Science.gov

Sample records for intensity modulated photon

  1. Intensity modulated neutron radiotherapy optimization by photon proxy

    SciTech Connect

    Snyder, Michael; Hammoud, Ahmad; Bossenberger, Todd; Spink, Robyn; Burmeister, Jay

    2012-08-15

    Purpose: Introducing intensity modulation into neutron radiotherapy (IMNRT) planning has the potential to mitigate some normal tissue complications seen in past neutron trials. While the hardware to deliver IMNRT plans has been in use for several years, until recently the IMNRT planning process has been cumbersome and of lower fidelity than conventional photon plans. Our in-house planning system used to calculate neutron therapy plans allows beam weight optimization of forward planned segments, but does not provide inverse optimization capabilities. Commercial treatment planning systems provide inverse optimization capabilities, but currently cannot model our neutron beam. Methods: We have developed a methodology and software suite to make use of the robust optimization in our commercial planning system while still using our in-house planning system to calculate final neutron dose distributions. Optimized multileaf collimator (MLC) leaf positions for segments designed in the commercial system using a 4 MV photon proxy beam are translated into static neutron ports that can be represented within our in-house treatment planning system. The true neutron dose distribution is calculated in the in-house system and then exported back through the MATLAB software into the commercial treatment planning system for evaluation. Results: The planning process produces optimized IMNRT plans that reduce dose to normal tissue structures as compared to 3D conformal plans using static MLC apertures. The process involves standard planning techniques using a commercially available treatment planning system, and is not significantly more complex than conventional IMRT planning. Using a photon proxy in a commercial optimization algorithm produces IMNRT plans that are more conformal than those previously designed at our center and take much less time to create. Conclusions: The planning process presented here allows for the optimization of IMNRT plans by a commercial treatment planning

  2. Dose conformation of intensity-modulated stereotactic photon beams, proton beams, and intensity-modulated proton beams for intracranial lesions

    SciTech Connect

    Baumert, Brigitta G. . E-mail: brigitta.baumert@maastro.nl; Norton, Ian A.; Lomax, Antony J.; Davis, J.B.

    2004-11-15

    Purpose: This study evaluates photon beam intensity-modulated stereotactic radiotherapy (IMSRT) based on dynamic leaf motion of a micromultileaf collimator (mMLC), proton beams, and intensity-modulated proton therapy (IMPT) with respect to target coverage and organs at risk. Methods and materials: Dose plans of 6 stereotactically treated patients were recalculated for IMSRT by use of the same field setup and an inverse planning algorithm. Proton and IMPT plans were calculated anew. Three different tumor shapes, multifocal, ovoid, and irregular, were analyzed, as well as dose to organs-at-risk (OAR) in the vicinity of the planning target volume (PTV). Dose distributions were calculated from beam-setup data for a manual mMLC for stereotactically guided conformal radiotherapy (SCRT), a dynamic mMLC for IMSRT, the spot-scanning technique for protons, and a modified spot-scanning technique for IMPT. SCRT was included for a part of the comparison. Criteria for assessment were PTV coverage, dose-volume histograms (DVH), volumes of specific isodoses, and the dose to OAR. Results: Dose conformation to the PTV is equally good for all three techniques and tumor shapes considered. The volumes of the 90% and 80% isodose were comparable for all techniques. For the 50% isodose volume, a divergence between the two modes was seen. In 3 cases, this volume is smaller for IMSRT, and in the 3 other cases, it is smaller for IMPT. This difference was even more pronounced for the volumes of the 30% isodose; IMPT shows further improvement over conventional protons. OAR in concavities (e.g., the brainstem) were similarly well spared by protons and IMSRT. IMPT spares critical organs best. Fewer proton beams are required to achieve similar results. Conclusions: The addition of intensity modulation improves the conformality of mMLC-based SCRT. Conformation of dose to the PTV is comparable for IMSRT, protons, and IMPT. Concerning the sparing of OAR, IMSRT is equivalent to IMPT, and IMPT is

  3. Linearization of an intensity-modulated analog photonic link using an FBG and a dispersive fiber

    NASA Astrophysics Data System (ADS)

    Gao, Yongsheng; Wen, Aijun; Chen, Yan; Zhang, Huixing; Xiang, Shuiying

    2015-03-01

    An optical linearization technique for an intensity-modulated analog photonic link is proposed and demonstrated. Conventional double-sideband intensity modulation is applied to modulate the radio frequency (RF) signal onto the optical carrier; then a fiber Bragg grating (FBG) is used to suppress part of the optical carrier and a single mode fiber (SMF) is followed to introduce some dispersion. By properly adjusting the dispersion-induced phase shift, the third-order intermodulation distortion can be suppressed. The proposed scheme is simple and low cost. The FBG can be also used to optimize the power ratio of the optical carrier and sidebands, thus improving the link gain, while the SMF can act as a transmission medium to deliver the RF signal. Experimental results show that an improvement of 12.6 dB in the spurious-free dynamic range and 3.8 dB in the link gain is achieved after linearization. The frequency tunability of the linearization technique is also evaluated by the transmission of RF signals with different center frequencies and bandwidths.

  4. Treatment of extensive scalp lesions with segmental intensity-modulated photon therapy

    SciTech Connect

    Bedford, James L. . E-mail: James.Bedford@icr.ac.uk; Childs, Peter J.; Hansen, Vibeke Nordmark; Warrington, Alan P.; Mendes, Ruheena L.; Glees, John P.

    2005-08-01

    Purpose: To compare static electron therapy, electron arc therapy, and photon intensity-modulated radiation therapy (IMRT) for treatment of extensive scalp lesions and to examine the dosimetric accuracy of the techniques. Methods and Materials: A retrospective treatment-planning study was performed to evaluate the relative merits of static electron fields, arcing electron fields, and five-field photon IMRT. Thermoluminescent dosimeters (TLD) were used to verify the accuracy of the techniques. The required thickness of bolus was investigated, and an anthropomorphic phantom was also used to examine the effects of air gaps between the wax bolus used for the IMRT technique and the patient's scalp. Results: Neither static nor arcing electron techniques were able to provide a reliable coverage of the planning target volume (PTV), owing to obliquity of the fields in relation to the scalp. The IMRT technique considerably improved PTV dose uniformity, though it irradiated a larger volume of brain. Either 0.5 cm or 1.0 cm of wax bolus was found to be suitable. Air gaps of up to 1 cm between the bolus and the patient's scalp were correctly handled by the treatment-planning system and had negligible influence on the dose to the scalp. Conclusions: Photon IMRT provides a feasible alternative to electron techniques for treatment of large scalp lesions, resulting in improved homogeneity of dose to the PTV but with a moderate increase in dose to the brain.

  5. Modulation of defect modes intensity by controlled light scattering in photonic crystal with liquid crystal domain structure

    NASA Astrophysics Data System (ADS)

    Gunyakov, V. A.; Krakhalev, M. N.; Zyryanov, V. Ya.; Shabanov, V. F.; Loiko, V. A.

    2016-07-01

    A method to modulate the defect modes intensity in a multilayer photonic crystal with a nematic liquid crystal layer arranged midmost has been proposed. The various electrohydrodynamic domain structures (Williams domains, oblique rolls and grid pattern) were formed in the nematic layer under the action of ac electric field. The domains cause a polarization-sensitive light scattering which leads to an anisotropic reduction of the defect modes intensity. Thus by varying the applied voltage, we can tune gradually the transmittance spectrum of photonic crystal. In addition, the spectrum strongly depends on the light polarization direction above threshold voltage.

  6. A Dosimetric Comparison of Proton and Intensity-Modulated Photon Radiotherapy for Pediatric Parameningeal Rhabdomyosarcomas

    SciTech Connect

    Kozak, Kevin R.; Adams, Judith; Krejcarek, Stephanie J.; Tarbell, Nancy J.; Yock, Torunn I.

    2009-05-01

    Purpose: We compared tumor and normal tissue dosimetry of proton radiation therapy with intensity-modulated radiation therapy (IMRT) for pediatric parameningeal rhabdomyosarcomas (PRMS). Methods and Materials: To quantify dosimetric differences between contemporary proton and photon treatment for pediatric PRMS, proton beam plans were compared with IMRT plans. Ten patients treated with proton radiation therapy at Massachusetts General Hospital had IMRT plans generated. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Proton and IMRT plans provided acceptable and comparable target volume coverage, with at least 99% of the CTV receiving 95% of the prescribed dose in all cases. Improved dose conformality provided by proton therapy resulted in significant sparing of all examined normal tissues except for ipsilateral cochlea and mastoid; ipsilateral parotid gland sparing was of borderline statistical significance (p = 0.05). More profound sparing of contralateral structures by protons resulted in greater dose asymmetry between ipsilateral and contralateral retina, optic nerves, cochlea, and mastoids; dose asymmetry between ipsilateral and contralateral parotids was of borderline statistical significance (p = 0.05). Conclusions: For pediatric PRMS, superior normal tissue sparing is achieved with proton radiation therapy compared with IMRT. Because of enhanced conformality, proton plans also demonstrate greater normal tissue dose distribution asymmetry. Longitudinal studies assessing the impact of proton radiotherapy and IMRT on normal tissue function and growth symmetry are necessary to define the clinical consequences of these differences.

  7. Risk of second malignant neoplasm following proton versus intensity-modulated photon radiotherapies for hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Taddei, Phillip J.; Howell, Rebecca M.; Krishnan, Sunil; Scarboro, Sarah B.; Mirkovic, Dragan; Newhauser, Wayne D.

    2010-12-01

    Hepatocellular carcinoma (HCC), the sixth most common cancer in the world, is a global health concern. Radiotherapy for HCC is uncommon, largely because of the likelihood of radiation-induced liver disease, an acute side effect that is often fatal. Proton beam therapy (PBT) and intensity-modulated radiation therapy (IMRT) may offer HCC patients a better option for treating the diseased liver tissue while largely sparing the surrounding tissues, especially the non-tumor liver. However, even advanced radiotherapies carry a risk of late effects, including second malignant neoplasms (SMNs). It is unclear whether PBT or IMRT confers less risk of an SMN than the other. The purpose of this study was to compare the predicted risk of developing an SMN for a patient with HCC between PBT and IMRT. For both treatments, radiation doses in organs and tissues from primary radiation were determined using a treatment planning system; doses in organs and tissues from stray radiation from PBT were determined using Monte Carlo simulations and from IMRT using thermo-luminescent dosimeter measurements. Risk models of SMN incidence were taken from the literature. The predicted absolute lifetime attributable risks of SMN incidence were 11.4% after PBT and 19.2% after IMRT. The results of this study suggest that using proton beams instead of photon beams for radiotherapy may reduce the risk of SMN incidence for some HCC patients.

  8. Limits on Achievable Dimensional and Photon Efficiencies with Intensity-Modulation and Photon-Counting Due to Non-Ideal Photon-Counter Behavior

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Erkmen, Baris I.; Farr, William; Dolinar, Samuel J.; Birnbaum, Kevin M.

    2012-01-01

    An ideal intensity-modulated photon-counting channel can achieve unbounded photon information efficiencies (PIEs). However, a number of limitations of a physical system limit the practically achievable PIE. In this paper, we discuss several of these limitations and illustrate their impact on the channel. We show that, for the Poisson channel, noise does not strictly bound PIE, although there is an effective limit, as the dimensional information efficiency goes as e[overline] e PIE beyond a threshold PIE. Since the Holevo limit is bounded in the presence of noise, this illustrates that the Poisson approximation is invalid at large PIE for any number of noise modes. We show that a finite transmitter extinction ratio bounds the achievable PIE to a maximum that is logarithmic in the extinction ratio. We show how detector jitter limits the ability to mitigate noise in the PPM signaling framework. We illustrate a method to model detector blocking when the number of detectors is large, and illustrate mitigation of blocking with spatial spreading and altering. Finally, we illustrate the design of a high photon efficiency system using state-of-the-art photo-detectors and taking all these effects into account.

  9. The effect of photon energy on intensity-modulated radiation therapy (IMRT) plans for prostate cancer

    PubMed Central

    Sung, Wonmo; Park, Jong Min; Choi, Chang Heon; Ha, Sung Whan

    2012-01-01

    Purpose To evaluate the effect of common three photon energies (6-MV, 10-MV, and 15-MV) on intensity-modulated radiation therapy (IMRT) plans to treat prostate cancer patients. Materials and Methods Twenty patients with prostate cancer treated locally to 81.0 Gy were retrospectively studied. 6-MV, 10-MV, and 15-MV IMRT plans for each patient were generated using suitable planning objectives, dose constraints, and 8-field setting. The plans were analyzed in terms of dose-volume histogram for the target coverage, dose conformity, organs at risk (OAR) sparing, and normal tissue integral dose. Results Regardless of the energies chosen at the plans, the target coverage, conformity, and homogeneity of the plans were similar. However, there was a significant dose increase in rectal wall and femoral heads for 6-MV compared to those for 10-MV and 15-MV. The V20 Gy of rectal wall with 6-MV, 10-MV, and 15-MV were 95.6%, 88.4%, and 89.4% while the mean dose to femoral heads were 31.7, 25.9, and 26.3 Gy, respectively. Integral doses to the normal tissues in higher energy (10-MV and 15-MV) plans were reduced by about 7%. Overall, integral doses in mid and low dose regions in 6-MV plans were increased by up to 13%. Conclusion In this study, 10-MV prostate IMRT plans showed better OAR sparing and less integral doses than the 6-MV. The biological and clinical significance of this finding remains to be determined afterward, considering neutron dose contribution. PMID:23120741

  10. A wideband photonic microwave phase shifter using polarization-dependent intensity modulation

    NASA Astrophysics Data System (ADS)

    Wang, Weiyu; Sun, Wenhui; Wang, Wenting; Tong, Youwan; Zheng, Jianyu; Yuan, Haiqing; Wang, Xin; Bai, Jinhua; Yu, Lijuan; Liu, Jianguo; Zhu, Ninghua

    2015-12-01

    We present a tunable and wideband microwave photonic phase shifter based on polarization-dependence of the LiNbO3 Mach-Zehender modulator (MZM). In the proposed device, an orthogonal single sideband modulation is implemented by using a MZM and an optical band-pass filter. With the polarizer to synthesize the polarization orthogonal optical carrier and sideband, the phase of the optical microwave signal output from the polarizer can be tuned from 0 to 360° by simply adjusting the polarization direction of the lights whereas the amplitude keeps constant. A full range tunable phase shifting in the frequency range of 10-35 GHz is achieved.

  11. SU-E-T-234: Modulated Photon Radiotherapy (XMRT):The Impact of Incorporating Energy Modulation Into Intensity Modulated Radiotherapy (IMRT) Optimization

    SciTech Connect

    McGeachy, P; Khan, R

    2014-06-01

    Purpose: To develop a new radiotherapy plan optimization technique that, for a given organ geometry, will find the optimal photon beam energies and fluences to produce a desirable dose distribution. This new modulated (both in energy and fluence) photon radiotherapy (XMRT) was compared with intensity modulated radiotherapy (IMRT) for a simple organ geometry. Methods: The XMRT optimization was formulated using a linear programming approach where the objective function is the mean dose to the healthy organs and dose-point constraints were assigned to each organ of interest. The organ geometry consisted of a target, two organs at risk (OARs), and normal tissue. A seven-equispaced-coplanar beam arrangement was used. For conventional IMRT, only 6 MV beams were available, while XMRT was optimized using 6 and 18 MV beams. A prescribed dose (PD) of 72 GY was assigned to the target, with upper and lower bounds of 110% and 95% of the PD, respectively. Both OARs were assigned a maximum dose of 64 Gy, while the normal tissue was assigned a maximum dose of 66 Gy. A numerical solver, Gurobi, generated solutions for the XMRT and IMRT problems. The dose-volume histograms from IMRT and XMRT solutions were compared. Results: The maximum, minimum, mean, and homogeneity of the dose to the target were comparable between IMRT and XMRT. Though IMRT had improved dose conformity relative to XMRT, XMRT reduced the mean dose to both OARs by more than 1 Gy. For normal tissue, an increase of 5 Gy in mean dose and 27 percent in integral dose was seen for IMRT relative to XMRT. Conclusion: This work demonstrates the benefits of simultaneously modulating photon beam energy and fluence using our XMRT approach in a given phantom geometry. While target coverage was comparable, dose to healthy structures was reduced using XMRT.

  12. Intensity modulation photonic crystal fiber based refractometer in the visible wavelength range

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Chen, Shimeng; Zhang, Xinpu; Gong, Zhenfeng; Peng, Wei

    2014-11-01

    A novel evanescent field refractometer based on a two-core photonic crystal fiber (TWPCF) sandwiched between multimode fibers(MMFs) is demonstrated. Through splicing a short piece of TWPCF between two MMFs, a simple structure and high sensitivity RI sensor can be constructed. Instead of using wavelength information as sensor signal, we focus more on the light intensity signal different from most PCF based RI sensor. The TWPCF section functions as a tailorable bridge between the excited high order modes and the surrounding refractive index (SRI). With a light filter inserting in the front of white light, the transmission spectrum of the light through the sensing region occurs in a welldefined wavelength bands. As a result, the peak power of the transmission light is tailored with the SRI perturbation via the MMF-TWPCF-MMF structure. The experiment result shows a quadratic relation between the light intensity and samples within RI range of 1.33-1.41 while a linear response can be achieved from the 1.33-1.35 which is a most used RI range for biologically sensing.

  13. Modeling secondary cancer risk following paediatric radiotherapy: a comparison of intensity modulated proton therapy and photon therapy

    NASA Astrophysics Data System (ADS)

    Shin, Naomi

    Proton radiotherapy is known to reduce the radiation dose delivered to normal healthy tissue compared to photon techniques. The increase in normal tissue sparing could result in fewer acute and late effects from radiation therapy. In this work proton therapy plans were created for patients previously treated using photon therapy. Intensity modulated proton therapy (IMPT) plans were planned using inverse planning in VarianRTM's Eclipse(TM) treatment planning system with a scanning proton beam model to the same relative biological effectiveness (RBE)-weighted prescription dose as the photon plan. Proton and photon plans were compared for target dose conformity and homogeneity, body volumes receiving 2 Gy and 5 Gy, integral dose, dose to normal tissues and second cancer risk. Secondary cancer risk was determined using two methods. The relative risk of secondary cancer was found using the method described by Nguyen et al. 1 by applying a linear relationship between integral dose and relative risk of secondary cancer. The second approach used Schneider et al. 's organ equivalent dose concept to describe the dose in the body and then calculate the excess absolute risk and cumulative risk for solid cancers in the body. IMPT and photon plans had similar target conformity and homogeneity. However IMPT plans had reduced integral dose and volumes of the body receiving low dose. Overall the risk of radiation induced secondary cancer was lower for IMPT plans compared to the corresponding photon plans with a reduction of ~36% using the integral dose model and ˜50% using the organ equivalent dose model. *Please refer to dissertation for footnotes.

  14. Out-of-field photon and neutron dose equivalents from step-and-shoot intensity-modulated radiation therapy

    SciTech Connect

    Kry, Stephen F.; Salehpour, Mohammad . E-mail: msalehpour@mdanderson.org; Followill, David S.; Stovall, Marilyn; Kuban, Deborah A.; White, R. Allen; Rosen, Isaac I.

    2005-07-15

    Purpose: To measure the photon and neutron out-of-treatment-field dose equivalents to various organs from different treatment strategies (conventional vs. intensity-modulated radiation therapy [IMRT]) at different treatment energies and delivered by different accelerators. Methods and Materials: Independent measurements were made of the photon and neutron out-of-field dose equivalents resulting from one conventional and six IMRT treatments for prostate cancer. The conventional treatment used an 18-MV beam from a Clinac 2100; the IMRT treatments used 6-MV, 10-MV, 15-MV, and 18-MV beams from a Varian Clinac 2100 accelerator and 6-MV and 15-MV beams from a Siemens Primus accelerator. Photon doses were measured with thermoluminescent dosimeters in a Rando phantom, and neutron fluence was measured with gold foils. Dose equivalents to the colon, liver, stomach, lung, esophagus, thyroid, and active bone marrow were determined for each treatment approach. Results: For each treatment approach, the relationship between dose equivalent per MU, distance from the treatment field, and depth in the patient was examined. Photon dose equivalents decreased approximately exponentially with distance from the treatment field. Neutron dose equivalents were independent of distance from the treatment field and decreased with increasing tissue depth. Neutrons were a significant contributor to the out-of field dose equivalent for beam energies {>=}15 MV. Conclusions: Out-of-field photon and neutron dose equivalents can be estimated to any point in a patient undergoing a similar treatment approach from the distance of that point to the central axis and from the tissue depth. This information is useful in determining the dose to critical structures and in evaluating the risk of associated carcinogenesis.

  15. A comparative dosimetric study on tangential photon beams, intensity-modulated radiation therapy (IMRT) and modulated electron radiotherapy (MERT) for breast cancer treatment

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Ding, M.; Li, J. S.; Lee, M. C.; Pawlicki, T.; Deng, J.

    2003-04-01

    Recently, energy- and intensity-modulated electron radiotherapy (MERT) has garnered a growing interest for the treatment of superficial targets. In this work, we carried out a comparative dosimetry study to evaluate MERT, photon beam intensity-modulated radiation therapy (IMRT) and conventional tangential photon beams for the treatment of breast cancer. A Monte Carlo based treatment planning system has been investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We have compared breast treatment plans generated using this home-grown treatment optimization and dose calculation software for these treatment techniques. The MERT plans were planned with up to two gantry angles and four nominal energies (6, 9, 12 and 16 MeV). The tangential photon treatment plans were planned with 6 MV wedged photon beams. The IMRT plans were planned using both multiple-gantry 6 MV photon beams or two 6 MV tangential beams. Our results show that tangential IMRT can reduce the dose to the lung, heart and contralateral breast compared to conventional tangential wedged beams (up to 50% reduction in high dose volume or 5 Gy in the maximum dose). MERT can reduce the maximum dose to the lung by up to 20 Gy and to the heart by up to 35 Gy compared to conventional tangential wedged beams. Multiple beam angle IMRT can significantly reduce the maximum dose to the lung and heart (up to 20 Gy) but it induces low and medium doses to a large volume of normal tissues including lung, heart and contralateral breast. It is concluded that MERT has superior capabilities to achieve dose conformity both laterally and in the depth direction, which will be well suited for treating superficial targets such as breast cancer.

  16. Characterization of an Indirect-Detection Amorphous Silicon Detector for Dosimetric Measurement of Intensity Modulated Photon Fields

    NASA Astrophysics Data System (ADS)

    Bailey, Daniel Wayne

    Indirect-detection amorphous silicon electronic imagers show much promise for measurement of radiation dose, particularly for pre-treatment verification of patient-specific intensity modulated radiotherapy plans. These instruments, commonly known as Electronic Portal Imaging Devices (EPIDs), have high data density, large detecting area, convenient electronic read-out, excellent positional reproducibility, and are quickly becoming standard equipment on today's medical megavoltage linear accelerators. However, because these devices were originally intended to be digital radiograph imagers and not dosimeters, the modeling, calibration, and prediction of their response to dose carries a number of challenges. For instance, EPID dose images exhibit off-axis dose errors of up to 18% with increasing distance from the central axis of the imager (as compared to dose predictions calculated by a commercially available treatment planning system). Furthermore, these off-axis errors are asymmetric, with higher errors in the in-plane direction than in the cross-plane direction. In this work, methods are proposed to account for EPID off-axis effects by precisely calculating off-axis output factors from experimental measurements to increase the accuracy of EPID absolute dose measurement. Using these methods, dose readings acquired over the entire surface of the detector agree to within 2% accuracy as compared to respective EPID dose predictions. Similarly, the percentage of measured dose points that agree with respective calculated dose points (using 3%, 3 mm criteria) improves by as much as 60% for off-axis intensity modulated photon fields. Furthermore, a number of clinical applications of EPID dosimetry are investigated, including pixel response constancy, the effect of data density on a common metric for quantitatively comparing measured vs. calculated dose, and the implementation of an electronic portal dosimetry program for radiotherapy quality assurance.

  17. Modulated photon radiotherapy (XMRT): an algorithm for the simultaneous optimization of photon beamlet energy and intensity in external beam radiotherapy (EBRT) planning.

    PubMed

    McGeachy, Philip; Villarreal-Barajas, Jose Eduardo; Zinchenko, Yuriy; Khan, Rao

    2016-02-21

    This is a proof of principle study on an algorithm for optimizing external beam radiotherapy in terms of both photon beamlet energy and fluence. This simultaneous beamlet energy and fluence optimization is denoted modulated photon radiotherapy (XMRT). XMRT is compared with single-energy intensity modulated radiotherapy (IMRT) for five clinically relevant test geometries to determine whether treating beamlet energy as a decision variable improves the dose distributions. All test geometries were modelled in a cylindrical water phantom. XMRT optimized the fluence for 6 and 18 MV beamlets while IMRT optimized with only 6 MV and only 18 MV. CERR (computational environment for radiotherapy research) was used to calculate the dose deposition matrices and the resulting dose for XMRT and IMRT solutions. Solutions were compared via their dose volume histograms and dose metrics, such as the mean, maximum, and minimum doses for each structure. The homogeneity index (HI) and conformity number (CN) were calculated to assess the quality of the target dose coverage. Complexity of the resulting fluence maps was minimized using the sum of positive gradients technique. The results showed XMRT's ability to improve healthy-organ dose reduction while yielding comparable coverage of the target relative to IMRT for all geometries. All three energy-optimization approaches yielded similar HI and CNs for all geometries, as well as a similar degree of fluence map complexity. The dose reduction provided by XMRT was demonstrated by the relative decrease in the dose metrics for the majority of the organs at risk (OARs) in all geometries. Largest reductions ranged between 5% to 10% in the mean dose to OARs for two of the geometries when compared with both single-energy IMRT schemes. XMRT has shown potential dosimetric benefits through improved OAR sparing by allowing beam energy to act as a degree of freedom in the EBRT optimization process. PMID:26808280

  18. Modulated photon radiotherapy (XMRT): an algorithm for the simultaneous optimization of photon beamlet energy and intensity in external beam radiotherapy (EBRT) planning

    NASA Astrophysics Data System (ADS)

    McGeachy, Philip; Villarreal-Barajas, Jose Eduardo; Zinchenko, Yuriy; Khan, Rao

    2016-02-01

    This is a proof of principle study on an algorithm for optimizing external beam radiotherapy in terms of both photon beamlet energy and fluence. This simultaneous beamlet energy and fluence optimization is denoted modulated photon radiotherapy (XMRT). XMRT is compared with single-energy intensity modulated radiotherapy (IMRT) for five clinically relevant test geometries to determine whether treating beamlet energy as a decision variable improves the dose distributions. All test geometries were modelled in a cylindrical water phantom. XMRT optimized the fluence for 6 and 18 MV beamlets while IMRT optimized with only 6 MV and only 18 MV. CERR (computational environment for radiotherapy research) was used to calculate the dose deposition matrices and the resulting dose for XMRT and IMRT solutions. Solutions were compared via their dose volume histograms and dose metrics, such as the mean, maximum, and minimum doses for each structure. The homogeneity index (HI) and conformity number (CN) were calculated to assess the quality of the target dose coverage. Complexity of the resulting fluence maps was minimized using the sum of positive gradients technique. The results showed XMRT’s ability to improve healthy-organ dose reduction while yielding comparable coverage of the target relative to IMRT for all geometries. All three energy-optimization approaches yielded similar HI and CNs for all geometries, as well as a similar degree of fluence map complexity. The dose reduction provided by XMRT was demonstrated by the relative decrease in the dose metrics for the majority of the organs at risk (OARs) in all geometries. Largest reductions ranged between 5% to 10% in the mean dose to OARs for two of the geometries when compared with both single-energy IMRT schemes. XMRT has shown potential dosimetric benefits through improved OAR sparing by allowing beam energy to act as a degree of freedom in the EBRT optimization process.

  19. Silicon photonic heater-modulator

    DOEpatents

    Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2015-07-14

    Photonic modulators, methods of forming photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes a disk resonator having a central axis extending along a thickness direction of the disk resonator. The disk resonator includes a modulator portion and a heater portion. The modulator portion extends in an arc around the central axis. A PN junction of the modulator portion is substantially normal to the central axis.

  20. Influence of photon energy on the quality of prostate intensity modulated radiation therapy plans based on analysis of physical indices

    PubMed Central

    Thangavelu, Sundaram; Jayakumar, S; Govindarajan, K N; Supe, Sanjay S.; Nagarajan, V; Nagarajan, M

    2011-01-01

    The goal of the present study was to study the effects of low- and high-energy intensity-modulated photon beams on the planning of target volume and the critical organs in cases of localized prostate tumors in a cohort of 8 patients. To ensure that the difference between the plans is due to energy alone, all other parameters were kept constant. A mean dose volume histogram (DVH) for each value of energy and for each contoured structure was created and was considered as completely representative for all patients. To facilitate comparison between 6-MV and 15-MV beams, the DVH-s were normalized. The different parameters that were compared for 6-MV and 15-MV beams included mean DVH, different homogeneity indices, conformity index, etc. Analysis of several indices depicts more homogeneous dose for 15-MV beam and more conformity for 6-MV beam. Comparison of all these parameters showed that there was little difference between the 6-MV and 15-MV beams. For rectum, 2 to 4 % more volume received high dose with the 6-MV beam in comparison with the 15-MV beam, which was not clinically significant, since in practice much tighter constraints are maintained, such that Normal Tissue Complication Probability (NTCP) is kept within 5 %. Such tighter constraints might increase the dose to other regions and other critical organs but are unlikely to increase their complication probabilities. Hence the slight advantages of 15-MV beam in providing benefits of better normal-tissue sparing and better coverage cannot be considered to outweigh its well-known risk of non-negligible neutron production. PMID:21430856

  1. Potential Benefits of Scanned Intensity-Modulated Proton Therapy Versus Advanced Photon Therapy With Regard to Sparing of the Salivary Glands in Oropharyngeal Cancer

    SciTech Connect

    Water, Tara A. van de; Bijl, Hendrik P.; Jong, Marije E. de; Schilstra, Cornelis; Langendijk, Johannes A.

    2011-03-15

    Purpose: To test the hypothesis that scanned intensity-modulated proton therapy (IMPT) results in a significant dose reduction to the parotid and submandibular glands as compared with intensity-modulated radiotherapy with photons (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for oropharyngeal cancer. In addition, we investigated whether the achieved dose reductions would theoretically translate into a reduction of salivary dysfunction and xerostomia. Methods and Materials: Ten patients with N0 oropharyngeal carcinoma were used. The intensity-modulated plans delivered simultaneously 70 Gy to the boost planning target volume (PTV2) and 54 Gy to the elective nodal areas (PTV1). The 3D-CRT technique delivered sequentially 70 Gy and 46 Gy to PTV2 and PTV1, respectively. Normal tissue complication probabilities were calculated for salivary dysfunction and xerostomia. Results: Planning target volume coverage results were similar for IMPT and IMRT. Intensity-modulated proton therapy clearly improved the conformity. The 3D-CRT results were inferior to these results. The mean dose to the parotid glands by 3D-CRT (50.8 Gy), IMRT (25.5 Gy), and IMPT (16.8 Gy) differed significantly. For the submandibular glands no significant differences between IMRT and IMPT were found. The dose reductions obtained with IMPT theoretically translated into a significant reduction in normal tissue complication probability. Conclusion: Compared with IMRT and 3D-CRT, IMPT improved sparing of the organs at risk, while keeping similar target coverage results. The dose reductions obtained with IMPT vs. IMRT and 3D-CRT varied widely per individual patient. Intensity-modulated proton therapy theoretically translated into a clinical benefit for most cases, but this requires clinical validation.

  2. Intensity modulated proton therapy

    PubMed Central

    Grassberger, C

    2015-01-01

    Intensity modulated proton therapy (IMPT) implies the electromagnetic spatial control of well-circumscribed “pencil beams” of protons of variable energy and intensity. Proton pencil beams take advantage of the charged-particle Bragg peak—the characteristic peak of dose at the end of range—combined with the modulation of pencil beam variables to create target-local modulations in dose that achieves the dose objectives. IMPT improves on X-ray intensity modulated beams (intensity modulated radiotherapy or volumetric modulated arc therapy) with dose modulation along the beam axis as well as lateral, in-field, dose modulation. The clinical practice of IMPT further improves the healthy tissue vs target dose differential in comparison with X-rays and thus allows increased target dose with dose reduction elsewhere. In addition, heavy-charged-particle beams allow for the modulation of biological effects, which is of active interest in combination with dose “painting” within a target. The clinical utilization of IMPT is actively pursued but technical, physical and clinical questions remain. Technical questions pertain to control processes for manipulating pencil beams from the creation of the proton beam to delivery within the patient within the accuracy requirement. Physical questions pertain to the interplay between the proton penetration and variations between planned and actual patient anatomical representation and the intrinsic uncertainty in tissue stopping powers (the measure of energy loss per unit distance). Clinical questions remain concerning the impact and management of the technical and physical questions within the context of the daily treatment delivery, the clinical benefit of IMPT and the biological response differential compared with X-rays against which clinical benefit will be judged. It is expected that IMPT will replace other modes of proton field delivery. Proton radiotherapy, since its first practice 50 years ago, always required the

  3. Intensity modulated proton therapy.

    PubMed

    Kooy, H M; Grassberger, C

    2015-07-01

    Intensity modulated proton therapy (IMPT) implies the electromagnetic spatial control of well-circumscribed "pencil beams" of protons of variable energy and intensity. Proton pencil beams take advantage of the charged-particle Bragg peak-the characteristic peak of dose at the end of range-combined with the modulation of pencil beam variables to create target-local modulations in dose that achieves the dose objectives. IMPT improves on X-ray intensity modulated beams (intensity modulated radiotherapy or volumetric modulated arc therapy) with dose modulation along the beam axis as well as lateral, in-field, dose modulation. The clinical practice of IMPT further improves the healthy tissue vs target dose differential in comparison with X-rays and thus allows increased target dose with dose reduction elsewhere. In addition, heavy-charged-particle beams allow for the modulation of biological effects, which is of active interest in combination with dose "painting" within a target. The clinical utilization of IMPT is actively pursued but technical, physical and clinical questions remain. Technical questions pertain to control processes for manipulating pencil beams from the creation of the proton beam to delivery within the patient within the accuracy requirement. Physical questions pertain to the interplay between the proton penetration and variations between planned and actual patient anatomical representation and the intrinsic uncertainty in tissue stopping powers (the measure of energy loss per unit distance). Clinical questions remain concerning the impact and management of the technical and physical questions within the context of the daily treatment delivery, the clinical benefit of IMPT and the biological response differential compared with X-rays against which clinical benefit will be judged. It is expected that IMPT will replace other modes of proton field delivery. Proton radiotherapy, since its first practice 50 years ago, always required the highest level of

  4. Image-Guided Intensity-Modulated Photon Radiotherapy Using Multifractionated Regimen to Paraspinal Chordomas and Rare Sarcomas

    SciTech Connect

    Terezakis, Stephanie A. Lovelock, D. Michael; Bilsky, Mark H.; Hunt, Margaret A.; Zatcky, Joan N.P.; Yamada, Yoshiya

    2007-12-01

    Purpose: Image-guided intensity-modulated radiotherapy enables delivery of high-dose radiation to tumors close to the spinal cord. We report our experience with multifractionated regimens using image-guided intensity-modulated radiotherapy to treat gross paraspinal disease to doses beyond cord tolerance. Methods and Materials: We performed a retrospective review of 27 consecutive patients with partially resected or unresectable paraspinal tumors irradiated to >5,300 cGy in standard fractionation. Results: The median follow-up was 17.4 months (range, 2.1-47.3). Eighteen sarcomas, seven chordomas, and two ependymomas were treated. The median dose to the planning target volume was 6,600 cGy (range, 5,396-7,080) in 180- or 200-cGy fractions. The median planning target volume was 164 cm{sup 3} (range, 29-1,116). Seven patients developed recurrence at the treatment site (26%), and 6 of these patients had high-grade tumors. Three patients with recurrence had metastatic disease at the time of radiotherapy. The 2-year local control rate was 65%, and the 2-year overall survival rate was 79%. Of the 5 patients who died, 4 had metastatic disease at death. Twenty-three patients (84%) reported either no pain or improved pain at the last follow-up visit. Sixteen patients discontinued narcotic use after treatment (62.5%). Twenty-three patients (89%) had a stable or improved American Spine Injury Association score at the last follow-up visit. No patient experienced radiation-induced myelopathy. Conclusions: The dose to paraspinal tumors has traditionally been limited to respect cord tolerance. With image-guided intensity-modulated radiotherapy, greater doses of radiation delivered in multiple fractions can be prescribed with excellent target coverage, effective palliation, and acceptable toxicity and local control.

  5. Dependences of mucosal dose on photon beams in head-and-neck intensity-modulated radiation therapy: a Monte Carlo study

    SciTech Connect

    Chow, James C.L.; Owrangi, Amir M.

    2012-07-01

    Dependences of mucosal dose in the oral or nasal cavity on the beam energy, beam angle, multibeam configuration, and mucosal thickness were studied for small photon fields using Monte Carlo simulations (EGSnrc-based code), which were validated by measurements. Cylindrical mucosa phantoms (mucosal thickness = 1, 2, and 3 mm) with and without the bone and air inhomogeneities were irradiated by the 6- and 18-MV photon beams (field size = 1 Multiplication-Sign 1 cm{sup 2}) with gantry angles equal to 0 Degree-Sign , 90 Degree-Sign , and 180 Degree-Sign , and multibeam configurations using 2, 4, and 8 photon beams in different orientations around the phantom. Doses along the central beam axis in the mucosal tissue were calculated. The mucosal surface doses were found to decrease slightly (1% for the 6-MV photon beam and 3% for the 18-MV beam) with an increase of mucosal thickness from 1-3 mm, when the beam angle is 0 Degree-Sign . The variation of mucosal surface dose with its thickness became insignificant when the beam angle was changed to 180 Degree-Sign , but the dose at the bone-mucosa interface was found to increase (28% for the 6-MV photon beam and 20% for the 18-MV beam) with the mucosal thickness. For different multibeam configurations, the dependence of mucosal dose on its thickness became insignificant when the number of photon beams around the mucosal tissue was increased. The mucosal dose with bone was varied with the beam energy, beam angle, multibeam configuration and mucosal thickness for a small segmental photon field. These dosimetric variations are important to consider improving the treatment strategy, so the mucosal complications in head-and-neck intensity-modulated radiation therapy can be minimized.

  6. The use of intensity-modulated radiation therapy photon beams for improving the dose uniformity of electron beams shaped with MLC.

    PubMed

    Mosalaei, Homeira; Karnas, Scott; Shah, Sheel; Van Doodewaard, Sharon; Foster, Tim; Chen, Jeff

    2012-01-01

    Electrons are ideal for treating shallow tumors and sparing adjacent normal tissue. Conventionally, electron beams are collimated by cut-outs that are time-consuming to make and difficult to adapt to tumor shape throughout the course of treatment. We propose that electron cut-outs can be replaced using photon multileaf collimator (MLC). Two major problems of this approach are that the scattering of electrons causes penumbra widening because of a large air gap, and available commercial treatment planning systems (TPSs) do not support MLC-collimated electron beams. In this study, these difficulties were overcome by (1) modeling electron beams collimated by photon MLC for a commercial TPS, and (2) developing a technique to reduce electron beam penumbra by adding low-energy intensity-modulated radiation therapy (IMRT) photons (4 MV). We used blocks to simulate MLC shielding in the TPS. Inverse planning was used to optimize boost photon beams. This technique was applied to a parotid and a central nervous system (CNS) clinical case. Combined photon and electron plans were compared with conventional plans and verified using ion chamber, film, and a 2D diode array. Our studies showed that the beam penumbra for mixed beams with 90 cm source to surface distance (SSD) is comparable with electron applicators and cut-outs at 100 cm SSD. Our mixed-beam technique yielded more uniform dose to the planning target volume and lower doses to various organs at risk for both parotid and CNS clinical cases. The plans were verified with measurements, with more than 95% points passing the gamma criteria of 5% in dose difference and 5 mm for distance to agreement. In conclusion, the study has demonstrated the feasibility and potential advantage of using photon MLC to collimate electron beams with boost photon IMRT fields. PMID:21925867

  7. The use of intensity-modulated radiation therapy photon beams for improving the dose uniformity of electron beams shaped with MLC

    SciTech Connect

    Mosalaei, Homeira; Karnas, Scott; Shah, Sheel; Van Doodewaard, Sharon; Foster, Tim; Chen, Jeff

    2012-04-01

    Electrons are ideal for treating shallow tumors and sparing adjacent normal tissue. Conventionally, electron beams are collimated by cut-outs that are time-consuming to make and difficult to adapt to tumor shape throughout the course of treatment. We propose that electron cut-outs can be replaced using photon multileaf collimator (MLC). Two major problems of this approach are that the scattering of electrons causes penumbra widening because of a large air gap, and available commercial treatment planning systems (TPSs) do not support MLC-collimated electron beams. In this study, these difficulties were overcome by (1) modeling electron beams collimated by photon MLC for a commercial TPS, and (2) developing a technique to reduce electron beam penumbra by adding low-energy intensity-modulated radiation therapy (IMRT) photons (4 MV). We used blocks to simulate MLC shielding in the TPS. Inverse planning was used to optimize boost photon beams. This technique was applied to a parotid and a central nervous system (CNS) clinical case. Combined photon and electron plans were compared with conventional plans and verified using ion chamber, film, and a 2D diode array. Our studies showed that the beam penumbra for mixed beams with 90 cm source to surface distance (SSD) is comparable with electron applicators and cut-outs at 100 cm SSD. Our mixed-beam technique yielded more uniform dose to the planning target volume and lower doses to various organs at risk for both parotid and CNS clinical cases. The plans were verified with measurements, with more than 95% points passing the gamma criteria of 5% in dose difference and 5 mm for distance to agreement. In conclusion, the study has demonstrated the feasibility and potential advantage of using photon MLC to collimate electron beams with boost photon IMRT fields.

  8. A dosimetric analysis of 6 MV versus 15 MV photon energy plans for intensity modulated radiation therapy (IMRT) of carcinoma of cervix

    PubMed Central

    Tyagi, Atul; Supe, Sanjay S.; Sandeep; Singh, Man P.

    2010-01-01

    Background Intensity modulated radiotherapy (IMRT) is being used to treat carcinoma of cervix (Ca Cx). Integral dose to normal tissue and increased leakage are the concern about IMRT. 6 MV photon beam is a good choice of energy for Ca Cx IMRT treatment. Aim The objective of this study was to compare intensity modulated radiotherapy (IMRT) plans generated by 6 MV and 15 MV photon energies for carcinoma of cervix (Ca Cx) with regards to dosimetric parameters of planning target volume (PTV) and organs at risk (OAR), homogeneity index (HI), conformity index at 98% level (CI 98%), integral dose to normal tissue (NTID) and total number of monitor units (MUs). Material and methods A cohort of 16 patients was selected for this study. All patients were to receive a dose of 50 Gy in 25 fractions. IMRT plans were generated for both energies using same dose–volume constraints. Results Our results show a comparable coverage of planning target volume (PTV) for both energies. Volume of PTV receiving a prescription dose is 97.8 ± 0.5% and 98.8 ± 0.4% for the 6 MV and the 15 MV plans. Volume of PTV receiving a dose of 107% is 4.4 ± 7.8% and 16.1 ± 22.2%. Bladder and rectum mean doses for the 6 MV and the 15 MV photon plans were 39.8 ± 3.0 Gy and 40.0 ± 3.2 Gy, and 35.8 ± 3.1 Gy and 36.0 ± 3.1 Gy, respectively. Homogeneity index (HI) for both energies was 1.04. The conformity indices at 98% isodose (CI 98%) were 1.3 ± 0.1 and 1.4 ± 0.1 for 6 MV and 15 MV photon plans, respectively. Conclusions We conclude that a 6 MV photon is a good choice for Ca Cx IMRT as it produces a highly conformal, homogeneous plan with superior target coverage and better OAR sparing. PMID:24376938

  9. Poster — Thur Eve — 35: The impact of intensity- and energy-modulated photon radiotherapy (XMRT) optimization on a variety of organ geometries

    SciTech Connect

    McGeachy, P.; Villarreal-Barajas, J. E.; Khan, R.; Zinchenko, Y.

    2014-08-15

    We previously reported on a novel, modulated in both energy and intensity; photon radiotherapy (XMRT) optimization technique. The purpose of this investigation was to test this XMRT optimization against conventional intensity modulated radiotherapy (IMRT) optimization on four different organ test geometries. All geometries mimicked clinically relevant scenarios. Both IMRT and XMRT were based on a linear programming approach where the objective function was the mean dose to healthy organs and organ-specific linear dose-point constraints were used. For IMRT, the beam energy was fixed to 6 MV while XMRT optimized in terms of both 6 and 18 MV beams. All plans consisted of a seven beam coplanar arrangement. All organ geometries were contoured on a 25cm diameter cylindrical water phantom in open source radiotherapy research software known as CERR. Solutions for both IMRT and XMRT were obtained for each geometry using a numerical solver Gurobi. Analyzing the quality of the solutions was done by comparing dose distributions and dose volume histograms calculated using CERR. For all four geometries, IMRT and XMRT solutions were comparable in terms of target coverage. For two of the geometries, IMRT provided an advantage in terms of reduced dose to the healthy structures. XMRT showed improved dose reduction to healthy organs for one geometry and a comparable dose distribution to IMRT for the remaining geometry. The inability to exploit the benefits of using multiple energies may be attributed to limited water phantom diameter and having the majority of the organs in close proximity to the transverse axis.

  10. RapidArc, intensity modulated photon and proton techniques for recurrent prostate cancer in previously irradiated patients: a treatment planning comparison study

    PubMed Central

    Weber, Damien C; Wang, Hui; Cozzi, Luca; Dipasquale, Giovanna; Khan, Haleem G; Ratib, Osman; Rouzaud, Michel; Vees, Hansjoerg; Zaidi, Habib; Miralbell, Raymond

    2009-01-01

    Background A study was performed comparing volumetric modulated arcs (RA) and intensity modulation (with photons, IMRT, or protons, IMPT) radiation therapy (RT) for patients with recurrent prostate cancer after RT. Methods Plans for RA, IMRT and IMPT were optimized for 7 patients. Prescribed dose was 56 Gy in 14 fractions. The recurrent gross tumor volume (GTV) was defined on 18F-fluorocholine PET/CT scans. Plans aimed to cover at least 95% of the planning target volume with a dose > 50.4 Gy. A maximum dose (DMax) of 61.6 Gy was allowed to 5% of the GTV. For the urethra, DMax was constrained to 37 Gy. Rectal DMedian was < 17 Gy. Results were analyzed using Dose-Volume Histogram and conformity index (CI90) parameters. Results Tumor coverage (GTV and PTV) was improved with RA (V95% 92.6 ± 7.9 and 83.7 ± 3.3%), when compared to IMRT (V95% 88.6 ± 10.8 and 77.2 ± 2.2%). The corresponding values for IMPT were intermediate for the GTV (V95% 88.9 ± 10.5%) and better for the PTV (V95%85.6 ± 5.0%). The percentages of rectal and urethral volumes receiving intermediate doses (35 Gy) were significantly decreased with RA (5.1 ± 3.0 and 38.0 ± 25.3%) and IMPT (3.9 ± 2.7 and 25.1 ± 21.1%), when compared to IMRT (9.8 ± 5.3 and 60.7 ± 41.7%). CI90 was 1.3 ± 0.1 for photons and 1.6 ± 0.2 for protons. Integral Dose was 1.1 ± 0.5 Gy*cm3 *105 for IMPT and about a factor three higher for all photon's techniques. Conclusion RA and IMPT showed improvements in conformal avoidance relative to fixed beam IMRT for 7 patients with recurrent prostate cancer. IMPT showed further sparing of organs at risk. PMID:19740429

  11. Measurements of photon and neutron leakage from medical linear accelerators and Monte Carlo simulation of tenth value layers of concrete used for intensity modulated radiation therapy treatment

    NASA Astrophysics Data System (ADS)

    Jaradat, Adnan Khalaf

    The x ray leakage from the housing of a therapy x ray source is regulated to be <0.1% of the useful beam exposure at a distance of 1 m from the source. The x ray leakage in the backward direction has been measured from linacs operating at 4, 6, 10, 15, and 18 MV using a 100 cm3 ionization chamber and track-etch detectors. The leakage was measured at nine different positions over the rear wall using a 3 x 3 matrix with a 1 m separation between adjacent positions. In general, the leakage was less than the canonical value, but the exact value depends on energy, gantry angle, and measurement position. Leakage at 10 MV for some positions exceeded 0.1%. Electrons with energy greater than about 9 MeV have the ability to produce neutrons. Neutron leakage has been measured around the head of electron accelerators at a distance 1 m from the target at 0°, 46°, 90°, 135°, and 180° azimuthal angles; for electron energies of 9, 12, 15, 16, 18, and 20 MeV and 10, 15, and 18 MV x ray photon beam, using a neutron bubble detector of type BD-PND and using Track-Etch detectors. The highest neutron dose equivalent per unit electron dose was at 0° for all electron energies. The neutron leakage from photon beams was the highest between all the machines. Intensity modulated radiation therapy (IMRT) delivery consists of a summation of small beamlets having different weights that make up each field. A linear accelerator room designed exclusively for IMRT use would require different, probably lower, tenth value layers (TVL) for determining the required wall thicknesses for the primary barriers. The first, second, and third TVL of 60Co gamma rays and photons from 4, 6, 10, 15, and 18 MV x ray beams by concrete have been determined and modeled using a Monte Carlo technique (MCNP version 4C2) for cone beams of half-opening angles of 0°, 3°, 6°, 9°, 12°, and 14°.

  12. Comparison of Three-Dimensional (3D) Conformal Proton Radiotherapy (RT), 3D Conformal Photon RT, and Intensity-Modulated RT for Retroperitoneal and Intra-Abdominal Sarcomas

    SciTech Connect

    Swanson, Erika L.; Indelicato, Daniel J.; Louis, Debbie; Flampouri, Stella; Li, Zuofeng; Morris, Christopher G.; Paryani, Nitesh; Slopsema, Roelf

    2012-08-01

    Purpose: To compare three-dimensional conformal proton radiotherapy (3DCPT), intensity-modulated photon radiotherapy (IMRT), and 3D conformal photon radiotherapy (3DCRT) to predict the optimal RT technique for retroperitoneal sarcomas. Methods and Materials: 3DCRT, IMRT, and 3DCPT plans were created for treating eight patients with retroperitoneal or intra-abdominal sarcomas. The clinical target volume (CTV) included the gross tumor plus a 2-cm margin, limited by bone and intact fascial planes. For photon plans, the planning target volume (PTV) included a uniform expansion of 5 mm. For the proton plans, the PTV was nonuniform and beam-specific. The prescription dose was 50.4 Gy/Cobalt gray equivalent CGE. Plans were normalized so that >95% of the CTV received 100% of the dose. Results: The CTV was covered adequately by all techniques. The median conformity index was 0.69 for 3DCPT, 0.75 for IMRT, and 0.51 for 3DCRT. The median inhomogeneity coefficient was 0.062 for 3DCPT, 0.066 for IMRT, and 0.073 for 3DCRT. The bowel median volume receiving 15 Gy (V15) was 16.4% for 3DCPT, 52.2% for IMRT, and 66.1% for 3DCRT. The bowel median V45 was 6.3% for 3DCPT, 4.7% for IMRT, and 15.6% for 3DCRT. The median ipsilateral mean kidney dose was 22.5 CGE for 3DCPT, 34.1 Gy for IMRT, and 37.8 Gy for 3DCRT. The median contralateral mean kidney dose was 0 CGE for 3DCPT, 6.4 Gy for IMRT, and 11 Gy for 3DCRT. The median contralateral kidney V5 was 0% for 3DCPT, 49.9% for IMRT, and 99.7% for 3DCRT. Regardless of technique, the median mean liver dose was <30 Gy, and the median cord V50 was 0%. The median integral dose was 126 J for 3DCPT, 400 J for IMRT, and 432 J for 3DCRT. Conclusions: IMRT and 3DCPT result in plans that are more conformal and homogenous than 3DCRT. Based on Quantitative Analysis of Normal Tissue Effects in Clinic benchmarks, the dosimetric advantage of proton therapy may be less gastrointestinal and genitourinary toxicity.

  13. Light intensity modulation in phototherapy

    NASA Astrophysics Data System (ADS)

    Lukyanovich, P. A.; Zon, B. A.; Kunin, A. A.; Pankova, S. N.

    2015-04-01

    A hypothesis that blocking ATP synthesis is one of the main causes of the stimulating effect is considered based on analysis of the primary photostimulation mechanisms. The light radiation intensity modulation is substantiated and the estimates of such modulation parameters are made. An explanation is offered to the stimulation efficiency decrease phenomenon at the increase of the radiation dose during the therapy. The results of clinical research of the medical treatment in preventive dentistry are presented depending on the spectrum and parameters of the light flux modulation.

  14. Effects of Respiratory Motion on Passively Scattered Proton Therapy Versus Intensity Modulated Photon Therapy for Stage III Lung Cancer: Are Proton Plans More Sensitive to Breathing Motion?

    SciTech Connect

    Matney, Jason; Park, Peter C.; Bluett, Jaques; Chen, Yi Pei; Liu, Wei; Court, Laurence E.; Liao, Zhongxing; Li, Heng; Mohan, Radhe

    2013-11-01

    Purpose: To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans; and to establish the relationship between the magnitude of tumor motion and the respiratory-induced dose difference for both modalities. Methods and Materials: In a randomized clinical trial comparing PSPT and IMRT, radiation therapy plans have been designed according to common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging from 3 to 17 mm. Image registration and dose accumulation were performed using grayscale-based deformable image registration algorithms. The dose–volume histogram (DVH) differences (4D-3D [3D = 3-dimensional]) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion. Results: The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19 of 20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the 2 modalities was not statistically significant (P<.05) for all dose–volume histogram indices (mean ± SD) except the lung V5 (PSPT: +1.1% ± 0.9%; IMRT: +0.4% ± 1.2%) and maximum cord dose (PSPT: +1.5 ± 2.9 Gy; IMRT: 0.0 ± 0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only 2 indices: dose to 95% planning target volume, and heterogeneity index. Conclusions: With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2 of 11 4D-3D indices (lung V5 and spinal cord maximum) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Because of the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent of tumor motion was not an adequate predictor of potential

  15. Optical modulator based on coupled photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Serafimovich, Pavel G.; Kazanskiy, Nikolay L.

    2016-07-01

    We propose and numerically investigate an optical signal modulator based on two-photonic crystal nanobeam cavities coupled through a waveguide. The suggested modulator shifts the resonant frequency over a scalable range. We design a compact optical modulator based on photonic crystal nanobeams cavities that exhibits high stability to manufacturing. Photonic crystal waveguide tuning in the low-intensity region of the resonant mode is demonstrated. The advantages of the suggested approach over the single-resonator optical modulator approaches include the possibilities to shift the modulator frequency over a scalable range that depends on switching energy level and to effectively electrically tune the device in the low-intensity region of the resonant mode.

  16. Nuclear astrophysics with intense photon beam

    SciTech Connect

    Shizuma, Toshiyuki

    2012-07-09

    Quasi-monochromatic photon beams generated by inverse Compton scattering of laser light with high energy electrons can be used for precise measurements of photoneutrons and resonant scattered {gamma} rays. Extremely high intensity and small energy spreading width of the photon beam expected at the ELI Nuclear Physics facility would increase the experimental sensitivities considerably. Possible photonuclear reaction measurements relevant to the p-process nucleosynthesis are discussed.

  17. Phase Modulation of Photonic Band Gap Signal

    PubMed Central

    Wang, Zhiguo; Gao, Mengqin; Mahesar, Abdul Rasheed; Zhang, Yanpeng

    2016-01-01

    We first investigate the probe transmission signal (PTS) and the four wave mixing band gap signal (FWM BGS) modulated simultaneously by the relative phase and the nonlinear phase shift in the photonic band gap (PBG) structure. The switch between the absorption enhancement of PTS and the transmission enhancement of PTS with the help of changing the relative phase and the nonlinear phase shift is obtained in inverted Y-type four level atomic system experimentally and theoretically. The corresponding switch in PTS can be used to realize all optical switches. On other hand, the relative phase and the nonlinear phase shift also play the vital role to modulate the intensity of FWM BGS reflected from the PBG structure. And it can be potentially used to realize the optical amplifier. PMID:27323849

  18. Phase Modulation of Photonic Band Gap Signal.

    PubMed

    Wang, Zhiguo; Gao, Mengqin; Mahesar, Abdul Rasheed; Zhang, Yanpeng

    2016-01-01

    We first investigate the probe transmission signal (PTS) and the four wave mixing band gap signal (FWM BGS) modulated simultaneously by the relative phase and the nonlinear phase shift in the photonic band gap (PBG) structure. The switch between the absorption enhancement of PTS and the transmission enhancement of PTS with the help of changing the relative phase and the nonlinear phase shift is obtained in inverted Y-type four level atomic system experimentally and theoretically. The corresponding switch in PTS can be used to realize all optical switches. On other hand, the relative phase and the nonlinear phase shift also play the vital role to modulate the intensity of FWM BGS reflected from the PBG structure. And it can be potentially used to realize the optical amplifier. PMID:27323849

  19. Lowering Whole-Body Radiation Doses in Pediatric Intensity-Modulated Radiotherapy Through the Use of Unflattened Photon Beams;Flattening filter; Pediatric; Intensity-modulated radiotherapy; Second cancers; Radiation-induced malignancies

    SciTech Connect

    Cashmore, Jason; Ramtohul, Mark; Ford, Dan

    2011-07-15

    Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.

  20. Photonic module: An on-demand resource for photonic entanglement

    SciTech Connect

    Devitt, Simon J.; Greentree, Andrew D.; Hollenberg, Lloyd C. L.; Ionicioiu, Radu; O'Brien, Jeremy L.; Munro, William J.

    2007-11-15

    Photonic entanglement has a wide range of applications in quantum computation and communication. Here we introduce a device: the photonic module, which allows for the rapid, deterministic preparation of a large class of entangled photon states. The module is an application independent, ''plug and play'' device, with sufficient flexibility to prepare entanglement for all major quantum computation and communication applications in a completely deterministic fashion without number-discriminated photon detection. We present two alternative constructions for the module, one using free-space components and one in a photonic band-gap structure. The natural operation of the module is to generate states within the stabilizer formalism and we present an analysis on the cavity requirements to experimentally realize this device.

  1. Commissioning of intensity modulated neutron radiotherapy (IMNRT)

    SciTech Connect

    Burmeister, Jay; Snyder, Michael; Spink, Robyn; Liang Liang; Bossenberger, Todd; Halford, Robert; Brandon, John; Delauter, Jonathan

    2013-02-15

    Purpose: Intensity modulated neutron radiotherapy (IMNRT) has been developed using inhouse treatment planning and delivery systems at the Karmanos Cancer Center/Wayne State University Fast Neutron Therapy facility. The process of commissioning IMNRT for clinical use is presented here. Results of commissioning tests are provided including validation measurements using representative patient plans as well as those from the TG-119 test suite. Methods: IMNRT plans were created using the Varian Eclipse optimization algorithm and an inhouse planning system for calculation of neutron dose distributions. Tissue equivalent ionization chambers and an ionization chamber array were used for point dose and planar dose distribution comparisons with calculated values. Validation plans were delivered to water and virtual water phantoms using TG-119 measurement points and evaluation techniques. Photon and neutron doses were evaluated both inside and outside the target volume for a typical IMNRT plan to determine effects of intensity modulation on the photon dose component. Monitor unit linearity and effects of beam current and gantry angle on output were investigated, and an independent validation of neutron dosimetry was obtained. Results: While IMNRT plan quality is superior to conventional fast neutron therapy plans for clinical sites such as prostate and head and neck, it is inferior to photon IMRT for most TG-119 planning goals, particularly for complex cases. This results significantly from current limitations on the number of segments. Measured and calculated doses for 11 representative plans (six prostate/five head and neck) agreed to within -0.8 {+-} 1.4% and 5.0 {+-} 6.0% within and outside the target, respectively. Nearly all (22/24) ion chamber point measurements in the two phantom arrangements were within the respective confidence intervals for the quantity [(measured-planned)/prescription dose] derived in TG-119. Mean differences for all measurements were 0.5% (max

  2. Nonlocal hyperconcentration on entangled photons using photonic module system

    NASA Astrophysics Data System (ADS)

    Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen; Zhang, Ru; Wang, Chuan

    2016-06-01

    Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.

  3. Intensity Modulated Proton and Photon Therapy for Early Prostate Cancer With or Without Transperineal Injection of a Polyethylen Glycol Spacer: A Treatment Planning Comparison Study

    SciTech Connect

    Weber, Damien C.; Zilli, Thomas; Vallee, Jean Paul; Rouzaud, Michel; Miralbell, Raymond; Cozzi, Luca

    2012-11-01

    Purpose: Rectal toxicity is a serious adverse effect in early-stage prostate cancer patients treated with curative radiation therapy (RT). Injecting a spacer between Denonvilliers' fascia increases the distance between the prostate and the anterior rectal wall and may thus decrease the rectal radiation-induced toxicity. We assessed the dosimetric impact of this spacer with advanced delivery RT techniques, including intensity modulated RT (IMRT), volumetric modulated arc therapy (VMAT), and intensity modulated proton beam RT (IMPT). Methods and Materials: Eight prostate cancer patients were simulated for RT with or without spacer. Plans were computed for IMRT, VMAT, and IMPT using the Eclipse treatment planning system using both computed tomography spacer+ and spacer- data sets. Prostate {+-} seminal vesicle planning target volume [PTV] and organs at risk (OARs) dose-volume histograms were calculated. The results were analyzed using dose and volume metrics for comparative planning. Results: Regardless of the radiation technique, spacer injection decreased significantly the rectal dose in the 60- to 70-Gy range. Mean V{sub 70Gy} and V{sub 60Gy} with IMRT, VMAT, and IMPT planning were 5.3 {+-} 3.3%/13.9 {+-} 10.0%, 3.9 {+-} 3.2%/9.7 {+-} 5.7%, and 5.0 {+-} 3.5%/9.5 {+-} 4.7% after spacer injection. Before spacer administration, the corresponding values were 9.8 {+-} 5.4% (P=.012)/24.8 {+-} 7.8% (P=.012), 10.1 {+-} 3.0% (P=.002)/17.9 {+-} 3.9% (P=.003), and 9.7 {+-} 2.6% (P=.003)/14.7% {+-} 2.7% (P=.003). Importantly, spacer injection usually improved the PTV coverage for IMRT. With this technique, mean V{sub 70.2Gy} (P=.07) and V{sub 74.1Gy} (P=0.03) were 100 {+-} 0% to 99.8 {+-} 0.2% and 99.1 {+-} 1.2% to 95.8 {+-} 4.6% with and without Spacer, respectively. As a result of spacer injection, bladder doses were usually higher but not significantly so. Only IMPT managed to decrease the rectal dose after spacer injection for all dose levels, generally with no observed

  4. Single-energy intensity modulated proton therapy.

    PubMed

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-10-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT. PMID:26352616

  5. Single-energy intensity modulated proton therapy

    NASA Astrophysics Data System (ADS)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-09-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described. The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods. It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan. When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  6. Intensity-Modulated Radiation Therapy (IMRT)

    MedlinePlus

    ... modulating—or controlling—the intensity of the radiation beam in multiple small volumes. IMRT also allows higher ... of multiple intensity-modulated fields coming from different beam directions produce a custom tailored radiation dose that ...

  7. The Evaluation and Study of Modern Radiation Dosimetry Methods as Applied to Advanced Radiation Therapy Treatments Using Intensity Modulated Megavoltage Photon Beams

    NASA Astrophysics Data System (ADS)

    Stambaugh, Cassandra K. K.

    The purpose of this work is to evaluate quasi-3D arrays for use with intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) and to determine their clinical relevance. This is achieved using a Delta4 from Scandidos and ArcCheck from Sun Nuclear and the associated software. While certain aspects of these devices and software have been previously evaluated, the main goal of this work is to evaluate the new aspects, such as reconstructing dose on a patient CT set, and extending the capabilities. This includes the capability to reconstruct the dose based on a helical delivery as well as studying the dose to a moving target using measurement-guided motion simulations. It was found that Sun Nuclear's ArcCheck/3DVH system exhibited excellent agreement for dose reconstruction for IMRT/VMAT using a traditional C-arm linear accelerator and stringent 2%/2mm comparison constraints. It also is a powerful tool for measurement-guided dose estimates for moving targets, allowing for many simulations to be performed based on one measurement and the target motion data. For dose reconstruction for a helical delivery, the agreement was not as good for the stringent comparison but was reasonable for the clinically acceptable 3%/3mm comparison. Scandidos' Delta4 shows good agreement with stringent 2%/2mm constraints for its dose reconstruction on the phantom. However, the dose reconstruction on the patient CT set was poor and needs more work. Overall, it was found that quasi-3D arrays are powerful tools for dose reconstruction and treatment plan comparisons. The ability to reconstruct the dose allows for a dose resolution comparable to the treatment plan, which negates the previous issues with inadequate sampling and resolution issues found when just comparing the diodes. The ability to quickly and accurately compare many plans and target motions with minimum setup makes the quasi-3D array an attractive tool for both commissioning and patient specific

  8. Projection two-photon polymerization using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Li, Jiawen; Hu, Yanlei; Zhang, Chenchu; Lao, Zhaoxin; Huang, Wenhao; Chu, Jiaru

    2014-11-01

    The development of a high-efficiency projection two-photon polymerization (P2PP) process by using a liquid crystal spatial light modulator (SLM) is presented. Rapid fabrication of 2D patterned microstructures with P2PP is demonstrated, and the effect of laser pattern and exposure dose on the surface roughness of the fabricated microstructures is investigated. It is found that the distribution of laser intensity at the focal plane of objective has a significant effect on the profiles of microstructures. This unique technology has a promising approach to increase the efficiency of two-photon polymerization (2PP) and a parallel fabrication of complex 2D and 3D microstructures.

  9. Plasma optical modulators for intense lasers

    NASA Astrophysics Data System (ADS)

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-06-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm-2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations.

  10. Plasma optical modulators for intense lasers.

    PubMed

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D A; Mori, W B; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 10(16) W cm(-2) to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  11. Plasma optical modulators for intense lasers

    PubMed Central

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  12. Estimate of the uncertainties in the relative risk of secondary malignant neoplasms following proton therapy and intensity-modulated photon therapy

    PubMed Central

    Fontenot, Jonas D; Bloch, Charles; Followill, David; Titt, Uwe; Newhauser, Wayne D

    2014-01-01

    Theoretical calculations have shown that proton therapy can reduce the incidence of radiation-induced secondary malignant neoplasms (SMN) compared with photon therapy for patients with prostate cancer. However, the uncertainties associated with calculations of SMN risk had not been assessed. The objective of this study was to quantify the uncertainties in projected risks of secondary cancer following contemporary proton and photon radiotherapies for prostate cancer. We performed a rigorous propagation of errors and several sensitivity tests to estimate the uncertainty in the ratio of relative risk (RRR) due to the largest contributors to the uncertainty: the radiation weighting factor for neutrons, the dose-response model for radiation carcinogenesis and interpatient variations in absorbed dose. The interval of values for the radiation weighting factor for neutrons and the dose-response model were derived from the literature, while interpatient variations in absorbed dose were taken from actual patient data. The influence of each parameter on a baseline RRR value was quantified. Our analysis revealed that the calculated RRR was insensitive to the largest contributors to the uncertainty. Uncertainties in the radiation weighting factor for neutrons, the shape of the dose-risk model and interpatient variations in therapeutic and stray doses introduced a total uncertainty of 33% to the baseline RRR calculation. PMID:21076196

  13. Estimate of the uncertainties in the relative risk of secondary malignant neoplasms following proton therapy and intensity-modulated photon therapy

    NASA Astrophysics Data System (ADS)

    Fontenot, Jonas D.; Bloch, Charles; Followill, David; Titt, Uwe; Newhauser, Wayne D.

    2010-12-01

    Theoretical calculations have shown that proton therapy can reduce the incidence of radiation-induced secondary malignant neoplasms (SMN) compared with photon therapy for patients with prostate cancer. However, the uncertainties associated with calculations of SMN risk had not been assessed. The objective of this study was to quantify the uncertainties in projected risks of secondary cancer following contemporary proton and photon radiotherapies for prostate cancer. We performed a rigorous propagation of errors and several sensitivity tests to estimate the uncertainty in the ratio of relative risk (RRR) due to the largest contributors to the uncertainty: the radiation weighting factor for neutrons, the dose-response model for radiation carcinogenesis and interpatient variations in absorbed dose. The interval of values for the radiation weighting factor for neutrons and the dose-response model were derived from the literature, while interpatient variations in absorbed dose were taken from actual patient data. The influence of each parameter on a baseline RRR value was quantified. Our analysis revealed that the calculated RRR was insensitive to the largest contributors to the uncertainty. Uncertainties in the radiation weighting factor for neutrons, the shape of the dose-risk model and interpatient variations in therapeutic and stray doses introduced a total uncertainty of 33% to the baseline RRR calculation.

  14. High-speed analog achromatic intensity modulator.

    PubMed

    Stockley, J E; Sharp, G D; Doroski, D; Johnson, K M

    1994-05-15

    We report what is to our knowledge the first implementation of a broadband analog intensity modulator composed of two chiral smectic liquid-crystal half-wave retarders. A reflection-mode intensity modulator employing a single active device has also demonstrated achromatic transmission. A quantitative theory for chromatic compensation is presented. By optimum selection of liquid-crystal retardance and orientation, intensity transmission is uniform throughout the visible. The chiral smectic liquid-crystal devices used in the implementation are capable of switching in less than 20 micros. PMID:19844436

  15. Photonic Aharonov-Bohm effect based on dynamic modulation.

    PubMed

    Fang, Kejie; Yu, Zongfu; Fan, Shanhui

    2012-04-13

    We show that when the refractive index of a photonic system is harmonically modulated, the phase of the modulation introduces an effective gauge potential for photons. This effective gauge potential can be used to create a photonic Aharonov-Bohm effect. We show that the photonic Aharonov-Bohm effect provides the optimal mechanism for achieving complete on-chip nonmagnetic optical isolation. PMID:22587255

  16. Photon-counting phase-modulation fluorometer for lifetime measurements

    NASA Astrophysics Data System (ADS)

    Iwata, Tetsuo; Hori, Akio; Kamada, Takeshi

    2001-05-01

    We propose a phase-modulation fluorometer that is applicable to a very weak fluorescence intensity level. In order to counter the single-photon event situation, we have introduced a combination of a time-to-amplitude converter (TAC) and a pulse height analyzer (PHA) to the phase- modulation fluorometer, the combination of which is usually used in the single-photon correlation method to measure fluorescence decay waveforms by pulsed excitation. In the proposed fluorometer, a sinusoidal response waveform that is shifted in phase over the reference one is obtained statistically as a histogram in the PHA memory and then the fluorescence lifetime can be calculated by the same procedure as the conventional analog phase-modulation method. The excitation light source used was a current- modulated ultraviolet light-emitting diode (UV LED), whose center wavelength was 370 nm and its spectral bandwidth was 10 nm. Fluorescence lifetimes of 17.6 ns and 5.7 ns obtained for 10 ppb quinine sulfate in 0.1 N H2SO4 and for 10 ppb rhodamine 6G in ethanol, respectively, agreed well with those reported in the literature.

  17. Energy Modulated Photon Radiotherapy: A Monte Carlo Feasibility Study.

    PubMed

    Zhang, Ying; Feng, Yuanming; Ming, Xin; Deng, Jun

    2016-01-01

    A novel treatment modality termed energy modulated photon radiotherapy (EMXRT) was investigated. The first step of EMXRT was to determine beam energy for each gantry angle/anatomy configuration from a pool of photon energy beams (2 to 10 MV) with a newly developed energy selector. An inverse planning system using gradient search algorithm was then employed to optimize photon beam intensity of various beam energies based on presimulated Monte Carlo pencil beam dose distributions in patient anatomy. Finally, 3D dose distributions in six patients of different tumor sites were simulated with Monte Carlo method and compared between EMXRT plans and clinical IMRT plans. Compared to current IMRT technique, the proposed EMXRT method could offer a better paradigm for the radiotherapy of lung cancers and pediatric brain tumors in terms of normal tissue sparing and integral dose. For prostate, head and neck, spine, and thyroid lesions, the EMXRT plans were generally comparable to the IMRT plans. Our feasibility study indicated that lower energy (<6 MV) photon beams could be considered in modern radiotherapy treatment planning to achieve a more personalized care for individual patient with dosimetric gains. PMID:26977413

  18. Energy Modulated Photon Radiotherapy: A Monte Carlo Feasibility Study

    PubMed Central

    Zhang, Ying; Feng, Yuanming; Ming, Xin

    2016-01-01

    A novel treatment modality termed energy modulated photon radiotherapy (EMXRT) was investigated. The first step of EMXRT was to determine beam energy for each gantry angle/anatomy configuration from a pool of photon energy beams (2 to 10 MV) with a newly developed energy selector. An inverse planning system using gradient search algorithm was then employed to optimize photon beam intensity of various beam energies based on presimulated Monte Carlo pencil beam dose distributions in patient anatomy. Finally, 3D dose distributions in six patients of different tumor sites were simulated with Monte Carlo method and compared between EMXRT plans and clinical IMRT plans. Compared to current IMRT technique, the proposed EMXRT method could offer a better paradigm for the radiotherapy of lung cancers and pediatric brain tumors in terms of normal tissue sparing and integral dose. For prostate, head and neck, spine, and thyroid lesions, the EMXRT plans were generally comparable to the IMRT plans. Our feasibility study indicated that lower energy (<6 MV) photon beams could be considered in modern radiotherapy treatment planning to achieve a more personalized care for individual patient with dosimetric gains. PMID:26977413

  19. Reconfigurable microwave photonic filter based on polarization modulation

    NASA Astrophysics Data System (ADS)

    Xu, Enming; Pan, Shilong; Li, Peili

    2016-03-01

    A reconfigurable microwave photonic filter based on a polarization modulator (PolM) is proposed and experimentally demonstrated. The PolM together with a polarization controller (PC) and a polarization beam splitter (PBS) implements two complementary intensity modulations in two separated branches. Then, optical components are inserted in the two branches to realize a bandpass filter and an allpass filter, respectively. When the two branches are combined by a second PBS, a filter with a frequency response that equals the subtraction of the frequency responses of the allpass filter and bandpass filter is achieved. By adjusting the PCs placed before the second PBS, a notch filter with a tunable notch depth or a bandpass filter can be achieved.

  20. Ultrasound-modulated optical tomography with intense acoustic bursts

    NASA Astrophysics Data System (ADS)

    Zemp, Roger J.; Kim, Chulhong; Wang, Lihong V.

    2007-04-01

    Ultrasound-modulated optical tomography (UOT) detects ultrasonically modulated light to spatially localize multiply scattered photons in turbid media with the ultimate goal of imaging the optical properties in living subjects. A principal challenge of the technique is weak modulated signal strength. We discuss ways to push the limits of signal enhancement with intense acoustic bursts while conforming to optical and ultrasonic safety standards. A CCD-based speckle-contrast detection scheme is used to detect acoustically modulated light by measuring changes in speckle statistics between ultrasound-on and ultrasound-off states. The CCD image capture is synchronized with the ultrasound burst pulse sequence. Transient acoustic radiation force, a consequence of bursts, is seen to produce slight signal enhancement over pure ultrasonic-modulation mechanisms for bursts and CCD exposure times of the order of milliseconds. However, acoustic radiation-force-induced shear waves are launched away from the acoustic sample volume, which degrade UOT spatial resolution. By time gating the CCD camera to capture modulated light before radiation force has an opportunity to accumulate significant tissue displacement, we reduce the effects of shear-wave image degradation, while enabling very high signal-to-noise ratios. Additionally, we maintain high-resolution images representative of optical and not mechanical contrast. Signal-to-noise levels are sufficiently high so as to enable acquisition of 2D images of phantoms with one acoustic burst per pixel.

  1. Fan-beam intensity modulated proton therapy

    PubMed Central

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-01-01

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  2. Fan-beam intensity modulated proton therapy

    SciTech Connect

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-15

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques.Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets.Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  3. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links.

    PubMed

    Zhuang, Leimeng; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-11-01

    In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleX(TM) waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators. PMID:24216825

  4. Reshapable physical modulator for intensity modulated radiation therapy.

    PubMed

    Xu, Tong; Shikhaliev, Polad M; Al-Ghazi, Muthana; Molloi, Sabee

    2002-10-01

    A new method of generating beam intensity modulation filters for intensity modulated radiation therapy (IMRT) is presented. The modulator was based on a reshapable material, which is not compressible but can be deformed under pressure. A two-dimensional (2D) piston array was used to repeatedly shape the attenuating material. The material is a mixture of tungsten powder and a silicon-based binder. The linear attenuation coefficient of the material was measured to be 0.409 cm(-1) for a 6 MV x-ray beam. The maximum thickness of the physical modulator is 10.2 cm, allowing a transmission of 1.5%. A 16 x 16 square piston array was used to generate a depth pattern in the deformable attenuating material. Each piston has a cross section of 6.37 x 6.37 mm2. The modulator was placed 65 cm from the radiation source of the linear accelerator in the position of the shielding tray. At this position, each piston projects to a 1.0 x 1.0 cm2 area at the isocenter, giving a treatment field of 16 x 16 cm2. The percent depth dose curve and output factor measurement show a slight beam hardening and a 1%-4% increase in scatter fraction when 2.2-4.4 cm uniform thickness filters are in the beam. The surface dose was decreased with the filter in the beam. Ion chamber and verification films were used to verify the entrance dose. The measured absolute and relative doses were compared with the calculated dose. The agreement of measurements and calculations is within 3%. In order to verify the spatial modulation of dose, 1-D dose profiles were obtained using dose calculations. Calculated and measured profiles were compared. The 20%-80% penumbra of the modulator was measured to be 5.5-10 mm. The results show that a physical modulator formed using a 16 x 16 piston array and a deformable attenuation material can provide intensity modulation for IMRT comparable with those provided by currently available commercial MLC techniques. PMID:12408295

  5. Reversibly phototunable TiO{sub 2} photonic crystal modulated by Ag nanoparticles' oxidation/reduction

    SciTech Connect

    Liu Jian; Zhou Jinming; Ye Changqing; Li Mingzhu; Wang Jingxia; Jiang Lei; Song Yanlin

    2011-01-10

    We report a reversibly phototunable photonic crystal system whose reflectance at the stop band position can be modulated by alternating UV/visible (UV/Vis) irradiation. The phototunable system consists of Ag nanoparticles and TiO{sub 2} photonic crystal. The stop bands intensity of Ag loaded TiO{sub 2} photonic crystals were found to be dependent on the redox states of Ag nanoparticles. The quasi 'on' and 'off' states of the stop band were reversibly modulated by the Ag nanoparticles' oxidation/reduction through alternating UV/Vis light irradiation.

  6. Relative fine-structure intensities in two-photon excitation

    NASA Technical Reports Server (NTRS)

    Crosley, D. R.; Bischel, W. K.

    1984-01-01

    A discrepancy is pointed out between experimental determinations of the relative intensities for different fine-structure components of the two-photon transitions 2p3P 3p3P in oxygen and 2p3 4S0 - 2p2 3p4D0 in nitrogen, which agreed well with calculations involving a single virtual intermediate level, and a two-photon selection rule dJ not equal to one, derived in a purely theoretical and erroneous treatment of these transitions. Five other experiments are also briefly examined, with the conclusion that relative fine-structure intensities in two-photon transitions are well understood as straightforward extensions of angular momentum coupling in single-photon cases, in accordance with allowed dJ = 0, + or -1, and + or -2 transitions.

  7. A fast profile monitor with scintillating fiber hodoscopes for high-intensity photon beams

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Fujimura, H.; Hamano, H.; Hashimoto, R.; Honda, Y.; Ishida, T.; Kaida, S.; Kanda, H.; Kido, S.; Matsumura, Y.; Miyabe, M.; Mizutani, K.; Nagasawa, I.; Nakamura, A.; Nanbu, K.; Nawa, K.; Ogushi, S.; Shibasaki, Y.; Shimizu, H.; Sugai, H.; Suzuki, K.; Takahashi, K.; Takahashi, S.; Taniguchi, Y.; Tokiyasu, A. O.; Tsuchikawa, Y.; Yamazaki, H.

    2016-03-01

    A fast beam-profile monitor has been developed for high-energy photon beamlines at the Research Center for Electron Photon Science, Tohoku University. The position of the photon converted into an electron-positron pair in a 0.5 mm-thick aluminum plate is measured with two hodoscopes made of scintillating fibers with cross-sections of 3 × 3mm2. Events in which charged particles are produced upstream are rejected with a charge veto plastic scintillator placed in front of the plate, and pair-production events are identified with a trigger plastic scintillator placed behind the plate. The position is determined by a developed logic module with a field-programmable gate array. The dead time for processing an event is 35 ns, and a high data acquisition efficiency (~ 100 %) can be achieved with this monitor for high-intensity photon beams corresponding to 20 MHz tagging signals.

  8. Theoretical optimal modulation frequencies for scattering parameter estimation and ballistic photon filtering in diffusing media.

    PubMed

    Panigrahi, Swapnesh; Fade, Julien; Ramachandran, Hema; Alouini, Mehdi

    2016-07-11

    The efficiency of using intensity modulated light for the estimation of scattering properties of a turbid medium and for ballistic photon discrimination is theoretically quantified in this article. Using the diffusion model for modulated photon transport and considering a noisy quadrature demodulation scheme, the minimum-variance bounds on estimation of parameters of interest are analytically derived and analyzed. The existence of a variance-minimizing optimal modulation frequency is shown and its evolution with the properties of the intervening medium is derived and studied. Furthermore, a metric is defined to quantify the efficiency of ballistic photon filtering which may be sought when imaging through turbid media. The analytical derivation of this metric shows that the minimum modulation frequency required to attain significant ballistic discrimination depends only on the reduced scattering coefficient of the medium in a linear fashion for a highly scattering medium. PMID:27410875

  9. A microcontroller-based failsafe for single photon counting modules

    NASA Astrophysics Data System (ADS)

    Gordon, Matthew P.; Selvin, Paul R.

    2003-02-01

    Avalanche photodiode-based single photon counting modules (SPCMs) can be damaged by exposure to excessive light levels. A flexible and inexpensive failsafe is presented which has been shown to protect SPCMs from light levels far exceeding the damage threshold.

  10. Gigahertz Modulation of a Photonic Crystal Cavity

    NASA Astrophysics Data System (ADS)

    Ali, Aaron Karim Taylor

    Photonic crystal (PtC) cavities are an increasingly important way to create all optical methods to control optical data. Not only must the data be controlled, but interfacing it with high frequency electrical signals is particularly interesting especially if this occurs in the 1.55microm telecom band. We present an experiment that uses Rayleigh surface acoustic waves (SAWs) to modulate the frequency of the guided mode of an L3-cavity PtC created on a silicon slab. This work has the potential to interface optical and electrical signals via a mechanical strain wave operating at gigahertz frequencies. Defects are carefully designed into a triangular lattice PtC to realize a waveguide coupled optical cavity. The cavity can be experimentally accessed through grating couplers excited by polarized light at 10° incidence from normal. The optical components are fabricated on a silicon-on-insulator platform, with light confined to the silicon slab region. Through transmission experiments, the L3 cavity was found to have a narrow resonance characterized by a Lorentzian distribution. A quality factor of 165 centered at 6255cm --1 (1.599microm) was measured. Aluminum interdigitated transducers (IDTs) were fabricated through a lithography liftoff process. Their ability to create SAWs requires a piezoelectric medium. As silicon does not have this property, growth of a thin ZnO film was required. The transducers were measured using a network analyzer and were found to produce Rayleigh SAWs at a frequency of 179MHz and a wavelength of 24microm. The acoustic energy traveled 70microm to the target optical device. The L3 cavity has dimensions of around 4microm a side - less than 1/2 a SAW wavelength. Modulation of the L3 PtC resonant frequency was monitored through a repeat of the transmission experiment but with RF excitation of the IDTs at the SAW frequency. A broadening of the transmission spectrum was expected. Unfortunately no change in the fitting parameters could be measured

  11. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  12. τ-SPAD: a new red sensitive single-photon counting module

    NASA Astrophysics Data System (ADS)

    Kell, Gerald; Bülter, Andreas; Wahl, Michael; Erdmann, Rainer

    2011-05-01

    Single Photon Avalanche Diodes (SPADs) are valuable detectors in numerous photon counting applications in the fields of quantum physics, quantum communication, astronomy, metrology and biomedical analytics. They typically feature a much higher photon detection efficiency than photomultiplier tubes, most importantly in the red to near-infrared range of the spectrum. Very often SPADs are combined with Time-Correlated Single Photon Counting (TCSPC) electronics for time-resolved data acquisition and the temporal resolution ("jitter") of a SPAD is therefore one of the key parameters for selecting a detector. We show technical data and first application results from a new type of red sensitive single photon counting module ("τ-SPAD"), which is targeted at timing applications, most prominently in the area of Single Molecule Spectroscopy (SMS). The τ-SPAD photon counting module combines Laser Components' ultra-low noise VLoK silicon avalanche photodiode with specially developed quenching and readout electronics from PicoQuant. It features an extremely high photon detection efficiency of 75% at 670 nm and can be used to detect single photons over the 400 nm to 1100 nm wavelength range. The timing jitter of the output of the τ-SPAD can be as low as 350 ps, making it suitable for time-resolved fluorescence detection applications. First photon coincidence correlation measurements also show that the typical breakdown flash of SPADs is of comparably low intensity for these new SPADs.

  13. Towards a Graphene-Based Low Intensity Photon Counting Photodetector.

    PubMed

    Williams, Jamie O D; Alexander-Webber, Jack A; Lapington, Jon S; Roy, Mervyn; Hutchinson, Ian B; Sagade, Abhay A; Martin, Marie-Blandine; Braeuninger-Weimer, Philipp; Cabrero-Vilatela, Andrea; Wang, Ruizhi; De Luca, Andrea; Udrea, Florin; Hofmann, Stephan

    2016-01-01

    Graphene is a highly promising material in the development of new photodetector technologies, in particular due its tunable optoelectronic properties, high mobilities and fast relaxation times coupled to its atomic thinness and other unique electrical, thermal and mechanical properties. Optoelectronic applications and graphene-based photodetector technology are still in their infancy, but with a range of device integration and manufacturing approaches emerging this field is progressing quickly. In this review we explore the potential of graphene in the context of existing single photon counting technologies by comparing their performance to simulations of graphene-based single photon counting and low photon intensity photodetection technologies operating in the visible, terahertz and X-ray energy regimes. We highlight the theoretical predictions and current graphene manufacturing processes for these detectors. We show initial experimental implementations and discuss the key challenges and next steps in the development of these technologies. PMID:27563903

  14. Synchronized photonic modulators driven by surface acoustic waves.

    PubMed

    Crespo-Poveda, A; Hey, R; Biermann, K; Tahraoui, A; Santos, P V; Gargallo, B; Muñoz, P; Cantarero, A; de Lima, M M

    2013-09-01

    Photonic modulators are one of the most important elements of integrated photonics. We have designed, fabricated, and characterized a tunable photonic modulator consisting of two 180°-dephased output waveguide channels, driven by a surface acoustic wave in the GHz frequency range built on (Al,Ga)As. Odd multiples of the fundamental driven frequency are enabled by adjusting the applied acoustic power. A good agreement between theory and experimental results is achieved. The device can be used as a building block for more complex integrated functionalities and can be implemented in several material platforms. PMID:24104040

  15. Optical modulator based on GaAs photonic crystals

    NASA Astrophysics Data System (ADS)

    Li, Jiusheng

    2005-11-01

    In this letter, we propose a novel optical modulator based on GaAs photonic crystals and investigate its optically properties numerically by using the finite-difference time-domain method. The position of the cutoff frequency can be varied by free carriers injection, and the band gap shift can be observed. Band gap shift is used to modulate light. Bing several micrometers length, low insertion loss, and large extinction ratios, the modulator can be used in ultra-small and ultra-dense photonic integrated circuits.

  16. Practical considerations for intensity modulated CT

    NASA Astrophysics Data System (ADS)

    Szczykutowicz, Timothy P.; Mistretta, Charles

    2012-03-01

    As most patients, for a given projection, contain regions of vastly different attenuation properties, the dose level is often far higher than is required for some regions and inadequate for others. In this paper, two practical issues pertaining to intensity modulated CT (IMCT) are demonstrated and their causes are theoretically derived. IMCT can be enabled using a number of various techniques. The use of a system of attenuating wedges, or dynamic beam attenuators (DBA) is considered here. The first practical issue is the presence of scatter radiation. It is shown that scatter radiation produces ring artifacts due to a mismatch in the frequency of the scatter and the DBA attenuation in the CT normalization procedure. The second practical issue concerns the generation of a uniform CNR image under different scanning geometries. It is shown that when the fluence incident on the detector is equalized, different system geometries propagate the noise differently (i.e. uniform noise projections do not correspond to uniform noise images for all scanning geometries). It is also shown that a simple data re-binning procedure (re-binning from one system geometry to another) can effectively mitigate this effect and allow for uniform noise images. In addition, a method to estimate the scatter signal is purposed that relies on assuming the scatter signal is equal on each side of individual DBA boundaries due to its low frequency nature.

  17. Large conditional single-photon cross-phase modulation.

    PubMed

    Beck, Kristin M; Hosseini, Mahdi; Duan, Yiheng; Vuletić, Vladan

    2016-08-30

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of [Formula: see text] (and up to [Formula: see text] by postselection on photons that remain in the system longer than average) between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. By upgrading to a state-of-the-art cavity, our system can reach a coherent phase shift of π at low loss, enabling deterministic and universal photonic quantum logic. PMID:27519798

  18. Longitudinal Density Modulation and Energy Conversion in Intense Beams

    SciTech Connect

    Harris, J; Neumann, J; Tian, K; O'Shea, P

    2006-02-17

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may under some circumstances be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams, and discusses three recent experiments related to the dynamics of density-modulated electron beams.

  19. Ultrafast modulators based on nonlinear photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Li, Jianheng; Tu, Yongming; Ho, Seng-Tiong; Wessels, Bruce W.

    2011-03-01

    Nonlinear photonic crystal (PhC) waveguides are being developed for ultrafast modulators. To enable phase velocity matching we have investigated one- and two-dimensional structures. Photonic crystal (PhC) waveguides based on epitaxial barium titanate (BTO) thin film in a Si3N4/BTO/MgO multilayer structure were fabricated by electron beam lithography or focused ion beam (FIB) milling. For both one- and two-dimensional PhCs, simulation shows that sufficient refractive index contrast is achieved to form a stop band. For one-dimensional Bragg reflector, we measured its slow light properties and the group refractive index of optical wave. For a millimeter long waveguide a 27 nm wide stop band was obtained at 1550 nm. A slowing of the light was observed, the group refractive indices at the mid band gap and at the band edges were estimated to be between 8.0 and 12 for the transverse electric (TE) mode, and 6.9 and 13 for the transverse magnetic (TM) mode. For TE optical modes, the enhancement factor of EO coefficient ranges from 7 to 13, and for the TM mode, the factor ranges from 5.9 to 15. Measurements indicate that near velocity phase matching can be realized. Upon realizing the phase velocity matching condition, devices with a small foot print with bandwidths at 490 GHz can be attained. Two-dimensional PhC crystal with a hexagonal lattice was also investigated. The PhCs were fabricated from epitaxial BTO thin film multilayers using focused ion beam milling. The PhCs are based on BTO slab waveguide and air hole arrays defined within Si3N4 and BTO thin films. A refractive index contrast of 0.4 between the barium titanate thin film multilayers and the air holes enables strong light confinement. For the TE optical mode, the hexagonal photonic crystal lattice with a diameter of 155 nm and a lattice constant of 740 nm yields a photonic bandgap over the wavelength range from 1525 to 1575 nm. The transmission spectrum of the PhC waveguide exhibits stronger Fabry Perot

  20. Intensity-Modulated Radiotherapy for Pancreatic Adenocarcinoma

    SciTech Connect

    Abelson, Jonathan A.; Murphy, James D.; Minn, Ann Yuriko; Chung, Melody; Fisher, George A.; Ford, James M.; Kunz, Pamela; Norton, Jeffrey A.; Visser, Brendan C.; Poultsides, George A.; Koong, Albert C.; Chang, Daniel T.

    2012-03-15

    Purpose: To report the outcomes and toxicities in patients treated with intensity-modulated radiotherapy (IMRT) for pancreatic adenocarcinoma. Methods and Materials: Forty-seven patients with pancreatic adenocarcinoma were treated with IMRT between 2003 and 2008. Of these 47 patients, 29 were treated adjuvantly and 18 definitively. All received concurrent 5-fluorouracil chemotherapy. The treatment plans were optimized such that 95% of the planning target volume received the prescription dose. The median delivered dose for the adjuvant and definitive patients was 50.4 and 54.0 Gy, respectively. Results: The median age at diagnosis was 63.9 years. For adjuvant patients, the 1- and 2-year overall survival rate was 79% and 40%, respectively. The 1- and 2-year recurrence-free survival rate was 58% and 17%, respectively. The local-regional control rate at 1 and 2 years was 92% and 80%, respectively. For definitive patients, the 1-year overall survival, recurrence-free survival, and local-regional control rate was 24%, 16%, and 64%, respectively. Four patients developed Grade 3 or greater acute toxicity (9%) and four developed Grade 3 late toxicity (9%). Conclusions: Survival for patients with pancreatic cancer remains poor. A small percentage of adjuvant patients have durable disease control, and with improved therapies, this proportion will increase. Systemic therapy offers the greatest opportunity. The present results have demonstrated that IMRT is well tolerated. Compared with those who received three-dimensional conformal radiotherapy in previously reported prospective clinical trials, patients with pancreatic adenocarcinoma treated with IMRT in our series had improved acute toxicity.

  1. Light-intensity modulator withstands high heat fluxes

    NASA Technical Reports Server (NTRS)

    Maples, H. G.; Strass, H. K.

    1966-01-01

    Mechanism modulates and controls the intensity of luminous radiation in light beams associated with high-intensity heat flux. This modulator incorporates two fluid-cooled, externally grooved, contracting metal cylinders which when rotated about their longitudinal axes present a circular aperture of varying size depending on the degree of rotation.

  2. Large conditional single-photon cross-phase modulation

    NASA Astrophysics Data System (ADS)

    Beck, Kristin; Hosseini, Mahdi; Duan, Yiheng; Vuletic, Vladan

    2016-05-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of up to π / 3 between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. With a moderate improvement in cavity finesse, our system can reach a coherent phase shift of p at low loss, enabling deterministic and universal photonic quantum logic. Preprint: arXiv:1512.02166 [quant-ph

  3. Photon counting modules using RCA silicon avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Lightstone, Alexander W.; Macgregor, Andrew D.; Macsween, Darlene E.; Mcintyre, Robert J.; Trottier, Claude; Webb, Paul P.

    1989-01-01

    Avalanche photodiodes (APD) are excellent small area, solid state detectors for photon counting. Performance possibilities include: photon detection efficiency in excess of 50 percent; wavelength response from 400 to 1000 nm; count rate to 10 (exp 7) counts per sec; afterpulsing at negligible levels; timing resolution better than 1 ns. Unfortunately, these performance levels are not simultaneously available in a single detector amplifier configuration. By considering theoretical performance predictions and previous and new measurements of APD performance, the anticipated performance of a range of proposed APD-based photon counting modules is derived.

  4. Down-conversion IM-DD RF photonic link utilizing MQW MZ modulator.

    PubMed

    Xu, Longtao; Jin, Shilei; Li, Yifei

    2016-04-18

    We present the first down-conversion intensity modulated-direct detection (IM-DD) RF photonic link that achieves frequency down-conversion using the nonlinear optical phase modulation inside a Mach-Zehnder (MZ) modulator. The nonlinear phase modulation is very sensitive and it can enable high RF-to-IF conversion efficiency. Furthermore, the link linearity is enhanced by canceling the nonlinear distortions from the nonlinear phase modulation and the MZ interferometer. Proof-of-concept measurement was performed. The down-conversion IM-DD link demonstrated 28dB improvement in distortion levels over that of a conventional IM-DD link using a LiNbO3 MZ modulator. PMID:27137278

  5. Frequency and intensity modulation characteristics of GaAs lasers in an external cavity

    SciTech Connect

    Carter, G.M.; Huang, Kao Yang . Dept. of Electrical Engineering); Brotman, J.; Grober, R.; Mandelberg, H. )

    1993-12-01

    Frequency and intensity modulation characteristics were measured for external cavity GaAs diode lasers as a function of modulation frequency. The data, displayed as a Chirp-to-Power (CPR) ratio, showed at low modulation frequencies a flat response and a zero or 180 degree relative phase depending on laser structure. A model incorporating a carrier density dependent imaginary part of the differential gain (Henry alpha factor) was developed to explain the data. The model yields simple scaling of the CPR with injection current and photon lifetime. The agreement between the model and data including scaling is excellent. These results provide strong evidence for transverse spatial hole burning'' in these lasers.

  6. Robust optimization of intensity modulated proton therapy

    SciTech Connect

    Liu Wei; Zhang Xiaodong; Li Yupeng; Mohan, Radhe

    2012-02-15

    Purpose: Intensity modulated proton therapy (IMPT) is highly sensitive to range uncertainties and uncertainties caused by setup variation. The conventional inverse treatment planning of IMPT optimized based on the planning target volume (PTV) is not often sufficient to ensure robustness of treatment plans. In this paper, a method that takes the uncertainties into account during plan optimization is used to mitigate the influence of uncertainties in IMPT. Methods: The authors use the so-called ''worst-case robust optimization'' to render IMPT plans robust in the face of uncertainties. For each iteration, nine different dose distributions are computed--one each for {+-} setup uncertainties along anteroposterior (A-P), lateral (R-L) and superior-inferior (S-I) directions, for {+-} range uncertainty, and the nominal dose distribution. The worst-case dose distribution is obtained by assigning the lowest dose among the nine doses to each voxel in the clinical target volume (CTV) and the highest dose to each voxel outside the CTV. Conceptually, the use of worst-case dose distribution is similar to the dose distribution achieved based on the use of PTV in traditional planning. The objective function value for a given iteration is computed using this worst-case dose distribution. The objective function used has been extended to further constrain the target dose inhomogeneity. Results: The worst-case robust optimization method is applied to a lung case, a skull base case, and a prostate case. Compared with IMPT plans optimized using conventional methods based on the PTV, our method yields plans that are considerably less sensitive to range and setup uncertainties. An interesting finding of the work presented here is that, in addition to reducing sensitivity to uncertainties, robust optimization also leads to improved optimality of treatment plans compared to the PTV-based optimization. This is reflected in reduction in plan scores and in the lower normal tissue doses for the

  7. Soliton dynamics in modulated Bessel photonic lattices

    SciTech Connect

    Ruelas, Adrian; Lopez-Aguayo, Servando; Gutierrez-Vega, Julio C.

    2010-12-15

    We address the existence and the controlled stability of two-dimensional solitons in modulated Bessel lattices (MBL) induced by a superposition of nondiffracting Bessel beams. We show that variation of the modulation parameter of the lattice and the initial transverse momentum of the soliton significantly modify the behavior of the solitons. We find that, under suitable and well-identified conditions, solitons propagating in the MBL exhibit six regimes of transverse mobility: stationary, oscillatory, rotating, unbounded or escape, transitional, and unstable. These results report propagating solitons that can develop these dynamics of transverse motion.

  8. High-speed photonic modulator designs

    SciTech Connect

    DeRose, Christopher; Zortman, William A

    2015-02-03

    An optical device includes a microdisk optical resonator element. The microdisk resonator element is formed on a substrate and has upper and lower portions respectively distal and proximal the substrate. An arcuate semiconductor contact region partially surrounds the microdisk resonator element. A first modulator electrode is centrally formed on the upper portion of the microdisk resonator element, and a second modulator electrode is formed on the arcuate contact region. A laminar semiconductor region smaller in thickness than the microdisk resonator element separates the arcuate contact region from the microdisk resonator element and is formed on the substrate so as to electrically connect the arcuate contact region to the lower portion of the microdisk resonator element.

  9. Phase noise measurement of phase modulation microwave photonic links

    NASA Astrophysics Data System (ADS)

    Ye, Quanyi; Chen, Zhengyu; Xu, Zhiguo; Gao, Yingjie

    2015-10-01

    Microwave photonic links (MPLs) can provide many advantages over traditional coaxial and waveguide solutions due to its low loss, small size, lightweight, large bandwidth, superior stability and immunity to external interference. It has been considered in various applications such as: the transmission of radio frequency (RF) signal over optical carriers, video television transmission, radar and communication systems. Stability of phase of the microwave photonic links is a critical issue in several realistic applications. The delay line technique for phase noise measurement of phase modulation microwave photonic links is measured for the first time. Using this approach, the input signal noise and power supply noise can be effectively cancelled, and it does not require phase locking. The phase noise of a microwave photonic links with a 10 GHz sinusoidal signal is experimentally demonstrated.

  10. Modules and methods for all photonic computing

    DOEpatents

    Schultz, David R.; Ma, Chao Hung

    2001-01-01

    A method for all photonic computing, comprising the steps of: encoding a first optical/electro-optical element with a two dimensional mathematical function representing input data; illuminating the first optical/electro-optical element with a collimated beam of light; illuminating a second optical/electro-optical element with light from the first optical/electro-optical element, the second optical/electro-optical element having a characteristic response corresponding to an iterative algorithm useful for solving a partial differential equation; iteratively recirculating the signal through the second optical/electro-optical element with light from the second optical/electro-optical element for a predetermined number of iterations; and, after the predetermined number of iterations, optically and/or electro-optically collecting output data representing an iterative optical solution from the second optical/electro-optical element.

  11. Theoretical investigation of graphene-based photonic modulators

    PubMed Central

    Gosciniak, Jacek; Tan, Dawn T. H.

    2013-01-01

    Integration of electronics and photonics for future applications requires an efficient conversion of electrical to optical signals. The excellent electronic and photonic properties of graphene make it a suitable material for integrated systems with extremely wide operational bandwidth. In this paper, we analyze the novel geometry of modulator based on the rib photonic waveguide configuration with a double-layer graphene placed between a slab and ridge. The theoretical analysis of graphene-based electro-absorption modulator was performed showing that a 3 dB modulation with ~ 600 nm-long waveguide is possible resulting in energy per bit below 1 fJ/bit. The optical bandwidth of such modulators exceeds 12 THz with an operation speed ranging from 160 GHz to 850 GHz and limited only by graphene resistance. The performances of modulators were evaluated based on the figure of merit defined as the ratio between extinction ratio and insertion losses where it was found to exceed 220. PMID:23719514

  12. Modulation of the pupil function of microscope objective lens for multifocal multi-photon microscopy using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Matsumoto, Naoya; Okazaki, Shigetoshi; Takamoto, Hisayoshi; Inoue, Takashi; Terakawa, Susumu

    2014-02-01

    We propose a method for high precision modulation of the pupil function of a microscope objective lens to improve the performance of multifocal multi-photon microscopy (MMM). To modulate the pupil function, we adopt a spatial light modulator (SLM) and place it at the conjugate position of the objective lens. The SLM can generate an arbitrary number of spots to excite the multiple fluorescence spots (MFS) at the desired positions and intensities by applying an appropriate computer-generated hologram (CGH). This flexibility allows us to control the MFS according to the photobleaching level of a fluorescent protein and phototoxicity of a specimen. However, when a large number of excitation spots are generated, the intensity distribution of the MFS is significantly different from the one originally designed due to misalignment of the optical setup and characteristics of the SLM. As a result, the image of a specimen obtained using laser scanning for the MFS has block noise segments because the SLM could not generate a uniform MFS. To improve the intensity distribution of the MFS, we adaptively redesigned the CGH based on the observed MFS. We experimentally demonstrate an improvement in the uniformity of a 10 × 10 MFS grid using a dye solution. The simplicity of the proposed method will allow it to be applied for calibration of MMM before observing living tissue. After the MMM calibration, we performed laser scanning with two-photon excitation to observe a real specimen without detecting block noise segments.

  13. Gridded Electron Guns and Modulation of Intense Beams

    SciTech Connect

    Harris, J R; O'Shea, P G

    2006-05-02

    Gridded guns are useful for producing modulated electron beams. This modulation is generally limited to simple gating of the beam, but may be used to apply structure to the beam pulse shape. In intense beams, this structure spawns space charge waves whose dynamics depend in part on the relative strengths of the velocity and density variations which comprise the initial current modulation. In this paper, we calculate the strengths of beam current and velocity modulation produced in a gridded electron gun, and show that under normal conditions the initial modulation is dominated by density variation rather than velocity variation.

  14. Backplane photonic interconnect modules with optical jumpers

    NASA Astrophysics Data System (ADS)

    Glebov, Alexei L.; Lee, Michael G.; Yokouchi, Kishio

    2005-03-01

    Prototypes of optical interconnect (OI) modules for backplane applications are presented. The transceivers attached to the linecards E/O convert the signals that are passed to and from the backplane by optical jumpers terminated with MTP-type connectors. The connectors plug into adaptors attached to the backplane and the microlens arrays mounted in the adaptors couple the light between the fibers and waveguides. Planar polymer channel waveguides with 30-50 μm cross-sections route the optical signals across the board with propagation losses as low as 0.05 dB/cm @ 850 nm. The 45¦-tapered integrated micromirrors reflect the light in and out of the waveguide plane with the loss of 0.8 dB per mirror. The connector displacement measurements indicate that the adaptor lateral assembly accuracy can be at least +/-10 μm for the excess loss not exceeding 1 dB. Insertion losses of the test modules with integrated waveguides, 45¦ mirrors, and pluggable optical jumper connectors are about 5 dB. Eye diagrams at 10.7 Gb/s have typical width and height of 70 ps and 400 mV, respectively, and jitter of about 20 ps.

  15. Photonic microsystems: an enabling technology for light deflection and modulation

    NASA Astrophysics Data System (ADS)

    Schenk, Harald; Wolter, Alexander; Dauderstadt, Ulrike A.; Gehner, Andreas; Grueger, Heinrich; Drabe, Christian; Lakner, Hubert

    2004-01-01

    Light and electricity are said to be the all purpose tools for the next decades. Photonic Microsystems combine this tools in an ideal manner: They are electronically addressable devices with an optical functionality allowing to modulate light temporally and/or spatially. Further, they take advantage of high integration density, high reliability, high bandwidth and low cost fabrication for serial production. While in some cases Photonic Microsystem Technology is focused on the replacement of conventional devices, the majority of developments uses the unique potential of this technology to create devices based on novel principles with extended or even new functionality for advanced applications. Products based on Photonic Microsystem Technology have already entered or are only a few steps away from entering the market in various fields e.g. in information and communication technology, medicine, biology and metrology. This paper gives an overview of the Photonic Microsystems development activities with special emphasis on devices for light deflection and light modulation. Single micro mirrors e.g. for scanning or laser beam positioning are as well presented and discussed as micro mirror arrays and membrane mirrors for image generation and phase modulation. Technology trends are derived from the current development activities and an outlook to future work is given.

  16. Program EPICP: Electron photon interaction code, photon test module. Version 94.2

    SciTech Connect

    Cullen, D.E.

    1994-09-01

    The computer code EPICP performs Monte Carlo photon transport calculations in a simple one zone cylindrical detector. Results include deposition within the detector, transmission, reflection and lateral leakage from the detector, as well as events and energy deposition as a function of the depth into the detector. EPICP is part of the EPIC (Electron Photon Interaction Code) system. EPICP is designed to perform both normal transport calculations and diagnostic calculations involving only photons, with the objective of developing optimum algorithms for later use in EPIC. The EPIC system includes other modules that are designed to develop optimum algorithms for later use in EPIC; this includes electron and positron transport (EPICE), neutron transport (EPICN), charged particle transport (EPICC), geometry (EPICG), source sampling (EPICS). This is a modular system that once optimized can be linked together to consider a wide variety of particles, geometries, sources, etc. By design EPICP only considers photon transport. In particular it does not consider electron transport so that later EPICP and EPICE can be used to quantitatively evaluate the importance of electron transport when starting from photon sources. In this report I will merely mention where we expect the results to significantly differ from those obtained considering only photon transport from that obtained using coupled electron-photon transport.

  17. Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses

    NASA Astrophysics Data System (ADS)

    Schlehahn, A.; Schmidt, R.; Hopfmann, C.; Schulze, J.-H.; Strittmatter, A.; Heindel, T.; Gantz, L.; Schmidgall, E. R.; Gershoni, D.; Reitzenstein, S.

    2016-01-01

    We report on the generation of single-photon pulse trains at a repetition rate of up to 1 GHz. We achieve this speed by modulating the external voltage applied on an electrically contacted quantum dot microlens, which is optically excited by a continuous-wave laser. By modulating the photoluminescence of the quantum dot microlens using a square-wave voltage, single-photon emission is triggered with a response time as short as (281 ± 19) ps, being 6 times faster than the radiative lifetime of (1.75 ± 0.02) ns. This large reduction in the characteristic emission time is enabled by a rapid capacitive gating of emission from the quantum dot, which is placed in the intrinsic region of a p-i-n-junction biased below the onset of electroluminescence. Here, since our circuit acts as a rectifying differentiator, the rising edge of the applied voltage pulses triggers the emission of single photons from the optically excited quantum dot. The non-classical nature of the photon pulse train generated at GHz-speed is proven by intensity autocorrelation measurements with g(2)(0) = 0.3 ± 0.1. Our results combine optical excitation with fast electrical gating and thus show promise for the generation of indistinguishable single photons at rates exceeding the limitations set by the intrinsic radiative lifetime.

  18. Stimulus intensity modulates multisensory temporal processing.

    PubMed

    Krueger Fister, Juliane; Stevenson, Ryan A; Nidiffer, Aaron R; Barnett, Zachary P; Wallace, Mark T

    2016-07-29

    One of the more challenging feats that multisensory systems must perform is to determine which sensory signals originate from the same external event, and thus should be integrated or "bound" into a singular perceptual object or event, and which signals should be segregated. Two important stimulus properties impacting this process are the timing and effectiveness of the paired stimuli. It has been well established that the more temporally aligned two stimuli are, the greater the degree to which they influence one another's processing. In addition, the less effective the individual unisensory stimuli are in eliciting a response, the greater the benefit when they are combined. However, the interaction between stimulus timing and stimulus effectiveness in driving multisensory-mediated behaviors has never been explored - which was the purpose of the current study. Participants were presented with either high- or low-intensity audiovisual stimuli in which stimulus onset asynchronies (SOAs) were parametrically varied, and were asked to report on the perceived synchrony/asynchrony of the paired stimuli. Our results revealed an interaction between the temporal relationship (SOA) and intensity of the stimuli. Specifically, individuals were more tolerant of larger temporal offsets (i.e., more likely to call them synchronous) when the paired stimuli were less effective. This interaction was also seen in response time (RT) distributions. Behavioral gains in RTs were seen with synchronous relative to asynchronous presentations, but this effect was more pronounced with high-intensity stimuli. These data suggest that stimulus effectiveness plays an underappreciated role in the perception of the timing of multisensory events, and reinforces the interdependency of the principles of multisensory integration in determining behavior and shaping perception. PMID:26920937

  19. Tunable and reconfigurable single passband filter using stimulated Brillouin scattering and intensity modulation

    NASA Astrophysics Data System (ADS)

    Hu, Shuling; Xiao, Zeyu; Wang, Huanhuan

    2015-07-01

    A tunable and reconfigurable single passband microwave photonic filter based on stimulated Brillouin scattering (SBS) and intensity modulation is presented and theoretically analyzed. Three Brillouin pumps with equal intensity are generated by selecting appropriate bias voltages and modulation indices. Then a reconfigurable passband can be achieved by superposition of the three pumps. Simulation results demonstrate that the proposed filter has a 22-GHz continuous tuning range with a high out-of-band rejection ratio above 40 dB. The -3-dB bandwidth can be tuned from 12 to 95 MHz, and the flatness is less than 1.5 dB. This technique uses a low-frequency (0 to 35 MHz) modulation signal to realize passband reshaping, and has potential applications in communication and radar systems.

  20. Near-infrared distributed feedback solgel lasers by intensity modulation and polarization modulation.

    PubMed

    Wang, Jun; Dong, Hongxing; Fan, Jintai; Li, Rihong; Zhang, Long; Wong, King Y

    2011-11-20

    Near-infrared distributed feedback (DFB) laser actions of Oxazine 725 dye in zirconia thin films and in silica bulks were investigated. Intensity modulation and polarization modulation were used to generate the DFB lasing. Wideband tuning of the output wavelength was achieved by varying the period of the modulation generated by a nanosecond Nd:YAG laser at 532 nm. Tuning ranges were 716-778 nm and 724-813 nm for the thin film lasers and the bulk lasers, respectively. The laser output showed different polarization characteristics and threshold energy variation when the feedback mechanism was changed from intensity modulation to polarization modulation. PMID:22108883

  1. Quasi-periodic modulation of equatorial noise intensity

    NASA Astrophysics Data System (ADS)

    Nemec, Frantisek; Santolik, Ondrej; Hrbackova, Zuzana; Pickett, Jolene S.; Cornilleau-Wehrlin, Nicole

    2015-04-01

    Equatorial noise (EN) emissions are electromagnetic waves at frequencies between the proton cyclotron frequency and the lower hybrid frequency observed routinely in the equatorial region of the inner magnetosphere. They propagate in the extraordinary mode nearly perpendicular to the ambient magnetic field. Although their harmonic structure, which is characteristic of the proton cyclotron frequency in the source region has been known for a couple of decades, they were generally believed to be continuous in time. The analysis of more than 2000 EN events observed by the STAFF-SA and WBD instruments on board the Cluster spacecraft reveals that this is not always the case, with about 5% of events exhibiting a clear quasi-periodic (QP) modulation of the wave intensity. We perform a systematic analysis of these events, and we discuss possible mechanisms of the QP intensity modulation. It is shown that the events occur usually in the noon-to-dawn magnetic local time sector, and their occurrence seems to be related to the periods of increased geomagnetic activity. The modulation period of these events is on the order of minutes. Compressional ULF magnetic field pulsations with periods about double the modulation periods of EN were identified in about half of the events. These ULF pulsations might modulate the EN wave intensity, similarly as they modulate the intensity of formerly reported VLF whistler-mode QP events.

  2. How photons modulate wound healing via the immune system

    NASA Astrophysics Data System (ADS)

    Dyson, Mary

    2009-02-01

    The immune system is a diverse group of cells that recognize and attack foreign substances, pathogenic organisms and cancer cells. It also produces inflammation, an essential component of the wound healing process and, following the resolution of inflammation, plays a crucial role in the control of granulation tissue formation. Granulation tissue is the precursor of scar tissue. Injured skin and mucous membranes generally heal rapidly. However, some wounds are either slow to heal or fail to heal while in others overgrowth of scar tissue occurs, resulting in the production of either hypertophic or keloid scars. The modulation of wound healing in such conditions is clinically important and may even be vital. Evidence will be presented that phototherapy can modulate wound healing, and that changes induced in the immune system, in particular the secretion of soluble protein mediators including cytokines, may be involved in this modulation. The immune system has peripheral and deep components. The former, being located mainly in the skin and mucous membranes, are readily accessible to photons, which can affect them directly. The components of the immune system are linked by lymphatic vessels and blood vessels, which include many capillaries located in the sub-epithelial connective tissues of the skin and mucous membranes. The superficial location of these capillaries provides the immune cells and molecules in transit through them with ready access to photons. When these cells and molecules, some modified by exposure to photons, reach susceptible cells such as lymphocytes in the deeper parts of the immune system and cells of injured tissues, they can modify their activity. In addition to having direct effects on peripheral cells, photons can thus also produce indirect effects on cells too distant for the photons to reach them. For example, cytokines released from peripheral macrophages in response to the direct action of photons can be transported to and affect other

  3. Laser intensity modulation by nonabsorbing defects

    SciTech Connect

    Feit, M.D.; Rubenchik, A.M.

    1997-01-01

    Nonabsorbing bulk defects can initiate laser damage in transparent materials. Defects such as voids, microcracks and localized stress concentrations can serve as positive or negative lenses for the incident laser light. The resulting interference pattern between refracted and diffracted light can result in intensity increases on the order of a factor of 2 some distance away from a typical negative microlens, and even larger for a positive microlens. Thus, the initial damage site can be physically removed from the defect which initiates damage. The parameter that determines the strength of such lensing is (Ka){sup 2}{Delta}{epsilon}, where the wavenumber K is 2{pi}/{lambda} linear size of the defect and AF, is the difference in dielectric coefficient between matrix and scatterer. Thus, even a small change in refractive index results in a significant effect for a defect large compared to a wavelength. Geometry is also important. Three dimensional (eg. voids) as well as linear and planar (eg. cracks) microlenses can all have strong effects. The present paper evaluates the intensification due to spherical voids and high refractive index inclusions. We wish to particularly draw attention to the very large intensification that can occur at inclusions.

  4. Laser intensity modulation by nonabsorbing defects

    SciTech Connect

    Feit, M.D., Rubenchik, A.M.

    1996-11-20

    Nonabsorbing defects can lead to laser damage. Defects such as voids, microcracks, and localized stressed concentrations, even if they differ from the surrounding medium only by refractive index, can serve as positive or negative lenses for the incident laser light. The resulting interference pattern between refracted and diffracted light can result in intensity increases on the order of a factor of 2 some distance away from a typical negative microlens, and even larger for a positive microlens. Thus, the initial damage site can be physically removed from the defect which initiates damage. The parameter that determines the strength of such lensing is (Ka){sup 2}{Delta}{epsilon}, where the wavenumber K is 2{pi}/{lambda}, 2a is the linear size of the defect, and {Delta}{epsilon} is the difference in dielectric coefficient between matrix and scatterer. Thus, even a small change in refractive index results in a significant effect for a defect large compared to a wavelength. Geometry is also important. Three dimensional (e.g. voids) as well as linear and planar (e.g. cracks) microlenses can all have strong effects. This paper evaluates intensification due to spherical voids and high refractive index inclusions.

  5. Temporal photonic crystals with modulations of both permittivity and permeability

    NASA Astrophysics Data System (ADS)

    Martínez-Romero, Juan Sabino; Becerra-Fuentes, O. M.; Halevi, P.

    2016-06-01

    We present an in-depth study of electromagnetic wave propagation in a temporal photonic crystal, namely, a nonconducting medium whose permittivity ɛ (t ) and/or permeability μ (t ) are modulated periodically by unspecified agents (these modulations not necessarily being in phase). Maxwell's equations lead to an eigenvalue problem whose solution provides the dispersion relation ω (k ) for the waves that can propagate in such a dynamic medium. This is a generalization of previous work [J. R. Zurita-Sánchez and P. Halevi, Phys. Rev. A 81, 053834 (2010)], 10.1103/PhysRevA.81.053834 that was restricted to the electric modulation ɛ (t ) . For our numerical work (only) we assumed the harmonic modulations ɛ (t ) =ɛ ¯[1 +mɛsin(Ω t ) ] and μ (t ) =μ ¯[1 +mμsin(Ω t +θ ) ] , where Ω is the circular modulation frequency; mɛ and mμ are, respectively, the strengths of the electric and magnetic modulations; and θ is the phase difference between these modulations. An analytic calculation for weak modulations (mɛ≪1 ,mμ≪1 ) leads to two k bands, k1(ω ) and k2(ω ) , that are separated by a k gap. If the modulations are in phase (θ =0 ) , this gap is proportional to | mɛ-mμ| , while the gap is proportional to (mɛ+mμ) if the modulations are out of phase (θ =π ) . The gap thus disappears for equal, in-phase, modulations (mɛ=mμ) . An exact solution of the eigenvalue equation confirms that these approximations hold reasonably well even for moderate modulations. In fact, there are no k gaps for equal modulations even if these are very strong (mɛ ,μ≲1 ) . The photonic band structure k (ω ) is periodic in ω , with period Ω , and there is an infinite number of bands k1(ω ) , k2(ω ) ,... Further, by allowing ɛ (t ) and μ (t ) to have imaginary parts, we examined the effects of damping [Im k (ω )] on the k bands. We also determined the optical response of a temporal photonic crystal slab, applying the above harmonic model for ɛ (t ) and μ (t

  6. Photonic bandgap crystal resonator enhanced, laser controlled modulations of optical interconnects for photonic integrated circuits.

    PubMed

    Teo, Selin H G; Liu, A Q; Zhang, J B; Hong, M H; Singh, J; Yu, M B; Singh, N; Lo, G Q

    2008-05-26

    Ultrafast high-density photonic integrated circuit devices (PICDs) are not easily obtained using traditional index-guiding mechanisms. In this paper, photonic bandgap crystal resonator enhanced, laser-controlled modulations of optical interconnect PICDs were achieved in slab-type mix-guiding configuration - through developed CMOS-compatible processing technologies. The devices, with smallest critical dimensions of 90 nm have footprints of less than 5 x 5 microm(2). Quality-factors an order larger than previously realized was achieved. Through use of effective coupling structures; simultaneous alignment for probing and pumping laser beams, optical measurements of both instantaneous free carriers induced device modulations were obtained together with thermo-optical effects characterizations. PMID:18545494

  7. Extending the direct laser modulation bandwidth by exploiting the photon-photon resonance: modeling, simulations and experiments

    NASA Astrophysics Data System (ADS)

    Dumitrescu, M.; Laakso, A.; Viheriala, J.; Kamp, M.; Bardella, P.; Eisenstein, G.

    2013-03-01

    The direct laser modulation bandwidth can be extended substantially by introducing a supplementary photon-photon resonance (PPR) at a higher frequency than the carrier-photon resonance (CPR). The paper presents a modified rate equation model that takes into account the PPR by treating the longitudinal confinement factor as a dynamic variable. The conditions required for obtaining a strong PPR and an enhancement of the small-signal modulation bandwidth are analyzed and experimental results confirming the model are presented. Since the small-signal modulation bandwidth may not be indicative of the large-signal modulation capability, particularly in case of a small-signal modulation response with substantial variations across the bandwidth, we have also analyzed the influence of the PPR-enhanced small-signal modulation response shape on the large-signal modulation capability as well as the methods that can be employed to flatten the small-signal modulation transfer function between the CPR and PPR.

  8. Equatorial noise emissions with quasiperiodic modulation of wave intensity

    NASA Astrophysics Data System (ADS)

    Němec, F.; Santolík, O.; Hrbáčková, Z.; Pickett, J. S.; Cornilleau-Wehrlin, N.

    2015-04-01

    Equatorial noise (EN) emissions are electromagnetic wave events at frequencies between the proton cyclotron frequency and the lower hybrid frequency observed in the equatorial region of the inner magnetosphere. They propagate nearly perpendicular to the ambient magnetic field, and they exhibit a harmonic line structure characteristic of the proton cyclotron frequency in the source region. However, they were generally believed to be continuous in time. We investigate more than 2000 EN events observed by the Spatio-Temporal Analysis of Field Fluctuations and Wide-Band Data Plasma Wave investigation instruments on board the Cluster spacecraft, and we show that this is not always the case. A clear quasiperiodic (QP) time modulation of the wave intensity is present in more than 5% of events. We perform a systematic analysis of these EN events with QP modulation of the wave intensity. Such events occur usually in the noon-to-dawn magnetic local time sector. Their occurrence seems to be related to the increased geomagnetic activity, and it is associated with the time intervals of enhanced solar wind flow speeds. The modulation period of these events is on the order of minutes. Compressional ULF magnetic field pulsations with periods about double the modulation periods of EN wave intensity and magnitudes on the order of a few tenths of nanotesla were identified in about 46% of events. We suggest that these compressional magnetic field pulsations might be responsible for the observed QP modulation of EN wave intensity, in analogy to formerly reported VLF whistler mode QP events.

  9. WGM-Based Photonic Local Oscillators and Modulators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Maleki, Lute; Iltchenko, Vladimir; Savchenkov, Anatoliy

    2007-01-01

    Photonic local oscillators and modulators that include whispering-gallery mode (WGM) optical resonators have been proposed as power-efficient devices for generating and detecting radiation at frequencies of the order of a terahertz. These devices are intended especially to satisfy anticipated needs for receivers capable of detecting lowpower, narrow-band terahertz signals to be used for sensing substances of interest in scientific and military applications. At present, available terahertz-signal detectors are power-inefficient and do not afford the spectral and amplitude resolution needed for detecting such signals. The proposed devices would not be designed according to the conventional approach of direct detection of terahertz radiation. Instead, terahertz radiation would first be up-converted into the optical domain, wherein signals could be processed efficiently by photonic means and detected by optical photodetectors, which are more efficient than are photodetectors used in conventional direct detection of terahertz radiation. The photonic devices used to effect the up-conversion would include a tunable optical local oscillator and a novel electro-optical modulator. A local oscillator according to the proposal would be a WGM-based modelocked laser operating at a desired pulserepetition rate of the order of a terahertz. The oscillator would include a terahertz optical filter based on a WGM microresonator, a fiber-optic delay line, an optical amplifier (which could be either a semiconductor optical amplifier or an erbium-doped optical fiberamplifier), and a WGM Ka-band modulator. The terahertz repetition rate would be obtained through harmonic mode locking: for example, by modulating the light at a frequency of 33 GHz and locking each 33d optical mode, one would create a 1.089-THz pulse train. The high resonance quality factors (Q values) of WGM optical resonators should make it possible to decrease signal-generation threshold power levels significantly below

  10. Photonic-assisted microwave signal multiplication and modulation using a silicon Mach–Zehnder modulator

    PubMed Central

    Long, Yun; Zhou, Linjie; Wang, Jian

    2016-01-01

    Photonic generation of microwave signal is obviously attractive for many prominent advantages, such as large bandwidth, low loss, and immunity to electromagnetic interference. Based on a single integrated silicon Mach–Zehnder modulator (MZM), we propose and experimentally demonstrate a simple and compact photonic scheme to enable frequency-multiplicated microwave signal. Using the fabricated integrated MZM, we also demonstrate the feasibility of microwave amplitude-shift keying (ASK) modulation based on integrated photonic approach. In proof-of-concept experiments, 2-GHz frequency-doubled microwave signal is generated using a 1-GHz driving signal. 750-MHz/1-GHz frequency-tripled/quadrupled microwave signals are obtained with a driving signal of 250 MHz. In addition, a 50-Mb/s binary amplitude coded 1-GHz microwave signal is also successfully generated. PMID:26832305

  11. Photonic-assisted microwave signal multiplication and modulation using a silicon Mach-Zehnder modulator.

    PubMed

    Long, Yun; Zhou, Linjie; Wang, Jian

    2016-01-01

    Photonic generation of microwave signal is obviously attractive for many prominent advantages, such as large bandwidth, low loss, and immunity to electromagnetic interference. Based on a single integrated silicon Mach-Zehnder modulator (MZM), we propose and experimentally demonstrate a simple and compact photonic scheme to enable frequency-multiplicated microwave signal. Using the fabricated integrated MZM, we also demonstrate the feasibility of microwave amplitude-shift keying (ASK) modulation based on integrated photonic approach. In proof-of-concept experiments, 2-GHz frequency-doubled microwave signal is generated using a 1-GHz driving signal. 750-MHz/1-GHz frequency-tripled/quadrupled microwave signals are obtained with a driving signal of 250 MHz. In addition, a 50-Mb/s binary amplitude coded 1-GHz microwave signal is also successfully generated. PMID:26832305

  12. Photonic-assisted microwave signal multiplication and modulation using a silicon Mach-Zehnder modulator

    NASA Astrophysics Data System (ADS)

    Long, Yun; Zhou, Linjie; Wang, Jian

    2016-02-01

    Photonic generation of microwave signal is obviously attractive for many prominent advantages, such as large bandwidth, low loss, and immunity to electromagnetic interference. Based on a single integrated silicon Mach-Zehnder modulator (MZM), we propose and experimentally demonstrate a simple and compact photonic scheme to enable frequency-multiplicated microwave signal. Using the fabricated integrated MZM, we also demonstrate the feasibility of microwave amplitude-shift keying (ASK) modulation based on integrated photonic approach. In proof-of-concept experiments, 2-GHz frequency-doubled microwave signal is generated using a 1-GHz driving signal. 750-MHz/1-GHz frequency-tripled/quadrupled microwave signals are obtained with a driving signal of 250 MHz. In addition, a 50-Mb/s binary amplitude coded 1-GHz microwave signal is also successfully generated.

  13. Light induced modulation instability of surfaces under intense illumination

    SciTech Connect

    Burlakov, V. M. Goriely, A.; Foulds, I.

    2013-12-16

    We show that a flat surface of a polymer in rubber state illuminated with intense electromagnetic radiation is unstable with respect to periodic modulation. Initial periodic perturbation is amplified due to periodic thermal expansion of the material heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore, it is not related to the well-known laser induced periodic structures on polymer surfaces but may contribute to their formation and to other phenomena of light-matter interaction.

  14. Photonic aided bandpass sampling in coherent phase modulated radio-over-fiber links

    NASA Astrophysics Data System (ADS)

    Cao, Minghua; Li, Jianqiang; Dai, Jian; Dai, Yitang; Yin, Feifei; Zhou, Yue; Xu, Kun

    2016-06-01

    We have experimentally presented a digital coherent receiver employing photonic aided bandpass sampling technology for phase-modulated radio-over-fiber (RoF) links. An optical intensity modulator (IM) is utilized as the bandpass sampler which performs encoded on-off keyed pulse sequence on the optical local oscillator. Quaternary Phase Shift Keying (QPSK) modulated data signal with 20 MHz bandwidth at 5.2 GHz, 10.2 GHz and 15.2 GHz RF carrier frequency is experimentally demonstrated to be successfully detected by using balanced photodiodes (BPDs) with only 800 MHz analog bandwidth. It demonstrates that the required analog bandwidth of BPDs and ADCs can be dramatically reduced in a direct sampled coherent RoF communications system.

  15. Thomson scattering of polarized photons in an intense laser beam

    SciTech Connect

    Byung Yunn

    2006-02-21

    We present a theoretical analysis of the Thomson scattering of linearly and circularly polarized photons from a pulsed laser by electrons. The analytical expression for the photon distribution functions presented in this paper should be useful to designers of Thomson scattering experiments.

  16. Solar activity and modulation of the cosmic ray intensity

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.; Olmsted, C.; Lockwood, J. A.

    1985-01-01

    Since its discovery by Forbush (1954), the 11-year cycle modulation of the cosmic ray intensity has been studied extensively. Bowe and Hatton (1982) obtained a well-behaved transfer function F between the solar activity S and the cosmic ray intensity modulation Io-I. They suggested that the 11-year variation for sunspot cycle 20 can be attributed to the modulating effect of solar flare-induced shocks propagating through the heliosphere. The cosmic ray intensity in the absence of solar activity is denoted by Io, while I denotes the observed intensity. Bowe and Hatton infer that the boundary of the heliosphere is located at a distance of 70-90 AU. Since their conclusion is of great importance in understanding the mechanism of the 11-year modulation, the present investigation is concerned with a repetition of their study for two cycles, taking into account the use of a slightly modified method. The obtained results confirm the conclusions reached by Bowe and Hatton that there is a well-behaved transfer function for solar flares.

  17. Performance of single-photon-counting PILATUS detector modules

    PubMed Central

    Kraft, P.; Bergamaschi, A.; Broennimann, Ch.; Dinapoli, R.; Eikenberry, E. F.; Henrich, B.; Johnson, I.; Mozzanica, A.; Schlepütz, C. M.; Willmott, P. R.; Schmitt, B.

    2009-01-01

    PILATUS is a silicon hybrid pixel detector system, operating in single-photon-counting mode, that has been developed at the Paul Scherrer Institut for the needs of macromolecular crystallography at the Swiss Light Source (SLS). A calibrated PILATUS module has been characterized with monochromatic synchrotron radiation. The influence of charge sharing on the count rate and the overall energy resolution of the detector were investigated. The dead-time of the system was determined using the attenuated direct synchrotron beam. A single module detector was also tested in surface diffraction experiments at the SLS, whereby its performance regarding fluorescence suppression and saturation tolerance were evaluated, and have shown to greatly improve the sensitivity, reliability and speed of surface diffraction data acquisition. PMID:19395800

  18. High Pressure CPT Signals using Intensity Modulated Light

    NASA Astrophysics Data System (ADS)

    Post, Amber; Jau, Yuan-Yu; Miron, Eli; Romalis, Michael; Kuzma, Nicholas; Happer, William

    2004-05-01

    Coherent Population Trapping (CPT) is a promising technique for use in miniature atomic clocks, since it uses modulated light to detect clock resonances rather than microwaves. This method typically uses frequency-modulated light to probe cells with low buffer gas pressure, in which the ground-state hyperfine structure is clearly resolved. However, conventional frequency-modulated CPT fails at the higher pressures needed to inhibit wall collisions in miniature cells. We present theory and supporting experimental results of high-pressure CPT signals using intensity-modulated light. Circularly polarized light tuned to the Rb D1 line traps most of the atoms in the F=2, m_F=2, where the microwave ``end resonance"^2 is excited. We will show experimental data and briefly discuss linewidth broadening mechanisms. 2 Y.-Y. Jau, A. B. Post, N. N. Kuzma, et al., Phys. Rev. Lett. (in press, 2004).

  19. Theory of phonon-modified quantum dot photoluminescence intensity in structured photonic reservoirs.

    PubMed

    Roy-Choudhury, Kaushik; Hughes, Stephen

    2015-04-15

    The spontaneous emission rate of a quantum dot coupled to a structured photonic reservoir is determined by the frequency dependence of its local density of photon states. Through phonon-dressing, a breakdown of Fermi's golden rule can occur for certain photonic structures whose photon decay time becomes comparable to the longitudinal acoustic phonon decay times. We present a polaron master equation model to calculate the photoluminescence intensity from a coherently excited quantum dot coupled to a structured photonic reservoir. We consider examples of a semiconductor microcavity and a coupled cavity waveguide, and show clear photoluminescence intensity spectral features that contain unique signatures of the interplay between phonon and photon bath coupling. PMID:25872087

  20. The clinical potential of high energy, intensity and energy modulated electron beams optimized by simulated annealing for conformal radiation therapy

    NASA Astrophysics Data System (ADS)

    Salter, Bill Jean, Jr.

    Purpose. The advent of new, so called IVth Generation, external beam radiation therapy treatment machines (e.g. Scanditronix' MM50 Racetrack Microtron) has raised the question of how the capabilities of these new machines might be exploited to produce extremely conformal dose distributions. Such machines possess the ability to produce electron energies as high as 50 MeV and, due to their scanned beam delivery of electron treatments, to modulate intensity and even energy, within a broad field. Materials and methods. Two patients with 'challenging' tumor geometries were selected from the patient archives of the Cancer Therapy and Research Center (CTRC), in San Antonio Texas. The treatment scheme that was tested allowed for twelve, energy and intensity modulated beams, equi-spaced about the patient-only intensity was modulated for the photon treatment. The elementary beams, incident from any of the twelve allowed directions, were assumed parallel, and the elementary electron beams were modeled by elementary beam data. The optimal arrangement of elementary beam energies and/or intensities was optimized by Szu-Hartley Fast Simulated Annealing Optimization. Optimized treatment plans were determined for each patient using both the high energy, intensity and energy modulated electron (HIEME) modality, and the 6 MV photon modality. The 'quality' of rival plans were scored using three different, popular objective functions which included Root Mean Square (RMS), Maximize Dose Subject to Dose and Volume Limitations (MDVL - Morrill et. al.), and Probability of Uncomplicated Tumor Control (PUTC) methods. The scores of the two optimized treatments (i.e. HIEME and intensity modulated photons) were compared to the score of the conventional plan with which the patient was actually treated. Results. The first patient evaluated presented a deeply located target volume, partially surrounding the spinal cord. A healthy right kidney was immediately adjacent to the tumor volume, separated

  1. High-speed coherent silicon modulator module using photonic integrated circuits: from circuit design to packaged module

    NASA Astrophysics Data System (ADS)

    Bernabé, S.; Olivier, S.; Myko, A.; Fournier, M.; Blampey, B.; Abraham, A.; Menezo, S.; Hauden, J.; Mottet, A.; Frigui, K.; Ngoho, S.; Frigui, B.; Bila, S.; Marris-Morini, D.; Pérez-Galacho, D.; Brindel, P.; Charlet, G.

    2016-05-01

    Silicon photonics technology is an enabler for the integration of complex circuits on a single chip, for various optical link applications such as routing, optical networks on chip, short range links and long haul transmitters. Quadrature Phase Shift Keying (QPSK) transmitters is one of the typical circuits that can be achieved using silicon photonics integrated circuits. The achievement of 25GBd QPSK transmitter modules requires several building blocks to be optimized: the pn junction used to build a BPSK (Binary Shift Phase Keying) modulator, the RF access and the optical interconnect at the package level. In this paper, we describe the various design steps of a BPSK module and the related tests that are needed at every stage of the fabrication process.

  2. An arc-sequencing algorithm for intensity modulated arc therapy

    SciTech Connect

    Shepard, D. M.; Cao, D.; Afghan, M. K. N.; Earl, M. A.

    2007-02-15

    Intensity modulated arc therapy (IMAT) is an intensity modulated radiation therapy delivery technique originally proposed as an alternative to tomotherapy. IMAT uses a series of overlapping arcs to deliver optimized intensity patterns from each beam direction. The full potential of IMAT has gone largely unrealized due in part to a lack of robust and commercially available inverse planning tools. To address this, we have implemented an IMAT arc-sequencing algorithm that translates optimized intensity maps into deliverable IMAT plans. The sequencing algorithm uses simulated annealing to simultaneously optimize the aperture shapes and weights throughout each arc. The sequencer enforces the delivery constraints while minimizing the discrepancies between the optimized and sequenced intensity maps. The performance of the algorithm has been tested for ten patient cases (3 prostate, 3 brain, 2 head-and-neck, 1 lung, and 1 pancreas). Seven coplanar IMAT plans were created using an average of 4.6 arcs and 685 monitor units. Additionally, three noncoplanar plans were created using an average of 16 arcs and 498 monitor units. The results demonstrate that the arc sequencer can provide efficient and highly conformal IMAT plans. An average sequencing time of approximately 20 min was observed.

  3. A simple intensity modulation based fiber-optic accelerometer

    NASA Astrophysics Data System (ADS)

    Guozhen, Yao; Yongqian, Li; Zhi, Yang

    2016-05-01

    A fiber-optic accelerometer with simple structure and high performance based on intensity modulation is proposed. Using only a length of single mode fiber compressed by a cantilever, the intensity of reflected light is modulated by the vibration acceleration applied to it. The effects of the fiber location, the dimension parameters of the cantilever on frequency response and sensitivity are investigated. The experimental results demonstrate that the accelerometer has a flat frequency response over a 4700 Hz bandwidth and a sensitivity of 21.24 mV/g with a cantilever dimension of 30 × 8 × 1.6 mm3 and a distance of 5 mm between the fiber location and the suspended cantilever end; the coefficient of determination is better than 0.999. In addition, the effect of temperature and the stability of the sensing system are investigated.

  4. Intensity-modulated radiotherapy—what is it?

    PubMed Central

    Taylor, A; Powell, M E B

    2004-01-01

    Intensity-modulated radiotherapy (IMRT) is one of the most important recent developments in oncology. It enables precise conformation of the radiation dose to the target volume. It has the potential to significantly reduce long-term morbidity and improve local control. This article explains the basic principles of IMRT in comparison to other planning techniques. The current clinical data are presented and future lines of research are discussed. PMID:18250011

  5. Time domain referencing in intensity modulation fiber optic sensing systems

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory

    1986-01-01

    Intensity modulation sensors are classified by the way in which the reference and signal channels are separated: in space, wavelength, or time domains. To implement the time-domain referencing, different types of fiber-optic loops have been used. A pulse of short duration sent into the loop results in a series of pulses of different amplitudes. The information about the measured parameter is retrieved from the relative amplitudes of pulses in the same train.

  6. Tunable coherence-free microwave photonic bandpass filter based on double cross gain modulation technique.

    PubMed

    Chan, Erwin H W

    2012-10-01

    A tunable, coherence-free, high-resolution microwave photonic bandpass filter, which is compatible to be inserted in a conventional fiber optic link, is presented. It is based on using two cross gain modulation based wavelength converters in a recursive loop. The double cross gain modulation technique solves the semiconductor optical amplifier facet reflection problem in the conventional recursive structure; hence the new microwave photonic signal processor has no coherent interference and no phase-induced intensity noise. It allows arbitrary narrow-linewidth telecommunication-type lasers to be used while enabling stable filter operation to be realized. The filter passband frequency can be tuned by using a wavelength tunable laser and a wavelength dependent time delay component. Experimental results demonstrate robust high-resolution bandpass filter operation with narrow-linewidth sources, no phase-induced intensity noise and a high signal-to-noise ratio performance. Tunable coherence-free operation of the high-resolution bandpass filter is also demonstrated. PMID:23188262

  7. Photon-counting 1.0 GHz-phase-modulation fluorometer

    SciTech Connect

    Mizuno, T.; Nakao, S.; Mizutani, Y.; Iwata, T.

    2015-04-15

    We have constructed an improved version of a photon-counting phase-modulation fluorometer (PC-PMF) with a maximum modulation frequency of 1.0 GHz, where a phase domain measurement is conducted with a time-correlated single-photon-counting electronics. While the basic concept of the PC-PMF has been reported previously by one of the authors, little attention has been paid to its significance, other than its weak fluorescence measurement capability. Recently, we have recognized the importance of the PC-PMF and its potential for fluorescence lifetime measurements. One important aspect of the PC-PMF is that it enables us to perform high-speed measurements that exceed the frequency bandwidths of the photomultiplier tubes that are commonly used as fluorescence detectors. We describe the advantages of the PC-PMF and demonstrate its usefulness based on fundamental performance tests. In our new version of the PC-PMF, we have used a laser diode (LD) as an excitation light source rather than the light-emitting diode that was used in the primary version. We have also designed a simple and stable LD driver to modulate the device. Additionally, we have obtained a sinusoidal histogram waveform that has multiple cycles within a time span to be measured, which is indispensable for precise phase measurements. With focus on the fluorescence intensity and the resolution time, we have compared the performance of the PC-PMF with that of a conventional PMF using the analogue light detection method.

  8. High-security communication by coherence modulation at the photon-counting level.

    PubMed

    Rhodes, William T; Boughanmi, Abdellatif; Moreno, Yezid Torres

    2016-05-20

    We show that key-specified interferometer path-length difference modulation (often referred to as coherence modulation), operating in the photon-counting regime with a broadband source, can provide a quantifiably high level of physics-guaranteed security for binary signal transmission. Each signal bit is associated with many photocounts, perhaps numbering in the thousands. Of great importance, the presence of an eavesdropper can be quickly detected. We first review the operation of key-specified coherence modulation at high light levels, illustrating by means of an example its lack of security against attack. We then show, using the same example, that, through the reduction of light intensities to photon-counting levels, a high level of security can be attained. A particular attack on the system is analyzed to demonstrate the quantifiability of the scheme's security, and various remaining research issues are discussed. A potential weakness of the scheme lies in a possible vulnerability to light amplification by an attacker. PMID:27411120

  9. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording

    PubMed Central

    Li, Xiangping; Zhang, Qiming; Chen, Xi; Gu, Min

    2013-01-01

    Graphene oxides (GOs) have emerged as precursors offering the potential of a cost-effective and large-scale production of graphene-based materials. Despite that their intrinsic fluorescence property has already brought interest of researchers for optical applications, to date, refractive-index modulation as one of the fundamental aspects of optical properties of GOs has received less attention. Here we reported on a giant refractive-index modulation on the order of 10−2 to 10−1, accompanied by a fluorescence intensity change, through the two-photon reduction of GOs. These features enabled a mechanism for multimode optical recording with the fluorescence contrast and the hologram-encoded refractive-index modulation in GO-dispersed polymers for security-enhanced high-capacity information technologies. Our results show that GO-polymer composites may provide a new material platform enabling flexible micro-/nano-photonic information devices. PMID:24085266

  10. Self-phase modulation of femtosecond pulses in hollow photonic-crystal fibres

    SciTech Connect

    Konorov, Stanislav O; Zheltikov, Aleksei M; Sidorov-Biryukov, D A; Bugar, I; Chorvat, D J; Beloglazov, V I; Skibina, N B; Shcherbakov, Andrei V; Chorvat, D; Mel'nikov, L A

    2004-01-31

    Self-phase modulation of femtosecond laser pulses in hollow-core photonic-crystal fibres is experimentally studied. Photonic-crystal fibres allowing single-mode waveguide regimes of nonlinear-optical interactions to be implemented with maximum transmission for 800-nm femtosecond pulses are designed and fabricated. A radical enhancement of self-phase modulation is demonstrated for submicrojoule femtosecond pulses of Ti:sapphire-laser radiation propagating through hollow photonic-crystal fibres. (optical fibres)

  11. Plasma-induced asymmetric self-phase modulation and modulational instability in gas-filled hollow-core photonic crystal fibers.

    PubMed

    Saleh, Mohammed F; Chang, Wonkeun; Travers, John C; Russell, Philip St J; Biancalana, Fabio

    2012-09-14

    We study theoretically the propagation of relatively long pulses with ionizing intensities in a hollow-core photonic crystal fiber filled with a Raman-inactive noble gas. Because of photoionization, an extremely asymmetric self-phase modulation and a new kind of "universal" plasma-induced modulational instability appear in both normal and anomalous dispersion regions. We also show that it is possible to spontaneously generate a plasma-induced continuum of blueshifting solitons, opening up new possibilities for pushing supercontinuum generation towards shorter and shorter wavelengths. PMID:23005629

  12. Photonic second-order duty-cycle modulator

    NASA Astrophysics Data System (ADS)

    Costanzo-Caso, Pablo A.; Reeves, Erin; Jin, Yiye; Granieri, Sergio; Siahmakoun, Azad

    2011-09-01

    The delta sigma modulator (DSM) is a device which transforms the amplitude information of an analog input signal to the duty cycle and frequency of a binary output. This device, typically employed in oversampled analog-to-digital converters, is based on a feedback loop which includes at least one integrator and one quantizer in the forward path. In this paper, a novel photonic second-order DSM is proposed and experimentally demonstrated. The system is composed of two inverted leaky integrator and one electro-optic quantizer. The maximum input frequency is around 2 MHz, limited by the fiber length of the accumulator and feedback loops, and the quantizer rise/fall times. The system is characterized at different input frequencies and waveforms (sinusoidal and saw tooth) to analyze the modulator performance and linearity. The binary output is acquired, processed and demodulated using a personal computer, in order to reconstruct the input analog signal. The reported fiber-optic DSM is very promising for future integration increasing the operation frequency up to GHz range.

  13. The Velocity of Light Intensity Increase Modulates the Photoprotective Response in Coastal Diatoms

    PubMed Central

    Giovagnetti, Vasco; Flori, Serena; Tramontano, Ferdinando; Lavaud, Johann; Brunet, Christophe

    2014-01-01

    In aquatic ecosystems, the superimposition of mixing events to the light diel cycle exposes phytoplankton to changes in the velocity of light intensity increase, from diurnal variations to faster mixing-related ones. This is particularly true in coastal waters, where diatoms are dominant. This study aims to investigate if coastal diatoms differently activate the photoprotective responses, xanthophyll cycle (XC) and non-photochemical fluorescence quenching (NPQ), to cope with predictable light diel cycle and unpredictable mixing-related light variations. We compared the effect of two fast light intensity increases (simulating mixing events) with that of a slower increase (corresponding to the light diel cycle) on the modulation of XC and NPQ in the planktonic coastal diatom Pseudo-nitzschia multistriata. During each light treatment, the photon flux density (PFD) progressively increased from darkness to five peaks, ranging from 100 to 650 µmol photons m−2 s−1. Our results show that the diel cycle-related PFD increase strongly activates XC through the enhancement of the carotenoid biosynthesis and induces a moderate and gradual NPQ formation over the light gradient. In contrast, during mixing-related PFD increases, XC is less activated, while higher NPQ rapidly develops at moderate PFD. We observe that together with the light intensity and its increase velocity, the saturation light for photosynthesis (Ek) is a key parameter in modulating photoprotection. We propose that the capacity to adequately regulate and actuate alternative photoprotective ‘safety valves’ in response to changing velocity of light intensity increase further enhances the photophysiological flexibility of diatoms. This might be an evolutionary outcome of diatom adaptation to turbulent marine ecosystems characterized by unpredictable mixing-related light changes over the light diel cycle. PMID:25083713

  14. Optimization, delivery and evaluation of intensity modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Oliver, Michael R.

    Intensity modulated arc therapy (IMAT) is a radiation therapy technique whereby the shape of the cone beam of radiation changes as it rotates around the patient. This is in contrast to other more commonly delivered forms of advanced radiation therapy, Intensity Modulated Radiation Therapy (IMRT) or helical tomotherapy. IMRT is a radiation technique where a patient is treated with a cone beam of radiation from a number of fixed beam directions, where the shapes and weights of the radiation beams are varied and tomotherapy is treated with a fan beam of radiation that follows a helical trajectory. In this thesis two aspects of IMAT were investigated: optimization of treatment plans and delivery of plans in conjunction with and without respiratory motion management. Optimization of IMAT deliveries consisted of two studies. In the first study, an algorithm that uses dosimetric ray tracing to set multi-leaf collimator (MLC) positions then directly optimizes the MLC positions to create IMAT treatment plans with only beam shape variations was developed and tested in three phantom studies and a clinical case. The second study investigated variable angular dose rate deliveries to a concave target and assessed the optimization strategy including arc initialization strategy, angular sampling and delivery efficiency. IMAT delivery with and without respiratory gated radiation delivery was studied with dose measurement using radiographic film in a motion phantom. In addition, simulations based on delivered log files were used to confirm that motion management for IMAT is effective and within dosimetric tolerances. As a pilot test, plans from IMRT and tomotherapy for partial breast irradiation were first studied, comparing them to conventional treatments. An IMAT plan was generated for one patient, demonstrating feasibility and was compared with IMRT and tomotherapy. This thesis has introduced a new IMAT optimization algorithm with and without variable angular dose rate, applied

  15. Smartphone-based portable intensity modulated force sensor

    NASA Astrophysics Data System (ADS)

    Negri, Lucas H.; Schiefer, Elberth M.; Paterno, Aleksander S.; Muller, Marcia; Fabris, José L.

    2015-09-01

    This work proposes a low-cost force sensor, based on intensity modulation in an optical fibre. The transducer element is composed of a knot in a single mode fibre embedded to a silicone adhesive cuboid, and can be easily fabricated. A simple sensing scheme is devised by using a visible light source and a CCD camera of a smartphone, allowing implementation costs to be reduced. Experimental results have shown that the sensor presents a linear response and a standard uncertainty of 1:07N within the dynamical range from 0 to 30 N.

  16. Segmentation and leaf sequencing for intensity modulated arc therapy

    SciTech Connect

    Gladwish, Adam; Oliver, Mike; Craig, Jeff; Chen, Jeff; Bauman, Glenn; Fisher, Barbara; Wong, Eugene

    2007-05-15

    A common method in generating intensity modulated radiation therapy (IMRT) plans consists of a three step process: an optimized fluence intensity map (IM) for each beam is generated via inverse planning, this IM is then segmented into discrete levels, and finally, the segmented map is translated into a set of MLC apertures via a leaf sequencing algorithm. To date, limited work has been done on this approach as it pertains to intensity modulated arc therapy (IMAT), specifically in regards to the latter two steps. There are two determining factors that separate IMAT segmentation and leaf sequencing from their IMRT equivalents: (1) the intrinsic 3D nature of the intensity maps (standard 2D maps plus the angular component), and (2) that the dynamic multileaf collimator (MLC) constraints be met using a minimum number of arcs. In this work, we illustrate a technique to create an IMAT plan that replicates Tomotherapy deliveries by applying IMAT specific segmentation and leaf-sequencing algorithms to Tomotherapy output sinograms. We propose and compare two alternative segmentation techniques, a clustering method, and a bottom-up segmentation method (BUS). We also introduce a novel IMAT leaf-sequencing algorithm that explicitly takes leaf movement constraints into consideration. These algorithms were tested with 51 angular projections of the output leaf-open sinograms generated on the Hi-ART II treatment planning system (Tomotherapy Inc.). We present two geometric phantoms and 2 clinical scenarios as sample test cases. In each case 12 IMAT plans were created, ranging from 2 to 7 intensity levels. Half were generated using the BUS segmentation and half with the clustering method. We report on the number of arcs produced as well as differences between Tomotherapy output sinograms and segmented IMAT intensity maps. For each case one plan for each segmentation method is chosen for full Monte Carlo dose calculation (NumeriX LLC) and dose volume histograms (DVH) are calculated

  17. Intensity-Modulated Arc Therapy for Pediatric Posterior Fossa Tumors

    SciTech Connect

    Beltran, Chris; Gray, Jonathan; Merchant, Thomas E.

    2012-02-01

    Purpose: To compare intensity-modulated arc therapy (IMAT) to noncoplanar intensity-modulated radiation therapy (IMRT) in the treatment of pediatric posterior fossa tumors. Methods and Materials: Nine pediatric patients with posterior fossa tumors, mean age 9 years (range, 6-15 years), treated using IMRT were chosen for this comparative planning study because of their tumor location. Each patient's treatment was replanned to receive 54 Gy to the planning target volume (PTV) using five different methods: eight-field noncoplanar IMRT, single coplanar IMAT, double coplanar IMAT, single noncoplanar IMAT, and double noncoplanar IMAT. For each method, the dose to 95% of the PTV was held constant, and the doses to surrounding critical structures were minimized. The different plans were compared based on conformity, total linear accelerator dose monitor units, and dose to surrounding normal tissues, including the entire body, whole brain, temporal lobes, brainstem, and cochleae. Results: The doses to the target and critical structures for the various IMAT methods were not statistically different in comparison with the noncoplanar IMRT plan, with the following exceptions: the cochlear doses were higher and whole brain dose was lower for coplanar IMAT plans; the cochleae and temporal lobe doses were lower and conformity increased for noncoplanar IMAT plans. The advantage of the noncoplanar IMAT plan was enhanced by doubling the treatment arc. Conclusion: Noncoplanar IMAT results in superior treatment plans when compared to noncoplanar IMRT for the treatment of posterior fossa tumors. IMAT should be considered alongside IMRT when treatment of this site is indicated.

  18. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  19. Estimation of photoneutron intensities around radiotherapy linear accelerator 23-MV photon beam.

    PubMed

    Shweikani, R; Anjak, O

    2015-05-01

    CR-39 solid-state nuclear track detectors (SSNTDs) were used to study the variations of fast neutron relative intensities around a high-energy (23MV) linear accelerator (Varian 21EX) photon beam. The variations were determined on the patient plane at 0, 50, 100, 150 and 200cm from the isocenter of the photon beam. In addition, photoneutron intensities and distributions at isocenter level with field size of 40×40cm(2) at Source Axis Distance (SAD)=100cm around 23MV photon beam were also determined. The results showed that the photoneutron intensities decreased rapidly by increasing the distance from the center of the x-ray beam towards the periphery, for the open fields. PMID:25770858

  20. Control of two-photon double ionization of helium with intense chirped attosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Barmaki, S.; Lanteigne, P.; Laulan, S.

    2014-06-01

    We study the two-photon double-ionization process of the helium atom by solving numerically the nonrelativistic, time-dependent Schrödinger equation in its full dimensionality. We investigate with intense chirped attosecond laser pulses of 23.5-nm wavelength the two-photon absorption near and above the sequential threshold. We show how it is possible by adjusting the chirp parameter to control the electronic transitions inside the atom, thereby reinforcing or weakening the ionization process. Attosecond chirped laser pulses offer a promising way to probe and control the two-photon double ionization of helium when compared with attosecond transform-limited pulses.

  1. Effects of the plasma profiles on photon and pair production in ultrahigh intensity laser solid interaction

    SciTech Connect

    Tian, Y. X.; Jin, X. L. Yan, W. Z.; Li, J. Q.; Li, B.; Yu, J. Q.

    2015-12-15

    The model of photon and pair production in strong field quantum electrodynamics is implemented into our 1D3V particle-in-cell code with Monte Carlo algorithm. Using this code, the evolution of the particles in ultrahigh intensity laser (∼10{sup 23} W/cm{sup 2}) interaction with aluminum foil target is observed. Four different initial plasma profiles are considered in the simulations. The effects of initial plasma profiles on photon and pair production, energy spectra, and energy evolution are analyzed. The results imply that one can set an optimal initial plasma profile to obtain the desired photon distributions.

  2. Combined modulated electron and photon beams planned by a Monte-Carlo-based optimization procedure for accelerated partial breast irradiation

    NASA Astrophysics Data System (ADS)

    Atriana Palma, Bianey; Ureba Sánchez, Ana; Salguero, Francisco Javier; Arráns, Rafael; Míguez Sánchez, Carlos; Walls Zurita, Amadeo; Romero Hermida, María Isabel; Leal, Antonio

    2012-03-01

    The purpose of this study was to present a Monte-Carlo (MC)-based optimization procedure to improve conventional treatment plans for accelerated partial breast irradiation (APBI) using modulated electron beams alone or combined with modulated photon beams, to be delivered by a single collimation device, i.e. a photon multi-leaf collimator (xMLC) already installed in a standard hospital. Five left-sided breast cases were retrospectively planned using modulated photon and/or electron beams with an in-house treatment planning system (TPS), called CARMEN, and based on MC simulations. For comparison, the same cases were also planned by a PINNACLE TPS using conventional inverse intensity modulated radiation therapy (IMRT). Normal tissue complication probability for pericarditis, pneumonitis and breast fibrosis was calculated. CARMEN plans showed similar acceptable planning target volume (PTV) coverage as conventional IMRT plans with 90% of PTV volume covered by the prescribed dose (Dp). Heart and ipsilateral lung receiving 5% Dp and 15% Dp, respectively, was 3.2-3.6 times lower for CARMEN plans. Ipsilateral breast receiving 50% Dp and 100% Dp was an average of 1.4-1.7 times lower for CARMEN plans. Skin and whole body low-dose volume was also reduced. Modulated photon and/or electron beams planned by the CARMEN TPS improve APBI treatments by increasing normal tissue sparing maintaining the same PTV coverage achieved by other techniques. The use of the xMLC, already installed in the linac, to collimate photon and electron beams favors the clinical implementation of APBI with the highest efficiency.

  3. Chemical modulation of the ultra-weak photon emission from Saccharomyces cerevisiae and differentiated HL-60 cells

    NASA Astrophysics Data System (ADS)

    Červinková, Kateřina; Nerudová, Michaela; Hašek, Jiří; Cifra, Michal

    2015-01-01

    The ultra-weak photon emission (UPE) is a universal phenomenon common to all cells with active oxidative metabolism. Generally accepted mechanism of the origin of the ultra-weak photon emission considers reactions of radical or nonradical reactive oxygen species (ROS) with biomolecules such as lipids and proteins which lead to the formation of electron excited species. During the transition to the ground state the excess energy is released as a photon with a wavelength in the visible range of the electromagnetic spectrum. Since the intensity of the light is very low it is possible to be measured only by highly sensitive devices. We used Hamamatsu Photonics PMT module H7360-01 mounted into a light-tight chamber for the purposes of this work. The goal of our research is to delineate an origin of UPE from two model organisms; differentiated HL-60 cells (human promyelocytic leukemia) and yeast cells Saccharomyces cerevisiae. While the UPE from the yeast cells arises spontaneously during the growth without any external stimuli, UPE from HL-60 is induced by phorbol 12-myristate, 13-acetate (PMA). It is possible to modulate the UPE production by certain antioxidants which scavenge ROS formed during the metabolism (yeast cells) or respiratory burst (HL-60 cells). The experiments are focused on the description of effects caused by antioxidants. Several kinds of antioxidants (ascorbic acid, mannitol, glutathione) with different concentration were used and we studied the changes in the UPE intensities of and the temporal developments of the optical signal.

  4. Comparison of intensity modulated x-ray therapy and intensity modulated proton therapy for selective subvolume boosting: a phantom study

    NASA Astrophysics Data System (ADS)

    Flynn, R. T.; Barbee, D. L.; Mackie, T. R.; Jeraj, R.

    2007-10-01

    Selective subvolume boosting can theoretically improve tumour control probability while maintaining normal tissue complication probabilities similar to those of uniform dose distributions. In this work the abilities of intensity-modulated x-ray therapy (IMXT) and intensity-modulated proton therapy (IMPT) to deliver boosts to multiple subvolumes of varying size and proximities are compared in a thorough phantom study. IMXT plans were created using the step-and-shoot (IMXT-SAS) and helical tomotherapy (IMXT-HT) methods. IMPT plans were created with the spot scanning (IMPT-SS) and distal gradient tracking (IMPT-DGT) methods. IMPT-DGT is a generalization of the distal edge tracking method designed to reduce the number of proton beam spots required to deliver non-uniform dose distributions relative to IMPT-SS. The IMPT methods were delivered over both 180° and 360° arcs. The IMXT-SAS and IMPT-SS methods optimally satisfied the non-uniform dose prescriptions the least and the most, respectively. The IMPT delivery methods reduced the normal tissue integral dose by a factor of about 2 relative to the IMXT delivery methods, regardless of the delivery arc. The IMPT-DGT method reduced the number of proton beam spots by a factor of about 3 relative to the IMPT-SS method.

  5. Measurement-induced spatial modulation of spontaneous decay and photon arrival times

    NASA Astrophysics Data System (ADS)

    Zanthier, Joachim Von; Bastin, Thierry; Agarwal, Girish S.

    2006-12-01

    We report a way of manipulating the spontaneous emission process leading to a spatial modulation of spontaneous decay. The effect is observed in the case of coherently driven atoms separated by less than a transition wavelength. It is quantified by Glauber’s photon-photon second-order correlation function. We show that the photon arrival time, usually regarded as an entirely random process, depends not only on where a photon is detected but also on where a former photon had been recorded previously. Our results shed light on the unexpected consequences of state reduction and entanglement for the fundamental process of spontaneous emission.

  6. Study of the intensity noise and intensity modulation in a of hybrid soliton pulsed source

    SciTech Connect

    Dogru, Nuran; Oziazisi, M Sadetin

    2005-10-31

    The relative intensity noise (RIN) and small-signal intensity modulation (IM) of a hybrid soliton pulsed source (HSPS) with a linearly chirped Gaussian apodised fibre Bragg grating (FBG) are considered in the electric-field approximation. The HSPS is described by solving the dynamic coupled-mode equations. It is shown that consideration of the carrier density noise in the HSPS in addition to the spontaneous noise is necessary to analyse accurately noise in the mode-locked HSPS. It is also shown that the resonance peak spectral splitting (RPSS) of the IM near the frequency inverse to the round-trip time of light in the external cavity can be eliminated by selecting an appropriate linear chirp rate in the Gaussian apodised FBG. (laser applications and other topics in quantum electronics)

  7. Dosimetric advantages of intensity-modulated proton therapy for oropharyngeal cancer compared with intensity-modulated radiation: A case-matched control analysis.

    PubMed

    Holliday, Emma B; Kocak-Uzel, Esengul; Feng, Lei; Thaker, Nikhil G; Blanchard, Pierre; Rosenthal, David I; Gunn, G Brandon; Garden, Adam S; Frank, Steven J

    2016-01-01

    A potential advantage of intensity-modulated proton therapy (IMPT) over intensity-modulated (photon) radiation therapy (IMRT) in the treatment of oropharyngeal carcinoma (OPC) is lower radiation dose to several critical structures involved in the development of nausea and vomiting, mucositis, and dysphagia. The purpose of this study was to quantify doses to critical structures for patients with OPC treated with IMPT and compare those with doses on IMRT plans generated for the same patients and with a matched cohort of patients actually treated with IMRT. In this study, 25 patients newly diagnosed with OPC were treated with IMPT between 2011 and 2012. Comparison IMRT plans were generated for these patients and for additional IMRT-treated controls extracted from a database of patients with OPC treated between 2000 and 2009. Cases were matched based on the following criteria, in order: unilateral vs bilateral therapy, tonsil vs base of tongue primary, T-category, N-category, concurrent chemotherapy, induction chemotherapy, smoking status, sex, and age. Results showed that the mean doses to the anterior and posterior oral cavity, hard palate, larynx, mandible, and esophagus were significantly lower with IMPT than with IMRT comparison plans generated for the same cohort, as were doses to several central nervous system structures involved in the nausea and vomiting response. Similar differences were found when comparing dose to organs at risks (OARs) between the IMPT cohort and the case-matched IMRT cohort. In conclusion, these findings suggest that patients with OPC treated with IMPT may experience fewer and less severe side effects during therapy. This may be the result of decreased beam path toxicities with IMPT due to lower doses to several dysphagia, odynophagia, and nausea and vomiting-associated OARs. Further study is needed to evaluate differences in long-term disease control and chronic toxicity between patients with OPC treated with IMPT in comparison to those

  8. High intensity X/γ photon beams for nuclear physics and photonics

    NASA Astrophysics Data System (ADS)

    Serafini, L.; Alesini, D.; Bacci, N.; Bliss, N.; Cassou, K.; Curatolo, C.; Drebot, I.; Dupraz, K.; Giribono, A.; Petrillo, V.; Palumbo, L.; Vaccarezza, C.; Variola, A.; Zomer, F.

    2016-05-01

    In this manuscript we review the challenges of Compton backscattering sources in advancing photon beam performances in the 1 - 20 MeV energy range, underlining the design criteria bringing to maximum spectral luminosity and briefly describing the main achievements in conceiving and developing new devices (multi-bunch RF cavities and Laser recirculators) for the case of ELI-NP Gamma Beam System (ELI-NP-GBS).

  9. Intensity-modulated near-infrared spectroscopy: instrument design issues

    NASA Astrophysics Data System (ADS)

    Alford, Ken; Wickramasinghe, Yappa A.

    2000-05-01

    Tissue oxygenation instruments which rely on phase sensitive detection suffer form phase-amplitude crosstalk, i.e. the phase of the detected signal with respect to a reference signal is dependent on the average intensity of the light entering the photomultiplier tube (PMT). If an instrument that detects the phase of the scattered signal is to yield the phase accuracy required in order to provide useful clinical parameters, quantitative haemoglobin and oxy- haemoglobin concentrations (Hb), and (HbO2) and mixed arterial-venous saturation all sources of phase-amplitude effects must be understood. The phase-amplitude effect has in the past been attributed to the fact that the rise time of the detector decreases with increasing light intensity. In this work an additional phase-amplitude effect in intensity modulated near IR spectroscopy (IMNIRS) instrumentation is studied. The presence of a coherent interfering signal due to low level RF coupling at the detector output will corrupt the phase of the signal of interest and cause a phase-amplitude effect. Under certain conditions a relatively low level interfering RF signal can introduce a significant error in the slope of the phase per unit distance plot. A comparison between measured and modeled phase distortion is presented and ways to reduce the effect discussed. In addition to phase-amplitude effects, the final accuracy of the quantitative measurements made by an IMNIRS instrument depends heavily on the calibration. Calibration of the measured phase and the AC and DC components of the detected light must take into account distortions due to, (a) phase-amplitude crosstalk and system phase offset, (b) detector non-linearities, (c) variation in laser source intensity and phase with time and temperature, (d) optical probe light loss and (e) variations in detector sensitivity. Current instrument performance will be presented and discussed.

  10. The influence of angular misalignment on fixed-portal intensity modulated radiation therapy.

    PubMed

    Low, D A; Zhu, X R; Purdy, J A; Söderström, S

    1997-07-01

    A method has been developed to estimate potential dose errors due to linear accelerator angular setting misalignments of Intensity Modulated Radiation Therapy (IMRT) treatments. A first-order approximation to the dose error at a point is modeled as the dot product of the dose gradient and the shift vector of the point due to the rotational error. The analysis method is applied to a previously published set of optimized fluences for a 50 MV IMRT pelvis irradiation. Three of the published cases exhibiting a wide range of modulation are presented; a rectangular open field, a field optimized for a static multileaf collimator defining the portal outline coupled with a single broad bremsstrahlung profile modulation, and a fully modulated field using a physical modulator. To examine the energy dependence of angle setting errors, the study is repeated using the same fluence distributions, but with a dose-spread kernel appropriate for a 6 MV photon beam. The collimator angle error is set to 2 degree, and the dose error determined with both a centrally located isocenter and an isocenter chosen to model a split-field geometry. The dose error due to a 2 degree gantry setting error is assessed at a plane 10 cm distal to the isocenter. The mathematical form of the dose error due to couch motion is similar to the other two errors, so the dose error resulting from a couch angle missetting is not presented. The magnitude of the errors is largest for the 6 MV beam, while the volume encompassed by the errors is greater for the 50 MV beam. The gantry error yields the largest dose error values, with the 6 MV modulated case presenting dose errors of greater than 40%. PMID:9243475

  11. On-chip microwave photonic beamformer circuits operating with phase modulation and direct detection.

    PubMed

    Zhuang, Leimeng; Hoekman, Marcel; Taddei, Caterina; Leinse, Arne; Heideman, René G; Hulzinga, Adriaan; Verpoorte, Jaco; Oldenbeuving, Ruud M; van Dijk, Paulus W L; Boller, Klaus-J; Roeloffzen, Chris G H

    2014-07-14

    We propose and experimentally demonstrate the working principles of two novel microwave photonic (MWP) beamformer circuits operating with phase modulation (PM) and direct detection (DD). The proposed circuits incorporate two major signal processing functionalities, namely a broadband beamforming network employing ring resonator-based delay lines and an optical sideband manipulator that renders the circuit outputs equivalent to those of intensity-modulated MWP beamformers. These functionalities allow the system to employ low-circuit-complexity modulators and detectors, which brings significant benefits on the system construction cost and operation stability. The functionalities of the proposed MWP beamformer circuits were verified in experimental demonstrations performed on two sample circuits realized in Si(3)N(4)/SiO(2) waveguide technology. The measurements exhibit a 2 × 1 beamforming effect for an instantaneous RF transmission band of 3‒7 GHz, which is, to our best knowledge, the first verification of on-chip MWP beamformer circuits operating with PM and DD. PMID:25090522

  12. Decoy-state theory for the heralded single-photon source with intensity fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Zhang, Sheng-Li; Li, Hong-Wei; Yin, Zhen-Qiang; Zhao, Yi-Bo; Chen, Wei; Han, Zheng-Fu; Guo, Guang-Can

    2009-06-01

    The secure key rates of decoy-state quantum key distribution (QKD) using the heralded single-photon source (HSPS) are recalculated in the case of intensity fluctuations. By numerical simulations, we show that the HSPS is a good source for decoy-state QKD experiments not only because it has larger upper bound of transmission distance than the usual weak-coherent source (WCS) but also because it is more robust against intensity fluctuations than the WCS.

  13. New Dosimetry Technologies for Imrt (intensity Modulated Radio Therapy)

    NASA Astrophysics Data System (ADS)

    Piermattei, A.; Cilla, S.; Pepe, D.; Grimaldi, L.; Craus, M.; Fidanzio, A.; Azario, L.; Dell'Omo, C.; Pasciuti, K.; Viola, P.

    2005-02-01

    An approach to verify the intensity modulated radiation therapy (IMRT) using an anthropomorphic phantom is reported. Step and shoot IMRT was delivered to a Rando phantom and the portal dose computed by a treatment planning system (TPS) was verified by a linear array of liquid ion-chambers. The array was calibrated in terms of dose to water, and supplies dose profiles with a spatial resolution of 1mm. In general the comparison between the experimental portal dose profiles and those computed by the TPS, is needed to detect the inaccuracy sources as the approximation of the calculation algorithms, patient positioning, linac mechanical failures as the incorrect sequences of segment beams. Using a Rando phantom the accuracy level of the TPS algorithm that supplies the portal dose was determined by the γ-index.

  14. Flattening Filter-Free Beams in Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy for Sinonasal Cancer

    PubMed Central

    Huang, Bao-Tian

    2016-01-01

    Purpose To evaluate the dosimetric impacts of flattening filter-free (FFF) beams in intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) for sinonasal cancer. Methods For fourteen cases, IMRT and VMAT planning was performed using 6-MV photon beams with both conventional flattened and FFF modes. The four types of plans were compared in terms of target dose homogeneity and conformity, organ-at-risk (OAR) sparing, number of monitor units (MUs) per fraction, treatment time and pure beam-on time. Results FFF beams led to comparable target dose homogeneity, conformity, increased number of MUs and lower doses to the spinal cord, brainstem and normal tissue, compared with flattened beams in both IMRT and VMAT. FFF beams in IMRT resulted in improvements by up to 5.4% for sparing of the contralateral optic structures, with shortened treatment time by 9.5%. However, FFF beams provided comparable overall OAR sparing and treatment time in VMAT. With FFF mode, VMAT yielded inferior homogeneity and superior conformity compared with IMRT, with comparable overall OAR sparing and significantly shorter treatment time. Conclusions Using FFF beams in IMRT and VMAT is feasible for the treatment of sinonasal cancer. Our results suggest that the delivery mode of FFF beams may play an encouraging role with better sparing of contralateral optic OARs and treatment efficiency in IMRT, but yield comparable results in VMAT. PMID:26734731

  15. Influence of an externally modulated photonic link on a microwave communications system

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1994-01-01

    We analyze the influence of an externally modulated photonic link on the performance of a microwave communications system. From the analysis, we deduce limitations on the photocurrent, magnitude of the relaxation oscillation noise of the laser, third-order intercept point of the preamplifier, and other parameters in order for the photonic link to function according to the system specifications. Based on this, we outline a procedure for designing a photonic link that can be integrated in a system with minimal performance degradation.

  16. TH-A-BRE-01: The Status of Intensity Modulated Proton and Ion Therapy

    SciTech Connect

    Dong, L; Zhu, X; Unkelbach, J; Schulte, R

    2014-06-15

    IMRT with photons has become a radiation therapy standard of care for many cancer treatment sites. The situation is quite different with intensity modulated particle (protons and ion) radiation therapy (IMPT). With the rapid development of beam scanning techniques and many of the newer proton facilities exclusively offering active beam scanning as their radiation delivery technique, it is timely to give an update on the status and challenges of IMPT. The leading principle in IMPT is to aim at the target from several, not necessarily coplanar, directions with multiple pencil beams that are modulated in their intensity and adjusted in their energy such that a desired dose distribution or, more generally, a desired bio-effective dose distribution is achieved. Different from low-LET photons, the varying relative biological effectiveness (RBE) along the beam path adds an additional dimension to the treatment planning process and will require biophysical modeling at least for carbon ion therapy. IMPT involves computationally challenging tasks, yet it needs to be very fast in order to be clinically relevant. To make IMPT computationally tractable, robust and efficient optimization methods are required. Lastly, IMPT planning is very sensitive to accurate knowledge of relative stopping and scattering powers of the intervening tissues as well as intra- and inter-fraction motion. Robust planning methods are being developed in order to obtain IMPT plans that are less sensitive against such uncertainties. This therapy symposium will present an update on the current status and emerging developments of IMPT from the medical physics perspective. Learning Objectives: Become familiar with current delivery techniques for IMPT and their limitations. Understand the basics of dose calculational algorithms and commissioning of IMPT. Learn how to assess the accuracy of planning and delivery of IMPT treatments. Get an overview of currently used and emerging optimization techniques. Learn

  17. Intensity-modulated radiotherapy in the treatment of breast cancer.

    PubMed

    Dayes, I; Rumble, R B; Bowen, J; Dixon, P; Warde, P

    2012-09-01

    Intensity-modulated radiotherapy (IMRT) is a newer method of radiotherapy that uses beams with multiple intensity levels for any single beam, allowing concave dose distributions and tighter margins than those possible using conventional radiotherapy. IMRT is ideal for treating complex treatment volumes and avoiding close proximity organs at risk that may be dose limiting and provides increased tumour control through an escalated dose and reduces normal tissue complications through organ at risk sparing. Given the potential advantages of IMRT and the availability of IMRT-enabled treatment planning systems and linear accelerators, IMRT has been introduced in a number of disease sites. This systematic review examined the evidence for IMRT in the treatment of breast cancer to quantify the potential benefits of this new technology and to make recommendations for radiation treatment programmes considering adopting this technique. Providing that avoidance of acute adverse effects associated with radiation is an outcome of interest, then IMRT is recommended over tangential radiotherapy after breast-conserving surgery, based on a review of six published reports including 2012 patients. There were insufficient data to recommend IMRT over standard tangential radiotherapy for reasons of oncological outcomes or late toxicity. Future research should focus on studies with longer follow-up and provide data on late toxicity and disease recurrence rates. PMID:22748561

  18. Pulse Width Modulation Applied to Olfactory Stimulation for Intensity Tuning.

    PubMed

    Andrieu, Patrice; Billot, Pierre-Édouard; Millot, Jean-Louis; Gharbi, Tijani

    2015-01-01

    For most olfactometers described in the literature, adjusting olfactory stimulation intensity involves modifying the dilution of the odorant in a neutral solution (water, mineral, oil, etc.), the dilution of the odorant air in neutral airflow, or the surface of the odorant in contact with airflow. But, for most of these above-mentioned devices, manual intervention is necessary for adjusting concentration. We present in this article a method of controlling odorant concentration via a computer which can be implemented on even the most dynamic olfactometers. We used Pulse Width Modulation (PWM), a technique commonly used in electronic or electrical engineering, and we have applied it to odor delivery. PWM, when applied to odor delivery, comprises an alternative presentation of odorant air and clean air at a high frequency. The cycle period (odor presentation and rest) is 200 ms. In order to modify odorant concentration, the ratio between the odorant period and clean air presentation during a cycle is modified. This ratio is named duty cycle. Gas chromatography measurements show that this method offers a range of mixing factors from 33% to 100% (continuous presentation of odor). Proof of principle is provided via a psychophysical experiment. Three odors (isoamyl acetate, butanol and pyridine) were presented to twenty subjects. Each odor was delivered three times with five values of duty cycles. After each stimulation, the subjects were asked to estimate the intensity of the stimulus on a 10 point scale, ranging from 0 (undetectable) to 9 (very strong). Results show a main effect of the duty cycles on the intensity ratings for all tested odors. PMID:26710120

  19. Pulse Width Modulation Applied to Olfactory Stimulation for Intensity Tuning

    PubMed Central

    Millot, Jean-Louis; Gharbi, Tijani

    2015-01-01

    For most olfactometers described in the literature, adjusting olfactory stimulation intensity involves modifying the dilution of the odorant in a neutral solution (water, mineral, oil, etc.), the dilution of the odorant air in neutral airflow, or the surface of the odorant in contact with airflow. But, for most of these above-mentioned devices, manual intervention is necessary for adjusting concentration. We present in this article a method of controlling odorant concentration via a computer which can be implemented on even the most dynamic olfactometers. We used Pulse Width Modulation (PWM), a technique commonly used in electronic or electrical engineering, and we have applied it to odor delivery. PWM, when applied to odor delivery, comprises an alternative presentation of odorant air and clean air at a high frequency. The cycle period (odor presentation and rest) is 200 ms. In order to modify odorant concentration, the ratio between the odorant period and clean air presentation during a cycle is modified. This ratio is named duty cycle. Gas chromatography measurements show that this method offers a range of mixing factors from 33% to 100% (continuous presentation of odor). Proof of principle is provided via a psychophysical experiment. Three odors (isoamyl acetate, butanol and pyridine) were presented to twenty subjects. Each odor was delivered three times with five values of duty cycles. After each stimulation, the subjects were asked to estimate the intensity of the stimulus on a 10 point scale, ranging from 0 (undetectable) to 9 (very strong). Results show a main effect of the duty cycles on the intensity ratings for all tested odors. PMID:26710120

  20. Random and systematic beam modulator errors in dynamic intensity modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Parsai, Homayon; Cho, Paul S.; Phillips, Mark H.; Giansiracusa, Robert S.; Axen, David

    2003-05-01

    This paper reports on the dosimetric effects of random and systematic modulator errors in delivery of dynamic intensity modulated beams. A sliding-widow type delivery that utilizes a combination of multileaf collimators (MLCs) and backup diaphragms was examined. Gaussian functions with standard deviations ranging from 0.5 to 1.5 mm were used to simulate random positioning errors. A clinical example involving a clival meningioma was chosen with optic chiasm and brain stem as limiting critical structures in the vicinity of the tumour. Dose calculations for different modulator fluctuations were performed, and a quantitative analysis was carried out based on cumulative and differential dose volume histograms for the gross target volume and surrounding critical structures. The study indicated that random modulator errors have a strong tendency to reduce minimum target dose and homogeneity. Furthermore, it was shown that random perturbation of both MLCs and backup diaphragms in the order of σ = 1 mm can lead to 5% errors in prescribed dose. In comparison, when MLCs or backup diaphragms alone was perturbed, the system was more robust and modulator errors of at least σ = 1.5 mm were required to cause dose discrepancies greater than 5%. For systematic perturbation, even errors in the order of +/-0.5 mm were shown to result in significant dosimetric deviations.

  1. Planning With Intensity-Modulated Radiotherapy and Tomotherapy to Modulate Dose Across Breast to Reflect Recurrence Risk (IMPORT High Trial)

    SciTech Connect

    Donovan, Ellen M.; Ciurlionis, Laura; Fairfoul, Jamie; James, Hayley; Mayles, Helen; Manktelow, Sophie; Raj, Sanjay; Tsang, Yat; Tywman, Nicola; Yarnold, John; Coles, Charlotte

    2011-03-15

    Purpose: To establish planning solutions for a concomitant three-level radiation dose distribution to the breast using linear accelerator- or tomotherapy-based intensity-modulated radiotherapy (IMRT), for the U.K. Intensity Modulated and Partial Organ (IMPORT) High trial. Methods and Materials: Computed tomography data sets for 9 patients undergoing breast conservation surgery with implanted tumor bed gold markers were used to prepare three-level dose distributions encompassing the whole breast (36 Gy), partial breast (40 Gy), and tumor bed boost (48 or 53 Gy) treated concomitantly in 15 fractions within 3 weeks. Forward and inverse planned IMRT and tomotherapy were investigated as solutions. A standard electron field was compared with a photon field arrangement encompassing the tumor bed boost volume. The out-of-field doses were measured for all methods. Results: Dose-volume constraints of volume >90% receiving 32.4 Gy and volume >95% receiving 50.4 Gy for the whole breast and tumor bed were achieved. The constraint of volume >90% receiving 36 Gy for the partial breast was fulfilled in the inverse IMRT and tomotherapy plans and in 7 of 9 cases of a forward planned IMRT distribution. An electron boost to the tumor bed was inadequate in 8 of 9 cases. The IMRT methods delivered a greater whole body dose than the standard breast tangents. A contralateral lung volume >2.5 Gy was increased in the inverse IMRT and tomotherapy plans, although it did not exceed the constraint. Conclusion: We have demonstrated a set of widely applicable solutions that fulfilled the stringent clinical trial requirements for the delivery of a concomitant three-level dose distribution to the breast.

  2. Two-photon double ionization of neon using an intense attosecond pulse train

    NASA Astrophysics Data System (ADS)

    Manschwetus, B.; Rading, L.; Campi, F.; Maclot, S.; Coudert-Alteirac, H.; Lahl, J.; Wikmark, H.; Rudawski, P.; Heyl, C. M.; Farkas, B.; Mohamed, T.; L'Huillier, A.; Johnsson, P.

    2016-06-01

    We present a demonstration of two-photon double ionization of neon using an intense extreme ultraviolet (XUV) attosecond pulse train (APT) in a photon energy regime where both direct and sequential mechanisms are allowed. For an APT generated through high-order harmonic generation (HHG) in argon we achieve a total pulse energy close to 1 μ J , a central energy of 35 eV, and a total bandwidth of ˜30 eV. The APT is focused by broadband optics in a neon gas target to an intensity of 3 ×1012W cm-2 . By tuning the photon energy across the threshold for the sequential process the double ionization signal can be turned on and off, indicating that the two-photon double ionization predominantly occurs through a sequential process. The demonstrated performance opens up possibilities for future XUV-XUV pump-probe experiments with attosecond temporal resolution in a photon energy range where it is possible to unravel the dynamics behind direct versus sequential double ionization and the associated electron correlation effects.

  3. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    NASA Astrophysics Data System (ADS)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing

  4. Clinical Implementation of Intensity Modulated Proton Therapy for Thoracic Malignancies

    SciTech Connect

    Chang, Joe Y.; Li, Heng; Zhu, X. Ronald; Liao, Zhongxing; Zhao, Lina; Liu, Amy; Li, Yupeng; Sahoo, Narayan; Poenisch, Falk; Gomez, Daniel R.; Wu, Richard; Gillin, Michael; Zhang, Xiaodong

    2014-11-15

    Purpose: Intensity modulated proton therapy (IMPT) can improve dose conformality and better spare normal tissue over passive scattering techniques, but range uncertainties complicate its use, particularly for moving targets. We report our early experience with IMPT for thoracic malignancies in terms of motion analysis and management, plan optimization and robustness, and quality assurance. Methods and Materials: Thirty-four consecutive patients with lung/mediastinal cancers received IMPT to a median 66 Gy(relative biological equivalence [RBE]). All patients were able to undergo definitive radiation therapy. IMPT was used when the treating physician judged that IMPT conferred a dosimetric advantage; all patients had minimal tumor motion (<5 mm) and underwent individualized tumor-motion dose-uncertainty analysis and 4-dimensional (4D) computed tomographic (CT)-based treatment simulation and motion analysis. Plan robustness was optimized by using a worst-case scenario method. All patients had 4D CT repeated simulation during treatment. Results: IMPT produced lower mean lung dose (MLD), lung V{sub 5} and V{sub 20}, heart V{sub 40}, and esophageal V{sub 60} than did IMRT (P<.05) and lower MLD, lung V{sub 20}, and esophageal V{sub 60} than did passive scattering proton therapy (PSPT) (P<.05). D{sub 5} to the gross tumor volume and clinical target volume was higher with IMPT than with intensity modulated radiation therapy or PSPT (P<.05). All cases were analyzed for beam-angle-specific motion, water-equivalent thickness, and robustness. Beam angles were chosen to minimize the effect of respiratory motion and avoid previously treated regions, and the maximum deviation from the nominal dose-volume histogram values was kept at <5% for the target dose and met the normal tissue constraints under a worst-case scenario. Patient-specific quality assurance measurements showed that a median 99% (range, 95% to 100%) of the pixels met the 3% dose/3 mm distance criteria for the

  5. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    SciTech Connect

    Osa, Etin-Osa O.; DeWyngaert, Keith; Roses, Daniel; Speyer, James; Guth, Amber; Axelrod, Deborah; Fenton Kerimian, Maria; Goldberg, Judith D.; Formenti, Silvia C.

    2014-07-15

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm{sup 3}, mean 19.65 cm{sup 3}. In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm{sup 3}, mean 1.59 cm{sup 3}. There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and

  6. Benchmarking Dosimetric Quality Assessment of Prostate Intensity-Modulated Radiotherapy

    SciTech Connect

    Senthi, Sashendra; Gill, Suki S.; Haworth, Annette; Kron, Tomas; Cramb, Jim; Rolfo, Aldo; Thomas, Jessica; Duchesne, Gillian M.; Hamilton, Christopher H.; Joon, Daryl Lim; Bowden, Patrick; Foroudi, Farshad

    2012-02-01

    Purpose: To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. Patients and Methods: We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V{sub 95%} and V{sub 100%}, respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. Results: The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V{sub 95%}, PTV sigma index, and conformity number. The mean PTV V{sub 95%} was 92.5% (95% confidence interval, 91.3-93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90-2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76-0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p < .0001). The planning system independently influenced homogeneity (p = .038) and conformity (p = .021). The treatment date independently influenced the PTV V{sub 95%} only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Conclusion: Our study has benchmarked measures

  7. Production of heralded pure single photons from imperfect sources using cross-phase-modulation

    SciTech Connect

    Konrad, Thomas; Nock, Michael; Scherer, Artur; Audretsch, Juergen

    2006-09-15

    Realistic single-photon sources do not generate single photons with certainty. Instead they produce statistical mixtures of photons in Fock states |1> and vacuum (noise). We describe how to eliminate the noise in the output of the sources by means of another noisy source or a coherent state and cross-phase-modulation (XPM). We present a scheme that announces the production of pure single photons and thus eliminates the vacuum contribution. This is done by verifying a XPM-related phase shift with a Mach-Zehnder interferometer.

  8. Secured Optical Communications Using Quantum Entangled Two-Photon Transparency Modulation

    NASA Technical Reports Server (NTRS)

    Kojima, Jun (Inventor); Nguyen, Quang-Viet (Inventor); Lekki, John (Inventor)

    2015-01-01

    A system and method is disclosed wherein optical signals are coded in a transmitter by tuning or modulating the interbeam delay time (which modulates the fourth-order coherence) between pairs of entangled photons. The photon pairs are either absorbed or not absorbed (transparent) by an atomic or molecular fluorescer in a receiver, depending on the inter-beam delay that is introduced in the entangled photon pairs. Upon the absorption, corresponding fluorescent optical emissions follow at a certain wavelength, which are then detected by a photon detector. The advantage of the disclosed system is that it eliminates a need of a coincidence counter to realize the entanglement-based secure optical communications because the absorber acts as a coincidence counter for entangled photon pairs.

  9. Ultrasound modulated light blood flow measurement using intensity autocorrelation function: a Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Tsalach, A.; Metzger, Y.; Breskin, I.; Zeitak, R.; Shechter, R.

    2014-03-01

    Development of techniques for continuous measurement of regional blood flow, and in particular cerebral blood flow (CBF), is essential for monitoring critical care patients. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133 Xe SPECT1 and laser Doppler2. Coherent light is introduced into the tissue concurrently with an Ultrasound (US) field. Displacement of scattering centers within the sampled volume induced by Brownian motion, blood flow and the US field affects the photons' temporal correlation. Hence, the temporal fluctuations of the obtained speckle pattern provide dynamic information about the blood flow. We developed a comprehensive simulation, combining the effects of Brownian motion, US and flow on the obtained speckle pattern. Photons trajectories within the tissue are generated using a Monte-Carlo based model. Then, the temporal changes in the optical path due to displacement of scattering centers are determined, and the corresponding interference pattern over time is derived. Finally, the light intensity autocorrelation function of a single speckle is calculated, from which the tissue decorrelation time is determined. The simulation's results are compared with in-vitro experiments, using a digital correlator, demonstrating decorrelation time prediction within the 95% confidence interval. This model may assist in the development of optical based methods for blood flow measurements and particularly, in methods using the acousto-optic effect.

  10. Modulation of Attosecond Beating by Resonant Two-Photon Transition

    NASA Astrophysics Data System (ADS)

    Jiménez Galán, Álvaro; Argenti, Luca; Martín, Fernando

    2015-09-01

    We present an analytical model that characterizes two-photon transitions in the presence of autoionising states. We applied this model to interpret resonant RABITT spectra, and show that, as a harmonic traverses a resonance, the phase of the sideband beating significantly varies with photon energy. This phase variation is generally very different from the π jump observed in previous works, in which the direct path contribution was negligible. We illustrate the possible phase profiles arising in resonant two-photon transitions with an intuitive geometrical representation.

  11. Silicon photonics WDM interconnects based on resonant ring modulators and semiconductor mode locked laser

    NASA Astrophysics Data System (ADS)

    Müller, J.; Hauck, J.; Shen, B.; Romero-García, S.; Islamova, E.; Sharif Azadeh, S.; Joshi, S.; Chimot, N.; Moscoso-Mártir, A.; Merget, F.; Lelarge, F.; Witzens, J.

    2015-03-01

    We demonstrate wavelength domain multiplexed (WDM) data transmission with a data rate of 14 Gbps based on optical carrier generation with a single-section semiconductor mode-locked laser (SS-MLL) and modulation with a Silicon Photonics (SiP) resonant ring modulator (RRM). 18 channels are sequentially measured, whereas the best recorded eye diagrams feature signal quality factors (Q-factors) above 7. While optical re-amplification was necessary to maintain the link budgets and therefore system measurements were performed with an erbium doped fiber amplifier (EDFA), preliminary characterization done with a semiconductor optical amplifier (SOA) indicates compatibility with the latter pending the integration of an additional optical filter to select a subset of carriers and prevent SOA saturation. A systematic analysis of the relative intensity noise (RIN) of isolated comb lines and of signal Q-factors indicates that the link is primarily limited by amplified spontaneous emission (ASE) from the EDFA rather than laser RIN. Measured RIN for single comb components is below -120 dBc/Hz in the range from 7 MHz to 4 GHz and drops to the shot noise level at higher frequencies.

  12. Polarization dependence of two-photon transition intensities in rare-earth doped crystals

    SciTech Connect

    Le Nguyen, An-Dien

    1996-05-01

    A polarization dependence technique has been developed as a tool to investigate phonon scattering (PS), electronic Raman scattering (ERS), and two-photon absorption (TPA) transition intensities in vanadate and phosphate crystals. A general theory for the polarization dependence (PD) of two-photon transition intensities has been given. Expressions for the polarization dependent behavior of two-photon transition intensities have been tabulated for the 32 crystallographic point groups. When the wavefunctions for the initial and final states of a rare-earth doped in crystals are known, explicit PD expressions with no unknown parameters can be obtained. A spectroscopic method for measuring and interpreting phonon and ERS intensities has been developed to study PrVO{sub 4}, NdVO{sub 4}, ErVO{sub 4}, and TmVO{sub 4} crystals. Relative phonon intensities with the polarization of the incident and scattered light arbitrarily varied were accurately predicted and subsequently used for alignment and calibration in ERS measurements in these systems for the first time. Since ERS and PS intensities generally follow different polarization curves as a function of polar angles, the two can be uniquely identified by comparing their respective polarization behavior. The most crucial application of the technique in ERS spectroscopy is the establishment of a stringent test for the Axe theory. For the first time, the F{sub 1}/F{sub 2} ratio extracted from the experimental fits of the ERS intensities were compared with those predicted by theories which include both the second- and third-order contributions. Relatively good agreement between the fitted values of F{sub 1}/F{sub 2} and the predicted values using the second-order theory has been found.

  13. Effects of self- and cross-phase modulation on photon purity for four-wave-mixing photon pair sources

    NASA Astrophysics Data System (ADS)

    Bell, Bryn; McMillan, Alex; McCutcheon, Will; Rarity, John

    2015-11-01

    We consider the effect of self-phase modulation and cross-phase modulation on the joint spectral amplitude of photon pairs generated by spontaneous four-wave mixing. In particular, the purity of a heralded photon from a pair is considered in the context of schemes that aim to maximize the purity and minimize correlation in the joint spectral amplitude using birefringent phase matching and short pump pulses. We find that nonlinear phase-modulation effects will be detrimental and will limit the quantum interference visibility that can be achieved at a given generation rate. An approximate expression for the joint spectral amplitude with phase modulation is found by considering the group velocity walk-off between each photon and the pump but neglecting the group-velocity dispersion at each wavelength. The group-velocity dispersion can also be included with a numerical calculation, and it is shown that it has only a small effect on the purity for the realistic parameters considered.

  14. Bending light via adiabatic optical transition in longitudinally modulated photonic lattices

    PubMed Central

    Han, Bin; Xu, Lei; Dou, Yiling; Xu, Jingjun; Zhang, Guoquan

    2015-01-01

    Bending light in a controllable way is desired in various applications such as beam steering, navigating and cloaking. Different from the conventional way to bend light by refractive index gradient, transformation optics or special beams through wavefront design such as Airy beams and surface plasmons, we proposed a mechanism to bend light via resonant adiabatic optical transition between Floquet-Bloch (FB) modes from different FB bands in longitudinally modulated photonic lattices. The band structure of longitudinally modulated photonic lattices was calculated by employing the concept of quasi-energy based on the Floquet-Bloch theory, showing the existence of band discontinuities at specific resonant points which cannot be revealed by the coupled-mode theory. Interestingly, different FB bands can be seamlessly connected at these resonant points in longitudinally modulated photonic lattices driven by adiabatically varying the longitudinal modulation period along the propagation direction, which stimulates the adiabatic FB mode transition between different FB bands. PMID:26511890

  15. Thermo-optic modulation of plasmonic bandgap on metallic photonic crystal slab

    SciTech Connect

    Ren, Fanghui; Wang, Xiangyu; Wang, Alan X.

    2013-05-06

    We demonstrate active control of plasmonic bandgap on a metallic photonic crystal slab using thermo-optic effects. The Au grating, which is milled by focused-ion beam on a glass substrate, is designed to exhibit an extraordinary optical transmission and a sharp transitional edge for high modulation efficiency. Only a moderate refractive index modulation of {Delta}n = 0.0043 is required to obtain more than 60% modulation depth with surface-normal optical coupling.

  16. Single-photon routing by time-division phase modulation in a Sagnac interferometer

    NASA Astrophysics Data System (ADS)

    Zhou, Chunyuan; Wu, Guang; Ding, Liang'en; Zeng, Heping

    2003-07-01

    In this letter, we report the experimental demonstration of a single-photon router based on a time-division Sagnac interferometer, wherein differential phase shifts are applied on either the clockwise or counterclockwise quasi-single-photon pulses to determine the single photon interference and consequently output photon routing. High fidelity (>85%) of single-photon routing was demonstrated over a long-distance Sagnac loop. Stable performance was guaranteed by passive compensation of stress and temperature dependent drifts of the fiber-optic path. Experimental data show that time-division single-photon routing can be realized by controlling the applied electric pulses on the integrated phase modulators in the Sagnac loop, which makes this setup suitable for a practical quantum cryptography system.

  17. Photon-electron-ion momentum transfer in high intensityIR laser pulse ionization

    NASA Astrophysics Data System (ADS)

    Bandrauk, Andre D.; Chelkowski, Szczefan; Corkum, Paul

    2016-05-01

    Photon momentum sharing between electrons and parent ions in high intensityIR multiphoton ionization requires going beyond the traditional perturbative dipole approximation. Using numerical solutions of the 2-D TDSE(Time dependent Schroedinger equation) for one electron atom models, we show that the radiation pressure on photoelectrons is sensitive to the ionization mechanism, either direct or by recollision. A complex electron-ion response is obtained due to the interplay between the Lorentz force and Coulomb attraction of the ion.The influence of the photon momentum sharing is shown to be discernible in IR high intensity atomic and/or molecular holographic patterns thus suggesting a new research subject in IR strong field physics.

  18. L X-ray satellite effects on the determination of photon emission intensities of radionuclides.

    PubMed

    Rodrigues, M; Loidl, M

    2016-03-01

    L X-ray satellites are usually not considered during the fitting procedure of L X-ray spectra obtained with semiconductor detectors. Based on a high energy resolution spectrum of X-rays of (241)Am obtained with a metallic magnetic calorimeter, it has been demonstrated that satellites are intense with respect to their parent diagram line. In addition, it has been shown that the presence of satellites involves significant systematic errors on the determined photon intensities when they are ignored in the spectrum processing. PMID:26701657

  19. Photonic crystal Fano laser: terahertz modulation and ultrashort pulse generation.

    PubMed

    Mork, J; Chen, Y; Heuck, M

    2014-10-17

    We suggest and analyze a laser with a mirror realized by Fano interference between a waveguide and a nanocavity. For small-amplitude modulation of the nanocavity resonance, the laser can be modulated at frequencies exceeding 1 THz, not being limited by carrier dynamics as for conventional lasers. For larger modulation, a transition from pure frequency modulation to the generation of ultrashort pulses is observed. The laser dynamics is analyzed by generalizing the field equation for conventional lasers to account for a dynamical mirror, described by coupled mode theory. PMID:25361259

  20. IMRT (intensity modulated radiation therapy): progress in technology and reimbursement.

    PubMed

    Young, R; Snyder, B

    2001-01-01

    For a new treatment technology to become widely accepted in today's healthcare environment, the technology must not only be effective but also financially viable. Intensity modulated radiation therapy (IMRT), a technology that enables radiation oncologists to precisely target and attack cancerous tumors with higher doses of radiation using strategically positioned beams while minimizing collateral damage to healthy cells, now meets both criteria. With IMRT, radiation oncologists for the first time have obtained the ability to divide the treatment field covered by each beam angle into hundreds of segments as small as 2.5 mm by 5 mm. Using the adjustable leaves of an MLC to shape the beam and by controlling exposure times, physicians can deliver a different dose to each segment and therefore modulate dose intensity across the entire treatment field. Development of optimal IMRT plans using conventional manual treatment planning methods would take days. To be clinically practical, IMRT required the development of "inverse treatment planning" software. With this software, a radiation oncologist can prescribe the ideal radiation dose for a specific tumor as well as maximum dose limits for surrounding healthy tissue. These numbers are entered into the treatment planning program which then calculates the optimal delivery approach that will best fit the oncologist's requirements. The radiation oncologist then reviews and approves the proposed treatment plan before it is initiated. The most recent advance in IMRT technology offers a "dynamic" mode or "sliding window" technique. In this more rapid delivery method, the beam remains on while the leaves of the collimator continually re-shape and move the beam aperture over the planned treatment area. This creates a moving beam that saturates the tumor volume with the desired radiation dose while leaving the surrounding healthy tissue in a protective shadow created by the leaves of the collimator. In the dynamic mode, an IMRT

  1. SU-E-T-409: Intensity Modulated Robotic Radiotherapy

    SciTech Connect

    Wang, B; Jin, L; Li, J; Chen, L; Ma, C; Fan, J; Zhang, C

    2014-06-01

    Purpose: As compared with the IRIS-based models, the MLC-based CyberKnife system allows more efficient treatment delivery due to its improved coverage of large lesions and intensity modulation. The treatment delivery efficiency is mainly determined by the number of selected nodes. This study aimed to demonstrate that relatively small sets of optimally selected nodes could produce high-quality plans. Methods: The full body path of the CyberKnife system consists of 110 nodes, from which we selected various sets for 4 prostate cancer cases using our in-house beamselection software. With the selected nodes we generated IMRT plans using our in-house beamlet-based inverse-planning optimization program. We also produced IMRT plans using the MultiPlan treatment planning system (version 5.0) for the same cases. Furthermore, the nodes selected by MultiPlan were used to produce plans with our own optimization software so that we could compare the quality of the selected sets of nodes. Results: Our beam-selection program selected one node-set for each case, with the number of nodes ranging from 23 to 34. The IMRT plans based on the selected nodes and our in-house optimization program showed adequate target coverage, with favorable critical structure sparing for the cases investigated. Compared with the plans using the nodes selected by MultiPlan, the plans generated with our selected beams provided superior rectum/bladder sparing for 75% of the cases. The plans produced by MultiPlan with various numbers of nodes also suggested that the plan quality was not compromised significantly when the number of nodes was reduced. Conclusion: Our preliminary results showed that with beamletbased planning optimization, one could produce high-quality plans with an optimal set of nodes for MLC-based robotic radiotherapy. Furthermore, our beam-selection strategy could help further improve critical structure sparing.

  2. Ultrasound-based guidance of intensity-modulated radiation therapy

    SciTech Connect

    Fung, Albert Y.C. . E-mail: afung@unmc.edu; Ayyangar, Komanduri M.; Djajaputra, David; Nehru, Ramasamy M.; Enke, Charles A.

    2006-04-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  3. Preoperative Intensity Modulated Radiation Therapy for Retroperitoneal Sarcoma

    PubMed Central

    El-Bared, Nancy; Taussky, Daniel; Mehiri, Selma; Patocskai, Erika; Roberge, David; Donath, David

    2014-01-01

    The use of intensity modulated radiation therapy (IMRT) has allowed for the administration of high doses to retroperitoneal sarcomas (RSTS) while limiting toxicity to adjacent organs. The purpose of our study is to assess the outcome and toxicities of patients with RSTS treated with neo-adjuvant external beam radiation (EBRT) therapy using IMRT. This is a retrospective study of 21 patients treated with preoperative IMRT for primary or recurrent RSTS between 2005 and 2011. Overall survival (OS) and local recurrence free survival (LRFS) were computed using the Kaplan-Meier method (log-rank test). Acute and chronic toxicities were assessed using the CTCAE v. 3 criteria. The actuarial 2 and 3-year OS was 66% for both and the 5-year OS was 51%. As for LRFS it was 57% at 2 and 3-year and 51% for the 5-year LRFS. Factors predictive for local control were microscopically negative margins (p = 0.022), a median tumor diameter <5 cm (p = 0.007) and pathology of liposarcoma (p = 0.021). Furthermore, patients treated for recurrent disease fared worse (p = 0.04) in local control than patients treated for primary disease. As for OS, patients treated for Grade 1 histology had a better outcome (p = 0.05). EBRT was generally well tolerated. Acute gastrointestinal (GI) Grade 1 or 2 toxicities occurred in 33% of patients and one patient had unexplained post-radiation Grade 2 fever that resolved after tumor resection. As for chronic toxicities 24% of our patients presented Grade 1 GI toxicity and one patient presented Grade 3 small bowel stenosis not clearly due to radiation toxicity. Despite the location and volume of the tumors treated, preoperative IMRT was very well tolerated in our patients with retroperitoneal sarcoma. Unfortunately local recurrences remain common and dose escalation is to be considered. PMID:23919397

  4. Prospective Trial of Accelerated Partial Breast Intensity-Modulated Radiotherapy

    SciTech Connect

    Leonard, Charles . E-mail: charles.leonard@usoncology.com; Carter, Dennis; Kercher, Jane; Howell, Kathryn; Henkenberns, Phyllis; Tallhamer, Michael; Cornish, Patricia C.; Hunter, Kari C.; Kondrat, Janis

    2007-04-01

    Purpose: To examine the feasibility and acute toxicities of an accelerated, partial breast, intensity-modulated radiotherapy (IMRT) protocol. Methods and Materials: Between February 2004 and August 2005, 55 patients with Stage I breast cancer and initial follow-up were enrolled at four facilities on a HealthONE and Western institutional review board-approved accelerated partial breast IMRT protocol. All patients were treated in 10 equal fractions delivered twice daily within 5 consecutive days. The first 7 patients were treated to 34 Gy, and the remaining 48 patients were treated to 38.5 Gy. Results: The median follow-up after IMRT was 10 months (range, <1-19) and after diagnosis was 11.5 months (range, 2-21). No local or distant recurrences developed. The T stage distribution was as follows: T1a in 11 patients, T1b in 24, and T1c in 20. The median tumor size was 9 mm (range, 1-20 mm). Breast cosmesis was judged by the patient as poor by 2, good by 12, and excellent by 40 (1 patient was legally blind) and by the physician as poor for 1, good for 10, and excellent for 44 patients. Breast pain, as judged by patient, was none in 34, mild in 19, moderate in 2, and severe in 0 patients. There was a single report of telangiectasia but no incidents of significant edema. Compared with historic controls for whom three-dimensional treatment planning techniques were used, IMRT provided similar dose delivery to the target while reducing the volume of normal breast included in the 100%, 75%, and 50% isodose lines. Conclusion: This initial report prospectively explored the feasibility of accelerated partial breast IMRT. After short-term follow-up, the dose delivery and clinical outcomes were very acceptable. We believe this regimen deserves additional investigation under institutional review board guidance.

  5. Approaching oxygen-guided intensity-modulated radiation therapy

    PubMed Central

    Epel, Boris; Redler, Gage; Pelizzari, Charles; Tormyshev, Victor M.; Halpern, Howard J.

    2016-01-01

    The outcome of cancer radiation treatment is strongly correlated with tumor oxygenation. The aim of this study is to use oxygen tension distributions in tumors obtained using Electron Paramagnetic Resonance (EPR) imaging to devise better tumor radiation treatment. The proposed radiation plan is delivered in two steps. In the first step, a uniform 50% tumor control dose (TCD50) is delivered to the whole tumor. For the second step an additional dose boost is delivered to radioresistant, hypoxic tumor regions. FSa fibrosarcomas grown in the gastrocnemius of the legs of C3H mice were used. Oxygen tension images were obtained using a 250 MHz pulse imager and injectable partially deuterated trityl OX63 (OX71) spin probe. Radiation was delivered with a novel animal intensity modulated radiation therapy (IMRT) XRAD225Cx microCT/radiation therapy delivery system. In a simplified scheme for boost dose delivery, the boost area is approximated by a sphere, whose radius and position are determined using an EPR O2 image. The sphere that irradiates the largest fraction of hypoxic voxels in the tumor was chosen using an algorithm based on Receiver Operator Characteristic (ROC) analysis. We used the fraction of irradiated hypoxic volume as the true positive determinant and the fraction of irradiated normoxic volume as the false positive determinant in the terms of that analysis. The most efficient treatment is the one that demonstrates the shortest distance from the ROC curve to the upper left corner of the ROC plot. The boost dose corresponds to the difference between TCD90 and TCD50 values. For the control experiment an identical radiation dose to the normoxic tumor area is delivered. PMID:26782211

  6. Prostate Bed Motion During Intensity-Modulated Radiotherapy Treatment

    SciTech Connect

    Klayton, Tracy; Price, Robert; Buyyounouski, Mark K.; Sobczak, Mark; Greenberg, Richard; Li, Jinsheng; Keller, Lanea; Sopka, Dennis; Kutikov, Alexander; Horwitz, Eric M.

    2012-09-01

    Purpose: Conformal radiation therapy in the postprostatectomy setting requires accurate setup and localization of the prostatic fossa. In this series, we report prostate bed localization and motion characteristics, using data collected from implanted radiofrequency transponders. Methods and Materials: The Calypso four-dimensional localization system uses three implanted radiofrequency transponders for daily target localization and real-time tracking throughout a course of radiation therapy. We reviewed the localization and tracking reports for 20 patients who received ultrasonography-guided placement of Calypso transponders within the prostate bed prior to a course of intensity-modulated radiation therapy at Fox Chase Cancer Center. Results: At localization, prostate bed displacement relative to bony anatomy exceeded 5 mm in 9% of fractions in the anterior-posterior (A-P) direction and 21% of fractions in the superior-inferior (S-I) direction. The three-dimensional vector length from skin marks to Calypso alignment exceeded 1 cm in 24% of all 652 fractions with available setup data. During treatment, the target exceeded the 5-mm tracking limit for at least 30 sec in 11% of all fractions, generally in the A-P or S-I direction. In the A-P direction, target motion was twice as likely to move posteriorly, toward the rectum, than anteriorly. Fifteen percent of all treatments were interrupted for repositioning, and 70% of patients were repositioned at least once during their treatment course. Conclusion: Set-up errors and motion of the prostatic fossa during radiotherapy are nontrivial, leading to potential undertreatment of target and excess normal tissue toxicity if not taken into account during treatment planning. Localization and real-time tracking of the prostate bed via implanted Calypso transponders can be used to improve the accuracy of plan delivery.

  7. Dosimetrically Triggered Adaptive Intensity Modulated Radiation Therapy for Cervical Cancer

    SciTech Connect

    Lim, Karen; Stewart, James; Kelly, Valerie; Xie, Jason; Brock, Kristy K.; Moseley, Joanne; Cho, Young-Bin; Fyles, Anthony; Lundin, Anna; Rehbinder, Henrik; Löf, Johan; Jaffray, David A.; Milosevic, Michael

    2014-09-01

    Purpose: The widespread use of intensity modulated radiation therapy (IMRT) for cervical cancer has been limited by internal target and normal tissue motion. Such motion increases the risk of underdosing the target, especially as planning margins are reduced in an effort to reduce toxicity. This study explored 2 adaptive strategies to mitigate this risk and proposes a new, automated method that minimizes replanning workload. Methods and Materials: Thirty patients with cervical cancer participated in a prospective clinical study and underwent pretreatment and weekly magnetic resonance (MR) scans over a 5-week course of daily external beam radiation therapy. Target volumes and organs at risk (OARs) were contoured on each of the scans. Deformable image registration was used to model the accumulated dose (the real dose delivered to the target and OARs) for 2 adaptive replanning scenarios that assumed a very small PTV margin of only 3 mm to account for setup and internal interfractional motion: (1) a preprogrammed, anatomy-driven midtreatment replan (A-IMRT); and (2) a dosimetry-triggered replan driven by target dose accumulation over time (D-IMRT). Results: Across all 30 patients, clinically relevant target dose thresholds failed for 8 patients (27%) if 3-mm margins were used without replanning. A-IMRT failed in only 3 patients and also yielded an additional small reduction in OAR doses at the cost of 30 replans. D-IMRT assured adequate target coverage in all patients, with only 23 replans in 16 patients. Conclusions: A novel, dosimetry-triggered adaptive IMRT strategy for patients with cervical cancer can minimize the risk of target underdosing in the setting of very small margins and substantial interfractional motion while minimizing programmatic workload and cost.

  8. Preoperative intensity modulated radiation therapy for retroperitoneal sarcoma.

    PubMed

    El-Bared, Nancy; Taussky, Daniel; Mehiri, Selma; Patocskai, Erika; Roberge, David; Donath, David

    2014-06-01

    The use of intensity modulated radiation therapy (IMRT) has allowed for the administration of high doses to retroperitoneal sarcomas (RSTS) while limiting toxicity to adjacent organs. The purpose of our study is to assess the outcome and toxicities of patients with RSTS treated with neo-adjuvant external beam radiation (EBRT) therapy using IMRT. This is a retrospective study of 21 patients treated with preoperative IMRT for primary or recurrent RSTS between 2005 and 2011. Overall survival (OS) and local recurrence free survival (LRFS) were computed using the Kaplan-Meier method (log-rank test). Acute and chronic toxicities were assessed using the CTCAE v. 3 criteria. The actuarial 2 and 3-year OS was 66% for both and the 5-year OS was 51%. As for LRFS it was 57% at 2 and 3-year and 51% for the 5-year LRFS. Factors predictive for local control were microscopically negative margins (p = 0.022), a median tumor diameter <15 cm (p = 0.007) and pathology of liposarcoma (p = 0.021). Furthermore, patients treated for recurrent disease fared worse (p = 0.04) in local control than patients treated for primary disease. As for OS, patients treated for Grade 1 histology had a better outcome (p 5 0.05). EBRT was generally well tolerated. Acute gastrointestinal (GI) Grade 1 or 2 toxicities occurred in 33% of patients and one patient had unexplained post-radiation Grade 2 fever that resolved after tumor resection. As for chronic toxicities 24% of our patients presented Grade 1 GI toxicity and one patient presented Grade 3 small bowel stenosis not clearly due to radiation toxicity. Despite the location and volume of the tumors treated, preoperative IMRT was very well tolerated in our patients with retroperitoneal sarcoma. Unfortunately local recurrences remain common and dose escalation is to be considered. PMID:23919397

  9. Uncertainty Estimation in Intensity-Modulated Radiotherapy Absolute Dosimetry Verification

    SciTech Connect

    Sanchez-Doblado, Francisco . E-mail: paco@us.es; Hartmann, Guenther H.; Pena, Javier; Capote, Roberto; Paiusco, Marta; Rhein, Bernhard; Leal, Antonio; Lagares, Juan Ignacio

    2007-05-01

    Purpose: Intensity-modulated radiotherapy (IMRT) represents an important method for improving RT. The IMRT relative dosimetry checks are well established; however, open questions remain in reference dosimetry with ionization chambers (ICs). The main problem is the departure of the measurement conditions from the reference ones; thus, additional uncertainty is introduced into the dose determination. The goal of this study was to assess this effect systematically. Methods and Materials: Monte Carlo calculations and dosimetric measurements with five different detectors were performed for a number of representative IMRT cases, covering both step-and-shoot and dynamic delivery. Results: Using ICs with volumes of about 0.125 cm{sup 3} or less, good agreement was observed among the detectors in most of the situations studied. These results also agreed well with the Monte Carlo-calculated nonreference correction factors (c factors). Additionally, we found a general correlation between the IC position relative to a segment and the derived correction factor c, which can be used to estimate the expected overall uncertainty of the treatment. Conclusion: The increase of the reference dose relative standard uncertainty measured with ICs introduced by nonreference conditions when verifying an entire IMRT plan is about 1-1.5%, provided that appropriate small-volume chambers are used. The overall standard uncertainty of the measured IMRT dose amounts to about 2.3%, including the 0.5% of reproducibility and 1.5% of uncertainty associated with the beam calibration factor. Solid state detectors and large-volume chambers are not well suited to IMRT verification dosimetry because of the greater uncertainties. An action level of 5% is appropriate for IMRT verification. Greater discrepancies should lead to a review of the dosimetric procedure, including visual inspection of treatment segments and energy fluence.

  10. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    SciTech Connect

    Yang, Joanna C.; Dharmarajan, Kavita V.; Wexler, Leonard H.; La Quaglia, Michael P.; Happersett, Laura; Wolden, Suzanne L.

    2012-11-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged {<=}7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  11. Intensity-modulated radiotherapy for lymphoma involving the mediastinum

    SciTech Connect

    Goodman, Karyn A.; Toner, Sean; Hunt, Margie; Wu, Elisa J.; Yahalom, Joachim . E-mail: yahalomj@mskcc.org

    2005-05-01

    Purpose: To determine the feasibility, potential advantage, and indications for intensity-modulated radiotherapy (IMRT) in the treatment of Hodgkin's lymphoma or non-Hodgkin's lymphoma involving excessively large mediastinal disease volumes or requiring repeat RT. Methods and materials: Sixteen patients with Hodgkin's lymphoma (n = 11) or non-Hodgkin's lymphoma (n = 5) undergoing primary radiotherapy or repeat RT delivered via an IMRT plan were studied. The indications for using an IMRT plan were previous mediastinal RT (n = 5) or extremely large mediastinal treatment volumes (n 11). For each patient, IMRT, conventional parallel-opposed (AP-PA), and three-dimensional conformal (3D-CRT) plans were designed using 6-MV X-rays to deliver doses ranging from 18 to 45 Gy (median, 36 Gy). The plans were compared with regard to dose-volume parameters. The IMRT/AP-PA and IMRT/3D-CRT ratios were calculated for each parameter. Results: For all patients, the mean lung dose was reduced using IMRT, on average, by 12% compared with AP-PA and 14% compared with 3D-CRT. The planning target volume coverage was also improved using IMRT compared with AP-PA but was not different from the planning target volume coverage obtained with 3D-CRT. Conclusion: In selected patients with Hodgkin's lymphoma and non-Hodgkin's lymphoma involving the mediastinum, IMRT provides improved planning target volume coverage and reduces pulmonary toxicity parameters. It is feasible for RT of large treatment volumes and allows repeat RT of relapsed disease without exceeding cord tolerance. Additional follow-up is necessary to determine whether improvements in dose delivery affect long-term morbidity and disease control.

  12. Simplified architecture for photonic analog-to-digital conversion, utilizing an array of optical modulators

    NASA Astrophysics Data System (ADS)

    Gevorgyan, Hayk; Khilo, Anatol

    2016-03-01

    In this work a novel photonic sampled and electronically quantized analog-to-digital converter (ADC) system is introduced. High overall sampling rate and relaxed analog bandwidth requirements for photodetectors and electronic quantizers are attained by multichannel architecture. The proposed scheme, with a dedicated electro-optic modulator for each of the channels, is much simpler and has a perspective to outreach the performance of a similar time- wavelength demultiplexed photonic ADC. Absolute optical power isolation between the channels completely eliminates the issue of channel crosstalk, resulting in increased power efficiency of the system. Owing to small number of wavelength demultiplexers less wavelength alignment is required, which reduces the complexity of both photonic and electronic subsystems. Due to the significance of having compact, on-chip photonic ADCs, the analysis of integration of proposed system on a silicon platform is performed. The availability of high performance devices in various Si platforms, such as low loss Si waveguides, microring resonator filters, modulators, photodetectors, necessary for building the system, proves that the photonic ADC is well suited for integration on a silicon chip. For integrated version of proposed architecture Si microring resonator modulators are suitable. They are compact, and can have shorter total length of diode phase shifters as compared to Mach-Zehnder modulators, used in time-wavelength demultiplexed photonic ADCs. To achieve large modulation depth and lower nonlinear distortions, the choice of optimum optical bandwidth of microring modulator is analyzed. Finally, the nonlinearity analysis of ring modulators is performed and the influence of nonlinearities on the ADC performance is discussed.

  13. Signal acquisition via polarization modulation in single photon sources.

    PubMed

    McDonnell, Mark D; Flitney, Adrian P

    2009-12-01

    A simple model system is introduced for demonstrating how a single photon source might be used to transduce classical analog information. The theoretical scheme results in measurements of analog source samples that are (i) quantized in the sense of analog-to-digital conversion and (ii) corrupted by random noise that is solely due to the quantum uncertainty in detecting the polarization state of each photon. This noise is unavoidable if more than 1 bit per sample is to be transmitted and we show how it may be exploited in a manner inspired by suprathreshold stochastic resonance. The system is analyzed information theoretically, as it can be modeled as a noisy optical communication channel, although unlike classical Poisson channels, the detector's photon statistics are binomial. Previous results on binomial channels are adapted to demonstrate numerically that the classical information capacity, and thus the accuracy of the transduction, increases logarithmically with the square root of the number of photons, N. Although the capacity is shown to be reduced when an additional detector nonideality is present, the logarithmic increase with N remains. PMID:20365102

  14. Signal acquisition via polarization modulation in single photon sources

    NASA Astrophysics Data System (ADS)

    McDonnell, Mark D.; Flitney, Adrian P.

    2009-12-01

    A simple model system is introduced for demonstrating how a single photon source might be used to transduce classical analog information. The theoretical scheme results in measurements of analog source samples that are (i) quantized in the sense of analog-to-digital conversion and (ii) corrupted by random noise that is solely due to the quantum uncertainty in detecting the polarization state of each photon. This noise is unavoidable if more than 1 bit per sample is to be transmitted and we show how it may be exploited in a manner inspired by suprathreshold stochastic resonance. The system is analyzed information theoretically, as it can be modeled as a noisy optical communication channel, although unlike classical Poisson channels, the detector’s photon statistics are binomial. Previous results on binomial channels are adapted to demonstrate numerically that the classical information capacity, and thus the accuracy of the transduction, increases logarithmically with the square root of the number of photons, N . Although the capacity is shown to be reduced when an additional detector nonideality is present, the logarithmic increase with N remains.

  15. Robust Intensity Modulated Proton Therapy (IMPT) Increases Estimated Clinical Benefit in Head and Neck Cancer Patients

    PubMed Central

    van Dijk, Lisanne V.; Steenbakkers, Roel J. H. M.; ten Haken, Bennie; van der Laan, Hans Paul; van ‘t Veld, Aart A.; Langendijk, Johannes A.; Korevaar, Erik W.

    2016-01-01

    Purpose To compare the clinical benefit of robust optimized Intensity Modulated Proton Therapy (minimax IMPT) with current photon Intensity Modulated Radiation Therapy (IMRT) and PTV-based IMPT for head and neck cancer (HNC) patients. The clinical benefit is quantified in terms of both Normal Tissue Complication Probability (NTCP) and target coverage in the case of setup and range errors. Methods and Materials For 10 HNC patients, PTV-based IMRT (7 fields), minimax and PTV-based IMPT (2, 3, 4, 5 and 7 fields) plans were tested on robustness. Robust optimized plans differed from PTV-based plans in that they target the CTV and penalize possible error scenarios, instead of using the static isotropic CTV-PTV margin. Perturbed dose distributions of all plans were acquired by simulating in total 8060 setup (±3.5 mm) and range error (±3%) combinations. NTCP models for xerostomia and dysphagia were used to predict the clinical benefit of IMPT versus IMRT. Results The robustness criterion was met in the IMRT and minimax IMPT plans in all error scenarios, but this was only the case in 1 of 40 PTV-based IMPT plans. Seven (out of 10) patients had relatively large NTCP reductions in minimax IMPT plans compared to IMRT. For these patients, xerostomia and dysphagia NTCP values were reduced by 17.0% (95% CI; 13.0–21.1) and 8.1% (95% CI; 4.9–11.2) on average with minimax IMPT. Increasing the number of fields did not contribute to plan robustness, but improved organ sparing. Conclusions The estimated clinical benefit in terms of NTCP of robust optimized (minimax) IMPT is greater than that of IMRT and PTV-based IMPT in HNC patients. Furthermore, the target coverage of minimax IMPT plans in the presence of errors was comparable to IMRT plans. PMID:27030987

  16. Photonic ultrawideband impulse radio generation and modulation over a fiber link using a phase modulator and a delay interferometer.

    PubMed

    Shao, Jing; Sun, Junqiang

    2012-08-15

    We propose and experimentally demonstrate a simple and flexible photonic scheme for generation and modulation of ultrawideband (UWB) using a phase modulator and a fiber delay interferometer (DI)-based multichannel frequency discrimination. By introducing a Gaussian signal to the phase modulator, the UWB polarity-switchable doublet pulses can be achieved by combining the pair of UWB monocycle pulses with inverted polarities at the DI outputs under proper time delay. Furthermore, the pulse shape modulation, pulse position modulation, and on-off keying can be performed by coding the electrical data patterns and adjusting the time delay between the two monocycle pulses. Only a laser source introduced in the architecture guarantees the excellent dispersion tolerance over 75 km optical fiber link for UWB pulse sequence, which has potential application in future high-speed UWB impulse radio over optical fiber access networks. PMID:23381294

  17. Fabrication of defects in periodic photonic crystals using a phase only spatial light modulator

    NASA Astrophysics Data System (ADS)

    George, David; Lutkenhaus, Jeffrey; Arigong, Bayaner; Zhang, Hualiang; Philipose, Usha; Lin, Yuankun

    2014-03-01

    Here we present single exposure holographic fabrication of embedded defects in photonic crystal structures in a negative photoresist using a spatial light modulator (SLM). A phase pattern is engineered to form a desired interference pattern and displayed on a phase-only SLM. The resulting first order beams at the Fourier plane are used to recreate the interference pattern. Negative and positive defects are added to the photonic crystal in the following ways. A void-type defect is produced in two dimensional photonic crystal structures by replacing the phase of the engineered phase pattern with a constant value at the points where the defect is desired. And a positive bump defect can be made by allowing the zeroth order beam to interfere with the first order beams. Through these methods, it is possible to fabricate arbitrary shaped defect structures in photonic crystals through a single exposure process, thus improving cost effectiveness and simplifying the fabrication process of integrated photonics.

  18. Practical photon number detection with electric field-modulated silicon avalanche photodiodes.

    PubMed

    Thomas, O; Yuan, Z L; Shields, A J

    2012-01-01

    Low-noise single-photon detection is a prerequisite for quantum information processing using photonic qubits. In particular, detectors that are able to accurately resolve the number of photons in an incident light pulse will find application in functions such as quantum teleportation and linear optics quantum computing. More generally, such a detector will allow the advantages of quantum light detection to be extended to stronger optical signals, permitting optical measurements limited only by fluctuations in the photon number of the source. Here we demonstrate a practical high-speed device, which allows the signals arising from multiple photon-induced avalanches to be precisely discriminated. We use a type of silicon avalanche photodiode in which the lateral electric field profile is strongly modulated in order to realize a spatially multiplexed detector. Clearly discerned multiphoton signals are obtained by applying sub-nanosecond voltage gates in order to restrict the detector current. PMID:22273682

  19. Submicrometer photonic structure fabrication by phase spatial-light-modulator-based interference lithography.

    PubMed

    Behera, Saraswati; Kumar, Manish; Joseph, Joby

    2016-04-15

    We present a large-area and single-step fabrication approach based on phase spatial light modulator (SLM)-assisted interference lithography for the realization of submicrometer photonic structures on photoresist. A multimirror beam steering unit is used to reflect the SLM-generated phase-engineered beams leading to a large angle between interfering beams while also preserving the large area of the interfering plane beams. Both translational and rotational periodic submicrometer structures are experimentally realized. This approach increases the flexibility of interference lithography to fabricate more complex submicrometer photonic structures and photonic metamaterial structures for future applications. PMID:27082372

  20. Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials.

    PubMed

    Akimov, A V; Tanaka, Y; Pevtsov, A B; Kaplan, S F; Golubev, V G; Tamura, S; Yakovlev, D R; Bayer, M

    2008-07-18

    The elastic coupling between the a-SiO2 spheres composing opal films brings forth three-dimensional periodic structures which besides a photonic stop band are predicted to also exhibit complete phononic band gaps. The influence of elastic crystal vibrations on the photonic band structure has been studied by injection of coherent hypersonic wave packets generated in a metal transducer by subpicosecond laser pulses. These studies show that light with energies close to the photonic band gap can be efficiently modulated by hypersonic waves. PMID:18764257

  1. Leakage-Penumbra effect in intensity modulated radiation therapy step-and-shoot dose delivery

    PubMed Central

    Grigorov, Grigor N; Chow, James CL

    2016-01-01

    AIM: To study the leakage-penumbra (LP) effect with a proposed correction method for the step-and-shoot intensity modulated radiation therapy (IMRT). METHODS: Leakage-penumbra dose profiles from 10 randomly selected prostate IMRT plans were studied. The IMRT plans were delivered by a Varian 21 EX linear accelerator equipped with a 120-leaf multileaf collimator (MLC). For each treatment plan created by the Pinnacle3 treatment planning system, a 3-dimensional LP dose distribution generated by 5 coplanar photon beams, starting from 0o with equal separation of 72o, was investigated. For each photon beam used in the step-and-shoot IMRT plans, the first beam segment was set to have the largest area in the MLC leaf-sequencing, and was equal to the planning target volume (PTV). The overshoot effect (OSE) and the segment positional errors were measured using a solid water phantom with Kodak (TL and X-OMAT V) radiographic films. Film dosimetric analysis and calibration were carried out using a film scanner (Vidar VXR-16). The LP dose profiles were determined by eliminating the OSE and segment positional errors with specific individual irradiations. RESULTS: A non-uniformly distributed leaf LP dose ranging from 3% to 5% of the beam dose was measured in clinical IMRT beams. An overdose at the gap between neighboring segments, represented as dose peaks of up to 10% of the total BP, was measured. The LP effect increased the dose to the PTV and surrounding critical tissues. In addition, the effect depends on the number of beams and segments for each beam. Segment positional error was less than the maximum tolerance of 1 mm under a dose rate of 600 monitor units per minute in the treatment plans. The OSE varying with the dose rate was observed in all photon beams, and the effect increased from 1 to 1.3 Gy per treatment of the rectal intersection. As the dosimetric impacts from the LP effect and OSE may increase the rectal post-radiation effects, a correction of LP was proposed and

  2. EBT GAFCHROMIC{sup TM} film dosimetry in compensator-based intensity modulated radiation therapy

    SciTech Connect

    Vaezzadeh, Seyedali; Allahverdi, Mahmoud; Nedaie, Hasan A.; Ay, Mohammadreza; Shirazi, Alireza; Yarahmadi, Mehran

    2013-07-01

    The electron benefit transfer (EBT) GAFCHROMIC films possess a number of features making them appropriate for high-quality dosimetry in intensity-modulated radiation therapy (IMRT). Compensators to deliver IMRT are known to change the beam-energy spectrum as well as to produce scattered photons and to contaminate electrons; therefore, the accuracy and validity of EBT-film dosimetry in compensator-based IMRT should be investigated. Percentage-depth doses and lateral-beam profiles were measured using EBT films in perpendicular orientation with respect to 6 and 18 MV photon beam energies for: (1) different thicknesses of cerrobend slab (open, 1.0, 2.0, 4.0, and 6.0 cm), field sizes (5×5, 10×10, and 20×20 cm{sup 2}), and measurement depths (D{sub max}, 5.0 and 10.0 cm); and (2) step-wedged compensator in a solid phantom. To verify results, same measurements were implemented using a 0.125 cm{sup 3} ionization chamber in a water phantom and also in Monte Carlo simulations using the Monte Carlo N-particle radiation transport computer code. The mean energy of photons was increased due to beam hardening in comparison with open fields at both 6 and 18 MV energies. For a 20×20 cm{sup 2} field size of a 6 MV photon beam and a 6.0 cm thick block, the surface dose decreased by about 12% and percentage-depth doses increased up to 3% at 30.0 cm depth, due to the beam-hardening effect induced by the block. In contrast, at 18 MV, the surface dose increased by about 8% and depth dose reduced by 3% at 30.0 cm depth. The penumbral widths (80% to 20%) increase with block thickness, field size, and beam energy. The EBT film results were in good agreement with the ionization chamber dose profiles and Monte Carlo N-particle radiation transport computer code simulation behind the step-wedged compensator. Also, there was a good agreement between the EBT-film and the treatment-planning results on the anthropomorphic phantom. The EBT films can be accurately used as a 2D dosimeter for dose

  3. Dynamic optical modulation of an electron beam on a photocathode RF gun: Toward intensity-modulated radiation therapy (IMRT)

    NASA Astrophysics Data System (ADS)

    Kondoh, Takafumi; Kashima, Hiroaki; Yang, Jinfeng; Yoshida, Yoichi; Tagawa, Seiichi

    2008-10-01

    In intensity-modulated radiation therapy (IMRT), the aim is to deliver reduced doses of radiation to normal tissue. As a step toward IMRT, we examined dynamic optical modulation of an electron beam produced by a photocathode RF gun. Images on photomasks were transferred onto a photocathode by relay imaging. The resulting beam was controlled by a remote mirror. The modulated electron beam maintained its shape on acceleration, had a fine spatial resolution, and could be moved dynamically by optical methods.

  4. Inverse planning optimization method for intensity modulated radiation therapy.

    PubMed

    Lan, Yihua; Ren, Haozheng; Li, Cunhua; Min, Zhifang; Wan, Jinxin; Ma, Jianxin; Hung, Chih-Cheng

    2013-10-01

    In order to facilitate the leaf sequencing process in intensity modulated radiation therapy (IMRT), and design of a practical leaf sequencing algorithm, it is an important issue to smooth the planned fluence maps. The objective is to achieve both high-efficiency and high-precision dose delivering by considering characteristics of leaf sequencing process. The key factor which affects total number of monitor units for the leaf sequencing optimization process is the max flow value of the digraph which formulated from the fluence maps. Therefore, we believe that one strategy for compromising dose conformity and total number of monitor units in dose delivery is to balance the dose distribution function and the max flow value mentioned above. However, there are too many paths in the digraph, and we don't know the flow value of which path is the maximum. The maximum flow value among the horizontal paths was selected and used in the objective function of the fluence map optimization to formulate the model. The model is a traditional linear constrained quadratic optimization model which can be solved by interior point method easily. We believe that the smoothed maps from this model are more suitable for leaf sequencing optimization process than other smoothing models. A clinical head-neck case and a prostate case were tested and compared using our proposed model and the smoothing model which is based on the minimization of total variance. The optimization results with the same level of total number of monitor units (TNMU) show that the fluence maps obtained from our model have much better dose performance for the target/non-target region than the maps from total variance based on the smoothing model. This indicates that our model achieves better dose distribution when the algorithm suppresses the TNMU at the same level. Although we have just used the max flow value of the horizontal paths in the diagraph in the objective function, a good balance has been achieved between

  5. Intensity-Modulated Radiotherapy for Resected Mesothelioma: The Duke Experience

    SciTech Connect

    Miles, Edward F. Larrier, Nicole A.; Kelsey, Christopher R.; Hubbs, Jessica L.; Ma Jinli; Yoo, Sua; Marks, Lawrence B.

    2008-07-15

    Purpose: To assess the safety and efficacy of intensity-modulated radiotherapy (IMRT) after extrapleural pneumonectomy for malignant pleural mesothelioma. Methods and Materials: Thirteen patients underwent IMRT after extrapleural pneumonectomy between July 2005 and February 2007 at Duke University Medical Center. The clinical target volume was defined as the entire ipsilateral hemithorax, chest wall incisions, including drain sites, and involved nodal stations. The dose prescribed to the planning target volume was 40-55 Gy (median, 45). Toxicity was graded using the modified Common Toxicity Criteria, and the lung dosimetric parameters from the subgroups with and without pneumonitis were compared. Local control and survival were assessed. Results: The median follow-up after IMRT was 9.5 months. Of the 13 patients, 3 (23%) developed Grade 2 or greater acute pulmonary toxicity (during or within 30 days of IMRT). The median dosimetric parameters for those with and without symptomatic pneumonitis were a mean lung dose (MLD) of 7.9 vs. 7.5 Gy (p = 0.40), percentage of lung volume receiving 20 Gy (V{sub 20}) of 0.2% vs. 2.3% (p = 0.51), and percentage of lung volume receiving 5 Gy (V{sub 20}) of 92% vs. 66% (p = 0.36). One patient died of fatal pulmonary toxicity. This patient received a greater MLD (11.4 vs. 7.6 Gy) and had a greater V{sub 20} (6.9% vs. 1.9%), and V{sub 5} (92% vs. 66%) compared with the median of those without fatal pulmonary toxicity. Local and/or distant failure occurred in 6 patients (46%), and 6 patients (46%) were alive without evidence of recurrence at last follow-up. Conclusions: With limited follow-up, 45-Gy IMRT provides reasonable local control for mesothelioma after extrapleural pneumonectomy. However, treatment-related pulmonary toxicity remains a significant concern. Care should be taken to minimize the dose to the remaining lung to achieve an acceptable therapeutic ratio.

  6. Survey of resident education in intensity-modulated radiation therapy.

    PubMed

    Malik, Renuka; Oh, Julia L; Roeske, John C; Mundt, Arno J

    2005-06-01

    Intensity-modulated radiation therapy (IMRT) has been gaining increasing popularity among practicing physicians in the U.S., but the extent to which radiation oncology residents are taught the principles of this technology and are trained to use IMRT remains unknown. In this paper, we assessed the current level of resident education in IMRT in the United States. Chief residents at all 77 accredited radiation oncology programs were sent a 13-question survey addressing formal didactics and hands-on experience in IMRT. The survey assessed the frequency, subject, and format of IMRT didactics. Questions also addressed the number of IMRT patients and anatomical sites treated, resident involvement in the IMRT process, and the intent of IMRT use. Finally, residents were asked for their opinions on their IMRT education. Sixty-one surveys (79%) were completed. Overall, forty-three respondents (71%) reported receiving formal IMRT didactics, with nearly one-third reporting extensive didactics (> or = 3 lectures/seminars et cetera per year). The most common didactic formats were lectures (95%) and journal clubs (63%), most commonly supervised by physicists (98%). Involvement by physicians and radiobiologists were reported by 63% and 7% of respondents, respectively. Overall, 87% of respondents had hands-on IMRT training, with nearly one-half having treated > 25 patients. The most common sites treated were head and neck (94%) and prostate (81%). Involvement in all aspects of the IMRT process was common, particularly target and tissue delineation (98%) and plan evaluation (93%). Most respondents (79%) with hands-on experience reported receiving formal didactics. However, nearly one-third received no or only minimal formal didactics. The percentage of respondents desiring increased IMRT didactics and hands-on experience were 70% and 47%, respectively. Our results suggest that the great majority of radiation oncology residents in the United States are currently exposed to didactics

  7. Intensity-modulated radiotherapy for neoadjuvant treatment of gastric cancer

    SciTech Connect

    Knab, Brian; Rash, Carla; Farrey, Karl; Jani, Ashesh B. . E-mail: jani@rover.uchicago.edu

    2006-01-01

    Radiation therapy plays an integral role in the treatment of gastric cancer in the postsurgery setting, the inoperable/palliative setting, and, as in the case of the current report, in the setting of neoadjuvant therapy prior to surgery. Typically, anterior-posterior/posterior-anterior (AP/PA) or 3-field techniques are used. In this report, we explore the use of intensity-modulated radiotherapy (IMRT) treatment in a patient whose care was transferred to our institution after 3-field radiotherapy (RT) was given to a dose of 30 Gy at an outside institution. If the 3-field plan were continued to 50 Gy, the volume of irradiated liver receiving greater than 30 Gy would have been unacceptably high. To deliver the final 20 Gy, an opposed parallel AP/PA plan and an IMRT plan were compared to the initial 3-field technique for coverage of the target volume as well as dose to the kidneys, liver, small bowel, and spinal cord. Comparison of the 3 treatment techniques to deliver the final 20 Gy revealed reduced median and maximum dose to the whole kidney with the IMRT plan. For this 20-Gy boost, the volume of irradiated liver was lower for both the IMRT plan and the AP/PA plan vs. the 3-field plan. Comparing the IMRT boost plan to the AP/PA boost-dose range (<10 Gy) in comparison to the AP/PA plan; however, the IMRT plan irradiated a smaller liver volume within the higher dose region (>10 Gy) in comparison to the AP/PA plan. The IMRT boost plan also irradiated a smaller volume of the small bowel compared to both the 3-field plan and the AP/PA plan, and also delivered lower dose to the spinal cord in comparison to the AP/PA plan. Comparison of the composite plans revealed reduced dose to the whole kidney using IMRT. The V20 for the whole kidney volume for the composite IMRT plan was 30% compared to approximately 60% for the composite AP/PA plan. Overall, the dose to the liver receiving greater than 30 Gy was lower for the composite IMRT plan and was well below acceptable limits

  8. Photon emission and pair production in the interaction of ultra-intense lasers with electrons

    NASA Astrophysics Data System (ADS)

    Jirka, Martin; Klimo, Ondrej; Bulanov, Sergei; Weber, Stefan

    2015-11-01

    With the advent of 10 PW laser facilities, new regimes of laser-matter interaction are opening since QED effects come into play. Due to the radiation reaction which takes place in ultra-intense laser-matter interactions, charged particles lose their energy by emitting high-energy photons. These photons can in the strong laser field create electron-positron pairs via Breit-Wheeler process. One possible interaction scenario leading to efficient generation of pairs is the interaction of two colliding laser pulses with an electron target lying in the common focal spot. In our PIC simulations, gamma-ray photon emission and pair production are studied for different laser wavelengths, intensities and both laser polarization. According to our results, linearly polarized laser pulses seem to be more convenient for efficient pair creation. The role of ions contained in the target and its density are also assessed. Results are compared with the different interaction configuration when the energetic electron bunch interacts with one counter-propagating laser pulse. This research has been partially supported by the Czech Science Foundation (Project No. 15-02964S).

  9. Injection-locked semiconductor laser-based frequency comb for modulation applications in RF analog photonics.

    PubMed

    Sarailou, Edris; Delfyett, Peter

    2016-07-01

    A linearized intensity modulator for periodic and pulsed light is proposed and demonstrated. The free carrier plasma effect has been used to modulate the refractive index of the phase section of a three-section mode-locked laser. If injection locked, the modulation induces an arcsine phase response on the three-section mode-locked laser. By introducing this mode-locked laser into a Mach-Zehnder interferometer biased at quadrature, one can realize a true linear intensity modulation. This novel laser suppresses any unwanted amplitude modulation and increases the performance of the linearized intensity modulator. Experimental results have provided a record low static Iπ of 0.39 mA and a spur-free dynamic range of 75  dB.Hz2/3. PMID:27367083

  10. Dynamics of two-photon double ionization of helium in short intense xuv laser pulses

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Bartschat, K.; Schneider, B. I.

    2008-04-01

    We present an ab initio nonperturbative time-dependent approach to the problem of a helium atom driven by an intense xuv laser pulse. Based on the finite-element discrete-variable-representation, a space discretization is proposed for the radial grid in spherical coordinates. Absolute angle-integrated and triple-differential cross sections for double ionization by absorption of two photons are obtained over a range of photon energies between 39.5 eV (31.4 nm) and 54 eV (23 nm), where the process is dominated by nonsequential ionization mechanisms. We show that the agreement with several other sets of previous predictions is good, as long as the effective interaction time is defined properly. Two-photon double ionization at the photon energy of 57 eV (22 nm), for which both sequential and nonsequential channels are open, is also discussed. For double photoionization in the near-threshold regime, our results do not indicate a preferential mode of energy sharing between the two escaping electrons, while asymmetric energy sharing becomes the dominant mode with increasing excess energy. Overall, the two ionized electrons strongly prefer to escape along the polarization axis of linearly polarized laser fields.

  11. Vertically integrated photonic multichip module architecture for vision applications

    NASA Astrophysics Data System (ADS)

    Tanguay, Armand R., Jr.; Jenkins, B. Keith; von der Malsburg, Christoph; Mel, Bartlett; Holt, Gary; O'Brien, John D.; Biederman, Irving; Madhukar, Anupam; Nasiatka, Patrick; Huang, Yunsong

    2000-05-01

    The development of a truly smart camera, with inherent capability for low latency semi-autonomous object recognition, tracking, and optimal image capture, has remained an elusive goal notwithstanding tremendous advances in the processing power afforded by VLSI technologies. These features are essential for a number of emerging multimedia- based applications, including enhanced augmented reality systems. Recent advances in understanding of the mechanisms of biological vision systems, together with similar advances in hybrid electronic/photonic packaging technology, offer the possibility of artificial biologically-inspired vision systems with significantly different, yet complementary, strengths and weaknesses. We describe herein several system implementation architectures based on spatial and temporal integration techniques within a multilayered structure, as well as the corresponding hardware implementation of these architectures based on the hybrid vertical integration of multiple silicon VLSI vision chips by means of dense 3D photonic interconnections.

  12. The determination of minority carrier lifetimes in direct band-gap semiconductors by monitoring intensity-modulated luminescence radiation

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1985-01-01

    When an extrinsic, direct band-gap semiconductor sample is irradiated by photons of an energy higher than the energy of the band gap between valence and conduction bands, excess electron-hole pairs are generated which, while diffusing through the sample, produce luminescence via radiative recombination. If, furthermore, the intensity of the impinging beam of photons is modulated sinusoidally, the luminescence radiation escaping from the sample will be phase shifted with respect to the original photon beam in a characteristic way. It will be shown that by measuring the phase shift at different modulation frequencies, the Shockley-Read-Hall lifetime of minority carriers may be ascertained. The method is nondestructive inasmuch as there is no need to fabricate p-n junctions or Ohmic contacts, nor is it necessary to remove already existing Ohmic contacts of angle lap the surface, etc., procedures often needed when determining lifetimes with the scanning electron microscope (in which case a p-n junction must be present).

  13. A Novel Approach to Photonic Generation and Modulation of Ultra-Wideband Pulses

    NASA Astrophysics Data System (ADS)

    Xiang, Peng; Guo, Hao; Chen, Dalei; Zhu, Huatao

    2016-01-01

    A novel approach to photonic generation of ultra-wideband (UWB) signals is proposed in this paper. The proposed signal generator is capable of generating UWB doublet pulses with flexible reconfigurability, and many different pulse modulation formats, including the commonly used pulse-position modulation (PPM) and bi-phase modulation (BPM) can be realized. Moreover, the photonic UWB pulse generator is capable of generating UWB signals with a tunable spectral notch-band, which is desirable to realize the interference avoidance between UWB and other narrow band systems, such as Wi-Fi. A mathematical model describing the proposed system is developed and the generation of UWB signals with different modulation formats is demonstrated via computer simulations.

  14. Control of the two-Photon Double Ionization of Helium with Intense Chirped Attosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Barmaki, Samira; Laulan, Stephane

    2014-05-01

    We study the two-photon double ionization process of the helium atom by solving numerically the nonrelativistic time-dependent Schrödinger equation in its full dimensionality. We investigate with an intense chirped attosecond laser pulse of central carrier frequency that corresponds to the 29th harmonic of a Ti-sapphire laser the direct and sequential processes in helium. We show how it is possible by adjusting the chirp parameter to control the dominance of one process over the other within the atom. Attosecond chirped laser pulses offer a promising way to probe and control the two-photon double ionization of helium when compared with attosecond transform-limited pulses.

  15. Two-photon double ionization of H{sub 2} in intense femtosecond laser pulses

    SciTech Connect

    Guan Xiaoxu; Bartschat, Klaus; Schneider, Barry I.

    2010-10-15

    Triple-differential cross sections for two-photon double ionization of molecular hydrogen are presented for a central photon energy of 30 eV. The calculations are based on a fully ab initio, nonperturbative approach to the time-dependent Schroedinger equation in prolate spheroidal coordinates, discretized by a finite-element discrete-variable representation. The wave function is propagated in time for a few femtoseconds using the short, iterative Lanczos method to study the correlated response of the two photoelectrons to short, intense laser radiation. The current results often lie in between those of Colgan et al. [J. Phys. B 41, 121002 (2008)] and Morales et al. [J. Phys. B 42, 134013 (2009)]. However, we argue that these individual predictions should not be compared directly with each other, but preferably with experimental data generated under well-defined conditions.

  16. Spin dynamics in nonsequential two-photon double ionization of helium in an intense laser field

    SciTech Connect

    Bhattacharyya, S.; Mazumder, Mina; Chakrabarti, J.; Faisal, F. H. M.

    2011-04-15

    Nonsequential two-photon double ionization of a two-electron system (He and He-like ions) in a circularly polarized intense laser field is developed in a relativistic field theoretic way. Antisymmetry is maintained in the correlated wave functions of He in the initial state after modification to include Dirac spinor, and in the Volkov wave functions of the two electrons in the final free state. The present theory endeavors to provide an estimate of the helicity-dependent angular asymmetry in spin-current generation in nonsequential two-photon double ionization. Angular dependence of circular dichroism obtained in this paper, in coplanar and orthogonal geometries, is compared with the only existing nonrelativistic result obtained using lowest-order perturbation theory. Present result for dichroism underestimates the nonrelativistic result. Entanglement in the spins of the ejected electrons is concluded.

  17. Measuring spatial correlations of photon pairs by automated raster scanning with spatial light modulators

    PubMed Central

    Paul, E. C.; Hor-Meyll, M.; Ribeiro, P. H. Souto; Walborn, S. P.

    2014-01-01

    We demonstrate the use of a phase-only spatial light modulator for the measurement of transverse spatial distributions of coincidence counts between twin photon beams, in a fully automated fashion. This is accomplished by means of the polarization dependence of the modulator, which allows the conversion of a phase pattern into an amplitude pattern. We also present a correction procedure, that accounts for unwanted coincidence counts due to polarization decoherence effects. PMID:24939691

  18. Comparative analysis of 60Co intensity-modulated radiation therapy.

    PubMed

    Fox, Christopher; Romeijn, H Edwin; Lynch, Bart; Men, Chunhua; Aleman, Dionne M; Dempsey, James F

    2008-06-21

    In this study, we perform a scientific comparative analysis of using (60)Co beams in intensity-modulated radiation therapy (IMRT). In particular, we evaluate the treatment plan quality obtained with (i) 6 MV, 18 MV and (60)Co IMRT; (ii) different numbers of static multileaf collimator (MLC) delivered (60)Co beams and (iii) a helical tomotherapy (60)Co beam geometry. We employ a convex fluence map optimization (FMO) model, which allows for the comparison of plan quality between different beam energies and configurations for a given case. A total of 25 clinical patient cases that each contain volumetric CT studies, primary and secondary delineated targets, and contoured structures were studied: 5 head-and-neck (H&N), 5 prostate, 5 central nervous system (CNS), 5 breast and 5 lung cases. The DICOM plan data were anonymized and exported to the University of Florida optimized radiation therapy (UFORT) treatment planning system. The FMO problem was solved for each case for 5-71 equidistant beams as well as a helical geometry for H&N, prostate, CNS and lung cases, and for 3-7 equidistant beams in the upper hemisphere for breast cases, all with 6 MV, 18 MV and (60)Co dose models. In all cases, 95% of the target volumes received at least the prescribed dose with clinical sparing criteria for critical organs being met for all structures that were not wholly or partially contained within the target volume. Improvements in critical organ sparing were found with an increasing number of equidistant (60)Co beams, yet were marginal above 9 beams for H&N, prostate, CNS and lung. Breast cases produced similar plans for 3-7 beams. A helical (60)Co beam geometry achieved similar plan quality as static plans with 11 equidistant (60)Co beams. Furthermore, 18 MV plans were initially found not to provide the same target coverage as 6 MV and (60)Co plans; however, adjusting the trade-offs in the optimization model allowed equivalent target coverage for 18 MV. For plans with comparable

  19. Comparative analysis of 60Co intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Fox, Christopher; Romeijn, H. Edwin; Lynch, Bart; Men, Chunhua; Aleman, Dionne M.; Dempsey, James F.

    2008-06-01

    In this study, we perform a scientific comparative analysis of using 60Co beams in intensity-modulated radiation therapy (IMRT). In particular, we evaluate the treatment plan quality obtained with (i) 6 MV, 18 MV and 60Co IMRT; (ii) different numbers of static multileaf collimator (MLC) delivered 60Co beams and (iii) a helical tomotherapy 60Co beam geometry. We employ a convex fluence map optimization (FMO) model, which allows for the comparison of plan quality between different beam energies and configurations for a given case. A total of 25 clinical patient cases that each contain volumetric CT studies, primary and secondary delineated targets, and contoured structures were studied: 5 head-and-neck (H&N), 5 prostate, 5 central nervous system (CNS), 5 breast and 5 lung cases. The DICOM plan data were anonymized and exported to the University of Florida optimized radiation therapy (UFORT) treatment planning system. The FMO problem was solved for each case for 5-71 equidistant beams as well as a helical geometry for H&N, prostate, CNS and lung cases, and for 3-7 equidistant beams in the upper hemisphere for breast cases, all with 6 MV, 18 MV and 60Co dose models. In all cases, 95% of the target volumes received at least the prescribed dose with clinical sparing criteria for critical organs being met for all structures that were not wholly or partially contained within the target volume. Improvements in critical organ sparing were found with an increasing number of equidistant 60Co beams, yet were marginal above 9 beams for H&N, prostate, CNS and lung. Breast cases produced similar plans for 3-7 beams. A helical 60Co beam geometry achieved similar plan quality as static plans with 11 equidistant 60Co beams. Furthermore, 18 MV plans were initially found not to provide the same target coverage as 6 MV and 60Co plans; however, adjusting the trade-offs in the optimization model allowed equivalent target coverage for 18 MV. For plans with comparable target coverage

  20. Intensity-modulated optical fiber sensors based on chirped-fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Dong, Xinyong

    2011-09-01

    Intensity-modulated fiber Bragg grating (FBG) sensors, compared with normal wavelength-encoding FBG sensors, can reduce the cost of sensor system significantly by using cost-efficient optical power detection devices, instead of expensive wavelength measurement instruments. Chirped-FBG (CFBG) based intensity-modulated sensors show potential applications in various sensing areas due to their many advantages, including inherent independence of temperature, high measurement speed, and low cost, in addition to the merits of all fiber-optic sensors. This paper theoretically studies the sensing principle of CFBG-based intensity-modulated sensors and briefly reviews their recent progress in measurement of displacement, acceleration, and tilt angle.

  1. Modulation-assisted tunneling in laser-fabricated photonic Wannier-Stark ladders

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sebabrata; Spracklen, Alexander; Choudhury, Debaditya; Goldman, Nathan; Öhberg, Patrik; Andersson, Erika; Thomson, Robert R.

    2015-11-01

    We observe Wannier-Stark (W-S) localization in curved photonic lattices, realized using arrays of evanescently coupled optical waveguides. By correctly tuning the strength of inter-site coupling in the lattice, we observe that W-S states become increasingly localized, and eventually fully localized to one site, as the curvature of the lattice is increased. We then demonstrate that tunneling can be successfully restored in the lattice by applying a resonant sinusoidal modulation to the lattice position, an effect that is a direct analogue of photon-assisted tunneling. This precise tuning of the tunneling matrix elements, through resonant modulation-assisted tunneling, opens a novel route for the creation of gauge fields in laser-fabricated photonic lattices.

  2. Comparison of optimization algorithms in intensity-modulated radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Kendrick, Rachel

    Intensity-modulated radiation therapy is used to better conform the radiation dose to the target, which includes avoiding healthy tissue. Planning programs employ optimization methods to search for the best fluence of each photon beam, and therefore to create the best treatment plan. The Computational Environment for Radiotherapy Research (CERR), a program written in MATLAB, was used to examine some commonly-used algorithms for one 5-beam plan. Algorithms include the genetic algorithm, quadratic programming, pattern search, constrained nonlinear optimization, simulated annealing, the optimization method used in Varian EclipseTM, and some hybrids of these. Quadratic programing, simulated annealing, and a quadratic/simulated annealing hybrid were also separately compared using different prescription doses. The results of each dose-volume histogram as well as the visual dose color wash were used to compare the plans. CERR's built-in quadratic programming provided the best overall plan, but avoidance of the organ-at-risk was rivaled by other programs. Hybrids of quadratic programming with some of these algorithms seems to suggest the possibility of better planning programs, as shown by the improved quadratic/simulated annealing plan when compared to the simulated annealing algorithm alone. Further experimentation will be done to improve cost functions and computational time.

  3. A Dosimetric Evaluation of Conventional Helmet Field Irradiation Versus Two-Field Intensity-Modulated Radiotherapy Technique

    SciTech Connect

    Yu, James B.; Shiao, Stephen L.; Knisely, Jonathan . E-mail: jonathan.knisely@yale.edu

    2007-06-01

    Purpose: To compare dosimetric differences between conventional two-beam helmet field irradiation (external beam radiotherapy, EBRT) of the brain and a two-field intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: Ten patients who received helmet field irradiation at our institution were selected for study. External beam radiotherapy portals were planned per usual practice. Intensity-modulated radiotherapy fields were created using the identical field angles as the EBRT portals. Each brain was fully contoured along with the spinal cord to the bottom of the C2 vertebral body. This volume was then expanded symmetrically by 0.5 cm to construct the planning target volume. An IMRT plan was constructed using uniform optimization constraints. For both techniques, the nominal prescribed dose was 3,000 cGy in 10 fractions of 300 cGy using 6-MV photons. Comparative dose-volume histograms were generated for each patient and analyzed. Results: Intensity-modulated radiotherapy improved dose uniformity over EBRT for whole brain radiotherapy. The mean percentage of brain receiving >105% of dose was reduced from 29.3% with EBRT to 0.03% with IMRT. The mean maximum dose was reduced from 3,378 cGy (113%) for EBRT to 3,162 cGy (105%) with IMRT. The mean percent volume receiving at least 98% of the prescribed dose was 99.5% for the conventional technique and 100% for IMRT. Conclusions: Intensity-modulated radiotherapy reduces dose inhomogeneity, particularly for the midline frontal lobe structures where hot spots occur with conventional two-field EBRT. More study needs to be done addressing the clinical implications of optimizing dose uniformity and its effect on long-term cognitive function in selected long-lived patients.

  4. Reduced acute toxicity and improved efficacy from intensity-modulated proton therapy (IMPT) for the management of head and neck cancer.

    PubMed

    McKeever, Matthew R; Sio, Terence T; Gunn, G Brandon; Holliday, Emma B; Blanchard, Pierre; Kies, Merrill S; Weber, Randal S; Frank, Steven J

    2016-08-01

    Cancers in the head and neck area are usually close to several critical organ structures. Traditional external-beam photon radiation therapy unavoidably exposes these structures to significant doses of radiation, which can lead to serious acute and chronic toxicity. Intensity-modulated proton therapy (IMPT), however, has dosimetric advantages that allow it to deposit high doses within the target while largely sparing surrounding structures. Because of this advantage, IMPT has the potential to improve both tumor control and toxicity. To determine the degree to which IMPT can reduce toxicity and improve tumor control, more randomized trials are needed that directly compare IMPT with intensity-modulated photon therapy. Here we examine the existing evidence on the efficacy and toxicity of IMPT for treating cancers at several anatomic subsites of the head and neck. We also report on the ability of IMPT to reduce malnutrition, and gastrostomy tube dependence and improve patient-reported outcomes (PROs). PMID:27506808

  5. Towards a direction-sensitive optical module for neutrino telescopes based on a hybrid photon detector

    NASA Astrophysics Data System (ADS)

    Rügheimer, Tilman K.; Gebert, Ulrike; Michel, Thilo; Anton, Gisela; Séguinot, Jacques; Joram, Christian

    2009-12-01

    The optical modules of all currently operating neutrino telescopes contain one standard PMT with a large hemispherical photo-cathode. The maximum spatial resolution of this detection principle is thus limited to the photo-cathode area and no information is obtained on the direction of the incoming photons. We propose a new direction-sensitive design featuring a fisheye lens and a hybrid photon detector. The lens system maps incoming photons from one direction on a well-defined point on the photo-cathode of the hybrid photon detector. The photo-electrons are accelerated in a cross-focussed optics and detected using a pixelated anode, which allows for very high spatial resolution. As a candidate chip for the photo-electron detection we propose the Timepix detector of the Medipix family. We have successfully shown its capability to detect photo-electrons in the experiment and evaluated the time resolution by simulation and measurement.

  6. Modulation of coupling in a photonic switch by resonant interference.

    PubMed

    Attard, A E

    1998-04-20

    A novel photonic switch structure is described in which the coupling of light between two fiber waveguides is controlled by the resonant interference of a third waveguide. The switching action is controlled by a small variation of the index of refraction of the control waveguide by the application of either photo-optical (Kerr) techniques or electro-optical (Pockels) techniques. The control waveguide can be either a fiber waveguide or a slab waveguide. The equations for the waveguide coupling were obtained by analytical approximations from coupled-mode theory. A beam-propagation simulation was also used. The results of the two models were compared. Multiple resonant interferences were observed in the case of a slab waveguide. PMID:18273156

  7. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    NASA Astrophysics Data System (ADS)

    Sengbusch, Evan R.

    , beamlet weight, the number of delivered beamlets, and the number of delivery angles. These methods are evaluated via treatment planning studies including left-sided whole breast irradiation, lung stereotactic body radiotherapy, nasopharyngeal carcinoma, and whole brain radiotherapy with hippocampal avoidance. Improvements in efficiency and efficacy relative to traditional proton therapy and intensity modulated photon radiation therapy are discussed.

  8. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band

    SciTech Connect

    Tadesse, Semere A.; Li, Huan; Liu, Qiyu; Li, Mo

    2015-11-16

    Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Our system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.

  9. Photon dose produced by a high-intensity laser on a solid target

    NASA Astrophysics Data System (ADS)

    Compant La Fontaine, A.

    2014-08-01

    When a high-intensity laser pulse hits a solid target, its pedestal creates a preplasma. The interaction of the main laser pulse, linearly polarized, with this preplasma produces relativistic electrons. These electrons subsequently penetrate inside the target, with high atomic number, and produce bremsstrahlung emission, which constitutes an x-ray source that may be used in various applications such as radiography of high area density objects, photonuclear studies or positron production. This x-ray source is mainly defined by its photon dose, which depends upon the laser, preplasma and target characteristics. In new facilities the radioprotection layout design can be obtained by numerical simulations, which are somewhat tedious. A simple model giving the photon dose per laser energy unit is obtained by using the mean bremsstrahlung cross section of electrons interacting with the atoms of the conversion target. It is expressed versus the fraction ηel of the laser energy absorbed into the forward hot electrons, their mean kinetic energy E, the photon lobe emission mean angular aperture \\bar{{\\theta}} and the target characteristics, i.e. thickness, element, atomic mass and atomic number. The parameters ηel, E and \\bar{{\\theta}} are analysed by applying the energy and momentum flux conservation laws during the laser-plasma interaction in the relativistic regime in an underdense and overdense plasma, including the hole-boring effect. In addition, these quantities are parametrized versus the normalized laser vector potential a0 and the preplasma scale length Lp by using a full set of numerical simulations, in the laser intensity domain 1018-1021 W cm-2 and preplasma scale length range 0.03-400µm. These simulations are done in two- and three-dimensional geometry with the CALDER particle-in-cell code, which computes the laser-plasma interaction, and with the MCNP Monte Carlo code, which calculates the bremsstrahlung emission. The present model is compared with the

  10. Si-photonics based passive device packaging and module performance.

    PubMed

    Song, Jeong Hwan; Zhang, Jing; Zhang, Huijuan; Li, Chao; Lo, Guo Qiang

    2011-09-12

    We report a fully packaged silicon passive waveguide device designed for a tunable filter based on a ring-resonator. Polarization diversity circuits prevent polarization dependant issues in the silicon ring-resonator. For the device packaging, the YAG laser welding technique has been used for pigtailing both of the input and output fibers. Post welding misalignment was compensated by mechanical fine tuning using the seesaw effect via power monitoring. Packaging loss less than 1.5 dB with respect to chip measurement has been achieved using 10 µm-curvature radius lensed fibers. In addition, the packaging process and the module performance are presented. PMID:21935167

  11. Photonic cancer therapy: modulating cellular metabolism with light

    NASA Astrophysics Data System (ADS)

    Coutinho, Isabel; Correia, Manuel; Viruthachalam, Thiagarajan; Gajula, Gnana Prakash; Petersen, Steffen B.; Neves-Petersen, Maria Teresa

    2013-03-01

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases. EGFR activation upon binding of ligands (such as EGF and TGF-α) results in cell signaling cascades that promote cell proliferation, survival and apoptosis inhibition. As reported for many solid tumors, EGFR overactivation is associated with tumor development and progression, resistance to cancer therapies and poor prognosis. Therefore, inhibition of EGFR function is a rational cancer therapy approach. We have shown previously that 280 nm UV illumination of two cancer cell lines overexpressing EGFR could prevent phosphorylation of EGFR and of its downstream signalling molecules despite the presence of EGF. Our earlier studies demonstrated that UV illumination of aromatic residues in proteins leads to the disruption of nearby disulphide bridges. Since human EGFR is rich in disulphide bridges and aromatic residues, it is likely that structural changes can be induced upon UV excitation of its pool of aromatic residues (Trp, Tyr and Phe). Such changes may impair the correct binding of ligands to EGFR which will halt the process of tumor growth. In this paper we report structural changes induced by UV light on the extracellular domain of human EGFR. Steady state fluorescence spectroscopy and binding immunoassays were carried out. Our goal is to gain insight at the protein structure level that explains the way the new photonic cancer therapy works. This technology can be applicable to the treatment of various forms of cancer, alone or in combination with other therapies to improve treatment outcome.

  12. Deterministic reshaping of single-photon spectra using cross-phase modulation.

    PubMed

    Matsuda, Nobuyuki

    2016-03-01

    The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing. PMID:27051862

  13. Deterministic reshaping of single-photon spectra using cross-phase modulation

    PubMed Central

    Matsuda, Nobuyuki

    2016-01-01

    The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing. PMID:27051862

  14. Device to color modulate a stationary light beam gives high intensity

    NASA Technical Reports Server (NTRS)

    Gantz, W. A.

    1966-01-01

    Signal controlled system color modulates a beam of light while also providing high intensity and a stationary beam, either collimated or focused. The color modulation acquired by the presented system can be compatible with any color film by employing color filters formed to provide a color wedge having a color distribution compatible with the films color sensitivity.

  15. Two-photon photoacoustics ultrasound measurement by a loss modulation technique

    NASA Astrophysics Data System (ADS)

    Lai, Yu-Hung; Chang, Chieh-Feng; Cheng, Yu-Hsiang; Sun, Chi-Kuang

    2013-03-01

    In this work, we investigated the principle of the two-photon absorption (TPA) detection with a loss modulation technique, and first demonstrated the existence of two-photon photoacoustics ultrasound excited by a femtosecond high repetition rate laser. By using the AO modulation with different modulation frequencies, we successfully create the beating of the light signal when the two arms of the beams are both spatial and temporal overlapping. The pulse train of the femtosecond laser causes the narrow band excitation, providing the frequency selectivity and sensitivity. Moreover, the pulse energy is no more than 15nJ/pulse, which is at least 3 orders of magnitude smaller than that of the nanosecond laser, and therefore prevents the thermal damage of the sample. With the help of lock-in detection and a low noise amplifier, we can separate the signal of two-photon absorption from one-photon absorption. We used an ultrasonic transducer to detect the response of the sample, and verified the existence of the two-photon photoacoustics ultrasound generating by the femtosecond laser. Several contrast agents, such as the black carbon solution, the fluorescence dye and the nano-particles, were used in the experiment. In the end, we demonstrated the application, two photo-acoustic imaging, which provides the high spatial resolution (<10μm) and large penetration depth (~1mm), to the simulated biological tissue. This is a milestone to develop the two-photon photoacoustics microscopy, which, in principle, has the great potential to achieve the in vitro and in vivo high resolution deep tissue imaging.

  16. Dosimetric comparison of volumetric modulated arc therapy and intensity-modulated radiation therapy for pancreatic malignancies

    SciTech Connect

    Ali, Arif N.; Dhabaan, Anees H.; Jarrio, Christie S.; Siddiqi, Arsalan K.; Landry, Jerome C.

    2012-10-01

    Volumetric-modulated arc therapy (VMAT) has been previously evaluated for several tumor sites and has been shown to provide significant dosimetric and delivery benefits when compared with intensity-modulated radiation therapy (IMRT). To date, there have been no published full reports on the benefits of VMAT use in pancreatic patients compared with IMRT. Ten patients with pancreatic malignancies treated with either IMRT or VMAT were retrospectively identified. Both a double-arc VMAT and a 7-field IMRT plan were generated for each of the 10 patients using the same defined tumor volumes, organs at risk (OAR) volumes, dose, fractionation, and optimization constraints. The planning tumor volume (PTV) maximum dose (55.8 Gy vs. 54.4 Gy), PTV mean dose (53.9 Gy vs. 52.1 Gy), and conformality index (1.11 vs. 0.99) were statistically similar between the IMRT and VMAT plans, respectively. The VMAT plans had a statistically significant reduction in monitor units compared with the IMRT plans (1109 vs. 498, p < 0.001). In addition, the doses to the liver, small bowel, and spinal cord were comparable between the IMRT and VMAT plans. However, the VMAT plans demonstrated a statistically significant reduction in the mean left kidney V{sub 25} (9.4 Gy vs. 2.3 Gy, p = 0.018), mean right kidney V{sub 15} (53.4 Gy vs. 45.9 Gy, p = 0.035), V{sub 20} (32.2 Gy vs. 25.5 Gy, p = 0.016), and V{sub 25} (21.7 Gy vs. 14.9 Gy, p = 0.001). VMAT was investigated in patients with pancreatic malignancies and compared with the current standard of IMRT. VMAT was found to have similar or improved dosimetric parameters for all endpoints considered. Specifically, VMAT provided reduced monitor units and improved bilateral kidney normal tissue dose. The clinical relevance of these benefits in the context of pancreatic cancer patients, however, is currently unclear and requires further investigation.

  17. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy

    SciTech Connect

    Letourneau, Daniel; Keller, Harald; Sharpe, Michael B.; Jaffray, David A.

    2007-05-15

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 deg. of gantry (usually within {+-}1%). For single beam geometry, errors in phantom placement as small as 0.5 mm could be accurately detected (in gradient {>=}1%/mm). In clinical setting, MLC systematic errors of 1 mm on a single MLC bank introduced in the IMRT plan were easily detectable with the QA phantom. The QA phantom demonstrated also sufficient sensitivity for the detection of setup errors as small as 1 mm for the IMRT delivery. These results demonstrated that the prototype can accurately and efficiently verify the entire IG-IMRT process. This tool, in conjunction with image guidance capabilities

  18. High-speed tunable microwave photonic notch filter based on phase modulator incorporated Lyot filter.

    PubMed

    Ge, Jia; Feng, Hanlin; Scott, Guy; Fok, Mable P

    2015-01-01

    A high-speed tunable microwave photonic notch filter with ultrahigh rejection ratio is presented, which is achieved by semiconductor optical amplifier (SOA)-based single-sideband modulation and optical spectral filtering with a phase modulator-incorporated Lyot (PM-Lyot) filter. By varying the birefringence of the phase modulator through electro-optic effect, electrically tuning of the microwave photonic notch filter is experimentally achieved at tens of gigahertz speed. The use of SOA-polarizer based single-sideband modulation scheme provides good sideband suppression over a wide frequency range, resulting in an ultrahigh rejection ratio of the microwave photonic notch filter. Stable filter spectrum with bandstop rejection ratio over 60 dB is observed over a frequency tuning range from 1.8 to 10 GHz. Compare with standard interferometric notch filter, narrower bandwidth and sharper notch profile are achieved with the unique PM-Lyot filter, resulting in better filter selectivity. Moreover, bandwidth tuning is also achieved through polarization adjustment inside the PM-Lyot filter, that the 10-dB filter bandwidth is tuned from 0.81 to 1.85 GHz. PMID:25531605

  19. Intensity modulation and direct detection quantum key distribution based on quantum noise

    NASA Astrophysics Data System (ADS)

    Ikuta, Takuya; Inoue, Kyo

    2016-01-01

    Quantum key distribution (QKD) has been studied for achieving perfectly secure cryptography based on quantum mechanics. This paper presents a novel QKD scheme that is based on an intensity-modulation and direct-detection system. Two slightly intensity-modulated pulses are sent from a transmitter, and a receiver determines key bits from the directly detected intensity. We analyzed the system performance for two typical eavesdropping methods, a beam splitting attack and an intercept-resend attack, with an assumption that the transmitting and receiving devices are fully trusted. Our brief analysis showed that short- or middle-range QKD systems are achievable with a simple setup.

  20. Means of Intensity Modulation of Radiation in External Radiotherapy

    NASA Astrophysics Data System (ADS)

    Bajusová, Alica; Králik, Gabriel; Miglierini, Marcel

    2010-01-01

    The paper deals with the main means of the beam intensity modifications that are used in radio therapeutic praxis. Physical principles and the main characteristics of the physical wedges and the enhanced dynamic wedges (EDW) are described. The main advantages and the disadvantages of the EDW over the conventional physical wedges are listed. The paper describes also a process of dosimetry verification of the application of the EDW that was applied on The Saint Elizabeth Cancer Institute in Bratislava and it details the experiment of the verification of an isodose distribution within this implementation of the EDW.

  1. Means of Intensity Modulation of Radiation in External Radiotherapy

    SciTech Connect

    Bajusova, Alica; Kralik, Gabriel; Miglierini, Marcel

    2010-01-05

    The paper deals with the main means of the beam intensity modifications that are used in radio therapeutic praxis. Physical principles and the main characteristics of the physical wedges and the enhanced dynamic wedges (EDW) are described. The main advantages and the disadvantages of the EDW over the conventional physical wedges are listed. The paper describes also a process of dosimetry verification of the application of the EDW that was applied on The Saint Elizabeth Cancer Institute in Bratislava and it details the experiment of the verification of an isodose distribution within this implementation of the EDW.

  2. Phase-amplitude crosstalk in intensity modulated near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Alford, K.; Wickramasinghe, Y.

    2000-05-01

    Near infrared spectroscopy (NIRS) instruments that rely on phase sensitive detection suffer from what is called "phase-amplitude crosstalk," i.e., the phase measured is dependent on the average light intensity entering the detector. Changes in detector rise time with input light intensity is the accepted explanation of this phenomenon. It is concluded here that an additional simple mechanism can cause phase-amplitude errors, particularly if the ratio of the ac component of the detected signal to the dc component is low. It is shown that the form of the phase distortion encountered during the development of a new phase sensitive NIR instrument can be modeled by assuming the presence of a synchronous interfering signal, due to rf coupling, at the detector output. This modeling allows a required margin between the detected signal of interest, i.e., the signal from the tissue and the interfering signal to be set in order to achieve a measured phase accuracy necessary to derive sufficiently accurate clinical parameters.

  3. Chorus intensity modulation driven by time-varying field-aligned low-energy plasma

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Bortnik, J.; Li, W.; Liang, J.; Thorne, R. M.; Angelopoulos, V.; Le Contel, O.; Auster, U.; Bonnell, J. W.

    2015-09-01

    Recent studies have shown that chorus waves are responsible for scattering and precipitating the energetic electrons that drive the pulsating aurora. While some of the chorus intensity modulation events are correlated with <~100 eV electron density modulation, most of the chorus intensity modulation events in the postmidnight sector occur without apparent density changes. Although it is generally difficult to measure evolution of low-energy (<~20 eV) electron fluxes due to constraints imposed by the spacecraft potential and electrostatic analyzer (ESA) energy range limit, we identified using Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite data that low-energy ions of ~100 eV show density modulation that is correlated with chorus intensity modulation. Those low-energy ions and electrons are field-aligned with major peaks in 0° (for northern hemisphere winter event) and 180° (for northern hemisphere summer event) pitch angle, indicating that outflowing plasma from the sunlit hemisphere is the source of the low-energy plasma density modulation near the equator. Plasma sheet plasma density, and ambient electric and magnetic fields do not show modulations that are correlated with the chorus intensity modulation. Assuming charge neutrality, the low-energy ions can be used to represent cold plasma density in wave growth rate calculations, and the enhancements of the low-energy plasma density are found to contribute most effectively to chorus linear growth rates. These results suggest that chorus intensity modulation is driven by a feedback process where outflowing plasma due to energetic electron precipitation increases the equatorial density that drives further electron precipitation.

  4. A novel readout module for single photon solid state detectors (SiPMD, GAPD, MPPC, MAPC)

    SciTech Connect

    Kushpil, V.; Kushpil, S.; Huna, Z.

    2011-07-01

    In this paper a novel, Readout Module (RM) for Single Photon Detector (SiPD has been described. The electronics design is based on the concept of virtual instrumentation RM consists of SiPD preamplifier, shaping amplifier, discriminator, multi channel analyzer and control module connected to a PC through the USB bus and of PC application software. The RM can be used for investigation of different types of SiPD with maximum biasing voltage 90 V and maximal current 2 mA. The RM has fast digital output for triggering and 12 bit internal ADC for output digitizing. The RM uses USB bus as a power supply. It could be very useful for laboratory experiment. The small size of module allows easy integration of few modules into multi-channel system that can be used for PET application. (authors)

  5. Realization of the single photon Talbot effect with a spatial light modulator.

    PubMed

    Deachapunya, Sarayut; Srisuphaphon, Sorakrai; Panthong, Pituk; Photia, Thanarwut; Boonkham, Kitisak; Chiangga, Surasak

    2016-09-01

    We demonstrate the quantum Talbot effect using a beam of single photons produced by parametric down conversion. In contrast to the previous works, we use a programmable spatial light modulator to behave as a diffraction grating. Thus, the investigation of the Talbot diffraction patterns under the variation of grating structure can be easily performed. The influence of spectral bandwidth of the down-converted photons on the diffraction pattern is also investigated. A theoretical model based on the wave nature of photons is presented to explain the Talbot diffraction patterns under varying conditions. The measured diffraction patterns are in good agreement with the theoretical prediction. We are convinced that our study improves the understanding of the quantum Talbot effect. PMID:27607611

  6. Low-power, parallel photonic interconnections for Multi-Chip Module applications

    SciTech Connect

    Carson, R.F.; Lovejoy, M.L.; Lear, K.L.

    1994-12-31

    New applications of photonic interconnects will involve the insertion of parallel-channel links into Multi-Chip Modules (MCMs). Such applications will drive photonic link components into more compact forms that consume far less power than traditional telecommunication data links. MCM-based applications will also require simplified drive circuitry, lower cost, and higher reliability than has been demonstrated currently in photonic and optoelectronic technologies. The work described is a parallel link array, designed for vertical (Z-Axis) interconnection of the layers in a MCM-based signal processor stack, operating at a data rate of 100 Mb/s. This interconnect is based upon high-efficiency VCSELs, HBT photoreceivers, integrated micro-optics, and MCM-compatible packaging techniques.

  7. Femtosecond two-photon Rabi oscillations in excited He driven by ultrashort intense laser fields

    NASA Astrophysics Data System (ADS)

    Fushitani, M.; Liu, C.-N.; Matsuda, A.; Endo, T.; Toida, Y.; Nagasono, M.; Togashi, T.; Yabashi, M.; Ishikawa, T.; Hikosaka, Y.; Morishita, T.; Hishikawa, A.

    2016-02-01

    Coherent light-matter interaction provides powerful methods for manipulating quantum systems. Rabi oscillation is one such process. As it enables complete population transfer to a target state, it is thus routinely exploited in a variety of applications in photonics, notably quantum information processing. The extension of coherent control techniques to the multiphoton regime offers wider applicability, and access to highly excited or dipole-forbidden transition states. However, the multiphoton Rabi process is often disrupted by other competing nonlinear effects such as the a.c. Stark shift, especially at the high laser-field intensities necessary to achieve ultrafast Rabi oscillations. Here we demonstrate a new route to drive two-photon Rabi oscillations on timescales as short as tens of femtoseconds, by utilizing the strong-field phenomenon known as Freeman resonance. The scenario is not specific to atomic helium as investigated in the present study, but broadly applicable to other systems, thus opening new prospects for the ultrafast manipulation of Rydberg states.

  8. Generation of ultra-intense single-cycle laser pulses by using photon deceleration

    PubMed Central

    Tsung, F. S.; Ren, C.; Silva, L. O.; Mori, W. B.; Katsouleas, T.

    2002-01-01

    A scheme to generate single-cycle laser pulses is presented based on photon deceleration in underdense plasmas. This robust and tunable process is ideally suited for lasers above critical power because it takes advantage of the relativistic self-focusing of these lasers and the nonlinear features of the plasma wake. The mechanism is demonstrated by particle-in-cell simulations in three and 2½ dimensions, resulting in pulse shortening up to a factor of 4, thus making it feasible to generate few-femtosecond single-cycle pulses in the optical to IR domain with intensities I > 1020 W/cm2 by using present-day laser technology. PMID:11752414

  9. Switching circuit to improve the frequency modulation difference-intensity THz quantum cascade laser imaging

    SciTech Connect

    Saat, N. K.; Dean, P.; Khanna, S. P.; Salih, M.; Linfield, E. H.; Davies, A. G.

    2015-04-24

    We demonstrate new switching circuit for difference-intensity THz quantum cascade laser (QCL) imaging by amplitude modulation and lock in detection. The switching circuit is designed to improve the frequency modulation so that it can stably lock the amplitude modulation of the QCL and the detector output. The combination of a voltage divider and a buffer in switching circuit to quickly switch the amplitude of the QCL biases of 15.8 V and 17.2 V is successfully to increase the frequency modulation up to ∼100 Hz.

  10. Low-frequency analog signal distribution on digital photonic networks by optical delta-sigma modulation

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Kawanishi, Tetsuya

    2013-12-01

    We propose a delta-sigma modulation scheme for low- and medium-frequency signal transmission in a digital photonic network system. A 10-Gb/s-class optical transceiver with a delta-sigma modulator utilized as a high-speed analog-to-digital converter (ADC) provides a binary optical signal. On the signal reception side, a low-cost and slow-speed photonic receiver directly converts the binary signal into an analog signal at frequencies from several hundreds of kilohertz several tens of megahertz. Further, by using a clock and data recovery circuit at the receiver to reduce jitters, the single-sideband phase noise of the generated signals can be significantly reduced.