (femtosecond duration) with relativistic energies reaching towards a GeV. The electron bunches are produced when an intense laser interacts with a dense plasma and excites a large amplitude plasma density modulation (wakefield) that can trap background electrons and accelerate them to high energies. The short pulse nature of the accelerated bunches and high particle energy offer the possibility of generating radiation from one compact source that ranges from coherent terahertz to gamma rays. The intrinsic synchronization to a laser pulse and unique character of the radiation offers a wide range of possibilities for scientific applications. Two particular radiation source regimes are discussed: Coherent terahertz emission and x-ray emission based on betatron oscillations and Thomson scattering.

  1. Strained silicon modulation field-effect transistor as a new sensor of terahertz radiation

    NASA Astrophysics Data System (ADS)

    Moubarak Meziani, Yahya; Garcia, Enrique; Velazquez, Enrique; Diez, Enrique; El Moutaouakil, Amine; Otsuji, Taiichi; Fobelets, K.

    2011-10-01

    In this paper, we report on room temperature detection of terahertz radiation from strained-Si modulation-doped field-effect transistors. A non-resonant signal was observed with a maximum around the threshold voltage. The signal was interpreted due to the plasma wave nonlinearities in the channel. The intensity of the signal increases for the higher applied drain-to-source current. We also observed a dependence of the signal on the polarization of the incoming radiations.

  2. Intense tera-hertz laser driven proton acceleration in plasmas

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Tibai, Z.; Hebling, J.

    2016-06-01

    We investigate the acceleration of a proton beam driven by intense tera-hertz (THz) laser field from a near critical density hydrogen plasma. Two-dimension-in-space and three-dimension-in-velocity particle-in-cell simulation results show that a relatively long wavelength and an intense THz laser can be employed for proton acceleration to high energies from near critical density plasmas. We adopt here the electromagnetic field in a long wavelength (0.33 THz) regime in contrast to the optical and/or near infrared wavelength regime, which offers distinct advantages due to their long wavelength ( λ = 350 μ m ), such as the λ 2 scaling of the electron ponderomotive energy. Simulation study delineates the evolution of THz laser field in a near critical plasma reflecting the enhancement in the electric field of laser, which can be of high relevance for staged or post ion acceleration.

  3. Temperature-dependent terahertz magnetic dipole radiation from antiferromagnetic GdFeO{sub 3} ceramics

    SciTech Connect

    Fu, Xiaojian; Xi, Xiaoqing; Bi, Ke; Zhou, Ji

    2013-11-18

    Temperature-dependent terahertz magnetic dipole radiation in antiferromagnetic GdFeO{sub 3} ceramic is investigated both theoretically and experimentally in this work. A two-level quantum transition mechanism is introduced to describe the excitation-radiation process, and radiative lifetime is derived analytically from the change of spin state density during this process. Terahertz spectral measurements demonstrate that the radiative frequency exhibits a red-shift and lifetime shortens as temperature increases, which is in good agreement with theoretical predictions. The temperature-sensitive radiative frequency and excellent terahertz emission mean that the antiferromagnetic ceramics show potential for application in terahertz sensors and frequency-tunable terahertz lasers.

  4. Nonlinear photoresponse of field effect transistors terahertz detectors at high irradiation intensities

    SciTech Connect

    But, D. B.; Drexler, C.; Ganichev, S. D.; Sakhno, M. V.; Sizov, F. F.; Dyakonova, N.; Drachenko, O.; Gutin, A.; Knap, W.

    2014-04-28

    Terahertz power dependence of the photoresponse of field effect transistors, operating at frequencies from 0.1 to 3 THz for incident radiation power density up to 100 kW/cm{sup 2} was studied for Si metal–oxide–semiconductor field-effect transistors and InGaAs high electron mobility transistors. The photoresponse increased linearly with increasing radiation intensity up to the kW/cm{sup 2} range. Nonlinearity followed by saturation of the photoresponse was observed for all investigated field effect transistors for intensities above several kW/cm{sup 2}. The observed photoresponse nonlinearity is explained by nonlinearity and saturation of the transistor channel current. A theoretical model of terahertz field effect transistor photoresponse at high intensity was developed. The model explains quantitative experimental data both in linear and nonlinear regions. Our results show that dynamic range of field effect transistors is very high and can extend over more than six orders of magnitudes of power densities (from ∼0.5 mW/cm{sup 2} to ∼5 kW/cm{sup 2})

  5. Terahertz radiation generation by nonlinear mixing of two laser beams over a thin foil

    NASA Astrophysics Data System (ADS)

    Chauhan, Santosh; Parashar, J.

    2015-07-01

    Terahertz radiation generation via nonlinear mixing of two laser beams incident over a thin metal foil is explored. The lasers exert a ponderomotive force on the electrons of metal foil at beat frequency which lies in the terahertz range. The metal foil acts as antenna, producing terahertz radiations, highly directional in nature.

  6. Terahertz radiation generation by nonlinear mixing of two laser beams over a thin foil

    SciTech Connect

    Chauhan, Santosh; Parashar, J.

    2015-07-31

    Terahertz radiation generation via nonlinear mixing of two laser beams incident over a thin metal foil is explored. The lasers exert a ponderomotive force on the electrons of metal foil at beat frequency which lies in the terahertz range. The metal foil acts as antenna, producing terahertz radiations, highly directional in nature.

  7. A terahertz-vibration to terahertz-radiation converter based on gold nanoobjects: a feasibility study

    PubMed Central

    2016-01-01

    Summary Background: The need for practical and adaptable terahertz sources is apparent in the areas of application such as early cancer diagnostics, nondestructive inspection of pharmaceutical tablets, visualization of concealed objects. We outline the operation principle and suggest the design of a simple appliance for generating terahertz radiation by a system of nanoobjects – gold nanobars (GNBs) or nanorings (GNRs) – irradiated by microwaves. Results: Our estimations confirm a feasibility of the idea that GNBs and GNRs irradiated by microwaves could become terahertz emitters with photon energies within the full width at half maximum of the longitudinal acoustic phononic DOS of gold (ca. 16–19 meV, i.e., 3.9–4.6 THz). A scheme of the terahertz radiation source is suggested based on the domestic microwave oven irradiating a substrate with multiple deposited GNBs or GNRs. Conclusion: The size of a nanoobject for optimal conversion is estimated to be approx. 3 nm (thickness) by approx. 100 nm (length of GNB, or along the GNR). This detailed prediction is open to experimental verification. An impact is expected onto further studies of interplay between atomic vibrations and electromagnetic waves in nanoobjects. PMID:27547615

  8. Resonant terahertz radiation from warm collisional inhomogeneous plasma irradiated by two Gaussian laser beams

    NASA Astrophysics Data System (ADS)

    Niknam, A. R.; Banjafar, M. R.; Jahangiri, F.; Barzegar, S.; Massudi, R.

    2016-05-01

    Terahertz (THz) radiation generation by the interaction of two co-propagating high intensity laser beams with a warm collisional inhomogeneous plasma is analytically investigated. By presenting the dielectric permittivity of plasma and taking into account the ponderomotive force, the nonlinear current at THz frequency is obtained. A secondary resonant enhancement of THz radiation is observed, in addition to that occurs at the plasma frequency, which can be tuned by plasma density and temperature. Moreover, we show that for each beat frequency, there exists an optimum temperature at which THz radiation is maximized. It is also shown that the power and efficiency of THz radiation decrease by increasing the collision frequency.

  9. Study of terahertz intensity dependence on time resolved dynamic fringes in the interferometric autocorrelation setup

    NASA Astrophysics Data System (ADS)

    Venkatesh, M.; Chaudhary, A. K.

    2014-10-01

    Terahertz signal is generated from Low temperature gallium arsenide photoconductive dipole antennas (gap = 5μm, length = 20μm) by focusing 15 fs laser pulses and applying 12V DC across it. Terahertz intensity is detected by Pyroelectric detector (THZ1.5MB-USB). The collinear autocorrelation arrangement provides dynamic fringes which are allowed to be incident on photoconductive antennas to study the variation in terahertz intensity with respect to delay between laser pulses. Interestingly, the profile of THz intensity variation was similar to interferometric autocorrelation signal of laser pulses. The THz power attenuation with its propagation distance in atmosphere was measured.

  10. Short electron beam bunch characterization through measurement of terahertz radiation

    SciTech Connect

    Shukui Zhang; Stephen Benson; David Douglas; Michelle D. Shinn; Gwyn Williams

    2004-08-01

    This paper presents the measurement of sub-picosecond relativistic electron beam bunch length by analyzing the spectra of the coherent terahertz pulses through Kramers-Kronig transformation. The results are compared with autocorrelation from a scanning polarization autocorrelator that measures the coherent optical transition radiation. The limitations of the different methods to such a characterization are discussed.

  11. Terahertz radiation in alkali vapor plasmas

    SciTech Connect

    Sun, Xuan; Zhang, X.-C.

    2014-05-12

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization.

  12. Nondestructive monitoring of aircraft composites using terahertz radiation

    NASA Astrophysics Data System (ADS)

    Balbekin, Nikolay S.; Novoselov, Evgenii V.; Pavlov, Pavel V.; Bespalov, Victor G.; Petrov, Nikolay V.

    2015-03-01

    In this paper we consider using the terahertz (THz) time domain spectroscopy (TDS) for non destructive testing and determining the chemical composition of the vanes and rotor-blade spars. A versatile terahertz spectrometer for reflection and transmission has been used for experiments. We consider the features of measured terahertz signal in temporal and spectral domains during propagation through and reflecting from various defects in investigated objects, such as voids and foliation. We discuss requirements are applicable to the setup and are necessary to produce an image of these defects, such as signal-to-noise ratio and a method for registration THz radiation. Obtained results indicated the prospects of the THz TDS method for the inspection of defects and determination of the particularities of chemical composition of aircraft parts.

  13. Enhance the terahertz Smith-Purcell superradiant radiation by using dielectric loaded grating

    SciTech Connect

    Cao, Miaomiao Li, Ke; Liu, Wenxin Wang, Yong

    2015-08-15

    A dielectric loaded grating (DLG) for terahertz Smith-Purcell (SP) device is proposed to enhance the radiation intensity. By using the theoretical analysis and particle-in-cell simulations, the dispersion characteristics and SP superradiant radiation are investigated. Compared with the general metal grating, the usage of DLG can improve the magnitude of electric field and, consequently, strengthen the interaction of the evanescent wave with electron beam, which can improve the growth rate, enhance the SP superradiant radiation, and lower the start current for the operation of SP free-electron laser.

  14. Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation.

    PubMed

    Wallace, Vincent P; Macpherson, Emma; Zeitler, J Axel; Reid, Caroline

    2008-12-01

    Terahertz electromagnetic radiation has already been shown to have a wide number of uses. We consider specific applications of terahertz time-domain imaging that are inherently three-dimensional. This paper highlights the ability of terahertz radiation to reveal subsurface information as we exploit the fact that the radiation can penetrate optically opaque materials such as clothing, cardboard, plastics, and to some extent biological tissue. Using interactive science publishing tools, we concentrate on full three-dimensional terahertz data from three specific areas of application, namely, security, pharmaceutical, and biomedical. PMID:19037404

  15. Numerical and simulation study of terahertz radiation generation by laser pulses propagating in the extraordinary mode in magnetized plasma

    SciTech Connect

    Jha, Pallavi; Kumar Verma, Nirmal

    2014-06-15

    A one-dimensional numerical model for studying terahertz radiation generation by intense laser pulses propagating, in the extraordinary mode, through magnetized plasma has been presented. The direction of the static external magnetic field is perpendicular to the polarization as well as propagation direction of the laser pulse. A transverse electromagnetic wave with frequency in the terahertz range is generated due to the presence of the magnetic field. Further, two-dimensional simulations using XOOPIC code show that the THz fields generated in plasma are transmitted into vacuum. The fields obtained via simulation study are found to be compatible with those obtained from the numerical model.

  16. Probing the Kondo State using Terahertz Radiation

    NASA Astrophysics Data System (ADS)

    Wetli, Christoph; Kroha, Johann; Krellner, Cornelius; Kliemt, Kristin; Stockert, Oliver; v. Loehneysen, Hilbert; Fiebig, Manfred

    The appearance of quantum critical phase transitions is boosting the interest in the field of Kondo-lattice systems. After intense research over the last decades, experimental insights have been mainly gained by measuring the specific heat capacity or the magnetic susceptibility and relating them to the increase of the effective mass. Lately, it has been demonstrated that ARPES experiments allow direct access to the electrons contributing to the Kondo-lattice effect, but with some experimental restrictions. We will show that THz radiation is a powerful and highly accurate alternative for investigating the approach to the coherent Kondo-state of heavy-fermion systems. Photons in the THz range directly couple to the electronic heavy quasiparticles causing the Kondo-singlet behavior. Additionally, this technique allows studying Kondo-state dynamics on the picosecond time scale. We report lifetime measurements of excited Kondo singlets for the two crystalline rare earth heavy-fermion systems CeCu6 and YbRh2Si2, where the lifetimes scale inversely proportional to the Kondo-temperature. THz spectroscopy thus gives a very different perspective towards the Kondo-lattice effect, with the unique ability to combine temporal resolution and possible measurements in magnetic field.

  17. Bursts of Terahertz Radiation from Large-Scale Plasmas Irradiated by Relativistic Picosecond Laser Pulses.

    PubMed

    Liao, G Q; Li, Y T; Li, C; Su, L N; Zheng, Y; Liu, M; Wang, W M; Hu, Z D; Yan, W C; Dunn, J; Nilsen, J; Hunter, J; Liu, Y; Wang, X; Chen, L M; Ma, J L; Lu, X; Jin, Z; Kodama, R; Sheng, Z M; Zhang, J

    2015-06-26

    Powerful terahertz (THz) radiation is observed from large-scale underdense preplasmas in front of a solid target irradiated obliquely with picosecond relativistic intense laser pulses. The radiation covers an extremely broad spectrum with about 70% of its energy located in the high frequency regime over 10 THz. The pulse energy of the radiation is found to be above 100  μJ per steradian in the laser specular direction at an optimal preplasma scale length around 40-50  μm. Particle-in-cell simulations indicate that the radiation is mainly produced by linear mode conversion from electron plasma waves, which are excited successively via stimulated Raman scattering instability and self-modulated laser wakefields during the laser propagation in the preplasma. This radiation can be used not only as a powerful source for applications, but also as a unique diagnostic of parametric instabilities of laser propagation in plasmas. PMID:26197129

  18. Photoconductivity of graphene devices induced by terahertz radiation at various photon energies

    NASA Astrophysics Data System (ADS)

    Salman, M.; Gouider, F.; Friedemann, M.; Schmidt, H.; Ahlers, F. J.; Göthlich, M.; Haug, R. J.; Nachtwei, G.

    2013-12-01

    The influence of a magnetic field on Landau levels (LLs) in graphene-based devices is described via the magneto-optical response induced by terahertz (THz) radiation. For single-layer graphene, the resonance energies of the transitions between the on Landau levels (LLs) such as L1, L2 and L3 fit quite well to the terahertz spectral range at low magnetic fields. Also, the calculations for the terahertz photoresponse (photoconductivity) in the presence of low magnetic fields, the reported calculations for the scattering rate of LLs, recent and our experimental results of photoresponse measurements yield that single-layer graphene is suitable for the detection of terahertz radiation.

  19. Tunable Circularly Polarized Terahertz Radiation from Magnetized Gas Plasma.

    PubMed

    Wang, W-M; Gibbon, P; Sheng, Z-M; Li, Y-T

    2015-06-26

    It is shown, by simulation and theory, that circularly or elliptically polarized terahertz radiation can be generated when a static magnetic (B) field is imposed on a gas target along the propagation direction of a two-color laser driver. The radiation frequency is determined by √[ω(p)(2)+ω(c)(2)/4]+ω(c)/2, where ω(p) is the plasma frequency and ω(c) is the electron cyclotron frequency. With the increase of the B field, the radiation changes from a single-cycle broadband waveform to a continuous narrow-band emission. In high-B-field cases, the radiation strength is proportional to ω(p)(2)/ω(c). The B field provides a tunability in the radiation frequency, spectrum width, and field strength. PMID:26197126

  20. Interaction of Terahertz Radiation with Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Nelson, Keith

    2007-03-01

    Ferroelectric crystals have long been used as acoustic transducers and receivers. An extensive toolset has been developed for MHz-frequency acoustic wave generation, control, guidance, and readout. In recent years, an analogous toolset has been developed for terahertz wave transduction and detection. Femtosecond optical pulses irradiate ferroelectric crystals to generate responses in the 0.1-5 THz frequency range that are admixtures of electromagnetic and polar lattice vibrational excitations called phonon-polaritons. Spatiotemporal femtosecond pulse shaping may be used to generate additional optical pulses that arrive at specified times and sample locations for control and manipulation of the THz waves. Femtosecond laser machining may be used for fabrication of waveguides, resonators, and other structures that are integrated into the ferroelectric host crystal. Finally, real-space imaging of the THz fields can be executed with variably delayed femtosecond probe pulses, permitting direct visualization of THz wave spatial and temporal evolution. This ``polaritonics'' toolset enables multiplexed generation of arbitrary THz waveforms and use of the waveforms within the ferroelectric host crystal or after projection into free space or an adjacent medium. The polaritonics platform will be reviewed and several new developments and applications will be presented. These include spectroscopy of relaxor ferroelectrics, whose temperature-dependent dielectric responses in the GHz-THz regime reveal complex polarization dynamics on well separated fast and slow time scales; direct measurement of phonon-polariton lattice vibrational displacements through femtosecond time-resolved x-ray diffraction; generation of high polariton field amplitudes and pulse energies; use of large-amplitude polariton waves to drive nonlinear lattice vibrational responses; and enhancement of optical-to-THz conversion efficiency through a pseudo-phase-matching approach that circumvents the very large

  1. Harmonics radiation of graphene surface plasmon polaritons in terahertz regime

    NASA Astrophysics Data System (ADS)

    Li, D.; Wang, Y.; Nakajima, M.; Hashida, M.; Wei, Y.; Miyamoto, S.

    2016-06-01

    This letter presents an approach to extract terahertz radiation from surface plasmon polaritons excited in the surface of a uniform graphene structure by an electron beam. A sidewall configuration is proposed to lift the surface plasmon mode to be close to the light line, so that some of its harmonics have chances to go above the light line and become radiative. The harmonics are considered to be excited by a train of periodic electron bunches. The physical mechanism in this scheme is analyzed with three-dimensional theory, and the harmonics excitation and radiation are demonstrated through numerical calculations. The results show that this technique could be an alternative to transform the surface plasmon polaritons into radiation.

  2. Advances in the biological effects of terahertz wave radiation.

    PubMed

    Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed. PMID:25722878

  3. Generation and spectral manipulation of coherent terahertz radiation with two-stage optical rectification.

    PubMed

    Chen, Ching-Wei; Lin, Yu-Shian; Huang, Jung Y; Chang, Chen-Shiung; Pan, Ci-Ling; Yan, Li; Lee, Chao-Kuei

    2008-09-01

    We propose and experimentally demonstrate the generation of single-cycle terahertz radiation with two-stage optical rectification in GaSe crystals. By adjusting the time delay between the pump pulses employed to excite the two stages, the terahertz radiation from the second GaSe crystal can constructively superpose with the terahertz field injected from the first stage. The high mutual coherence between the two terahertz radiation fields is ensured with the coherent optical rectification process and can be further used to synthesize a desired spectral profile of coherent THz radiation. The technique is also potentially useful for generating high-power single-cycle terahertz pulses, usually limited by the pulse walk-off effect of the nonlinear optical crystal used. PMID:18773040

  4. Air nonlinear dynamics initiated by ultra-intense lambda-cubic terahertz pulses

    NASA Astrophysics Data System (ADS)

    Shalaby, Mostafa; Hauri, Christoph P.

    2015-05-01

    We report on the measurement of the instantaneous Kerr nonlinearity and the retarded alignment of air molecules CO2, N2, and O2 triggered by an intense, lambda-cubic terahertz pulse, a diffraction- and transform-limited single-cycle pulse. The strong-field, impulsive low-frequency excitation (3.9 THz) leads to field-free alignment dynamics of these molecules thanks to the terahertz-induced transient dipole moments in the otherwise non-polar molecules. The strong coupling to the terahertz electric transient results in the excitation of coherent large amplitude long-living rotational states at room temperature and ambient pressure. Beyond fundamental investigations of nonlinear properties in gases, our results suggest a route towards field-free molecular alignment at laser intensity well below the ionization threshold.

  5. Air nonlinear dynamics initiated by ultra-intense lambda-cubic terahertz pulses

    SciTech Connect

    Shalaby, Mostafa E-mail: christoph.hauri@psi.ch; Hauri, Christoph P. E-mail: christoph.hauri@psi.ch

    2015-05-04

    We report on the measurement of the instantaneous Kerr nonlinearity and the retarded alignment of air molecules CO{sub 2}, N{sub 2}, and O{sub 2} triggered by an intense, lambda-cubic terahertz pulse, a diffraction- and transform-limited single-cycle pulse. The strong-field, impulsive low-frequency excitation (3.9 THz) leads to field-free alignment dynamics of these molecules thanks to the terahertz-induced transient dipole moments in the otherwise non-polar molecules. The strong coupling to the terahertz electric transient results in the excitation of coherent large amplitude long-living rotational states at room temperature and ambient pressure. Beyond fundamental investigations of nonlinear properties in gases, our results suggest a route towards field-free molecular alignment at laser intensity well below the ionization threshold.

  6. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  7. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  8. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  9. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  10. Terahertz sideband-tuned quantum cascade laser radiation.

    PubMed

    Danylov, Andriy A; Waldman, Jerry; Goyette, Thomas M; Gatesman, Andrew J; Giles, Robert H; Li, Jin; Goodhue, William D; Linden, Kurt J; Nixon, William E

    2008-04-14

    A compact, tunable, narrowband terahertz source was demonstrated by mixing a single longitudinal mode 2.408 THz, free running quantum cascade laser with a 2-20 GHz microwave sweeper in a conventional corner-cube-mounted Schottky diode. The sideband spectra were characterized with a Fourier transform spectrometer, and the radiation was tuned through several D(2)O rotational transitions to estimate the longer term (t > or = several sec) bandwidth of the source. A spectral resolution of 2 MHz in CW regime was observed. PMID:18542618

  11. Photocurrent-based detection of terahertz radiation in graphene

    SciTech Connect

    Tomadin, Andrea Tredicucci, Alessandro; Vitiello, Miriam S.; Polini, Marco; Pellegrini, Vittorio

    2013-11-18

    Graphene is a promising candidate for the development of detectors of Terahertz (THz) radiation. A well-known detection scheme due to Dyakonov and Shur exploits plasma waves in a field-effect transistor (FET), whereby a dc photovoltage is generated in response to a THz field. In the quest for devices with a better signal-to-noise ratio, we theoretically investigate a plasma-wave photodetector in which a dc photocurrent is generated in a graphene FET. The noise equivalent power of our device is shown to be much smaller than that of a Dyakonov-Shur detector in a wide spectral range.

  12. Theoretical foundations of detection of terahertz radiation in laser-plasma interactions

    SciTech Connect

    Frolov, A. A.

    2013-02-15

    A theory is developed enabling one to calculate the temporal profile and spectrum of a terahertz wave packet from the energy of the second harmonic of optical radiation generated during the nonlinear interaction between terahertz and circularly polarized laser pulses in the skin layer of an overdense plasma. It is shown that the spectral and temporal characteristics of the envelope of the second harmonic of optical radiation coincide with those of the terahertz pulse only at small durations of the detecting laser radiation. For long laser pulses, the temporal profile and spectrum of the second harmonic are mainly determined by the characteristics of optical radiation at the carrier frequency.

  13. Selective spectral detection of continuum terahertz radiation

    NASA Astrophysics Data System (ADS)

    Kaufmann, P.; Marcon, R.; Marun, A.; Kudaka, A. S.; Bortolucci, E.; Zakia, M. B.; Diniz, J. A.; Cassiano, M. M.; Pereyra, P.; Godoy, R.; Timofeevsky, A. V.; Nikolaev, V. A.; Pereira Alves da Silva, A. M.; Fernandes, L. O. T.

    2010-07-01

    The knowledge of THz continuum spectra is essential to investigate the emission mechanisms by high energy particle acceleration processes. Technical challenges appear for obtaining selective spectral sensing in the far infrared range to diagnose radiation produced by solar flare burst emissions measured from space as well as radiation produced by high energy electrons in laboratory accelerators. Efforts are been carried out intended for the development of solar flare high cadence radiometers at two THz frequencies to operate outside the terrestrial atmosphere (i.e. at 3 and 7 THz). One essential requirement is the efficient suppression of radiation in the visible and near infrared. Experimental setups have been assembled for testing (a) THz transmission of "low-pass" filters: rough surface mirrors; membranes Zitex G110G and TydexBlack; (b) a fabricated 2.4 THz resonant grid band-pass filter transmission response for polarization and angle of incidence; (c) radiation response from distinct detectors: adapted commercial microbolometer array using HRFZ-Si window, pyroelectric module and Golay cell; qualitative detection of solar radiation at a sub-THz frequency has been tested with a microbolometer array placed at the focus of the 1.5 m reflector for submillimeter waves (SST) at El Leoncito, Argentina Andes.

  14. Terahertz waves radiated from two noncollinear femtosecond plasma filaments

    SciTech Connect

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko; Midorikawa, Katsumi

    2015-11-23

    Terahertz (THz) waves radiated from two noncollinear femtosecond plasma filaments with a crossing angle of 25° are investigated. The irradiated THz waves from the crossing filaments show a small THz pulse after the main THz pulse, which was not observed in those from single-filament scheme. Since the position of the small THz pulse changes with the time-delay of two filaments, this phenomenon can be explained by a model in which the small THz pulse is from the second filament. The denser plasma in the overlap region of the filaments changes the movement of space charges in the plasma, thereby changing the angular distribution of THz radiation. As a result, this schematic induces some THz wave from the second filament to propagate along the path of the THz wave from the first filament. Thus, this schematic alters the direction of the THz radiation from the filamentation, which can be used in THz wave remote sensing.

  15. Terahertz Radiation Effects and Biological Applications

    NASA Astrophysics Data System (ADS)

    Ramundo Orlando, Alfonsina; Gallerano, Gian Piero

    2009-12-01

    We present a brief overview of the literature on biological applications and experimental data on the effects of THz radiation. The region of the electromagnetic spectrum from 0.1 to 10 THz is a frontier area for research in physics, chemistry, biology, materials science and medicine. This area has recently begun to be filled by a variety of sources of high quality radiation with a wide range of new technologies related to it. New sources have led to new science in many areas, as scientists begin to become aware of the opportunities for research progress in their fields using THz radiation. Therefore the opportunities for THz science in chemistry and biology are wide ranging. Some of them will extend the range of already established work, many others have not yet been realized but show great promise, and the rest fall somewhere in between.

  16. Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels

    NASA Astrophysics Data System (ADS)

    Bessou, Maryelle; Duday, Henri; Caumes, Jean-Pascal; Salort, Simon; Chassagne, Bruno; Dautant, Alain; Ziéglé, Anne; Abraham, Emmanuel

    2012-10-01

    Terahertz imaging and conventional X-ray have been used to investigate a sealed Ancient Egyptian jar preserved at the Museum of Aquitaine (France). Terahertz radiation revealed an unknown content that could not have been visualized by X-ray. By comparison with a model object, we concluded that this content was composed of organic materials explaining their relative radiolucency.

  17. Terahertz radiation from a laser bunched relativistic electron beam in a magnetic wiggler

    SciTech Connect

    Kumar, Manoj; Tripathi, V. K.

    2012-07-15

    We develop a formalism for tunable coherent terahertz radiation generation from a relativistic electron beam, modulated by two laser beams, as it passes through a magnetic wiggler of wave vector k{sub w}z-caret. The lasers exert a beat frequency ponderomotive force on beam electrons, and modulate their velocity. In the drift space, velocity modulation translates into density modulation. As the beam bunches pass through the wiggler, they acquire a transverse velocity, constituting a transverse current that acts as an antenna to produce coherent THz radiation, when {omega}{sub 1}-{omega}{sub 2}=k{sub w}c/(cos{theta}-v{sub 0b}/c), where {omega}{sub 1}, {omega}{sub 2} are the frequencies of the lasers, v{sub 0b}z-caret is the beam velocity, and {theta} is the direction of maximum radiated intensity with respect to the direction of propagation of the beam.

  18. Terahertz Radiation from a Pipe with Small Corrugations

    SciTech Connect

    Bane, K.L.F.; Stupakov, G.; /SLAC

    2012-01-26

    We have studied through analytical and numerical methods the use of a relativistic electron bunch to drive a metallic beam pipe with small corrugations for the purpose of generating terahertz radiation. For the case of a pipe with dimensions that do not change along its length, we have shown that - with reasonable parameters - one can generate a narrow-band radiation pulse with frequency {approx}1 THz, and total energy of a few milli-Joules. The pulse length tends to be on the order of tens of picoseconds. We have also shown that, if the pipe radius is tapered along its length, the generated pulse will end up with a frequency chirp; if the pulse is then made to pass through a compressor, its final length can be reduced to a few picoseconds and its peak power increased to 1 GW. We have also shown that wall losses tend to be significant and need to be included in the structure design.

  19. High-performing nonlinear visualization of terahertz radiation on a silicon charge-coupled device

    PubMed Central

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P.

    2015-01-01

    Photoinduced electron transitions can lead to significant changes of the macroscopic electronic properties in semiconductors. This principle is responsible for the detection of light with charge-coupled devices. Their spectral sensitivity is limited by the semiconductor bandgap which has restricted their visualization capabilities to the optical, ultraviolet, and X-ray regimes. The absence of an imaging device in the low frequency terahertz range has severely hampered the advance of terahertz imaging applications in the past. Here we introduce a high-performing imaging concept to the terahertz range. On the basis of a silicon charge-coupled device we visualize 5–13 THz radiation with photon energy under 2% of the sensor's band-gap energy. The unprecedented small pitch and large number of pixels allow the visualization of complex terahertz radiation patterns in real time and with high spatial detail. This advance will have a great impact on a wide range of terahertz imaging disciplines. PMID:26496973

  20. Terahertz radiation from coherent phonons excited in semiconductors

    NASA Astrophysics Data System (ADS)

    Tani, M.; Fukasawa, R.; Abe, H.; Matsuura, S.; Sakai, K.; Nakashima, S.

    1998-03-01

    Terahertz radiation emitted by coherent phonons in Te, PbTe, and CdTe has been investigated by using an ultrafast photoconductive sampling detector. Pronounced coherent radiation originating from the longitudinal optical (LO) phonon oscillations of infrared-active modes was observed for all samples, irrespective of the different crystal structures. In addition, spectral dips at the transverse optical (TO) phonon frequencies, which could not be explained by absorption in the emitting volume, were observed for all samples. The model calculations indicate that the emission rate of the radiation into the air to that into the dielectric (semiconductor) side is scaled by 1/{1+(nd2+κd2)nd3} (nd and κd are the real and imaginary part of the complex refractive index, respectively). Thus, the enhanced emission of radiation by the coherent LO phonons and the spectral dips at the TO phonon frequencies can be explained by the respective increase and reduction of the emission efficiency of the radiation to the air due to the small and large value of the dielectric constant |ɛd(ω)|=nd2+κd2 near the LO and TO phonon frequencies, respectively.

  1. Electro-optic crystal mosaics for the generation of terahertz radiation

    DOEpatents

    Carrig, Timothy J.; Taylor, Antoinette J.; Stewart, Kevin R.

    1996-01-01

    Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification.

  2. Electro-optic crystal mosaics for the generation of terahertz radiation

    DOEpatents

    Carrig, T.J.; Taylor, A.J.; Stewart, K.R.

    1996-08-06

    Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification. 5 figs.

  3. Design of an electron gun for terahertz radiation source

    NASA Astrophysics Data System (ADS)

    Li, Ji; Pei, Yuan-Ji; Hu, Tong-Ning; Chen, Qu-Shan; Feng, Guang-Yao; Shang, Lei; Li, Cheng-Long

    2014-04-01

    An EC-ITC (External-Cathode Independently Tunable Cells) RF gun was employed with the aim of obtaining short-pulse bunches with high peak current for a terahertz radiation source. A gridded DC gun plays a key role as the external injecting electron source of the ITC RF gun, the performance of which determines the beam quality in the injector and transport line. In order to make the beam well compressed in the ITC RF gun, the energy of the electrons acquired from the gridded DC gun should be 15 keV at most. A proper structure of the gridded gun with double-anode is shown to overcome the strong space- charge force on the cathode, which is able to generate 6 μs beam with 4.5 A current successfully.

  4. Negative differential resistance devices for generation of terahertz radiation

    NASA Astrophysics Data System (ADS)

    Eisele, H.

    2015-08-01

    This paper discusses the principles of operation, state of the art, and future potential of active two-terminal devices for generation of low-noise, continuous-wave terahertz radiation. These devices use transit-time, transferred-electron, and quantum-mechanical effects (or a combination of them) to create a negative differential resistance (NDR) at the frequency of interest. Many different types of NDR devices have been proposed since the earliest days of semiconductor devices and studied in detailed simulations for their power generation potential, but have yet to be demonstrated experimentally. The paper focuses on NDR devices that not only yielded significant output powers at millimeter waves frequencies and higher, but also have the strong potential of generating radiation at terahertz frequencies. Examples of such NDR devices are resonant tunneling diodes (RTDs), superlattice electronic devices (SLEDs), and InP Gunn devices. Examples of their state-of-the-art results are output powers of 0.2 mW at 443 GHz and 5 μW at 1.53 THz from InGaAs/AlAs double barrier RTDs on InP substrate; 5.0 mW at 123.3 GHz, 1.1 mW at 155.1 GHz, and 0.52 mW at 252.8 GHz from GaAs/AlAs superlattice electronic devices on GaAs substrate; and 330 μW at 412 GHz, 86 μW at 479 GHz, and 18 μW at 502 GHz from InP Gunn devices.

  5. Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon Polarirons Excited by Cyclotron Electron Beam.

    PubMed

    Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang

    2015-01-01

    Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 10(5) W/cm(2). The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime. PMID:26525516

  6. Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon Polarirons Excited by Cyclotron Electron Beam

    NASA Astrophysics Data System (ADS)

    Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang

    2015-11-01

    Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 105 W/cm2. The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime.

  7. Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon Polarirons Excited by Cyclotron Electron Beam

    PubMed Central

    Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang

    2015-01-01

    Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 105 W/cm2. The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime. PMID:26525516

  8. Changing growth of neurites of sensory ganglion by terahertz radiation

    NASA Astrophysics Data System (ADS)

    Tsurkan, M. V.; Smolyanskaya, O. A.; Bespalov, V. G.; Penniyainen, V. A.; Kipenko, A. V.; Lopatina, E. V.; Krylov, B. V.

    2012-02-01

    Application of terahertz radiation for the creation of medical equipment and solving of biological problems has become widely spread. From this point of view, the influence of THz radiation on the nerve fibers is of primary concern. In addition, several studies indicated both stimulating and depressive effects on nerve cells. However, the mechanism of this effect has not yet been studied, including the dose and exposure time. Our research was devoted to the impact of broadband pulsed THz radiation in the frequency range of 0.05 to 2 THz on the neurite growth in the sensory ganglia of 10-12-day chicken embryos. Dependence of changes in functional responses of cells on the average output power has been found. An increase in the stimulating effect was observed at the lowest power density used (0.5 μW/cm2). Through non-destructive process and choosing the correct parameters of THz radiation, potential control of neural response becomes possible, which can subsequently lead to new medical treatments.

  9. High-power terahertz radiation from relativistic electrons

    NASA Astrophysics Data System (ADS)

    Carr, G. L.; Martin, Michael C.; McKinney, Wayne R.; Jordan, K.; Neil, George R.; Williams, G. P.

    2002-11-01

    Terahertz (THz) radiation, which lies in the far-infrared region, is at the interface of electronics and photonics. Narrow-band THz radiation can be produced by free-electron lasers and fast diodes. Broadband THz radiation can be produced by thermal sources and, more recently, by table-top laser-driven sources and by short electron bunches in accelerators, but so far only with low power. Here we report calculations and measurements that confirm the production of high-power broadband THz radiation from subpicosecond electron bunches in an accelerator. The average power is nearly 20watts, several orders of magnitude higher than any existing source, which could enable various new applications. In particular, many materials have distinct absorptive and dispersive properties in this spectral range, so that THz imaging could reveal interesting features. For example, it would be possible to image the distribution of specific proteins or water in tissue, or buried metal layers in semiconductors; the present source would allow full-field, real-time capture of such images. High peak and average power THz sources are also critical in driving new nonlinear phenomena and for pump-probe studies of dynamical properties of materials.

  10. Free electron terahertz wave radiation source with two-section periodical waveguide structures

    SciTech Connect

    Liu Weihao; Gong Sen; Zhang Yaxin; Zhou Jun; Zhang Ping; Liu Shenggang

    2012-03-15

    We analyze a free electron terahertz wave radiation source with two-section periodical waveguide structure (PWS), where the first section (section-I) is used to pre-modulate the electron beam and the second section (section-II) is for terahertz wave generation. By means of theoretical analysis and numerical simulations, we demonstrate that the starting current density of the beam-wave interaction in section-II can be significantly reduced provided that the operation frequency is the harmonic of electron beam's pre-modulation frequency. This kind of source can generate relatively high power terahertz wave radiation but only need moderate beam current density. And it may have great potential application in developing the compact and high power terahertz wave radiation source.

  11. A multimode terahertz-Orotron with the special Smith-Purcell radiation

    NASA Astrophysics Data System (ADS)

    Liu, Weihao; Lu, Yalin; Wang, Lin; Jia, Qika

    2016-05-01

    We proposed and investigated a terahertz Orotron, which is based on the recently revealed special Smith-Purcell radiation. It overcomes the main obstacles of the traditional Orotron in the terahertz region—unreachable high starting-current-density and low radiation power. With the experimentally available electron beam and facilities, its average output power can reach hundreds of milliwatts and even several watts in terahertz region, which is many orders of magnitude higher than that of the traditional Orotron. Additionally, it can be controlled to operate in ether the first or the second order mode, and the radiation frequency can extend from 0.1 THz to 1 THz. These remarkable advantages make it a promising terahertz source for practical applications.

  12. Intense terahertz emission from relativistic circularly polarized laser pulses interaction with overdense plasmas

    SciTech Connect

    Chen, Zi-Yu; Li, Xiao-Ya; Yu, Wei

    2013-10-15

    During the interaction of a relativistic circularly polarized laser pulse with an overdense plasma target, the longitudinal motion of bunches of electrons under the action of light pressure and electrostatic restore force can emit intense terahertz (THz) pulses. This mechanism allows high pump laser intensity and large electron number participating in the emission. Two-dimensional particle-in-cell simulations are carried out to investigate the THz emission. The results suggest that such a source can produce remarkably intense THz pulses with energy of several mJ/sr and power of tens of gigawatts, which could find applications in nonlinear studies and relativistic laser-plasma interaction diagnostics.

  13. Noninvasive detection of weapons of mass destruction using terahertz radiation

    NASA Astrophysics Data System (ADS)

    Campbell, Matthew B.; Heilweil, Edwin J.

    2003-08-01

    The growing and immediate threat of biological and chemical weapons has placed urgency on the development of chemical and biological warfare agent (CWA/BWA) screening devices. Specifically, the ability to detect CWA/BWA prior to deployment is paramount to mitigating the threat without exposing individuals to its effects. SPARTA, Inc. and NIST are currently investigating the feasibility of using far-infrared radiation, or terahertz (THz, 1 THz = 1012 Hz) radiation, to non-invasively detect biological and chemical agents, explosives and drugs/narcotics inside sealed containers. Small-to-medium sized molecules (3-100 atoms) in gas, liquid and solid phases consistently exhibit identifiable spectral features in the far-IR portion of the spectrum. Many compounds associated with weapons of mass destruction are made up of molecules of this size. The THz portion of the spectrum lies between visible light and radio waves, allowing for partial transmission of 0.3-10.0 THz (30-1000 μm, 10-330 cm-1) light through most common materials. Therefore, transmission measurements of THz light can potentially be used to non-invasively detect the presence of CWA/BWA, explosives and drugs in the pathway of a THz radiation beam.

  14. [Influence of terahertz (submillimeter) laser radiation on neurons in vitro].

    PubMed

    Ol'shevskaia, Iu S; Kozlov, A S; Petrov, A K; Zapara, T A; Ratushniak, A S

    2009-01-01

    The development of new sources of coherent non-ionizing radiation in terahertz wave range put forward the basic problems of revealing the mechanism of its action on biological objects, especially, on the nervous system. At this point it is necessary to reveal the radiation effects on complex molecular systems such as nerve cells. It was the main objective of this study. In the previous study we were the first to demonstrate highly specific effects of some examined wavelengths on the structural-functional properties of the nerve cells. The radiation of a free-electron laser produced damage to neuron morphology dependent on the power and wavelength. Transparent blank protrusions of the membrane, disorders of the growth of processes, and fall of the membrane potential were observed. The model developed and the data obtained approach the understanding of the molecular mechanisms of the effect of the waves under study on cells. These waves can be probably used as a tool for further investigation of functioning of neurons and neural system and correction of some pathology. PMID:19591402

  15. The role of optical rectification in the generation of terahertz radiation from GaBiAs

    SciTech Connect

    Radhanpura, K.; Hargreaves, S.; Lewis, R. A.; Henini, M.

    2009-06-22

    We report on a detailed study of the emission of terahertz-frequency electromagnetic radiation from layers of GaBi{sub y}As{sub 1-y} (0{<=}y<0.04) grown by molecular beam epitaxy on (311)B and (001) GaAs substrates. We measure two orthogonally polarized components of the terahertz radiation emitted under excitation by ultrashort near-infrared laser pulses in both transmission and reflection geometries as a function of the crystal rotation about its surface normal as well as the effect of in-plane magnetic field and pump fluence on the terahertz emission. We conclude that the principal mechanism for terahertz generation is via optical rectification rather than transient currents.

  16. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field

    SciTech Connect

    Wang, C. Wang, F.; Cao, J. C.

    2014-09-01

    Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation.

  17. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field.

    PubMed

    Wang, C; Wang, F; Cao, J C

    2014-09-01

    Chaotic electron transport in semiconductor superlattice induced by terahertz electric field that is superimposed on a dc electric field along the superlattice axis are studied using the semiclassical motion equations including the effect of dissipation. A magnetic field that is tilted relative to the superlattice axis is also applied to the system. Numerical simulation shows that electrons in superlattice miniband exhibit complicate nonlinear oscillating modes with the influence of terahertz radiation. Transitions between frequency-locking and chaos via pattern forming bifurcations are observed with the varying of terahertz amplitude. It is found that the chaotic regions gradually contract as the dissipation increases. We attribute the appearance of complicate nonlinear oscillation in superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode relative to Bloch oscillation and cyclotron oscillation. PMID:25273189

  18. Coherent Cherenkov radiation as an intense THz source

    NASA Astrophysics Data System (ADS)

    Bleko, V.; Karataev, P.; Konkov, A.; Kruchinin, K.; Naumenko, G.; Potylitsyn, A.; Vaughan, T.

    2016-07-01

    Diffraction and Cherenkov radiation of relativistic electrons from a dielectric target has been proposed as mechanism for production of intense terahertz (THz) radiation. The use of an extremely short high-energy electron beam of a 4th generation light source (X-ray free electron laser) appears to be very promising. A moderate power from the electron beam can be extracted and converted into THz radiation with nearly zero absorption losses. The initial experiment on THz observation will be performed at CLARA/VELA FEL test facility in the UK to demonstrate the principle to a wider community and to develop the radiator prototype. In this paper, we present our theoretical predictions (based on the approach of polarization currents), which provides the basis for interpreting the future experimental measurements. We will also present our hardware design and discuss a plan of the future experiment.

  19. Role of density ripples to resonant Terahertz radiation excitation in laser beating process

    NASA Astrophysics Data System (ADS)

    Malik, Anil K.; Tomar, Sanjay K.; Malik, Hitendra K.

    2012-10-01

    The Terahertz (THz) radiation has gained much attention of the researchers due to its applications in material characterization, imaging, topography and remote sensing, chemical and security identification, etc. Plasma based THz schemes are attractive because they are capable of producing high power radiation. Several experiments have employed plasma as a medium for the THz radiation generation using sub-picoseconds laser pulses and energetic electron beams. The role of obliqueness of the ripples in plasma density to the THz radiation generation in the process of laser beating is clarified. For this, we use two spatial-super-Gaussian lasers (different indices) having different frequencies and wave numbers but the same field amplitudes. Due to intensity gradient in transverse direction and obliqueness of the density ripples, a transverse component of nonlinear ponderomotive force is realized that produces transverse oscillatory current. This nonlinear current oscillating at beating frequency produces the THz radiation at the beating frequency. We discuss in detail the efficiency of the scheme and power and frequency of the THz radiation with due importance of the density ripples.

  20. Room temperature broadband terahertz gains in graphene heterostructures based on inter-layer radiative transitions

    SciTech Connect

    Tang, Linlong; Du, Jinglei; Shi, Haofei Wei, Dongshan; Du, Chunlei

    2014-10-15

    We exploit inter-layer radiative transitions to provide gains to amplify terahertz waves in graphene heterostructures. This is achieved by properly doping graphene sheets and aligning their energy bands so that the processes of stimulated emissions can overwhelm absorptions. We derive an expression for the gain estimation and show the gain is insensitive to temperature variation. Moreover, the gain is broadband and can be strong enough to compensate the free carrier loss, indicating graphene based room temperature terahertz lasers are feasible.

  1. Sub GV/cm terahertz radiation from relativistic laser-solid interactions via coherent transition radiation

    NASA Astrophysics Data System (ADS)

    Ding, W. J.; Sheng, Z. M.

    2016-06-01

    Broadband terahertz (THz) radiation with extremely high peak power, generated by the interaction of a femtosecond laser with a thin solid target, has been investigated via particle-in-cell simulations. The spatial (angular) and temporal profiles of the THz radiation reveal that it is caused by the coherent transition radiation emitted when laser-produced hot electrons pass through the front or rear surface of the target. Dependence of the THz radiation on laser and target parameters is studied; it is shown to have a strong correlation with hot electron production. The THz radiation conversion efficiency can be as high as a few times 10-3. This radiation is not only a potentially high power THz source, but may also be used as a unique diagnostic of hot electron generation and transport in relativistic laser-solid interactions.

  2. Intense terahertz-pulse generation by four-wave mixing process in induced gas plasma

    NASA Astrophysics Data System (ADS)

    Wicharn, S.; Buranasiri, P.

    2015-08-01

    In this article, we have numerically investigated an intense terahertz (THz) pulses generation in gaseous plasma based on the third-order nonlinear effect, four-wave mixing rectification (FWMR). We have proposed that the fundamental fields and second-harmonic field of ultra-short pulse lasers are combined and focused into a very small gas chamber to induce a gaseous plasma, which intense THz pulse is produced. To understand the THz generation process, the first-order multiple-scale perturbation method (MSPM) has been utilized to derive a set of nonlinear coupled-mode equations for interacting fields such as two fundamental fields, a second-harmonic field, and a THz field. Then, we have simulate the intense THz-pulse generation by using split step-beam propagation method (SS-BPM) and calculated output THz intensities. Finally, the output THz intensities generated from induced air, nitrogen, and argon plasma have been compared.

  3. Magnetic mirror cavities as terahertz radiation sources and a means of quantifying radiation friction

    SciTech Connect

    Holkundkar, Amol R. E-mail: amol.holkundkar@gmail.com; Harvey, Chris

    2014-10-15

    We propose a radiation source based on a magnetic mirror cavity. Relativistic electrons are simulated entering the cavity and their trajectories and resulting emission spectra are calculated. The uniformity of the particle orbits is found to result in a frequency comb in terahertz range, the precise energies of which are tunable by varying the electron's γ-factor. For very high energy particles, radiation friction causes the spectral harmonics to broaden and we suggest this as a possible way to verify competing classical equations of motion.

  4. Verification of terahertz-wave spectrophotometry by Compton backscattering of coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Sei, Norihiro; Takahashi, Toshiharu

    2014-01-01

    We developed a continuous-spectrum light beam from Compton backscattering by using coherent synchrotron radiation in an L-band linac at the Kyoto University Research Reactor Institute. The ratio of Compton backscattered photons to background photons when coherent synchrotron radiation was used was three times larger than when coherent transition radiation was used. The transmission spectrum of a polystyrene film in the terahertz-wave region was evaluated by measuring the spectrum of the Compton backscattered photons and it roughly agreed with that measured by a Martin-Puplett-type interferometer. The spectrophotometry using Compton backscattering shows promise as a new tool for investigations in terahertz-wave science.

  5. Application of terahertz radiation to soil measurements: initial results.

    PubMed

    Dworak, Volker; Augustin, Sven; Gebbers, Robin

    2011-01-01

    Developing soil sensors with the possibility of continuous online measurement is a major challenge in soil science. Terahertz (THz) electromagnetic radiation may provide the opportunity for the measurement of organic material density, water content and other soil parameters at different soil depths. Penetration depth and information content is important for a functional soil sensor. Therefore, we present initial research on the analysis of absorption coefficients of four different soil samples by means of THz transmission measurements. An optimized soil sample holder to determine absorption coefficients was used. This setup improves data acquisition because interface reflections can be neglected. Frequencies of 340 GHz to 360 GHz and 1.627 THz to 2.523 THz provided information about an existing frequency dependency. The results demonstrate the potential of this THz approach for both soil analysis and imaging of buried objects. Therefore, the THz approach allows different soil samples to be distinguished according to their different absorption properties so that relations among soil parameters may be established in future. PMID:22163737

  6. Polarization of terahertz radiation from laser generated plasma filaments

    SciTech Connect

    Dietze, Daniel; Darmo, Juraj; Roither, Stefan; Pugzlys, Audrius; Unterrainer, Karl; Heyman, James N.

    2009-11-15

    An analysis of the polarization of terahertz (THz) radiation from a laser-induced plasma source is presented. THz emission is achieved by mixing a laser pulse with its second harmonic after focusing through a {beta}-BaB{sub 2}O{sub 4} ({beta}-BBO) crystal. Numerical calculations, based on the nonlinear four-wave mixing model and the microscopic polarization model, are compared with experimental results. The main focus lies on the study of the dependence of THz polarization on the polarization and relative phase of the incident fundamental and second-harmonic pulses. We show that the modulation of the fundamental pulse by the BBO crystal has to be taken into account in order to describe experimental observations. By including the finite extension of the plasma and considering cross- and self-phase modulation of the two-color pump pulse, we are able to explain the observed ellipticity of the THz pulse as well as the orientation of the polarization axis.

  7. Radiation reaction at ultrahigh intensities

    SciTech Connect

    Hammond, Richard T.

    2010-06-15

    Intensities of 10{sup 22} W cm{sup -2} have been reached and it is expected that this will be increased by two orders of magnitude in the near future. At these intensities the radiation reaction force is important, especially in calculating the terminal velocity of an electron. The following briefly describes some of the problems of the existing most well-known equations and describes an approach based on conservation of energy. The resulting equation is compared to the Landau Lifshitz and Ford O'Connell equations, and laboratory tests are proposed.

  8. Quantitative investigation of the bioeffects associated with terahertz radiation

    NASA Astrophysics Data System (ADS)

    Wilmink, Gerald J.; Rivest, Benjamin D.; Ibey, Bennett L.; Roth, Caleb L.; Bernhard, Joshua; Roach, William P.

    2010-02-01

    The biological effects associated with Terahertz (THz) radiation are not well characterized. In this study, we investigated the cellular response of human dermal fibroblasts exposed to an optically-pumped molecular gas THz laser (υ = 2.52 THz, irradiance = 84.8 mW/cm2, exposure duration = 5 to 80 minutes). Computational dosimetry was conducted using finite-difference time-domain (FDTD) modeling techniques. Empirical dosimetry was conducted using infrared cameras and thermocouples. Cellular viability was assessed 24 h post-exposure using MTT calorimetric assays. Quantitative PCR was performed 4 h post-exposure to evaluate the transcriptional activation of genes involved in protein and DNA damage pathways. Comparable analyses were also performed for hyperthermic and genotoxic positive control samples. For all of the exposure durations tested, we found that greater than 95% of the cells were viable post-exposure. In addition, the exposed cells showed only minor increases (~3.5-fold) in heat shock protein expression. The empirical dosimetric data showed that the temperature of the cells increased by ~3 °C during exposure. This value was consistent with that predicted by the computational models. Interestingly, although the THz-exposed cells exhibited increases in heat shock protein expression, the magnitude of these increases was comparable to those observed in hyperthermic controls. In addition, none of the DNA repair genes tested were up-regulated in the THz-exposed cells, whereas 40-fold increases were observed in the genotoxic control cells. These results suggest that the biological effects imposed by THz radiation appear to be primarily photothermal in nature.

  9. Analog of microwave-induced resistance oscillations induced in GaAs heterostructures by terahertz radiation

    NASA Astrophysics Data System (ADS)

    Herrmann, T.; Dmitriev, I. A.; Kozlov, D. A.; Schneider, M.; Jentzsch, B.; Kvon, Z. D.; Olbrich, P.; Bel'kov, V. V.; Bayer, A.; Schuh, D.; Bougeard, D.; Kuczmik, T.; Oltscher, M.; Weiss, D.; Ganichev, S. D.

    2016-08-01

    We report on the study of terahertz radiation-induced MIRO-like oscillations of magnetoresistivity in GaAs heterostructures. Our experiments provide an answer on two most intriguing questions—effect of radiation helicity and the role of the edges—yielding crucial information for an understanding of the MIRO (microwave-induced resistance oscillations) origin. Moreover, we demonstrate that the range of materials exhibiting radiation-induced magneto-oscillations can be largely extended by using high-frequency radiation.

  10. Drift current dominated terahertz radiation from InN at low-density excitation

    NASA Astrophysics Data System (ADS)

    Lin, K. I.; Tsai, J. T.; Wang, T. S.; Hwang, J. S.; Chen, M. C.; Chi, G. C.

    2008-12-01

    This letter investigates the polarity of terahertz radiation from indium nitride (InN) excited by femtosecond optical pulses wherein a central wavelength of around 790nm is measured. The InN epilayers are grown by metalorganic chemical vapor deposition on sapphire and silicon substrates. The polarity of the terahertz radiation field from InN is opposite to that from p-InAs whose radiation mechanism is dominated by the photo-Dember effect indicating that the dominant radiation mechanism in InN is the drift current induced by the internal electric field at low-density excitation below 590nJ /cm2. The internal electric field consists of the surface accumulation field and the spontaneous polarization-induced electric field. In addition, since no azimuthal angle dependence of the terahertz radiation is observed, the optical rectification effect is ruled out. By comparing the wave forms of terahertz radiation from the front and the back of the InN sample grown on sapphire in reflection geometry, the N polarity of the InN sample is confirmed.

  11. Intensity-Modulated Radiation Therapy (IMRT)

    MedlinePlus

    ... modulating—or controlling—the intensity of the radiation beam in multiple small volumes. IMRT also allows higher ... of multiple intensity-modulated fields coming from different beam directions produce a custom tailored radiation dose that ...

  12. Radiation field screening in photoconductive antennae studied via pulsed terahertz emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Loata, Gabriel C.; Thomson, Mark D.; Löffler, Torsten; Roskos, Hartmut G.

    2007-12-01

    We report terahertz emission experiments on low-temperature-grown GaAs photoconductive antennae. Two field-screening effects determine the device response: space-charge screening on a long time scale and radiation field screening of the local electric field. This latter effect is the principal cause for saturation of terahertz emission observed when the emitters are driven hard with high-repetition-rate femtosecond laser pulses. We present an equivalent-circuit model consisting of three elements: a resistor with time-dependent conductance (photoswitch), a time-dependent voltage source (space-charge screening), and the antenna impedance (terahertz emission and radiation field screening). The simulations with this voltage divider reproduce the measured data well.

  13. LETTER TO THE EDITOR: Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hideki; Takahashi, Hironori; Yamada, Takashi; Kuroyanagi, Kazuyoshi; Kobayashi, Takayoshi

    2001-06-01

    Terahertz (THz) radiation was generated via optical rectification from organic single crystals, i.e. N-substituted (N-benzyl, N-diphenylmethyl, and N-2-naphthylmethyl) derivatives of 2-methyl-4-nitroaniline (MNA), and it was detected by means of the electro-optic sampling method. The intensity and the spectrum of the THz radiation were compared with those of ZnTe and DAST (N, N-dimethylamino-N'-methylstilbazolium p-toluenesulphonate) crystals. The integrated intensity of the THz radiation from the N-benzyl-MNA crystal was two thirds of that for the ZnTe crystal, the best-known practical THz emitter, and was as intense as that for the DAST crystal, the best organic THz emitter ever studied. The spectrum of the ZnTe crystal extended to 3 THz, while that of the N-benzyl MNA and DAST crystals dropped off around 2.5 THz. The THz radiation intensities from all of the organic crystals were compared quantitatively, on the basis of the consideration of molecular arrangements in the crystals. It was suggested that the absorption due to low-frequency phonon modes affected both the intensity and the spectral band shape of the THz radiation.

  14. Efficient Cherenkov emission of broadband terahertz radiation from an ultrashort laser pulse in a sandwich structure with nonlinear core

    SciTech Connect

    Bodrov, S. B.; Bakunov, M. I.; Hangyo, M.

    2008-11-01

    A scheme for efficient generation of broadband terahertz radiation by a femtosecond laser pulse propagating in a planar sandwichlike structure is proposed. The structure consists of a thin nonlinear core cladded with prisms made of a material with low terahertz absorption. The focused into a line laser pulse propagates in the core as a leaky or waveguide mode and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum and optical-to-terahertz conversion efficiency. The developed theory predicts the conversion efficiency of up to several percent in a 1 cm long and 1 cm wide Si-LiNbO{sub 3}-Si sandwich structure with a 20 {mu}m thick nonlinear layer pumped by 8.5 {mu}J Ti:sapphire laser with pulse duration of 100 fs.

  15. Imaging by terahertz photon counting

    NASA Astrophysics Data System (ADS)

    Ikushima, Kenji; Komiyama, Susumu

    2010-08-01

    Photon counting method is indispensable in visible/near-infrared optical measurements for detecting extremely weak radiation. The method, however, has been inaccessible in terahertz region, where the photon energies are more than 100 times smaller and catching individual photons is difficult. Here we review photon counting measurements of terahertz waves, by incorporating a semiconductor quantum-dot terahertz-photon detector into a scanning terahertz microscope. By using a quantum Hall effect detector as well, measurements cover the intensity dynamic range more than six orders of magnitude. Applying the measurement system to the study of semiconductor quantum Hall effect devices, we image extremely weak cyclotron radiation emitted by nonequilibrium electrons. Owing to the unprecedented sensitivity, a variety of new features of electron kinetics are unveiled. Besides semiconductor electric devices studied here, the experimental method will find application in diverse areas of molecular dynamics, microthermography, and cell activities.

  16. Probe beam-free detection of terahertz wave by electroluminescence induced by intense THz pulse

    NASA Astrophysics Data System (ADS)

    Shin, J.; Jin, Z.; Nosaka, Y.; Nakazawa, T.; Kodama, R.

    2016-03-01

    Recently, a table-top fs laser system can generate MW terahertz (THz) pulse with its electric field higher than 100 kV/cm can be generated by several schemes. Such a strong THz field can directly drive electrons inside various materials. Here, we demonstrated a direct THz electric field detection method by measuring the electroluminescence induced by intense THz pulse inside commonly available light emitting diode. An intense THz wave obtained by the two-color laser scheme was focused onto LED along with an external DC bias to induce luminescence which we found proportional to the amplitude of the incident THz field. The scheme can be useful to realize a low-cost, probe-free THz detection and imaging system.

  17. Controllable near-field intensity and spot size of hybrid terahertz metamaterial.

    PubMed

    Meng, Dejia; Hoque, M N F; Wang, Wei; Fan, Zhaoyang; Wang, Kejia; Lai, Jianjun; Chen, Changhong

    2015-04-15

    We report controllable near fields around split-ring resonator (SRR) gaps of an active terahertz metamaterial. As extension of parallel-plate capacitors, patterned VO2 is integrated into the metallic SRRs to manipulate the near-field intensity and hot spot size through its metal-insulator transition. This design enhances the device reliability by preventing VO2 dielectric breakdown at a strongly enhanced near field. The near-field intensity and spot size are tunable in broad ranges, and the device is demonstrated to be capable of compensating resonant frequency drift arisen from different interactions due to near-field coupling. It provides an effective method to actively manipulate the light-matter interaction through the strongly enhanced and tunable near fields. PMID:25872063

  18. Nonlinear electron dynamics of gold ultrathin films induced by intense terahertz waves

    SciTech Connect

    Minami, Yasuo Takeda, Jun; Katayama, Ikufumi; Dao, Thang Duy; Nagao, Tadaaki; Kitajima, Masahiro

    2014-12-15

    Linear and nonlinear electron dynamics of polycrystalline gold (Au) ultrathin films with thicknesses ranging from 1.4 to 5.8 nm were investigated via transmittance terahertz (THz) spectroscopy with intense electric field transients. We prepared ultrathin films with low surface roughness formed on a Si–(7 × 7) reconstructed surface, leading to the observation of monotonic decrease in THz transmittance with respect to film thickness. Furthermore, at all tested thicknesses, the transmittance decreased nonlinearly by 10%–30% with the application if high-intensity THz electric fields. Based on a Drude-model analysis, we found a significant decrease in the damping constant induced by the THz electric field, indicating that electrons are driven beyond the polycrystalline grain boundaries in Au thin films, and consequently leading to the suppression of the electron–boundary scattering rate.

  19. Terahertz spectroscopy with a holographic Fourier transform spectrometer plus array detector using coherent synchrotron radiation

    SciTech Connect

    Nikolay I. Agladz, John Klopf, Gwyn Williams, Albert J. Sievers

    2010-06-01

    By use of coherent terahertz synchrotron radiation, we experimentally tested a holographic Fourier transform spectrometer coupled to an array detector to determine its viability as a spectral device. Somewhat surprisingly, the overall performance strongly depends on the absorptivity of the birefringent lithium tantalate pixels in the array detector.

  20. Generation of high-power tunable terahertz-radiation by nonrelativistic beam-echo harmonic effect

    SciTech Connect

    Gong Huarong; Xu Jin; Wei Yanyu; Gong Yubin; Travish, Gil; Feng Jinjun

    2013-01-15

    A new type of terahertz radiation source based on the nonrelativistic electron beam-wave interaction is proposed. Here, the beam echo harmonic effect is applied to a traveling wave tube like device. The scheme is configured as a combination of a frequency multiplier and amplifier with, for instance, W-band (millimeter wave) input signals and terahertz output power. A one-dimensional model of this device shows that a 10th order harmonic-wave can be generated while other harmonic waves are suppressed. The device only requires a readily available input source (W-band), and the output frequency can be tuned continuously over a wide band.

  1. Application of Terahertz Radiation to the Detection of Corrosion under the Shuttle's Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.; Smith, Stephen W.; Seebo, Jeffrey P.; Walker, James L.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-01-01

    There is currently no method for detecting corrosion under Shuttle tiles except for the expensive process of tile removal and replacement; hence NASA is investigating new NDE methods for detecting hidden corrosion. Time domain terahertz radiation has been applied to corrosion detection under tiles in samples ranging from small lab samples to a Shuttle with positive results. Terahertz imaging methods have been able to detect corrosion at thicknesses of 5 mils or greater under 1" thick Shuttle tiles and 7-12 mils or greater under 2" thick Shuttle tiles.

  2. Terahertz metamaterials

    DOEpatents

    Peralta, Xomalin Guaiuli; Brener, Igal; O'Hara, John; Azad, Abul; Smirnova, Evgenya; Williams, John D.; Averitt, Richard D.

    2014-08-12

    Terahertz metamaterials comprise a periodic array of resonator elements disposed on a dielectric substrate or thin membrane, wherein the resonator elements have a structure that provides a tunable magnetic permeability or a tunable electric permittivity for incident electromagnetic radiation at a frequency greater than about 100 GHz and the periodic array has a lattice constant that is smaller than the wavelength of the incident electromagnetic radiation. Microfabricated metamaterials exhibit lower losses and can be assembled into three-dimensional structures that enable full coupling of incident electromagnetic terahertz radiation in two or three orthogonal directions. Furthermore, polarization sensitive and insensitive metamaterials at terahertz frequencies can enable new devices and applications.

  3. Theoretical investigation on generating terahertz radiation from gas plasma induced by three-color ultrashort lasers

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Liang; Yang, Zhen-Gang; Liu, Jin-Song; Wang, Sheng-Lie; Wang, Ke-Jia

    2015-08-01

    Generation of intense broadband terahertz (THz) waves from gas plasma induced by tri-color ultrashort (fundamental (ω), second harmonic (2ω), and third harmonic (3ω)) laser pulses is theoretically investigated. Simulation results show that the 3ω laser pulse can greatly enhance or suppress the generation of THz wave at different values of relative phase (θ 3) between the 3ω and ω fields. Moreover, the polarities of the generated THz waves can be controlled by changing θ 3, with the relative phase θ 2 (between the 2ω and ω fields) fixed to be a certain value. All of our results show that θ 3 plays a key role in the generation process, which promises to control the intensity as well as the polarity of gas plasma-induced THz radiation. Project supported by the Wuhan Applied Basic Research Project, China (Grant No. 20140101010009), the National Natural Science Foundation of China (Grant Nos. 61177095, 61475054, and 61405063), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2012FFA074 and 2013BAA002), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2013KXYQ004, 2014ZZGH021, and 2014QN023), and the Technology Innovation Foundation from Innovation Institute of Huazhong University of Science and Technology, China (Grant No. CXY13Q015).

  4. Picosecond laser-driven terahertz radiation from large scale preplasmas of solid targets

    NASA Astrophysics Data System (ADS)

    Liao, G. Q.; Li, Y. T.; Li, C.; Su, L. N.; Zheng, Y.; Liu, M.; Dunn, J.; Nilsen, J.; Hunter, J.; Wang, W. M.; Sheng, Z. M.; Zhang, J.

    2016-05-01

    The terahertz (THz) radiation from the front of solid targets with a large-scale preplasma irradiated by relativistic picosecond laser pulses has been studied. The THz radiation measured at the specular direction nonlinearly increases with laser energy and an optimal plasma density scalelength is observed. Particle-in-cell simulations indicate that the radiation can be attributed to the model of mode conversion. While the THz radiation near the target normal direction is saturated with laser energy and plasma scalelength. Unlike the radiation in the specular direction’ the transient current formed at the plasma-vacuum interface could be responsible for the radiation near the target normal.

  5. Observation of terahertz-radiation-induced ionization in a single nano island

    PubMed Central

    Seo, Minah; Kang, Ji-Hun; Kim, Hyo-Suk; Hyong Cho, Joon; Choi, Jaebin; Min Jhon, Young; Lee, Seok; Hun Kim, Jae; Lee, Taikjin; Park, Q-Han; Kim, Chulki

    2015-01-01

    Terahertz (THz) electromagnetic wave has been widely used as a spectroscopic probe to detect the collective vibrational mode in vast molecular systems and investigate dielectric properties of various materials. Recent technological advances in generating intense THz radiation and the emergence of THz plasmonics operating with nanoscale structures have opened up new pathways toward THz applications. Here, we present a new opportunity in engineering the state of matter at the atomic scale using THz wave and a metallic nanostructure. We show that a medium strength THz radiation of 22 kV/cm can induce ionization of ambient carbon atoms through interaction with a metallic nanostructure. The prepared structure, made of a nano slot antenna and a nano island located at the center, acts as a nanogap capacitor and enhances the local electric field by two orders of magnitudes thereby causing the ionization of ambient carbon atoms. Ionization and accumulation of carbon atoms are also observed through the change of the resonant condition of the nano slot antenna and the shift of the characteristic mode in the spectrum of the transmitted THz waves. PMID:25998840

  6. Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators

    SciTech Connect

    Qiao, Shen; Zhang, Yaxin Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang; Liang, Shixiong

    2015-11-21

    We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices.

  7. Tunable, high peak power terahertz radiation from optical rectification of a short modulated laser pulse.

    PubMed

    Gordon, Daniel F; Ting, Antonio; Alexeev, Ilya; Fischer, Richard; Sprangle, Phillip; Kapetenakos, Christos A; Zigler, Arie

    2006-07-24

    A new way of generating high peak power terahertz radiation using ultra-short pulse lasers is demonstrated. The optical pulse from a titanium:sapphire laser system is stretched and modulated using a spatial filtering technique to produce a several picosecond long pulse modulated at the terahertz frequency. A collinear type II phase matched interaction is realized via angle tuning in a gallium selenide crystal. Peak powers of at least 1.5 kW are produced in a 5 mm thick crystal, and tunability is demonstrated between 0.7 and 2.0 THz. Simulations predict that 150 kW of peak power can be produced in a 5 mm thick crystal. The technique also allows for control of the terahertz bandwidth. PMID:19516863

  8. Yb:YAG thin-disk chirped pulse amplification laser system for intense terahertz pulse generation.

    PubMed

    Ochi, Yoshihiro; Nagashima, Keisuke; Maruyama, Momoko; Tsubouchi, Masaaki; Yoshida, Fumiko; Kohno, Nanase; Mori, Michiaki; Sugiyama, Akira

    2015-06-01

    We have developed a 1 kHz repetition picosecond laser system dedicated for intense terahertz (THz) pulse generation. The system comprises a chirped pulse amplification laser equipped with a Yb:YAG thin-disk amplifier. At room temperature, the Yb:YAG thin-disk regenerative amplifier provides pulses having energy of over 10 mJ and spectral bandwidth of 1.2 nm. The pulse duration achieved after passage through a diffraction grating pair compressor was 1.3 ps. By employing this picosecond laser as a pump source, THz pulses having a peak frequency of 0.3 THz and 4 µJ of energy were generated by means of optical rectification in an Mg-doped LiNbO3 crystal. PMID:26072862

  9. Intense terahertz emission from molecular beam epitaxy-grown GaAs/GaSb(001)

    SciTech Connect

    Sadia, Cyril P.; Laganapan, Aleena Maria; Agatha Tumanguil, Mae; Estacio, Elmer; Somintac, Armando; Salvador, Arnel; Que, Christopher T.; Yamamoto, Kohji; Tani, Masahiko

    2012-12-15

    Intense terahertz (THz) electromagnetic wave emission was observed in undoped GaAs thin films deposited on (100) n-GaSb substrates via molecular beam epitaxy. GaAs/n-GaSb heterostructures were found to be viable THz sources having signal amplitude 75% that of bulk p-InAs. The GaAs films were grown by interruption method during the growth initiation and using various metamorphic buffer layers. Reciprocal space maps revealed that the GaAs epilayers are tensile relaxed. Defects at the i-GaAs/n-GaSb interface were confirmed by scanning electron microscope images. Band calculations were performed to infer the depletion region and electric field at the i-GaAs/n-GaSb and the air-GaAs interfaces. However, the resulting band calculations were found to be insufficient to explain the THz emission. The enhanced THz emission is currently attributed to a piezoelectric field induced by incoherent strain and defects.

  10. Terahertz radiation study on FRP composite solid laminates

    NASA Astrophysics Data System (ADS)

    Im, Kwang-Hee; Hsu, David K.; Chiou, Chien-Ping; Barnard, Daniel J.; Yang, In-Young; Park, Je-Woong

    2012-05-01

    Investigation of terahertz time domain spectroscopy (THz TDS) was made and reflection and transmission configurations were studied as a nondestructive evaluation technique. Here carbon fiber-reinforced plastics (CFRP) derived their excellent mechanical strength, stiffness and electrical conductivity from carbon fibers. Especially, the electrical conductivity of CFRP composites depends on the direction of unidirectional fibers since carbon fibers are electrically conducting while the epoxy matrix is not. The THz TDS can be considered as a useful tool using general non-conducting materials; however it is quite limited to conducting materials. In order to solve various material properties, the index of refraction (n) is derived by using the terahertz time domain spectroscopy. Also, for a 48-ply thermoplastic PPS(poly-phenylene sulfide)-based CFRP solid laminate, the terahertz scanning images were made at the angles ranged from 0° to 180° with respect to the nominal fiber axis. So, the images were mapped out based on the electrical field (E-field) direction in the CFRP solid laminates.

  11. Record High Power Terahertz Radiation from Relativistic Electrons

    SciTech Connect

    G.L. Carr; Michael C. Martin; Wayne R. McKinney; Kevin Jordan; George R. Neil; Gwyn P. Williams

    2002-03-01

    Calculations and measurements confirm the production of coherent broadband THz radiation from relativistic electrons with an average power of nearly 20 watts. The radiation has qualities closely analogous to the THz radiation produced by ultrafast laser techniques (spatially coherent, short duration pulses with transform-limited spectral content). But in contrast to conventional THz radiation, the intensity is many orders of magnitude greater due to a relativistic enhancement. The absorption and dispersive properties of materials in this spectral range provide contrast for a unique type of imaging [1,2]. The striking improvement in power reported here could revolutionize this application by allowing full-field, real-time image capture. High peak and average power THz sources are also critical in driving new non-linear phenomena with excellent signal to noise, and for pump-probe studies of dynamical properties of novel materials, both of which are central to future high-speed electronic devices [3,4]. It should also be useful for studies of molecular vibrations and rotations, low frequency protein motions, phonons, superconductor bandgaps, electronic scattering and collective electronic excitations (e.g., charge density waves).

  12. Analytical study of terahertz wave intensity measurements by ZnTe electro-optic crystal

    NASA Astrophysics Data System (ADS)

    Siddique, Muhammad; Yang, Suhui; Li, Zhuo; Li, Ping

    2008-03-01

    An analytical study of THz-waves' intensity measurement generated by Terahertz Parametric Oscillator (TPO) and detection of the THz pulses occurs via free-space electro optic detection by ZnTe crystal has been studied. The pump-probe technique has been used to observe the dynamics of an optically excited ZnTe electro-optic crystal. THz wave will be used as modulation source for electro-optical phenomena in ZnTe crystal. The THz pulses generated by TPO are 10-25 ns pulses at a repetition rate of 1Hz. ZnTe crystal is being used for intensity measurement of THz-waves. In this theoretical proposed experiment, a short pump pulse (THz-wave) and probe pulse (near IR laser) with duration of typically 10 to 25 ns interacts in the ZnTe. In electro-optic sampling the two effects namely Pockels effect and Kerr effect have been discussed and interaction of two beams from or transmission through the ZnTe, the probe pulse Intensity contains information about the THz-waves' intensity and so on.

  13. Influences of different gases on the terahertz radiation based on the application of two-color laser pulses

    SciTech Connect

    Moradi, S.; Ganjovi, A.; Shojaei, F.; Saeed, M.

    2015-10-15

    In this work, using a two-dimensional Particle In Cell-Monte Carlo Collision simulation method, a comparative study is performed on the influences of different types of atomic and molecular gases at various background gas pressures on the generation of broadband and intense Terahertz (THz) radiation via the application of two-color laser pulses. These two modes are focused into Argon (Ar), Xenon (Xe), Nitrogen (N{sub 2}), Oxygen (O{sub 2}), and air as the background gaseous media and the plasma channel is created. It is observed that the THz radiation emission dramatically changes due to the propagation effects. A wider THz pulse is emitted from the formed plasma channel at the higher gas pressures. The significant effects of the propagation features of the emitted THz pulse on its energy at the longer lengths of the plasma channel are observed.

  14. Effects of two-photon absorption on terahertz radiation generated by femtosecond-laser excited photoconductive antennas.

    PubMed

    Lee, Chao-Kuei; Yang, Chan-Shan; Lin, Sung-Hui; Huang, Shiuan-Hua; Wada, Osamu; Pan, Ci-Ling

    2011-11-21

    Terahertz (THz) radiation can be generated more efficiently from a low-temperature-grown GaAs (LT-GaAs) photoconductive (PC) antenna by considering the two-photon absorption (TPA) induced photo-carrier in the photoconductor. A rate-equation-based approach using the Drude-Lorentz model taking into account the band-diagram of LT-GaAs is used for the theoretical analysis. The use of transform-limited pulses at the PC antenna is critical experimentally. Previously unnoticed THz pulse features and anomalously increasing THz radiation power rather than saturation were observed. These are in good agreement with the theoretical predictions. The interplay of intensity dependence and dynamics of generation of photoexcited carriers by single-photon absorption and TPA for THz emission is discussed. PMID:22109395

  15. Measurement of coherent terahertz radiation for time-domain spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Kuroda, R.; Yasumoto, M.; Sei, N.; Toyokawa, H.; Ikeura-Sekiguchi, H.; Ogawa, H.; Koike, M.; Yamada, K.

    2009-12-01

    A high-power terahertz (THz) source for THz time-domain spectroscopy (THz-TDS) and THz imaging has been developed based on an S-band compact electron linac at the National Institute of Advanced Industrial Science and Technology (AIST). A THz pulse was generated as coherent synchrotron radiation (CSR) from an ultra-short electron bunch and expected to have peak power of kW-order with frequency range of 0.1-2 THz. The electro-optic (EO) sampling method with a ZnTe crystal for the THz pulse measurement has been prepared for THz-TDS system. The timing measurement between the THz pulse and a probe laser was carried out. A preliminary experiment of THz transmission imaging of an integrated circuit (IC) card has been successfully demonstrated using the THz CSR pulse and a W-band rf detector. The imaging result was experimentally compared with a result of X-ray imaging. It is confirmed that its intensity and stability are enough to perform for the THz applications.

  16. Incoherent sub-terahertz radiation source with a photomixer array for active imaging in smoky environments

    NASA Astrophysics Data System (ADS)

    Shimizu, Naofumi; Matsuyama, Ken; Uchida, Hidetake

    2015-03-01

    We propose a sub-terahertz (THz) illuminator suitable for use with a THz camera when exploring objects within and behind smoke at the scene of a fire. The illuminator contains a photomixer array and each photomixer generates incoherent sub-THz waves from a single-mode laser light and optical noise using photomixing. The incoherency of the generated sub-THz waves enables us to raise their intensity by increasing the number of photomixers in operation, which makes it possible to realize very bright sub-THz illumination. Consequently, objects being under searched for within or behind smoke can be clearly illuminated using the illuminator and visualized by the THz camera even though they are surrounded by thick and/or high-temperature smoke. To verify our concept, we conducted active imaging with coherent and incoherent sub-THz radiation from a photomixer array utilizing reflection geometry. Although the contrast of the image was improved by increasing number of photomixers in operation on the imaging with coherent radiation, the shape of the target was degraded by the interference pattern of the illuminated sub-THz waves. The contrast of the image when using incoherent radiation was improved without obscuring the shape of the target by increasing the number of photomixers. We also confirmed that there was good visibility for active imaging using incoherent sub-THz illumination even though thick smoke was presented. These results indicate that the use of incoherent sub-THz waves and an array of photomixers should enable a sub-THz illuminator with a high level of brightness to be used for active imaging

  17. One-dimensional carbon nanostructures for terahertz electron-beam radiation

    NASA Astrophysics Data System (ADS)

    Tantiwanichapan, Khwanchai; Swan, Anna K.; Paiella, Roberto

    2016-06-01

    One-dimensional carbon nanostructures such as nanotubes and nanoribbons can feature near-ballistic electronic transport over micron-scale distances even at room temperature. As a result, these materials provide a uniquely suited solid-state platform for radiation mechanisms that so far have been the exclusive domain of electron beams in vacuum. Here we consider the generation of terahertz light based on two such mechanisms, namely, the emission of cyclotronlike radiation in a sinusoidally corrugated nanowire (where periodic angular motion is produced by the mechanical corrugation rather than an externally applied magnetic field), and the Smith-Purcell effect in a rectilinear nanowire over a dielectric grating. In both cases, the radiation properties of the individual charge carriers are investigated via full-wave electrodynamic simulations, including dephasing effects caused by carrier collisions. The overall light output is then computed with a standard model of charge transport for two particularly suitable types of carbon nanostructures, i.e., zigzag graphene nanoribbons and armchair single-wall nanotubes. Relatively sharp emission peaks at geometrically tunable terahertz frequencies are obtained in each case. The corresponding output powers are experimentally accessible even with individual nanowires, and can be scaled to technologically significant levels using array configurations. These radiation mechanisms therefore represent a promising paradigm for light emission in condensed matter, which may find important applications in nanoelectronics and terahertz photonics.

  18. Antenna-boosted mixing of terahertz and near-infrared radiation

    SciTech Connect

    Banks, Hunter B.; Sherwin, Mark S.; Hofmann, Andrea; Mack, Shawn; Gossard, Arthur C.

    2014-09-01

    Using moderate terahertz intensities of approximately 20 kW/cm{sup 2} near 0.6 THz, together with simple antennas, we have observed up to 12 sidebands on a near IR laser. The high-order sidebands were generated at room temperature in a membrane containing GaAs/AlGaAs quantum wells. The antennas were rectangular apertures ∼0.2 mm long in a gold film evaporated onto the membrane. Comparing the intensities required to generate comparable sideband spectra with and without antennas, we estimate the local terahertz field was enhanced by a factor of 5 ± 1, in agreement with finite difference time domain calculations.

  19. IKNO, a user facility for coherent terahertz and UV synchrotron radiation

    SciTech Connect

    Sannibale, Fernando; Marcelli, Augusto; Innocenzi, Plinio

    2008-04-26

    IKNO (Innovation and KNOwledge) is a proposal for a multi-user facility based on an electron storage ring optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range, and of broadband incoherent synchrotron radiation (SR) ranging from the IR to the VUV. IKNO can be operated in an ultra-stable CSR mode with photon flux in the terahertz frequency region up to nine orders of magnitude higher than in existing 3rd generation light sources. Simultaneously to the CSR operation, broadband incoherent SR up to VUV frequencies is available at the beamline ports. The main characteristics of the IKNO storage and its performance in terms of CSR and incoherent SR are described in this paper. The proposed location for the infrastructure facility is in Sardinia, Italy.

  20. Visualization of ferroelectric domains in a hydrogen-bonded molecular crystal using emission of terahertz radiation

    SciTech Connect

    Sotome, M.; Kida, N. Okamoto, H.; Horiuchi, S.

    2014-07-28

    Using a terahertz-radiation imaging, visualizations of ferroelectric domains were made in a room-temperature organic ferroelectric, croconic acid. In as-grown crystals, observed are ferroelectric domains with sizes larger than 50-μm square, which are separated by both 180° and tail-to-tail domain walls (DWs). By applying an electric field along c axis (the polarization direction), a pair of 180° DWs is generated and an each 180° DW oppositely propagates along a axis, resulting in a single domain. By cyclic applications of electric fields, a pair of 180° DWs repeatedly emerges, while no tail-to-tail DWs appear. We discuss the usefulness of the terahertz-radiation imaging as well as the observed unique DW dynamics.

  1. Quantum Well Intrasubband Photodetector for Far Infared and Terahertz Radiation Detection

    NASA Technical Reports Server (NTRS)

    Ting, David Z. -Y.; Chang, Yia-Chung; Bandara, Sumith V.; Gunapala, Sarath D.

    2007-01-01

    The authors present a theoretical analysis on the possibility of using the dopant-assisted intrasubband absorption mechanism in quantum wells for normal-incidence far infrared/terahertz radiation detection. The authors describe the proposed concept of the quantum well intrasubband photodetector (QWISP), which is a compact semiconductor heterostructure device compatible with existing GaAs focal-plane array technology, and present theoretical results demonstrating strong normal-incidence absorption and responsivity in the QWISP.

  2. Double negative-metamaterial based Terahertz radiation excited by a sheet beam bunch

    SciTech Connect

    Duan, Zhaoyun; Guo, Chen; Guo, Xin; Chen, Min

    2013-09-15

    We describe a new method to generate enhanced terahertz (THz) surface wave (SW) via its coupling with reversed Cherenkov radiation (RCR), excited by a sheet beam bunch which travels in a vacuum above an isotropic double negative metamaterial (DNM). The physical mechanism for the enhancement is that the DNM can support a RCR which can resonantly interact with a sheet electron beam bunch, resulting in an enhanced SW due to its coupling with the enhanced RCR. Numerical results show strong enhancement effect for the SW and RCR in the THz band. This enhanced THz radiation has potential applications to high-power THz radiation sources and Cherenkov detectors which require large signals.

  3. Superradiant amplification of terahertz radiation by plasmons in inverted graphene with a planar distributed Bragg resonator

    SciTech Connect

    Polischuk, O. V. Popov, V. V.; Otsuji, T.

    2015-11-15

    It is shown theoretically that stimulated generation of terahertz radiation by plasmons in graphene with a planar distributed Bragg resonator is possible at two different frequencies for each plasmon mode. This behavior may be attributed to the superradiance of the collective plasmon mode, which is associated with superlinear increase in the radiative damping of the plasmons with increase in pumping power. As a result, the curves of the radiative damping and the plasmon gain as a function of the pumping power intersect at two points corresponding to different generation conditions.

  4. Quasilinear theory of terahertz free-electron lasers based on Compton scattering of incoherent pump wave by intense relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Kocharovskaya, E. R.

    2016-08-01

    The use of incoherent broadband pump radiation for improving the electron efficiency in the free-electron lasers (FEL) based on stimulated backscattering is considered. On the basis of a quasilinear approach, it is shown that the efficiency increases in proportion to the width of the pump spectrum. The effect is owing to a broadening of the spectrum of synchronous combination waves and realization of a mechanism of stochastic particle deceleration. The injection of a monochromatic seed signal in a single pass FEL amplifier or the implementation of a selective high-Q resonator in an FEL oscillator makes the high-frequency scattered radiation be monochromatic in spite of an incoherent pumping. In the regime of stochastic particle deceleration, the efficiency only slightly depends on the spread of the beam parameters, which is beneficial for a terahertz FEL powered by intense relativistic electron beams.

  5. Features of plasma glow in low pressure terahertz gas discharge

    SciTech Connect

    Bratman, V. L.; Golubev, S. V.; Izotov, I. V.; Kalynov, Yu. K.; Koldanov, V. A.; Razin, S. V.; Litvak, A. G.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G.

    2013-12-15

    Investigations of the low pressure (1–100 Torr) gas discharge in the powerful (1 kW) quasi-optical terahertz (0.55 THz) wave beams were made. An intense afterglow was observed after the end of gyrotron terahertz radiation pulse. Afterglow duration significantly exceeded radiation pulse length (8 μs). This phenomenon could be explained by the strong dependence of the collisional-radiative recombination rate (that is supposed to be the most likely mechanism of electron losses from the low pressure terahertz gas discharge) on electron temperature.

  6. Features of plasma glow in low pressure terahertz gas discharge

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Golubev, S. V.; Izotov, I. V.; Kalynov, Yu. K.; Koldanov, V. A.; Litvak, A. G.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G.

    2013-12-01

    Investigations of the low pressure (1-100 Torr) gas discharge in the powerful (1 kW) quasi-optical terahertz (0.55 THz) wave beams were made. An intense afterglow was observed after the end of gyrotron terahertz radiation pulse. Afterglow duration significantly exceeded radiation pulse length (8 μs). This phenomenon could be explained by the strong dependence of the collisional-radiative recombination rate (that is supposed to be the most likely mechanism of electron losses from the low pressure terahertz gas discharge) on electron temperature.

  7. Current-driven detection of terahertz radiation using a dual-grating-gate plasmonic detector

    SciTech Connect

    Boubanga-Tombet, S. Tanimoto, Y.; Satou, A.; Suemitsu, T.; Otsuji, T.; Wang, Y.; Minamide, H.; Ito, H.; Fateev, D. V.; Popov, V. V.

    2014-06-30

    We report on the detection of terahertz radiation by an on-chip planar asymmetric plasmonic structure in the frequency region above one terahertz. The detector is based on a field-effect transistor that has a dual grating gate structure with an asymmetric unit cell, which provides a geometrical asymmetry within the structure. Biasing the detector with a dc source-to-drain current in the linear region of the current-voltage characteristic introduces an additional asymmetry (electrical asymmetry) that enhances the detector responsivity by more than one order of magnitude (by a factor of 20) as compared with the unbiased case due to the cooperative effect of the geometrical and electrical asymmetries. In addition to the responsivity enhancement, we report a relatively low noise equivalent power and a peculiar non-monotonic dependence of the responsivity on the frequency, which results from the multi-plasmonic-cavity structure of the device.

  8. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Semenov, A.; Hübers, H.-W.; Hoehl, A.; Ries, M.; Wüstefeld, G.; Ulm, G.; Ilin, K.; Thoma, P.; Siegel, M.

    2016-03-01

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the duration of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.

  9. Improvement in thermal barriers to intense terahertz generation from photoconductive antennas

    SciTech Connect

    Ropagnol, X.; Bouvier, Marcel; Reid, M.; Ozaki, T.

    2014-07-28

    We study the generation of free-space terahertz (THz) pulses at low THz frequencies using 6H-SiC and 4H-SiC photoconductive antennas. We investigate the dependence of the THz electric field radiated from the biased SiC emitters on the applied bias field and on the incident optical fluence. In this work, bias fields as high as 32 kV/cm, and optical fluences up to 2.5 mJ/cm{sup 2} (for the 400 nm laser), and 7.5 mJ/cm{sup 2} (for the 800 nm laser) were used. THz generation with back- and front-side illumination of the antennas is also examined. It is found that the SiC antenna, when illuminated from the backside, generates higher THz electric fields. The performance of 6H-SiC and ZnSe photoconductive antennas are compared. We show that, taking advantage of the superior thermal properties of SiC compare with ZnSe, the THz output power generated with the 6H-SiC photoconductive antenna under optimum conditions is 2.3 times larger that with a ZnSe photoconductive antenna.

  10. Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges

    SciTech Connect

    Miao, W.; Zhang, W.; Zhong, J. Q.; Shi, S. C.; Delorme, Y.; Lefevre, R.; Feret, A.; Vacelet, T.

    2014-02-03

    We interpret the experimental observation of a frequency-dependence of superconducting hot electron bolometer (HEB) mixers by taking into account the non-uniform absorption of the terahertz radiation on the superconducting HEB microbridge. The radiation absorption is assumed to be proportional to the local surface resistance of the HEB microbridge, which is computed using the Mattis-Bardeen theory. With this assumption the dc and mixing characteristics of a superconducting niobium-nitride (NbN) HEB device have been modeled at frequencies below and above the equilibrium gap frequency of the NbN film.

  11. Electromagnetic crystal based terahertz thermal radiators and components

    NASA Astrophysics Data System (ADS)

    Wu, Ziran

    This dissertation presents the investigation of thermal radiation from three-dimensional electromagnetic crystals (EMXT), as well as the development of a THz rapid prototyping fabrication technique and its application in THz EMXT components and micro-system fabrication and integration. First, it is proposed that thermal radiation from a 3-D EMXT would be greatly enhanced at the band gap edge frequency due to the redistribution of photon density of states (DOS) within the crystal. A THz thermal radiator could thus be built upon a THz EMXT by utilizing the exceptional emission peak(s) around its band gap frequency. The thermal radiation enhancement effects of various THz EMXT including both silicon and tungsten woodpile structures (WPS) and cubic photonic cavity (CPC) array are explored. The DOS of all three structures are calculated, and their thermal radiation intensities are predicted using Planck's Equation. These calculations show that the DOS of the silicon and tungsten WPS can be enhanced by a factor of 11.8 around 364 GHz and 2.6 around 406 GHz respectively, in comparison to the normal blackbody radiation at same frequencies. An enhancement factor of more than 100 is obtained in calculation from the CPC array. A silicon WPS with a band gap around 200 GHz has been designed and fabricated. Thermal emissivity of the silicon WPS sample is measured with a control blackbody as reference. And enhancements of the emission from the WPS over the control blackbody are observed at several frequencies quite consistent with the theoretical predictions. Second, the practical challenge of THz EMXT component and system fabrication is met by a THz rapid prototyping technique developed by us. Using this technique, the fabrications of several EMXTs with 3D electromagnetic band gaps in the 100-400 GHz range are demonstrated. Characterization of the samples via THz Time-domain Spectroscopy (THz-TDS) shows very good agreement with simulation, confirming the build accuracy of this

  12. Terahertz radiation from Cd{sub x}Hg{sub 1-x}Te photoexcited by femtosecond laser pulses

    SciTech Connect

    Krotkus, A.; Adomavicius, R.; Molis, G.; Urbanowicz, A.; Eusebe, H.

    2004-10-01

    Terahertz radiation from Cd{sub x}Hg{sub 1-x}Te samples excited by femtosecond Ti:sapphire laser pulses were measured by using an ultrafast photoconductive antenna manufactured from low-temperature grown GaAs. Terahertz fields radiated by the samples of all three investigated alloy compositions with x=0, 0.2, and 0.3 were of the same order of magnitude. No azimuthal angle dependence of the radiated signal was detected, which evidences that linear current surge effect is dominating over nonlinear optical rectification.

  13. High Intensity Radiated Fields (HIRF) project plan

    NASA Astrophysics Data System (ADS)

    Glynn, Michael S.; Blair, Jerry T.; Hintze, M. Marx

    1991-09-01

    Addressed here is the Federal Aviation Administration's approach to High Intensity Radiated Fields (HIRF) affecting the aviation community. Near- and far-term tasks are described. Deliverables, program management, scheduling, and cost issues are discussed.

  14. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses

    NASA Astrophysics Data System (ADS)

    Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke

    2015-02-01

    Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 1018 W/cm2 is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively.

  15. Parametric analysis of transient skin heating induced by terahertz radiation.

    PubMed

    Zilberti, Luca; Arduino, Alessandro; Bottauscio, Oriano; Chiampi, Mario

    2014-07-01

    This paper investigates the effect of relevant physical parameters on transient temperature elevation induced in human tissues by electromagnetic waves in the terahertz (THz) band. The problem is defined by assuming a plane wave, which, during a limited time interval, normally impinges on the surface of a 3-layer model of the human body, causing a thermal transient. The electromagnetic equations are solved analytically, while the thermal ones are handled according to the finite element method. A parametric analysis is performed with the aim of identifying the contribution of each parameter, showing that the properties of the first skin layer (except blood flow) play a major role in the computation of the maximum temperature rise for the considered exposure situation. Final results, obtained by combining all relevant parameters together, show that the deviation from the reference solution of the maximum temperature elevation in skin is included in the coverage intervals from -30% to +10% at 0.1 THz and from -33% to +18% at 1 THz (with 95% confidence level). These data allow bounding the possible temperature increase against the spread of tissue properties that could be reasonably used for dosimetric simulations. PMID:24510310

  16. Non-thermal effects of terahertz radiation on gene expression in mouse stem cells

    PubMed Central

    Alexandrov, Boian S.; Rasmussen, Kim Ø.; Bishop, Alan R.; Usheva, Anny; Alexandrov, Ludmil B.; Chong, Shou; Dagon, Yossi; Booshehri, Layla G.; Mielke, Charles H.; Phipps, M. Lisa; Martinez, Jennifer S.; Chen, Hou-Tong; Rodriguez, George

    2011-01-01

    Abstract In recent years, terahertz radiation sources are increasingly being exploited in military and civil applications. However, only a few studies have so far been conducted to examine the biological effects associated with terahertz radiation. In this study, we evaluated the cellular response of mesenchymal mouse stem cells exposed to THz radiation. We apply low-power radiation from both a pulsed broad-band (centered at 10 THz) source and from a CW laser (2.52 THz) source. Modeling, empirical characterization, and monitoring techniques were applied to minimize the impact of radiation-induced increases in temperature. qRT-PCR was used to evaluate changes in the transcriptional activity of selected hyperthermic genes. We found that temperature increases were minimal, and that the differential expression of the investigated heat shock proteins (HSP105, HSP90, and CPR) was unaffected, while the expression of certain other genes (Adiponectin, GLUT4, and PPARG) showed clear effects of the THz irradiation after prolonged, broad-band exposure. PMID:21991556

  17. Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.

    PubMed

    Vinokurov, Nikolay A; Jeong, Young Uk

    2013-02-01

    We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device. PMID:23432259

  18. Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions

    NASA Astrophysics Data System (ADS)

    Liao, Guo-Qian; Li, Yu-Tong; Zhang, Yi-Hang; Liu, Hao; Ge, Xu-Lei; Yang, Su; Wei, Wen-Qing; Yuan, Xiao-Hui; Deng, Yan-Qing; Zhu, Bao-Jun; Zhang, Zhe; Wang, Wei-Min; Sheng, Zheng-Ming; Chen, Li-Ming; Lu, Xin; Ma, Jing-Long; Wang, Xuan; Zhang, Jie

    2016-05-01

    Coherent transition radiation in the terahertz (THz) region with energies of sub-mJ/pulse has been demonstrated by relativistic laser-driven electron beams crossing the solid-vacuum boundary. Targets including mass-limited foils and layered metal-plastic targets are used to verify the radiation mechanism and characterize the radiation properties. Observations of THz emissions as a function of target parameters agree well with the formation-zone and diffraction model of transition radiation. Particle-in-cell simulations also well reproduce the observed characteristics of THz emissions. The present THz transition radiation enables not only a potential tabletop brilliant THz source, but also a novel noninvasive diagnostic for fast electron generation and transport in laser-plasma interactions.

  19. Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions.

    PubMed

    Liao, Guo-Qian; Li, Yu-Tong; Zhang, Yi-Hang; Liu, Hao; Ge, Xu-Lei; Yang, Su; Wei, Wen-Qing; Yuan, Xiao-Hui; Deng, Yan-Qing; Zhu, Bao-Jun; Zhang, Zhe; Wang, Wei-Min; Sheng, Zheng-Ming; Chen, Li-Ming; Lu, Xin; Ma, Jing-Long; Wang, Xuan; Zhang, Jie

    2016-05-20

    Coherent transition radiation in the terahertz (THz) region with energies of sub-mJ/pulse has been demonstrated by relativistic laser-driven electron beams crossing the solid-vacuum boundary. Targets including mass-limited foils and layered metal-plastic targets are used to verify the radiation mechanism and characterize the radiation properties. Observations of THz emissions as a function of target parameters agree well with the formation-zone and diffraction model of transition radiation. Particle-in-cell simulations also well reproduce the observed characteristics of THz emissions. The present THz transition radiation enables not only a potential tabletop brilliant THz source, but also a novel noninvasive diagnostic for fast electron generation and transport in laser-plasma interactions. PMID:27258873

  20. Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes

    PubMed Central

    Groma, G. I.; Hebling, J.; Kozma, I. Z.; Váró, G.; Hauer, J.; Kuhl, J.; Riedle, E.

    2008-01-01

    The kinetics of electrogenic events associated with the different steps of the light-induced proton pump of bacteriorhodopsin is well studied in a wide range of time scales by direct electric methods. However, the investigation of the fundamental primary charge translocation phenomena taking place in the functional energy conversion process of this protein, and in other biomolecular assemblies using light energy, has remained experimentally unfeasible because of the lack of proper detection technique operating in the 0.1- to 20-THz region. Here, we show that extending the concept of the familiar Hertzian dipole emission into the extreme spatial and temporal range of intramolecular polarization processes provides an alternative way to study ultrafast electrogenic events on naturally ordered biological systems. Applying a relatively simple experimental arrangement based on this idea, we were able to observe light-induced coherent terahertz radiation from bacteriorhodopsin with femtosecond time resolution. The detected terahertz signal was analyzed by numerical simulation in the framework of different models for the elementary polarization processes. It was found that the principal component of the terahertz emission can be well described by excited-state intramolecular electron transfer within the retinal chromophore. An additional slower process is attributed to the earliest phase of the proton pump, probably occurring by the redistribution of a H bond near the retinal. The correlated electron and proton translocation supports the concept, assigning a functional role to the light-induced sudden polarization in retinal proteins. PMID:18456840

  1. Radiative trapping in intense laser beams

    NASA Astrophysics Data System (ADS)

    Kirk, J. G.

    2016-08-01

    The dynamics of electrons in counter-propagating, circularly polarized laser beams are shown to exhibit attractors whose ability to trap particles depends on the ratio of the beam intensities and a single parameter describing radiation reaction. Analytical expressions are found for the underlying limit cycles and the parameter range in which they are stable. In high-intensity optical pulses, where radiation reaction strongly modifies the trajectories, the production of collimated gamma-rays and the initiation of non-linear cascades of electron–positron pairs can be optimized by a suitable choice of the intensity ratio.

  2. Strong terahertz radiation generation by beating of two spatial-triangular beams in collisional magnetized plasma

    NASA Astrophysics Data System (ADS)

    Hematizadeh, Ayoob; Bakhtiari, Farhad; Jazayeri, Seyed Masud; Ghafary, Bijan

    2016-05-01

    A scheme of terahertz (THz) radiation generation is proposed by beating of two spatial-triangular laser beams in plasma with a spatially periodic density when electron-neutral collisions have taken into account. In this process, the laser beams exert a ponderomotive force on the electrons of the plasma and impart the oscillatory velocity at the difference frequency in the presence of a static magnetic field which is applied parallel to the direction of the lasers. We show that higher efficiency and stronger THz radiation are achieved when the parallel magnetic field is used to compare the perpendicular magnetic field. The effects of beam width of lasers, collision frequency, periodicity of density ripples, and magnetic field strength are analyzed for strong THz radiation generation. The THz field of the emitted radiations is found to be highly sensitive to collision frequency and magnetic field strength. In this scheme with the optimization of plasma parameters, the efficiency of order 21% is achieved.

  3. Anomalous response of superconducting titanium nitride resonators to terahertz radiation

    SciTech Connect

    Bueno, J. Baselmans, J. J. A; Coumou, P. C. J. J.; Zheng, G.; Visser, P. J. de; Klapwijk, T. M.; Driessen, E. F. C.; Doyle, S.

    2014-11-10

    We present an experimental study of kinetic inductance detectors (KIDs) fabricated of atomic layer deposited TiN films and characterized at radiation frequencies of 350 GHz. The responsivity to radiation is measured and found to increase with the increase in radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride/aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggest that an inhomogeneous state of these disordered superconductors should be used to explain these observations.

  4. Anomalous response of superconducting titanium nitride resonators to terahertz radiation

    NASA Astrophysics Data System (ADS)

    Bueno, J.; Coumou, P. C. J. J.; Zheng, G.; de Visser, P. J.; Klapwijk, T. M.; Driessen, E. F. C.; Doyle, S.; Baselmans, J. J. A.

    2014-11-01

    We present an experimental study of kinetic inductance detectors (KIDs) fabricated of atomic layer deposited TiN films and characterized at radiation frequencies of 350 GHz. The responsivity to radiation is measured and found to increase with the increase in radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride/aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggest that an inhomogeneous state of these disordered superconductors should be used to explain these observations.

  5. Single-cycle Terahertz Pulses with >0.2 V/A Field Amplitudes via Coherent Transition Radiation

    SciTech Connect

    Daranciang, Dan; Goodfellow, John; Fuchs, Matthias; Wen, Haidan; Ghimire, Shambhu; Reis, David A.; Loos, Henrik; Fisher, Alan S.; Lindenberg, Aaron M.; /Stanford U. Materials Sci. Dept. /SIMES, Stanford /SLAC, PULSE

    2012-02-15

    We demonstrate terahertz pulses with field amplitudes exceeding 0.2 V/{angstrom} generated by coherent transition radiation. Femtosecond, relativistic electron bunches generated at the Linac Coherent Light Source are passed through a beryllium foil, and the emitted radiation is characterized as a function of the bunch duration and charge. Broadband pulses centered at a frequency of 10 THz with energies of 140 {mu}J are measured. These far-below-bandgap pulses drive a nonlinear optical response in a silicon photodiode, with which we perform nonlinear autocorrelations that yield information regarding the terahertz temporal profile. Simulations of the spatiotemporal profile agree well with experimental results.

  6. Off-resonant magnetization dynamics phase-locked to an intense phase-stable terahertz transient

    NASA Astrophysics Data System (ADS)

    Vicario, C.; Ruchert, C.; Ardana-Lamas, F.; Derlet, P. M.; Tudu, B.; Luning, J.; Hauri, C. P.

    2013-09-01

    Controlling magnetization dynamics with a femtosecond laser is attracting interest both in fundamental science and in industry because of the potential to achieve magnetic switching at ever faster speeds. Here, we report a coherent, phase-locked coupling between a high-field single-cycle terahertz transient and the magnetization of ferromagnetic cobalt films. The visualized magnetization dynamics follow the temporal terahertz field oscillation, are tightly locked to the terahertz phase and are induced in the absence of resonant excitations and energy deposition. The magnetic response occurs on the timescale of the stimulus and is thus two orders of magnitude faster than the Larmor precession response. The experimental results are excellently reproduced by the Landau-Lifshift-Gilbert semi-empirical model, indicating its applicability to ultrafast magnetization dynamics and also demonstrating the marginal effect of the co-propagating terahertz electric field. This novel phenomenon of phase-locked control of magnetization with a strong terahertz field suggests new opportunities for ultrafast data storage.

  7. Producing terahertz coherent synchrotron radiation at the Hefei Light Source

    NASA Astrophysics Data System (ADS)

    Xu, De-Rong; Xu, Hong-Liang; Shao, Yan

    2015-07-01

    This paper theoretically proves that an electron storage ring can generate coherent radiation in the THz region using a quick kicker magnet and an AC sextupole magnet. When the vertical chromaticity is modulated by the AC sextupole magnet, the vertical beam collective motion excited by the kicker produces a wavy spatial structure after a number of longitudinal oscillation periods. The radiation spectral distribution was calculated from the wavy bunch parameters at the Hefei Light Source (HLS). When the electron energy is reduced to 400 MeV, extremely strong coherent synchrotron radiation (CSR) at 0.115 THz should be produced. Supported by National Natural Science Foundation of China (11375176)

  8. Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas

    SciTech Connect

    Berry, Christopher W.; Hashemi, Mohammad R.; Jarrahi, Mona

    2014-02-24

    An array of 3 × 3 plasmonic photoconductive terahertz emitters with logarithmic spiral antennas is fabricated on a low temperature (LT) grown GaAs substrate and characterized in response to a 200 fs optical pump from a Ti:sapphire mode-locked laser at 800 nm wavelength. A microlens array is used to split and focus the optical pump beam onto the active area of each plasmonic photoconductive emitter element. Pulsed terahertz radiation with record high power levels up to 1.9 mW in the 0.1–2 THz frequency range is measured at an optical pump power of 320 mW. The record high power pulsed terahertz radiation is enabled by the use of plasmonic contact electrodes, enhancing the photoconductor quantum efficiencies, and by increasing the overall device active area, mitigating the carrier screening effect and thermal breakdown at high optical pump power levels.

  9. Nonlinear magnetization dynamics of antiferromagnetic spin resonance induced by intense terahertz magnetic field

    NASA Astrophysics Data System (ADS)

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2016-01-01

    We report on the nonlinear magnetization dynamics of a HoFeO3 crystal induced by a strong terahertz magnetic field resonantly enhanced with a split ring resonator and measured with magneto-optical Kerr effect microscopy. The terahertz magnetic field induces a large change (˜40%) in the spontaneous magnetization. The frequency of the antiferromagnetic resonance decreases in proportion to the square of the magnetization change. A modified Landau-Lifshitz-Gilbert equation with a phenomenological nonlinear damping term quantitatively reproduced the nonlinear dynamics.

  10. Radiative Characteristics of On-Chip Terahertz (THz) Structures

    SciTech Connect

    Hussein, Yasser A.; Spencer, James E.; /SLAC

    2005-06-07

    Previously, we explored possibilities for producing narrow-band THz radiation using either free or bound electrons (solid state) in micro-undulatory configurations [1] because integrated circuit technology appeared well matched to this region extending from about 300 GHz to 30 THz. This range [2]-[3] has largely been neglected until recently because it runs from the limit of WR-3 waveguide around 300 GHz up to CO{sub 2} lasers where the laser regime becomes dominant. There are mainly two approaches for generating THz radiation, i.e. through free or bound electron (BE) implementations. In this paper, emphasis is on producing this radiation using bound electrons via IC technology but in close analogy to free electron lasers (FELs) that are comparatively immense, expensive, need high power and have low efficiencies [4].

  11. Detecting radiation reaction at moderate laser intensities.

    PubMed

    Heinzl, Thomas; Harvey, Chris; Ilderton, Anton; Marklund, Mattias; Bulanov, Stepan S; Rykovanov, Sergey; Schroeder, Carl B; Esarey, Eric; Leemans, Wim P

    2015-02-01

    We propose a new method of detecting radiation reaction effects in the motion of particles subjected to laser pulses of moderate intensity and long duration. The effect becomes sizable for particles that gain almost no energy through the interaction with the laser pulse. Hence, there are regions of parameter space in which radiation reaction is actually the dominant influence on charged particle motion. PMID:25768626

  12. Enhanced thermal radiation in terahertz and far-infrared regime by hot phonon excitation in a field effect transistor

    SciTech Connect

    Chung, Pei-Kang; Yen, Shun-Tung

    2014-11-14

    We demonstrate the hot phonon effect on thermal radiation in the terahertz and far-infrared regime. A pseudomorphic high electron mobility transistor is used for efficiently exciting hot phonons. Boosting the hot phonon population can enhance the efficiency of thermal radiation. The transistor can yield at least a radiation power of 13 μW and a power conversion efficiency higher than a resistor by more than 20%.

  13. Calculations for Tera-Hertz (THZ) Radiation Sources

    SciTech Connect

    Hussein, Yasser A.; Spencer, James E.; /SLAC

    2005-06-07

    We explore possibilities for THz sources from 0.3-30 THz. While still inaccessible, this broad gap is even wider for advanced acceleration schemes extending from X or, at most, W band RF at the low end up to CO{sub 2} lasers. While the physical implementations of these two approaches are quite different, both are proving difficult to develop so that lower frequency, superconducting RF is currently preferred. Similarly, the validity of modeling techniques varies greatly over this range of frequencies but generally mandates coupling Maxwell's equations to the appropriate device transport physics for which there are many options. Here we study radiation from undulatory-shaped transmission lines using finite-difference, time-domain (FDTD) simulations. Also, we present Monte-Carlo techniques for pulse generation. Examples of THz sources demonstrating coherence are shown with the goal of optimizing on-chip THz radiators for applications that may lead to accelerators.

  14. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOEpatents

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  15. The NASA High Intensity Radiated Fields Laboratory

    NASA Technical Reports Server (NTRS)

    Williams, Reuben A.

    1997-01-01

    High Intensity Radiated Fields (HIRF) are the result of a multitude of intentional and nonintentional electromagnetic sources that currently exists in the world. Many of today's digital systems are susceptible to electronic upset if subjected to certain electromagnetic environments (EME). Modern aerospace designers and manufacturers increasingly rely on sophisticated digital electronic systems to provide critical flight control in both military, commercial, and general aviation aircraft. In an effort to understand and emulate the undesired environment that high energy RF provides modern electronics, the Electromagnetics Research Branch (ERB) of the Flight Electronics and Technology Division (FETD) conducts research on RF and microwave measurement methods related to the understanding of HIRF. In the High Intensity Radiated Fields Laboratory, the effects of high energy radiating electromagnetic fields on avionics and electronic systems are tested and studied.

  16. Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses

    SciTech Connect

    Moradi, S.; Ganjovi, A.; Shojaei, F.; Saeed, M.

    2015-04-15

    In this work, using a two-dimensional kinetic model based on particle in cell-Monte Carlo collision simulation method, the influence of different parameters on the broadband intense Terahertz (THz) radiation generation via application of two-color laser fields, i.e., the fundamental and second harmonic modes, is studied. These two modes are focused into the molecular oxygen (O{sub 2}) with uniform density background gaseous media and the plasma channels are created. Thus, a broadband THz pulse that is around the plasma frequency is emitted from the formed plasma channel and co-propagates with the laser pulse. For different laser pulse shapes, the THz electric field and its spectrum are both calculated. The effects of laser pulse and medium parameters, i.e., positive and negative chirp pulse, number of laser cycles in the pulse, laser pulse shape, background gas pressure, and exerted DC electric field on THz spectrum are verified. Application of a negatively chirped femtosecond (40 fs) laser pulse results in four times enhancement of the THz pulse energy (2 times in THz electric field). The emission of THz radiation is mostly observed in the forward direction.

  17. EDITORIAL: Terahertz nanotechnology Terahertz nanotechnology

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Tonouchi, Masayoshi; Reno, John L.

    2013-05-01

    A useful synergy is being established between terahertz research and nanotechnology. High power sources [1-3] and detectors [4] in what was once considered the terahertz 'frequency gap' [5] in the electromagnetic spectrum have stimulated research with huge potential benefits in a range of industries including food, medicine and security, as well as fundamental physics and astrophysics. This special section, with guest editors Masayoshi Tonouchi and John Reno, gives a glimpse of the new horizons nanotechnology is broaching in terahertz research. While the wavelengths relevant to the terahertz domain range from hundreds of micrometres to millimetres, structures at the nanoscale reveal interesting low energy dynamics in this region. As a result terahertz spectroscopy techniques are becoming increasingly important in nanomaterial characterization, as demonstrated in this special section by colleagues at the University of Oxford in the UK and the Australian National University. They use terahertz spectroscopy to identify the best nanostructure parameters for specific applications [6]. The low energy dynamics in nanostructures also makes them valuable tools for terahertz detection [7]. In addition the much sought after terahertz detection over broadband frequency ranges has been demonstrated, providing versatility that has been greatly in demand, particularly in spectroscopy applications [8, 9]. Also in this special section, researchers in Germany and China tackle some of the coupling issues in terahertz time domain spectroscopy with an emitter specifically well suited for systems operated with an amplified fibre [3]. 'In medical imaging, the advantage of THz radiation is safety, because its energy is much lower than the ionization energy of biological molecules, in contrast to hazardous x-ray radiation,' explains Joo-Hiuk Son from the University of Seoul in Korea in his review [10]. As he also points out, the rotational and vibrational energies of water molecules are

  18. Improvement of terahertz field effect transistor detectors by substrate thinning and radiation losses reduction.

    PubMed

    Coquillat, Dominique; Marczewski, Jacek; Kopyt, Pawel; Dyakonova, Nina; Giffard, Benoit; Knap, Wojciech

    2016-01-11

    Phenomena of the radiation coupling to the field effect transistors based terahertz (THz) detectors are studied. We show that in the case of planar metal antennas a significant portion of incoming radiation, instead of being coupled to the transistors, is coupled to an antenna substrate leading to responsivity losses and/or cross-talk effects in the field effect based THz detector arrays. Experimental and theoretical investigations of the responsivity versus substrate thickness are performed. They clearly show how to minimize the losses by the detector/ array substrate thinning. In conclusion simple quantitative rules of losses minimization by choosing a proper substrate thickness of field effect transistor THz detectors are presented for common materials (Si, GaAs, InP, GaN) used in semiconductor technologies. PMID:26832258

  19. Dispersion characteristics of planar grating with arbitrary grooves for terahertz Smith-Purcell radiation

    SciTech Connect

    Cao, Miaomiao Li, Ke; Liu, Wenxin Wang, Yong

    2015-03-15

    In this paper, a novel method of getting the dispersion relations in planar grating with arbitrary grooves for terahertz Smith-Purcell radiation is investigated analytically. The continuous profile of the groove is approximately replaced by a series of rectangular steps. By making use of field matches method and the continuity of transverse admittance, the universal dispersion equation for grating with arbitrarily shaped grooves is derived. By solving the dispersion equation in presence of electron beam, the growth rate is obtained directly and the dependence on beam parameters is analyzed. Comparisons of the dispersion characteristics among some special groove shapes have been made by numerical calculation. The results show that the rectangular-step approximation method provides a novel approach to obtain the universal dispersion relation for grating with arbitrary grooves for Smith-Purcell radiation.

  20. Helicity sensitive terahertz radiation detection by dual-grating-gate high electron mobility transistors

    SciTech Connect

    Faltermeier, P.; Olbrich, P.; Probst, W.; Schell, L.; Ganichev, S. D.; Watanabe, T.; Boubanga-Tombet, S. A.; Otsuji, T.

    2015-08-28

    We report on the observation of a radiation helicity sensitive photocurrent excited by terahertz (THz) radiation in dual-grating-gate (DGG) InAlAs/InGaAs/InAlAs/InP high electron mobility transistors (HEMT). For a circular polarization, the current measured between source and drain contacts changes its sign with the inversion of the radiation helicity. For elliptically polarized radiation, the total current is described by superposition of the Stokes parameters with different weights. Moreover, by variation of gate voltages applied to individual gratings, the photocurrent can be defined either by the Stokes parameter defining the radiation helicity or those for linear polarization. We show that artificial non-centrosymmetric microperiodic structures with a two-dimensional electron system excited by THz radiation exhibit a dc photocurrent caused by the combined action of a spatially periodic in-plane potential and spatially modulated light. The results provide a proof of principle for the application of DGG HEMT for all-electric detection of the radiation's polarization state.

  1. EDITORIAL: Terahertz nanotechnology Terahertz nanotechnology

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Tonouchi, Masayoshi; Reno, John L.

    2013-05-01

    A useful synergy is being established between terahertz research and nanotechnology. High power sources [1-3] and detectors [4] in what was once considered the terahertz 'frequency gap' [5] in the electromagnetic spectrum have stimulated research with huge potential benefits in a range of industries including food, medicine and security, as well as fundamental physics and astrophysics. This special section, with guest editors Masayoshi Tonouchi and John Reno, gives a glimpse of the new horizons nanotechnology is broaching in terahertz research. While the wavelengths relevant to the terahertz domain range from hundreds of micrometres to millimetres, structures at the nanoscale reveal interesting low energy dynamics in this region. As a result terahertz spectroscopy techniques are becoming increasingly important in nanomaterial characterization, as demonstrated in this special section by colleagues at the University of Oxford in the UK and the Australian National University. They use terahertz spectroscopy to identify the best nanostructure parameters for specific applications [6]. The low energy dynamics in nanostructures also makes them valuable tools for terahertz detection [7]. In addition the much sought after terahertz detection over broadband frequency ranges has been demonstrated, providing versatility that has been greatly in demand, particularly in spectroscopy applications [8, 9]. Also in this special section, researchers in Germany and China tackle some of the coupling issues in terahertz time domain spectroscopy with an emitter specifically well suited for systems operated with an amplified fibre [3]. 'In medical imaging, the advantage of THz radiation is safety, because its energy is much lower than the ionization energy of biological molecules, in contrast to hazardous x-ray radiation,' explains Joo-Hiuk Son from the University of Seoul in Korea in his review [10]. As he also points out, the rotational and vibrational energies of water molecules are

  2. Terahertz radiation source based on self-wake beam bunching

    SciTech Connect

    Antipov, Sergey; Jing Chunguang; Schoessow, Paul; Kanareykin, Alexei; Jiang Bo; Yakimenko, Vitaly; Zholents, Alexander; Gai Wei

    2012-12-21

    A table top device for producing high power T-ray beams is described. A rectangular electron beam that can be produced out of a photoinjector via stacking of the laser pulse, and running off-crest of the photoinjector rf is sent through a dielectric loaded waveguide. Due to the beam's self-wake its energy becomes modulated. In the chicane beamline following the dielectric energy-bunching section this energy modulation is converted to a density modulation-a bunch train. The density modulated beam can be sent through a power extraction section, like a dielectric loaded accelerating structure, or simply can intercept a foil target, producing THz radiation of various bandwidths and power levels.

  3. Physics of intense, high energy radiation effects.

    SciTech Connect

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  4. Terahertz generation in plasmas using two-color laser pulses.

    PubMed

    Peñano, Joseph; Sprangle, Phillip; Hafizi, Bahman; Gordon, Daniel; Serafim, Philip

    2010-02-01

    We analyze the generation of terahertz radiation when an intense, short laser pulse is mixed with its frequency-doubled counterpart in plasma. The nonlinear coupling of the fundamental and the frequency-doubled laser pulses in plasma is shown to be characterized by a third order susceptibility which has a time dependence characteristic of the laser pulse durations. The terahertz generation process depends on the relative polarizations of the lasers and the terahertz frequency is omega approximately 1/tau(L), where tau(L) is the laser pulse duration. Since the laser pulse duration is typically in the picosecond or subpicosecond regime the resulting radiation is in the terahertz or multiterahertz regime. To obtain the third order susceptibility we solve the plasma fluid equations correct to third order in the laser fields, including both the relativistic and ponderomotive force terms. The relativistic and ponderomotive contributions to the susceptibility nearly cancel in the absence of electron collisions. Therefore, in this terahertz generation mechanism collisional effects play a critical role. Consistent with recent experimental observations, our model shows that (1) the terahertz field amplitude is proportional to I(1) square root I(2), where I(1) and I(2) are the intensities of the fundamental and second harmonic laser pulses, respectively, (2) the terahertz emission is maximized when the polarization of the laser beams and the terahertz are aligned, (3) for typical experimental parameters, the emitted terahertz field amplitude is on the order of tens of kilovolts/cm with duration comparable to that of the drive laser pulses, and (4) the direction of terahertz emission depends sensitively on experimental parameters. PMID:20365665

  5. Terahertz generation in plasmas using two-color laser pulses

    SciTech Connect

    Penano, Joseph; Sprangle, Phillip; Gordon, Daniel; Hafizi, Bahman; Serafim, Philip

    2010-02-15

    We analyze the generation of terahertz radiation when an intense, short laser pulse is mixed with its frequency-doubled counterpart in plasma. The nonlinear coupling of the fundamental and the frequency-doubled laser pulses in plasma is shown to be characterized by a third order susceptibility which has a time dependence characteristic of the laser pulse durations. The terahertz generation process depends on the relative polarizations of the lasers and the terahertz frequency is omegaapprox1/tau{sub L}, where tau{sub L} is the laser pulse duration. Since the laser pulse duration is typically in the picosecond or subpicosecond regime the resulting radiation is in the terahertz or multiterahertz regime. To obtain the third order susceptibility we solve the plasma fluid equations correct to third order in the laser fields, including both the relativistic and ponderomotive force terms. The relativistic and ponderomotive contributions to the susceptibility nearly cancel in the absence of electron collisions. Therefore, in this terahertz generation mechanism collisional effects play a critical role. Consistent with recent experimental observations, our model shows that (1) the terahertz field amplitude is proportional to I{sub 1}sq root(I{sub 2}), where I{sub 1} and I{sub 2} are the intensities of the fundamental and second harmonic laser pulses, respectively, (2) the terahertz emission is maximized when the polarization of the laser beams and the terahertz are aligned, (3) for typical experimental parameters, the emitted terahertz field amplitude is on the order of tens of kilovolts/cm with duration comparable to that of the drive laser pulses, and (4) the direction of terahertz emission depends sensitively on experimental parameters.

  6. Single Circularly Polarized Attosecond Pulse Generation by Intense Few Cycle Elliptically Polarized Laser Pulses and Terahertz Fields from Molecular Media

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2013-01-01

    We present a method for producing a single circularly polarized attosecond pulse by an intense few cycle elliptically polarized laser pulse combined with a terahertz field from numerical solutions of the time-dependent Schrödinger equation for the molecular ion H2+. It is found that in the presence of a 62.5 THz (λ=4800nm) field at an intensity of ˜1014W/cm2, a single circularly polarized 114 as pulse can be generated by an elliptical polarized laser pulse at a wavelength of 400 nm with an ellipticity of ɛ=0.59. The efficiency of circular polarization attosecond pulse generation is interpreted based on a classical model of single electron recollision with the parent ion.

  7. Real-Time Determination of Absolute Frequency in Continuous-Wave Terahertz Radiation with a Photocarrier Terahertz Frequency Comb Induced by an Unstabilized Femtosecond Laser

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Hayashi, Kenta; Mizuguchi, Tatsuya; Hsieh, Yi-Da; Abdelsalam, Dahi Ghareab; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Yasui, Takeshi

    2016-05-01

    A practical method for the absolute frequency measurement of continuous-wave terahertz (CW-THz) radiation uses a photocarrier terahertz frequency comb (PC-THz comb) because of its ability to realize real-time, precise measurement without the need for cryogenic cooling. However, the requirement for precise stabilization of the repetition frequency ( f rep) and/or use of dual femtosecond lasers hinders its practical use. In this article, based on the fact that an equal interval between PC-THz comb modes is always maintained regardless of the fluctuation in f rep, the PC-THz comb induced by an unstabilized laser was used to determine the absolute frequency f THz of CW-THz radiation. Using an f rep-free-running PC-THz comb, the f THz of the frequency-fixed or frequency-fluctuated active frequency multiplier chain CW-THz source was determined at a measurement rate of 10 Hz with a relative accuracy of 8.2 × 10-13 and a relative precision of 8.8 × 10-12 to a rubidium frequency standard. Furthermore, f THz was correctly determined even when fluctuating over a range of 20 GHz. The proposed method enables the use of any commercial femtosecond laser for the absolute frequency measurement of CW-THz radiation.

  8. An ultrafast carbon nanotube terahertz polarisation modulator

    SciTech Connect

    Docherty, Callum J.; Stranks, Samuel D.; Habisreutinger, Severin N.; Joyce, Hannah J.; Herz, Laura M.; Nicholas, Robin J.; Johnston, Michael B.

    2014-05-28

    We demonstrate ultrafast modulation of terahertz radiation by unaligned optically pumped single-walled carbon nanotubes. Photoexcitation by an ultrafast optical pump pulse induces transient terahertz absorption in nanowires aligned parallel to the optical pump. By controlling the polarisation of the optical pump, we show that terahertz polarisation and modulation can be tuned, allowing sub-picosecond modulation of terahertz radiation. Such speeds suggest potential for semiconductor nanowire devices in terahertz communication technologies.

  9. An ultrafast carbon nanotube terahertz polarisation modulator

    NASA Astrophysics Data System (ADS)

    Docherty, Callum J.; Stranks, Samuel D.; Habisreutinger, Severin N.; Joyce, Hannah J.; Herz, Laura M.; Nicholas, Robin J.; Johnston, Michael B.

    2014-05-01

    We demonstrate ultrafast modulation of terahertz radiation by unaligned optically pumped single-walled carbon nanotubes. Photoexcitation by an ultrafast optical pump pulse induces transient terahertz absorption in nanowires aligned parallel to the optical pump. By controlling the polarisation of the optical pump, we show that terahertz polarisation and modulation can be tuned, allowing sub-picosecond modulation of terahertz radiation. Such speeds suggest potential for semiconductor nanowire devices in terahertz communication technologies.

  10. Generation of Widely Tunable Fourier-Transform Pulsed Terahertz Radiation Using Narrowband Near-Infrared Laser Radiation

    NASA Astrophysics Data System (ADS)

    Liu, Jinjun; Haase, Christa; Merkt, Frédéric

    2009-06-01

    Widely tunable, Fourier-transform-limited pulses of terahertz (THz) radiation have been generated by optical frequency deference using (i) crystals of the highly nonlinear organic salt 4-N,N-dimethylamino-4^'-N^'-methyl stilbazolium tosylate (DAST), (ii) zinc telluride (ZnTe) crystals, and (iii) gallium phosphide (GaP) crystals. Outputs from two narrowband (Δν<1 MHz, λ˜800 nm) cw titanium-doped sapphire (Ti:Sa) ring lasers with a well-controlled frequency difference were shaped into pulses using acousto-optic modulators, coupled into an optical fiber, pulse amplified in Nd:YAG-pumped Ti:Sa crystals and used as optical sources to pump the THz nonlinear crystals. The THz radiation was detected over a broad frequency range and its bandwidth was determined to be ˜10 MHz. Absorption spectra of gas phase molecules including HF and OCS using the THz source will be presented.

  11. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses

    PubMed Central

    Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke

    2015-01-01

    Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 1018 W/cm2 is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively. PMID:25652694

  12. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses.

    PubMed

    Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke

    2015-01-01

    Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 10(18) W/cm(2) is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively. PMID:25652694

  13. Cooperative absorption of terahertz radiation by plasmon modes in an array of field-effect transistors with two-dimensional electron channel

    SciTech Connect

    Popov, V. V.; Tsymbalov, G. M.; Fateev, D. V.; Shur, M. S.

    2006-09-18

    The authors computer simulations show that plasmon modes excited in an array of field-effect transistors with two-dimensional electron channel strongly couple to terahertz radiation due to the synchronization of plasma oscillations in different unit cells of the array. It is shown that in such a device the higher-order plasmon modes are excited much more effectively than in a large area two-dimensional electron channel coupled to terahertz radiation by a slit-grating gate. Effective excitation of the higher-order plasmon modes makes it possible to design terahertz plasmonic devices with operating frequencies up to 15 THz or even higher.

  14. Coherent terahertz radiation generated from a square-shaped free-electron beam passing through multiple stacked layers with sub-wavelength holes

    NASA Astrophysics Data System (ADS)

    Zhou, Yucong; Zhang, Yaxin; Jiang, Guili; Wu, Zhenhua

    2015-09-01

    This paper presents terahertz (THz) coherent radiation from the interaction between a square-shaped electron beam and guiding wave mode in a multiple stacked layers with sub-wavelength holes structure. The simulated results show that such a guiding wave mode enhances the field intensity in the electron beam channel so that the interaction is more efficient than the electron beam-surface wave interaction in traditional grating and bi-grating structures. This electron-beam-driven THz source provides a way with much simpler fabrication processes and a larger square size electron beam rather than sheet beam. Furthermore, such a source can be integrated to construct a 2D source-array structure, which demonstrates a good opportunity to generate high power THz radiation.

  15. Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Gill, John J.; Mehdi, Imran; Crawford, Timothy J.; Sergeev, Andrei V.; Mitin, Vladimir V.

    2012-01-01

    High-resolution submillimeter/terahertz spectroscopy is important for studying atmospheric and interstellar molecular gaseous species. It typically uses heterodyne receivers where an unknown (weak) signal is mixed with a strong signal from the local oscillator (LO) operating at a slightly different frequency. The non-linear mixer devices for this frequency range are unique and are not off-the-shelf commercial products. Three types of THz mixers are commonly used: Schottky diode, superconducting hot-electron bolometer (HEB), and superconductor-insulation-superconductor (SIS) junction. A HEB mixer based on the two-dimensional electron gas (2DEG) formed at the interface of two slightly dissimilar semiconductors was developed. This mixer can operate at temperatures between 100 and 300 K, and thus can be used with just passive radiative cooling available even on small spacecraft.

  16. Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation.

    PubMed

    Harrington, James; George, Roshan; Pedersen, Pal; Mueller, Eric

    2004-10-18

    Terahertz (THz) radiation has important applications in spectroscopy, imaging, and space science. Fiber optics for the THz region have been limited to rigid hollow metallic waveguides or short lengths of solid-core transparent dielectrics such as sapphire and plastic. We have fabricated flexible, hollow polycarbonate waveguides with interior Cu coatings for broadband THz transmission using simple liquid-phase chemistry techniques. The losses for these hollow-core guides were measured using a tunable, cw single-mode far IR laser. The losses for the best guides were found to be less than four dB/m and the single mode of the laser was preserved for the smaller bore waveguides. PMID:19484085

  17. Study on applications of terahertz technology

    NASA Astrophysics Data System (ADS)

    Luo, Ji-jun; Hou, Su-xia; Xu, Jun; Li, Juan-juan

    2008-03-01

    Terahertz (THz) technology, as new research topic and technology field which is paid more and more attention by the researchers and governments, has some unique properties which is different from other electromagnetic wave. THz wave is regarded to have potential application in many fields. Existing and emerging applications of terahertz technology in imaging, medicine, biology, space exploration, covert communications, compact radar ranges, industrial controls, terahertz microscopy, terahertz tomography, and homeland security have stimulated intensive research effort in photonics and electronics technologies bracketing the famous terahertz gap from the high and low frequency sides, respectively. Cutoff frequencies and maximum frequencies of operation of InGaAs-based Heterostructure Bipolar Transistors and High Electron Mobility Transistors are now approaching or even exceeding 600 GHz. New ideas of using plasma resonances of two-dimensional electrons for tunable detection and emission of terahertz radiation are being explored and proven experimentally. Plasma effects in polarization-induced electrons and holes in granular pyroelectric/semiconductor heterostructures hold promise of an active THz medium tunable by external electric field or light.

  18. The intensive terahertz electroluminescence induced by Bloch oscillations in SiC natural superlattices

    PubMed Central

    2012-01-01

    We report on efficient terahertz (THz) emission from high-electric-field-biased SiC structures with a natural superlattice at liquid helium temperatures. The emission spectrum demonstrates a single line, the maximum of which shifts linearly with increases in bias field. We attribute this emission to steady-state Bloch oscillations of electrons in the SiC natural superlattice. The properties of the THz emission agree fairly with the parameters of the Bloch oscillator regime, which have been proven by high-field electron transport studies of SiC structures with natural superlattices. PMID:23043773

  19. A Micro-Cantilever Based Photoacoustic Detector of Terahertz Radiation for Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Glauvitz, Nathan E.; Coutu, Ronald A. Coutu, Jr.; Kistler, Michael N.; Hamilton, Ryan F.; Petkie, Douglas T.; Medvedev, Ivan R.

    2013-06-01

    In this paper we describe a novel photoacoustic detector that can detect radiation in the Terahertz/sub-millimeter (THz/smm) spectral range, is immune to the effect of standing waves, and potentially can have spectral response that is independent of the absorption path length, thus offering crucial advantages for acquisition of THz/smm molecular spectra. The photoacoustic effect occurs when the energy from electromagnetic waves is absorbed by molecules and collisionally transferred into translational energy, thus resulting in local heating induced by the radiation. If radiation produced by the source is modulated, an acoustic wave results which can be detected by a pressure sensitive device such as a microphone or a cantilever. This transduction of the THz signal into a photoacoustic wave is what makes this approach insensitive to the detrimental standing waves associated with traditional THz sensors and allows for a significant reduction in the size of the absorption cell. A Microelectromechanical system (MEMS) cantilever pressure sensor was designed, modeled, fabricated, and tested for sensing the photoacoustic response of gases to THz/smm radiation. Here we present our manufacturing, experimental set-up and most recent spectroscopic results, which demonstrate the capabilities of this spectroscopic technique.

  20. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  1. Generation of scalable terahertz radiation from cylindrically focused laser pulses in air

    NASA Astrophysics Data System (ADS)

    Kuk, Donghoon; Yoo, Yungjun; Rosenthal, Eric; Jhajj, Nihal; Milchberg, Howard; Kim, Ki-Yong

    We have demonstrated scalable terahertz (THz) generation via cylindrical focusing of two-color laser pulses in air. In this experiment, we have used a terawatt (TW) laser system which can deliver >50 mJ, 800 nm, 50 fs pulses at a 10 Hz repetition rate. A 800 nm pulse passing through a nonlinear crystal (BBO) generates its second harmonic pulse (400 nm). Both pulses pass through a cylindrical lens and are focused together to generate a 2-dimensional plasma sheet in air. This yields two diverging THz lobes, characterized by an uncooled microbolometer. This observed radiation angle and pattern is explained by the optical-Cherenkov radiation theory. The diverging THz radiation is re-focused to yield strong THz field strengths (>20 MV/cm) at the focus. At laser energy of 40 mJ, cylindrical focusing provides THz energy of >30 microjoules, far exceeding the output produced by spherical focusing. This shows that cylindrical focusing can effectively minimize ionization-induced defocusing, previously observed in spherical focusing, and can allow scalable THz generation with relatively high laser energies (>20 mJ). Work supported by DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. 014216-001.

  2. New Versions of Terahertz Radiation Sources for Dynamic Nuclear Polarization in Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Kalynov, Yu. K.; Makhalov, P. B.; Fedotov, A. E.

    2014-01-01

    Dynamic nuclear polarization in strong-field nuclear magnetic resonance (NMR) spectroscopy requires terahertz radiation with moderate power levels. Nowadays, conventional gyrotrons are used almost exclusively to generate such radiation. In this review paper, we consider alternative variants of electronic microwave oscillators which require much weaker magnetic fields for their operation, namely, large-orbit gyrotrons operated at high cyclotron-frequency harmonics and Čerenkov-type devices, such as a backward-wave oscillator and a klystron frequency multiplier with tubular electron beams. Additionally, we consider the possibility to use the magnetic field created directly by the solenoid of an NMR spectrometer for operation of both the gyrotron and the backward-wave oscillator. Location of the oscillator in the spectrometer magnet makes it superfluous to use an additional superconducting magnet creating a strong field, significantly reduces the length of the radiation transmission line, and, in the case of Čerenkov-type devices, allows one to increase considerably the output-signal power. According to our calculations, all the electronic devices considered are capable of ensuring the power required for dynamic nuclear polarization (10 W or more) at a frequency of 260 GHz, whereas the gyrotrons, including their versions proposed in this paper, remain a single option at higher frequencies.

  3. Modeling of ultrasonic and terahertz radiations in defective tiles for condition monitoring of thermal protection systems

    NASA Astrophysics Data System (ADS)

    Kabiri Rahani, Ehsan

    Condition based monitoring of Thermal Protection Systems (TPS) is necessary for safe operations of space shuttles when quick turn-around time is desired. In the current research Terahertz radiation (T-ray) has been used to detect mechanical and heat induced damages in TPS tiles. Voids and cracks inside the foam tile are denoted as mechanical damage while property changes due to long and short term exposures of tiles to high heat are denoted as heat induced damage. Ultrasonic waves cannot detect cracks and voids inside the tile because the tile material (silica foam) has high attenuation for ultrasonic energy. Instead, electromagnetic terahertz radiation can easily penetrate into the foam material and detect the internal voids although this electromagnetic radiation finds it difficult to detect delaminations between the foam tile and the substrate plate. Thus these two technologies are complementary to each other for TPS inspection. Ultrasonic and T-ray field modeling in free and mounted tiles with different types of mechanical and thermal damages has been the focus of this research. Shortcomings and limitations of FEM method in modeling 3D problems especially at high-frequencies has been discussed and a newly developed semi-analytical technique called Distributed Point Source Method (DPSM) has been used for this purpose. A FORTRAN code called DPSM3D has been developed to model both ultrasonic and electromagnetic problems using the conventional DPSM method. This code is designed in a general form capable of modeling a variety of geometries. DPSM has been extended from ultrasonic applications to electromagnetic to model THz Gaussian beams, multilayered dielectrics and Gaussian beam-scatterer interaction problems. Since the conventional DPSM has some drawbacks, to overcome it two modification methods called G-DPSM and ESM have been proposed. The conventional DPSM in the past was only capable of solving time harmonic (frequency domain) problems. Time history was

  4. Gene expression profile of Jurkat cells exposed to high power terahertz radiation

    NASA Astrophysics Data System (ADS)

    Grundt, Jessica E.; Roth, Caleb C.; Rivest, Benjamin D.; Doroski, Michael L.; Payne, Jason; Ibey, Bennett L.; Wilmink, Gerald J.

    2011-03-01

    Terahertz (THz) radiation sources are now being used in a host of military, defense, and medical applications. Widespread employment of these applications has prompted concerns regarding the health effects associated with THz radiation. In this study, we examined the gene expression profile of mammalian cells exposed to THz radiation. We hypothesized that if THz radiation couples directly to cellular constituents, then exposed cells may express a specific gene expression profile indicative of ensuing damage. To test this hypothesis, Jurkat cells were irradiated with a molecular gas THz laser (2.52 THz, 636 mWcm-2, durations: 5, 10, 20, 30, 40, or 50 minutes). Viability was assessed 24 h post-exposure using MTT assays, and gene expression profiles were evaluated 4 h post-exposure using mRNA microarrays. Comparable analyses were also performed for hyperthermic positive controls (44°C for 40 minutes). We found that cellular temperatures increased by ~6 °C during THz exposures. We also found that cell death increased with exposure duration, and the median lethal dose (LD50) was calculated to be ~44 minutes. The microarray data showed that THz radiation induced the transcriptional activation of genes associated with cellular proliferation, differentiation, transcriptional activation, chaperone protein stabilization, and apoptosis. For most genes, we found that the magnitude of differential expression was comparable for both the THz and thermal exposure groups; however, several genes were specifically activated by the THz exposure. These results suggest that THz radiation may elicit effects that are not exclusively due to the temperature rise created during THz exposures (i.e. thermal effects). In future work, we plan to verify the results of our microarray experiments using qPCR techniques.

  5. Note: Single-shot time-domain spectroscopy and spatial profiling of terahertz pulses from intense laser systems.

    PubMed

    Zhang, T J; Jin, Z; Wakamatsu, S; Hosokai, T; Yugami, N; Kodama, R

    2016-06-01

    Single-shot terahertz time-domain spectroscopy is presented with directly encoded spatial resolution. A single reflective echelon and multiple semi-cylindrical lenses are used to obtain both the temporal waveform and the spatial distribution of the terahertz field. This system can be used to rapidly characterize terahertz pulses generated by high power pulsed laser systems, which themselves suffer from large pulse energy and spectrum fluctuations. PMID:27370502

  6. Measurement and Characterization of Terahertz Radiation Propagating Through a Parallel Plate Waveguide

    NASA Astrophysics Data System (ADS)

    Wachsmuth, Matthew George

    As the amount of study into the terahertz (THz) region of the electromagnetic spectrum steadily increases, the parallel plate waveguide has emerged as a simple and effective fixture to perform many experiments. The ability to concentrate THz radiation into a small area or volume enables us to analyze smaller samples and perform more repeatable measurements, which is essential for future research. While the fundamental physics of PPW transmission are understood mathematically, the practical knowledge of building such a fixture for the THz domain and taking measurements on it with a real system needs to be built up through experience. In this thesis, multiple PPW configurations are built and tested. These include waveguides of different lengths and opening heights, using lenses and antennas to focus and collect radiation from the input and output, and different amounts of polish on the waveguide surface. A basic resonator structure is also built and measured as a proof of concept for future research. The two most useful propagation modes through the waveguide, the lowest order transverse magnetic (TEM) and transverse electric (TE) modes, were characterized on all of the setups. Additionally, a flexible fixture was designed and measured which will allow future work in the THz field to be much more reliable and repeatable.

  7. Dielectric Wakefield Accelerating Structure as a Source of Terahertz Coherent Cerenkov Radiation

    SciTech Connect

    Cook, A. M.; Rosenzweig, J. B.; Badakov, H.; Travish, G.; Tikhoplav, R.; Williams, O. B.; England, R. J.; Thompson, M. C.

    2006-11-27

    We discuss future experimental work proposed to study the performance of a cylindrical dielectric wakefield accelerating structure as a coherent Cerenkov radiation source at the Neptune laboratory at UCLA. The Cerenkov wakefield acceleration experiment carried out recently by UCLA/SLAC/USC, using the ultrashort and high charge beam (Q = 3 nC, {sigma}z = 20 micron) at the SLAC FFTB, demonstrated electromagnetic wakes at the few GV/m level. The motivation of our prospective experiment is to investigate the operation of a similar scenario using the comparatively long pulse, low charge beam (Q = 0.5 nC, {sigma}z = 200 micron) at UCLA Neptune. The field amplitude produced in this setup would be one to two orders of magnitude lower, at the few tens to few 100 MV/m level. Such a decelerating field would extract a significant amount of energy from a low-energy beam in a distance on the order of a few centimeters, allowing the use of short dielectric structures. We discuss details of the geometry and composition of the structures to be used in the experiment. We also examine the possibility of a future dedicated facility at UCLA Neptune based on a hybrid photoinjector currently in development. The intrinsic bunch compression capabilities and improved beam parameters ({sigma}z = 100 micron, Q = 1 nC) of the photoinjector would allow the creation of a high power radiation source in the terahertz regime.

  8. Spectral investigation of hot-spot and cavity resonance effects on the terahertz radiation emitted from high-Tc superconducting Bi2Sr2CaCu2O8+δ single crystal mesa structures

    NASA Astrophysics Data System (ADS)

    Kadowaki, Kazuo; Watanabe, Chiharu; Minami, Hidetoshi; Yamamoto, Takashi; Kashiwagi, Takanari; Klemm, Richard

    2014-03-01

    Terahertz (THz) electromagnetic radiation emitted from high-Tc superconducting Bi2Sr2CaCu2O8+δ mesa structures in the case of single mesa and series-connected mesas is investigated by the FTIR spectroscopic technique while observing its temperature distribution simultaneously by a SiC photoluminescence technique. Changing the bias level, sudden jumps of the hot-spot position were clearly observed. Although the radiation intensity changes drastically associated with the jump of the hot spot position, the frequency is unaffected as long as the voltage per junction is kept constant. Since the frequency of the intense radiation satisfies the cavity resonance condition, we confirmed that the cavity resonance is of primarily importance for the synchronization of whole intrinsic Josephson junctions in the mesa for high power radiation. This work was supported in part by the Grant-in-Aid for challenging Exploratory Research, the Ministry of Education, Culture, Sports, Science & Technology (MEXT).

  9. Colloquium: Nanoplasmas generated by intense radiation

    NASA Astrophysics Data System (ADS)

    Ostrikov, Kostya Ken; Beg, Farhat; Ng, Andrew

    2016-01-01

    Solid, liquid, and gaseous states of matter can exist and acquire unique properties when reduced in size into a nanometer domain. This Colloquium explores the approaches to produce plasmas with nanometer dimensions and the arising physical phenomena and properties associated with this extreme, nonequilibrium state of matter. Analysis of the spatial confinement, coupling, ideality, and degeneracy criteria lead to the possibilities to produce transient nanoplasma states near, in, and from solids by using ultrafast photoexcitation. These states arise through the interplay of nonequilibrium, many-body Coulomb interactions, thermal, and nonthermal effects. Examples include photoexcited electron-hole plasmas in semiconductors, transient solid-to-plasma states including warm dense matter, nanoplasmas produced by interaction of nanoclusters and nanoparticles with intense radiation, nanoplasmas in high-energy ion tracks within solids, nanoplasmas in relativistic regime, and others. Physical phenomena arising due to the localization of high-energy densities to microscales and nanoscales and their potential applications are discussed.

  10. Ultrabright continuously tunable terahertz-wave generation at room temperature

    PubMed Central

    Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki

    2014-01-01

    The hottest frequency region in terms of research currently lies in the ‘frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm2, brightness temperature of ~1018 K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~1016 K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region. PMID:24898269

  11. Ultrabright continuously tunable terahertz-wave generation at room temperature.

    PubMed

    Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki

    2014-01-01

    The hottest frequency region in terms of research currently lies in the 'frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm(2), brightness temperature of ~10(18) K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~10(16) K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region. PMID:24898269

  12. Terahertz radiation from InAs/Al xGa 1- xSb ( x=0.5) heterostructures

    NASA Astrophysics Data System (ADS)

    Suzuki, Masato; Kiwa, Toshihiko; Tonouchi, Masayoshi; Nakajima, Yoji; Sasa, Shigehiko; Inoue, Masataka

    2004-04-01

    We observed terahertz radiation from InAs/Al 0.5Ga 0.5Sb heterostructures excited by femtosecond pulses of mode-locked Ti:sapphire laser in the temperature range of 20- 300 K. The radiation pseudo-reflected is monitored in time domain by a low temperature grown GaAs photoswitch. Although the waveforms are almost identical irrespective of temperatures, their maximum amplitude is strongly temperature dependent and peaks at around 100 K. Laser power dependence of the amplitude indicates that the excitation at power densities above 57 W/ cm2 induce saturation presumably due to screening effect.

  13. Remote Detection of Concealed Radioactive Materials by Using Focused Powerful Terahertz Radiation

    NASA Astrophysics Data System (ADS)

    Nusinovich, Gregory S.

    2016-06-01

    This review paper summarizes the results of studies of a novel concept of the remote detection of concealed radioactive materials by using focused high-power terahertz (THz) radiation. The concept is based on the known fact that the ambient electron density in air is low (one to three free electrons per cubic centimeter). These electrons can serve as seed electrons from which an avalanche breakdown in strong electromagnetic fields starts. When a powerful THz radiation is focused in a small spot, the breakdown-prone volume can be much smaller than a cubic centimeter. So, the probability of having some free electrons in this volume and, hence, the probability of breakdown are low in the absence of additional sources of air ionization. However, in the vicinity of radioactive materials (10-20 m), the electron density can be higher, and, hence, there are always some seed free electrons from which the avalanche ionization will start. Thus, the breakdown rate in this case can be close to 100 %. Realization of this concept requires studies of various physical and technical issues. First, it is necessary to develop a high-power source of (sub-) THz radiation whose power, frequency, and pulse duration are sufficient for realizing this goal. Second, it is necessary to analyze numerous issues important for realizing this concept. Among these issues are (a) enhancement of the ionization level of air molecules in the presence of hidden radioactive materials, (b) estimating the minimum detectable mass of radioactive material, (c) formation of breakdown-prone volumes in focused THz wave beams, and (d) effect of atmospheric conditions on the propagation and focusing of THz wave beams and on the optimal location of the breakdown-prone volume between a container with hidden radioactive material and a THz antenna. The results of these studies are described below.

  14. Negative-mass mitigation of Coulomb repulsion for terahertz undulator radiation of electron bunches

    SciTech Connect

    Balal, N.; Magory, E.; Bandurkin, I. V.; Bratman, V. L.; Savilov, A. V.

    2015-10-19

    It is proposed to utilize the effect of negative mass for stabilization of the effective axial size of very dense and short electron bunches produced by photo-injector guns by using combined undulator and strong uniform magnetic fields. It has been shown that in the “abnormal” regime, an increase in the electron energy leads to a decrease in the axial velocity of the electron; due to the negative-mass effect, the Coulomb repulsion of electrons leads to their attraction and formation of a fairly stable and compact bunch “nucleus.” An undulator with a strong uniform magnetic field providing the negative-mass effect is designed for an experimental source of terahertz radiation. The use of the negative-mass regime in this experiment should result in a long-pulse coherent spontaneous undulator emission from a short dense moderately relativistic (5.5 MeV) photo-injector electron bunch with a high (up to 20%) efficiency and a narrow frequency spectrum.

  15. Electrically tunable liquid-crystal Fabry-Perot device for terahertz radiation

    NASA Astrophysics Data System (ADS)

    Li, Hui; Pan, Fan; Liu, Kan; Wu, Yuntao; Zhang, Yanduo; Xie, Xiaolin

    2015-11-01

    In this paper, we will present a smart structure based on an electrically controlled liquid crystal (LC) Fabry-Perot to achieve terahertz (THz) filter, which has extremely potential in THz communication. This proposed structure doesn't need any mechanical movements because of adapting LC as a key material to compose the Fabry-Perot device. The THz filter based on LC, which is smart, light and cheap, can be realized to solve that common problem of short of tunable devices in THz radiation. The chosen LC material is E7, which has very stable and good transmissions in THz range. Under the external applied voltage, the alignment of the nematic LC allows the refractive index of the device to be tuned. Because of this feature, the resonant peaks could be shifted by changing the applied voltage. Especially, when the alignment is changed from planar to phototropic, the maximum value of the shift could be realized. The simulation result of the proposed device could be got. And the optimal structural parameters could be also got. Numerical analyses results have shown that the proposed structure has a high narrow transmission band and very sharp edges. This THz filter is novel for compact and smart features, so this kind of proposed THz filter is very attractive in many applications, such as THz communication, and THz spectral imaging.

  16. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    SciTech Connect

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim O.; Martinez, Jennifer S.; Bishop, Alan R.; Usheva, Anny

    2013-01-31

    In this paper, we report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicates minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. Finally, we propose that THz radiation has potential for non-contact control of cellular gene expression.

  17. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    NASA Astrophysics Data System (ADS)

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim Ø.; Martinez, Jennifer S.; Bishop, Alan R.; Usheva, Anny

    2013-01-01

    We report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicates minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.

  18. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    DOE PAGESBeta

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim O.; et al

    2013-01-31

    In this paper, we report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicatesmore » minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. Finally, we propose that THz radiation has potential for non-contact control of cellular gene expression.« less

  19. Negative-mass mitigation of Coulomb repulsion for terahertz undulator radiation of electron bunches

    NASA Astrophysics Data System (ADS)

    Balal, N.; Bandurkin, I. V.; Bratman, V. L.; Magory, E.; Savilov, A. V.

    2015-10-01

    It is proposed to utilize the effect of negative mass for stabilization of the effective axial size of very dense and short electron bunches produced by photo-injector guns by using combined undulator and strong uniform magnetic fields. It has been shown that in the "abnormal" regime, an increase in the electron energy leads to a decrease in the axial velocity of the electron; due to the negative-mass effect, the Coulomb repulsion of electrons leads to their attraction and formation of a fairly stable and compact bunch "nucleus." An undulator with a strong uniform magnetic field providing the negative-mass effect is designed for an experimental source of terahertz radiation. The use of the negative-mass regime in this experiment should result in a long-pulse coherent spontaneous undulator emission from a short dense moderately relativistic (5.5 MeV) photo-injector electron bunch with a high (up to 20%) efficiency and a narrow frequency spectrum.

  20. Concentration of broadband terahertz radiation using a periodic array of conically tapered apertures.

    PubMed

    Liu, Shuchang; Vardeny, Z Valy; Nahata, Ajay

    2013-05-20

    We describe the optical concentration properties of periodic arrays of conically tapered metallic apertures measured using terahertz (THz) time-domain spectroscopy. As a first step in this process, we optimize the geometrical properties of individual apertures, keeping the output aperture diameter fixed, and find that the optimal taper angle is 30°. A consequence of increasing the taper angle is that the effective cutoff frequency red shifts, which can be readily explained using conventional waveguide theory. We then fabricate and measure the transmission properties of a periodic (hexagonal) array of optimized tapered apertures. In contrast to periodic arrays of subwavelength apertures in thin metal films, which are characterized by narrowband transmission resonances associated with the periodic spacing, here we observe broadband enhanced transmission above the effective cutoff frequency. Further enhancement in the concentration capabilities of the array can be achieved by tilting the apertures towards the array center, although the optical throughput of individual tapered apertures is reduced with increasing tilt angle. Finally, we discuss possible future directions that utilize cascaded structures, as a means for obtaining further enhancement in the amplitude of the transmitted THz radiation. PMID:23736454

  1. Calorimetric detection of the conical terahertz radiation from femtosecond laser filaments in air

    NASA Astrophysics Data System (ADS)

    Houard, Aurélien; Liu, Yi; Mysyrowicz, André; Leriche, Bernadette

    2007-12-01

    The spectral distribution of the conical terahertz emission from a femtosecond laser filament in air is measured with a bolometric detector and a set of filters, confirming that the main part of the emission lies between 0.5 and 3THz. The efficiency of this terahertz emission is compared with that obtained in air via four wave mixing of femtosecond laser pulses at ω and 2ω in the presence of a plasma.

  2. A comparative study of Terahertz radiation generation by beating of two spatial-Gaussian / super-Gaussian lasers

    NASA Astrophysics Data System (ADS)

    Malik, Hitendra K.; Malik, Anil K.

    2011-10-01

    The subject terahertz (THz) radiation generation has got worldwide attention due to its diverse applications in nonlinear THz spectroscopy, imaging, topography, material characterization, etc. For generation of THz radiation, short pulse lasers have widely been employed for their interaction with semiconductors, air, gases and plasmas. In the present work, we propose to achieve THz radiation based on beating of two spatial-Gaussian or super-Gaussian lasers having different frequencies and wave numbers but the same electric field amplitudes in a periodic density plasma. In this situation, a ponderomotive force is attained along the direction of propagation and also in the transverse direction. Hence, the transverse component of current resonantly excites the radiation with efficiency of about 10-3. The importance of laser-beam-width, amplitude and periodicity of density structure is discussed and a comparative study is made for the two types of lasers.

  3. Terahertz electromagnetic radiation from Bi2Sr2CaCu2Oy intrinsic Josephson junction stack

    NASA Astrophysics Data System (ADS)

    Oikawa, Dai; Irie, Akinobu; Yamaki, Kazuhiro; Oya, Gin-ichiro

    We have observed terahertz (THz) electromagnetic wave radiation from Bi2Sr2CaCu2Oy intrinsic Josephson junction (IJJ) stacks using high sensitive detector made of a small IJJ mesa. In this study, we focused on the THz radiation from a few hundred IJJs. We fabricated the IJJ oscillator and detector. The oscillators consist of 55 ∼ 300 IJJs with the lateral dimensions of 290 ¥ 50 μm2. The current-voltage characteristics of the IJJ oscillators showed a negative resistance accompanied with large hysteresis. The THz radiation was observed for several samples when the oscillator was biased at some current in the negative resistance region. We attribute the observed radiation to synchronized emission from many IJJs in the stack and find the emission frequency corresponds to the in-phase cavity resonance frequency.

  4. Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells

    SciTech Connect

    Duka, M V; Dvoretskaya, L N; Babelkin, N S; Khodzitskii, M K; Chivilikhin, S A; Smolyanskaya, O A

    2014-08-31

    We have studied the mechanisms underlying the effect of pulsed broadband terahertz radiation on the growth of neurites of sensory ganglia using a comparative analysis of measured reflection spectra of ganglion neurites (in the frequency range 0.1 – 2.0 THz) and spectra obtained by numerical simulation with CST Microwave Studio. The observed changes are shown to be mainly due to pulse energy absorption in the ganglion neurites. Of particular interest are the observed single resonance frequencies related to resonance size effects, which can be used to irradiate ganglia in order to activate their growth. (laser biophotonics)

  5. The polarization trajectory of terahertz magnetic dipole radiation in (110)-oriented PrFeO3 single crystal

    NASA Astrophysics Data System (ADS)

    Song, Gaibei; Jin, Zuanming; Lin, Xian; Jiang, Junjie; Wang, Xinyan; Wu, Hailong; Ma, Guohong; Cao, Shixun

    2014-04-01

    By using the polarized terahertz (THz) time-domain spectroscopy, the macro-magnetization motion in (110)-oriented PrFeO3 single crystal was constructed. We emphasize that the trajectory of the emitted THz waveforms relies on not only the motion of macroscopic magnetization vector, but also the spin configuration in the ground state and the propagation of THz pulse. The azimuthal angle (the incident THz pulse polarization with respect to the crystal axes) enables us to control the polarization trajectories of the quasiferromagnetic and quasiantiferromagnetic mode radiations that can lead to further applications on multiple information storing and quantum processing.

  6. The polarization trajectory of terahertz magnetic dipole radiation in (110)-oriented PrFeO{sub 3} single crystal

    SciTech Connect

    Song, Gaibei; Jin, Zuanming; Lin, Xian; Jiang, Junjie; Wang, Xinyan; Wu, Hailong; Ma, Guohong E-mail: sxcao@shu.edu.cn; Cao, Shixun E-mail: sxcao@shu.edu.cn

    2014-04-28

    By using the polarized terahertz (THz) time-domain spectroscopy, the macro-magnetization motion in (110)-oriented PrFeO{sub 3} single crystal was constructed. We emphasize that the trajectory of the emitted THz waveforms relies on not only the motion of macroscopic magnetization vector, but also the spin configuration in the ground state and the propagation of THz pulse. The azimuthal angle (the incident THz pulse polarization with respect to the crystal axes) enables us to control the polarization trajectories of the quasiferromagnetic and quasiantiferromagnetic mode radiations that can lead to further applications on multiple information storing and quantum processing.

  7. Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells

    NASA Astrophysics Data System (ADS)

    Duka, M. V.; Dvoretskaya, L. N.; Babelkin, N. S.; Khodzitskii, M. K.; Chivilikhin, S. A.; Smolyanskaya, O. A.

    2014-08-01

    We have studied the mechanisms underlying the effect of pulsed broadband terahertz radiation on the growth of neurites of sensory ganglia using a comparative analysis of measured reflection spectra of ganglion neurites (in the frequency range 0.1 - 2.0 THz) and spectra obtained by numerical simulation with CST Microwave Studio. The observed changes are shown to be mainly due to pulse energy absorption in the ganglion neurites. Of particular interest are the observed single resonance frequencies related to resonance size effects, which can be used to irradiate ganglia in order to activate their growth.

  8. Experimental research on spectrum and imaging of continuous-wave terahertz radiation based on interferometry

    NASA Astrophysics Data System (ADS)

    Lu, Tie-Lin; Yuan, Hui; Kong, Ling-Qin; Zhao, Yue-Jin; Zhang, Liang-Liang; Zhang, Cun-Lin

    2016-08-01

    A system for measuring terahertz spectrum is proposed based on optical interferometer theory, and is experimentally demonstrated by using a backward-wave oscillator as the terahertz source. A high-resolution, high-precision interferometer is constructed by using a pyroelectric detector and a chopper. The results show that the spectral resolution is better than 1 GHz and the relative error of frequency is less than 3%. The terahertz energy density distribution is calculated by an inverse Fourier transform and tested to verify the feasibility of the interferometric approach. Two kinds of carbon-fiber composites are imaged. The results confirm that the interferometer is useful for transmission imaging of materials with different thickness values. Project supported by the National Natural Science Foundation of China (Grant Nos. 61377109 and 11374007).

  9. FLASH requirements for the high intensity radiated field electromagnetic environment

    NASA Astrophysics Data System (ADS)

    Murdock, John K.

    1995-05-01

    The worldwide proliferation of high intensity emitting sources and the more electric aircraft increase the intensity of the Electromagnetic Environment (EME) in which aircraft must operate. A FLASH program HIRF (High Intensity Radiated Field) EME requirement is derived to cover both commercial and military fixed and rotary wing aircraft. This requirement is derived from the radiated susceptibility requirement documents of both the FAA and U.S. military. Specific test data and analysis will show that we can meet this requirement.

  10. Sensor structure concepts for the analysis or local radiation exposure of biological samples at terahertz and millimeter wave frequencies

    NASA Astrophysics Data System (ADS)

    Dornuf, Fabian; Dörr, Roland; Lämmle, David; Schlaak, Helmut F.; Krozer, Viktor

    2016-03-01

    We have studied several sensor concepts for biomedical applications operating in the millimeter wave and terahertz range. On one hand, rectangular waveguide structure were designed and extended with microfluidic channels. In this way a simple analysis of aqueous solutions at various waveguide bands is possible. In our case, we focused on the frequency range between 75 GHz and 110 GHz. On the other hand, planar sensor structures for aqueous solutions have been developed based on coplanar waveguides. With these planar sensors it is possible to concentrate the interaction volume on small sensor areas, which achieve a local exposure of the radiation to the sample. When equipping the sensor with microfluidic structures the sample volume could be reduced significantly and enabled a localized interaction with the sensor areas. The sensors are designed to exhibit a broadband behavior up to 300 GHz. Narrow-band operation can also be achieved for potentially increased sensitivity by using resonant structures. Several tests with Glucose dissolved in water show promising results for the distinction of different glucose levels at millimeter wave frequencies. The planar structures can also be used for the exposure of biological cells or cell model systems like liposomes with electromagnetic radiation. Several studies are planned to distinguish on one hand the influence of millimeter wave exposure on biological systems and also to have a spectroscopic method which enables the analysis of cell processes, like membrane transport processes, with millimeter wave and terahertz frequencies by focusing the electric field directly on the analyzing sample.

  11. Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime

    NASA Astrophysics Data System (ADS)

    Gong, Sen; Zhao, Tao; Sanderson, Matthew; Hu, Min; Zhong, Renbin; Chen, Xiaoxing; Zhang, Ping; Zhang, Chao; Liu, Shenggang

    2015-06-01

    We demonstrate a concept that allows direct excitation of surface plasmon polaritons (SPPs) by a moving electron bunch above a single layer graphene sheet deposited on a dielectric substrate without any additional coupling requirements. We show that if the two-dimensional current in the graphene is dominated by the third order nonlinear effect when the surface electric field exceeds a moderate strength of ˜5 kV/cm, the SPP mode can cross the light line although the group velocity remains much smaller than the speed of light. This effect gives rise to direct transformation of SPPs into radiation. The underlying mechanism of the crossing of the SPP dispersion into the light line is the energy shift of charged particles in the nonlinear regime and the finite transport scattering time in graphene. Both the energy and lifetime of the SPPs increase with the field intensity. The radiation intensity and frequency can be tuned with an AC bias.

  12. Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime

    SciTech Connect

    Gong, Sen; Zhao, Tao; Hu, Min; Zhong, Renbin; Chen, Xiaoxing; Zhang, Ping; Liu, Shenggang; Sanderson, Matthew; Zhang, Chao

    2015-06-01

    We demonstrate a concept that allows direct excitation of surface plasmon polaritons (SPPs) by a moving electron bunch above a single layer graphene sheet deposited on a dielectric substrate without any additional coupling requirements. We show that if the two-dimensional current in the graphene is dominated by the third order nonlinear effect when the surface electric field exceeds a moderate strength of ∼5 kV/cm, the SPP mode can cross the light line although the group velocity remains much smaller than the speed of light. This effect gives rise to direct transformation of SPPs into radiation. The underlying mechanism of the crossing of the SPP dispersion into the light line is the energy shift of charged particles in the nonlinear regime and the finite transport scattering time in graphene. Both the energy and lifetime of the SPPs increase with the field intensity. The radiation intensity and frequency can be tuned with an AC bias.

  13. Terahertz photoluminescence from S.I.-GaAs by below gap excitation via EL2 level

    SciTech Connect

    Oyama, Yutaka Dezaki, Hikari; Shimizu, Yusaku; Maeda, Kensaku

    2015-01-12

    Terahertz emission by radiative transitions in semi-conductors via shallow impurity states is investigated. We report on the observation of terahertz photoluminescence from S.I.-GaAs by below gap excitation via EL2 level which is located at the center of band gap. In order to investigate the terahertz wave emission mechanisms, the emission spectra and temperature dependence of the emission intensity are evaluated. It is shown that intense terahertz emission from S.I.-GaAs over 120 K is observed due to the thermal recovery of photo-quenched EL2 meta-stable state, and that the emission peak frequency looks to be attributed to the shallow level energy in GaAs.

  14. Shorter, Intensive Radiation Works for Prostate Cancer

    MedlinePlus

    ... April 4, 2016 (HealthDay News) -- A slightly higher dose of radiation therapy for early stage prostate cancer may reduce treatment time without compromising effectiveness, researchers report. The ...

  15. Intensity clamping in the filament of femtosecond laser radiation

    SciTech Connect

    Kandidov, V P; Fedorov, V Yu; Tverskoi, O V; Kosareva, O G; Chin, S L

    2011-04-30

    We have studied numerically the evolution of the light field intensity and induced refractive index of a medium upon filamentation of femtosecond laser radiation in air. It is shown that the intensity clamping results from the dynamic balance of optical powers of nonlinear lenses, induced by radiation due to the Kerr nonlinearity of air, and laser plasma produced during photoionisation. We have found the relation between the peak values of the light field intensity and the electron density in laser-produced plasma, as well as the transverse sizes of the filament and the plasma channel. (effects of laser radiation on matter)

  16. Supersonic intensity and non-negative intensity for prediction of radiated sound.

    PubMed

    Liu, Daipei; Peters, Herwig; Marburg, Steffen; Kessissoglou, Nicole

    2016-05-01

    Two numerical methods to identify the surface areas of a vibrating structure that radiate sound are presented. The supersonic intensity identifies only the supersonic wave components of the sound field contributing to far-field radiated sound. The supersonic intensity is calculated using a two-dimensional convolution between a spatial radiation filter and the sound field. To compute the spatial radiation filter, the shortest surface distance between two points on the structure is calculated using the geodesic distance method. The non-negative intensity is based on acoustic radiation modes and identifies the radiated sound power from a vibrating structure. Numerical models of a baffled plate, a cylinder and an engine crankcase are presented. The supersonic intensity is shown to be difficult to implement at low frequencies due to the size of the spatial radiation filter and accuracy of the surface distances. A cut-off coefficient associated with the acoustic wavenumber of the spatial radiation filter is used to reduce the aperture error. A comparison of the two intensity-based techniques both in terms of a sound power ratio and the modal assurance criterion is introduced to identify the optimal values of the cut-off coefficients that result in better convergence between the intensity techniques. PMID:27250172

  17. Terahertz transfer

    NASA Astrophysics Data System (ADS)

    2007-07-01

    Terahertz sources are already hitting the market as parts of imaging systems. Nature Photonics spoke to Carlo Sirtori from the University of Paris-Diderot and Thales Research and Technology about the implications of merging terahertz and telecommunication technologies.

  18. Radiation intensity of lignite-fired oxy-fuel flames

    SciTech Connect

    Andersson, Klas; Johansson, Robert; Hjaertstam, Stefan; Johnsson, Filip; Leckner, Bo

    2008-10-15

    The radiative heat transfer in oxy-fuel flames is compared to corresponding conditions in air-fuel flames during combustion of lignite in the Chalmers 100 kW oxy-fuel test facility. In the oxy-fuel cases the flue-gas recycle rate was varied, so that, in principle, the same stoichiometry was kept in all cases, whereas the oxygen fraction in the recycled flue-gas mixture ranged from 25 to 29 vol.%. Radial profiles of gas concentration, temperature and total radiation intensity were measured in the furnace. The temperature, and thereby the total radiation intensity of the oxy-fuel flames, increases with decreasing flue-gas recycle rate. The ratio of gas and total radiation intensities increases under oxy-fuel conditions compared to air-firing. However, when radiation overlap between gas and particles is considered the ratios for air-firing and oxy-fuel conditions become more similar, since the gas-particle overlap is increased in the CO{sub 2}-rich atmosphere. A large fraction of the radiation in these lignite flames is emitted by particles whose radiation was not significantly influenced by oxy-fuel operation. Therefore, an increment of gas radiation due to higher CO{sub 2} concentration is not evident because of the background of particle radiation, and, the total radiation intensities are similar during oxy-fuel and air-fuel operation as long as the temperature distributions are similar. (author)

  19. Mechanism of generation of high-intensity terahetrz radiation under the action of high-power laser pulsed on a target

    NASA Astrophysics Data System (ADS)

    Didenko, A. N.; Rashchikov, V. I.; Fortov, V. E.

    2011-10-01

    The mechanism of generation of terahertz radiation upon irradiation of a target by short (˜ 0.1 ns) high-intensity laser pulses ( I ˜ 1018-1019 W cm-2) is investigated by numerical simulation using the relativistic electromagnetic PIC code. The interaction of such a pulse with the target, a plasma is formed on it. Electrons emitted from the plasma form a virtual cathode whose oscillations are determined not only by their self-field, but also by the field of ions of the plasma. Generation occurs in the terahertz frequency range with the efficiency thrice as high as in the absence of ions (i.e., with traditional reditron generation mechanism). The explanation for this effect is also given.

  20. Intense and energetic radiation from crystalline undulators

    NASA Astrophysics Data System (ADS)

    Uggerhøj, U. I.; Wistisen, T. N.

    2015-07-01

    With the recent experimental confirmation of the existence of energetic radiation from a Small Amplitude, Small Period (SASP) crystalline undulator (Wistisen et al., 2014), the field of specially manufactured crystals, from which specific radiation characteristics can be obtained, has evolved substantially. In the present paper we show how the radiation spectra can be tuned, using electrons and positrons of energies from 100 MeV up to 20 GeV. The latter energy is relevant for possible experiments at the FACET facility at Stanford Linear Accelerator Center (SLAC), whereas 100 MeV has been chosen to show the potentialities connected to using crystalline undulators as radiation targets for Nuclear Waste Transmutation (NWT). Energies in the few hundred MeV range are relevant for the facilities at the MAinzer MIcrotron (MAMI). For the 20 GeV case we show explicitly that quantum corrections to the emission spectrum become very significant, an effect that may be observed in the near future using the FACET beam at SLAC.

  1. Terahertz emission upon the band-to-band excitation of Group-IV semiconductors at room temperature

    SciTech Connect

    Zakhar’in, A. O.; Bobylev, A. V.; Egorov, S. V.; Andrianov, A. V.

    2015-03-15

    Terahertz emission upon the band-to-band excitation of Group-IV semiconductors (Si:B and Ge:Ga) at room temperature by a semiconductor laser emitting in the visible range (660 nm) is observed and investigated. It is established that, as the crystal temperature is elevated above room temperature, the emission intensity increases considerably, while the emission spectrum shifts to higher frequencies. The terahertz-emission spectra of germanium and silicon are quite similar to each other. The pump-intensity dependence of the terahertz-emission intensity is nearly linear. The above features make it possible to attribute the observed terahertz emission to the effect of crystal heating by absorbed pump radiation.

  2. Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna

    SciTech Connect

    Zhang, Jingdi; Averitt, Richard D. E-mail: raveritt@ucsd.edu; Zhao, Xiaoguang; Fan, Kebin; Wang, Xiaoning; Zhang, Xin E-mail: raveritt@ucsd.edu; Zhang, Gu-Feng; Geng, Kun

    2015-12-07

    We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ∼170. Above an in-gap E-field threshold amplitude of ∼10 MV/cm{sup −1}, THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits a linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light.

  3. Terahertz radiation generation by beating of two super Gaussian lasers in plasma having static dc electric field

    NASA Astrophysics Data System (ADS)

    Hussain, Saba; Singh, Ram Kishor; Sharma, R. P.

    2016-07-01

    This paper presents a scheme for the generation of high power terahertz radiation by the beating of two femtosecond super Gaussian lasers in plasma having dc electric field in the transverse direction. In this mechanism, a strong nonlinear ponderomotive force acts on the plasma electrons at the frequency difference of the two lasers ( ω 1 - ω 2 ) that imparts a nonlinear oscillatory velocity to plasma electrons which further result in the generation of a nonlinear current at this difference frequency (lying in THz domain). The dynamical equations governing the generation of THz waves have been solved semi-analytically; the result shows that the amplitude of the generated waves is considerably enhanced in the presence of dc electric field, and the index of super Gaussian beams also plays a keen role in governing the yield of THz waves.

  4. Superimposed coherent terahertz wave radiation from mono-energetically bunched multi-beam

    SciTech Connect

    Shin, Young -Min

    2012-06-27

    Intense coherent radiation is obtained from multiple electron beams monochromatically bunched over the wide higher-order-mode (HOM) spectral band in the THz regime. The overmoded waveguide corrugated by dielectric-implanted staggered gratings superimposes evanescent waves emitted from the low energy electron beams. The dispersion and transmission simulations of the three-beam slow wave structure show that the first two fundamental modes ($TE_{10}$ and $TE_{20}$) are considerably suppressed ($\\sim-50$ dB) below the multi-beam resonating mode ($TE_{30}$) at the THz regime (0.8–1.24 THz). The theoretical calculations and particle-in-cell simulations show that with significantly higher interaction impedance and power growth rate radiation of the $TE_{30}$ mode is $\\sim$23 dBm and $\\sim$50 dBm stronger than the $TE_{10}$ and $TE_{20}$ modes around 1 THz, respectively. As a result, this highly selective HOM multi-beam interaction has potential applications for power THz sources and high intensity accelerators.

  5. Superimposed coherent terahertz wave radiation from mono-energetically bunched multi-beam

    DOE PAGESBeta

    Shin, Young -Min; Fermi National Accelerator Lab.

    2012-06-27

    Intense coherent radiation is obtained from multiple electron beams monochromatically bunched over the wide higher-order-mode (HOM) spectral band in the THz regime. The overmoded waveguide corrugated by dielectric-implanted staggered gratings superimposes evanescent waves emitted from the low energy electron beams. The dispersion and transmission simulations of the three-beam slow wave structure show that the first two fundamental modes (more » $$TE_{10}$$ and $$TE_{20}$$) are considerably suppressed ($$\\sim-50$$ dB) below the multi-beam resonating mode ($$TE_{30}$$) at the THz regime (0.8–1.24 THz). The theoretical calculations and particle-in-cell simulations show that with significantly higher interaction impedance and power growth rate radiation of the $$TE_{30}$$ mode is $$\\sim$$23 dBm and $$\\sim$$50 dBm stronger than the $$TE_{10}$$ and $$TE_{20}$$ modes around 1 THz, respectively. As a result, this highly selective HOM multi-beam interaction has potential applications for power THz sources and high intensity accelerators.« less

  6. Superimposed coherent terahertz wave radiation from mono-energetically bunched multi-beam

    SciTech Connect

    Shin, Young-Min

    2012-06-15

    Intense coherent radiation is obtained from multiple electron beams monochromatically bunched over the wide higher-order-mode (HOM) spectral band in the THz regime. The overmoded waveguide corrugated by dielectric-implanted staggered gratings superimposes evanescent waves emitted from the low energy electron beams. The dispersion and transmission simulations of the three-beam slow wave structure show that the first two fundamental modes (TE{sub 10} and TE{sub 20}) are considerably suppressed ({approx}-50 dB) below the multi-beam resonating mode (TE{sub 30}) at the THz regime (0.8-1.24 THz). The theoretical calculations and particle-in-cell simulations show that with significantly higher interaction impedance and power growth rate radiation of the TE{sub 30} mode is {approx}23 dBm and {approx}50 dBm stronger than the TE{sub 10} and TE{sub 20} modes around 1 THz, respectively. This highly selective HOM multi-beam interaction has potential applications for power THz sources and high intensity accelerators.

  7. A terahertz confocal microscope for far-field thermal radiation detection and near-field sub-wavelength imaging

    NASA Astrophysics Data System (ADS)

    Weng, Qianchun; Yang, Le; Xu, Jie; Qian, Qingbai; Yu, Haochi; Zhang, Bo; An, Zhenghua; Zhu, Ziqiang; Lu, Wei

    2015-11-01

    We present a novel scattering-type scanning near-field optical microscope (s-SNOM) operating in the terahertz (THz) wavelength. A home-made ultra-high sensitive detector named charge sensitive infrared phototransistor (CSIP, detection wavelength ~15 μm) is equipped for spontaneous thermal radiation detection (external illumination should be avoided). Thermal emission from room-temperature objects is collected by a cassegrain objective lens placed above the sample, and focused to a pinhole (d=250 μm) which is kept in liquid-helium (LHe) temperature(4.2 K). With the background radiation from environment efficiently blocked by the low-temperature pinhole, the detector is only sensitive to the THz radiation from a small spot (~λ) on sample surface (the confocal point). As a result, thermal radiation spontaneously emitted by object itself is measured with an excellent spatial resolution of ~14 μm (diffraction-limit). For overcoming the diffraction limit by detecting the near-field evanescent waves, this THz microscope is combined with a home-built atomic-force microscope (AFM). With sharp AFM tip (<100 nm) scattering the evanescent waves with an improved tip-modulation method, we successfully obtained thermal near-field images with a spatial resolution of ~100 nm, which is already less than 1% of the detection wavelength (15 μm). This THz s-SNOM should be a powerful tool for various material research down to the nanometer scale.

  8. Compton interaction of free electrons with intense low frequency radiation

    NASA Technical Reports Server (NTRS)

    Illarionov, A. F.; Kompaneyets, D. A.

    1978-01-01

    Electron behavior in an intense low frequency radiation field, with induced Compton scattering as the primary mechanism of interaction, is investigated. Evolution of the electron energy spectrum is studied, and the equilibrium spectrum of relativistic electrons in a radiation field with high brightness temperature is found. The induced radiation pressure and heating rate of an electron gas are calculated. The direction of the induced pressure depends on the radiation spectrum. The form of spectrum, under the induced force can accelerate electrons to superrelativistic energies is found.

  9. Extended mode in blocked impurity band detectors for terahertz radiation detection

    SciTech Connect

    Liao, K. S.; Li, N.; Wang, C.; Li, L.; Jing, Y. L.; Wen, J.; Li, M. Y.; Wang, H.; Zhou, X. H. Li, Z. F.; Lu, W.

    2014-10-06

    We demonstrate the existence of an interfacial barrier in blocked impurity band (BIB) detectors using temperature-dependent dark current and corresponding theoretical calculations. Considering the effects of the interfacial barrier, the calculated photoresponse is in good agreement with the experimental results. A dual-excitation model, including the direct excitation over the full barrier and excitation to the band minimum with subsequent tunneling into the blocking layer, is proposed to quantitatively explain the observed photoresponse extension. A concept of extended-mode detection is developed to suggest the option for some selective photoresponse in the terahertz region and open the possibility of extending BIB photoresponse to lower frequency.

  10. Extended mode in blocked impurity band detectors for terahertz radiation detection

    NASA Astrophysics Data System (ADS)

    Liao, K. S.; Li, N.; Wang, C.; Li, L.; Jing, Y. L.; Wen, J.; Li, M. Y.; Wang, H.; Zhou, X. H.; Li, Z. F.; Lu, W.

    2014-10-01

    We demonstrate the existence of an interfacial barrier in blocked impurity band (BIB) detectors using temperature-dependent dark current and corresponding theoretical calculations. Considering the effects of the interfacial barrier, the calculated photoresponse is in good agreement with the experimental results. A dual-excitation model, including the direct excitation over the full barrier and excitation to the band minimum with subsequent tunneling into the blocking layer, is proposed to quantitatively explain the observed photoresponse extension. A concept of extended-mode detection is developed to suggest the option for some selective photoresponse in the terahertz region and open the possibility of extending BIB photoresponse to lower frequency.

  11. Study of Optimal Cavity Parameter in Optically Pumped D2O Gas Terahertz Laser

    NASA Astrophysics Data System (ADS)

    He, Zhihong; Zhang, Yuping; Zhang, Huiyun; Zhang, Qingmao; Liao, Jianhong; Zhou, Yongheng; Liu, Songhao; Luo, Xizhang

    2010-05-01

    Heavy water gas (D2O gas) which owns special structure property, can generate terahertz radiation by optically pumping technology, and its 385 μm wavelength radiation can be widely used. In this research, on the base of semi-classical density matrix theory, we set up a three-level energy system as its theoretical model, a TEA-CO2 laser 9R (22) output line (λ = 9.26 μm) acted as pumping source, D2O gas molecules were operating medium, the expressions of pumping absorption coefficient G p and Terahertz signal gain coefficient G s were deduced. It was shown that the gain of Terahertz signal was related with the energy-level parameters of operating molecules and some operating parameters of the Terahertz laser cavity, mainly including cavity length. By means of iteration method, the output power density of Terahertz pulse signal was calculated numerically. Changing the parameter of cavity length and keeping others steady, the relationship curve between the output power intensity (Is) of Terahertz pulse laser and the operating cavity length (L) was obtained. The curve showed that the power intensity (Is) increased with cavity length (L) in a certain range, but decreased when the length (L) exceeded some value because of the absorption effect, and there was an optimal cavity length for the highest output power. We used a grating tuned TEA-CO2 laser as pumping power and a sample tube of variable length in 70-160 cm as terahertz laser operating cavity to experiment. The results of theoretical calculation and experiment matched with each other, and it is helpful for miniaturizing terahertz laser volume to make it practical.

  12. A capillary discharge plasma source of intense VUV radiation

    SciTech Connect

    Sobel'man, Igor I; Shevelko, A P; Yakushev, O F; Knight, L V; Turley, R S

    2003-01-31

    The results of investigation of a capillary discharge plasma, used as a source of intense VUV radiation and soft X-rays, are presented. The plasma was generated during the discharge of low-inductance condensers in a gas-filled ceramic capillary. Intense line radiation was observed in a broad spectral range (30-400 A) in various gases (CO{sub 2}, Ne, Ar, Kr, Xe). The absolute radiation yield for the xenon discharge was {approx}5 mJ (2{pi} sr){sup -1} pulse{sup -1} within a spectral band of width 9 A at 135 A. Such a radiation source can be used for various practical applications, such as EUV projection lithography, microscopy of biological objects in a 'water window', reflectometry, etc. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  13. Quantum path control of H2 + during a high-order harmonic generation process by adjusting the laser intensity of a terahertz assisted field

    NASA Astrophysics Data System (ADS)

    Ge, Xin-Lei

    2016-06-01

    We investigate high-harmonic generation (HHG) for the \\text{H}2+ molecular ion by solving a two-dimensional time-dependent Schrödinger equation in the combination of a circularly polarized laser pulse and a terahertz (THz) field. The results published recently by Ge et al (Opt. Express 23 8837–44) show that the harmonic intensity can be greatly enhanced when a THz field is added. Our work is an extension of Ge et al’s. We focus on considering the influence of THz field with different peak intensity, which shows that, with the increasing peak intensity of THz field, the cutoff of the harmonics can be remarkably extended, and the harmonic spectrum presents a two-plateau structure. The time-frequency analysis shows that the long trajectory makes a contribution to HHG when the intensity of THz field is low. With the increase of peak intensity of THz field, the long trajectory gradually disappears and the short trajectory makes the main contribution to HHG. We present the classical trajectory of the electron and the temporal evolution of the probability density of the electron wave packet to further understand the electron motion and the physical insight into HHG.

  14. Tunable and efficient terahertz radiation generation by photomixing of two super Gaussian laser pulses in a corrugated magnetized plasma

    SciTech Connect

    Varshney, Prateek; Sajal, Vivek Kumar, Ravindra; Sharma, Navneet K.; Singh, Kunwar Pal

    2015-05-21

    A scheme of terahertz (THz) radiation generation is investigated by photo-mixing of two super Gaussian laser beams having different frequencies (ω{sub 1}, ω{sub 2}) and wave numbers (k{sup →}{sub 1}, k{sup →}{sub 2}) in a performed corrugated plasma embedded with transverse dc magnetic field. Lasers exert a nonlinear ponderomotive force, imparting an oscillatory velocity to plasma electrons that couples with the density corrugations (n{sup ′}=n{sub α0}e{sup iαz}) to generate a strong transient nonlinear current, that resonantly derives THz radiation of frequency ∼ω{sub h} (upper hybrid frequency). The periodicity of density corrugations is suitably chosen to transfer maximum momentum from lasers to THz radiation at phase matching conditions ω=ω{sub 1}−ω{sub 2} and k{sup →}=k{sup →}{sub 1}−k{sup →}{sub 2}+α{sup →}. The efficiency, power, beam quality, and tunability of the present scheme exhibit high dependency upon the applied transverse dc magnetic field along with q-indices and beam width parameters (a{sub 0}) of super Gaussian lasers. In the present scheme, efficiency ∼10{sup −2} is achieved with the optimization of all these parameters.

  15. Scatter radiation intensities around full-field digital mammography units.

    PubMed

    Judge, M A; Keavey, E; Phelan, N

    2013-01-01

    The aim of this study was to investigate the scatter radiation intensity around digital mammography systems and apply these data to standard shielding calculations to reveal whether shielding design of existing breast screening rooms is adequate for the use of digital mammography systems. Three digital mammography systems from GE Healthcare, Hologic and Philips were employed in the study. A breast-equivalent phantom was imaged under clinical workload conditions and scatter radiation intensities around the digital mammography systems were measured for a range of angles in three planes using an ionisation chamber. The results were compared with those from previous studies of film-screen systems. It may be deduced from the results that scattering in the backward direction is significant for all three systems, while scattering in the forward direction can be significant for some planes around the GE and Hologic systems. Measurements at typical clinical settings on each system revealed the Philips system to have markedly lower scatter radiation intensities than the other systems. Substituting the measured scattered radiation intensity into shielding calculations yielded barrier requirements similar to those already in place at the screening centres operating these systems. Current radiation protection requirements based on film-screen technology remain sufficient when applied to rooms with digital mammography installations and no alteration is required to the structural shielding. PMID:23239693

  16. A Device for Search of Gamma-Radiation Intensive Sources at the Radiation Accident Condition

    SciTech Connect

    Batiy, Valeriy; Klyuchnykov, A; Kochnev, N; Rudko, Vladimir; shcherbin, vladimir; Yegorov, V; Schmieman, Eric A.

    2005-08-08

    The procedure designed for measuring angular distributions of gamma radiation and for search of gamma radiation intensive sources is described. It is based on application of the original multidetector device ShD-1, for measuring an angular distribution in a complete solid angle (4 pi). The calibration results and data on the angular distributions of intensity of gamma radiation at the roof of Chornobyl NPP ''Shelter'' are presented.

  17. Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal

    PubMed Central

    Lundholm, Ida V.; Rodilla, Helena; Wahlgren, Weixiao Y.; Duelli, Annette; Bourenkov, Gleb; Vukusic, Josip; Friedman, Ran; Stake, Jan; Schneider, Thomas; Katona, Gergely

    2015-01-01

    Whether long-range quantum coherent states could exist in biological systems, and beyond low-temperature regimes where quantum physics is known to be applicable, has been the subject to debate for decades. It was proposed by Fröhlich that vibrational modes within protein molecules can order and condense into a lowest-frequency vibrational mode in a process similar to Bose-Einstein condensation, and thus that macroscopic coherence could potentially be observed in biological systems. Despite the prediction of these so-called Fröhlich condensates almost five decades ago, experimental evidence thereof has been lacking. Here, we present the first experimental observation of Fröhlich condensation in a protein structure. To that end, and to overcome the challenges associated with probing low-frequency molecular vibrations in proteins (which has hampered understanding of their role in proteins' function), we combined terahertz techniques with a highly sensitive X-ray crystallographic method to visualize low-frequency vibrational modes in the protein structure of hen-egg white lysozyme. We found that 0.4 THz electromagnetic radiation induces non-thermal changes in electron density. In particular, we observed a local increase of electron density in a long α-helix motif consistent with a subtle longitudinal compression of the helix. These observed electron density changes occur at a low absorption rate indicating that thermalization of terahertz photons happens on a micro- to milli-second time scale, which is much slower than the expected nanosecond time scale due to damping of delocalized low frequency vibrations. Our analyses show that the micro- to milli-second lifetime of the vibration can only be explained by Fröhlich condensation, a phenomenon predicted almost half a century ago, yet never experimentally confirmed. PMID:26798828

  18. Effective Material Parameter Retrieval for Terahertz Metamaterials

    NASA Astrophysics Data System (ADS)

    Kim, T.-T.; Choi, Muhan; Kim, Yushin; Min, Bumki

    Metamaterials, which are generally composed of subwavelength scale metallic structures, have been the subject of intensive research in recent years. Because their effective electromagnetic properties can be engineered by designing subwavelength scale metallic structures, called `meta-atoms', these artificially constructed materials are expected to lead to many new developments in the field of photonics. Furthermore, the terahertz (THz) frequency range has many important applications such as security detection, sensing, and biomedical imaging. Because many natural materials are inherently unresponsive to THz radiation, the natural materials that can be applied in devices in order to manipulate THz waves are very limited. Accordingly, the development of metamaterials with unusual optical properties in the THz frequency range has generated intense interest among researchers. In this part, design methods for metamaterials in the terahertz frequencies are introduced. This method is based on the unit cell design and S-parameter retrieval technique. Following a brief introduction to the method, some examples of terahertz metamaterial design will be presented in the last section.

  19. Energy dispersive spectroscopy using synchrotron radiation: Intensity considerations

    NASA Astrophysics Data System (ADS)

    Skelton, E. F.; Elam, W. T.; Qadri, S. B.; Webb, A. W.; Schiferl, D.

    Detailed considerations are given to the reliability of energy dependent integrated intensity data collected from the pressure cavity of a diamond-anvil pressure cell illuminated with heterochromatic radiation from a synchrotron storage ring. It is demonstrated that at least in one run, the electron beam current cannot be used to correct for energy-intensity variations of the incident beam. Rather there appears to be an additional linear relationship between the decay of the synchrotron beam and the magnitude of the background intensity.

  20. Energy dispersive spectroscopy using synchrotron radiation: Intensity considerations

    NASA Astrophysics Data System (ADS)

    Skelton, E. F.; Elam, W. T.; Qadri, S. B.; Webb, A. W.; Schiferl, D.

    1986-05-01

    Detailed considerations are given to the reliability of energy dependent integrated intensity data collected from the pressure cavity of a diamond-anvil pressure cell illuminated with heterochromatic radiation from a synchrotron storage ring. It is demonstrated that, at least in one run, the electron beam current cannot be used to correct for energy-intensity variations of the incident beam. Rather, there appears to be an additional linear relationship between the decay of the synchrotron beam and the magnitude of the background intensity.

  1. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.

  2. Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air

    NASA Astrophysics Data System (ADS)

    Kuk, D.; Yoo, Y. J.; Rosenthal, E. W.; Jhajj, N.; Milchberg, H. M.; Kim, K. Y.

    2016-03-01

    We demonstrate scalable terahertz (THz) generation by focusing terawatt, two-color laser pulses in air with a cylindrical lens. This focusing geometry creates a two-dimensional air plasma sheet, which yields two diverging THz lobe profiles in the far field. This setup can avoid plasma-induced laser defocusing and subsequent THz saturation, previously observed with spherical lens focusing of high-power laser pulses. By expanding the plasma source into a two-dimensional sheet, cylindrical focusing can lead to scalable THz generation. This scheme provides an energy conversion efficiency of 7 × 10-4, ˜7 times better than spherical lens focusing. The diverging THz lobes are refocused with a combination of cylindrical and parabolic mirrors to produce strong THz fields (>21 MV/cm) at the focal point.

  3. Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas.

    PubMed

    Park, Hyeong-Ryeol; Bahk, Young-Mi; Ahn, Kwang Jun; Park, Q-Han; Kim, Dai-Sik; Martín-Moreno, Luis; García-Vidal, Francisco J; Bravo-Abad, Jorge

    2011-10-25

    Nanoscale metallic barriers embedded in terahertz (THz) slot antennas are shown to provide unprecedented control of the transition state arising at the crossover between the full- and half-wavelength resonant modes of such antennas. We demonstrate strong near-field coupling between two paired THz slot antennas separated by a 5 nm wide nanobarrier, almost fully inducing the shift to the resonance of the double-length slot antenna. This increases by a factor of 50 the length-scale needed to observe similar coupling strengths in conventional air-gap antennas (around 0.1 nm), making the transition state readily accessible to experiment. Our measurements are in good agreement with a quantitative theoretical modeling, which also provides a simple physical picture of our observations. PMID:21961910

  4. Statistical numerical simulation of polarized terahertz radiation propagation in a cloud layer

    NASA Astrophysics Data System (ADS)

    Kablukova, E. G.; Kargin, B. A.; Lisenko, A. A.

    2015-11-01

    The results of numerical simulation of polarization characteristics of terahertz signals from a ground-based remote sensing system in stratus clouds for various models of liquid-droplet clouds are compared. Models of the scattering medium take into account the vertical stratification of the water vapor concentration in the atmosphere. The model of droplet size distribution includes droplets larger than 20 μm in radius. They are referred to as large droplets, while droplets with radius 1

  5. Terahertz radiation from an InAs surface due to lateral photocurrent transients.

    PubMed

    Cicėnas, P; Geižutis, A; Malevich, V L; Krotkus, A

    2015-11-15

    We report on terahertz (THz) emission from a (111)-cut InAs crystal in the reflection and transmission directions, excited by femtosecond optical pulses in the direction of its surface normal. THz pulse amplitudes emitted from the crystal surface in this case were only ~20% smaller than for optimal photoexcitation at a 45° angle. This observation evidences that THz emission from InAs is caused by lateral photocurrent transients appearing due to a crystal anisotropy rather than directly by the photo-Dember effect, which creates fast changing electric polarization perpendicular to the surface. Such a simple geometry of the photoexcitation could greatly enhance the fields of surface THz emitter applications. PMID:26565825

  6. Mode Content Determination of Terahertz Corrugated Waveguides Using Experimentally Measured Radiated Field Patterns.

    PubMed

    Jawla, Sudheer K; Nanni, Emilio A; Shapiro, Michael A; Woskov, Paul P; Temkin, Richard J

    2012-06-01

    This work focuses on the accuracy of the mode content measurements in an overmoded corrugated waveguide using measured radiated field patterns. Experimental results were obtained at 250 GHz using a vector network analyzer with over 70 dB of dynamic range. The intensity and phase profiles of the fields radiated from the end of the 19 mm diameter helically tapped brass waveguide were measured on planes at 7, 10, and 13 cm from the waveguide end. The measured fields were back propagated to the waveguide aperture to provide three independent estimates of the field at the waveguide exit aperture. Projecting that field onto the modes of the guide determined the waveguide mode content. The three independent mode content estimates were found to agree with one another to an accuracy of better than ±0.3%. These direct determinations of the mode content were compared with indirect measurements using the experimentally measured amplitude in three planes, with the phase determined by a phase retrieval algorithm. The phase retrieval technique using the planes at 7, 10, and 13 cm yielded a mode content estimate in excellent agreement, within 0.3%, of the direct measurements. Phase retrieval results using planes at 10, 20, and 30 cm were less accurate due to truncation of the measurement in the transverse plane. The reported measurements benefited greatly from a precise mechanical alignment of the scanner with respect to the waveguide axis. These results will help to understand the accuracy of mode content measurements made directly in cold test and indirectly in hot test using the phase retrieval technique. PMID:25264391

  7. Mode Content Determination of Terahertz Corrugated Waveguides Using Experimentally Measured Radiated Field Patterns

    PubMed Central

    Jawla, Sudheer K.; Nanni, Emilio A.; Shapiro, Michael A.; Woskov, Paul P.; Temkin, Richard J.

    2012-01-01

    This work focuses on the accuracy of the mode content measurements in an overmoded corrugated waveguide using measured radiated field patterns. Experimental results were obtained at 250 GHz using a vector network analyzer with over 70 dB of dynamic range. The intensity and phase profiles of the fields radiated from the end of the 19 mm diameter helically tapped brass waveguide were measured on planes at 7, 10, and 13 cm from the waveguide end. The measured fields were back propagated to the waveguide aperture to provide three independent estimates of the field at the waveguide exit aperture. Projecting that field onto the modes of the guide determined the waveguide mode content. The three independent mode content estimates were found to agree with one another to an accuracy of better than ±0.3%. These direct determinations of the mode content were compared with indirect measurements using the experimentally measured amplitude in three planes, with the phase determined by a phase retrieval algorithm. The phase retrieval technique using the planes at 7, 10, and 13 cm yielded a mode content estimate in excellent agreement, within 0.3%, of the direct measurements. Phase retrieval results using planes at 10, 20, and 30 cm were less accurate due to truncation of the measurement in the transverse plane. The reported measurements benefited greatly from a precise mechanical alignment of the scanner with respect to the waveguide axis. These results will help to understand the accuracy of mode content measurements made directly in cold test and indirectly in hot test using the phase retrieval technique. PMID:25264391

  8. Recent developments in people screening using terahertz technology: seeing the world through terahertz eyes

    NASA Astrophysics Data System (ADS)

    Kemp, Michael C.; Glauser, Antony; Baker, Colin

    2006-05-01

    Terahertz radiation, which lies between microwave and infrared, has been shown to have the potential to use very low levels of this non-ionising radiation to detect and identify objects, such as weapons and explosives, hidden under clothing. This paper describes recent work on the development of prototype systems using terahertz to provide new capabilities in people screening. In particular, it explores how hyperspectral terahertz imaging and the use of both specularly reflected and scattered terahertz radiation can enhance the detection of threat objects.

  9. Diffraction mode terahertz tomography

    DOEpatents

    Ferguson, Bradley; Wang, Shaohong; Zhang, Xi-Cheng

    2006-10-31

    A method of obtaining a series of images of a three-dimensional object. The method includes the steps of transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a two-dimensional array of parallel rays. The optical detection is an array of detectors such as a CCD sensor.

  10. Interpreting the Unresolved Intensity of Cosmologically Redshifted Line Radiation

    NASA Astrophysics Data System (ADS)

    Switzer, E. R.; Chang, T.-C.; Masui, K. W.; Pen, U.-L.; Voytek, T. C.

    2015-12-01

    Intensity mapping experiments survey the spectrum of diffuse line radiation rather than detect individual objects at high signal-to-noise ratio. Spectral maps of unresolved atomic and molecular line radiation contain three-dimensional information about the density and environments of emitting gas and efficiently probe cosmological volumes out to high redshift. Intensity mapping survey volumes also contain all other sources of radiation at the frequencies of interest. Continuum foregrounds are typically ~102-103 times brighter than the cosmological signal. The instrumental response to bright foregrounds will produce new spectral degrees of freedom that are not known in advance, nor necessarily spectrally smooth. The intrinsic spectra of foregrounds may also not be well known in advance. We describe a general class of quadratic estimators to analyze data from single-dish intensity mapping experiments and determine contaminated spectral modes from the data themselves. The key attribute of foregrounds is not that they are spectrally smooth, but instead that they have fewer bright spectral degrees of freedom than the cosmological signal. Spurious correlations between the signal and foregrounds produce additional bias. Compensation for signal attenuation must estimate and correct this bias. A successful intensity mapping experiment will control instrumental systematics that spread variance into new modes, and it must observe a large enough volume that contaminant modes can be determined independently from the signal on scales of interest.

  11. Interpreting The Unresolved Intensity Of Cosmologically Redshifted Line Radiation

    NASA Technical Reports Server (NTRS)

    Switzer, E. R.; Chang, T.-C.; Masui, K. W.; Pen, U.-L.; Voytek, T. C.

    2016-01-01

    Intensity mapping experiments survey the spectrum of diffuse line radiation rather than detect individual objects at high signal-to-noise ratio. Spectral maps of unresolved atomic and molecular line radiation contain three-dimensional information about the density and environments of emitting gas and efficiently probe cosmological volumes out to high redshift. Intensity mapping survey volumes also contain all other sources of radiation at the frequencies of interest. Continuum foregrounds are typically approximately 10(sup 2)-10(Sup 3) times brighter than the cosmological signal. The instrumental response to bright foregrounds will produce new spectral degrees of freedom that are not known in advance, nor necessarily spectrally smooth. The intrinsic spectra of fore-grounds may also not be well known in advance. We describe a general class of quadratic estimators to analyze data from single-dish intensity mapping experiments and determine contaminated spectral modes from the data themselves. The key attribute of foregrounds is not that they are spectrally smooth, but instead that they have fewer bright spectral degrees of freedom than the cosmological signal. Spurious correlations between the signal and foregrounds produce additional bias. Compensation for signal attenuation must estimate and correct this bias. A successful intensity mapping experiment will control instrumental systematics that spread variance into new modes, and it must observe a large enough volume that contaminant modes can be determined independently from the signal on scales of interest.

  12. Modal analysis and intensity of acoustic radiation of the kettledrum.

    PubMed

    Tronchin, Lamberto

    2005-02-01

    The acoustical features of kettledrums have been analyzed by means of modal analysis and acoustic radiation (p/v ratio) measurements. Modal analysis of two different kettledrums was undertaken, exciting the system both by a hammer and a shaker. Up to 15 vibrational modes were clearly identified. Acoustic radiation was studied using two ways. Based on previous experiments of other researchers, a new parameter, called intensity of acoustic radiation (IAR), has been defined and measured. Results show a strict relationship between IAR and the frequency response function (FRF, which is the v/F ratio), and IAR also strongly relates the modal pattern to acoustic radiation. Finally, IAR is proposed for vibro-acoustical characterization of kettledrums and other musical instruments such as strings, pianos, and harpsichords. PMID:15759711

  13. Fire Intensity Data for Validation of the Radiative Transfer Equation

    SciTech Connect

    Blanchat, Thomas K.; Jernigan, Dann A.

    2016-01-01

    A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.

  14. Two-dimensional plasmons in lateral carbon nanotube network structures and their effect on the terahertz radiation detection

    NASA Astrophysics Data System (ADS)

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Leiman, V. G.; Fedorov, G.; Goltzman, G. N.; Gayduchenko, I. A.; Titova, N.; Coquillat, D.; But, D.; Knap, W.; Mitin, V.; Shur, M. S.

    2016-07-01

    We consider the carrier transport and plasmonic phenomena in the lateral carbon nanotube (CNT) networks forming the device channel with asymmetric electrodes. One electrode is the Ohmic contact to the CNT network and the other contact is the Schottky contact. These structures can serve as detectors of the terahertz (THz) radiation. We develop the device model for collective response of the lateral CNT networks which comprise a mixture of randomly oriented semiconductor CNTs (s-CNTs) and quasi-metal CNTs (m-CNTs). The proposed model includes the concept of the collective two-dimensional (2D) plasmons in relatively dense networks of randomly oriented CNTs (CNT "felt") and predicts the detector responsivity spectral characteristics exhibiting sharp resonant peaks at the signal frequencies corresponding to the 2D plasmonic resonances. The detection mechanism is the rectification of the ac current due the nonlinearity of the Schottky contact current-voltage characteristics under the conditions of a strong enhancement of the potential drop at this contact associated with the plasmon excitation. The detector responsivity depends on the fractions of the s- and m-CNTs. The burning of the near-contact regions of the m-CNTs or destruction of these CNTs leads to a marked increase in the responsivity in agreement with our experimental data. The resonant THz detectors with sufficiently dense lateral CNT networks can compete and surpass other THz detectors using plasmonic effects at room temperatures.

  15. Absolute intensity of radiation emitted by uranium plasmas

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.

    1975-01-01

    The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.

  16. Effects of various room temperatures on terahertz radiation via optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Huang, Nan; Liu, Hongjun; Sun, Qibing

    2014-06-01

    A terahertz (THz)-wave parametric oscillator (TPO) pumped by a stable and single-longitudinal mode Q-switched Nd:YAG laser under various room temperatures is demonstrated. It is based on a cavity TPO architecture allowing stable single-resonance operation and low oscillation threshold. The output results, including the effects of the room temperature on this wavelength-agile TPO with a MgO:LiNbO3 crystal, indicate that the performance of TPO under the lower temperature is better. We obtain a widely tunable THz-wave source in the range 104 to 226 μm via tuning the cavity flexibly under different room temperatures. The peak power of the THz wave reaches 220 mW at the wavelength of 146.2 μm when the room temperature is 20°C. The peak power of the THz wave decreases to 48 mW when the room temperature rises from 20°C to 25°C.

  17. Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation

    NASA Astrophysics Data System (ADS)

    Wilmink, Gerald J.; Grundt, Jessica E.

    2011-10-01

    Terahertz (THz) imaging and sensing technologies are increasingly being used in a host of medical, military, and security applications. For example, THz systems are now being tested at international airports for security screening purposes, at major medical centers for cancer and burn diagnosis, and at border patrol checkpoints for identification of concealed explosives, drugs, and weapons. Recent advances in THz applications have stimulated renewed interest regarding the biological effects associated with this frequency range. Biological effects studies are a valuable type of basic science research because they serve to enhance our fundamental understanding of the mechanisms that govern THz interactions with biological systems. Such studies are also important because they often times lay the foundation for the development of future applications. In addition, from a practical standpoint, THz biological effects research is also necessary for accurate health hazard evaluation, the development of empirically-based safety standards, and for the safe use of THz systems. Given the importance and timeliness of THz bioeffects data, the purpose of this review is twofold. First, to provide readers with a common reference, which contains the necessary background concepts in biophysics and THz technology, that are required to both conduct and evaluate THz biological research. Second, to provide a critical review of the scientific literature.

  18. Broadband ultra-high transmission of terahertz radiation through monolayer MoS{sub 2}

    SciTech Connect

    Deng, Xue-Yong; Deng, Xin-Hua; Su, Fu-Hai; Liu, Nian-Hua; Liu, Jiang-Tao

    2015-12-14

    In this study, the terahertz (THz) absorption and transmission of monolayer MoS{sub 2} with different carrier concentrations were investigated theoretically. The calculation shows that the THz absorption of monolayer MoS{sub 2} is very low even under high carrier concentrations and large incident angles. The sum of reflection and absorption losses of monolayer MoS{sub 2} is lower than that of graphene by one to three orders of magnitude. The transmission of monolayer MoS{sub 2} is higher than that of two-dimensional electron gases in traditional GaAs and InAs. The field-effect tube structure formed by monolayer MoS{sub 2}-insulation-layer-graphene is also studied. The THz absorption of graphene can reach saturation under low voltage by tuning the voltage between MoS{sub 2} and graphene layers in the structure. The maximum THz absorption of monolayer MoS{sub 2} is approximately 5%. Thus, monolayer MoS{sub 2} is a promising candidate for THz transparent electrodes.

  19. CMOS-Compatible Room-Temperature Rectifier Toward Terahertz Radiation Detection

    NASA Astrophysics Data System (ADS)

    Varlamava, Volha; De Amicis, Giovanni; Del Monte, Andrea; Perticaroli, Stefano; Rao, Rosario; Palma, Fabrizio

    2016-08-01

    In this paper, we present a new rectifying device, compatible with the technology of CMOS image sensors, suitable for implementing a direct-conversion detector operating at room temperature for operation at up to terahertz frequencies. The rectifying device can be obtained by introducing some simple modifications of the charge-storage well in conventional CMOS integrated circuits, making the proposed solution easy to integrate with the existing imaging systems. The rectifying device is combined with the different elements of the detector, composed of a 3D high-performance antenna and a charge-storage well. In particular, its position just below the edge of the 3D antenna takes maximum advantage of the high electric field concentrated by the antenna itself. In addition, the proposed structure ensures the integrity of the charge-storage well of the detector. In the structure, it is not necessary to use very scaled and costly technological nodes, since the CMOS transistor only provides the necessary integrated readout electronics. On-wafer measurements of RF characteristics of the designed junction are reported and discussed. The overall performances of the entire detector in terms of noise equivalent power (NEP) are evaluated by combining low-frequency measurements of the rectifier with numerical simulations of the 3D antenna and the semiconductor structure at 1 THz, allowing prediction of the achievable NEP.

  20. CMOS-Compatible Room-Temperature Rectifier Toward Terahertz Radiation Detection

    NASA Astrophysics Data System (ADS)

    Varlamava, Volha; De Amicis, Giovanni; Del Monte, Andrea; Perticaroli, Stefano; Rao, Rosario; Palma, Fabrizio

    2016-03-01

    In this paper, we present a new rectifying device, compatible with the technology of CMOS image sensors, suitable for implementing a direct-conversion detector operating at room temperature for operation at up to terahertz frequencies. The rectifying device can be obtained by introducing some simple modifications of the charge-storage well in conventional CMOS integrated circuits, making the proposed solution easy to integrate with the existing imaging systems. The rectifying device is combined with the different elements of the detector, composed of a 3D high-performance antenna and a charge-storage well. In particular, its position just below the edge of the 3D antenna takes maximum advantage of the high electric field concentrated by the antenna itself. In addition, the proposed structure ensures the integrity of the charge-storage well of the detector. In the structure, it is not necessary to use very scaled and costly technological nodes, since the CMOS transistor only provides the necessary integrated readout electronics. On-wafer measurements of RF characteristics of the designed junction are reported and discussed. The overall performances of the entire detector in terms of noise equivalent power (NEP) are evaluated by combining low-frequency measurements of the rectifier with numerical simulations of the 3D antenna and the semiconductor structure at 1 THz, allowing prediction of the achievable NEP.

  1. The Effect of Intense Laser Radiation on Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Young, Stephen Michael Radley

    1991-02-01

    Available from UMI in association with The British Library. Requires signed TDF. We have carried out theoretical and experimental studies into the effect of intense laser radiation on atomic collisions. The first experiment used neon. Excitation by electron impact in a gas discharge demanded a pressure of at least 0.075 Torr. Measurement of the intensity of 3^1S_0to 3^1P_1 fluorescence has been made for the case where high intensity ASE wings in the laser profile and background laser scatter are unimportant, with the laser tuned to resonance. The field intensity required to produce strong field fluorescence (exemplified by the Mollow triplet) was found to give rise to complications capable of screening the effects sought. Our theoretical model has suggested that at finite detunings, line-centre fluorescence will dominate Rayleigh scatter and omega_3 fluorescence. Our measurements provide information on the saturation of neon fluorescence but not of the variation of the intense field collision rate. Absorption of weak field 253.7 nm laser photons by ground state mercury atoms yielded a high 6 ^3P_1 population at a lower pressure of 0.02 Torr. The Mollow triplet has been observed in the self-broadened mercury system. Dressing of the upper transition (6^3P_1rightarrow 7^3S_1) by an intense laser close to 435.8 nm yielded the strong field signal. Polarisation studies were made possible by the 3-level mercury system (radiation trapping in a 2-level system would depolarise fluorescence) perturbed by argon. The studies yielded results that were explainable in terms of the selective population of Stark shifted dressed states by a detuned, weak probe field. Use has been made of the electric-dipole radiation selection rule m_{J}=0 rightarrow m_{J^' } = 0 unless J=J^' to devise a 'Stark shift collision switch'. The competition between collision and radiation induced transitions within the mercury atom has then been studied. The resonant, strong lambda 435.8 nm field was used

  2. Superlattice conductivity sign change induced by intense electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Kryuchkov, S. V.; Kukhar', E. I.; Ionkina, E. S.

    2016-07-01

    The current density in a superlattice exposed to a quantizing electric field and the terahertz field has been calculated. The calculations have been carried out taking into account inelastic scattering of charge carriers by phonons. The possibility of an absolute negative conductivity, i.e., the emergence of electric current opposing the direction of the quantizing electric field, has been demonstrated.

  3. Radiation protection for an ultra-high intensity laser.

    PubMed

    Borne, F; Delacroix, D; Gelé, J M; Massé, D; Amiranoff, F

    2002-01-01

    Radiological characterisation of an experimental chamber and other areas of an ultra-high intensity laser facility (-terawatt) revealed significant levels of X ray, gamma and neutron radiation. Different techniques were used to detect and measure this radiation: TLD. photographic film, bubble detectors and germanium spectrometry. A test series of radiological measurements was made for 150 laser shots (300 femtoseconds) with energies in the 1 to 20 J range and a target illuminance of 10(19) W.cm2. Gamma dose equivalents in the vicinity of the chamber varied between 0.7 and 73 mSv. The dose equivalent due to the neutron component was evaluated to be 1% of the gamma dose equivalent. The amount of radiation generated depends on the laser energy and the nature of the target. No activation or contamination of the chamber or target holder were observed. Ultra-high intensity lasers are being extensively developed at the present time and the investigations performed demonstrate that it is necessary to take radiological risks into consideration in the design of ultra-high intensity laser facilities and to define personnel access conditions. PMID:12212903

  4. Graphene-Based Waveguide Terahertz Wave Attenuator

    NASA Astrophysics Data System (ADS)

    Jian-rong, Hu; Jiu-sheng, Li; Guo-hua, Qiu

    2016-07-01

    We design an electrically controllable terahertz wave attenuator by using graphene. We show that terahertz wave can be confined and propagate on S-shaped graphene waveguide with little radiation losses, and the confined terahertz wave is further manipulated and controlled via external applied voltage bias. The simulated results show that, when chemical potential changes from 0.03 into 0.05 eV, the extinction ratio of the terahertz wave attenuator can be tuned from 1.28 to 39.42 dB. Besides the simplicity, this novel terahertz wave attenuator has advantages of small size (24 × 30 μm2), a low insertion loss, and good controllability. It has a potential application for forthcoming planar terahertz wave integrated circuit fields.

  5. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap

    PubMed Central

    Vicario, C.; Monoszlai, B.; Jazbinsek, M.; Lee, S. -H.; Kwon, O. -P.; Hauri, C. P.

    2015-01-01

    In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1–15 THz (THz gap). This frequency band, lying between the electronically and optically accessible spectra hosts important molecular fingerprints and collective modes which cannot be fully controlled by present strong-field THz sources. We present a method that provides powerful single-cycle THz pulses in the THz gap with a stable absolute phase whose duration can be continuously selected between 68 fs and 1100 fs. The loss-free and chirp-free technique is based on optical rectification of a wavelength-tunable pump pulse in the organic emitter HMQ-TMS that allows for tuning of the spectral bandwidth from 1 to more than 7 octaves over the entire THz gap. The presented source tunability of the temporal carrier frequency and spectrum expands the scope of spectrally dense THz sources to time-resolved nonlinear THz spectroscopy in the entire THz gap. This opens new opportunities towards ultrafast coherent control over matter and light. PMID:26400005

  6. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap

    NASA Astrophysics Data System (ADS)

    Vicario, C.; Monoszlai, B.; Jazbinsek, M.; Lee, S.-H.; Kwon, O.-P.; Hauri, C. P.

    2015-09-01

    In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1-15 THz (THz gap). This frequency band, lying between the electronically and optically accessible spectra hosts important molecular fingerprints and collective modes which cannot be fully controlled by present strong-field THz sources. We present a method that provides powerful single-cycle THz pulses in the THz gap with a stable absolute phase whose duration can be continuously selected between 68 fs and 1100 fs. The loss-free and chirp-free technique is based on optical rectification of a wavelength-tunable pump pulse in the organic emitter HMQ-TMS that allows for tuning of the spectral bandwidth from 1 to more than 7 octaves over the entire THz gap. The presented source tunability of the temporal carrier frequency and spectrum expands the scope of spectrally dense THz sources to time-resolved nonlinear THz spectroscopy in the entire THz gap. This opens new opportunities towards ultrafast coherent control over matter and light.

  7. Low-Loss Transmission Lines for High-Power Terahertz Radiation

    PubMed Central

    Nanni, Emilio A.; Jawla, Sudheer K.; Shapiro, Michael A.; Woskov, Paul P.; Temkin, Richard J.

    2012-01-01

    Applications of high-power Terahertz (THz) sources require low-loss transmission lines to minimize loss, prevent overheating and preserve the purity of the transmission mode. Concepts for THz transmission lines are reviewed with special emphasis on overmoded, metallic, corrugated transmission lines. Using the fundamental HE11 mode, these transmission lines have been successfully implemented with very low-loss at high average power levels on plasma heating experiments and THz dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) experiments. Loss in these lines occurs directly, due to ohmic loss in the fundamental mode, and indirectly, due to mode conversion into high order modes whose ohmic loss increases as the square of the mode index. An analytic expression is derived for ohmic loss in the modes of a corrugated, metallic waveguide, including loss on both the waveguide inner surfaces and grooves. Simulations of loss with the numerical code HFSS are in good agreement with the analytic expression. Experimental tests were conducted to determine the loss of the HE11 mode in a 19 mm diameter, helically-tapped, three meter long brass waveguide with a design frequency of 330 GHz. The measured loss at 250 GHz was 0.029 ± 0.009 dB/m using a vector network analyzer approach and 0.047 ± 0.01 dB/m using a radiometer. The experimental results are in reasonable agreement with theory. These values of loss, amounting to about 1% or less per meter, are acceptable for the DNP NMR application. Loss in a practical transmission line may be much higher than the loss calculated for the HE11 mode due to mode conversion to higher order modes caused by waveguide imperfections or miter bends. PMID:23162673

  8. Low-loss Transmission Lines for High-power Terahertz Radiation

    NASA Astrophysics Data System (ADS)

    Nanni, Emilio Alessandro; Jawla, Sudheer Kumar; Shapiro, Michael A.; Woskov, Paul P.; Temkin, Richard J.

    2012-07-01

    Applications of high-power Terahertz (THz) sources require low-loss transmission lines to minimize loss, prevent overheating and preserve the purity of the transmission mode. Concepts for THz transmission lines are reviewed with special emphasis on overmoded, metallic, corrugated transmission lines. Using the fundamental HE11 mode, these transmission lines have been successfully implemented with very low-loss at high average power levels on plasma heating experiments and THz dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) experiments. Loss in these lines occurs directly, due to ohmic loss in the fundamental mode, and indirectly, due to mode conversion into high order modes whose ohmic loss increases as the square of the mode index. An analytic expression is derived for ohmic loss in the modes of a corrugated, metallic waveguide, including loss on both the waveguide inner surfaces and grooves. Simulations of loss with the numerical code HFSS are in good agreement with the analytic expression. Experimental tests were conducted to determine the loss of the HE11 mode in a 19 mm diameter, helically-tapped, three meter long brass waveguide with a design frequency of 330 GHz. The measured loss at 250 GHz was 0.029 ± 0.009 dB/m using a vector network analyzer approach and 0.047 ± 0.01 dB/m using a radiometer. The experimental results are in reasonable agreement with theory. These values of loss, amounting to about 1% or less per meter, are acceptable for the DNP NMR application. Loss in a practical transmission line may be much higher than the loss calculated for the HE11 mode due to mode conversion to higher order modes caused by waveguide imperfections or miter bends.

  9. Low-Loss Transmission Lines for High-Power Terahertz Radiation.

    PubMed

    Nanni, Emilio A; Jawla, Sudheer K; Shapiro, Michael A; Woskov, Paul P; Temkin, Richard J

    2012-07-01

    Applications of high-power Terahertz (THz) sources require low-loss transmission lines to minimize loss, prevent overheating and preserve the purity of the transmission mode. Concepts for THz transmission lines are reviewed with special emphasis on overmoded, metallic, corrugated transmission lines. Using the fundamental HE(11) mode, these transmission lines have been successfully implemented with very low-loss at high average power levels on plasma heating experiments and THz dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) experiments. Loss in these lines occurs directly, due to ohmic loss in the fundamental mode, and indirectly, due to mode conversion into high order modes whose ohmic loss increases as the square of the mode index. An analytic expression is derived for ohmic loss in the modes of a corrugated, metallic waveguide, including loss on both the waveguide inner surfaces and grooves. Simulations of loss with the numerical code HFSS are in good agreement with the analytic expression. Experimental tests were conducted to determine the loss of the HE(11) mode in a 19 mm diameter, helically-tapped, three meter long brass waveguide with a design frequency of 330 GHz. The measured loss at 250 GHz was 0.029 ± 0.009 dB/m using a vector network analyzer approach and 0.047 ± 0.01 dB/m using a radiometer. The experimental results are in reasonable agreement with theory. These values of loss, amounting to about 1% or less per meter, are acceptable for the DNP NMR application. Loss in a practical transmission line may be much higher than the loss calculated for the HE(11) mode due to mode conversion to higher order modes caused by waveguide imperfections or miter bends. PMID:23162673

  10. Terahertz homodyne self-mixing transmission spectroscopy

    SciTech Connect

    Mohr, Till Breuer, Stefan; Blömer, Dominik; Patel, Sanketkumar; Schlosser, Malte; Birkl, Gerhard; Elsäßer, Wolfgang; Simonetta, Marcello; Deninger, Anselm; Giuliani, Guido

    2015-02-09

    A compact homodyne self-mixing terahertz spectroscopy concept is experimentally investigated and confirmed by calculations. This method provides amplitude and phase information of the terahertz radiation emitted by a photoconductive antenna in a transmission experiment where a rotating chopper wheel serves as a feedback mirror. As a proof-of-principle experiment the frequency-dependent refractive index of Teflon is measured.

  11. Approaching oxygen-guided intensity-modulated radiation therapy

    PubMed Central

    Epel, Boris; Redler, Gage; Pelizzari, Charles; Tormyshev, Victor M.; Halpern, Howard J.

    2016-01-01

    The outcome of cancer radiation treatment is strongly correlated with tumor oxygenation. The aim of this study is to use oxygen tension distributions in tumors obtained using Electron Paramagnetic Resonance (EPR) imaging to devise better tumor radiation treatment. The proposed radiation plan is delivered in two steps. In the first step, a uniform 50% tumor control dose (TCD50) is delivered to the whole tumor. For the second step an additional dose boost is delivered to radioresistant, hypoxic tumor regions. FSa fibrosarcomas grown in the gastrocnemius of the legs of C3H mice were used. Oxygen tension images were obtained using a 250 MHz pulse imager and injectable partially deuterated trityl OX63 (OX71) spin probe. Radiation was delivered with a novel animal intensity modulated radiation therapy (IMRT) XRAD225Cx microCT/radiation therapy delivery system. In a simplified scheme for boost dose delivery, the boost area is approximated by a sphere, whose radius and position are determined using an EPR O2 image. The sphere that irradiates the largest fraction of hypoxic voxels in the tumor was chosen using an algorithm based on Receiver Operator Characteristic (ROC) analysis. We used the fraction of irradiated hypoxic volume as the true positive determinant and the fraction of irradiated normoxic volume as the false positive determinant in the terms of that analysis. The most efficient treatment is the one that demonstrates the shortest distance from the ROC curve to the upper left corner of the ROC plot. The boost dose corresponds to the difference between TCD90 and TCD50 values. For the control experiment an identical radiation dose to the normoxic tumor area is delivered. PMID:26782211

  12. Correlations between solar wind parameters and auroral kilometric radiation intensity

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Dangelo, N.

    1981-01-01

    The relationship between solar wind properties and the influx of energy into the nightside auroral region as indicated by the intensity of auroral kilometric radiation is investigated. Smoothed Hawkeye satellite observations of auroral radiation at 178, 100 and 56.2 kHz for days 160 through 365 of 1974 are compared with solar wind data from the composite Solar Wind Plasma Data Set, most of which was supplied by the IMP-8 spacecraft. Correlations are made between smoothed daily averages of solar wind ion density, bulk flow speed, total IMF strength, electric field, solar wind speed in the southward direction, solar wind speed multiplied by total IMF strength, the substorm parameter epsilon and the Kp index. The greatest correlation is found between solar wind bulk flow speed and auroral radiation intensity, with a linear correlation coefficient of 0.78 for the 203 daily averages examined. A possible mechanism for the relationship may be related to the propagation into the nightside magnetosphere of low-frequency long-wavelength electrostatic waves produced in the magnetosheath by the solar wind.

  13. THz electromagnetic radiation driven by intense relativistic electron beam based on ion focus regime

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Yang, Shengpeng; Xu, Jin; Zhang, Wenchao; Tang, Changjian; Duan, Zhaoyun; Gong, Yubin

    2016-06-01

    The simulation study finds that the relativistic electron beam propagating through the plasma background can produce electromagnetic (EM) radiation. With the propagation of the electron beam, the oscillations of the beam electrons in transverse and longitudinal directions have been observed simultaneously, which provides the basis for the electromagnetic radiation. The simulation results clearly show that the electromagnetic radiation frequency can reach up to terahertz (THz) wave band which may result from the filter-like property of plasma background, and the electromagnetic radiation frequency closely depends on the plasma density. To understand the above simulation results physically, the dispersion relation of the beam-plasma system has been derived using the field-matching method, and the dispersion curves show that the slow wave modes can couple with the electron beam effectively in THz wave band, which is an important theoretical evidence of the EM radiation.

  14. Radiation control in the intensive care unit for high intensity iridium-192 brain implants

    SciTech Connect

    Sewchand, W.; Drzymala, R.E.; Amin, P.P.; Salcman, M.; Salazar, O.M.

    1987-04-01

    A bedside lead cubicle was designed to minimize the radiation exposure of intensive care unit staff during routine interstitial brain irradiation by removable, high intensity iridium-192. The cubicle shields the patient without restricting intensive care routines. The design specifications were confirmed by exposure measurements around the shield with an implanted anthropomorphic phantom simulating the patient situation. The cubicle reduces the exposure rate around an implant patient by as much as 90%, with the exposure level not exceeding 0.1 mR/hour/mg of radium-equivalent /sup 192/Ir. Evaluation of data accumulated for the past 3 years has shown that the exposure levels of individual attending nurses are 0.12 to 0.36 mR/mg of radium-equivalent /sup 192/Ir per 12-hour shift. The corresponding range for entire nursing teams varies between 0.18 and 0.26. A radiation control index (exposure per mg of radium-equivalent /sup 192/Ir per nurse-hour) is thus defined for individual nurses and nursing teams; this index is a significant guide to the planning of nurse rotations for brain implant patients with various /sup 192/Ir loads. The bedside shield reduces exposure from /sup 192/Ir implants by a factor of about 20, as expected, and the exposure from the lower energy radioisotope iodine-125 is barely detectable.

  15. Measurement of submilliwatt, picosecond terahertz emission from a femtosecond-laser-pumped solid-state dc to ac radiation converter based on a ZnSe crystal

    SciTech Connect

    Yugami, Noboru; Ohata, Nobuo; Yaegashi, Kenta; Kawanago, Hiroshi

    2006-11-15

    We measured the terahertz pulse emission from a femtosecond-laser-pumped solid-state dc to ac radiation converter using a 150 fs Ti:sapphire laser pulse for dense plasma diagnostics. The laser-produced ionization front was directly modulated from a periodic electrostatic field to pulsed emission. The central frequency of the emission was measured to be 0.13 THz having a bandwidth of 0.1 THz and a peak power of 0.2 mW. This emission source is suitable for use in various novel diagnostic techniques, such as dense plasma diagnostics.

  16. A Novel Microsensor for Measuring Angular Distribution of Radiative Intensity.

    PubMed

    Murphy, Thomas E; Pilorz, Stuart; Prufert-Bebout, Leslie; Bebout, Brad

    2015-01-01

    This article presents the design, construction and characterization of a novel type of light probe for measuring the angular radiance distribution of light fields. The differential acceptance angle (DAA) probe can resolve the directionality of a light field in environments with steep light gradients, such as microbial mats, without the need to remove, reorient, and reinsert the probe, a clear advantage over prior techniques. The probe consists of an inner irradiance sensor inside a concentric, moveable light-absorbing sheath. The radiative intensity in a specific zenith direction can be calculated by comparing the irradiance onto the sensor at different acceptance angles. We used this probe to measure the angular radiance distribution of two sample light fields, and observed good agreement with a conventional radiance probe. The DAA probe will aid researchers in understanding light transfer physics in dense microbial communities and expedite validation of numerical radiative transfer models for these environments. PMID:25763775

  17. Direct Radiative Effect of Intense Dust Outbreaks in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Gkikas, A.; Obiso, V.; Basart, S.; Jorba, O.; Pérez García-Pando, C.; Hatzianastassiou, N.; Gassó, S.; Baldasano, J. M.

    2015-12-01

    The broader Mediterranean basin is affected by intense desert dust outbreaks in spring. In the present study, we make use of satellite observations and modelling to investigate dust radiative impacts during three consecutive dust outbreaks occurred over the Mediterranean in the period 9/4-15/4/2008. The direct radiative effect (DRE) is estimated by using two simulations run with the NMMB/BSC-Dust model, where the interaction between dust aerosols and radiation is activated and deactivated, respectively. The simulation domain covers the North Africa, the Middle East and Europe at 0.25ºx0.25° and 40σ-layers. The first outbreak took place over the central and eastern Mediterranean on the 9th reaching aerosol optical depths (AODs) close to 1. The second one, with AODs up to 2, lasted from 10th to 14th affecting mainly the central Mediterranean. The third one, with AODs up to 5, affected the Iberian Peninsula on the 15th. DREs are computed for the outgoing radiation at the top of the atmosphere (TOA), the absorbed radiation into the atmosphere (ATMAB), for the downwelling (SURF) and the absorbed (NETSURF) radiation at surface, for the shortwave (SW), longwave (LW) and NET (SW+LW) radiation. According to our results, it is evident that DREs' spatial patterns are driven by those of AOD. Negative (cooling) instantaneous DRETOA, DRESURF and DRENETSURF values up to -500W/m2, -700W/m2 and -600W/m2, respectively, and positive (warming) instantaneous DREATMAB up to 340W/m2 are found for the SW spectrum, during daytime. Opposite but less pronounced effects are encountered for the LW radiation and during nightime. Due to these perturbations on the radiation field, the surface temperature is reduced locally by up to 8°C during daytime and increased by up to 4°C during nightime. It is found that the regional average NET DREs can be as large as -12W/m2, -45W/m2, -30W/m2 and 27W/m2 for TOA, SURF, NETSURF and ATMAB, respectively. Impacts on atmospheric stability and dust

  18. The radiation techniques of tomotherapy & intensity-modulated radiation therapy applied to lung cancer

    PubMed Central

    Zhu, Zhengfei

    2015-01-01

    Radiotherapy (RT) plays an important role in the management of lung cancer. Development of radiation techniques is a possible way to improve the effect of RT by reducing toxicities through better sparing the surrounding normal tissues. This article will review the application of two forms of intensity-modulated radiation therapy (IMRT), fixed-field IMRT and helical tomotherapy (HT) in lung cancer, including dosimetric and clinical studies. The advantages and potential disadvantages of these two techniques are also discussed. PMID:26207214

  19. A tunable terahertz radiation source based on a surface wave transformed into Cherenkov radiation in a subwavelength array

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Hu, Min; Zhong, Renbin; Cheng, Xiaoxing; Gong, Sen; Zhao, Tao; Liu, Shenggang

    2016-04-01

    A tunable THz radiation source based on the Cherenkov radiation mechanism is proposed. In the structure of a dielectric medium rod covered by subwavelength metal ring array, the surface wave is excited by electron bunch on the subwavelength metal ring array, and then transformed into Cherenkov radiation in the dielectric medium rod. The working frequency is determined by the intersection of the surface wave dispersion curve and electron beam line, and could be tuned by adjusting the beam energy. The source, which is compact and operable at room temperature, generates radiation with peak power from microwatts up to milliwatts.

  20. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    NASA Technical Reports Server (NTRS)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  1. Graphene on nanoscale gratings for the generation of terahertz Smith-Purcell radiation

    SciTech Connect

    Tantiwanichapan, Khwanchai; Wang, Xuanye; Swan, Anna K.; Paiella, Roberto

    2014-12-15

    Generation of THz radiation based on the Smith-Purcell effect in graphene is investigated numerically. The specific device geometry considered involves an electrically biased single-layer sheet of graphene deposited on a periodic array of holes in a solid substrate. Rigorous electrodynamic simulations combined with a basic model of charge transport are presented, showing that technologically significant output power levels can be obtained at geometrically tunable THz frequencies. These results suggest that graphene is a uniquely suited materials platform for the demonstration of THz electron-beam radiation mechanisms in compact solid-state systems.

  2. IMRT (intensity modulated radiation therapy): progress in technology and reimbursement.

    PubMed

    Young, R; Snyder, B

    2001-01-01

    For a new treatment technology to become widely accepted in today's healthcare environment, the technology must not only be effective but also financially viable. Intensity modulated radiation therapy (IMRT), a technology that enables radiation oncologists to precisely target and attack cancerous tumors with higher doses of radiation using strategically positioned beams while minimizing collateral damage to healthy cells, now meets both criteria. With IMRT, radiation oncologists for the first time have obtained the ability to divide the treatment field covered by each beam angle into hundreds of segments as small as 2.5 mm by 5 mm. Using the adjustable leaves of an MLC to shape the beam and by controlling exposure times, physicians can deliver a different dose to each segment and therefore modulate dose intensity across the entire treatment field. Development of optimal IMRT plans using conventional manual treatment planning methods would take days. To be clinically practical, IMRT required the development of "inverse treatment planning" software. With this software, a radiation oncologist can prescribe the ideal radiation dose for a specific tumor as well as maximum dose limits for surrounding healthy tissue. These numbers are entered into the treatment planning program which then calculates the optimal delivery approach that will best fit the oncologist's requirements. The radiation oncologist then reviews and approves the proposed treatment plan before it is initiated. The most recent advance in IMRT technology offers a "dynamic" mode or "sliding window" technique. In this more rapid delivery method, the beam remains on while the leaves of the collimator continually re-shape and move the beam aperture over the planned treatment area. This creates a moving beam that saturates the tumor volume with the desired radiation dose while leaving the surrounding healthy tissue in a protective shadow created by the leaves of the collimator. In the dynamic mode, an IMRT

  3. Generation of terahertz radiation in ordered arrays of GaAs nanowires

    SciTech Connect

    Trukhin, V. N.; Mustafin, I. A.; Bouravleuv, A. D.; Cirlin, G. E.; Kakko, J. P.; Huhtio, T.; Lipsanen, H.

    2015-06-22

    THz generation under excitation by ultrashort optical pulses in ordered arrays of GaAs nanowires is reported. It was found that the efficiency of THz radiation generation increases due to the resonant leaky mode excitation in nanowires. The maximum value of the THz field is achieved when the distance between the nanowires is of the order of the wavelength of exciting light.

  4. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    SciTech Connect

    Osa, Etin-Osa O.; DeWyngaert, Keith; Roses, Daniel; Speyer, James; Guth, Amber; Axelrod, Deborah; Fenton Kerimian, Maria; Goldberg, Judith D.; Formenti, Silvia C.

    2014-07-15

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm{sup 3}, mean 19.65 cm{sup 3}. In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm{sup 3}, mean 1.59 cm{sup 3}. There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and

  5. Origins of Terahertz Difference Frequency Susceptibility in Midinfrared Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Burnett, Benjamin A.; Williams, Benjamin S.

    2016-03-01

    We present a density-matrix-based transport model applicable to quantum cascade lasers which computes both linear and nonlinear optical properties coherently and nonperturbatively. The model is applied to a dual-active-region midinfrared quantum cascade laser which generates terahertz radiation at the difference frequency between two midinfrared pumps. A new mechanism for terahertz generation is identified as self-detection, ascribed to the beating of current flow following the intensity, associated with stimulated emission. This mechanism peaks at optical rectification but exhibits a bandwidth reaching significantly into the terahertz range, which is primarily limited by the subpicosecond intersubband lifetimes. A metric is derived to assess the strength of self-detection in candidate active regions through experiment alone, and suggestions are made for improvement of the performance at frequencies below 2 THz.

  6. Terahertz time-domain transmission of superconductors

    SciTech Connect

    Nuss, M.C.; Manklewich, P.M.; O'Malley, M.; Gossen, K.W.; Roskos, H.

    1992-05-22

    The conductivity of superconducting films is studied with collimated terahertz radiation from photoconductive dipole antennas. We measure both real and imaginary part of the conductivity directly without using the Kramers-Kronig relations.

  7. Preoperative intensity modulated radiation therapy for retroperitoneal sarcoma.

    PubMed

    El-Bared, Nancy; Taussky, Daniel; Mehiri, Selma; Patocskai, Erika; Roberge, David; Donath, David

    2014-06-01

    The use of intensity modulated radiation therapy (IMRT) has allowed for the administration of high doses to retroperitoneal sarcomas (RSTS) while limiting toxicity to adjacent organs. The purpose of our study is to assess the outcome and toxicities of patients with RSTS treated with neo-adjuvant external beam radiation (EBRT) therapy using IMRT. This is a retrospective study of 21 patients treated with preoperative IMRT for primary or recurrent RSTS between 2005 and 2011. Overall survival (OS) and local recurrence free survival (LRFS) were computed using the Kaplan-Meier method (log-rank test). Acute and chronic toxicities were assessed using the CTCAE v. 3 criteria. The actuarial 2 and 3-year OS was 66% for both and the 5-year OS was 51%. As for LRFS it was 57% at 2 and 3-year and 51% for the 5-year LRFS. Factors predictive for local control were microscopically negative margins (p = 0.022), a median tumor diameter <15 cm (p = 0.007) and pathology of liposarcoma (p = 0.021). Furthermore, patients treated for recurrent disease fared worse (p = 0.04) in local control than patients treated for primary disease. As for OS, patients treated for Grade 1 histology had a better outcome (p 5 0.05). EBRT was generally well tolerated. Acute gastrointestinal (GI) Grade 1 or 2 toxicities occurred in 33% of patients and one patient had unexplained post-radiation Grade 2 fever that resolved after tumor resection. As for chronic toxicities 24% of our patients presented Grade 1 GI toxicity and one patient presented Grade 3 small bowel stenosis not clearly due to radiation toxicity. Despite the location and volume of the tumors treated, preoperative IMRT was very well tolerated in our patients with retroperitoneal sarcoma. Unfortunately local recurrences remain common and dose escalation is to be considered. PMID:23919397

  8. Preoperative Intensity Modulated Radiation Therapy for Retroperitoneal Sarcoma

    PubMed Central

    El-Bared, Nancy; Taussky, Daniel; Mehiri, Selma; Patocskai, Erika; Roberge, David; Donath, David

    2014-01-01

    The use of intensity modulated radiation therapy (IMRT) has allowed for the administration of high doses to retroperitoneal sarcomas (RSTS) while limiting toxicity to adjacent organs. The purpose of our study is to assess the outcome and toxicities of patients with RSTS treated with neo-adjuvant external beam radiation (EBRT) therapy using IMRT. This is a retrospective study of 21 patients treated with preoperative IMRT for primary or recurrent RSTS between 2005 and 2011. Overall survival (OS) and local recurrence free survival (LRFS) were computed using the Kaplan-Meier method (log-rank test). Acute and chronic toxicities were assessed using the CTCAE v. 3 criteria. The actuarial 2 and 3-year OS was 66% for both and the 5-year OS was 51%. As for LRFS it was 57% at 2 and 3-year and 51% for the 5-year LRFS. Factors predictive for local control were microscopically negative margins (p = 0.022), a median tumor diameter <5 cm (p = 0.007) and pathology of liposarcoma (p = 0.021). Furthermore, patients treated for recurrent disease fared worse (p = 0.04) in local control than patients treated for primary disease. As for OS, patients treated for Grade 1 histology had a better outcome (p = 0.05). EBRT was generally well tolerated. Acute gastrointestinal (GI) Grade 1 or 2 toxicities occurred in 33% of patients and one patient had unexplained post-radiation Grade 2 fever that resolved after tumor resection. As for chronic toxicities 24% of our patients presented Grade 1 GI toxicity and one patient presented Grade 3 small bowel stenosis not clearly due to radiation toxicity. Despite the location and volume of the tumors treated, preoperative IMRT was very well tolerated in our patients with retroperitoneal sarcoma. Unfortunately local recurrences remain common and dose escalation is to be considered. PMID:23919397

  9. Rock Burst Intensity Classification Based on the Radiated Energy with Damage Intensity at Jinping II Hydropower Station, China

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Rui; Feng, Xia-Ting; Li, Qing-Peng; Luo, Ru-Zhou; Li, Shaojun

    2015-01-01

    Based on the radiated energy of 133 rock bursts monitored by a microseismic technique at the Jinping II hydropower station, in Sichuan province, China, we analyzed the advantages and disadvantages of qualitative classification methods for the rock burst intensity. Then, we investigated the characteristics, magnitude, and laws of the radiated energy, as well as the relationship between the rock burst radiated energy and intensity. Then, we selected the energy as an evaluation index for the rock burst intensity classification, and proposed a new rock burst intensity quantitative classification method, which utilized the hierarchical clustering analysis technique with the complete-linkage method. Next, we created a new set of criteria for the quantitative classification of the rock burst intensity based on radiated energy and surrounding rock damage severity. The new criteria classified the rock burst intensity into five levels: extremely intense, intense, moderate, weak, and none, and the common logarithms of the radiated energy of each level were >7 lg( E/J), >4 lg( E/J) and <7 lg( E/J), >2 lg( E/J) and <4 lg( E/J), >1 lg( E/J) and <2 lg( E/J), and <1 lg( E/J), respectively. Finally, we investigated the factors influencing the classification, and verified its feasibility and applicability via several practical rock burst examples.

  10. The SPARC linear accelerator based terahertz source

    SciTech Connect

    Chiadroni, E.; Bacci, A.; Bellaveglia, M.; Boscolo, M.; Castellano, M.; Cultrera, L.; Di Pirro, G.; Ferrario, M.; Ficcadenti, L.; Filippetto, D.; Gatti, G.; Pace, E.; Rossi, A. R.; Vaccarezza, C.; Catani, L.; Cianchi, A.; Marchetti, B.; Mostacci, A.; Palumbo, L.; Ronsivalle, C.; and others

    2013-03-04

    Ultra-short electron beams, produced through the velocity bunching compression technique, are used to drive the SPARC linear accelerator based source, which relies on the emission of coherent transition radiation in the terahertz range. This paper reports on the main features of this radiation, as terahertz source, with spectral coverage up to 5 THz and pulse duration down to 200 fs, with an energy per pulse of the order of several micro-joule, and as electron beam longitudinal diagnostics.

  11. S-76 rotorcraft high intensity radiated fields. Test plan

    NASA Astrophysics Data System (ADS)

    Blair, Jerry T.; Brooks, Steve M.; Barnes, Ken A.

    1991-07-01

    Concern over the effects of High Intensity Radiated Fields (HIRF) on civil and military aircraft has increased over the past 10 years. The increase is due to several factors which affect the safe flight of all fixed-wing and rotorcraft. Previous flight-critical mechanical controls are being replaced by electronic computer-driven controls; manufacturers are increasing the use of composite materials in the fabrication of new aircraft; and frequency ranges and output power levels of commercial and military transmitters have significantly increased. While much HIRF susceptibility information has been collected, the data are proprietary and have not been released. To address the HIRF concerns and begin development of a releasable HIRF data base, the FAA Technical Center, has implemented a HIRF research program. As part of that program, a HIRF test was performed on a Sikorsky S-76 Helicopter. The purpose, approach, and initial findings of the S-76 HIRF test are addressed.

  12. Terahertz sources

    NASA Astrophysics Data System (ADS)

    Shumyatsky, Pavel; Alfano, Robert R.

    2011-03-01

    We present an overview and history of terahertz (THz) sources for readers of the biomedical and optical community for applications in physics, biology, chemistry, medicine, imaging, and spectroscopy. THz low-frequency vibrational modes are involved in many biological, chemical, and solid state physical processes.

  13. Terahertz radiation as a bunch diagnostic for laser-wakefield-accelerated electron bunches

    SciTech Connect

    van Tilborg, Jeroen; Schroeder, Carl; Filip, Catalin; Toth, Csaba; Geddes, Cameron; Fubiani, Gwenael; Esarey, Eric; Leemans, Wim

    2011-06-17

    Experimental results are reported from two measurement techniques (semiconductor switching and electro-optic sampling) that allow temporal characterization of electron bunches produced by a laser-driven plasma-based accelerator. As femtosecond electron bunches exit the plasma-vacuum interface, coherent transition radiation (at THz frequencies) is emitted. Measuring the properties of this radiation allows characterization of the electron bunches. Theoretical work on the emission mechanism is presented, including a model that calculates the THz wave form from a given bunch profile. It is found that the spectrum of the THz pulse is coherent up to the 200 {micro}m thick crystal (ZnTe) detection limit of 4 THz, which corresponds to the production of sub-50 fs (rms) electron bunch structure. The measurements demonstrate both the shot-to-shot stability of bunch parameters that are critical to THz emission (such as total charge and bunch length), as well as femtosecond synchronization among bunch, THz pulse, and laser beam.

  14. Frequency locking and monitoring based on Bi-directional terahertz radiation of a 3rd-order distributed feedback quantum cascade laser

    SciTech Connect

    van Marrewijk, N.; Mirzaei, B.; Hayton, D.; Gao, J. R.; Kao, T. Y.; Hu, Q.; Reno, J. L.

    2015-10-07

    In this study, we have performed frequency locking of a dual, forward reverse emitting third-order distributed feedback quantum cascade laser (QCL) at 3.5 THz. By using both directions of THz emission in combination with two gas cells and two power detectors, we can for the first time perform frequency stabilization, while monitor the frequency locking quality independently. We also characterize how the use of a less sensitive pyroelectric detector can influence the quality of frequency locking, illustrating experimentally that the sensitivity of the detectors is crucial. Using both directions of terahertz (THz) radiation has a particular advantage for the application of a QCL as a local oscillator, where radiation from one side can be used for frequency/phase stabilization, leaving the other side to be fully utilized as a local oscillator to pump a mixer.

  15. Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP

    NASA Astrophysics Data System (ADS)

    Mohandas, Reshma A.; Freeman, Joshua R.; Rosamond, Mark C.; Hatem, Osama; Chowdhury, Siddhant; Ponnampalam, Lalitha; Fice, Martyn; Seeds, Alwyn J.; Cannard, Paul J.; Robertson, Michael J.; Moodie, David G.; Cunningham, John E.; Davies, A. Giles; Linfield, Edmund H.; Dean, Paul

    2016-04-01

    We demonstrate the generation of continuous wave terahertz (THz) frequency radiation from photomixers fabricated on both Fe-doped InGaAs and Fe-doped InGaAsP, grown by metal-organic chemical vapor deposition. The photomixers were excited using a pair of distributed Bragg reflector lasers with emission around 1550 nm, and THz radiation was emitted over a bandwidth of greater than 2.4 THz. Two InGaAs and four InGaAsP wafers with different Fe doping concentrations were investigated, with the InGaAs material found to outperform the InGaAsP in terms of emitted THz power. The dependencies of the emitted power on the photomixer applied bias, incident laser power, and material doping level were also studied.

  16. Frequency locking and monitoring based on Bi-directional terahertz radiation of a 3rd-order distributed feedback quantum cascade laser

    DOE PAGESBeta

    van Marrewijk, N.; Mirzaei, B.; Hayton, D.; Gao, J. R.; Kao, T. Y.; Hu, Q.; Reno, J. L.

    2015-10-07

    In this study, we have performed frequency locking of a dual, forward reverse emitting third-order distributed feedback quantum cascade laser (QCL) at 3.5 THz. By using both directions of THz emission in combination with two gas cells and two power detectors, we can for the first time perform frequency stabilization, while monitor the frequency locking quality independently. We also characterize how the use of a less sensitive pyroelectric detector can influence the quality of frequency locking, illustrating experimentally that the sensitivity of the detectors is crucial. Using both directions of terahertz (THz) radiation has a particular advantage for the applicationmore » of a QCL as a local oscillator, where radiation from one side can be used for frequency/phase stabilization, leaving the other side to be fully utilized as a local oscillator to pump a mixer.« less

  17. 3D-integration of a log spiral antenna onto a dual grating-gate plasmon-resonant terahertz emitter for high-directivity radiation

    NASA Astrophysics Data System (ADS)

    Kang, H.-C.; Nishimura, T.; Komori, T.; Mori, T.; Watanabe, N.; Asano, T.; Otsuji, T.

    2009-11-01

    We report a high-directivity plasmon-resonant terahertz (THz) emitter (PRE) incorporating a 3D-integrated antenna complex. The emitter structure is based on a high electron mobility transistor having unique doubly interdigitated grating gates as a broadband THz antenna that can convert non-radiative plasmons to radiative electromagnetic waves. Due to the sub-wavelength aperture of practical grating-antenna dimension, however, present structure of PRE exhibits undesirable diffraction effect, resulting in poor directivity. We developed a new device structure featuring a 3D-integration of tightly-coupled multiple-antenna complex to improve the directivity. The directivity of a new device was dramatically improved by a factor of 5.7 over the frequencies from 1.8 to 4.0 THz.

  18. Whistler mode wave intensities in the radiation belts

    SciTech Connect

    Helliwell, R.A.; Walworth, K.F.

    1996-07-01

    A critical factor in the equilibrium of the Earth{close_quote}s radiation belts is the intensity of the whistler mode waves that scatter trapped electrons into the loss cone. Whistler-mode waves include whistlers (from lightning), signals from ground based VLF stations, chorus, hiss and impulses. Those signals that are not trapped in magnetospheric ducts are observed with rockets or satellites, both inside and outside the plasmapause. Ducted signals, occurring mostly inside the plasmapause, have been difficult to observe {ital in} {ital situ}, but are commonly observed at ground stations from which equatorial wave intensities can be estimated only crudely. Models of the process of coherent wave growth based on interaction with gyro resonant counter streaming electrons in an interaction region near the equator, fall into two classes depending on whether the wave field is less or greater than that required for trapping of resonant electrons in the wave{close_quote}s potential wall. Data on the estimated {ital B}{sub in} and {ital B}{sub out} of ducted signals at the input and output of the interaction region, respectively, together with associated total growth (20{endash}35 dB) appear to support the small-signal model. Since the ratios between predictions of the small-signal and large-signal models are of the order of 20 dB, it is critically important to test both models with measurements of appropriate wave fields and associated particle fluxes. {copyright} {ital 1996 American Institute of Physics.}

  19. Comparison of an electro-optical system and photo-conducting antenna employed as detectors of pulsed terahertz radiation by means of a new method for measuring spectral width

    SciTech Connect

    Grachev, Ya V; Osipova, M O; Bespalov, V G

    2014-12-31

    Two detection systems, electro-optical system and photoconducting system, are tested by the method suggested previously for determining the boundaries of broadband terahertz radiation in time-domain spectroscopy. From a series of measurements the error in determining the operation ranges is calculated. The terahertz spectrometer with an electro-optical detector based on a ZnTe (110) crystal of thickness 2 mm has the operation spectral range of 0.059 – 1.092 THz. The detector utilizing an iPCA-21-05-1000-800-h photo-conducting antenna with the same source of signal demonstrates a wider operation band ranging from 0.017 to 1.6 THz. The method developed makes it possible to experimentally compare the parameters of the considered terahertz spectrometers obtained under the same quality of adjustment. (laser applications and other topics in quantum electronics)

  20. Reshapable physical modulator for intensity modulated radiation therapy.

    PubMed

    Xu, Tong; Shikhaliev, Polad M; Al-Ghazi, Muthana; Molloi, Sabee

    2002-10-01

    A new method of generating beam intensity modulation filters for intensity modulated radiation therapy (IMRT) is presented. The modulator was based on a reshapable material, which is not compressible but can be deformed under pressure. A two-dimensional (2D) piston array was used to repeatedly shape the attenuating material. The material is a mixture of tungsten powder and a silicon-based binder. The linear attenuation coefficient of the material was measured to be 0.409 cm(-1) for a 6 MV x-ray beam. The maximum thickness of the physical modulator is 10.2 cm, allowing a transmission of 1.5%. A 16 x 16 square piston array was used to generate a depth pattern in the deformable attenuating material. Each piston has a cross section of 6.37 x 6.37 mm2. The modulator was placed 65 cm from the radiation source of the linear accelerator in the position of the shielding tray. At this position, each piston projects to a 1.0 x 1.0 cm2 area at the isocenter, giving a treatment field of 16 x 16 cm2. The percent depth dose curve and output factor measurement show a slight beam hardening and a 1%-4% increase in scatter fraction when 2.2-4.4 cm uniform thickness filters are in the beam. The surface dose was decreased with the filter in the beam. Ion chamber and verification films were used to verify the entrance dose. The measured absolute and relative doses were compared with the calculated dose. The agreement of measurements and calculations is within 3%. In order to verify the spatial modulation of dose, 1-D dose profiles were obtained using dose calculations. Calculated and measured profiles were compared. The 20%-80% penumbra of the modulator was measured to be 5.5-10 mm. The results show that a physical modulator formed using a 16 x 16 piston array and a deformable attenuation material can provide intensity modulation for IMRT comparable with those provided by currently available commercial MLC techniques. PMID:12408295

  1. Continuous-wave optical parametric oscillators on their way to the terahertz range

    NASA Astrophysics Data System (ADS)

    Sowade, Rosita; Breunig, Ingo; Kiessling, Jens; Buse, Karsten

    2010-02-01

    Continuous-wave optical parametric oscillators (OPOs) are known to be working horses for spectroscopy in the near- and mid-infrared. However, strong absorption in nonlinear media like lithium niobate complicates the generation of far-infrared light. This absorption leads to pump thresholds vastly exceeding the power of standard pump lasers. Our first approach was, therefore, to combine the established technique of photomixing with optical parametric oscillators. Here, two OPOs provide one wave each, with a tunable difference frequency. These waves are combined to a beat signal as a source for photomixers. Terahertz radiation between 0.065 and 1.018 THz is generated with powers in the order of nanowatts. To overcome the upper frequency limit of the opto-electronic photomixers, terahertz generation has to rely entirely on optical methods. Our all-optical approach, getting around the high thresholds for terahertz generation, is based on cascaded nonlinear processes: the resonantly enhanced signal field, generated in the primary parametric process, is intense enough to act as the pump for a secondary process, creating idler waves with frequencies in the terahertz regime. The latter ones are monochromatic and tunable with detected powers of more than 2 μW at 1.35 THz. Thus, continuous-wave optical parametric oscillators have entered the field of terahertz photonics.

  2. Terahertz polariton propagation in patterned materials.

    PubMed

    Stoyanov, Nikolay S; Ward, David W; Feurer, Thomas; Nelson, Keith A

    2002-10-01

    Generation and control of pulsed terahertz-frequency radiation have received extensive attention, with applications in terahertz spectroscopy, imaging and ultrahigh-bandwidth electro-optic signal processing. Terahertz 'polaritonics', in which terahertz lattice waves called phonon-polaritons are generated, manipulated and visualized with femtosecond optical pulses, offers prospects for an integrated solid-state platform for terahertz signal generation and guidance. Here, we extend terahertz polaritonics methods to patterned structures. We demonstrate femtosecond laser fabrication of polaritonic waveguide structures in lithium tantalate and lithium niobate crystals, and illustrate polariton focusing into, and propagation within, the fabricated waveguide structures. We also demonstrate a 90 degrees turn within a structure consisting of two waveguides and a reflecting face, as well as a structure consisting of splitting and recombining elements that can be used as a terahertz Mach-Zehnder interferometer. The structures permit integrated terahertz signal generation, propagation through waveguide-based devices, and readout within a single solid-state platform. PMID:12618821

  3. Coherent two-dimensional terahertz-terahertz-Raman spectroscopy.

    PubMed

    Finneran, Ian A; Welsch, Ralph; Allodi, Marco A; Miller, Thomas F; Blake, Geoffrey A

    2016-06-21

    We present 2D terahertz-terahertz-Raman (2D TTR) spectroscopy, the first technique, to our knowledge, to interrogate a liquid with multiple pulses of terahertz (THz) light. This hybrid approach isolates nonlinear signatures in isotropic media, and is sensitive to the coupling and anharmonicity of thermally activated THz modes that play a central role in liquid-phase chemistry. Specifically, by varying the timing between two intense THz pulses, we control the orientational alignment of molecules in a liquid, and nonlinearly excite vibrational coherences. A comparison of experimental and simulated 2D TTR spectra of bromoform (CHBr3), carbon tetrachloride (CCl4), and dibromodichloromethane (CBr2Cl2) shows previously unobserved off-diagonal anharmonic coupling between thermally populated vibrational modes. PMID:27274067

  4. Survey of resident education in intensity-modulated radiation therapy.

    PubMed

    Malik, Renuka; Oh, Julia L; Roeske, John C; Mundt, Arno J

    2005-06-01

    Intensity-modulated radiation therapy (IMRT) has been gaining increasing popularity among practicing physicians in the U.S., but the extent to which radiation oncology residents are taught the principles of this technology and are trained to use IMRT remains unknown. In this paper, we assessed the current level of resident education in IMRT in the United States. Chief residents at all 77 accredited radiation oncology programs were sent a 13-question survey addressing formal didactics and hands-on experience in IMRT. The survey assessed the frequency, subject, and format of IMRT didactics. Questions also addressed the number of IMRT patients and anatomical sites treated, resident involvement in the IMRT process, and the intent of IMRT use. Finally, residents were asked for their opinions on their IMRT education. Sixty-one surveys (79%) were completed. Overall, forty-three respondents (71%) reported receiving formal IMRT didactics, with nearly one-third reporting extensive didactics (> or = 3 lectures/seminars et cetera per year). The most common didactic formats were lectures (95%) and journal clubs (63%), most commonly supervised by physicists (98%). Involvement by physicians and radiobiologists were reported by 63% and 7% of respondents, respectively. Overall, 87% of respondents had hands-on IMRT training, with nearly one-half having treated > 25 patients. The most common sites treated were head and neck (94%) and prostate (81%). Involvement in all aspects of the IMRT process was common, particularly target and tissue delineation (98%) and plan evaluation (93%). Most respondents (79%) with hands-on experience reported receiving formal didactics. However, nearly one-third received no or only minimal formal didactics. The percentage of respondents desiring increased IMRT didactics and hands-on experience were 70% and 47%, respectively. Our results suggest that the great majority of radiation oncology residents in the United States are currently exposed to didactics

  5. Generation of high power sub-terahertz radiation from a gyrotron with second harmonic oscillation

    SciTech Connect

    Saito, Teruo; Yamada, Naoki; Ikeuti, Shinji; Tatematsu, Yoshinori; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka; Ogasawara, Shinya; Manuilov, Vladimir N.; Shimozuma, Takashi; Kubo, Shin; Nishiura, Masaki; Tanaka, Kenji; Kawahata, Kazuo

    2012-06-15

    New power records of second harmonic gyrotron oscillation have been demonstrated in the sub-THz band. The first step gyrotron of demountable type had succeeded in oscillation with power more than 50 kW at 350 GHz and nearly 40 kW at 390 GHz [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009)]. Then, the second step gyrotron of sealed-off type was manufactured. A cavity mode was carefully selected to avoid mode competition with a neighboring fundamental harmonic mode. Matching of the selected mode with the electron gun was also circumspectly considered. The second step gyrotron has attained higher power radiation than the first gyrotron. The maximum single mode power was 62 kW at 388 GHz. Then, the electron gun was modified for use of a different cavity mode with a higher coupling coefficient than that for the 62 kW mode. The new mode proved single mode oscillation power of 83 kW at about 389 GHz. These results are new second-harmonic-oscillation power records for sub-THz gyrotrons. The present study constitutes foundations of development of high power second harmonic sub-THz gyrotron for application to collective Thomson scattering measurement on fusion plasmas, especially on high-density plasmas such as those produced in LHD [N. Ohyabu et al., Phys. Rev. Lett. 97, 055002 (2006)]. This paper reports the design consideration to realize high power single mode gyrotron oscillation at second harmonic and the examination of oscillation characteristics of the gyrotron.

  6. American Society of Radiation Oncology recommendations for documenting intensity-modulated radiation therapy treatments.

    PubMed

    Holmes, Timothy; Das, Rupak; Low, Daniel; Yin, Fang-Fang; Balter, James; Palta, Jatinder; Eifel, Patricia

    2009-08-01

    Despite the widespread use of intensity-modulated radiation therapy (IMRT) for approximately a decade, a lack of adequate guidelines for documenting these treatments persists. Proper IMRT treatment documentation is necessary for accurate reconstruction of prior treatments when a patient presents with a marginal recurrence. This is especially crucial when the follow-up care is managed at a second treatment facility not involved in the initial IMRT treatment. To address this issue, an American Society for Radiation Oncology (ASTRO) workgroup within the American ASTRO Radiation Physics Committee was formed at the request of the ASTRO Research Council to develop a set of recommendations for documenting IMRT treatments. This document provides a set of comprehensive recommendations for documenting IMRT treatments, as well as image-guidance procedures, with example forms provided. PMID:19616738

  7. American Society of Radiation Oncology Recommendations for Documenting Intensity-Modulated Radiation Therapy Treatments

    SciTech Connect

    Holmes, Timothy Das, Rupak; Low, Daniel; Yin Fangfang; Balter, James; Palta, Jatinder; Eifel, Patricia

    2009-08-01

    Despite the widespread use of intensity-modulated radiation therapy (IMRT) for approximately a decade, a lack of adequate guidelines for documenting these treatments persists. Proper IMRT treatment documentation is necessary for accurate reconstruction of prior treatments when a patient presents with a marginal recurrence. This is especially crucial when the follow-up care is managed at a second treatment facility not involved in the initial IMRT treatment. To address this issue, an American Society for Radiation Oncology (ASTRO) workgroup within the American ASTRO Radiation Physics Committee was formed at the request of the ASTRO Research Council to develop a set of recommendations for documenting IMRT treatments. This document provides a set of comprehensive recommendations for documenting IMRT treatments, as well as image-guidance procedures, with example forms provided.

  8. Continuous wave terahertz radiation from antennas fabricated on C¹²-irradiated semi-insulating GaAs.

    PubMed

    Deshmukh, Prathmesh; Mendez-Aller, M; Singh, Abhishek; Pal, Sanjoy; Prabhu, S S; Nanal, Vandana; Pillay, R G; Döhler, G H; Preu, S

    2015-10-01

    We demonstrate continuous wave (CW) terahertz generation from antennas fabricated on C12-irradiated semi-insulating (SI) GaAs substrates. The dark current drawn by the antennas fabricated on irradiated substrates is ∼3 to 4 orders of magnitude lower compared to antennas fabricated on un-irradiated substrates, while the photocurrents decrease by only ∼1.5 orders of magnitude. This can be attributed to the strong reduction of the carrier lifetime that is 2.5 orders of magnitude, with values around τ(rec)=0.2  ps. Reduced thermal heating allows for higher bias voltages to the irradiated antenna devices resulting in higher CW terahertz power, just slightly lower than that of low-temperature grown GaAs (LT GaAs)at similar excitation conditions. PMID:26421576

  9. Dosimetrically Triggered Adaptive Intensity Modulated Radiation Therapy for Cervical Cancer

    SciTech Connect

    Lim, Karen; Stewart, James; Kelly, Valerie; Xie, Jason; Brock, Kristy K.; Moseley, Joanne; Cho, Young-Bin; Fyles, Anthony; Lundin, Anna; Rehbinder, Henrik; Löf, Johan; Jaffray, David A.; Milosevic, Michael

    2014-09-01

    Purpose: The widespread use of intensity modulated radiation therapy (IMRT) for cervical cancer has been limited by internal target and normal tissue motion. Such motion increases the risk of underdosing the target, especially as planning margins are reduced in an effort to reduce toxicity. This study explored 2 adaptive strategies to mitigate this risk and proposes a new, automated method that minimizes replanning workload. Methods and Materials: Thirty patients with cervical cancer participated in a prospective clinical study and underwent pretreatment and weekly magnetic resonance (MR) scans over a 5-week course of daily external beam radiation therapy. Target volumes and organs at risk (OARs) were contoured on each of the scans. Deformable image registration was used to model the accumulated dose (the real dose delivered to the target and OARs) for 2 adaptive replanning scenarios that assumed a very small PTV margin of only 3 mm to account for setup and internal interfractional motion: (1) a preprogrammed, anatomy-driven midtreatment replan (A-IMRT); and (2) a dosimetry-triggered replan driven by target dose accumulation over time (D-IMRT). Results: Across all 30 patients, clinically relevant target dose thresholds failed for 8 patients (27%) if 3-mm margins were used without replanning. A-IMRT failed in only 3 patients and also yielded an additional small reduction in OAR doses at the cost of 30 replans. D-IMRT assured adequate target coverage in all patients, with only 23 replans in 16 patients. Conclusions: A novel, dosimetry-triggered adaptive IMRT strategy for patients with cervical cancer can minimize the risk of target underdosing in the setting of very small margins and substantial interfractional motion while minimizing programmatic workload and cost.

  10. Ultrasound-based guidance of intensity-modulated radiation therapy

    SciTech Connect

    Fung, Albert Y.C. . E-mail: afung@unmc.edu; Ayyangar, Komanduri M.; Djajaputra, David; Nehru, Ramasamy M.; Enke, Charles A.

    2006-04-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  11. Mapping of laser diode radiation intensity by atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Alekseev, P. A.; Dunaevskii, M. S.; Slipchenko, S. O.; Podoskin, A. A.; Tarasov, I. S.

    2015-09-01

    The distribution of the intensity of laser diode radiation has been studied using an original method based on atomic-force microscopy (AFM). It is shown that the laser radiation intensity in both the near field and transition zone of a high-power semiconductor laser under room-temperature conditions can be mapped by AFM at a subwavelength resolution. The obtained patterns of radiation intensity distribution agree with the data of modeling and the results of near-field optical microscopy measurements.

  12. Terahertz Technology: A Boon to Tablet Analysis

    PubMed Central

    Wagh, M. P.; Sonawane, Y. H.; Joshi, O. U.

    2009-01-01

    The terahertz gap has a frequency ranges from ∼0.3 THz to ∼10 THz in the electromagnetic spectrum which is in between microwave and infrared. The terahertz radiations are invisible to naked eye. In comparison with x-ray they are intrinsically safe, non-destructive and non-invasive. Terahertz spectroscopy enables 3D imaging of structures and materials, and the measurement of the unique spectral fingerprints of chemical and physical forms. Terahertz radiations are produced by a dendrimer based high power terahertz source and spectroscopy technologies. It resolves many of the questions left unanswered by complementary techniques, such as optical imaging, Raman and infrared spectra. In the pharmaceutical industries it enables nondestructive, internal, chemical analysis of tablets, capsules, and other dosage forms. Tablet coatings are a major factor in drug bioavailability. Therefore tablet coatings integrity and uniformity are of crucial importance to quality. Terahertz imaging gives an unparalleled certainty about the integrity of tablet coatings and the matrix performance of tablet cores. This article demonstrates the potential of terahertz pulse imaging for the analysis of tablet coating thickness by illustrating the technique on tablets. PMID:20490288

  13. Theoretical study of terahertz generation from atoms and aligned molecules driven by two-color laser fields

    NASA Astrophysics Data System (ADS)

    Chen, Wenbo; Huang, Yindong; Meng, Chao; Liu, Jinlei; Zhou, Zhaoyan; Zhang, Dongwen; Yuan, Jianmin; Zhao, Zengxiu

    2015-09-01

    We study the generation of terahertz radiation from atoms and molecules driven by an ultrashort fundamental laser and its second-harmonic field by solving the time-dependent Schrödinger equation (TDSE). The comparisons between one-, two-, and three-dimensional TDSE numerical simulations show that the initial ionized wave packet and its subsequent acceleration in the laser field and rescattering with long-range Coulomb potential play key roles. We also present the dependence of the optimum phase delay and yield of terahertz radiation on the laser intensity, wavelength, duration, and ratio of two-color laser components. Terahertz wave generation from model hydrogen molecules is further investigated by comparing with high harmonic emission. It is found that the terahertz yield follows the alignment dependence of the ionization rate, while the optimal two-color phase delays vary by a small amount when the alignment angle changes from 0 to 90 degrees, which reflects the alignment dependence of attosecond electron dynamics. Finally, we show that terahertz emission might be used to clarify the origin of interference in high harmonic generation from aligned molecules by coincidentally measuring the alignment-dependent THz yields.

  14. Terahertz generation in multiple laser-induced air plasmas

    SciTech Connect

    Chen, M.-K.; Kim, Jae Hun; Yang, C.-E.; Yin, Stuart Shizhuo; Hui Rongqing; Ruffin, Paul

    2008-12-08

    An investigation of the terahertz wave generation in multiple laser-induced air plasmas is presented. First, it is demonstrated that the intensity of the terahertz wave increases as the number of air plasmas increases. Second, the physical mechanism of this enhancement effect of the terahertz generation is studied by quantitatively measuring the intensity of the generated terahertz wave as a function of phase difference between adjacent air plasmas. It is found out that the superposition is the main mechanism to cause this enhancement. Thus, the results obtained in this paper not only provide a technique to generate stronger terahertz wave but also enable a better understanding of the mechanism of the terahertz generation in air plasma.

  15. S-76 high intensity radiated fields, volume 1

    NASA Astrophysics Data System (ADS)

    Blair, Jerry

    1993-10-01

    The Federal Aviation Administration (FAA) Technical Center sponsored a series of High Intensity Radiated Fields (HIRF) test on a Sikorsky S-76 rotorcraft. The project was conducted to evaluate the practicality of performing aircraft level HIRF tests, determine the effects of HIRF on a specific rotorcraft with the potential to obtain information on rotorcraft in general, and evaluate the effects of exposure to real world HIRF emitters. HIRF ground and flight tests were conducted to achieve the objective of the project. Site calibration (SCAL) measurements were made in the test area to determine the levels at which the S-76 would be irradiated when placed in the test area. Ground tests consisted of Low Level Swept Coupling (LLSC) and Low Level Swept Fields (LLSF) tests. The flight tests were flown directly into the main beam of a variety of pulsed and continuous wave (CW) transmitters including the Over the Horizon Back Scatter (OTHB), PAVE PAWS, ASR-9, FPS-65, and FPS-16 radars. Results of the S-76 tests added credibility to the existence of HIRF as a flight safety hazard. In the evaluation of the emitters, the flight tests showed repeatable instances where exposure resulted in instrumentation disruptions. It should be noted that all the observed disruptions were of a non-critical nature.

  16. S-76 high intensity radiated fields, volume 3

    NASA Astrophysics Data System (ADS)

    Blair, Jerry

    1993-10-01

    The Federal Aviation Administration (FAA) Technical Center sponsored a series of High Intensity Radiated Fields (HIRF) tests on a Sikorsky S-76 rotorcraft. The project was conducted to evaluate the practically of performing aircraft level HIRF tests, determine the effects of HIRF on a specific rotorcraft with the potential to obtain information on rotorcraft in general, and evaluate the effects of exposure to 'real world' HIRF emitters. HIRF ground and flight tests were conducted to achieve the objective of the project. Site calibration (SCAL) measurements were made in the test area to determine the levels at which the S-76 would be irradiated when placed in the test area. Ground tests consisted of Low Level Swept Coupling (LLSC) and Low Level Swept Fields (LLSF) tests. The flight tests were flown directly into the main beam of a variety of pulsed and continuous wave (CW) transmitters including the Over the Horizon Back Scatter (OTHB), PAVE PAWS, ASR-9, FPS-65, and FPS-16 radars. Results of the S-76 tests added credibility to the existence of HIRF as a flight safety hazard. In the evaluation of the emitters, the flight tests showed repeatable instances where exposure resulted in instrumentation disruptions. It should however be noted that all the observed disruptions were of a non-critical nature.

  17. S-76 high intensity radiated fields, volume 2

    NASA Astrophysics Data System (ADS)

    Blair, Jerry

    1993-10-01

    The Federal Aviation Administration (FAA) Technical Center sponsored a series of High Intensity Radiated Fields (HIRF) test on a Sikorsky S-76 rotorcraft. The project was conducted to evaluate the practically of performing aircraft level HIRF tests, determine the effects of HIRF on a specific rotorcraft with the potential to obtain information on rotorcraft in general, and evaluate the effects of exposure to real world HIRF emitters. HIRF ground and flight tests were conducted to achieve the objective of the project. Site calibration (SCAL) measurements were made in the test area to determine the levels at which the S-76 would be irradiated when placed in the test area. Ground tests consisted of Low Level Swept Coupling (LLSC) and Low Level Swept Fields (LLSF) tests. The flight tests were flown directly into the main beam of a variety of pulsed and continuous wave (CW) transmitters including the Over the Horizon Back Scatter (OTHB), PAVE PAWS, ASR-9, FPS-65, and FPS-16 radars. Results of the S-76 tests added credibility to the existence of HIRF as a flight safety hazard. In the evaluation of the emitters, the flight tests showed repeatable instances where exposure resulted in instrumentation disruptions. It should be noted that all the observed disruptions were of a non-critical nature.

  18. Terahertz Tools Advance Imaging for Security, Industry

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.

  19. A Concealed Barcode Identification System Using Terahertz Time-domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guan, Yu; Yamamoto, Manabu; Kitazawa, Toshiyuki; Tripathi, Saroj R.; Takeya, Kei; Kawase, Kodo

    2015-03-01

    We present a concealed terahertz barcode/chipless tag to achieve remote identification through an obstructing material using terahertz radiation. We show scanned terahertz reflection spectral images of barcodes concealed by a thick obstacle. A concealed and double- side printed terahertz barcode structure is proposed, and we demonstrate that our design has better performance in definition than a single-side printed barcode using terahertz time-domain spectroscopy. This technique combines the benefits of a chipless tag to read encoded information covered by an optically opaque material with low cost and a simple fabrication process. Simulations are also described, along with an explanation of the principle of the terahertz barcode identification system.

  20. Generation of Terahertz Radiation from Fe-doped InGaAsP Using 800 nm to 1550 nm Pulsed Laser Excitation

    NASA Astrophysics Data System (ADS)

    Hatem, O.; Freeman, J. R.; Cunningham, J. E.; Cannard, P. J.; Robertson, M. J.; Linfield, E. H.; Davies, A. G.; Moodie, D. G.

    2016-05-01

    We demonstrate efficient generation of terahertz (THz) frequency radiation by pulsed excitation, at wavelengths between 800 and 1550 nm, of photoconductive (PC) switches fabricated using Fe-doped InGaAsP wafers, grown by metal organic chemical vapor deposition (MOCVD). Compared to our previous studies of Fe-doped InGaAs wafers, Fe:InGaAsP wafers exhibited five times greater dark resistivity to give a value of 10 kΩ cm, and Fe:InGaAsP PC switches produced five times higher THz power emission. The effect of Fe-doping concentration (between 1E16 and 1.5E17 cm-3) on optical light absorption (between 800 and 1600 nm), on resistivity, and on THz emission is also discussed.

  1. Characterizing intra-exciton Coulomb scattering in terahertz excitations

    SciTech Connect

    Zybell, S.; Eßer, F.; Helm, M.; Bhattacharyya, J.; Winnerl, S.; Schneider, H.; Schneebeli, L.; Böttge, C. N.; Kira, M.; Koch, S. W.; Andrews, A. M.; Strasser, G.

    2014-11-17

    An intense terahertz field is applied to excite semiconductor quantum wells yielding strong non-equilibrium exciton distributions. Even though the relaxation channels involve a complicated quantum kinetics of Coulomb and phonon effects, distinct relaxation signatures of Coulomb scattering are identified within time-resolved photoluminescence by comparing the experiment with a reduced model that contains all relevant microscopic processes. The analysis uncovers a unique time scale for the Coulomb scattering directly from experiments and reveals the influence of phonon relaxation as well as radiative decay.

  2. Intense attosecond radiation from an X-ray FEL

    SciTech Connect

    Zholents, Alexander A.; Fawley, William M.

    2003-11-21

    We propose the use of a ultra-relativistic electron beam interacting with a few-cycle, intense laser pulse and an intense pulse of the coherent x-rays to produce a multi-MW intensity, x-ray pulses {approx} 100 attoseconds in duration. Due to a naturally-occurring frequency chirp, these pulses can be further temporally compressed.

  3. Gamma scattering in condensed matter with high intensity Moessbauer radiation

    SciTech Connect

    Not Available

    1990-01-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS{sub 2}, which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support.

  4. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    SciTech Connect

    Yelon, W.B.; Schupp, G.

    1990-10-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS{sub 2}, which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support.

  5. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    SciTech Connect

    Yang, Joanna C.; Dharmarajan, Kavita V.; Wexler, Leonard H.; La Quaglia, Michael P.; Happersett, Laura; Wolden, Suzanne L.

    2012-11-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged {<=}7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  6. Radiation efficacy and biological risk from whole-breast irradiation via intensity modulated radiation therapy (IMRT)

    NASA Astrophysics Data System (ADS)

    Desantis, David M.

    Radiotherapy is an established modality for women with breast cancer. During the delivery of external beam radiation to the breast, leakage, scattered x-rays from the patient and the linear accelerator also expose healthy tissues and organs outside of the breast, thereby increasing the patient's whole-body dose, which then increases the chance of developing a secondary, radiation-induced cancer. Generally, there are three IntensityModulated Radiotherapy (IMRT) delivery techniques from a conventional linear accelerator; forward planned (FMLC), inverse planned 'sliding window' (DMLC), and inverse planned 'step-and-shoot' (SMLC). The goal of this study was to determine which of these three techniques delivers an optimal dose to the breast with the least chance of causing a fatal, secondary, radiation-induced cancer. A conventional, non-IMRT, 'Wedge' plan also was compared. Computerized Tomography (CT) data sets for both a large and small sized patient were used in this study. With Varian's Eclipse AAA algorithm, the organ doses specified in the revised ICRP 60 publication were used to calculate the whole-body dose. Also, an anthropomorphic phantom was irradiated with thermoluminescent dosimeters (TLD) at each organ site for measured doses. The risk coefficient from the Biological Effects of Ionizing Radiation (BEIR) VII report of 4.69 x 10-2 deaths per Gy was used to convert whole-body dose to risk of a fatal, secondary, radiation-induced cancer. The FMLC IMRT delivered superior tumor coverage over the 3D conventional plan and the inverse DMLC or SMLC treatment plans delivered clinically equivalent tumor coverage. However, the FMLC plan had the least likelihood of inadvertently causing a fatal, secondary, radiation-induced cancer compared to the inverse DMLC, SMLC, and Wedge plans.

  7. 14 CFR 29.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-intensity Radiated Fields (HIRF) Protection. 29.1317 Section 29.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment General § 29.1317 High-intensity Radiated Fields...

  8. 14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-intensity Radiated Fields (HIRF) Protection. 25.1317 Section 25.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1317 High-intensity Radiated Fields...

  9. 14 CFR 27.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-intensity Radiated Fields (HIRF) Protection. 27.1317 Section 27.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment General § 27.1317 High-intensity Radiated Fields...

  10. 14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-intensity Radiated Fields (HIRF) Protection. 25.1317 Section 25.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1317 High-intensity Radiated Fields...

  11. 14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High-intensity Radiated Fields (HIRF) Protection. 25.1317 Section 25.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1317 High-intensity Radiated Fields...

  12. 14 CFR 27.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High-intensity Radiated Fields (HIRF) Protection. 27.1317 Section 27.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment General § 27.1317 High-intensity Radiated Fields...

  13. 14 CFR 27.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false High-intensity Radiated Fields (HIRF) Protection. 27.1317 Section 27.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment General § 27.1317 High-intensity Radiated Fields...

  14. 14 CFR 29.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-intensity Radiated Fields (HIRF) Protection. 29.1317 Section 29.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment General § 29.1317 High-intensity Radiated Fields...

  15. 14 CFR 29.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High-intensity Radiated Fields (HIRF) Protection. 29.1317 Section 29.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment General § 29.1317 High-intensity Radiated Fields...

  16. 14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High-intensity Radiated Fields (HIRF) Protection. 25.1317 Section 25.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1317 High-intensity Radiated Fields...

  17. 14 CFR 27.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-intensity Radiated Fields (HIRF) Protection. 27.1317 Section 27.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment General § 27.1317 High-intensity Radiated Fields...

  18. 14 CFR 27.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High-intensity Radiated Fields (HIRF) Protection. 27.1317 Section 27.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment General § 27.1317 High-intensity Radiated Fields...

  19. 14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false High-intensity Radiated Fields (HIRF) Protection. 25.1317 Section 25.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1317 High-intensity Radiated Fields...

  20. 14 CFR 29.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High-intensity Radiated Fields (HIRF) Protection. 29.1317 Section 29.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment General § 29.1317 High-intensity Radiated Fields...

  1. 14 CFR 29.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false High-intensity Radiated Fields (HIRF) Protection. 29.1317 Section 29.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment General § 29.1317 High-intensity Radiated Fields...

  2. Laser beat wave resonant terahertz generation in a magnetized plasma channel

    NASA Astrophysics Data System (ADS)

    Bhasin, Lalita; Tripathi, V. K.; Kumar, Pawan

    2016-02-01

    Resonant excitation of terahertz (THz) radiation by nonlinear mixing of two lasers in a ripple-free self created plasma channel is investigated. The channel has a transverse static magnetic field and supports a THz X-mode with phase velocity close to the speed of light in vacuum when the frequency of the mode is close to plasma frequency on the channel axis and its value decreases with the intensity of lasers. The THz is resonantly driven by the laser beat wave ponderomotive force. The THz amplitude scales almost three half power of the intensity of lasers as the width of the THz eigen mode shrinks with laser intensity.

  3. Detection of terahertz radiation by tightly concatenated InGaAs field-effect transistors integrated on a single chip

    SciTech Connect

    Popov, V. V.; Yermolaev, D. M.; Shapoval, S. Yu.; Maremyanin, K. V.; Gavrilenko, V. I.; Zemlyakov, V. E.; Bespalov, V. A.; Yegorkin, V. I.; Maleev, N. A.; Ustinov, V. M.

    2014-04-21

    A tightly concatenated chain of InGaAs field-effect transistors with an asymmetric T-gate in each transistor demonstrates strong terahertz photovoltaic response without using supplementary antenna elements. We obtain the responsivity above 1000 V/W and up to 2000 V/W for unbiased and drain-biased transistors in the chain, respectively, with the noise equivalent power below 10{sup −11} W/Hz{sup 0.5} in the unbiased mode of the detector operation.

  4. Addition Laws for Intensities of Radiation Emerging from Scattering Atmospheres Containing Energy Sources

    NASA Astrophysics Data System (ADS)

    Nikoghossian, A. G.; Kapanadze, N. G.

    2016-03-01

    A group theoretical approach is developed for solving astrophysical radiative transfer problems described in a previous series of papers. Addition laws for observed radiative intensities are derived for the case in which atmospheres not only absorb and scatter radiation incident on them, but radiate themselves because of energy sources contained within them. As an illustration of the application of these laws, several special radiative transfer problems which we believe are of practical interest are discussed.

  5. Generation, transport, and detection of linear accelerator based femtosecond-terahertz pulses.

    PubMed

    Park, Jaehun; Kim, Changbum; Lee, Jongseok; Yim, Changmook; Kim, Chul Hoon; Lee, Junghwa; Jung, Seonghoon; Ryu, Jaehyun; Kang, Heung-Sik; Joo, Taiha

    2011-01-01

    The generation and detection of intense terahertz (THz) radiation has drawn a great attention recently. The dramatically enhanced energy and peak electric field of the coherent THz radiation can be generated by coherent superposition of radiated fields emitted by ultrafast electron bunches. The femtosecond (fs)-THz beamline construction at the Pohang Accelerator Laboratory (PAL) was completed in the end of 2009. The fs-THz beamline at PAL can supply ultrafast and intense fs-THz radiation from a 75 MeV linear accelerator. The radiation is expected to have frequency up to 3 THz (∼100 cm(-1)) and the pulse width of <200 fs with pulse energy up to 10 μJ. This intense THz source has great potential for applications in nonlinear optical phenomena and fields such as material science, biomedical science, chemistry, and physics, etc. PMID:21280823

  6. Comparative analysis of 60Co intensity-modulated radiation therapy.

    PubMed

    Fox, Christopher; Romeijn, H Edwin; Lynch, Bart; Men, Chunhua; Aleman, Dionne M; Dempsey, James F

    2008-06-21

    In this study, we perform a scientific comparative analysis of using (60)Co beams in intensity-modulated radiation therapy (IMRT). In particular, we evaluate the treatment plan quality obtained with (i) 6 MV, 18 MV and (60)Co IMRT; (ii) different numbers of static multileaf collimator (MLC) delivered (60)Co beams and (iii) a helical tomotherapy (60)Co beam geometry. We employ a convex fluence map optimization (FMO) model, which allows for the comparison of plan quality between different beam energies and configurations for a given case. A total of 25 clinical patient cases that each contain volumetric CT studies, primary and secondary delineated targets, and contoured structures were studied: 5 head-and-neck (H&N), 5 prostate, 5 central nervous system (CNS), 5 breast and 5 lung cases. The DICOM plan data were anonymized and exported to the University of Florida optimized radiation therapy (UFORT) treatment planning system. The FMO problem was solved for each case for 5-71 equidistant beams as well as a helical geometry for H&N, prostate, CNS and lung cases, and for 3-7 equidistant beams in the upper hemisphere for breast cases, all with 6 MV, 18 MV and (60)Co dose models. In all cases, 95% of the target volumes received at least the prescribed dose with clinical sparing criteria for critical organs being met for all structures that were not wholly or partially contained within the target volume. Improvements in critical organ sparing were found with an increasing number of equidistant (60)Co beams, yet were marginal above 9 beams for H&N, prostate, CNS and lung. Breast cases produced similar plans for 3-7 beams. A helical (60)Co beam geometry achieved similar plan quality as static plans with 11 equidistant (60)Co beams. Furthermore, 18 MV plans were initially found not to provide the same target coverage as 6 MV and (60)Co plans; however, adjusting the trade-offs in the optimization model allowed equivalent target coverage for 18 MV. For plans with comparable

  7. Comparative analysis of 60Co intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Fox, Christopher; Romeijn, H. Edwin; Lynch, Bart; Men, Chunhua; Aleman, Dionne M.; Dempsey, James F.

    2008-06-01

    In this study, we perform a scientific comparative analysis of using 60Co beams in intensity-modulated radiation therapy (IMRT). In particular, we evaluate the treatment plan quality obtained with (i) 6 MV, 18 MV and 60Co IMRT; (ii) different numbers of static multileaf collimator (MLC) delivered 60Co beams and (iii) a helical tomotherapy 60Co beam geometry. We employ a convex fluence map optimization (FMO) model, which allows for the comparison of plan quality between different beam energies and configurations for a given case. A total of 25 clinical patient cases that each contain volumetric CT studies, primary and secondary delineated targets, and contoured structures were studied: 5 head-and-neck (H&N), 5 prostate, 5 central nervous system (CNS), 5 breast and 5 lung cases. The DICOM plan data were anonymized and exported to the University of Florida optimized radiation therapy (UFORT) treatment planning system. The FMO problem was solved for each case for 5-71 equidistant beams as well as a helical geometry for H&N, prostate, CNS and lung cases, and for 3-7 equidistant beams in the upper hemisphere for breast cases, all with 6 MV, 18 MV and 60Co dose models. In all cases, 95% of the target volumes received at least the prescribed dose with clinical sparing criteria for critical organs being met for all structures that were not wholly or partially contained within the target volume. Improvements in critical organ sparing were found with an increasing number of equidistant 60Co beams, yet were marginal above 9 beams for H&N, prostate, CNS and lung. Breast cases produced similar plans for 3-7 beams. A helical 60Co beam geometry achieved similar plan quality as static plans with 11 equidistant 60Co beams. Furthermore, 18 MV plans were initially found not to provide the same target coverage as 6 MV and 60Co plans; however, adjusting the trade-offs in the optimization model allowed equivalent target coverage for 18 MV. For plans with comparable target coverage

  8. Inverse planning optimization method for intensity modulated radiation therapy.

    PubMed

    Lan, Yihua; Ren, Haozheng; Li, Cunhua; Min, Zhifang; Wan, Jinxin; Ma, Jianxin; Hung, Chih-Cheng

    2013-10-01

    In order to facilitate the leaf sequencing process in intensity modulated radiation therapy (IMRT), and design of a practical leaf sequencing algorithm, it is an important issue to smooth the planned fluence maps. The objective is to achieve both high-efficiency and high-precision dose delivering by considering characteristics of leaf sequencing process. The key factor which affects total number of monitor units for the leaf sequencing optimization process is the max flow value of the digraph which formulated from the fluence maps. Therefore, we believe that one strategy for compromising dose conformity and total number of monitor units in dose delivery is to balance the dose distribution function and the max flow value mentioned above. However, there are too many paths in the digraph, and we don't know the flow value of which path is the maximum. The maximum flow value among the horizontal paths was selected and used in the objective function of the fluence map optimization to formulate the model. The model is a traditional linear constrained quadratic optimization model which can be solved by interior point method easily. We believe that the smoothed maps from this model are more suitable for leaf sequencing optimization process than other smoothing models. A clinical head-neck case and a prostate case were tested and compared using our proposed model and the smoothing model which is based on the minimization of total variance. The optimization results with the same level of total number of monitor units (TNMU) show that the fluence maps obtained from our model have much better dose performance for the target/non-target region than the maps from total variance based on the smoothing model. This indicates that our model achieves better dose distribution when the algorithm suppresses the TNMU at the same level. Although we have just used the max flow value of the horizontal paths in the diagraph in the objective function, a good balance has been achieved between

  9. Terahertz Spectroscopy of Bacteriorhodopsin and Rhodopsin: Similarities and Differences

    PubMed Central

    Balu, R.; Zhang, H.; Zukowski, E.; Chen, J.-Y.; Markelz, A. G.; Gregurick, S. K.

    2008-01-01

    We studied the low-frequency terahertz spectroscopy of two photoactive protein systems, rhodopsin and bacteriorhodopsin, as a means to characterize collective low-frequency motions in helical transmembrane proteins. From this work, we found that the nature of the vibrational motions activated by terahertz radiation is surprisingly similar between these two structurally similar proteins. Specifically, at the lowest frequencies probed, the cytoplasmic loop regions of the proteins are highly active; and at the higher terahertz frequencies studied, the extracellular loop regions of the protein systems become vibrationally activated. In the case of bacteriorhodopsin, the calculated terahertz spectra are compared with the experimental terahertz signature. This work illustrates the importance of terahertz spectroscopy to identify vibrational degrees of freedom which correlate to known conformational changes in these proteins. PMID:18199669

  10. Mechanism and modulation of terahertz generation from a semimetal - graphite

    NASA Astrophysics Data System (ADS)

    Ye, Tong; Meng, Sheng; Zhang, Jin; E, Yiwen; Yang, Yuping; Liu, Wuming; Yin, Yan; Wang, Li

    2016-03-01

    Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism - surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows very weak temperature dependency from room temperature to 80 °C. Above knowledge will help us understand terahertz generations, achieve maximum output and electric modulation, in semi-metal or graphene based devices.

  11. A point-like source of extreme ultraviolet radiation based on a discharge in a non-uniform gas flow, sustained by powerful gyrotron radiation of terahertz frequency band

    SciTech Connect

    Glyavin, M. Yu.; Golubev, S. V.; Izotov, I. V.; Litvak, A. G.; Luchinin, A. G.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.; Vodopyanov, A. V.

    2014-10-27

    The possibility and prospects of extreme ultraviolet (UV) point-like source development are discussed in the present paper. The UV source is based on the discharge sustained by powerful gyrotron radiation of terahertz (THz) frequency band in non-uniform gas flow injected into vacuum volume through a nozzle with diameter less than 1 mm. Recent developments of THz-band gyrotrons with appropriate power level made such discharges possible. First experimental results on a point-like plasma creation by 100 kW radiation of 0.67 THz gyrotron are presented. The possibility of discharge localization within the area less than 1 mm is demonstrated. The discharge emission within the wavelength range from 112 nm to 650 nm was studied. The measured power of light emission in the range of 112–180 nm was measured to be up to 10 kW.

  12. Effects of radiation reaction in the interaction between cluster media and high intensity lasers in the radiation dominant regime

    NASA Astrophysics Data System (ADS)

    Iwata, Natsumi; Nagatomo, Hideo; Fukuda, Yuji; Matsui, Ryutaro; Kishimoto, Yasuaki

    2016-06-01

    Interaction between media composed of clusters and high intensity lasers in the radiation dominant regime, i.e., intensity of 10 22 - 23 W / cm 2 , is studied based on the particle-in-cell simulation that includes the radiation reaction. By introducing target materials that have the same total mass but different internal structures, i.e., uniform plasma and cluster media with different cluster radii, we investigate the effect of the internal structure on the interaction dynamics, high energy radiation emission, and its reaction. Intense radiation emission is found in the cluster media where electrons exhibit non-ballistic motions suffering from strong accelerations by both the penetrated laser field and charge separation field of clusters. As a result, the clustered structure increases the energy conversion into high energy radiations significantly at the expense of the conversion into particles, while the total absorption rate into radiation and particles remains unchanged from the absorption rate into particles in the case without radiation reaction. The maximum ion energy achieved in the interaction with cluster media is found to be decreased through the radiation reaction to electrons into the same level with that achieved in the interaction with the uniform plasma. The clustered structure thus enhances high energy radiation emission rather than the ion acceleration in the considered intensity regime.

  13. Optimizing biased semiconductor superlattices for terahertz amplification

    SciTech Connect

    Lei, Xiaoli; Wang, Dawei; Wu, Zhaoxin; Dignam, M. M.

    2014-08-11

    Over the past 15 yr or more, researchers have been trying to achieve gain for electromagnetic fields in the terahertz frequency region using biased semiconductor superlattices, but with little success. In this work, we employ our model of the excitonic states in biased GaAs/Al{sub 0.3}Ga{sub 0.7}As semiconductor superlattices to find the optimal structures for amplification of terahertz radiation. In particular, we determine the optimum well width, barrier width, and bias field for terahertz fields with frequencies ranging from 1 to 4 terahertz. We find that gain coefficients on the order of 40 cm{sup −1} should be achievable over most of this frequency range.

  14. Generation of radiation by intense plasma and electromagnetic undulators

    SciTech Connect

    Joshi, C.

    1991-10-01

    We examine the characteristics of the classical radiation emission resulting from the interaction of a relativistic electron beam that propagates perpendicularly through a large amplitude relativistic plasma wave. Such a study is useful for evaluating the feasibility of using relativistic plasma waves as extremely short wavelength undulators for generating short wavelength radiation. The electron trajectories in a plasma wave undulator and in an ac FEL undulator are obtained using perturbation techniques. The spontaneous radiation frequency spectrum and angular distribution emitted by a single electron oscillating in these two undulators are then calculated. The radiation gain of a copropagating electromagnetic wave is calculated. The approximate analytic results for the trajectories, spontaneous radiation and gain are compared with 3-D simulation results. The characteristics of the plasma wave undulator are compared with the ac FEL undulator and linearly polarized magnetic undulator. 50 refs., 26 figs., 3 tabs.

  15. Coherent and incoherent terahertz beams measured from a terahertz photoconductive antenna

    SciTech Connect

    Ho Wu, Dong; Graber, Benjamin; Kim, Christopher; Qadri, S. B.; Garzarella, Anthony

    2014-02-03

    We have systematically measured and analyzed the terahertz beams of a photoconductive antenna fabricated on a GaAs substrate. Our data indicate that the antenna produces both coherent and incoherent terahertz beams. The former is produced largely by the plasmon, and the latter is believed to be due to the black body radiation resulting from the thermal excitations and Joule heating by both the femto-second laser and the bias voltage, applied across the electrodes of the antenna. The terahertz-beam property is greatly affected by the operating condition of the photoconductive antenna.

  16. Terahertz Detectors based on graphene

    NASA Astrophysics Data System (ADS)

    Gouider, Fathi; Salman, Majdi; Göthlich, Markus; Schmidt, Hennrik; Ahlers, Franz-J.; Haug, Rolf; Nachtwei, Georg

    2013-08-01

    In this study we present magnetotransport an magnetooptical data obtained in the magnetic field range 0T < B < 7T at detectors patterned in Corbino geometry on epitaxial graphene wafer using a Ge detector. We observed the cyclotron resonance of charge carriers in these wafers by measurement of the transmission of THz wafes through the unpatterned squares (about 4 × 4mm2) of the wafers as a function of the magnetic field B applied perpendicular to the wafer. Further, we performed measurements of the photocunductivity of graphene-based devices shaped in Corbino geometry, induced by terahertz (THz) radiation generated by a p-Ge laser (emitting in the energy range 7.5meV <= Eph <= 11meV). Our photoconductivity measurement imply that graphene devices are suitable for the detection of terahertz radiation.

  17. Absorption of terahertz radiation by plasmon modes in a grid-gated double-quantum-well field-effect transistor

    NASA Astrophysics Data System (ADS)

    Popov, V. V.; Polischuk, O. V.; Teperik, T. V.; Peralta, X. G.; Allen, S. J.; Horing, N. J. M.; Wanke, M. C.

    2003-09-01

    The terahertz absorption spectrum of plasmon modes in a grid-gated double-quantum-well (DQW) field-effect transistor structure is analyzed theoretically and numerically using a first principles electromagnetic approach and is shown to faithfully reproduce important physical features of recent experimental observations. We find that the essential character of the response—multiple resonances corresponding to spatial harmonics of standing plasmons under the metal grating—is caused by the static spatial modulation of electron density in the channel. Higher order plasmon modes become more optically active as the depth of the electron density modulation in the DQW tends towards unity. The maximum absorbance, at plasma resonance, is shown to be 1/2. Furthermore, the strongest absorption also occurs when the standing plasmon resonance coincides with the fundamental dipole mode of the ungated portion of the channel.

  18. Terahertz radiation using log-spiral-based low-temperature-grown InGaAs photoconductive antenna pumped by mode-locked Yb-doped fiber laser.

    PubMed

    Kong, Moon Sik; Kim, Ji Su; Han, Sang Pil; Kim, Namje; Moon, Kiwon; Park, Kyung Hyun; Jeon, Min Yong

    2016-04-01

    We demonstrate a terahertz (THz) radiation using log-spiral-based low-temperature-grown (LTG) InGaAs photoconductive antenna (PCA) modules and a passively mode-locked 1030 nm Yb-doped fiber laser. The passively mode-locked Yb-doped fiber laser is easily implemented with nonlinear polarization rotation in the normal dispersion using a 10-nm spectral filter. The laser generates over 250 mW of the average output power with positively chirped 1.58 ps pulses, which are dechirped to 127 fs pulses using a pulse compressor outside the laser cavity. In order to obtain THz radiation, a home-made emitter and receiver constructed from log-spiral-based LTG InGaAs PCA modules were used to generate and detect THz signals, respectively. We successfully achieved absorption lines over 1.5 THz for water vapor in free space. Therefore, we confirm that a mode-locked Yb-doped fiber laser has the potential to be used as an optical source to generate THZ waves. PMID:27136997

  19. Terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; Taylor, Antoineete J; Azad, Abul K; O' Hara, John F

    2009-01-01

    In this paper we present our recent developments in terahertz (THz) metamaterials and devices. Planar THz metamaterials and their complementary structures fabricated on suitable substrates have shown electric resonant response, which causes the band-pass or band-stop property in THz transmission and reflection. The operational frequency can be further tuned up to 20% upon photoexcitation of an integrated semiconductor region in the splitring resonators as the metamaterial elements. On the other hand, the use of semiconductors as metamaterial substrates enables dynamical control of metamaterial resonances through photoexcitation, and reducing the substrate carrier lifetime further enables an ultrafast switching recovery. The metamaterial resonances can also be actively controlled by application of a voltage bias when they are fabricated on semiconductor substrates with appropriate doping concentration and thickness. Using this electrically driven approach, THz modulation depth up to 80% and modulation speed of 2 MHz at room temperature have been demonstrated, which suggests practical THz applications.

  20. Pulsed Terahertz Signal Reconstruction

    NASA Astrophysics Data System (ADS)

    Fletcher, J. R.; Swift, G. P.; Dai, DeChang; Chamberlain, J. M.; Upadhya, P. C.

    2007-12-01

    A procedure is outlined which can be used to determine the response of an experimental sample to a single, simple broadband frequency pulse in terahertz frequency time domain spectroscopy (TDS). The advantage that accrues from this approach is that oscillations and spurious signals (arising from a variety of sources in the TDS system or from ambient water vapor) can be suppressed. In consequence, small signals (arising from the interaction of the radiation with the sample) can be more readily observed in the presence of noise. Procedures for choosing key parameters and methods for eliminating further artifacts are described. In particular, the use of input functions which are based on the binomial distribution is described. These binomial functions are used to unscramble the sample response to a simple pulse: they have sufficient flexibility to allow for variations in the spectra of different terahertz sources, some of which have low frequency as well as high frequency cutoffs. The signal processing procedure is validated by simple reflection and transmission experiments using a gap between polytetrafluoroethylene (PTFE) plates to mimic a void within a larger material. It is shown that a resolution of 100μm is easily achievable in reflection geometry after signal processing.

  1. Terahertz quantum cascade VECSEL

    NASA Astrophysics Data System (ADS)

    Xu, Luyao; Curwen, Christopher A.; Hon, Philip W. C.; Itoh, Tatsuo; Williams, Benjamin S.

    2016-03-01

    Vertical-external-cavity surface-emitting lasers (VECSELs) have been successfully used in the visible and near-infrared to achieve high output power with excellent Gaussian beam quality. However, the concept of VECSEL has been impossible to implement for quantum-cascade (QC) lasers due to the "intersubband selection rule". We have recently demonstrated the first VECSEL in the terahertz range. The enabling component for the QC-VECSEL is an amplifying metasurface reflector composed of a sparse array of metallic sub-cavities, which allows the normally incident radiation to interact with the electrically pumped QC gain medium. In this work, we presented multiple design variations based on the first demonstrated THz QC-VECSEL, regarding the lasing frequencies, the output coupler and the intra-cavity aperture. Our work on THz QC-VECSEL initiates a new approach towards achieving scalable output power in combination with a diffraction-limited beam pattern for THz QC-lasers. The design variations presented in this work further demonstrate the practicality and potential of VECSEL approach to make ideal terahertz QC-laser sources.

  2. Application of Histogram Analysis in Radiation Therapy (HART) in Intensity Modulation Radiation Therapy (IMRT) Treatments

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-03-01

    A carcinoma is a malignant cancer that emerges from epithelial cells in structures through out the body.It invades the critical organs, could metastasize or spread to lymph nodes.IMRT is an advanced mode of radiation therapy treatment for cancer. It delivers more conformal doses to malignant tumors sparing the critical organs by modulating the intensity of radiation beam.An automated software, HART (S. Jang et al.,2008,Med Phys 35,p.2812) was used for efficient analysis of dose volume histograms (DVH) for multiple targets and critical organs in four IMRT treatment plans for each patient. IMRT data for ten head and neck cancer patients were exported as AAPM/RTOG format files from a commercial treatment planning system at Northwestern Memorial Hospital (NMH).HART extracted DVH statistics were used to evaluate plan indices and to analyze dose tolerance of critical structures at prescription dose (PD) for each patient. Mean plan indices (n=10) were found to be in good agreement with published results for Linac based plans. The least irradiated volume at tolerance dose (TD50) was observed for brainstem and the highest volume for larynx in SIB treatment techniques. Thus HART, an open source platform, has extensive clinical implications in IMRT treatments.

  3. Numerical studies of powerful terahertz pulse generation from a super-radiant surface wave oscillator

    SciTech Connect

    Zhang Hai; Wang Jianguo; Tong Changjiang; Li Xiaoze; Wang Guangqiang

    2009-12-15

    The results of theoretical and numerical studies of coherent stimulated terahertz radiation from intense, subnanosecond electron beam are presented. The mechanism of terahertz pulse generation is associated with self-bunching of the beam and slippage of the wave over the whole electron flow. This so called Cherenkov super-radiance (SR) is used to propose a compact terahertz generator with high peak power. A large cross-section (overmoded), slow wave structure is designed to support the high power handling capability, and the mode competition is avoided by operating the device in the surface wave status. With 2.5 D particle-in-cell simulation, the 'hot' characteristics of the proposed super-radiant terahertz generator are investigated, and the numerical results show that the SR peak power could be further increased by optimizing the amplitude profile of electron pulse. Under the condition of 0.5 ns pulsewidth, 500 kV voltage, and 1.5 kA current, the 110 ps, 680 MW, and 0.14 THz SR pulse is achieved with a power efficiency of 90.67% in TM{sub 01} mode.

  4. Accurate simulation of terahertz transmission through doped silicon junctions

    NASA Astrophysics Data System (ADS)

    Jen, Chih-Yu; Richter, Christiaan

    2015-03-01

    In the previous work we presented results demonstrating the ability of transmission mode terahertz time domain spectroscopy (THz-TDS) to detect doping profile differences and deviations in silicon. This capability is potentially useful for quality control in the semiconductor and photovoltaic industry. We shared subsequent experimental results revealing that terahertz interactions with both electrons and holes are strong enough to recognize both n- and p-type doping profile changes. We also displayed that the relatively long wavelength (~ 1 mm) of THz radiation allows this approach to be compatible with surface treatments like for instance the texturing (scattering layer) typically used in the solar industry. In this work we continuously demonstrate the accuracy with which current terahertz optical models can simulate the power spectrum of terahertz radiation transmitted through junctions with known doping profiles (as determined with SIMS). We conclude that current optical models predict the terahertz transmission and absorption in silicon junctions well.

  5. Sound radiation from an infinite elastic cylinder with dual-wave propagation-intensity distributions

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1988-01-01

    The radiation of sound from an elastic cylindrical shell filled with fluid and supporting multiwave propagation is studied analytically. Combinations of supersonic and subsonic shell waves are considered. The radiated field is mapped by using acoustic intensity vectors evaluated at various locations. Both time averaged and instantaneous intensity are investigated. The acoustic intensity is seen to vary markedly with axial distance down the cylinder. The effect is shown to be associated with cross terms in the intensity relations, and its magnitude and location to depend upon the relative phase and amplitudes of individual waves. Subsonic shell waves are demonstrated to interact strongly with supersonic shell waves to cause a large modification in the radiated intensity distributions near the shell surface.

  6. Silicone rubber curing by high intensity infrared radiation

    SciTech Connect

    Huang, T.; Tsai, J.; Cherng, C.; Chen, J.

    1994-08-10

    A high-intensity (12 kW) and compact (80 cm) infrared heating oven for fast curing (12 seconds) of tube-like silicone rubber curing studies is reported. Quality inspection by DSC and DMA and results from pilot-scale curing oven all suggest that infrared heating provides a better way of vulcanization regarding to curing time, quality, cost, and spacing over conventional hot air heating. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  7. Cosmic Ray Intensity Variation in Lunar Radiation Environments during Luna and LRO missions

    NASA Astrophysics Data System (ADS)

    Sohn, Jongdae; Oh, Suyeon; Yi, Yu

    The RV-2N-series instruments onboard Luna missions and the CRaTER instrument onboard LRO satellite were designed to monitor in lunar radiation environment by measuring cosmic ray (CR) intensity. In order to examine the origins and the characteristics of the CR intensity variation in lunar radiation environment, we use proton intensity measured by RV-2N-series onboard Luna missions out of the Russian space Zond program for exploration of the Moon and CR intensity observed by the CRaTER on the Moon. We compare the CR intensity on the Moon with that observed by neutron monitors (Climax, McMurdo, Thule) on the Earth. To find the correlation between the solar activity and the CR intensity on the Moon, we also use the sunspot number supplied by NOAA National Geophysical Data Center. We present the result in this time.

  8. Characteristic responses of biological and nanoscale systems in the terahertz frequency range

    NASA Astrophysics Data System (ADS)

    Angeluts, A. A.; Balakin, A. V.; Evdokimov, M. G.; Esaulkov, M. N.; Nazarov, M. M.; Ozheredov, I. A.; Sapozhnikov, D. A.; Solyankin, P. M.; Cherkasova, O. P.; Shkurinov, A. P.

    2014-07-01

    This paper briefly examines methods for the generation of pulsed terahertz radiation and principles of pulsed terahertz spectroscopy, an advanced informative method for studies of complex biological and nanostructured systems. Some of its practical applications are described. Using a number of steroid hormones as examples, we demonstrate that terahertz spectroscopy in combination with molecular dynamics methods and computer simulation allows one to gain information about the structure of molecules in crystals. A 'terahertz colour vision' method is proposed for analysis of pulsed terahertz signals reflected from biological tissues and it is shown that this method can be effectively used to analyse the properties of biological tissues and for early skin cancer diagnosis.

  9. Terahertz Spectroscopy of Polymers

    NASA Astrophysics Data System (ADS)

    Jansen, Christian; Wietzke, Steffen; Koch, Martin

    Polymers and terahertz (THz) waves form a fruitful symbiosis: on the one hand, non-polar plastics serve as base materials for THz optics as they exhibit low absorption and excellent machinability. On the other hand, THz time-domain spectroscopy (TDS) grants access to unique information about the molecular structure and morphology of polymers, offering an immense portfolio of interesting scientific opportunities. Furthermore, contact-free, non-destructive testing with non-ionizing THz radiation could evolve as a valuable addition to or substitution of ultrasonic and X-ray characterization, especially in quality inspection and process control applications. This chapter aims to give an overview of recent activities in this field, covering both the spectroscopic analysis of polymers with THz waves as well as the non-destructive testing of plastic components with THz systems.

  10. Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Zhongxin, Zheng; Jiandong, Sun; Yu, Zhou; Zhipeng, Zhang; Hua, Qin

    2015-10-01

    The broadband terahertz (THz) emission from drifting two-dimensional electron gas (2DEG) in an AlGaN/GaN heterostructure at 6 K is reported. The devices are designed as THz plasmon emitters according to the Smith-Purcell effect and the ‘shallow water’ plasma instability mechanism in 2DEG. Plasmon excitation is excluded since no signature of electron-density dependent plasmon mode is observed. Instead, the observed THz emission is found to come from the heated lattice and/or the hot electrons. Simulated emission spectra of hot electrons taking into account the THz absorption in air and Fabry-Pérot interference agree well with the experiment. It is confirmed that a blackbody-like THz emission will inevitably be encountered in similar devices driven by a strong in-plane electric field. A conclusion is drawn that a more elaborate device design is required to achieve efficient plasmon excitation and THz emission. Project supported by the National Basic Research Program of China (No. G2009CB929303), the National Natural Science Foundation of China (No. 61271157), the China Postdoctoral Science Foundation (No. 2014M551678), and the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1301054B).

  11. Means of Intensity Modulation of Radiation in External Radiotherapy

    NASA Astrophysics Data System (ADS)

    Bajusová, Alica; Králik, Gabriel; Miglierini, Marcel

    2010-01-01

    The paper deals with the main means of the beam intensity modifications that are used in radio therapeutic praxis. Physical principles and the main characteristics of the physical wedges and the enhanced dynamic wedges (EDW) are described. The main advantages and the disadvantages of the EDW over the conventional physical wedges are listed. The paper describes also a process of dosimetry verification of the application of the EDW that was applied on The Saint Elizabeth Cancer Institute in Bratislava and it details the experiment of the verification of an isodose distribution within this implementation of the EDW.

  12. Means of Intensity Modulation of Radiation in External Radiotherapy

    SciTech Connect

    Bajusova, Alica; Kralik, Gabriel; Miglierini, Marcel

    2010-01-05

    The paper deals with the main means of the beam intensity modifications that are used in radio therapeutic praxis. Physical principles and the main characteristics of the physical wedges and the enhanced dynamic wedges (EDW) are described. The main advantages and the disadvantages of the EDW over the conventional physical wedges are listed. The paper describes also a process of dosimetry verification of the application of the EDW that was applied on The Saint Elizabeth Cancer Institute in Bratislava and it details the experiment of the verification of an isodose distribution within this implementation of the EDW.

  13. Terahertz pulsed imaging study of dental caries

    NASA Astrophysics Data System (ADS)

    Karagoz, Burcu; Altan, Hakan; Kamburoglu, Kıvanç

    2015-07-01

    Current diagnostic techniques in dentistry rely predominantly on X-rays to monitor dental caries. Terahertz Pulsed Imaging (TPI) has great potential for medical applications since it is a nondestructive imaging method. It does not cause any ionization hazard on biological samples due to low energy of THz radiation. Even though it is strongly absorbed by water which exhibits very unique chemical and physical properties that contribute to strong interaction with THz radiation, teeth can still be investigated in three dimensions. Recent investigations suggest that this method can be used in the early identification of dental diseases and imperfections in the tooth structure without the hazards of using techniques which rely on x-rays. We constructed a continuous wave (CW) and time-domain reflection mode raster scan THz imaging system that enables us to investigate various teeth samples in two or three dimensions. The samples comprised of either slices of individual tooth samples or rows of teeth embedded in wax, and the imaging was done by scanning the sample across the focus of the THz beam. 2D images were generated by acquiring the intensity of the THz radiation at each pixel, while 3D images were generated by collecting the amplitude of the reflected signal at each pixel. After analyzing the measurements in both the spatial and frequency domains, the results suggest that the THz pulse is sensitive to variations in the structure of the samples that suggest that this method can be useful in detecting the presence of caries.

  14. Investigation of the terahertz emission characteristics of MBE-grown GaAs-based nanostructures

    NASA Astrophysics Data System (ADS)

    Takatori, Satoru; Minh, Pham Hong; Estacio, Elmer; Cadatal-Raduban, Marilou; Nakazato, Tomoharu; Shimizu, Toshihiko; Bailon-Somintac, Michelle; Somintac, Armando; Defensor, Michael; Gabayno, Jacqueline; Awitan, Fritz Christian B.; Jaculbia, Rafael B.; Garcia, Alipio; Ponseca, Carlito, Jr.; Salvador, Arnel; Sarukura, Nobuhiko

    2010-05-01

    We report experimental work on the terahertz emission characteristics of InAs/GaAs quantum dot (QD) structures and GaAs/AlGaAs modulation-doped heterojunctions (MDH's), excited by femtosecond laser. Results showed that the terahertz emission from MDH's can provide information on the GaAs/AlGaAs interface quality while the QD structures have the potential for being intense terahertz emitters; rivaling the emission intensity of p-type bulk InAs.

  15. People screening using terahertz technology (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Baker, Colin; Tribe, William R.; Lo, Thomas; Cole, Bryan E.; Chandler, Simon; Kemp, Michael C.

    2005-05-01

    There is a need for ever more effective security screening to detect an increasing variety of threats. Many techniques employing different parts of the electromagnetic spectrum from radio up to X- and gamma-ray are in use. Terahertz radiation, which lies between microwave and infrared, is the last part to be exploited for want, until the last few years, of suitable sources and detectors. Terahertz imaging and spectroscopy has been shown to have the potential to use very low levels of this non-ionising radiation to detect and identify objects hidden under clothing. This paper describes recent work on the development of prototype systems using terahertz to provide new capabilities in people screening, both at security checkpoints and stand-off detection for remote detection of explosives and both metallic and non-metallic weapons.

  16. Terahertz applications: trends and challenges

    NASA Astrophysics Data System (ADS)

    Robin, Thierry; Bouye, Clementine; Cochard, Jacques

    2014-03-01

    The objective of our work [1] was to determine the opportunities and challenges for Terahertz application development for the next years with a focus on systems: for homeland security and for Non Destructive Testing (NDT). Terahertz radiation has unique abilities and has been the subject of extensive research for many years. Proven concepts have emerged for numerous applications including Industrial NDT, Security, Health, Telecommunications, etc. Nevertheless, there has been no widely deployed application and Businesses based on THz technologies are still in their infancy. Some technological, market and industrial barriers are still to be broken. We summarize the final analysis and data: study of the technology trends and major bottlenecks per application segment, main challenges to be addressed in the next years, key opportunities for THz technologies based on market needs and requirements.

  17. Intense XUV radiation driven explosions of Xe clusters

    NASA Astrophysics Data System (ADS)

    Murphy, B.; Hoffmann, K.; Belolipetski, A.; Bernstein, A.; Keto, J.; Ditmire, T.; Artyukov, I.

    2008-04-01

    We have investigated the explosions of large xenon clusters subject to irradiation by high intensity extreme ultraviolet (XUV) light with wavelength near 38 nm. To do this we generated high order harmonics by focusing the output of the 20 TW, 40 fs, 800nm wavelength THOR laser into a jet of argon gas. To select a single harmonic we then employed a Sc/Si short focal length multilayer mirror optimized for the 21st harmonic at 38.1 nm at near normal incidence. This harmonic is focused onto a jet of xenon gas. We characterized the XUV focal spot by scanning a knife edge across an XUV photodiode and determined that our peak XUV intensity was 2x10^10 Wcm-2. Fast ion time-of-flight spectra reveal high ion charge states well above single photon ionization thresholds. These ions exhibit low kinetic energies consistent with hydrodynamic cluster expansion rather than Coulomb explosion. We also measured the electron spectra from these Xe cluster explosions and have observed moderate energy electrons ejected from the clusters.

  18. Synchronous flowering of the rubber tree (Hevea brasiliensis) induced by high solar radiation intensity.

    PubMed

    Yeang, Hoong-Yeet

    2007-01-01

    How tropical trees flower synchronously near the equator in the absence of significant day length variation or other meteorological cues has long been a puzzle. The rubber tree (Hevea brasiliensis) is used as a model to investigate this phenomenon. The annual cycle of solar radiation intensity is shown to correspond closely with the flowering of the rubber tree planted near the equator and in the subtropics. Unlike in temperate regions, where incoming solar radiation (insolation) is dependent on both day length and radiation intensity, insolation at the equator is due entirely to the latter. Insolation at the upper atmosphere peaks twice a year during the spring and autumn equinoxes, but the actual solar radiation that reaches the ground is attenuated to varying extents in different localities. The rubber tree shows one or two flowering seasons a year (with major and minor seasons in the latter) in accordance with the solar radiation intensity received. High solar radiation intensity, and in particular bright sunshine (as distinct from prolonged diffuse radiation), induces synchronous anthesis and blooming in Hevea around the time of the equinoxes. The same mechanism may be operational in other tropical tree species. PMID:17587376

  19. Response of two-phase droplets to intense electromagnetic radiation.

    PubMed

    Spann, J F; Maloney, D J; Lawson, W F; Casleton, K H

    1993-04-20

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii = 37, 55, and 80 microm) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid. PMID:20820360

  20. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  1. Optimization of THz Radiation Generation from a Laser Wakefield Accelerator

    SciTech Connect

    Plateau, G. R.; Matlis, N. H.; Toth, C.; Geddes, C. G. R.; Schroeder, C. B.; Tilborg, J. van; Albert, O.; Esarey, E.; Leemans, W. P.

    2009-01-22

    Ultrashort terahertz pulses with energies in the {mu}J range can be generated with laser wakefield accelerators (LWFA), which are novel, compact accelerators that produce ultrashort electron bunches with energies up to 1 GeV and energy spreads of a few-percent. Laser pulses interacting with a plasma create accelerated electrons which upon exiting the plasma emit terahertz pulses via transition radiation. Because these electron bunches are ultrashort (<50 fs), they can radiate coherently (coherent transition radiation--CTR) in a wide bandwidth ({approx}1-10 THz) yielding high intensity terahertz pulses. In addition to providing a non-invasive bunch-length diagnostic and thus feedback for the LWFA, these high peak power THz pulses are suitable for high field (MV/cm) pump-probe experiments. Here we present energy-based measurements using a Golay cell and an electro-optic technique which were used to characterize these THz pulses.

  2. Terahertz Imaging of cyclotron emission from quantum Hall conductors

    NASA Astrophysics Data System (ADS)

    Komiyama, Susumu

    2006-03-01

    Microscopy of extremely weak terahertz (THz) waves via photon-counting method is reported. A quantum-dot photon detector [1] is incorporated into a scanning terahertz microscope [2]. By using a quantum Hall detector [3] as well, measurements cover the intensity dynamic range more than five orders of magnitude. The minimum intensity reaches as lo as 10̂-21^ watt (one photon per one second). Applying the measurement system to the study of semiconductor quantum Hall (QH) devices, we image cyclotron radiation emitted by non-equilibrium electrons generated in QH electron systems. Owing to the unprecedented sensitivity, a variety of new features of electron kinetics are unveiled [4]. It is stressed that the present approach is in marked contrast to the THz- wave applications recently discussed extensively in a wide variety of fields including clinic, security, and environment. In the vast majority of those applications, room-temperature operation is implicit. The intensity of treated THz radiation is hence well beyond the level of 300K black body radiation (roughly 10̂-7 watts or 10̂14 photons/s per square centimeter in a 1/10 relative band width). From the scientific viewpoint, however, detecting extremely weak THz waves from an object without external illumination such as applied in the present work is of strong importance, because the microscopic kinetics of an object can be probed only in such a passive method. Besides semiconductor electric devices studied here, we will also discuss possible applications of the present method for molecular dynamics, micro thermography, and cell activities.. [1] S. Komiyama et al., Nature 403, 405 (2000). [2] K. Ikushima et al.,. Rev. Sci. Instrum. 74, 4209 (2003). [3] Y.Kawano et al., J. Appl. Phys. 89, 4037 (2001). [4] K.Ikushima et al., Phys. Rev. Lett. 93, 146804 (2004).

  3. High mobility ZnO nanowires for terahertz detection applications

    NASA Astrophysics Data System (ADS)

    Liu, Huiqiang; Peng, Rufang; Chu, Sheng; Chu, Shijin

    2014-07-01

    An oxide nanowire material was utilized for terahertz detection purpose. High quality ZnO nanowires were synthesized and field-effect transistors were fabricated. Electrical transport measurements demonstrated the nanowire with good transfer characteristics and fairly high electron mobility. It is shown that ZnO nanowires can be used as building blocks for the realization of terahertz detectors based on a one-dimensional plasmon detection configuration. Clear terahertz wave (˜0.3 THz) induced photovoltages were obtained at room temperature with varying incidence intensities. Further analysis showed that the terahertz photoresponse is closely related to the high electron mobility of the ZnO nanowire sample, which suggests that oxide nanoelectronics may find useful terahertz applications.

  4. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    SciTech Connect

    Yelon, W.B.; Schupp, G.

    1993-02-01

    The QUEGS facility at MURR has produced a number of new results and demonstrated the range of potential applications of high resolution, high intensity Moessbauer scattering. This work has been carried out by both MU and Purdue researchers and includes published results on Na, W, pentadecane, polydimethylsiloxane and other systems, manuscripts submitted on alkali halides (Phys. Rev. B) and accurate Moessbauer lineshape measurements (Phys. Rev. C), and manuscripts in preparation on glycerol, NiAl and Moessbauer spectra obtained by modulating a scattering crystal. Recently, new collaborations have been initiated which will substantially enhance our efforts. These are with W. Steiner (Vienna), G. Coddens (Saclay), and R. D. Taylor (Los Alamos). Steiner is experienced with Fe-57 Moessbauer scattering, while Coddens specializes in quasielastic neutron scattering; both of these areas naturally complement our work. R. D. Taylor has pioneered Moessbauer spectroscopy from the time of its discovery and has already made important contributions to our study of lattice dynamics and superconductivity for lead alloyed with small quantities of tin. At the same time, a significant instrument upgrade is underway, funded in part by the DOE-URIP program.

  5. Interaction of intense vuv radiation with large xenon clusters

    SciTech Connect

    Walters, Zachary B.; Greene, Chris H.; Santra, Robin

    2006-10-15

    The interaction of atomic clusters with short, intense pulses of laser light to form extremely hot, dense plasmas has attracted extensive experimental and theoretical interest. The high density of atoms within the cluster greatly enhances the atom-laser interaction, while the finite size of the cluster prevents energy from escaping the interaction region. Recent technological advances have allowed experiments to probe the laser-cluster interaction at very high photon energies, with interactions much stronger than suggested by theories for lower photon energies. We present a model of the laser-cluster interaction that uses nonperturbative R-matrix techniques to calculate inverse bremsstrahlung and photoionization cross sections for Herman-Skillman atomic potentials. We describe the evolution of the cluster under the influence of the processes of inverse bremsstrahlung heating, photoionization, collisional ionization and recombination, and expansion of the cluster. We compare total energy absorbed with the Hamburg experiment of Wabnitz et al. [Nature 420, 482 (2002)] and ejected electron spectra with Laarmann et al. [Phys. Rev. Lett. 95, 063402 (2005)].

  6. Reverberation Chamber Uniformity Validation and Radiated Susceptibility Test Procedures for the NASA High Intensity Radiated Fields Laboratory

    NASA Technical Reports Server (NTRS)

    Koppen, Sandra V.; Nguyen, Truong X.; Mielnik, John J.

    2010-01-01

    The NASA Langley Research Center's High Intensity Radiated Fields Laboratory has developed a capability based on the RTCA/DO-160F Section 20 guidelines for radiated electromagnetic susceptibility testing in reverberation chambers. Phase 1 of the test procedure utilizes mode-tuned stirrer techniques and E-field probe measurements to validate chamber uniformity, determines chamber loading effects, and defines a radiated susceptibility test process. The test procedure is segmented into numbered operations that are largely software controlled. This document is intended as a laboratory test reference and includes diagrams of test setups, equipment lists, as well as test results and analysis. Phase 2 of development is discussed.

  7. Terahertz technology in biological and chemical sensing for defence

    NASA Astrophysics Data System (ADS)

    Woodward, Ruth M.

    2004-12-01

    The terahertz (1 THz = 1012 Hz, 3 mm or 33 cm-1) region of the electromagnetic spectrum is typically defined in the frequency range 100 GHz to 10 THz, corresponding to a wavelength range of 3 mm to 30 microns. Owing to a lack of suitable coherent sources and detectors, this region has only been investigated in earnest in the last ten years for terrestrial imaging and spectroscopy applications. Its role in the medical, pharmaceutical, non-destructive testing and more recently security industries is now being examined. The terahertz frequency range is of particular interest since it is able to probe several molecular interactions including the intermolecular vibrations, large amplitude vibrations and twisting and torsional modes. Molecules have also shown polarization sensitivity to the incident terahertz radiation. The ability of terahertz radiation to investigate conformational change makes it an important part of the electromagnetic spectrum. Terahertz radiation has the potential to provide additional information, which may complement other optically based sensing technologies. The use of terahertz technology in the security and defence industry is discussed, with a specific focus on biological and chemical sensing. The challenges faced in bringing terahertz technology into the market place will be discussed.

  8. Cooling of relativistic electron beams in intense laser pulses: Chirps and radiation

    NASA Astrophysics Data System (ADS)

    Yoffe, S. R.; Noble, A.; Macleod, A. J.; Jaroszynski, D. A.

    2016-09-01

    Next-generation high-power laser facilities (such as the Extreme Light Infrastructure) will provide unprecedented field intensities, and will allow us to probe qualitatively new physical regimes for the first time. One of the important fundamental questions which will be addressed is particle dynamics when radiation reaction and quantum effects play a significant role. Classical theories of radiation reaction predict beam cooling in the interaction of a relativistic electron bunch and a high-intensity laser pulse, with final-state properties only dependent on the laser fluence. The observed quantum suppression of this cooling instead exhibits a dependence on the laser intensity directly. This offers the potential for final-state properties to be modified or even controlled by tailoring the intensity profile of the laser pulse. In addition to beam properties, quantum effects will be manifest in the emitted radiation spectra, which could be manipulated for use as radiation sources. We compare predictions made by classical, quasi-classical and stochastic theories of radiation reaction, and investigate the influence of chirped laser pulses on the observed radiation spectra.

  9. Integrated heterodyne terahertz transceiver

    DOEpatents

    Wanke, Michael C.; Lee, Mark; Nordquist, Christopher D.; Cich, Michael J.

    2012-09-25

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  10. Integrated heterodyne terahertz transceiver

    DOEpatents

    Lee, Mark; Wanke, Michael C.

    2009-06-23

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  11. Transmission mode terahertz computed tomography

    DOEpatents

    Ferguson, Bradley Stuart; Wang, Shaohong; Zhang, Xi-Cheng

    2006-10-10

    A method of obtaining a series of images of a three-dimensional object by transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a scanning spot. The object is placed within the Rayleigh range of the focused THz beam and a focusing system is used to transfer the imaging plane from adjacent the object to a desired distance away from the object. A related system is also disclosed.

  12. Terahertz Spectroscopy for Chemical Detection and Burn Characterization

    NASA Astrophysics Data System (ADS)

    Arbab, Mohammad Hassan

    Terahertz (THz) frequencies represent the last frontier of the electromagnetic spectrum to be investigated by scientists. One of the main attractions of investigating this frequency range is the richness of the spectral information that can be obtained using a Terahertz Time-Domain Spectroscopy (THz-TDS) setup. Many large molecule chemicals and polymers have vibrational and rotational modes in the THz frequencies. Study of these resonance modes has revealed a wealth of new information about the intermolecular structure, and its transformation during crystallization or polymerization process. This information helps researchers develop new materials to address problems such as efficient energy conversion in polymer solar cells. Moreover, similar signature-like terahertz modes can be used for stand-off identification of substances or for nondestructive evaluation of defects in industrial applications. Finally, terahertz spectroscopy has the potential to provide a safe and non-ionizing imaging modality to study cellular and molecular events in biological and biomedical applications. The high sensitivity of terahertz waves to attenuation by both bound and free water molecules can also provides a source of signal contrast for many future biomedical imaging and diagnostic applications. In this dissertation, we aim to study and develop three such applications of terahertz spectroscopy, which form the three axes of our work: rough-surface scattering mediated stand-off detection of chemicals, characterization of burn injuries using terahertz radiation, and a new electrically tunable bandpass filter device incorporating nano-material transparent electrodes that can enable fast terahertz spectroscopy in the frequency domain.

  13. Intensive Care Nurses’ Knowledge of Radiation Safety and Their Behaviors Towards Portable Radiological Examinations

    PubMed Central

    Dianati, Mansoor; Zaheri, Azita; Talari, Hamid Reza; Deris, Fateme; Rezaei, Sara

    2014-01-01

    Background: Radiological examinations for patients who are hospitalized at intensive care units are usually performed using portable radiography devices. However they may require knowledge and safety precautions of nurses. Objectives: The aim of the study was to investigate ICU nurses’ knowledge of radiation safety and their behaviors towards portable radiological examinations. Materials and Methods: In total, 44 intensive care nurses were recruited for this cross-sectional descriptive study using census sampling during April and May 2014. The study setting was at intensive care units of Shahid Beheshti Hospital of Kashan, Iran. An eleven-item questionnaire and a five-item checklist were used for evaluating nurses’ radiation protection knowledge and behaviors, respectively. An expert panel consisting of ten nursing and radiology faculty members confirmed the content validity of the questionnaire and the checklist. Moreover, a Geiger-Müller counter was used for measuring ionizing radiation during portable radiological examinations. Study data were analyzed using the SPSS software version 13.0. Mean, standard deviation, frequency and one-sample t test were used for description of the data. The level of significance was set at below 0.05. Results: The mean of participants’ radiation protection knowledge was 4.77 ± 1.38. The most prevalent radiation protection behavior of nurses was leaving the intensive care unit during portable radiological examinations. Only 6.8% of nurses stayed at the nursing station during radiological examinations. The highest dose of radiation was 0.11 micro Sievert per hour (μSv/h), which was much lower than the highest permitted level of radiation exposure i.e. 0.25 μSv/h. Conclusions: Portable radiological examinations did not expose healthcare providers to high doses of ionizing radiation. Nurses’ radiation protection knowledge was limited and hence, they require in-service education programs. PMID:25741515

  14. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    SciTech Connect

    Piot, P.; Sun, Y. -E; Maxwell, T. J.; Ruan, J.; Lumpkin, A. H.; Rihaoui, M. M.; Thurman-Keup, R.

    2011-06-27

    We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  15. SU-E-J-267: Change in Mean CT Intensity of Lung Tumors During Radiation Treatment

    SciTech Connect

    Mahon, R; Tennyson, N; Weiss, E; Hugo, G

    2015-06-15

    Purpose: To evaluate CT intensity change of lung tumors during radiation therapy. Methods: Repeated 4D CT images were acquired on a CT simulator during the course of therapy for 27 lung cancer patients on IRB approved protocols. All subjects received definitive radiation treatment ± chemotherapy. CT scans were completed prior to treatment, and 2–7 times during the treatment course. Primary tumor was delineated by an experienced Radiation Oncologist. Contours were thresholded between −100 HU and 200 HU to remove airways and bone. Correlations between the change in the mean tumor intensity and initial tumor intensity, SUVmax, and tumor volume change rate were investigated. Reproducibility was assessed by evaluating the variation in mean intensity over all phases in 4DCT, for a subgroup of 19 subjects. Results: Reproducibility of tumor intensity between phases as characterized by the root mean square of standard deviation across 19 subjects was 1.8 HU. Subjects had a mean initial tumor intensity of 16.5 ± 11.6 HU and an overall reduction in HU by 10.3 ± 8.5 HU. Evaluation of the changes in tumor intensity during treatment showed a decrease of 0.3 ± 0.3 HU/day for all subjects, except three. No significant correlation was found between change in HU/day and initial HU intensity (p=0.53), initial PET SUVmax (p=0.69), or initial tumor volume (p=0.70). The rate of tumor volume change was weakly correlated (R{sup 2}=0.05) with HU change (p=0.01). Conclusion: Most lung cancer subjects showed a marked trend of decreasing mean tumor CT intensity throughout radiotherapy, including early in the treatment course. Change in HU/day is not correlated with other potential early predictors for response, such as SUV and tumor volume change. This Result supports future studies to evaluate change in tumor intensity on CT as an early predictor of response.

  16. Miniature field deployable terahertz source

    NASA Astrophysics Data System (ADS)

    Mayes, Mark G.

    2006-05-01

    Developments in terahertz sources include compacted electron beam systems, optical mixing techniques, and multiplication of microwave frequencies. Although significant advances in THz science have been achieved, efforts continue to obtain source technologies that are more mobile and suitable for field deployment. Strategies in source development have approached generation from either end of the THz spectrum, from up-conversion of high-frequency microwave to down-conversion of optical frequencies. In this paper, we present the design of a THz source which employs an up-conversion method in an assembly that integrates power supply, electronics, and radiative component into a man-portable unit for situations in which a lab system is not feasible. This unit will ultimately evolve into a ruggedized package suitable for use in extreme conditions, e.g. temporary security check points or emergency response teams, in conditions where THz diagnostics are needed with minimal planning or logistical support. In order to meet design goals of reduced size and complexity, the inner workings of the unit ideally would be condensed into a monolithic active element, with ancillary systems, e.g. user interface and power, coupled to the element. To attain these goals, the fundamental component of our design is a THz source and lens array that may be fabricated with either printed circuit board or wafer substrate. To reduce the volume occupied by the source array, the design employs a metamaterial composed of a periodic lattice of resonant elements. Each resonant element is an LC oscillator, or tank circuit, with inductance, capacitance, and center frequency determined by dimensioning and material parameters. The source array and supporting electronics are designed so that the radiative elements are driven in-phase to yield THz radiation with a high degree of partial coherence. Simulation indicates that the spectral width of operation may be controlled by detuning of critical dimensions

  17. Emission of strong Terahertz pulses from laser wakefields in weakly coupled plasma

    NASA Astrophysics Data System (ADS)

    Singh, Divya; Malik, Hitendra K.

    2016-09-01

    The present paper discusses the laser plasma interaction for the wakefield excitation and the role of external magnetic field for the emission of Terahertz radiation in a collisional plasma. Flat top lasers are shown to be more appropriate than the conventional Gaussian lasers for the effective excitation of wakefields and hence, the generation of strong Terahertz radiation through the transverse component of wakefield.

  18. Scaling of Ion Acceleration in Super Intense Laser Matter Interaction in Radiative Damping Regime

    NASA Astrophysics Data System (ADS)

    Pandit, Rishi; Sentoku, Yasuhiko; Ackad, Edward

    2015-11-01

    We had derived the radiation reaction terms including the higher orders and implemented in PICLS codes [R. Pandit and Y. Sentoku, Phys. Plasmas 19, 073304 (2012)]. It was found that higher order terms of radiation reaction reduce the ponderomotive force as well as the photon pressure. The ponderomotive scaling, in super intense laser matter interactions, changes due to the decrease of the ponderomotive force on the electron and ion's accelerations. A new scaling of ion acceleration has been derived which depends on the laser intensity and oscillatory energy of electron. At 1023 W/cm2 almost half of the ponderomotive force is damped due to higher order terms. We will show how the theoretical result compares with PICLS simulations by varying laser intensities to understand the effect of the reduced ponderomotive force in super intense laser matter interaction.

  19. Electrically tunable hot-silicon terahertz attenuator

    NASA Astrophysics Data System (ADS)

    Wang, Minjie; Vajtai, Robert; Ajayan, Pulickel M.; Kono, Junichiro

    2014-10-01

    We have developed a continuously tunable, broadband terahertz attenuator with a transmission tuning range greater than 103. Attenuation tuning is achieved electrically, by simply changing the DC voltage applied to a heating wire attached to a bulk silicon wafer, which controls its temperature between room temperature and ˜550 K, with the corresponding free-carrier density adjusted between ˜1011 cm-3 and ˜1017 cm-3. This "hot-silicon"-based terahertz attenuator works most effectively at 450-550 K (corresponding to a DC voltage variation of only ˜7 V) and completely shields terahertz radiation above 550 K in a frequency range of 0.1-2.5 THz. Both intrinsic and doped silicon wafers were tested and demonstrated to work well as a continuously tunable attenuator. All behaviors can be understood quantitatively via the free-carrier Drude model taking into account thermally activated intrinsic carriers.

  20. Plasmonic corrugated cylinder-cone terahertz probe.

    PubMed

    Yao, Haizi; Zhong, Shuncong

    2014-08-01

    The spoof surface plasmon polariton (SPP) effect on the electromagnetic field distribution near the tip of a periodically corrugated metal cylinder-cone probe working at the terahertz regime was studied. We found that radially polarized terahertz radiation could be coupled effectively through a spoof SPP into a surface wave and propagated along the corrugated surface, resulting in more than 20× electric field enhancement near the tip of probe. Multiple resonances caused by the antenna effect were discussed in detail by finite element computation and theoretical analysis of dispersion relation for spoof SPP modes. Moreover, the key figures of merit such as the resonance frequency of the SPP can be flexibly tuned by modifying the geometry of the probe structure, making it attractive for application in an apertureless background-free terahertz near-field microscope. PMID:25121543

  1. Terahertz reflectarray as a polarizing beam splitter.

    PubMed

    Niu, Tiaoming; Withayachumnankul, Withawat; Upadhyay, Aditi; Gutruf, Philipp; Abbott, Derek; Bhaskaran, Madhu; Sriram, Sharath; Fumeaux, Christophe

    2014-06-30

    A reflectarray is designed and demonstrated experimentally for polarization-dependent beam splitting at 1 THz. This reflective component is composed of two sets of orthogonal strip dipoles arranged into interlaced triangular lattices over a ground plane. By varying the length and width of the dipoles a polarization-dependent localized phase change is achieved on reflection, allowing periodic subarrays with a desired progressive phase distribution. Both the simulated field distributions and the measurement results from a fabricated sample verify the validity of the proposed concept. The designed terahertz reflectarray can efficiently separate the two polarization components of a normally incident wave towards different predesigned directions of ±30°. Furthermore, the measured radiation patterns show excellent polarization purity, with a cross-polarization level below -27 dB. The designed reflectarray could be applied as a polarizing beam splitter for polarization-sensitive terahertz imaging or for emerging terahertz communications. PMID:24977867

  2. Terahertz wave reciprocal imaging

    NASA Astrophysics Data System (ADS)

    Xu, Jingzhou; Zhang, X.-C.

    2006-04-01

    A reciprocal imaging technology with an encoding/decoding image readout method allows a single detector (such as a heterodyne detector) to produce a two dimensional (2D) image simultaneously. Applying it in a pulsed terahertz imaging system could create a 2D terahertz image with 100pixels per frame which produces the same signal to noise ratio as a signal spot measurement.

  3. Transverse beam shape measurements of intense proton beams using optical transition radiation

    SciTech Connect

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  4. Controlling of group velocity via terahertz signal radiation in a defect medium doped by four-level InGaN/GaN quantum dot nanostructure

    NASA Astrophysics Data System (ADS)

    Jafarzadeh, Hossein; Sangachin, Elnaz Ahmadi; Asadpour, Seyyed Hossein

    2015-07-01

    In this paper, we propose a novel scheme for controlling the group velocity of transmitted and reflected pulse from defect medium doped with four-level InGaN/GaN quantum dot nanostructure. Quantum dot nanostructure is designed numerically by Schrödinger and Poisson equations which solve self consistently. By size control of quantum dot and external voltage, one can design a four-level quantum dot with appropriate energy levels which can be suitable for controlling the group velocity of pulse transmission and reflection from defect slab with terahertz signal field. It is found that in the presence and absence of terahertz signal field the behaviors of transmission and reflection pulses are completely different. Moreover, it is shown that for strong terahertz signal field, by changing the thickness of the slab, simultaneous peak and dip for transmission and reflection pulse are obtained.

  5. Strong terahertz generation by optical rectification of a super-Gaussian laser beam

    NASA Astrophysics Data System (ADS)

    Kumar, Subodh; Kishor Singh, Ram; Sharma, R. P.

    2016-06-01

    Terahertz (THz) generation by optical rectification of a laser beam having spatially super-Gaussian and temporally Gaussian intensity profile is investigated when it is propagating in a pre-formed rippled density plasma. The quasi-static ponderomotive force which is generated due to the variation in intensity of laser pulse leads to a nonlinear current density in the direction transverse to the direction of propagation which drives a radiation. The frequency of this radiation falls in the THz range if the pulse duration of the laser is chosen suitably. The density ripple provides the phase matching. The yield of generated THz has been compared when the phase matching is exact and when there is slight mismatch of phases. The variation in the intensity of the generated THz with the index of super-Gaussian pulse has also been studied.

  6. Magnetic resonance of terahertz metamaterials in parallel plate waveguides

    NASA Astrophysics Data System (ADS)

    Razanoelina, Manjakavahoaka; Serita, Kazunori; Matsuda, Eiki; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi

    2016-03-01

    As new designs of metamaterials rapidly emerge, methods of characterizing their fundamental electromagnetic properties become increasingly important. Here, we utilize the parallel plate waveguide associated with terahertz time-domain spectroscopy experiments to analyze the coupling of terahertz radiation to ultrathin electric split-ring resonators located halfway between the waveguide plates. Our observations determine that the magnetic response dominates across the frequency range of the system. The experimental results are confirmed by simulations, emphasizing the usefulness of the proposed approach for further investigations of magnetic coupling in metamaterials in the terahertz regime.

  7. Primary radiation damage of protein crystals by an intense synchrotron X-ray beam.

    PubMed

    Teng, T Y; Moffat, K

    2000-09-01

    X-ray radiation damage of a lysozyme single crystal by an intense monochromatic beam from a third-generation radiation source at the Advanced Photon Source has been studied. The results show that primary radiation damage is linearly dependent on the X-ray dose even when the crystal is at cryogenic temperatures. The existence of an upper limit for the primary radiation damage was observed. Above the threshold of approximately 1 x 10(7) Gy, excessive damage of the crystal develops which is interpreted as the onset of secondary and/or tertiary radiation damage. This upper limit of X-ray dose is compared with Henderson's limit [Henderson (1990). Proc. R. Soc. London, B241, 6-8], and its implication for the amount of useful X-ray diffraction data that can be obtained for crystals of a given scattering power is also discussed. PMID:16609214

  8. High-intensity coherent FIR radiation from sub-picosecond electron bunches

    SciTech Connect

    Kung, P.H.; Lihn, Hung-chi; Wiedemann, H.; Bocek, D.

    1994-01-01

    A facility to generate high-intensity, ultra-short pulses of broad-band far-infrared radiation has been assembled and tested at Stanford. The device uses sub-picosecond relativistic electron bunches to generate coherent radiation through transition or synchrotron radiation in the far-infrared (FIR) regime between millimeter waves and wavelengths of about 100 {mu}m and less. Experimental results show a peak radiation power of greater than 0.33 MW within a micro-bunch and an average FIR radiation power of 4 mW. The average bunch length of 2856 micro-bunches within a 1 {mu}sec macro-pulse is estimated to be about 480 sec. Simulations experimental setup and results will be discussed.

  9. Aspheric lenses for terahertz imaging.

    PubMed

    Lo, Yat Hei; Leonhardt, Rainer

    2008-09-29

    We present novel designs for aspheric lenses used in terahertz (THz) imaging. As different surfaces result in different beam shaping properties and in different losses from reflection and absorption, the resultant imaging resolution (i.e. the focal spot size) depends critically on the design approach. We evaluate the different lens designs using Kirchhoff's scalar diffraction theory, and test the predictions experimentally. We also show that our lenses can achieve sub-wavelength resolution. While our lens designs are tested with THz radiation, the design considerations are applicable also to other regions of the electro-magnetic spectrum. PMID:18825237

  10. Terahertz super thin planar lenses

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Ye, Jiasheng; Hu, Dan; Wang, Xinke; Feng, Shengfei; Sun, Wenfeng

    2012-12-01

    Terahertz (THz) radiation is an under developing range in the electromagnetic spectrum. It has attracted a lot of attentions due to its various potential applications. However, THz systems are difficult to be integrated into a smart size due to the limitation of its long wavelength. In this presentation, we propose a new approach to design planar lenses with a thickness of several hundred nanometers in the THz range. The fabricated lenses are characterized with a focal plane imaging system and it is found that they can focus the THz light and image an object well. It is expected that this new approach can pave a way for smart THz systems integration.

  11. 14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-intensity Radiated Fields (HIRF) Protection. 23.1308 Section 23.1308 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment General §...

  12. 14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false High-intensity Radiated Fields (HIRF) Protection. 23.1308 Section 23.1308 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment General §...

  13. 14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High-intensity Radiated Fields (HIRF) Protection. 23.1308 Section 23.1308 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment General §...

  14. 14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-intensity Radiated Fields (HIRF) Protection. 23.1308 Section 23.1308 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment General §...

  15. 14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High-intensity Radiated Fields (HIRF) Protection. 23.1308 Section 23.1308 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment General §...

  16. Evaluation of a low-intensity ultraviolet-C radiation device for decontamination of computer keyboards.

    PubMed

    Shaikh, Aaron A; Ely, Dylan; Cadnum, Jennifer L; Koganti, Sreelatha; Alhmidi, Heba; Sankar C, Thriveen; Jencson, Annette L; Kundrapu, Sirisha; Donskey, Curtis J

    2016-06-01

    Computer keyboards are a potential source for dissemination of pathogenic microorganisms. We demonstrated that a low-intensity ultraviolet-C (UV-C) radiation device was effective in reducing methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and Clostridium difficile spores on steel carriers and significantly reduced bacterial counts on in-use keyboards. PMID:26781219

  17. Terahertz imaging using strained-Si MODFETs as sensors

    NASA Astrophysics Data System (ADS)

    Meziani, Y. M.; Garcìa-Garcìa, E.; Velázquez-Pérez, J. E.; Coquillat, D.; Dyakonova, N.; Knap, W.; Grigelionis, I.; Fobelets, K.

    2013-05-01

    We report on non-resonant (broadband) and resonant detection of terahertz radiation using strained-Si modulation doped field effect transistors. The devices were excited at room temperature by two types of terahertz sources (an electronic source based on frequency multipliers at 0.292 THz and a pulsed parametric laser at 1.5 THz). In both cases, a non-resonant response with maxima around the threshold voltage was observed. Shubnikov-de Haas and photoresponse measurements were performed simultaneously and showed a phase-shift of π/2 in good agreement with the theory, which demonstrates that the observed response is related to the plasma waves oscillation in the channel. The non-resonant features were used to demonstrate the capabilities of such devices in terahertz imaging. We also cooled our device down to 4.2 K to increase the quality factor and resonant detection was observed by using a tunable source of terahertz radiation.

  18. Experimental demonstration of reflectarray antennas at terahertz frequencies.

    PubMed

    Niu, Tiaoming; Withayachumnankul, Withawat; Ung, Benjamin S-Y; Menekse, Hakan; Bhaskaran, Madhu; Sriram, Sharath; Fumeaux, Christophe

    2013-02-11

    Reflectarrays composed of resonant microstrip gold patches on a dielectric substrate are demonstrated for operation at terahertz frequencies. Based on the relation between the patch size and the reflection phase, a progressive phase distribution is implemented on the patch array to create a reflector able to deflect an incident beam towards a predefined angle off the specular direction. In order to confirm the validity of the design, a set of reflectarrays each with periodically distributed 360 × 360 patch elements are fabricated and measured. The experimental results obtained through terahertz time-domain spectroscopy (THz-TDS) show that up to nearly 80% of the incident amplitude is deflected into the desired direction at an operation frequency close to 1 THz. The radiation patterns of the reflectarray in TM and TE polarizations are also obtained at different frequencies. This work presents an attractive concept for developing components able to efficiently manipulate terahertz radiation for emerging terahertz communications. PMID:23481746

  19. Terahertz-to-infrared emission through laser excitation of surface plasmons in metal films with porous nanostructures.

    PubMed

    Zhang, Liangliang; Zhao, Ji; Wu, Tong; Zhang, Cunlin; Zhang, X-C

    2015-06-29

    We report on the investigation of terahertz-to-infrared (THz-to-IR) thermal emission that relies on the excitation of surface plasmons in metal films deposited on a substrate with randomly ordered nanoscale pore arrays. The THz-to-IR radiation was observed both in the direction of laser beam propagation and the reverse direction. The intensity ratio between backward and forward radiation is exponentially dependent on the nominal thickness of the porous metal films. The findings are discussed in view of the proposed generation mechanism based on propagating surface plasmon polaritons on both air/metal and metal/substrate interfaces. PMID:26191727

  20. Quantum mechanical theory of collisional ionization in the presence of intense laser radiation

    NASA Technical Reports Server (NTRS)

    Bellum, J. C.; George, T. F.

    1978-01-01

    The paper presents a quantum mechanical formalism for treating ionizing collisions occurring in the presence of an intense laser field. Both the intense laser radiation and the internal electronic continuum states associated with the emitted electrons are rigorously taken into account by combining discretization techniques with expansions in terms of electronic-field representations for the quasi-molecule-plus-photon system. The procedure leads to a coupled-channel description of the heavy-particle dynamics which involves effective electronic-field potential surfaces and continua. It is suggested that laser-influenced ionizing collisions can be studied to verify the effects of intense laser radiation on inelastic collisional processes. Calculation procedures for electronic transition dipole matrix elements between discrete and continuum electronic states are outlined.

  1. Ultrafast Modulation of Semiconductor Lasers Through a Terahertz Field

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Hughes, Steven; Citrin, David

    1998-01-01

    We demonstrate, by means of numerical simulation, a new mechanism to modulate and switch semiconductor lasers at THz and sub-THz frequency rates. A sinusoidal terahertz field applied to a semiconductor laser heats the electron-hole plasma and consequently modifies the optical susceptibility. This allows an almost linear modulation of the output power of tile semiconductor laser and leads to a faithful reproduction of the terahertz-field waveform in the emitted laser intensity.

  2. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    SciTech Connect

    Liang, Taiee

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  3. Four-Week Course of Radiation for Breast Cancer Using Hypofractionated Intensity Modulated Radiation Therapy With an Incorporated Boost

    SciTech Connect

    Freedman, Gary M. . E-mail: Gary.Freedman@FCCC.edu; Anderson, Penny R.; Goldstein, Lori J.; Ma Changming; Li Jinsheng; Swaby, Ramona F.; Litwin, Samuel; Watkins-Bruner, Deborah; Sigurdson, Elin R.; Morrow, Monica

    2007-06-01

    Purpose: Standard radiation for early breast cancer requires daily treatment for 6 to 7 weeks. This is an inconvenience to many women, and for some a barrier for breast conservation. We present the acute toxicity of a 4-week course of hypofractionated radiation. Methods and Materials: A total of 75 patients completed radiation on a Phase II trial approved by the hospital institutional review board. Eligibility criteria were broad to include any patient normally eligible for standard radiation: age {>=}18 years, invasive or in situ cancer, American Joint Committee on Cancer Stage 0 to II, breast-conserving surgery, and any systemic therapy not given concurrently. The median age was 52 years (range, 31-81 years). Of the patients, 15% had ductal carcinoma in situ, 67% T1, and 19% T2; 71% were N0, 17% N1, and 12% NX. Chemotherapy was given before radiation in 44%. Using photon intensity-modulated radiation therapy and incorporated electron beam boost, the whole breast received 45 Gy and the lumpectomy bed 56 Gy in 20 treatments over 4 weeks. Results: The maximum acute skin toxicity by the end of treatment was Grade 0 in 9 patients (12%), Grade 1 in 49 (65%) and Grade 2 in 17 (23%). There was no Grade 3 or higher skin toxicity. After radiation, all Grade 2 toxicity had resolved by 6 weeks. Hematologic toxicity was Grade 0 in most patients except for Grade 1 neutropenia in 2 patients, and Grade 1 anemia in 11 patients. There were no significant differences in baseline vs. 6-week posttreatment patient-reported or physician-reported cosmetic scores. Conclusions: This 4-week course of postoperative radiation using intensity-modulated radiation therapy is feasible and is associated with acceptable acute skin toxicity and quality of life. Long-term follow-up data are needed. This radiation schedule may represent an alternative both to longer 6-week to 7-week standard whole-breast radiation and more radically shortened 1-week, partial-breast treatment schedules.

  4. Detection of Coherent Terahertz Radiation from a High-Temperature Superconductor Josephson Junction by a Semiconductor Quantum-Dot Detector

    NASA Astrophysics Data System (ADS)

    Shaikhaidarov, R.; Antonov, V. N.; Casey, A.; Kalaboukhov, A.; Kubatkin, S.; Harada, Y.; Onomitsu, K.; Tzalenchuk, A.; Sobolev, A.

    2016-02-01

    We examine the application of Josephson radiation emitters to spectral calibration of single-photon-resolving detectors. Josephson junctions are patterned in a YBCO film on a bicrystal sapphire substrate and are voltage controlled to generate radiation in the frequency range of 0.05-1 THz. The detector used in this work consists of a gate-defined quantum-dot photon-to-charge transducer coupled to a single-electron transistor. Both the emitter and the detector are equipped with a matching on-chip wide-band antenna. The combination of a tuneable emitter and detector allows us to determine the efficacy of the YBCO emitter and also to analyze the elementary processes involved in the detection.

  5. Graphene-based magnetless converter of terahertz wave polarization

    NASA Astrophysics Data System (ADS)

    Melnikova, Veronica S.; Polischuk, Olga V.; Popov, Vyacheslav V.

    2016-04-01

    The polarization conversion of terahertz radiation by the periodic array of graphene nanoribbons located at the surface of a high-refractive-index dielectric substrate (terahertz prism) is studied theoretically. Giant polarization conversion at the plasmon resonance frequencies takes place without applying external DC magnetic field. It is shown that the total polarization conversion can be reached at the total internal reflection of THz wave from the periodic array of graphene nanoribbons even at room temperature.

  6. Breast Intensity-Modulated Radiation Therapy Reduces Time Spent With Acute Dermatitis for Women of All Breast Sizes During Radiation

    SciTech Connect

    Freedman, Gary M. Li Tianyu; Nicolaou, Nicos; Chen Yan; Ma, Charlie C.-M.; Anderson, Penny R.

    2009-07-01

    Purpose: To study the time spent with radiation-induced dermatitis during a course of radiation therapy for breast cancer in women treated with conventional or intensity-modulated radiation therapy (IMRT). Methods and Materials: The study population consisted of 804 consecutive women with early-stage breast cancer treated with breast-conserving surgery and radiation from 2001 to 2006. All patients were treated with whole-breast radiation followed by a boost to the tumor bed. Whole-breast radiation consisted of conventional wedged photon tangents (n = 405) earlier in the study period and mostly of photon IMRT (n = 399) in later years. All patients had acute dermatitis graded each week of treatment. Results: The breakdown of the cases of maximum acute dermatitis by grade was as follows: 3%, Grade 0; 34%, Grade 1; 61%, Grade 2; and 2%, Grade 3. The breakdown of cases of maximum toxicity by technique was as follows: 48%, Grade 0/1, and 52%, Grade 2/3, for IMRT; and 25%, Grade 0/1, and 75%, Grade 2/3, for conventional radiation therapy (p < 0.0001). The IMRT patients spent 82% of weeks during treatment with Grade 0/1 dermatitis and 18% with Grade 2/3 dermatitis, compared with 29% and 71% of patients, respectively, treated with conventional radiation (p < 0.0001). Furthermore, the time spent with Grade 2/3 toxicity was decreased in IMRT patients with small (p = 0.0015), medium (p < 0.0001), and large (p < 0.0001) breasts. Conclusions: Breast IMRT is associated with a significant decrease both in the time spent during treatment with Grade 2/3 dermatitis and in the maximum severity of dermatitis compared with that associated with conventional radiation, regardless of breast size.

  7. Predictive factors for acute radiation pneumonitis in postoperative intensity modulated radiation therapy and volumetric modulated arc therapy of esophageal cancer

    PubMed Central

    Zhao, Yaqin; Chen, Lu; Zhang, Shu; Wu, Qiang; Jiang, Xiaoqin; Zhu, Hong; Wang, Jin; Li, Zhiping; Xu, Yong; Zhang, Ying Jie; Bai, Sen; Xu, Feng

    2015-01-01

    Background Radiation pneumonitis (RP) is a common side reaction in radiotherapy for esophageal cancer. There are few reports about RP in esophageal cancer patients receiving postoperative intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). This study aims to analyze clinical or dosimetric factors associated with RP, and provides data for radiotherapy planning. Methods We reviewed 68 postoperative esophageal cancer patients who were treated with radiotherapy at the West China Hospital from October 2010 to November 2012 to identify any correlation between the clinical or dosimetric parameters and acute radiation pneumonitis (ARP) or severe acute radiation pneumonitis (SARP) by t-test, chi-square test, and logistic regression analysis. Results Of the 68 patients, 33 patients (48.5%) developed ARP, 13 of which (19.1%) developed SARP. Of these 33 patients, 8 (11.8%), 12 (17.6%), 11 (16.2%), and 2 (2.9%) patients were grade 1, 2, 3, and 4 ARP, respectively. Univariate analysis showed that lung infection during radiotherapy, use of VMAT, mean lung dose (MLD), and dosimetric parameters (e.g. V20, V30) are significantly correlated with RP. Multivariate analysis found that lung infection during radiotherapy, MLD ≥ 12 Gy, and V30 ≥ 13% are significantly correlated with an increased risk of RP. Conclusion Lung infection during radiotherapy and low radiation dose volume distribution were predictive factors associated with RP and should be accounted for during radiation planning. PMID:26273335

  8. Flexible waveguide enabled single-channel terahertz endoscopic system

    NASA Astrophysics Data System (ADS)

    Doradla, Pallavi; Alavi, Karim; Joseph, Cecil S.; Giles, Robert H.

    2015-03-01

    Colorectal cancer is the third most commonly diagnosed cancer in the world. The current standard of care for colorectal cancer is the conventional colonoscopy, which relies exclusively on the Physician's experience. Continuous wave terahertz (THz) imaging has the potential to offer a safe, noninvasive medical imaging modality for detecting cancers. The current study demonstrates the design and development of a prototype terahertz endoscopic system based on flexible metal-coated terahertz waveguides. A CO2 pumped Far-Infrared molecular gas laser operating at 584 GHz frequency was used for illuminating the tissue, while the reflected signals were detected using liquid Helium cooled silicon bolometer. The continuous-wave terahertz imaging system utilizes a single waveguide channel to transmit the radiation and collect the back reflected intrinsic terahertz signal from the sample and is capable of operation in both transmission and reflection modalities. The two dimensional reflectance images obtained using a prototype terahertz endoscopic system showed intrinsic contrast between cancerous and normal regions of the colorectal tissue, thereby demonstrating the potential impact of terahertz imaging for in vivo cancer detection.

  9. Gas-Monitor Detector for Intense and Pulsed VUV/EUV Free-Electron Laser Radiation

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Bobashev, S. V.; Feldhaus, J.; Gerth, Ch.; Gottwald, A.; Hahn, U.; Kroth, U.; Richter, M.; Shmaenok, L. A.; Steeg, B.; Tiedtke, K.; Treusch, R.

    2004-05-01

    In the framework of current developments of new powerful VUV and EUV radiation sources, like VUV free-electron-lasers or EUV plasma sources for 13-nm lithography, we developed a gas-monitor detector in order to measure the photon flux of highly intense and extremely pulsed VUV and EUV radiation in absolute terms. The device is based on atomic photoionization of a rare gas at low particle density. Therefore, it is free of degradation and almost transparent, which allows the detector to be used as a continuously working beam-intensity monitor. The extended dynamic range of the detector allowed its calibration with relative standard uncertainties of 4% in the Radiometry Laboratory of the Physikalisch-Technische Bundesanstalt at the electron-storage ring BESSY II in Berlin using spectrally dispersed synchrotron radiation at low photon intensities and its utilization for absolute photon flux measurements of high power sources. In the present contribution, we describe the design of the detector and its application for the characterization of VUV free-electron-laser radiation at the TESLA test facility in Hamburg. By first pulse resolved measurements, a peak power of more than 100 MW at a wavelength of 87 nm was detected.

  10. Terahertz plasmonic Bessel beamformer

    SciTech Connect

    Monnai, Yasuaki; Shinoda, Hiroyuki; Jahn, David; Koch, Martin; Withayachumnankul, Withawat

    2015-01-12

    We experimentally demonstrate terahertz Bessel beamforming based on the concept of plasmonics. The proposed planar structure is made of concentric metallic grooves with a subwavelength spacing that couple to a point source to create tightly confined surface waves or spoof surface plasmon polaritons. Concentric scatterers periodically incorporated at a wavelength scale allow for launching the surface waves into free space to define a Bessel beam. The Bessel beam defined at 0.29 THz has been characterized through terahertz time-domain spectroscopy. This approach is capable of generating Bessel beams with planar structures as opposed to bulky axicon lenses and can be readily integrated with solid-state terahertz sources.

  11. Metamaterials for terahertz polarimetric devices

    SciTech Connect

    O'hara, John F; Taylor, Antoinette J; Smirnova, Evgenya; Azad, Abul

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at terahertz frequencies, it may find applications in other frequency ranges as well.

  12. Predictors of Radiation Pneumonitis in Patients Receiving Intensity-Modulated Radiation Therapy for Hodgkin and Non-Hodgkin Lymphoma

    PubMed Central

    Pinnix, Chelsea C.; Smith, Grace L.; Milgrom, Sarah; Osborne, Eleanor M.; Reddy, Jay P.; Akhtari, Mani; Reed, Valerie; Arzu, Isidora; Allen, Pamela K.; Wogan, Christine F.; Fanale, Michele A.; Oki, Yasuhiro; Turturro, Francesco; Romaguera, Jorge; Fayad, Luis; Fowler, Nathan; Westin, Jason; Nastoupil, Loretta; Hagemeister, Fredrick B.; Rodriguez, Alma; Ahmed, Sairah; Nieto, Yago; Dabaja, Bouthaina

    2015-01-01

    Purpose Few studies to date have evaluated factors associated with the development of radiation pneumonitis (RP) in patients with Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL), especially in patients treated with contemporary radiation techniques. These patients represent a unique group owing to the often large radiation target volumes within the mediastinum and to the potential to receive several lines of chemotherapy that add to pulmonary toxicity for relapsed or refractory disease. Our objective was to determine the incidence and clinical and dosimetric risk factors associated with RP in lymphoma patients treated with intensity modulated radiation therapy (IMRT) at a single institution. Methods We retrospectively reviewed clinical charts and radiation records of 150 consecutive patients who received mediastinal IMRT for HL and NHL from 2009 through 2013. Clinical and dosimetric predictors associated with RP per the Radiation Therapy Oncology Group (RTOG) acute toxicity criteria were identified in univariate analysis using the Pearson χ2 test and logistic multivariate regression. Results Mediastinal radiation was administered as consolidation therapy in 110 patients with newly diagnosed HL or NHL and in 40 patients with relapsed or refractory disease. The overall incidence of RP (RTOG grade 1–3) was 14% in the entire cohort. Risk of RP was increased for patients who received radiation for relapsed or refractory disease (25%) versus those who received consolidation (10%, P=0.019). Several dosimetric parameters predicted RP, including mean lung dose (MLD) >13.5 Gy, V20 >30%, V15 >35%, V10 >40% and V5>55%. The likelihood ratio (LR) χ2 value was highest for V5< 55% (LR χ2=19.37). Conclusions In using IMRT to treat mediastinal lymphoma, all dosimetric parameters predicted RP, although small doses to large volumes of lung had the greatest influence. Patients with relapsed or refractory lymphoma who received salvage chemotherapy and hematopoietic stem cell

  13. Broadly tunable terahertz source

    NASA Astrophysics Data System (ADS)

    Powers, Peter E.; Kramb, Kevan; Haus, Joseph W.

    2010-02-01

    We present the results of a terahertz (THz) source based on difference frequency generation (DFG) that tunes seamlessly from 1.4 to 13.3 THz. The outputs from two seeded periodically poled lithium niobate (PPLN) optical parametric generators (OPGs) are mixed in a DAST crystal to generate the THz frequencies. The OPG's have ~1 nsec pulse duration and an output energy of approximately 200 μJ. The corresponding high peak intensities in the DAST crystal leads to appreciable conversion efficiency such that a room temperature pyro-electric detector is used to measure the THz signal. In one of the OPGs a continuously varying periodicity PPLN crystal is used to tune the output wavelength by translating the crystal. The crystal position and seed laser are computer-controlled and synchronized such that any wavelength within the seed laser's tuning range is randomly accessible, and hence any THz difference frequency between the two seed lasers is also randomly accessible. Phase matching in DAST requires the DFG inputs to have the same polarization. We demonstrate a scheme where the output of one of the OPGs is sent through the second OPG such that the two beams are collinear with the same polarization without using a beam splitter.

  14. Terahertz Schottky Multiplier Sources

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich T.

    2007-01-01

    This viewgraph presentation reviews the multiplier source technologies and the status/Performance of THz multiplier sources. An example of a THz application is imaging radar. The presentation reviews areas of requirements for THz sources: (1) Figures of merit, (i.e., Frequency Terahertz for high resolution Bandwidth of at least 15 GHz for high range resolution Efficiency (i.e., minimize power supply requirements) (2) Output power: (i.e., Milliwatts below 800 GHz, 10s of microwatts above 1 THz, 1-2 microwatts near 2 THz (3) Mechanical--stability, compact, low mass (4) Environmental -- radiation, vibration, thermal. Several sources for 0.3 - 2 THz are reviewed: FIR lasers, quantum cascade lasers (QCL), backward-wave oscillator (BWO), and Multiplier sources. The current state of the art (SoA) is shown as Substrateless Technology. It also shows where the SoA is for devices beyond 1 THz. The presentation concludes by reviewing the options for future development, and 2 technology roadmaps

  15. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation.

    PubMed

    Yakymenko, Igor; Tsybulin, Olexandr; Sidorik, Evgeniy; Henshel, Diane; Kyrylenko, Olga; Kyrylenko, Sergiy

    2016-01-01

    This review aims to cover experimental data on oxidative effects of low-intensity radiofrequency radiation (RFR) in living cells. Analysis of the currently available peer-reviewed scientific literature reveals molecular effects induced by low-intensity RFR in living cells; this includes significant activation of key pathways generating reactive oxygen species (ROS), activation of peroxidation, oxidative damage of DNA and changes in the activity of antioxidant enzymes. It indicates that among 100 currently available peer-reviewed studies dealing with oxidative effects of low-intensity RFR, in general, 93 confirmed that RFR induces oxidative effects in biological systems. A wide pathogenic potential of the induced ROS and their involvement in cell signaling pathways explains a range of biological/health effects of low-intensity RFR, which include both cancer and non-cancer pathologies. In conclusion, our analysis demonstrates that low-intensity RFR is an expressive oxidative agent for living cells with a high pathogenic potential and that the oxidative stress induced by RFR exposure should be recognized as one of the primary mechanisms of the biological activity of this kind of radiation. PMID:26151230

  16. Diffuse gamma radiation. [intensity, energy spectrum and spatial distribution from SAS 2 observations

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.

    1978-01-01

    Results are reported for an investigation of the intensity, energy spectrum, and spatial distribution of the diffuse gamma radiation detected by SAS 2 away from the galactic plane in the energy range above 35 MeV. The gamma-ray data are compared with relevant data obtained at other wavelengths, including 21-cm emission, radio continuum radiation, and the limited UV and radio information on local molecular hydrogen. It is found that there are two quite distinct components to the diffuse radiation, one of which shows a good correlation with the galactic matter distribution and continuum radiation, while the other has a much steeper energy spectrum and appears to be isotropic at least on a coarse scale. The galactic component is interpreted in terms of its implications for both local and more distant regions of the Galaxy. The apparently isotropic radiation is discussed partly with regard to the constraints placed on possible models by the steep energy spectrum, the observed intensity, and an upper limit on the anisotropy.

  17. Tunable Radiation Source by Coupling Laser-Plasma-Generated Electrons to a Periodic Structure

    SciTech Connect

    Jin, Z.; Chen, Z. L.; Kon, A.; Nakatsutsumi, M.; Zhuo, H. B.; Wang, H. B.; Zhang, B. H.; Gu, Y. Q.; Wu, Y. C.; Zhu, B.; Wang, L.; Yu, M. Y.; Sheng, Z. M.; Kodama, R.

    2011-12-23

    Near-infrared radiation around 1000 nm generated from the interaction of a high-density MeV electron beam, obtained by impinging an intense ultrashort laser pulse on a solid target, with a metal grating is observed experimentally. Theoretical modeling and particle-in-cell simulation suggest that the radiation is caused by the Smith-Purcell mechanism. The results here indicate that tunable terahertz radiation with tens GV/m field strength can be achieved by using appropriate grating parameters.

  18. Ablation and transmission of thin solid targets irradiated by intense extreme ultraviolet laser radiation

    NASA Astrophysics Data System (ADS)

    Aslanyan, V.; Kuznetsov, I.; Bravo, H.; Woolston, M. R.; Rossall, A. K.; Menoni, C. S.; Rocca, J. J.; Tallents, G. J.

    2016-09-01

    The interaction of an extreme ultraviolet (EUV) laser beam with a parylene foil was studied by experiments and simulation. A single EUV laser pulse of nanosecond duration focused to an intensity of 3 × 1010 W cm-2 perforated micrometer thick targets. The same laser pulse was simultaneously used to diagnose the interaction by a transmission measurement. A combination of 2-dimensional radiation-hydrodynamic and diffraction calculations was used to model the ablation, leading to good agreement with experiment. This theoretical approach allows predictive modelling of the interaction with matter of intense EUV beams over a broad range of parameters.

  19. Radiation exposure among medical professionals working in the Intensive Care Unit

    PubMed Central

    Siddiqui, Suhail S.; Jha, Ashish; Konar, Nambiraj; Ranganathan, Priya; Deshpande, Deepak D.; Divatia, Jigeeshu V.

    2014-01-01

    Background and Aims: With the expanding use of diagnostic and therapeutic radiological modalities in critically ill patients, doctors working in Intensive Care Units (ICUs) are increasingly exposed to ionizing radiation. This risk of radiation exposure occurs not only during bedside radiologic procedures, but also when ICU physicians accompany patients to radiology suites. The aim of this study was to quantify levels of radiation exposure among medical professionals working in the ICU. Materials and Methods: The study was carried out prospectively over 6 months in the ICU of a tertiary-referral cancer hospital. Two teams consisting of 4 ICU resident doctors each were instructed to wear thermoluminescent dosimeters (TLDs) during their duty shifts. Standard radiation protection precautions were used throughout the study period. TLDs were also placed in selected areas of the ICU to measure the amount of scattered radiation. TLDs were analyzed at the end of every 3 months. Results: The readings recorded on TLDs placed in the ICU were almost immeasurable. The mean value of residents' radiation exposure was 0.059 mSv, though the highest individual reading approached 0.1 mSv. The projected maximum yearly radiation exposure was 0.4 mSv. Conclusions: If standard radiation safety precautions are followed, the cumulative radiation exposure to ICU resident doctors is well within permissible limits and is not a cause of concern. However, with the increasing use of radiological procedures in the management of critically ill patients, there is a need to repeat such audits periodically to monitor radiation exposure. PMID:25249743

  20. Terahertz quantum transport in semiconductor nanostructures with the UCSB free electron lasers

    SciTech Connect

    Allen, S.J.

    1995-12-31

    Quantum transport in semiconductor nanostructures takes on new dimensions in the presence of intense terahertz electric fields. Terahertz frequencies lift us into the regime where the scattering and relaxation is not so important and strong terahertz electric fields provided by the UCSB FEL`s explore non-linear dynamics far from the perturbative limit. New quantum transport channels that are assisted by the absorption or emission of a photon appear in current voltage characteristics. We will describe some of these experiments, the new phenomena they expose and the potential impact on future terahertz semiconductor electronics.

  1. Theory of molecular rate processes in the presence of intense laser radiation

    NASA Technical Reports Server (NTRS)

    George, T. F.; Zimmerman, I. H.; Devries, P. L.; Yuan, J.-M.; Lam, K.-S.; Bellum, J. C.; Lee, H.-W.; Slutsky, M. S.; Lin, J.-T.

    1979-01-01

    The present paper deals with the influence of intense laser radiation on gas-phase molecular rate processes. Representations of the radiation field, the particle system, and the interaction involving these two entities are discussed from a general rather than abstract point of view. The theoretical methods applied are outlined, and the formalism employed is illustrated by application to a variety of specific processes. Quantum mechanical and semiclassical treatments of representative atom-atom and atom-diatom collision processes in the presence of a field are examined, and examples of bound-continuum processes and heterogeneous catalysis are discussed within the framework of both quantum-mechanical and semiclassical theories.

  2. Development of a proposed international standard for certification of aircraft to High Intensity Radiated Fields (HIRF)

    NASA Technical Reports Server (NTRS)

    Sargent, Noel B.

    1993-01-01

    Avionic systems performing critical functions in modern aircraft are potentially susceptible to the hazards of electromagnetic radiation from ground and airborne transmitters. The Federal Aviation Administration (FAA) requested that the Society of Automotive Engineers (SAE) coordinate the development of procedures and guidance material which can be used during the aircraft certification process to ensure adequate protection against high intensity radiated fields (HIRF). This paper addresses both the technical challenge of drafting a certification procedure and guidance standard as well as the management process used by the SAE subcommittee AE4R to converge a diverse range of opinions by its international membership in the shortest possible time.

  3. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    SciTech Connect

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-12-15

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  4. Effect on influenza hemagglutinin protein binding with neutralizing antibody using terahertz spectroscopy technology

    NASA Astrophysics Data System (ADS)

    Sun, Yiwen; Zhong, Junlan; Zuo, Jian; Zhang, Cunlin

    2014-11-01

    Terahertz spectroscopy is sensitive to probe several aspects of biological systems. We have reported the terahertz dielectric spectrum is able to identify the type of the charges in the hydrogen-bonded antibodies' networks in our previous work. Recently we demonstrate a highly sensitive THz-TDS method to monitor binding interaction of influenza hemagglutinin (HA) against its target antibody F10. The terahertz dielectric properties of HA was strongly affected by the presence of a specific antibody. Protein solution concentration or even molecular binding interaction can also affect the terahertz signal. This enables us to detect the specificity and sensitivity of antibody-antigen binding under THz radiation.

  5. Terahertz generation from electron- and neutron-irradiated semiconductor crystal surfaces

    NASA Astrophysics Data System (ADS)

    Bereznaya, S. A.; Korotchenko, Z. V.; Redkin, R. A.; Sarkisov, S. Yu.; Brudnyi, V. N.; Kosobutsky, A. V.; Atuchin, V. V.

    2016-07-01

    Terahertz generation from the InP, InSb, GaAs and GaSe crystal surfaces excitated by femtosecond laser pulses has been studied. The terahertz spectra emitted from the native crystals and the crystals previously irradiated by high-energy neutrons or electrons have been recorded. Also, a simulation of the terahertz emission process has been performed. A weak terahertz signal generated from the GaSe native surface has been registered. In the case of electron-irradiated GaSe, the signal is increased several fold because of increased laser radiation absorption.

  6. It's time for terahertz

    NASA Astrophysics Data System (ADS)

    Cooper, Keith

    2016-06-01

    The quest is on to make terahertz sources that are small, portable and capable of operating at room temperature. Such a breakthrough could lead to advances in everything from cancer screening to astronomy, reports Keith Cooper.

  7. Active terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong

    2009-01-01

    We demonstrate planar terahertz metamaterial devices enabling actively controllable transmission amplitude, phase, or frequency at room temperature via carrier depletion or photoexcitation in the semiconductor substrate or in semiconductor materials incorporated into the metamaterial structure.

  8. Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots.

    PubMed

    Toma, Andrea; Tuccio, Salvatore; Prato, Mirko; De Donato, Francesco; Perucchi, Andrea; Di Pietro, Paola; Marras, Sergio; Liberale, Carlo; Proietti Zaccaria, Remo; De Angelis, Francesco; Manna, Liberato; Lupi, Stefano; Di Fabrizio, Enzo; Razzari, Luca

    2015-01-14

    Terahertz spectroscopy has vast potentialities in sensing a broad range of elementary excitations (e.g., collective vibrations of molecules, phonons, excitons, etc.). However, the large wavelength associated with terahertz radiation (about 300 μm at 1 THz) severely hinders its interaction with nano-objects, such as nanoparticles, nanorods, nanotubes, and large molecules of biological relevance, practically limiting terahertz studies to macroscopic ensembles of these compounds, in the form of thick pellets of crystallized molecules or highly concentrated solutions of nanomaterials. Here we show that chains of terahertz dipole nanoantennas spaced by nanogaps of 20 nm allow retrieving the spectroscopic signature of a monolayer of cadmium selenide quantum dots, a significant portion of the signal arising from the dots located within the antenna nanocavities. A Fano-like interference between the fundamental antenna mode and the phonon resonance of the quantum dots is observed, accompanied by an absorption enhancement factor greater than one million. NETS can find immediate applications in terahertz spectroscopic studies of nanocrystals and molecules at extremely low concentrations. Furthermore, it shows a practicable route toward the characterization of individual nano-objects at these frequencies. PMID:25422163

  9. Higher order terms of radiative damping in extreme intense laser-matter interaction

    SciTech Connect

    Pandit, Rishi R.; Sentoku, Yasuhiko

    2012-07-15

    The higher order terms of the Lorentz-Abraham-Dirac equation have been derived, and their effects are studied via a relativistic collisional particle-in-cell simulation. The dominant group of terms up to the fourth order of the Lorentz-Abraham-Dirac equation is identified for ultra-intense laser-matter interactions. The second order terms are found to be the damping terms of the Lorentz force while the first order terms represent friction in the equation of motion. Because the second order terms restrict electron acceleration during the laser interaction, electrons/ions are prevented from over-accelerating. Radiative damping becomes highly significant when I{>=} 10{sup 22} W/cm{sup 2} while Bremsstrahlung will be saturated, thus radiative damping will be a dominant source of hard x-rays in regimes at extreme intensities.

  10. Calculation of synchrotron radiation from high intensity electron beam at eRHIC

    SciTech Connect

    Jing Y.; Chubar, O.; Litvinenko, V.

    2012-05-20

    The Electron-Relativistic Heavy Ion Collider (eRHIC) at Brookhaven National Lab is an upgrade project for the existing RHIC. A 30 GeV energy recovery linac (ERL) will provide a high charge and high quality electron beam to collide with proton and ion beams. This will improve the luminosity by at least 2 orders of magnitude. The synchrotron radiation (SR) from the bending magnets and strong quadrupoles for such an intense beam could be penetrating the vacuum chamber and producing hazards to electronic devices and undesired background for detectors. In this paper, we calculate the SR spectral intensity, power density distributions and heat load on the chamber wall. We suggest the wall thickness required to stop the SR and estimate spectral characteristics of the residual and scattered background radiation outside the chamber.

  11. Observation of Relativistic Electron Microbursts in Conjunction with Intense Radiation Belt Whistler-Mode Waves

    NASA Technical Reports Server (NTRS)

    Kersten, K.; Cattell, C. A.; Breneman, A.; Goetz, K.; Kellogg, P. J.; Wygant, J. R.; Wilson, L. B., III; Blake, J. B.; Looper, M. D.; Roth, I.

    2011-01-01

    We present multi-satellite observations of large amplitude radiation belt whistler-mode waves and relativistic electron precipitation. On separate occasions during the Wind petal orbits and STEREO phasing orbits, Wind and STEREO recorded intense whistler-mode waves in the outer nightside equatorial radiation belt with peak-to-peak amplitudes exceeding 300 mV/m. During these intervals of intense wave activity, SAMPEX recorded relativistic electron microbursts in near magnetic conjunction with Wind and STEREO. This evidence of microburst precipitation occurring at the same time and at nearly the same magnetic local time and L-shell with a bursty temporal structure similar to that of the observed large amplitude wave packets suggests a causal connection between the two phenomena. Simulation studies corroborate this idea, showing that nonlinear wave.particle interactions may result in rapid energization and scattering on timescales comparable to those of the impulsive relativistic electron precipitation.

  12. A new, low temperature long-pass cell for mid-infrared to terahertz spectroscopy and synchrotron radiation use

    NASA Astrophysics Data System (ADS)

    Kwabia Tchana, Fridolin; Willaert, Fabrice; Landsheere, Xavier; Flaud, Jean-Marie; Lago, Leatitia; Chapuis, Mylène; Herbeaux, Christian; Roy, Pascale; Manceron, Laurent

    2013-09-01

    A new cell has been designed for accurate spectroscopic measurements in the 80-400 K temperature range with variable path lengths from 3 to more than 141 m. The spectral coverage at these temperatures ranges from the visible to less than 10 cm-1, thanks to the use of diamond windows. The design of the cryostat and vacuum setups allows vibration-free operation. The equipment provides temperature homogeneity and pressure control to better than 2% over the 100-400 K and the 0.1-1000 mbar ranges. Remote-controlled opto-mechanical systems enable in situ adjustments as well as changes of the optical path length within half an hour, in order to optimize measurement time in an open user facility. It allows then to meet the specific requirements of high resolution measurements on the Far-Infrared AILES beamline at SOLEIL as well at the LISA facility, in Créteil, in the mid-IR. This new instrument opens up the way for many experiments in the field of high-resolution gas-phase IR spectroscopy, in particular, in quantitative spectroscopy for atmospheric applications: measurements of absorption line parameters (absolute intensities, cross sections, and pressure-induced widths) using Fourier transform spectroscopy. The design and performance of the equipment are briefly presented and illustrated on spectroscopic examples.

  13. Two-dimensional tomographic terahertz imaging by homodyne self-mixing.

    PubMed

    Mohr, Till; Breuer, Stefan; Giuliani, G; Elsäßer, Wolfgang

    2015-10-19

    We realize a compact two-dimensional tomographic terahertz imaging experiment involving only one photoconductive antenna (PCA) simultaneously serving as a transmitter and receiver of the terahertz radiation. A hollow-core Teflon cylinder filled with α-Lactose monohydrate powder is studied at two terahertz frequencies, far away and at a specific absorption line of the powder. This sample is placed between the antenna and a chopper wheel, which serves as back reflector of the terahertz radiation into the PCA. Amplitude and phase information of the continuous-wave (CW) terahertz radiation are extracted from the measured homodyne self-mixing (HSM) signal after interaction with the cylinder. The influence of refraction is studied by modeling the set-up utilizing ZEMAX and is discussed by means of the measured 1D projections. The tomographic reconstruction by using the Simultaneous Algebraic Reconstruction Technique (SART) allows to identify both object geometry and α-Lactose filling. PMID:26480382

  14. Hole-boring radiation pressure proton acceleration at high intensity in near-critical density targets

    NASA Astrophysics Data System (ADS)

    Yu, Jinqing; Dover, N. P.; Jin, Xiaolin; Li, Bin; Dangor, A. E.; Najmudin, Z.

    2014-10-01

    We will present high quality proton beams accelerated from hole-boring radiation pressure proton acceleration (HB-RPA) using three-dimension Particle-in-Cell simulation results. Scaling works on proton cut off energy with laser parameters such as laser intensity and laser pulse duration have been studied in detail by two-dimension Particle-in-Cell simulations. Optimal conditions for generating proton beam of narrow energy spread will be discussed.

  15. Photoelectric properties of GaAs p-n-junction under illumination of intense laser radiation

    NASA Astrophysics Data System (ADS)

    Ašmontas, S.; Gradauskas, J.; Sužiedėlis, A.; Šilėnas, A.; Vaičikauskas, V.; Žalys, O.; Steikūnas, G.; Steikūnienė, A.

    2014-10-01

    Results of experimental investigation of photoelectric properties of GaAs p-n-junction illuminated by short laser pulses of 1.06 μm wavelength are presented. The influence of laser radiation intensity and external bias voltage on the formation of photoresponse voltage has been studied. Free carrier heating was recognized to influence significantly the magnitude of the measured photovoltage. Possibility to improve the conversion efficiency of solar cells is discussed.

  16. The response of heat-shield materials to intense laser radiation

    NASA Technical Reports Server (NTRS)

    Lundell, J. H.; Dickey, R. R.

    1978-01-01

    Experimental results for the response of ATJ graphite, Carbitex 100, and carbon phenolic to intense continuous-wave laser radiation are presented. Both penetration and mass-loss test techniques are used and compared. The results are also compared with a simple ablation theory applicable to laser irradiation. Reasons for the disparity between experiment and theory, and applicability of the results to other heating situations, such as planetary entry, are discussed.

  17. Off-Axis Phase-Matched Terahertz Emission from Two-Color Laser-Induced Plasma Filaments

    NASA Astrophysics Data System (ADS)

    You, Y. S.; Oh, T. I.; Kim, K. Y.

    2012-11-01

    We observe off-axis phase-matched terahertz generation in long air-plasma filaments produced by femtosecond two-color laser focusing. Here, phase matching naturally occurs due to off-axis constructive interference between locally generated terahertz waves, and this determines the far-field terahertz radiation profiles and yields. For a filament longer than the characteristic two-color dephasing length, it emits conical terahertz radiation in the off-axis direction, peaked at 4-7° depending on the radiation frequencies. The total terahertz yield continuously increases with the filament length, well beyond the dephasing length. The phase-matching condition observed here provides a simple method for scalable terahertz generation in elongated plasmas.

  18. Terahertz spectroscopy for the assessment of burn injuries in vivo.

    PubMed

    Arbab, M Hassan; Winebrenner, Dale P; Dickey, Trevor C; Chen, Antao; Klein, Matthew B; Mourad, Pierre D

    2013-07-01

    A diagnosis criterion is proposed for noninvasive grading of burn injuries using terahertz radiation. Experimental results are presented from in vivo terahertz time-domain spectroscopy of second- and third-degree wounds, which are obtained in a 72-hour animal study. During this period, the change in the spectroscopic response of the burned tissue is studied. It is shown that terahertz waves are sensitive not only to the postburn formation of interstitial edema, but also to the density of skin structures derived from image processing analysis of histological sections. Based on these preliminary results, it is suggested that the combination of these two effects, as probed by terahertz spectroscopy of the tissue, may ultimately be used to differentiate partial-thickness burns that will naturally heal from those that will require surgical intervention. PMID:23860943

  19. Radiation dosimetry using decreasing TL intensity in a few variety of silicate crystals.

    PubMed

    Watanabe, Shigueo; Cano, Nilo F; Gundu Rao, T K; Oliveira, Letícia M; Carmo, Lucas S; Chubaci, Jose F D

    2015-11-01

    This study shows that there are some ionic crystals which after irradiation with high gamma dose Dm and subsequent irradiation with low doses ranging up to 500Gy present a decreasing TL intensity as dose increases. This interesting feature can be used as a calibration curve in radiation dosimetry. Such behavior can be found in green quartz, three varieties of beryl and pink tourmaline. In all these silicate crystals it can be shown that irradiation with increasing γ-dose there is a dose Dm for which the TL intensity is maximum. Of course, Dm varies depending on the crystal and irradiated crystal with the dose Dm is stable. If one of these crystals is taken and irradiated with doses from low values up to 400-500Gy, a curve of decreasing TL intensity is obtained; such a curve can be used as a calibration curve. PMID:26277189

  20. Useful intensity: A technique to identify radiating regions on arbitrarily shaped surfaces

    NASA Astrophysics Data System (ADS)

    Corrêa Junior, C. A.; Tenenbaum, R. A.

    2013-03-01

    This work presents a new technique for the computation of the numerical equivalent to the supersonic acoustic intensity, for arbitrarily shaped sound sources. The technique provides therefore the identification of the regions of a noise source that effectively contribute to the sound power radiated into the far field by filtering non-propagating sound waves. The proposed technique is entirely formulated on the vibrating surface. The radiated acoustic power is obtained through a numerical operator that relates it with the superficial normal velocity distribution. The power operator is obtained by using the boundary element method. Such operator, possesses the property of being Hermitian. The advantage of this characteristic is that it has real eigenvalues and their eigenvectors form an orthonormal set for the velocity distribution. It is applied to the power operator the decomposition in eigenvalues and eigenvectors, becoming possible to compute the numerical equivalent to the supersonic intensity, called here as useful intensity, after applying a cutoff criterion to remove the non-propagating components. Some numerical tests confirming the effectiveness of the convergence criterion are presented. Examples of the application of the useful intensity technique in vibrating surfaces such as a plate, a cylinder with flat caps and an automotive muffler are presented and the numerical results are discussed.

  1. Terahertz Light Source and User Area at FACET

    SciTech Connect

    Wu, Z.; Li, S.Z.; Litos, M.; Fisher, A.D.; Hogan, M.J.; /SLAC

    2011-11-08

    FACET at SLAC provides high charge, high peak current, low emittance electron beam that is bunched at THz wavelength scale during its normal operation. A THz light source based coherent transition radiation (CTR) from this beam would potentially be the brightest short-pulse THz source ever constructed. Efforts have been put into building this photon source together with a user area, to provide a platform to utilize this unique THz radiation for novel nonlinear and ultrafast phenomena researches and experiments. Being a long-time underutilized portion of the electromagnetic spectrum, terahertz (100 GHz {approx} 10 THz) spectral range is experiencing a renaissance in recent years, with broad interests from chemical and biological imaging, material science, telecommunication, semiconductor and superconductor research, etc. Nevertheless, the paucity of THz sources especially strong THz radiation hinders both its commercial applications and nonlinear processes research. FACET - Facilities for Accelerator science and Experimental Test beams at SLAC - provides 23 GeV electron beam with peak currents of {approx} 20 kA that can be focused down to 100 {mu}m{sup 2} transversely. Such an intense electron beam, when compressed to sub-picosecond longitudinal bunch length, coherently radiates high intensity EM fields well within THz frequency range that are orders of magnitude stronger than those available from laboratory tabletop THz sources, which will enable a wide variety of THz related research opportunities. Together with a description of the FACET beamline and electron beam parameters, this paper will report FACET THz radiation generation via coherent transition radiation and calculated photon yield and power spectrum. A user table is being set up along the THz radiation extraction sites, and equipped with various signal diagnostics including THz power detector, Michelson interferometer, sample stages, and sets of motorized optical components. This setup will also be

  2. RadICalc. A program for estimating radiation intensity of radionuclide mixtures

    SciTech Connect

    Robinson, John W.; Dion, Michael P.; Eiden, Gregory C.; Farmer, Orville T.; Liezers, Martin

    2014-09-24

    RadICalc is a cross-platform program designed to calculate the intensity of radiation released by the decay of arbitrary isotopic mixtures. It was developed to address the need for a program that could calculate the composition, activity, and measurable radiation of a sample over time without significant effort from end-users. RadICalc uses Bateman's solutions for radioactive decay to determine activity over time. Radiation intensities are subsequently calculated using a database containing information about alpha particles, beta electrons, gamma- rays, conversion and Auger electrons, and X-rays. The user interface accepts input for isotopic mixture, initial number of atoms, and time passed since sample composition was known. Results are plotted graphically, and there is a search interface provided to and isotopes of interest. RadICalc can determine activity and radiation expected at specific masses with user-defined molecules in addition to atomic species; the latter is useful in mass based isotope separations for radiometric counting applications, a novel method under development at PNNL.

  3. Nonlinear Terahertz Absorption of Graphene Plasmons.

    PubMed

    Jadidi, Mohammad M; König-Otto, Jacob C; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin

    2016-04-13

    Subwavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, subwavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a terahertz pump-terahertz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by 2 orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results. The model shows that the observed strong linearity is caused by an unexpected red shift of plasmon resonance together with a broadening and weakening of the resonance caused by the transient increase in electron temperature. The model further predicts that even greater resonant enhancement of the nonlinear response can be expected in high-mobility graphene, suggesting that nonlinear graphene plasmonic devices could be promising candidates for nonlinear optical processing. PMID:26978242

  4. Water-ion transmembrane transfer under the effect of low-intensity laser radiation

    NASA Astrophysics Data System (ADS)

    Anisimov, A. V.; Vorob'ev, V. N.; Silkin, N. I.

    1997-09-01

    Water-ion transmembrane transfer in maize roots under the effect of infrared laser radiation with power 2.4 mwatt was studied by NMR method. It is shown that laser radiation (LR) alters the dynamics of spin-spin relaxation and increases the rate of transmembrane water exchange and ion penetration which do not depend on the type of paramagnetic ions doped into the intercellular space. The radiation results in the increase of the effective self-diffusion coefficient of water, and it correlates with the data on the effect of LR on the velocity of cytoplasm movement. The data on the decrease of the resistance of Nernst layers in the summary membrane permeability due to 'blowing off' its outer parts by the intensive cytoplasm current are used to explain the obtained results.

  5. Radiative properties of ceramic metal-halide high intensity discharge lamps containing additives in argon plasma

    NASA Astrophysics Data System (ADS)

    Cressault, Yann; Teulet, Philippe; Zissis, Georges

    2016-07-01

    The lighting represents a consumption of about 19% of the world electricity production. We are thus searching new effective and environment-friendlier light sources. The ceramic metal-halide high intensity lamps (C-MHL) are one of the options for illuminating very high area. The new C-MHL lamps contain additives species that reduce mercury inside and lead to a richer spectrum in specific spectral intervals, a better colour temperature or colour rendering index. This work is particularly focused on the power radiated by these lamps, estimated using the net emission coefficient, and depending on several additives (calcium, sodium, tungsten, dysprosium, and thallium or strontium iodides). The results show the strong influence of the additives on the power radiated despite of their small quantity in the mixtures and the increase of visible radiation portion in presence of dysprosium.

  6. FDTD-based computed terahertz wave propagation in multilayer medium structures

    NASA Astrophysics Data System (ADS)

    Tu, Wan-li; Zhong, Shun-cong; Yao, Hai-zi; Shen, Yao-chun

    2013-08-01

    The terahertz region of the electromagnetic spectrum spans the frequency range of 0.1THz~10THz, which means it sandwiches between the mid-infrared (IR) and the millimeter/ microwave. With the development and commercialization of terahertz pulsed spectroscopy (TPS) and terahertz pulsed imaging (TPI) systems, terahertz technologies have been widely used in the sensing and imaging fields. It allows high quality cross-sectional images from within scattering media to be obtained nondestructively. Characterizing the interaction of terahertz radiation with multilayer medium structures is critical for the development of nondestructive testing technology. Currently, there was much experimental investigation of using TPI for the characterization of terahertz radiation in materials (e.g., pharmaceutical tablet coatings), but there were few theoretical researches on propagation of terahertz radiation in multilayer medium structures. Finite Difference Time Domain (FDTD) algorithm is a proven method for electromagnetic scattering theory, which analyzes continuous electromagnetic problems by employing finite difference and obtains electromagnetic field value at the sampling point to approach the actual continuous solutions. In the present work, we investigated the propagation of terahertz radiation in multilayer medium structures based on FDTD method. The model of multilayer medium structures under the THz frequency plane wave incidence was established, and the reflected radiation properties were recorded and analyzed. The terahertz radiation used was broad-band in the frequency up to 2 THz. A batch of single layer coated pharmaceutical tablets, whose coating thickness in the range of 40~100μm, was computed by FDTD method. We found that the simulation results on pharmaceutical tablet coatings were in good agreement with the experimental results obtained using a commercial system (TPI imaga 2000, TeraView, Cambridge, UK) , demonstrating its usefulness in simulating and analyzing

  7. Experimental determination of terahertz atmospheric absorption parameters

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Goyette, Thomas M.; Giles, Robert H.; Nixon, William E.

    2015-05-01

    The terahertz frequency regime is often used as the `chemical fingerprint' region of the electromagnetic spectrum since many molecules exhibit a dense selection of rotational and vibrational transitions. Water is a major component of the atmosphere and since it has a large dipole moment the propagation of terahertz radiation will be dominated by atmospheric effects. This study will present the results of high-­-resolution broadband measurements of the terahertz atmospheric absorption and detail the technique for directly measuring the pressure broadening coefficients, absolute absorption coefficients, line positions, and continuum effects. Differences between these measured parameters and those tabulated in HITRAN will be discussed. Once the water vapor absorption was characterized, the same technique was used to measure the line parameters for methanol, a trace gas of interest within Earth's atmosphere. Methanol has a dense absorption spectrum in the terahertz frequency region and is an important molecule in fields such as environmental monitoring, security, and astrophysics. The data obtained in the present study will be of immediate use for the remote sensing community, as it is uncommon to measure this many independent parameters as well as to measure the absolute absorption of the transitions. Current models rely on tabulated databases of calculated values for the line parameters measured in this study. Differences between the measured data and those in the databases will be highlighted and discussed.

  8. Terahertz NDE for Metallic Surface Roughness Evaluation

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.

    2006-01-01

    Metallic surface roughness in a nominally smooth surface is a potential indication of material degradation or damage. When the surface is coated or covered with an opaque dielectric material, such as paint or insulation, then inspecting for surface changes becomes almost impossible. Terahertz NDE is a method capable of penetrating the coating and inspecting the metallic surface. The terahertz frequency regime is between 100 GHz and 10 THz and has a free space wavelength of 300 micrometers at 1 THz. Pulsed terahertz radiation, can be generated and detected using optical excitation of biased semiconductors with femtosecond laser pulses. The resulting time domain signal is 320 picoseconds in duration. In this application, samples are inspected with a commercial terahertz NDE system that scans the sample and generates a set of time-domain signals that are a function of the backscatter from the metallic surface. Post processing is then performed in the time and frequency domains to generate C-scan type images that show scattering effects due to surface non-uniformity.

  9. Ultrafast energy transfer to liquid water by sub-picosecond high-intensity terahertz pulses: an ab initio molecular dynamics study.

    PubMed

    Mishra, Pankaj Kr; Vendrell, Oriol; Santra, Robin

    2013-12-16

    Sub-picosecond heating of bulk water is accomplished by ultrashort and intense THz pulses which are able to transfer a large amount of energy to the liquid. The energy transferred corresponds to a temperature jump of about 600 K. Liquid water becomes a structureless and hot gas-like system still at the density of the liquid, in which the hydrogen-bonding structure has been washed out. PMID:24155137

  10. Radiation Exposure to Premature Infants in a Neonatal Intensive Care Unit in Turkey

    PubMed Central

    Onal, Esra; Bor, Dogan; Okumus, Nurullah; Atalay, Yildiz; Turkyilmaz, Canan; Ergenekon, Ebru; Koc, Esin

    2008-01-01

    Objective The aim of this work was to determine the radiation dose received by infants from radiographic exposure and the contribution from scatter radiation due to radiographic exposure of other infants in the same room. Materials and Methods We retrospectively evaluated the entrance skin doses (ESDs) and effective doses of 23 infants with a gestational age as low as 28 weeks. ESDs were determined from tube output measurements (ESDTO) (n = 23) and from the use of thermoluminescent dosimetry (ESDTLD) (n = 16). Scattered radiation was evaluated using a 5 cm Perspex phantom. Effective doses were estimated from ESDTO by Monte Carlo computed software and radiation risks were estimated from the effective dose. ESDTO and ESDTLD were correlated using linear regression analysis. Results The mean ESDTO for the chest and abdomen were 67 µGy and 65 µGy per procedure, respectively. The mean ESDTLD per radiograph was 70 µGy. The measured scattered radiation range at a 2 m distance from the neonatal intensive care unit (NICU) was (11-17 µGy) per radiograph. Mean effective doses were 16 and 27 µSv per procedure for the chest and abdomen, respectively. ESDTLD was well correlated with ESDTO obtained from the total chest and abdomen radiographs for each infant (R2 = 0.86). The radiation risks for childhood cancer estimated from the effective dose were 0.4 × 10-6 to 2 × 10-6 and 0.6 × 10-6 to 2.9 × 10-6 for chest and abdomen radiographs, respectively. Conclusion The results of our study show that neonates received acceptable doses from common radiological examinations. Although the contribution of scatter radiation to the neonatal dose is low, considering the sensitivity of the neonates to radiation, further protective action was performed by increasing the distance of the infants from each other. PMID:18838850

  11. Single mode terahertz quantum cascade amplifier

    SciTech Connect

    Ren, Y. Wallis, R.; Shah, Y. D.; Jessop, D. S.; Degl'Innocenti, R.; Klimont, A.; Kamboj, V.; Beere, H. E.; Ritchie, D. A.

    2014-10-06

    A terahertz (THz) optical amplifier based on a 2.9 THz quantum cascade laser (QCL) structure has been demonstrated. By depositing an antireflective coating on the QCL facet, the laser mirror losses are enhanced to fully suppress the lasing action, creating a THz quantum cascade (QC) amplifier. Terahertz radiation amplification has been obtained, by coupling a separate multi-mode THz QCL of the same active region design to the QC amplifier. A bare cavity gain is achieved and shows excellent agreement with the lasing spectrum from the original QCL without the antireflective coating. Furthermore, a maximum optical gain of ∼30 dB with single-mode radiation output is demonstrated.

  12. Inter-sublevel dynamics in single InAs/GaAs quantum dots induced by strong terahertz excitation

    NASA Astrophysics Data System (ADS)

    Stephan, D.; Bhattacharyya, J.; Huo, Y. H.; Schmidt, O. G.; Rastelli, A.; Helm, M.; Schneider, H.

    2016-02-01

    We combine micro-photoluminescence (PL) with terahertz excitation to investigate the response of single self-assembled InAs/GaAs quantum dots to intense terahertz pulses tuned to the s-to-p transition. Spectra and transients of single photoluminescence lines reveal the dynamics of electrons upon excitation and subsequent relaxation back into the initial state. Under certain circumstances, the terahertz pulse can release trapped charge carriers, which relax into the quantum dot. Furthermore, we demonstrate near-total depletion of the positive trion PL by an intense terahertz pulse.

  13. Terahertz wave two-dimensional transmission imaging with a backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Yuan, Hongyang; Ge, Xinhao; Zhang, Cunlin

    2008-12-01

    We present a terahertz (THz) imaging system with a Backward Wave Oscillator (BWO). BWO Continuous-Wave THz imaging is a new approach to non-destructive testing. Many materials that are opaque to visible and infrared light are transparent to THz radiation. THz wave image provides a higher spatial resolution than microwave image by having much shorter wavelength. It also poses no known harm to living organisms, making it a safe and powerful imaging technology. Unlike pulsed THz imaging, BWO THz imaging only yields intensity data without providing any depth, frequency-domain or time-domain information about the subject. However, in most cases the energy plots are sufficient for identification of targets. In exchange for the loss of depth, time-domain and frequency-domain information, BWO imaging offers a simple, fast and relatively low-cost system. In this work we show a simple Terahertz (THz) 2-dimentional scanning imaging system utilizing a BWO source tunable from 0.52 to 0.71 THz and a pyroelectric sensor detector operated in THz range. The sample is placed on an X-Z two-dimensional stage controlled by a computer. The intensity information of the terahertz wave after passing sample is collected. Two-dimensional image of the sample is obtained by raster scanning the sample in X and Z directions. A number of potential imaging applications are demonstrated using the 0.71 THz radiation, including nondestructive real-time testing for campus debit card and various articles contained in an envelop. And we present the digital image processing based on the result of the imaging system. This work reveals that a BWO THz imaging system is very practical, effective and promising in nondestructive identification and security inspections applications in future.

  14. Clinical Outcomes of Intensity-Modulated Pelvic Radiation Therapy for Carcinoma of the Cervix

    SciTech Connect

    Hasselle, Michael D.; Rose, Brent S.; Kochanski, Joel D.; Nath, Sameer K.; Bafana, Rounak; Yashar, Catheryn M.; Hasan, Yasmin; Roeske, John C.; Mundt, Arno J.; Mell, Loren K.

    2011-08-01

    Purpose: To evaluate disease outcomes and toxicity in cervical cancer patients treated with pelvic intensity-modulated radiation therapy (IMRT). Methods and Materials: We included all patients with Stage I-IVA cervical carcinoma treated with IMRT at three different institutions from 2000-2007. Patients treated with extended field or conventional techniques were excluded. Intensity-modulated radiation therapy plans were designed to deliver 45 Gy in 1.8-Gy daily fractions to the planning target volume while minimizing dose to the bowel, bladder, and rectum. Toxicity was graded according to the Radiation Therapy Oncology Group system. Overall survival and disease-free survival were estimated by use of the Kaplan-Meier method. Pelvic failure, distant failure, and late toxicity were estimated by use of cumulative incidence functions. Results: The study included 111 patients. Of these, 22 were treated with postoperative IMRT, 8 with IMRT followed by intracavitary brachytherapy and adjuvant hysterectomy, and 81 with IMRT followed by planned intracavitary brachytherapy. Of the patients, 63 had Stage I-IIA disease and 48 had Stage IIB-IVA disease. The median follow-up time was 27 months. The 3-year overall survival rate and the disease-free survival rate were 78% (95% confidence interval [CI], 68-88%) and 69% (95% CI, 59-81%), respectively. The 3-year pelvic failure rate and the distant failure rate were 14% (95% CI, 6-22%) and 17% (95% CI, 8-25%), respectively. Estimates of acute and late Grade 3 toxicity or higher were 2% (95% CI, 0-7%) and 7% (95% CI, 2-13%), respectively. Conclusions: Intensity-modulated radiation therapy is associated with low toxicity and favorable outcomes, supporting its safety and efficacy for cervical cancer. Prospective clinical trials are needed to evaluate the comparative efficacy of IMRT vs. conventional techniques.

  15. Towards quality control of food using terahertz

    NASA Astrophysics Data System (ADS)

    Ung, B. S.-Y.; Fischer, B. M.; Ng, B. W.-H.; Abbott, D.

    2007-12-01

    Terahertz radiation or T-rays, show promise in quality control of food products. As T-rays are inherently sensitive to water, they are very suitable for moisture detection. This proves to be a valuable asset in detecting the moisture content of dried food, a critical area for some products. As T-rays are transparent to plastics, food additives can also be probed through the packaging, providing checks against a manufacturer's claims, such as the presence of certain substances in foods.

  16. Predictors of Radiation Pneumonitis in Patients Receiving Intensity Modulated Radiation Therapy for Hodgkin and Non-Hodgkin Lymphoma

    SciTech Connect

    Pinnix, Chelsea C.; Smith, Grace L.; Milgrom, Sarah; Osborne, Eleanor M.; Reddy, Jay P.; Akhtari, Mani; Reed, Valerie; Arzu, Isidora; Allen, Pamela K.; Wogan, Christine F.; Fanale, Michele A.; Oki, Yasuhiro; Turturro, Francesco; Romaguera, Jorge; Fayad, Luis; Fowler, Nathan; Westin, Jason; Nastoupil, Loretta; Hagemeister, Fredrick B.; Rodriguez, M. Alma [Department of Lymphoma and others

    2015-05-01

    Purpose: Few studies to date have evaluated factors associated with the development of radiation pneumonitis (RP) in patients with Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL), especially in patients treated with contemporary radiation techniques. These patients represent a unique group owing to the often large radiation target volumes within the mediastinum and to the potential to receive several lines of chemotherapy that add to pulmonary toxicity for relapsed or refractory disease. Our objective was to determine the incidence and clinical and dosimetric risk factors associated with RP in lymphoma patients treated with intensity modulated radiation therapy (IMRT) at a single institution. Methods and Materials: We retrospectively reviewed clinical charts and radiation records of 150 consecutive patients who received mediastinal IMRT for HL and NHL from 2009 through 2013. Clinical and dosimetric predictors associated with RP according to Radiation Therapy Oncology Group (RTOG) acute toxicity criteria were identified in univariate analysis using the Pearson χ{sup 2} test and logistic multivariate regression. Results: Mediastinal radiation was administered as consolidation therapy in 110 patients with newly diagnosed HL or NHL and in 40 patients with relapsed or refractory disease. The overall incidence of RP (RTOG grades 1-3) was 14% in the entire cohort. Risk of RP was increased for patients who received radiation for relapsed or refractory disease (25%) versus those who received consolidation therapy (10%, P=.019). Several dosimetric parameters predicted RP, including mean lung dose of >13.5 Gy, V{sub 20} of >30%, V{sub 15} of >35%, V{sub 10} of >40%, and V{sub 5} of >55%. The likelihood ratio χ{sup 2} value was highest for V{sub 5} >55% (χ{sup 2} = 19.37). Conclusions: In using IMRT to treat mediastinal lymphoma, all dosimetric parameters predicted RP, although small doses to large volumes of lung had the greatest influence. Patients with relapsed

  17. Resonance laser-plasma excitation of coherent terahertz phonons in the bulk of fluorine-bearing crystals under high-intensity femtosecond laser irradiation

    SciTech Connect

    Potemkin, F V; Mareev, E I; Khodakovskii, N G; Mikheev, P M

    2013-08-31

    The dynamics of coherent phonons in fluorine-containing crystals was investigated by pump-probe technique in the plasma production regime. Several phonon modes, whose frequencies are overtones of the 0.38-THz fundamental frequency, were simultaneously observed in a lithium fluoride crystal. Phonons with frequencies of 1 and 0.1 THz were discovered in a calcium fluoride crystal and coherent phonons with frequencies of 1 THz and 67 GHz were observed in a barium fluoride crystal. Furthermore, in the latter case the amplitudes of phonon mode oscillations were found to significantly increase 15 ps after laser irradiation. (interaction of laser radiation with matter)

  18. Terahertz radiation from heavy-ion-irradiated In{sub 0.53}Ga{sub 0.47}As photoconductive antenna excited at 1.55 {mu}m

    SciTech Connect

    Chimot, N.; Mangeney, J.; Joulaud, L.; Crozat, P.; Bernas, H.; Blary, K.; Lampin, J. F.

    2005-11-07

    We investigate terahertz (THz) emission from heavy-ion-irradiated In{sub 0.53}Ga{sub 0.47}As photoconductive antennas excited at 1550 nm. The carrier lifetime in the highly irradiated In{sub 0.53}Ga{sub 0.47}As layer is less than 200 fs, the steady-state mobility is 490 cm{sup 2} V{sup -1} s{sup -1}, and the dark resistivity is 3 {omega} cm. The spectrum of the electric field radiating from the Br{sup +}-irradiated In{sub 0.53}Ga{sub 0.47}As antenna extends beyond 2 THz. The THz electric field magnitude is shown to saturate at high optical pump fluence, and the saturation fluence level increases with the irradiation dose, indicating that defect center scattering has a significant contribution to the transient mobility.

  19. Imaging Changes in Pediatric Intracranial Ependymoma Patients Treated With Proton Beam Radiation Therapy Compared to Intensity Modulated Radiation Therapy

    SciTech Connect

    Gunther, Jillian R.; Sato, Mariko; Chintagumpala, Murali; Ketonen, Leena; Jones, Jeremy Y.; Allen, Pamela K.; Paulino, Arnold C.; Okcu, M. Fatih; Su, Jack M.; Weinberg, Jeffrey; Boehling, Nicholas S.; Khatua, Soumen; Adesina, Adekunle; Dauser, Robert; Whitehead, William E.; Mahajan, Anita

    2015-09-01

    Purpose: The clinical significance of magnetic resonance imaging (MRI) changes after radiation therapy (RT) in children with ependymoma is not well defined. We compared imaging changes following proton beam radiation therapy (PBRT) to those after photon-based intensity modulated RT (IMRT). Methods and Materials: Seventy-two patients with nonmetastatic intracranial ependymoma who received postoperative RT (37 PBRT, 35 IMRT) were analyzed retrospectively. MRI images were reviewed by 2 neuroradiologists. Results: Sixteen PBRT patients (43%) developed postradiation MRI changes at 3.8 months (median) with resolution by 6.1 months. Six IMRT patients (17%) developed changes at 5.3 months (median) with 8.3 months to resolution. Mean age at radiation was 4.4 and 6.9 years for PBRT and IMRT, respectively (P=.06). Age at diagnosis (>3 years) and time of radiation (≥3 years) was associated with fewer imaging changes on univariate analysis (odds ratio [OR]: 0.35, P=.048; OR: 0.36, P=.05). PBRT (compared to IMRT) was associated with more frequent imaging changes, both on univariate (OR: 3.68, P=.019) and multivariate (OR: 3.89, P=.024) analyses. Seven (3 IMRT, 4 PBRT) of 22 patients with changes had symptoms requiring intervention. Most patients were treated with steroids; some PBRT patients also received bevacizumab and hyperbaric oxygen therapy. None of the IMRT patients had lasting deficits, but 2 patients died from recurrent disease. Three PBRT patients had persistent neurological deficits, and 1 child died secondarily to complications from radiation necrosis. Conclusions: Postradiation MRI changes are more common with PBRT and in patients less than 3 years of age at diagnosis and treatment. It is difficult to predict causes for development of imaging changes that progress to clinical significance. These changes are usually self-limiting, but some require medical intervention, especially those involving the brainstem.

  20. Metamaterials for terahertz polarimetric devices

    SciTech Connect

    O'hara, John F; Taylor, Antoinette J; Smirnova, Evgenya; Azad, Abul; Chen, Hou-tong; Peralta, Xomalin G; Brener, Igal

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at tcrahertz frequencies, it may find applications in other frequency ranges as well.