Science.gov

Sample records for intensity modulation radiotherapy

  1. Intensity-Modulated Radiotherapy for Pancreatic Adenocarcinoma

    SciTech Connect

    Abelson, Jonathan A.; Murphy, James D.; Minn, Ann Yuriko; Chung, Melody; Fisher, George A.; Ford, James M.; Kunz, Pamela; Norton, Jeffrey A.; Visser, Brendan C.; Poultsides, George A.; Koong, Albert C.; Chang, Daniel T.

    2012-03-15

    Purpose: To report the outcomes and toxicities in patients treated with intensity-modulated radiotherapy (IMRT) for pancreatic adenocarcinoma. Methods and Materials: Forty-seven patients with pancreatic adenocarcinoma were treated with IMRT between 2003 and 2008. Of these 47 patients, 29 were treated adjuvantly and 18 definitively. All received concurrent 5-fluorouracil chemotherapy. The treatment plans were optimized such that 95% of the planning target volume received the prescription dose. The median delivered dose for the adjuvant and definitive patients was 50.4 and 54.0 Gy, respectively. Results: The median age at diagnosis was 63.9 years. For adjuvant patients, the 1- and 2-year overall survival rate was 79% and 40%, respectively. The 1- and 2-year recurrence-free survival rate was 58% and 17%, respectively. The local-regional control rate at 1 and 2 years was 92% and 80%, respectively. For definitive patients, the 1-year overall survival, recurrence-free survival, and local-regional control rate was 24%, 16%, and 64%, respectively. Four patients developed Grade 3 or greater acute toxicity (9%) and four developed Grade 3 late toxicity (9%). Conclusions: Survival for patients with pancreatic cancer remains poor. A small percentage of adjuvant patients have durable disease control, and with improved therapies, this proportion will increase. Systemic therapy offers the greatest opportunity. The present results have demonstrated that IMRT is well tolerated. Compared with those who received three-dimensional conformal radiotherapy in previously reported prospective clinical trials, patients with pancreatic adenocarcinoma treated with IMRT in our series had improved acute toxicity.

  2. Commissioning of intensity modulated neutron radiotherapy (IMNRT)

    SciTech Connect

    Burmeister, Jay; Snyder, Michael; Spink, Robyn; Liang Liang; Bossenberger, Todd; Halford, Robert; Brandon, John; Delauter, Jonathan

    2013-02-15

    Purpose: Intensity modulated neutron radiotherapy (IMNRT) has been developed using inhouse treatment planning and delivery systems at the Karmanos Cancer Center/Wayne State University Fast Neutron Therapy facility. The process of commissioning IMNRT for clinical use is presented here. Results of commissioning tests are provided including validation measurements using representative patient plans as well as those from the TG-119 test suite. Methods: IMNRT plans were created using the Varian Eclipse optimization algorithm and an inhouse planning system for calculation of neutron dose distributions. Tissue equivalent ionization chambers and an ionization chamber array were used for point dose and planar dose distribution comparisons with calculated values. Validation plans were delivered to water and virtual water phantoms using TG-119 measurement points and evaluation techniques. Photon and neutron doses were evaluated both inside and outside the target volume for a typical IMNRT plan to determine effects of intensity modulation on the photon dose component. Monitor unit linearity and effects of beam current and gantry angle on output were investigated, and an independent validation of neutron dosimetry was obtained. Results: While IMNRT plan quality is superior to conventional fast neutron therapy plans for clinical sites such as prostate and head and neck, it is inferior to photon IMRT for most TG-119 planning goals, particularly for complex cases. This results significantly from current limitations on the number of segments. Measured and calculated doses for 11 representative plans (six prostate/five head and neck) agreed to within -0.8 {+-} 1.4% and 5.0 {+-} 6.0% within and outside the target, respectively. Nearly all (22/24) ion chamber point measurements in the two phantom arrangements were within the respective confidence intervals for the quantity [(measured-planned)/prescription dose] derived in TG-119. Mean differences for all measurements were 0.5% (max

  3. Intensity-modulated radiotherapy in the treatment of breast cancer.

    PubMed

    Dayes, I; Rumble, R B; Bowen, J; Dixon, P; Warde, P

    2012-09-01

    Intensity-modulated radiotherapy (IMRT) is a newer method of radiotherapy that uses beams with multiple intensity levels for any single beam, allowing concave dose distributions and tighter margins than those possible using conventional radiotherapy. IMRT is ideal for treating complex treatment volumes and avoiding close proximity organs at risk that may be dose limiting and provides increased tumour control through an escalated dose and reduces normal tissue complications through organ at risk sparing. Given the potential advantages of IMRT and the availability of IMRT-enabled treatment planning systems and linear accelerators, IMRT has been introduced in a number of disease sites. This systematic review examined the evidence for IMRT in the treatment of breast cancer to quantify the potential benefits of this new technology and to make recommendations for radiation treatment programmes considering adopting this technique. Providing that avoidance of acute adverse effects associated with radiation is an outcome of interest, then IMRT is recommended over tangential radiotherapy after breast-conserving surgery, based on a review of six published reports including 2012 patients. There were insufficient data to recommend IMRT over standard tangential radiotherapy for reasons of oncological outcomes or late toxicity. Future research should focus on studies with longer follow-up and provide data on late toxicity and disease recurrence rates. PMID:22748561

  4. Benchmarking Dosimetric Quality Assessment of Prostate Intensity-Modulated Radiotherapy

    SciTech Connect

    Senthi, Sashendra; Gill, Suki S.; Haworth, Annette; Kron, Tomas; Cramb, Jim; Rolfo, Aldo; Thomas, Jessica; Duchesne, Gillian M.; Hamilton, Christopher H.; Joon, Daryl Lim; Bowden, Patrick; Foroudi, Farshad

    2012-02-01

    Purpose: To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. Patients and Methods: We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V{sub 95%} and V{sub 100%}, respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. Results: The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V{sub 95%}, PTV sigma index, and conformity number. The mean PTV V{sub 95%} was 92.5% (95% confidence interval, 91.3-93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90-2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76-0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p < .0001). The planning system independently influenced homogeneity (p = .038) and conformity (p = .021). The treatment date independently influenced the PTV V{sub 95%} only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Conclusion: Our study has benchmarked measures

  5. Intensity-modulated radiotherapy for lymphoma involving the mediastinum

    SciTech Connect

    Goodman, Karyn A.; Toner, Sean; Hunt, Margie; Wu, Elisa J.; Yahalom, Joachim . E-mail: yahalomj@mskcc.org

    2005-05-01

    Purpose: To determine the feasibility, potential advantage, and indications for intensity-modulated radiotherapy (IMRT) in the treatment of Hodgkin's lymphoma or non-Hodgkin's lymphoma involving excessively large mediastinal disease volumes or requiring repeat RT. Methods and materials: Sixteen patients with Hodgkin's lymphoma (n = 11) or non-Hodgkin's lymphoma (n = 5) undergoing primary radiotherapy or repeat RT delivered via an IMRT plan were studied. The indications for using an IMRT plan were previous mediastinal RT (n = 5) or extremely large mediastinal treatment volumes (n 11). For each patient, IMRT, conventional parallel-opposed (AP-PA), and three-dimensional conformal (3D-CRT) plans were designed using 6-MV X-rays to deliver doses ranging from 18 to 45 Gy (median, 36 Gy). The plans were compared with regard to dose-volume parameters. The IMRT/AP-PA and IMRT/3D-CRT ratios were calculated for each parameter. Results: For all patients, the mean lung dose was reduced using IMRT, on average, by 12% compared with AP-PA and 14% compared with 3D-CRT. The planning target volume coverage was also improved using IMRT compared with AP-PA but was not different from the planning target volume coverage obtained with 3D-CRT. Conclusion: In selected patients with Hodgkin's lymphoma and non-Hodgkin's lymphoma involving the mediastinum, IMRT provides improved planning target volume coverage and reduces pulmonary toxicity parameters. It is feasible for RT of large treatment volumes and allows repeat RT of relapsed disease without exceeding cord tolerance. Additional follow-up is necessary to determine whether improvements in dose delivery affect long-term morbidity and disease control.

  6. Intensity-Modulated Radiotherapy for Sinonasal Cancer: Improved Outcome Compared to Conventional Radiotherapy

    SciTech Connect

    Dirix, Piet; Vanstraelen, Bianca; Jorissen, Mark; Vander Poorten, Vincent; Nuyts, Sandra

    2010-11-15

    Purpose: To evaluate clinical outcome and toxicity of postoperative intensity-modulated radiotherapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 2003 and 2008, 40 patients with cancer of the paranasal sinuses (n = 34) or nasal cavity (n = 6) received postoperative IMRT to a dose of 60 Gy (n = 21) or 66 Gy (n = 19). Treatment outcome and toxicity were retrospectively compared with that of a previous patient group (n = 41) who were also postoperatively treated to the same doses but with three-dimensional conformal radiotherapy without intensity modulation, from 1992 to 2002. Results: Median follow-up was 30 months (range, 4-74 months). Two-year local control, overall survival, and disease-free survival were 76%, 89%, and 72%, respectively. Compared to the three-dimensional conformal radiotherapy treatment, IMRT resulted in significantly improved disease-free survival (60% vs. 72%; p = 0.02). No grade 3 or 4 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of acute as well as late side effects, especially regarding skin toxicity, mucositis, xerostomia, and dry-eye syndrome. Conclusions: Postoperative IMRT for sinonasal cancer significantly improves disease-free survival and reduces acute as well as late toxicity. Consequently, IMRT should be considered the standard treatment modality for malignancies of the nasal cavity and paranasal sinuses.

  7. Intensity-modulated radiotherapy for neoadjuvant treatment of gastric cancer

    SciTech Connect

    Knab, Brian; Rash, Carla; Farrey, Karl; Jani, Ashesh B. . E-mail: jani@rover.uchicago.edu

    2006-01-01

    Radiation therapy plays an integral role in the treatment of gastric cancer in the postsurgery setting, the inoperable/palliative setting, and, as in the case of the current report, in the setting of neoadjuvant therapy prior to surgery. Typically, anterior-posterior/posterior-anterior (AP/PA) or 3-field techniques are used. In this report, we explore the use of intensity-modulated radiotherapy (IMRT) treatment in a patient whose care was transferred to our institution after 3-field radiotherapy (RT) was given to a dose of 30 Gy at an outside institution. If the 3-field plan were continued to 50 Gy, the volume of irradiated liver receiving greater than 30 Gy would have been unacceptably high. To deliver the final 20 Gy, an opposed parallel AP/PA plan and an IMRT plan were compared to the initial 3-field technique for coverage of the target volume as well as dose to the kidneys, liver, small bowel, and spinal cord. Comparison of the 3 treatment techniques to deliver the final 20 Gy revealed reduced median and maximum dose to the whole kidney with the IMRT plan. For this 20-Gy boost, the volume of irradiated liver was lower for both the IMRT plan and the AP/PA plan vs. the 3-field plan. Comparing the IMRT boost plan to the AP/PA boost-dose range (<10 Gy) in comparison to the AP/PA plan; however, the IMRT plan irradiated a smaller liver volume within the higher dose region (>10 Gy) in comparison to the AP/PA plan. The IMRT boost plan also irradiated a smaller volume of the small bowel compared to both the 3-field plan and the AP/PA plan, and also delivered lower dose to the spinal cord in comparison to the AP/PA plan. Comparison of the composite plans revealed reduced dose to the whole kidney using IMRT. The V20 for the whole kidney volume for the composite IMRT plan was 30% compared to approximately 60% for the composite AP/PA plan. Overall, the dose to the liver receiving greater than 30 Gy was lower for the composite IMRT plan and was well below acceptable limits

  8. Prostate Bed Motion During Intensity-Modulated Radiotherapy Treatment

    SciTech Connect

    Klayton, Tracy; Price, Robert; Buyyounouski, Mark K.; Sobczak, Mark; Greenberg, Richard; Li, Jinsheng; Keller, Lanea; Sopka, Dennis; Kutikov, Alexander; Horwitz, Eric M.

    2012-09-01

    Purpose: Conformal radiation therapy in the postprostatectomy setting requires accurate setup and localization of the prostatic fossa. In this series, we report prostate bed localization and motion characteristics, using data collected from implanted radiofrequency transponders. Methods and Materials: The Calypso four-dimensional localization system uses three implanted radiofrequency transponders for daily target localization and real-time tracking throughout a course of radiation therapy. We reviewed the localization and tracking reports for 20 patients who received ultrasonography-guided placement of Calypso transponders within the prostate bed prior to a course of intensity-modulated radiation therapy at Fox Chase Cancer Center. Results: At localization, prostate bed displacement relative to bony anatomy exceeded 5 mm in 9% of fractions in the anterior-posterior (A-P) direction and 21% of fractions in the superior-inferior (S-I) direction. The three-dimensional vector length from skin marks to Calypso alignment exceeded 1 cm in 24% of all 652 fractions with available setup data. During treatment, the target exceeded the 5-mm tracking limit for at least 30 sec in 11% of all fractions, generally in the A-P or S-I direction. In the A-P direction, target motion was twice as likely to move posteriorly, toward the rectum, than anteriorly. Fifteen percent of all treatments were interrupted for repositioning, and 70% of patients were repositioned at least once during their treatment course. Conclusion: Set-up errors and motion of the prostatic fossa during radiotherapy are nontrivial, leading to potential undertreatment of target and excess normal tissue toxicity if not taken into account during treatment planning. Localization and real-time tracking of the prostate bed via implanted Calypso transponders can be used to improve the accuracy of plan delivery.

  9. Uncertainty Estimation in Intensity-Modulated Radiotherapy Absolute Dosimetry Verification

    SciTech Connect

    Sanchez-Doblado, Francisco . E-mail: paco@us.es; Hartmann, Guenther H.; Pena, Javier; Capote, Roberto; Paiusco, Marta; Rhein, Bernhard; Leal, Antonio; Lagares, Juan Ignacio

    2007-05-01

    Purpose: Intensity-modulated radiotherapy (IMRT) represents an important method for improving RT. The IMRT relative dosimetry checks are well established; however, open questions remain in reference dosimetry with ionization chambers (ICs). The main problem is the departure of the measurement conditions from the reference ones; thus, additional uncertainty is introduced into the dose determination. The goal of this study was to assess this effect systematically. Methods and Materials: Monte Carlo calculations and dosimetric measurements with five different detectors were performed for a number of representative IMRT cases, covering both step-and-shoot and dynamic delivery. Results: Using ICs with volumes of about 0.125 cm{sup 3} or less, good agreement was observed among the detectors in most of the situations studied. These results also agreed well with the Monte Carlo-calculated nonreference correction factors (c factors). Additionally, we found a general correlation between the IC position relative to a segment and the derived correction factor c, which can be used to estimate the expected overall uncertainty of the treatment. Conclusion: The increase of the reference dose relative standard uncertainty measured with ICs introduced by nonreference conditions when verifying an entire IMRT plan is about 1-1.5%, provided that appropriate small-volume chambers are used. The overall standard uncertainty of the measured IMRT dose amounts to about 2.3%, including the 0.5% of reproducibility and 1.5% of uncertainty associated with the beam calibration factor. Solid state detectors and large-volume chambers are not well suited to IMRT verification dosimetry because of the greater uncertainties. An action level of 5% is appropriate for IMRT verification. Greater discrepancies should lead to a review of the dosimetric procedure, including visual inspection of treatment segments and energy fluence.

  10. Prospective Trial of Accelerated Partial Breast Intensity-Modulated Radiotherapy

    SciTech Connect

    Leonard, Charles . E-mail: charles.leonard@usoncology.com; Carter, Dennis; Kercher, Jane; Howell, Kathryn; Henkenberns, Phyllis; Tallhamer, Michael; Cornish, Patricia C.; Hunter, Kari C.; Kondrat, Janis

    2007-04-01

    Purpose: To examine the feasibility and acute toxicities of an accelerated, partial breast, intensity-modulated radiotherapy (IMRT) protocol. Methods and Materials: Between February 2004 and August 2005, 55 patients with Stage I breast cancer and initial follow-up were enrolled at four facilities on a HealthONE and Western institutional review board-approved accelerated partial breast IMRT protocol. All patients were treated in 10 equal fractions delivered twice daily within 5 consecutive days. The first 7 patients were treated to 34 Gy, and the remaining 48 patients were treated to 38.5 Gy. Results: The median follow-up after IMRT was 10 months (range, <1-19) and after diagnosis was 11.5 months (range, 2-21). No local or distant recurrences developed. The T stage distribution was as follows: T1a in 11 patients, T1b in 24, and T1c in 20. The median tumor size was 9 mm (range, 1-20 mm). Breast cosmesis was judged by the patient as poor by 2, good by 12, and excellent by 40 (1 patient was legally blind) and by the physician as poor for 1, good for 10, and excellent for 44 patients. Breast pain, as judged by patient, was none in 34, mild in 19, moderate in 2, and severe in 0 patients. There was a single report of telangiectasia but no incidents of significant edema. Compared with historic controls for whom three-dimensional treatment planning techniques were used, IMRT provided similar dose delivery to the target while reducing the volume of normal breast included in the 100%, 75%, and 50% isodose lines. Conclusion: This initial report prospectively explored the feasibility of accelerated partial breast IMRT. After short-term follow-up, the dose delivery and clinical outcomes were very acceptable. We believe this regimen deserves additional investigation under institutional review board guidance.

  11. SU-E-T-409: Intensity Modulated Robotic Radiotherapy

    SciTech Connect

    Wang, B; Jin, L; Li, J; Chen, L; Ma, C; Fan, J; Zhang, C

    2014-06-01

    Purpose: As compared with the IRIS-based models, the MLC-based CyberKnife system allows more efficient treatment delivery due to its improved coverage of large lesions and intensity modulation. The treatment delivery efficiency is mainly determined by the number of selected nodes. This study aimed to demonstrate that relatively small sets of optimally selected nodes could produce high-quality plans. Methods: The full body path of the CyberKnife system consists of 110 nodes, from which we selected various sets for 4 prostate cancer cases using our in-house beamselection software. With the selected nodes we generated IMRT plans using our in-house beamlet-based inverse-planning optimization program. We also produced IMRT plans using the MultiPlan treatment planning system (version 5.0) for the same cases. Furthermore, the nodes selected by MultiPlan were used to produce plans with our own optimization software so that we could compare the quality of the selected sets of nodes. Results: Our beam-selection program selected one node-set for each case, with the number of nodes ranging from 23 to 34. The IMRT plans based on the selected nodes and our in-house optimization program showed adequate target coverage, with favorable critical structure sparing for the cases investigated. Compared with the plans using the nodes selected by MultiPlan, the plans generated with our selected beams provided superior rectum/bladder sparing for 75% of the cases. The plans produced by MultiPlan with various numbers of nodes also suggested that the plan quality was not compromised significantly when the number of nodes was reduced. Conclusion: Our preliminary results showed that with beamletbased planning optimization, one could produce high-quality plans with an optimal set of nodes for MLC-based robotic radiotherapy. Furthermore, our beam-selection strategy could help further improve critical structure sparing.

  12. Intensity modulated neutron radiotherapy optimization by photon proxy

    SciTech Connect

    Snyder, Michael; Hammoud, Ahmad; Bossenberger, Todd; Spink, Robyn; Burmeister, Jay

    2012-08-15

    Purpose: Introducing intensity modulation into neutron radiotherapy (IMNRT) planning has the potential to mitigate some normal tissue complications seen in past neutron trials. While the hardware to deliver IMNRT plans has been in use for several years, until recently the IMNRT planning process has been cumbersome and of lower fidelity than conventional photon plans. Our in-house planning system used to calculate neutron therapy plans allows beam weight optimization of forward planned segments, but does not provide inverse optimization capabilities. Commercial treatment planning systems provide inverse optimization capabilities, but currently cannot model our neutron beam. Methods: We have developed a methodology and software suite to make use of the robust optimization in our commercial planning system while still using our in-house planning system to calculate final neutron dose distributions. Optimized multileaf collimator (MLC) leaf positions for segments designed in the commercial system using a 4 MV photon proxy beam are translated into static neutron ports that can be represented within our in-house treatment planning system. The true neutron dose distribution is calculated in the in-house system and then exported back through the MATLAB software into the commercial treatment planning system for evaluation. Results: The planning process produces optimized IMNRT plans that reduce dose to normal tissue structures as compared to 3D conformal plans using static MLC apertures. The process involves standard planning techniques using a commercially available treatment planning system, and is not significantly more complex than conventional IMRT planning. Using a photon proxy in a commercial optimization algorithm produces IMNRT plans that are more conformal than those previously designed at our center and take much less time to create. Conclusions: The planning process presented here allows for the optimization of IMNRT plans by a commercial treatment planning

  13. Intensity-Modulated Radiotherapy for Resected Mesothelioma: The Duke Experience

    SciTech Connect

    Miles, Edward F. Larrier, Nicole A.; Kelsey, Christopher R.; Hubbs, Jessica L.; Ma Jinli; Yoo, Sua; Marks, Lawrence B.

    2008-07-15

    Purpose: To assess the safety and efficacy of intensity-modulated radiotherapy (IMRT) after extrapleural pneumonectomy for malignant pleural mesothelioma. Methods and Materials: Thirteen patients underwent IMRT after extrapleural pneumonectomy between July 2005 and February 2007 at Duke University Medical Center. The clinical target volume was defined as the entire ipsilateral hemithorax, chest wall incisions, including drain sites, and involved nodal stations. The dose prescribed to the planning target volume was 40-55 Gy (median, 45). Toxicity was graded using the modified Common Toxicity Criteria, and the lung dosimetric parameters from the subgroups with and without pneumonitis were compared. Local control and survival were assessed. Results: The median follow-up after IMRT was 9.5 months. Of the 13 patients, 3 (23%) developed Grade 2 or greater acute pulmonary toxicity (during or within 30 days of IMRT). The median dosimetric parameters for those with and without symptomatic pneumonitis were a mean lung dose (MLD) of 7.9 vs. 7.5 Gy (p = 0.40), percentage of lung volume receiving 20 Gy (V{sub 20}) of 0.2% vs. 2.3% (p = 0.51), and percentage of lung volume receiving 5 Gy (V{sub 20}) of 92% vs. 66% (p = 0.36). One patient died of fatal pulmonary toxicity. This patient received a greater MLD (11.4 vs. 7.6 Gy) and had a greater V{sub 20} (6.9% vs. 1.9%), and V{sub 5} (92% vs. 66%) compared with the median of those without fatal pulmonary toxicity. Local and/or distant failure occurred in 6 patients (46%), and 6 patients (46%) were alive without evidence of recurrence at last follow-up. Conclusions: With limited follow-up, 45-Gy IMRT provides reasonable local control for mesothelioma after extrapleural pneumonectomy. However, treatment-related pulmonary toxicity remains a significant concern. Care should be taken to minimize the dose to the remaining lung to achieve an acceptable therapeutic ratio.

  14. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    SciTech Connect

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-08-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  15. Stereotactic Radiotherapy of Intracranial Tumors: A Comparison of Intensity-Modulated Radiotherapy and Dynamic Conformal Arc

    SciTech Connect

    Wiggenraad, Ruud G.J. Petoukhova, Anna L.; Versluis, Lia; Santvoort, Jan P.C. van

    2009-07-15

    Purpose: Intensity-modulated radiotherapy (IMRT) and dynamic conformal arc (DCA) are two state-of-the-art techniques for linac-based stereotactic radiotherapy (SRT) using the micromultileaf collimator. The purpose of this planning study is to examine the relative merits of these techniques in the treatment of intracranial tumors. Materials and Methods: SRT treatment plans were made for 25 patients with a glioma or meningioma. For all patients, we made an IMRT and a DCA plan. Plans were evaluated using: target coverage, conformity index (CI), homogeneity index (HI), doses in critical structures, number of monitor units needed, and equivalent uniform dose (EUD) in planning target volume (PTV) and critical structures. Results: In the overall comparison of both techniques, we found adequate target coverage in all cases; a better mean CI with IMRT in concave tumors (p = 0.027); a better mean HI with DCA in meningiomas, complex tumors, and small (< 92 mL) tumors (p = 0.000, p = 0.005, and p = 0.005, respectively); and a higher EUD in the PTV with DCA in convex tumors (gliomas) and large tumors (p = 0.000 and p = 0.003, respectively). In all patients, significantly more monitor units were needed with IMRT. The results of the overall comparison did not enable us to predict the preference for one of the techniques in individual patients. The DCA plan was acceptable in 23 patients and the IMRT plan in 19 patients. DCA was preferred in 18 of 25 patients. Conclusions: DCA is our preferred SRT technique for most intracranial tumors. Tumor type, size, or shape do not predict a preference for DCA or IMRT.

  16. Clinical Results of a Pilot Study on Stereovision-Guided Stereotactic Radiotherapy and Intensity Modulated Radiotherapy

    PubMed Central

    Li, Shidong; Kleinberg, Lawrence R.; Rigamonti, Daniele; Wharam, Moody D.; Rashid, Abdul; Jackson, Juan; Djajaputra, David; He, Shenjen; Creasey, Tunisia; DeWeese, Theodore L.

    2011-01-01

    Real-time stereovision-guidance has been introduced for efficient and convenient fractionated stereotactic radiotherapy (FSR) and image-guided intensity-modulated radiation therapy (IMRT). This first pilot study is to clinically evaluate its accuracy and precision as well as impact on treatment doses. Sixty-one FSR patients wearing stereotactic masks (SMs) and nine IMRT patients wearing flexible masks (FMs), were accrued. Daily target reposition was initially based-on biplane-radiographs and then adjusted in six degrees of freedom under real-time stereovision guidance. Mean and standard deviation of the head displacements measured the accuracy and precision. Head positions during beam-on times were measured with real-time stereovisions and used for determination of delivered doses. Accuracy ± precision in direction with the largest errors shows improvement from 0.4 ± 2.3 mm to 0.0 ± 1.0 mm in the inferior-to-superior direction for patients wearing SM or from 0.8 ± 4.3 mm to 0.4 ± 1.7 mm in the posterior-to-anterior direction for patients wearing FM. The image-guidance increases target volume coverage by >30% for small lesions. Over half of head position errors could be removed from the stereovision-guidance. Importantly, the technique allows us to check head position during beam-on time and makes it possible for having frameless head refixation without tight masks. PMID:21070083

  17. The role of intensity modulated radiotherapy in gynecological radiotherapy: Present and future

    PubMed Central

    Fernandez-Ots, Ana; Crook, Juanita

    2013-01-01

    Aim This manuscript reviews the English language literature on the use of intensity modulated radiation therapy (IMRT) for gynecologic malignancies, focusing on the treatment cervical cancer. Background Radiation therapy plays a key role in both definitive and adjuvant treatment of these patients, although efforts continue to minimize acute and chronic toxicity. IMRT is an attractive option because of the potential to dose escalate to the target while sparing organs at risk. Methods and Materials The English language literature was reviewed for relevant studies. Results Multiple heterogeneous studies have showed dosimetric and clinical benefits with reduction in acute and late gastrointestinal, genitourinary and hematologic toxicity, especially in the post hysterectomy scenario and for dose escalation to para-aortic nodes. Consensus is evolving regarding necessary margins and target delineation in the context of organ movement and tumor shrinkage during the course of radiotherapy. Protocols with daily soft-tissue visualization are being investigated. Conclusions Consistency in approach and reporting are vital in order to acquire the data to justify the considerable increased expense of IMRT. PMID:24416580

  18. Dosimetric comparison of three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and helical tomotherapy for lung stereotactic body radiotherapy.

    PubMed

    Kinhikar, Rajesh Ashok; Ghadi, Yogesh G; Sahoo, Priyadarshini; Laskar, Sarbani Ghosh; Deshpande, Deepak D; Shrivastava, Shyam K; Agarwal, Jaiprakash

    2015-01-01

    To compare the treatment plans generated with three-dimensional conformal radiation therapy (3DCRT), intensity modulated radiotherapy (IMRT), and helical tomotherapy (HT) for stereotactic body radiotherapy of lung, twenty patients with medically inoperable (early nonsmall cell lung cancer) were retrospectively reviewed for dosimetric evaluation of treatment delivery techniques (3DCRT, IMRT, and HT). A dose of 6 Gy per fraction in 8 fractions was prescribed to deliver 95% of the prescription dose to 95% volume of planning target volume (PTV). Plan quality was assessed using conformity index (CI) and homogeneity index (HI). Doses to critical organs were assessed. Mean CI with 3DCRT, IMRT, and HT was 1.19 (standard deviation [SD] 0.13), 1.18 (SD 0.11), and 1.08 (SD 0.04), respectively. Mean HI with 3DCRT, IMRT, and HT was 1.14 (SD 0.05), 1.08 (SD 0.02), and 1.07 (SD 0.04), respectively. Mean R50% values for 3DCRT, IMRT, and HT was 8.5 (SD 0.35), 7.04 (SD 0.45), and 5.43 (SD 0.29), respectively. D2cm was found superior with IMRT and HT. Significant sparing of critical organs can be achieved with highly conformal techniques (IMRT and HT) without compromising the PTV conformity and homogeneity. PMID:26865754

  19. Clinical Experience With Image-Guided Radiotherapy in an Accelerated Partial Breast Intensity-Modulated Radiotherapy Protocol

    SciTech Connect

    Leonard, Charles E.; Tallhamer, Michael M.S.; Johnson, Tim; Hunter, Kari C.M.D.; Howell, Kathryn; Kercher, Jane; Widener, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Carter, Dennis L.

    2010-02-01

    Purpose: To explore the feasibility of fiducial markers for the use of image-guided radiotherapy (IGRT) in an accelerated partial breast intensity modulated radiotherapy protocol. Methods and Materials: Nineteen patients consented to an institutional review board approved protocol of accelerated partial breast intensity-modulated radiotherapy with fiducial marker placement and treatment with IGRT. Patients (1 patient with bilateral breast cancer; 20 total breasts) underwent ultrasound guided implantation of three 1.2- x 3-mm gold markers placed around the surgical cavity. For each patient, table shifts (inferior/superior, right/left lateral, and anterior/posterior) and minimum, maximum, mean error with standard deviation were recorded for each of the 10 BID treatments. The dose contribution of daily orthogonal films was also examined. Results: All IGRT patients underwent successful marker placement. In all, 200 IGRT treatment sessions were performed. The average vector displacement was 4 mm (range, 2-7 mm). The average superior/inferior shift was 2 mm (range, 0-5 mm), the average lateral shift was 2 mm (range, 1-4 mm), and the average anterior/posterior shift was 3 mm (range, 1 5 mm). Conclusions: This study shows that the use of IGRT can be successfully used in an accelerated partial breast intensity-modulated radiotherapy protocol. The authors believe that this technique has increased daily treatment accuracy and permitted reduction in the margin added to the clinical target volume to form the planning target volume.

  20. Volumetric-Modulated Arc Therapy for Stereotactic Body Radiotherapy of Lung Tumors: A Comparison With Intensity-Modulated Radiotherapy Techniques

    SciTech Connect

    Holt, Andrea; Vliet-Vroegindeweij, Corine van; Mans, Anton; Belderbos, Jose S.; Damen, Eugene M.F.

    2011-12-01

    Purpose: To demonstrate the potential of volumetric-modulated arc therapy (VMAT) compared with intensity-modulated radiotherapy (IMRT) techniques with a limited number of segments for stereotactic body radiotherapy (SBRT) for early-stage lung cancer. Methods and Materials: For a random selection of 27 patients eligible for SBRT, coplanar and noncoplanar IMRT and coplanar VMAT (using SmartArc) treatment plans were generated in Pinnacle{sup 3} and compared. In addition, film measurements were performed using an anthropomorphic phantom to evaluate the skin dose for the different treatment techniques. Results: Using VMAT, the delivery times could be reduced to an average of 6.6 min compared with 23.7 min with noncoplanar IMRT. The mean dose to the healthy lung was 4.1 Gy for VMAT and noncoplanar IMRT and 4.2 Gy for coplanar IMRT. The volume of healthy lung receiving >5 Gy and >20 Gy was 18.0% and 5.4% for VMAT, 18.5% and 5.0% for noncoplanar IMRT, and 19.4% and 5.7% for coplanar IMRT, respectively. The dose conformity at 100% and 50% of the prescribed dose of 54 Gy was 1.13 and 5.17 for VMAT, 1.11 and 4.80 for noncoplanar IMRT and 1.12 and 5.31 for coplanar IMRT, respectively. The measured skin doses were comparable for VMAT and noncoplanar IMRT and slightly greater for coplanar IMRT. Conclusions: Coplanar VMAT for SBRT for early-stage lung cancer achieved plan quality and skin dose levels comparable to those using noncoplanar IMRT and slightly better than those with coplanar IMRT. In addition, the delivery time could be reduced by {<=}70% with VMAT.

  1. Long-Term Breast Cancer Patient Outcomes After Adjuvant Radiotherapy Using Intensity-Modulated Radiotherapy or Conventional Tangential Radiotherapy

    PubMed Central

    Yang, Jen-Fu; Lee, Meei-Shyuan; Lin, Chun-Shu; Chao, Hsing-Lung; Chen, Chang-Ming; Lo, Cheng-Hsiang; Fan, Chao-Yueh; Tsao, Chih-Cheng; Huang, Wen-Yen

    2016-01-01

    Abstract The aim of the article is to analyze breast cancer patient clinical outcomes after long-term follow-up using intensity-modulated radiotherapy (IMRT) or conventional tangential radiotherapy (cRT). We retrospectively reviewed patients with stage 0–III breast cancer who received breast conserving therapy between April 2004 and December 2007. Of the 234 patients, 103 (44%) were treated with IMRT and 131 (56%) were treated with cRT. A total prescription dose of 45 to 50 Gy (1.8–2 Gy per fraction) was delivered to the whole breast. A 14 Gy boost dose was delivered in 7 fractions. The median follow-up was 8.2 years. Five of 131 (3.8%) cRT-treated patients and 2 of 103 (1.9%) IMRT-treated patients had loco-regional failure. The 8-year loco-regional failure-free survival rates were 96.7% and 97.6% (P = 0.393) in the cRT and IMRT groups, respectively, whereas the 8-year disease-free survival (DFS) rates were 91.2% and 93.1%, respectively (P = 0.243). Patients treated with IMRT developed ≥ grade 2 acute dermatitis less frequently than patients treated with cRT (40.8% vs 56.5%; P = 0.017). There were no differences in late toxicity. IMRT reduces ≥ grade 2 acute skin toxicity. Local control, DFS, and overall survival were equivalent with IMRT and cRT. IMRT can be considered a standard technique for breast cancer treatment. PMID:26986158

  2. Long-Term Breast Cancer Patient Outcomes After Adjuvant Radiotherapy Using Intensity-Modulated Radiotherapy or Conventional Tangential Radiotherapy.

    PubMed

    Yang, Jen-Fu; Lee, Meei-Shyuan; Lin, Chun-Shu; Chao, Hsing-Lung; Chen, Chang-Ming; Lo, Cheng-Hsiang; Fan, Chao-Yueh; Tsao, Chih-Cheng; Huang, Wen-Yen

    2016-03-01

    The aim of the article is to analyze breast cancer patient clinical outcomes after long-term follow-up using intensity-modulated radiotherapy (IMRT) or conventional tangential radiotherapy (cRT). We retrospectively reviewed patients with stage 0-III breast cancer who received breast conserving therapy between April 2004 and December 2007. Of the 234 patients, 103 (44%) were treated with IMRT and 131 (56%) were treated with cRT. A total prescription dose of 45 to 50 Gy (1.8-2 Gy per fraction) was delivered to the whole breast. A 14 Gy boost dose was delivered in 7 fractions. The median follow-up was 8.2 years. Five of 131 (3.8%) cRT-treated patients and 2 of 103 (1.9%) IMRT-treated patients had loco-regional failure. The 8-year loco-regional failure-free survival rates were 96.7% and 97.6% (P = 0.393) in the cRT and IMRT groups, respectively, whereas the 8-year disease-free survival (DFS) rates were 91.2% and 93.1%, respectively (P = 0.243). Patients treated with IMRT developed ≥ grade 2 acute dermatitis less frequently than patients treated with cRT (40.8% vs 56.5%; P = 0.017). There were no differences in late toxicity. IMRT reduces ≥ grade 2 acute skin toxicity. Local control, DFS, and overall survival were equivalent with IMRT and cRT. IMRT can be considered a standard technique for breast cancer treatment. PMID:26986158

  3. Rationale and development of image-guided intensity-modulated radiotherapy post-prostatectomy: the present standard of care?

    PubMed Central

    Murray, Julia R; McNair, Helen A; Dearnaley, David P

    2015-01-01

    The indications for post-prostatectomy radiotherapy have evolved over the last decade, although the optimal timing, dose, and target volume remain to be well defined. The target volume is susceptible to anatomical variations with its borders interfacing with the rectum and bladder. Image-guided intensity-modulated radiotherapy has become the gold standard for radical prostate radiotherapy. Here we review the current evidence for image-guided techniques with intensity-modulated radiotherapy to the prostate bed and describe current strategies to reduce or account for interfraction and intrafraction motion. PMID:26635484

  4. Means of Intensity Modulation of Radiation in External Radiotherapy

    NASA Astrophysics Data System (ADS)

    Bajusová, Alica; Králik, Gabriel; Miglierini, Marcel

    2010-01-01

    The paper deals with the main means of the beam intensity modifications that are used in radio therapeutic praxis. Physical principles and the main characteristics of the physical wedges and the enhanced dynamic wedges (EDW) are described. The main advantages and the disadvantages of the EDW over the conventional physical wedges are listed. The paper describes also a process of dosimetry verification of the application of the EDW that was applied on The Saint Elizabeth Cancer Institute in Bratislava and it details the experiment of the verification of an isodose distribution within this implementation of the EDW.

  5. Means of Intensity Modulation of Radiation in External Radiotherapy

    SciTech Connect

    Bajusova, Alica; Kralik, Gabriel; Miglierini, Marcel

    2010-01-05

    The paper deals with the main means of the beam intensity modifications that are used in radio therapeutic praxis. Physical principles and the main characteristics of the physical wedges and the enhanced dynamic wedges (EDW) are described. The main advantages and the disadvantages of the EDW over the conventional physical wedges are listed. The paper describes also a process of dosimetry verification of the application of the EDW that was applied on The Saint Elizabeth Cancer Institute in Bratislava and it details the experiment of the verification of an isodose distribution within this implementation of the EDW.

  6. Clinical evaluation of intensity-modulated radiotherapy for head and neck cancers

    PubMed Central

    Bhide, S A; Newbold, K L; Harrington, K J; Nutting, C M

    2012-01-01

    Radiotherapy and surgery are the principal curative modalities in treatment of head and neck cancer. Conventional two-dimensional and three-dimensional conformal radiotherapy result in significant side effects and altered quality of life. Intensity-modulated radiotherapy (IMRT) can spare the normal tissues, while delivering a curative dose to the tumour-bearing tissues. This article reviews the current role of IMRT in head and neck cancer from the point of view of normal tissue sparing, and also reviews the current published literature by individual head and neck cancer subsites. In addition, we briefly discuss the role of image guidance in head and neck IMRT, and future directions in this area. PMID:22556403

  7. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario

    PubMed Central

    Yong, J.H.E.; McGowan, T.; Redmond-Misner, R.; Beca, J.; Warde, P.; Gutierrez, E.; Hoch, J.S.

    2016-01-01

    Background Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. Methods An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. Results From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Conclusions Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption. PMID:27330359

  8. Intensity-Modulated Radiotherapy for Cervical Lymph Node Metastases From Unknown Primary Cancer

    SciTech Connect

    Madani, Indira Vakaet, Luc; Bonte, Katrien; Boterberg, Tom; Neve, Wilfried de

    2008-07-15

    Purpose: To compare the effectiveness of intensity-modulated radiotherapy (IMRT) and conventional (two-dimensional) radiotherapy in the treatment of cervical lymph node metastases from unknown primary cancer (UPC). Methods and Materials: Between February 2003 and September 2006, 23 patients with UPC of squamous cell carcinoma were treated with IMRT. Extended putative mucosal and bilateral nodal sites were irradiated to a median dose of 66 Gy. In 19 patients, IMRT was performed after lymph node dissection, and in 4 patients primary radiotherapy was given. The conventional radiotherapy group (historical control group) comprised 18 patients treated to a median dose of 66 Gy between August 1994 and October 2003. Results: Twenty patients completed treatment. As compared with conventional radiotherapy, the incidence of Grade 3 acute dysphagia was significantly lower in the IMRT group (4.5% vs. 50%, p = 0.003). By 6 months, Grade 3 xerostomia was detected in 11.8% patients in the IMRT group vs. 53.4% in the historical control group (p = 0.03). No Grade 3 dysphagia or skin fibrosis was observed after IMRT but these were noted after conventional radiotherapy (26.7%, p = 0.01) and 26.7%, p = 0.03) respectively). With median follow-up of living patients of 17 months, there was no emergence of primary cancer. One patient had persistent nodal disease and another had nodal relapse at 5 months. Distant metastases were detected in 4 patients. The 2-year overall survival and distant disease-free probability after IMRT did not differ significantly from those for conventional radiotherapy (74.8% vs. 61.1% and 76.3% vs. 68.4%, respectively). Conclusions: Use of IMRT for UPC resulted in lower toxicity than conventional radiotherapy, and was similar in efficacy.

  9. Large Cohort Dose-Volume Response Analysis of Parotid Gland Function After Radiotherapy: Intensity-Modulated Versus Conventional Radiotherapy

    SciTech Connect

    Dijkema, Tim Terhaard, Chris H.J.; Roesink, Judith M.; Braam, Petra M.; Gils, Carla H. van; Moerland, Marinus A.; Raaijmakers, Cornelis P.J.

    2008-11-15

    Purpose: To compare parotid gland dose-volume response relationships in a large cohort of patients treated with intensity-modulated (IMRT) and conventional radiotherapy (CRT). Methods and materials: A total of 221 patients (64 treated with IMRT, 157 with CRT) with various head-and-neck malignancies were prospectively evaluated. The distribution of tumor subsites in both groups was unbalanced. Stimulated parotid flow rates were measured before and 6 weeks, 6 months, and 1 year after radiotherapy. Parotid gland dose-volume histograms were derived from computed tomography-based treatment planning. The normal tissue complication probability (NTCP) model proposed by Lyman was fit to the data. A complication was defined as stimulated parotid flow ratio <25% of the pretreatment flow rate. The relative risk of complications was determined for IMRT vs. CRT and adjusted for the mean parotid gland dose using Poisson regression modeling. Results: One year after radiotherapy, NTCP curves for IMRT and CRT were comparable with a TD{sub 50} (uniform dose leading to a 50% complication probability) of 38 and 40 Gy, respectively. Until 6 months after RT, corrected for mean dose, different complication probabilities existed for IMRT vs. CRT. The relative risk of a complication for IMRT vs. CRT after 6 weeks was 1.42 (95% CI 1.21-1.67), after 6 months 1.41 (95% CI; 1.12-1.77), and at 1 year 1.21 (95% CI 0.87-1.68), after correcting for mean dose. Conclusions: One year after radiotherapy, no difference existed in the mean dose-based NTCP curves for IMRT and CRT. Early after radiotherapy (up to 6 months) mean dose based (Lyman) models failed to fully describe the effects of radiotherapy on the parotid glands.

  10. A Comparison of Gastrointestinal Toxicities between Intensity-Modulated Radiotherapy and Three-Dimensional Conformal Radiotherapy for Pancreatic Cancer

    PubMed Central

    Lee, Kyong Joo; Yoon, Hong In; Chung, Moon Jae; Park, Jeong Youp; Bang, Seungmin; Park, Seung-woo; Seong, Jin Sil; Song, Si Young

    2016-01-01

    Background/Aims Concurrent chemoradiotherapy (CCRT) is considered the treatment option for locally advanced pancreatic cancer, but accompanying gastrointestinal toxicities are the most common complication. With the introduction of three-dimensional conformal radiotherapy (3-D CRT) and intensity-modulated radiotherapy (IMRT), CCRT-related adverse events are expected to diminish. Here, we evaluated the benefits of radiation modalities by comparing gastrointestinal toxicities between 3-D CRT and IMRT. Methods Patients who received CCRT between July 2010 and June 2012 in Severance Hospital, Yonsei University College of Medicine, were enrolled prospectively. The patients underwent upper endoscopy before and 1 month after CCRT. Results A total of 84 patients were enrolled during the study period. The radiotherapy modalities delivered included 3D-CRT (n=40) and IMRT (n=44). The median follow-up period from the start of CCRT was 10.6 months (range, 3.8 to 29.9 months). The symptoms of dyspepsia, nausea/vomiting, and diarrhea did not differ between the groups. Upper endoscopy revealed significantly more gastroduodenal ulcers in the 3-D CRT group (p=0.003). The modality of radiotherapy (3D-CRT; odds ratio [OR], 11.67; p=0.011) and tumor location (body of pancreas; OR, 11.06; p=0.009) were risk factors for gastrointestinal toxicities. Conclusions IMRT is associated with significantly fewer gastroduodenal injuries among patients treated with CCRT for pancreatic cancer. PMID:26470767

  11. A Comparison of Helical Intensity-Modulated Radiotherapy, Intensity-Modulated Radiotherapy, and 3D-Conformal Radiation Therapy for Pancreatic Cancer

    SciTech Connect

    Poppe, Matthew M.; Narra, Venkat; Yue, Ning J.; Zhou Jinghao; Nelson, Carl; Jabbour, Salma K.

    2011-01-01

    We assessed dosimetric differences in pancreatic cancer radiotherapy via helical intensity-modulated radiotherapy (HIMRT), linac-based IMRT, and 3D-conformal radiation therapy (3D-CRT) with regard to successful plan acceptance and dose to critical organs. Dosimetric analysis was performed in 16 pancreatic cases that were planned to 54 Gy; both post-pancreaticoduodenectomy (n = 8) and unresected (n = 8) cases were compared. Without volume modification, plans met constraints 75% of the time with HIMRT and IMRT and 13% with 3D-CRT. There was no statistically significantly improvement with HIMRT over conventional IMRT in reducing liver V35, stomach V45, or bowel V45. HIMRT offers improved planning target volume (PTV) dose homogeneity compared with IMRT, averaging a lower maximum dose and higher volume receiving the prescription dose (D100). HIMRT showed an increased mean dose over IMRT to bowel and liver. Both HIMRT and IMRT offer a statistically significant improvement over 3D-CRT in lowering dose to liver, stomach, and bowel. The results were similar for both unresected and resected patients. In pancreatic cancer, HIMRT offers improved dose homogeneity over conventional IMRT and several significant benefits to 3D-CRT. Factors to consider before incorporating IMRT into pancreatic cancer therapy are respiratory motion, dose inhomogeneity, and mean dose.

  12. SU-E-T-234: Modulated Photon Radiotherapy (XMRT):The Impact of Incorporating Energy Modulation Into Intensity Modulated Radiotherapy (IMRT) Optimization

    SciTech Connect

    McGeachy, P; Khan, R

    2014-06-01

    Purpose: To develop a new radiotherapy plan optimization technique that, for a given organ geometry, will find the optimal photon beam energies and fluences to produce a desirable dose distribution. This new modulated (both in energy and fluence) photon radiotherapy (XMRT) was compared with intensity modulated radiotherapy (IMRT) for a simple organ geometry. Methods: The XMRT optimization was formulated using a linear programming approach where the objective function is the mean dose to the healthy organs and dose-point constraints were assigned to each organ of interest. The organ geometry consisted of a target, two organs at risk (OARs), and normal tissue. A seven-equispaced-coplanar beam arrangement was used. For conventional IMRT, only 6 MV beams were available, while XMRT was optimized using 6 and 18 MV beams. A prescribed dose (PD) of 72 GY was assigned to the target, with upper and lower bounds of 110% and 95% of the PD, respectively. Both OARs were assigned a maximum dose of 64 Gy, while the normal tissue was assigned a maximum dose of 66 Gy. A numerical solver, Gurobi, generated solutions for the XMRT and IMRT problems. The dose-volume histograms from IMRT and XMRT solutions were compared. Results: The maximum, minimum, mean, and homogeneity of the dose to the target were comparable between IMRT and XMRT. Though IMRT had improved dose conformity relative to XMRT, XMRT reduced the mean dose to both OARs by more than 1 Gy. For normal tissue, an increase of 5 Gy in mean dose and 27 percent in integral dose was seen for IMRT relative to XMRT. Conclusion: This work demonstrates the benefits of simultaneously modulating photon beam energy and fluence using our XMRT approach in a given phantom geometry. While target coverage was comparable, dose to healthy structures was reduced using XMRT.

  13. Stereotactic Image-Guided Intensity Modulated Radiotherapy Using the HI-ART II Helical Tomotherapy System

    SciTech Connect

    Holmes, Timothy W. Hudes, Richard; Dziuba, Sylwester; Kazi, Abdul; Hall, Mark; Dawson, Dana

    2008-07-01

    The highly integrated adaptive radiation therapy (HI-ART II) helical tomotherapy unit is a new radiotherapy machine designed to achieve highly precise and accurate treatments at all body sites. The precision and accuracy of the HI-ART II is similar to that provided by stereotactic radiosurgery systems, hence the historical distinction between external beam radiotherapy and stereotactic procedures based on differing precision requirements is removed for this device. The objectives of this work are: (1) to describe stereotactic helical tomotherapy processes (SRS, SBRT); (2) to show that the precision and accuracy of the HI-ART meet the requirements defined for SRS and SBRT; and (3) to describe the clinical implementation of a stereotactic image-guided intensity modulated radiation therapy (IG-IMRT) system that incorporates optical motion management.

  14. Whole Pelvic Intensity-modulated Radiotherapy for Gynecological Malignancies: A Review of the Literature

    PubMed Central

    Hymel, Rockne; Jones, Guy C.; Simone, Charles B.

    2015-01-01

    Radiation therapy has long played a major role in the treatment of gynecological malignancies. There is increasing interest in the utility of intensity-modulated radiotherapy (IMRT) and its application to treat gynecological malignancies. Herein, we review the state-of-the-art use of IMRT for gynecological malignancies and report how it is being used alone as well as in combination with chemotherapy in both the adjuvant and definitive settings. Based on dosimetric and clinical evidence, IMRT can reduce gastrointestinal, genitourinary, and hematological toxicities compared with 3D conformal radiotherapy for gynecologic malignancies. We discuss how these attributes of IMRT may lead to improvements in disease outcomes by allowing for dose escalation of radiation therapy, intensification of chemotherapy, and limiting toxicity-related treatment breaks. Currently accruing trials investigating pelvic IMRT for cervical and endometrial cancers are discussed. PMID:25600840

  15. Feasibility of intensity-modulated and image-guided radiotherapy for locally advanced esophageal cancer

    PubMed Central

    2014-01-01

    Background In this study the feasibility of intensity-modulated radiotherapy (IMRT) and tomotherapy-based image-guided radiotherapy (IGRT) for locally advanced esophageal cancer was assessed. Methods A retrospective study of ten patients with locally advanced esophageal cancer who underwent concurrent chemotherapy with IMRT (1) and IGRT (9) was conducted. The gross tumor volume was treated to a median dose of 70 Gy (62.4-75 Gy). Results At a median follow-up of 14 months (1-39 months), three patients developed local failures, six patients developed distant metastases, and complications occurred in two patients (1 tracheoesophageal fistula, 1 esophageal stricture requiring repeated dilatations). No patients developed grade 3-4 pneumonitis or cardiac complications. Conclusions IMRT and IGRT may be effective for the treatment of locally advanced esophageal cancer with acceptable complications. PMID:24742268

  16. Towards using a Monolithic Active Pixel Sensor for in vivo beam monitoring of Intensity Modulated Radiotherapy

    NASA Astrophysics Data System (ADS)

    Page, R. F.; Abbott, N. L.; Davies, J.; Dyke, E. L.; Randles, H. J.; Velthuis, J. J.; Fletcher, S.; Gregory, S. D.; Hall, C.; John, A.; Lawrence, H.; Stevens, P. H.; Hugtenburg, R. P.; Tunbridge, V.

    2013-12-01

    The use of Intensity Modulated Radiotherapy (IMRT) for cancer treatments is entering wider use. These treatments involve using a complex configuration of field modifying components, known as Multileaf Collimators (MLC), to dynamically shape the beam. A treatment consists of a sequence of irregular shaped fields, which means real time monitoring and verification is essential. In the current framework the treatment plans are verified before the patient is treated, but not during. The aim of our collaboration is to monitor the treatment being given to the patient. This is achieved by placing a camera system using an ultra-thin Monolithic Active Pixel Sensor (MAPS) upstream of the patient.

  17. Intensity-modulated radiotherapy in high-grade gliomas: Clinical and dosimetric results

    SciTech Connect

    Narayana, Ashwatha . E-mail: narayana@mskcc.org; Yamada, Josh; Berry, Sean; Shah, Priti B.S.; Hunt, Margie; Gutin, Philip H.; Leibel, Steven A.

    2006-03-01

    Purpose: To report preliminary clinical and dosimetric data from intensity-modulated radiotherapy (IMRT) for malignant gliomas. Methods and Materials: Fifty-eight consecutive high-grade gliomas were treated between January 2001 and December 2003 with dynamic multileaf collimator IMRT, planned with the inverse approach. A dose of 59.4-60 Gy at 1.8-2.0 Gy per fraction was delivered. A total of three to five noncoplanar beams were used to cover at least 95% of the target volume with the prescription isodose line. Glioblastoma accounted for 70% of the cases, and anaplastic oligodendroglioma histology (pure or mixed) was seen in 15% of the cases. Surgery consisted of biopsy only in 26% of the patients, and 80% received adjuvant chemotherapy. Results: With a median follow-up of 24 months, 85% of the patients have relapsed. The median progression-free survival time for anaplastic astrocytoma and glioblastoma histology was 5.6 and 2.5 months, respectively. The overall survival time for anaplastic glioma and glioblastoma was 36 and 9 months, respectively. Ninety-six percent of the recurrences were local. No Grade IV/V late neurologic toxicities were noted. A comparative dosimetric analysis revealed that regardless of tumor location, IMRT did not significantly improve target coverage compared with three-dimensional planning. However, IMRT resulted in a decreased maximum dose to the spinal cord, optic nerves, and eye by 16%, 7%, and 15%, respectively, owing to its improved dose conformality. The mean brainstem dose also decreased by 7%. Intensity-modulated radiotherapy delivered with a limited number of beams did not result in an increased dose to the normal brain. Conclusions: It is unlikely that IMRT will improve local control in high-grade gliomas without further dose escalation compared with conventional radiotherapy. However, it might result in decreased late toxicities associated with radiotherapy.

  18. Predictors for Clinical Outcomes After Accelerated Partial Breast Intensity-Modulated Radiotherapy

    SciTech Connect

    Reeder, Reed; Carter, Dennis L. Howell, Kathryn; Henkenberns, Phyllis; Tallhamer, Michael; Johnson, Tim; Kercher, Jane; Widner, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Leonard, Charles E.

    2009-05-01

    Purpose: To correlate the treatment planning parameters with the clinical outcomes in patients treated with accelerated partial breast intensity-modulated radiotherapy. Methods and Materials: A total of 105 patients with Stage I breast cancer were treated between February 2004 and March 2007 in a Phase II prospective trial and had detailed information available on the planning target volume (PTV), ipsilateral breast volume (IBV), PTV/IBV ratio, lung volume, chest wall volume, surgery to radiotherapy interval, follow-up interval, breast pain, and cosmesis. The first 7 of these patients were treated to 34 Gy, and the remaining 98 were treated to 38.5 Gy. All patients were treated twice daily for 5 consecutive days. Univariate and multivariate analyses were performed. Results: The median follow-up was 13 months. No recurrences or deaths were observed. Of the 105 patients, 30 reported mild or moderate breast pain in their most recently recorded follow-up visit. The irradiated lung volume (p < 0.05) and chest wall volume receiving >35 Gy (p < 0.01) were associated with pain. The PTV, but not the PTV/IBV ratio, also correlated with pain (p < 0.01 and p = 0.42, respectively). A total of 72 patients reported excellent, 32 reported good, and 1 reported poor cosmesis. Physician-rated cosmesis reported 90 excellent and 15 good. None of the tested variables correlated with the cosmetic outcomes. Conclusion: Radiotherapy to the chest wall (chest wall volume receiving >35 Gy) and to lung correlated with reports of mild pain after accelerated partial breast intensity-modulated radiotherapy. Also, the PTV, but not the PTV/IBV ratio, was predictive of post-treatment reports of pain.

  19. Volumetric-modulated arc radiotherapy for pancreatic malignancies: Dosimetric comparison with sliding-window intensity-modulated radiotherapy and 3-dimensional conformal radiotherapy

    SciTech Connect

    Nabavizadeh, Nima Simeonova, Anna O.; Waller, Joseph G.; Romer, Jeanna L.; Monaco, Debra L.; Elliott, David A.; Tanyi, James A.; Fuss, Martin; Thomas, Charles R.; Holland, John M.

    2014-10-01

    Volumetric-modulated arc radiotherapy (VMAT) is an iteration of intensity-modulated radiotherapy (IMRT), both of which deliver highly conformal dose distributions. Studies have shown the superiority of VMAT and IMRT in comparison with 3-dimensional conformal radiotherapy (3D-CRT) in planning target volume (PTV) coverage and organs-at-risk (OARs) sparing. This is the first study examining the benefits of VMAT in pancreatic cancer for doses more than 55.8 Gy. A planning study comparing 3D-CRT, IMRT, and VMAT was performed in 20 patients with pancreatic cancer. Treatments were planned for a 25-fraction delivery of 45 Gy to a large field followed by a reduced-volume 8-fraction external beam boost to 59.4 Gy in total. OARs and PTV doses, conformality index (CI) deviations from 1.0, monitor units (MUs) delivered, and isodose volumes were compared. IMRT and VMAT CI deviations from 1.0 for the large-field and the boost plans were equivalent (large field: 0.032 and 0.046, respectively; boost: 0.042 and 0.037, respectively; p > 0.05 for all comparisons). Both IMRT and VMAT CI deviations from 1.0 were statistically superior to 3D-CRT (large field: 0.217, boost: 0.177; p < 0.05 for all comparisons). VMAT showed reduction of the mean dose to the boost PTV (VMAT: 61.4 Gy, IMRT: 62.4 Gy, and 3D-CRT: 62.3 Gy; p < 0.05). The mean number of MUs per fraction was significantly lower for VMAT for both the large-field and the boost plans. VMAT delivery time was less than 3 minutes compared with 8 minutes for IMRT. Although no statistically significant dose reduction to the OARs was identified when comparing VMAT with IMRT, VMAT showed a reduction in the volumes of the 100% isodose line for the large-field plans. Dose escalation to 59.4 Gy in pancreatic cancer is dosimetrically feasible with shorter treatment times, fewer MUs delivered, and comparable CIs for VMAT when compared with IMRT.

  20. Dosimetric Comparison of Three-Dimensional Conformal Proton Radiotherapy, Intensity-Modulated Proton Therapy, and Intensity-Modulated Radiotherapy for Treatment of Pediatric Craniopharyngiomas

    SciTech Connect

    Boehling, Nicholas S.; Grosshans, David R.; Bluett, Jaques B.; Palmer, Matthew T.; Song, Xiaofei; Amos, Richard A.; Sahoo, Narayan; Meyer, Jeffrey J.; Mahajan, Anita; Woo, Shiao Y.

    2012-02-01

    Purpose: Cranial irradiation in pediatric patients is associated with serious long-term adverse effects. We sought to determine whether both three-dimensional conformal proton radiotherapy (3D-PRT) and intensity-modulated proton therapy (IMPT) compared with intensity-modulated radiotherapy (IMRT) decrease integral dose to brain areas known to harbor neuronal stem cells, major blood vessels, and other normal brain structures for pediatric patients with craniopharyngiomas. Methods and Materials: IMRT, forward planned, passive scattering proton, and IMPT plans were generated and optimized for 10 pediatric patients. The dose was 50.4 Gy (or cobalt Gy equivalent) delivered in 28 fractions with the requirement for planning target volume (PTV) coverage of 95% or better. Integral dose data were calculated from differential dose-volume histograms. Results: The PTV target coverage was adequate for all modalities. IMRT and IMPT yielded the most conformal plans in comparison to 3D-PRT. Compared with IMRT, 3D-PRT and IMPT plans had a relative reduction of integral dose to the hippocampus (3D-PRT, 20.4; IMPT, 51.3%{sup Asterisk-Operator }), dentate gyrus (27.3, 75.0%{sup Asterisk-Operator }), and subventricular zone (4.5, 57.8%{sup Asterisk-Operator }). Vascular organs at risk also had reduced integral dose with the use of proton therapy (anterior cerebral arteries, 33.3{sup Asterisk-Operator }, 100.0%{sup Asterisk-Operator }; middle cerebral arteries, 25.9%{sup Asterisk-Operator }, 100%{sup Asterisk-Operator }; anterior communicating arteries, 30.8{sup Asterisk-Operator }, 41.7%{sup Asterisk-Operator }; and carotid arteries, 51.5{sup Asterisk-Operator }, 77.6{sup Asterisk-Operator }). Relative reduction of integral dose to the infratentorial brain (190.7{sup Asterisk-Operator }, 109.7%{sup Asterisk-Operator }), supratentorial brain without PTV (9.6, 26.8%{sup Asterisk-Operator }), brainstem (45.6, 22.4%{sup Asterisk-Operator }), and whole brain without PTV (19.4{sup Asterisk

  1. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    SciTech Connect

    Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V

    2013-12-15

    This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT.

  2. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    PubMed Central

    Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V

    2013-01-01

    Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT. PMID:26229621

  3. Assessment and Minimization of Contralateral Breast Dose for Conventional and Intensity Modulated Breast Radiotherapy

    SciTech Connect

    Burmeister, Jay Alvarado, Nicole; Way, Sarah; McDermott, Patrick; Bossenberger, Todd; Jaenisch, Harriett; Patel, Rajiv; Washington, Tara

    2008-04-01

    Breast radiotherapy is associated with an increased risk of contralateral breast cancer (CBC) in women under age 45 at the time of treatment. This risk increases with increasing absorbed dose to the contralateral breast. The use of intensity modulated radiotherapy (IMRT) is expected to substantially reduce the dose to the contralateral breast by eliminating scattered radiation from physical beam modifiers. The absorbed dose to the contralateral breast was measured for 5 common radiotherapy techniques, including paired 15 deg. wedges, lateral 30 deg. wedge only, custom-designed physical compensators, aperture based (field-within-field) IMRT with segments chosen by the planner, and inverse planned IMRT with segments chosen by a leaf sequencing algorithm after dose volume histogram (DVH)-based fluence map optimization. Further reduction in contralateral breast dose through the use of lead shielding was also investigated. While shielding was observed to have the most profound impact on surface dose, the radiotherapy technique proved to be most important in determining internal dose. Paired wedges or compensators result in the highest contralateral breast doses (nearly 10% of the prescription dose on the medial surface), while use of IMRT or removal of the medial wedge results in significantly lower doses. Aperture-based IMRT results in the lowest internal doses, primarily due to the decrease in the number of monitor units required and the associated reduction in leakage dose. The use of aperture-based IMRT reduced the average dose to the contralateral breast by greater than 50% in comparison to wedges or compensators. Combined use of IMRT and 1/8-inch-thick lead shielding reduced the dose to the interior and surface of the contralateral breast by roughly 60% and 85%, respectively. This reduction may warrant the use of IMRT for younger patients who have a statistically significant risk of contralateral breast cancer associated with breast radiotherapy.

  4. Hypofractionated Concomitant Intensity-Modulated Radiotherapy Boost for High-Risk Prostate Cancer: Late Toxicity

    SciTech Connect

    Quon, Harvey; Cheung, Patrick C.F.; Loblaw, D. Andrew; Morton, Gerard; Pang, Geordi; Szumacher, Ewa; Danjoux, Cyril; Choo, Richard; Thomas, Gillian; Kiss, Alex; Mamedov, Alexandre; Deabreu, Andrea

    2012-02-01

    Purpose: To report the acute and late toxicities of patients with high-risk localized prostate cancer treated using a concomitant hypofractionated, intensity-modulated radiotherapy boost combined with long-term androgen deprivation therapy. Methods and Materials: A prospective Phase I-II study of patients with any of the following: clinical Stage T3 disease, prostate-specific antigen level {>=}20 ng/mL, or Gleason score 8-10. A dose of 45 Gy (1.8 Gy/fraction) was delivered to the pelvic lymph nodes with a concomitant 22.5 Gy prostate intensity-modulated radiotherapy boost, to a total of 67.5 Gy (2.7 Gy/fraction) in 25 fractions within 5 weeks. Image guidance was performed using three gold seed fiducials. The National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0, and Radiation Therapy Oncology Group late morbidity scores were used to assess the acute and late toxicities, respectively. Biochemical failure was determined using the Phoenix definition. Results: A total of 97 patients were treated and followed up for a median of 39 months, with 88% having a minimum of 24 months of follow-up. The maximal toxicity scores were recorded. The grade of acute gastrointestinal toxicity was Grade 0 in 4%, 1 in 59%, and 2 in 37%. The grade of acute urinary toxicity was Grade 0 in 8%, 1 in 50%, 2 in 39%, and 3 in 4%. The grade of late gastrointestinal toxicity was Grade 0 in 54%, 1 in 40%, and 2 in 7%. No Grade 3 or greater late gastrointestinal toxicities developed. The grade of late urinary toxicity was Grade 0 in 82%, 1 in 9%, 2 in 5%, 3 in 3%, and 4 in 1% (1 patient). All severe toxicities (Grade 3 or greater) had resolved at the last follow-up visit. The 4-year biochemical disease-free survival rate was 90.5%. Conclusions: A hypofractionated intensity-modulated radiotherapy boost delivering 67.5 Gy in 25 fractions within 5 weeks combined with pelvic nodal radiotherapy and long-term androgen deprivation therapy was well tolerated, with low rates

  5. Intensity-modulated stereotactic radiotherapy (IMSRT) for skull-base meningiomas

    SciTech Connect

    Yenice, Kamil M. . E-mail: kyenice@radonc.uchicago.edu; Narayana, Ashwatha; Chang, Jenghwa; Gutin, Philip H.; Amols, Howard I.

    2006-11-15

    Purpose: To investigate the potential benefits of a micromultileaf collimator ({mu}MLC) -based intensity-modulated stereotactic radiotherapy (IMSRT) in skull-base meningiomas. Methods and Materials: Seven patients with inoperable or recurrent small-volume (1.7-15.5 cc) skull-base meningiomas were treated with IMSRT to 54 Gy in 30 fractions using a {mu}MLC in the dynamic mode. IMSRT plan quality was evaluated in comparison with the conformal stereotactic radiotherapy technique, using the same beam arrangement and static delivery with the {mu}MLC. Plans were compared using multiple dose distributions and dose-volume histograms for the planning target volume and organs at risk. The conformity and uniformity metrics, as well as normal-tissue complication probabilities, were calculated for the two techniques. Follow-up with MRI and clinical examination was performed at regular intervals. Results: With a mean follow-up of 17 months, local control has been achieved in all cases, and no treatment-related toxicities have been noted. For cavernous sinus tumors overlapping with optic apparatus, IMSRT has improved the dose uniformity within the target on average by 8%, which resulted in a reduction of the estimated chiasm normal-tissue complication probability by up to 65%. Conclusions: Intensity-modulated stereotactic radiotherapy can be safely delivered to improve the dose distributions in select skull-base meningiomas with an appreciable concomitant dose reduction to involved critical structures. Longer follow-up with a larger patient group is necessary to demonstrate sustained tumor control and low morbidity with IMSRT for small inoperable, recurrent, or subtotally resected meningiomas.

  6. Risk of second malignant neoplasm following proton versus intensity-modulated photon radiotherapies for hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Taddei, Phillip J.; Howell, Rebecca M.; Krishnan, Sunil; Scarboro, Sarah B.; Mirkovic, Dragan; Newhauser, Wayne D.

    2010-12-01

    Hepatocellular carcinoma (HCC), the sixth most common cancer in the world, is a global health concern. Radiotherapy for HCC is uncommon, largely because of the likelihood of radiation-induced liver disease, an acute side effect that is often fatal. Proton beam therapy (PBT) and intensity-modulated radiation therapy (IMRT) may offer HCC patients a better option for treating the diseased liver tissue while largely sparing the surrounding tissues, especially the non-tumor liver. However, even advanced radiotherapies carry a risk of late effects, including second malignant neoplasms (SMNs). It is unclear whether PBT or IMRT confers less risk of an SMN than the other. The purpose of this study was to compare the predicted risk of developing an SMN for a patient with HCC between PBT and IMRT. For both treatments, radiation doses in organs and tissues from primary radiation were determined using a treatment planning system; doses in organs and tissues from stray radiation from PBT were determined using Monte Carlo simulations and from IMRT using thermo-luminescent dosimeter measurements. Risk models of SMN incidence were taken from the literature. The predicted absolute lifetime attributable risks of SMN incidence were 11.4% after PBT and 19.2% after IMRT. The results of this study suggest that using proton beams instead of photon beams for radiotherapy may reduce the risk of SMN incidence for some HCC patients.

  7. Value of Intensity-Modulated Radiotherapy in Stage IV Head-and-Neck Squamous Cell Carcinoma

    SciTech Connect

    Dirix, Piet; Nuyts, Sandra

    2010-12-01

    Purpose: To review outcome and toxicity of Stage IVa and IVb head-and-neck squamous cell carcinoma patients treated with concomitant chemotherapy and intensity-modulated radiotherapy (IMRT) according to a hybrid fractionation schedule. Methods and Materials: Between 2006 and 2008, 42 patients with Stage IV head-and-neck squamous cell carcinoma were irradiated according to a hybrid fractionation schedule consisting of 20 fractions of 2 Gy (once daily), followed by 20 fractions of 1.6 Gy (twice daily), to a total dose of 72 Gy. Chemotherapy (cisplatinum, 100mg/m{sup 2}) was administered at the start of Weeks 1 and 4. Treatment outcome and toxicity were retrospectively compared with a previous patient group (n = 55), treated according to the same schedule, but without intensity modulation. Results: Locoregional control (LRC) and overall survival were 81% and 56% after 2 years, respectively. In comparison with the previous cohort, no significant differences were observed regarding either LRC (66%, p = 0.38) or overall survival (73%, p = 0.29). No Grade 4 or 5 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of late Grade 2 or 3 xerostomia (52.9% vs. 90.2%, p < 0.001). No difference was observed regarding late Grade 2 or 3 dysphagia (p = 0.66). Conclusions: Intensity-modulated chemoradiotherapy does not compromise LRC and significantly reduces late toxicity, especially regarding xerostomia.

  8. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer

    PubMed Central

    Ming, Xin; Feng, Yuanming; Liu, Huan; Zhang, Ying; Zhou, Li; Deng, Jun

    2015-01-01

    Purpose To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT), intensity-modulated radiotherapy (IMRT), or volumetric modulated arc therapy (VMAT) at our institution in the past seven years. Methods and Materials A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercial treatment planning system and have been clinically accepted and delivered. The dose distribution to the heart and the effects of tumor laterality, the irradiated heart volume and the beam-to-heart distance on the cardiac exposure were investigated. Results The mean dose to the heart among all 140 plans was 4.5 Gy. Specifically, the heart received on average 2.3, 5.2 and 4.6 Gy in the DCAT, IMRT and VMAT plans, respectively. The mean heart doses for the left and right lung tumors were 4.1 and 4.8 Gy, respectively. No patients died with evidence of cardiac disease. Three patients (2%) with preexisting cardiac condition developed cardiac disease after treatment. Furthermore, the cardiac exposure was found to increase linearly with the irradiated heart volume while decreasing exponentially with the beam-to-heart distance. Conclusions Compared to old technologies for lung cancer treatment, modern radiotherapy treatment modalities demonstrated better heart sparing. But the heart dose in lung cancer radiotherapy is still higher than that in the radiotherapy of breast cancer and Hodgkin’s disease where cardiac complications have been extensively studied. With strong correlations of mean heart dose with beam-to-heart distance and irradiated heart volume, cautions should be exercised to avoid long-term cardiac toxicity in the lung cancer patients undergoing radiotherapy. PMID:26630566

  9. How Does Intensity-Modulated Radiotherapy Versus Conventional Two-Dimensional Radiotherapy Influence the Treatment Results in Nasopharyngeal Carcinoma Patients?

    SciTech Connect

    Lai Shuzhen; Li Wenfei; Chen Lei; Luo Wei; Chen Yuanyuan; Liu Lizhi; Sun Ying; Lin Aihua; Liu Mengzhong; Ma Jun

    2011-07-01

    Purpose: To compare the results of intensity-modulated radiotherapy (IMRT) with those of two-dimensional conventional radiotherapy (2D-CRT) in the treatment of patients with nasopharyngeal carcinoma (NPC). Methods and Materials: A retrospective review of data from 1,276 patients with biopsy-proven, nonmetastatic NPC was performed. All patients had undergone magnetic resonance imaging and were staged according to the sixth edition of the American Joint Committee on Cancer staging criteria. Radiotherapy was the primary treatment for all patients. Results: Of the 1,276 patients, 512 were treated with IMRT and 764 with 2D-CRT. The 5-year actuarial local relapse-free survival (LRFS), the nodal relapse-free survival (NRFS), the distant metastasis-free survival (DMFS), and the disease-free survival (DFS) rates were 92.7%, 97.0%, 84.0%, and 75.9%, respectively, for the IMRT group, and 86.8%, 95.5%, 82.6%, and 71.4%, respectively, for the 2D-CRT group. In stage T1 patients, improvement of LRFS in the IMRT group was even significantly higher than in the 2D-CRT group (100% vs. 94.4%; p = 0.016). A trend of improvement of DFS was observed in the IMRT group compared with the 2D-CRT group but without reaching statistical significance. NRFS and DMFS rates were similar in the two groups. Conclusions: A greater improvement of treatment results with IMRT than with 2D-CRT was demonstrated primarily by achieving a higher local tumor control rate in NPC patients, especially in the early T stage patients. The goal of better control of both local failure in advanced, nonmetastatic NPC patients and of distant failure should be addressed in future studies.

  10. Hypofractionated intensity-modulated radiotherapy in patients with localized prostate cancer: a preliminary study

    PubMed Central

    Kang, Hye Jin; Son, Seok Hyun; Kim, Myungsoo; Jo, In Young; Lee, So Jung; Lee, Dong Hwan; Suh, Hong Jin; Choi, Yong Sun

    2016-01-01

    Purpose The aim of this work was to assess the efficacy and tolerability of hypofractionated intensity-modulated radiotherapy (IMRT) in patients with localized prostate cancer. Materials and Methods Thirty-nine patients who received radical hypofractionated IMRT were retrospectively reviewed. Based on a pelvic lymph node involvement risk of 15% as the cutoff value, we decided whether to deliver treatment prostate and seminal vesicle only radiotherapy (PORT) or whole pelvis radiotherapy (WPRT). Sixteen patients (41%) received PORT with prostate receiving 45 Gy in 4.5 Gy per fraction in 2 weeks and the other 23 patients (59%) received WPRT with the prostate receiving 72 Gy in 2.4 Gy per fraction in 6 weeks. The median equivalent dose in 2 Gy fractions to the prostate was 79.9 Gy based on the assumption that the α/β ratio is 1.5 Gy. Results The median follow-up time was 38 months (range, 4 to 101 months). The 3-year biochemical failure-free survival rate was 88.2%. The 3-year clinical failure-free and overall survival rates were 94.5% and 96.3%, respectively. The rates of grade 2 acute genitourinary (GU) and gastrointestinal (GI) toxicities were 20.5% and 12.8%, respectively. None of the patients experienced grade ≥3 acute GU and GI toxicities. The grade 2-3 late GU and GI toxicities were found in 8.1% and 5.4% of patients, respectively. No fatal late toxicity was observed. Conclusion Favorable biochemical control with low rates of toxicity was observed after hypofractionated IMRT, suggesting that our radiotherapy schedule can be an effective treatment option in the treatment of localized prostate cancer. PMID:27104166

  11. Dose to Larynx Predicts for Swallowing Complications After Intensity-Modulated Radiotherapy

    SciTech Connect

    Caglar, Hale B.; Tishler, Roy B.; Burke, Elaine; Li Yi; Goguen, Laura; Norris, Carl M.; Allen, Aaron M.

    2008-11-15

    Purpose: To evaluate early swallowing after intensity-modulated radiotherapy for head and neck squamous cell carcinoma and determine factors correlating with aspiration and/or stricture. Methods and Materials: Consecutive patients treated with intensity-modulated radiotherapy with or without chemotherapy between September 2004 and August 2006 at the Dana Farber Cancer Institute/Brigham and Women's Hospital were evaluated with institutional review board approval. Patients underwent swallowing evaluation after completion of therapy; including video swallow studies. The clinical- and treatment-related variables were examined for correlation with aspiration or strictures, as well as doses to the larynx, pharyngeal constrictor muscles, and cervical esophagus. The correlation was assessed with logistic regression analysis. Results: A total of 96 patients were evaluated. Their median age was 55 years, and 79 (82%) were men. The primary site of cancer was the oropharynx in 43, hypopharynx/larynx in 17, oral cavity in 13, nasopharynx in 11, maxillary sinus in 2, and unknown primary in 10. Of the 96 patients, 85% underwent definitive RT and 15% postoperative RT. Also, 28 patients underwent induction chemotherapy followed by concurrent chemotherapy, 59 received concurrent chemotherapy, and 9 patients underwent RT alone. The median follow-up was 10 months. Of the 96 patients, 31 (32%) had clinically significant aspiration and 36 (37%) developed a stricture. The radiation dose-volume metrics, including the volume of the larynx receiving {>=}50 Gy (p = 0.04 and p = 0.03, respectively) and volume of the inferior constrictor receiving {>=}50 Gy (p = 0.05 and p = 0.02, respectively) were significantly associated with both aspiration and stricture. The mean larynx dose correlated with aspiration (p = 0.003). Smoking history was the only clinical factor to correlate with stricture (p = 0.05) but not aspiration. Conclusion: Aspiration and stricture are common side effects after

  12. Random and systematic beam modulator errors in dynamic intensity modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Parsai, Homayon; Cho, Paul S.; Phillips, Mark H.; Giansiracusa, Robert S.; Axen, David

    2003-05-01

    This paper reports on the dosimetric effects of random and systematic modulator errors in delivery of dynamic intensity modulated beams. A sliding-widow type delivery that utilizes a combination of multileaf collimators (MLCs) and backup diaphragms was examined. Gaussian functions with standard deviations ranging from 0.5 to 1.5 mm were used to simulate random positioning errors. A clinical example involving a clival meningioma was chosen with optic chiasm and brain stem as limiting critical structures in the vicinity of the tumour. Dose calculations for different modulator fluctuations were performed, and a quantitative analysis was carried out based on cumulative and differential dose volume histograms for the gross target volume and surrounding critical structures. The study indicated that random modulator errors have a strong tendency to reduce minimum target dose and homogeneity. Furthermore, it was shown that random perturbation of both MLCs and backup diaphragms in the order of σ = 1 mm can lead to 5% errors in prescribed dose. In comparison, when MLCs or backup diaphragms alone was perturbed, the system was more robust and modulator errors of at least σ = 1.5 mm were required to cause dose discrepancies greater than 5%. For systematic perturbation, even errors in the order of +/-0.5 mm were shown to result in significant dosimetric deviations.

  13. Intensity-modulated radiotherapy, not 3D conformal, is the preferred technique for treating locally advanced lung cancer

    PubMed Central

    Chang, Joe Y.

    2015-01-01

    When used to treat lung cancer, intensity-modulated radiotherapy (IMRT) can deliver higher dose to the targets and spare more critical organs in lung cancer than can 3D conformal radiotherapy (3DCRT). However, tumor-motion management and optimized radiotherapy planning based on four-dimensional computed tomography (4D CT) scanning are crucial to maximize the benefit of IMRT and to eliminate or minimize potential uncertainties. This article summarizes these strategies and reviews published findings supporting the safety and efficacy of IMRT for lung cancer. PMID:25771415

  14. Patterns of Failure and Toxicity after Intensity-Modulated Radiotherapy for Head and Neck Cancer

    SciTech Connect

    Schoenfeld, Gordon O.; Amdur, Robert J.; Morris, Christopher G.; Li, Jonathan G.; Hinerman, Russell W.; Mendenhall, William M.

    2008-06-01

    Purpose: To determine the outcome of patients treated with intensity-modulated radiotherapy (IMRT) for head and neck cancer. Methods and Materials: We reviewed the charts of 100 consecutive patients treated with IMRT for squamous cell carcinoma of the oropharynx (64%), nasopharynx (16%), hypopharynx (14%), and larynx (6%). Most patients were treated with a concomitant boost schedule to 72 Gy. Of the 100 patients, 54 (54%) received adjuvant chemotherapy, mostly concurrent cisplatin. The dosimetry plans for patients with either locoregional failure or Grade 4-5 complications were reviewed and fused over the computed tomography images corresponding with the location of the event. Marginal failures were defined as those that occurred at a region of high-dose falloff, where conventional fields would have provided better coverage. Results: The median follow-up of living patients was 3.1 years (range, 1-5.2 years). The 3-year rate of local control, locoregional control, freedom from relapse, cause-specific survival, and overall survival for all patients was 89%, 87%, 72%, 78%, and 71%, respectively. The 3-year rate of freedom from relapse, cause-specific survival, and overall survival for the 64 oropharynx patients was 86%, 92%, and 84%, respectively. Of the 10 local failures, 2 occurred at the margin of the high-dose planning target volume. Both regional failures occurred within the planning target volume. No locoregional failures occurred outside the planning target volume. Of the 100 patients, 8 and 5 had Grade 4 and 5 complications from treatment, respectively. All patients with Grade 5 complications had received adjuvant chemotherapy. No attempt was made to discriminate between the complications from IMRT and other aspects of the patients' treatment. Conclusion: Intensity-modulated radiotherapy did not compromise the outcome compared with what we have achieved with conventional techniques. The 2 cases of recurrence in the high-dose gradient region highlight the

  15. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    SciTech Connect

    Parker, William Filion, Edith; Roberge, David; Freeman, Carolyn R.

    2007-09-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superior for the IMRT plans for V{sub 95%} (IMRT, 100%; 3D, 96%; 2D, 98%) and V{sub 107%} (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V{sub 10Gy}, V{sub 15Gy}, and V{sub 20Gy}. The 3D plan was superior for V{sub 5Gy} and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V{sub 10Gy} and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose.

  16. A Dosimetric Evaluation of Conventional Helmet Field Irradiation Versus Two-Field Intensity-Modulated Radiotherapy Technique

    SciTech Connect

    Yu, James B.; Shiao, Stephen L.; Knisely, Jonathan . E-mail: jonathan.knisely@yale.edu

    2007-06-01

    Purpose: To compare dosimetric differences between conventional two-beam helmet field irradiation (external beam radiotherapy, EBRT) of the brain and a two-field intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: Ten patients who received helmet field irradiation at our institution were selected for study. External beam radiotherapy portals were planned per usual practice. Intensity-modulated radiotherapy fields were created using the identical field angles as the EBRT portals. Each brain was fully contoured along with the spinal cord to the bottom of the C2 vertebral body. This volume was then expanded symmetrically by 0.5 cm to construct the planning target volume. An IMRT plan was constructed using uniform optimization constraints. For both techniques, the nominal prescribed dose was 3,000 cGy in 10 fractions of 300 cGy using 6-MV photons. Comparative dose-volume histograms were generated for each patient and analyzed. Results: Intensity-modulated radiotherapy improved dose uniformity over EBRT for whole brain radiotherapy. The mean percentage of brain receiving >105% of dose was reduced from 29.3% with EBRT to 0.03% with IMRT. The mean maximum dose was reduced from 3,378 cGy (113%) for EBRT to 3,162 cGy (105%) with IMRT. The mean percent volume receiving at least 98% of the prescribed dose was 99.5% for the conventional technique and 100% for IMRT. Conclusions: Intensity-modulated radiotherapy reduces dose inhomogeneity, particularly for the midline frontal lobe structures where hot spots occur with conventional two-field EBRT. More study needs to be done addressing the clinical implications of optimizing dose uniformity and its effect on long-term cognitive function in selected long-lived patients.

  17. Certificate of need regulations and the diffusion of intensity-modulated radiotherapy

    PubMed Central

    Jacobs, Bruce L.; Zhang, Yun; Skolarus, Ted A.; Wei, John T.; Montie, James E.; Schroeck, Florian R.; Hollenbeck, Brent K.

    2012-01-01

    Objective To better understand the associations between certificate of need regulations and intensity-modulated radiotherapy (IMRT) dissemination. Methods Using Surveillance, Epidemiology, and End Results (SEER)-Medicare data, we identified men (66 years or older) treated with radiotherapy for prostate cancer diagnosed between 2001 and 2007. Based on data from the American Health Planning Association, we sorted Health Service Areas (HSAs) according to the stringency of certificate of need regulations (low vs. high) in that market. We assessed our outcomes (i.e., the probability of IMRT adoption and IMRT utilization in HSAs) using Cox proportional-hazards and Poisson regression models, respectively. Results Low and high stringency markets were similar in terms of racial composition (80% vs. 85% white, p=0.08), population density (1,085 vs. 558 people/square mile, p=0.08), and income (median: $38,683 vs. 40,309, p=0.44), but low stringency markets had more patients with stage T1 disease (45% vs. 36%, p<0.01). The probability of IMRT adoption across the two groups of HSAs was similar (p=0.65). However, among adopting HSAs, those with high stringency consistently had greater use of IMRT (p<0.01). Conclusions Certificate of need regulations fail to create significant barriers to entry for IMRT. Among HSAs that acquire IMRT, high stringency markets demonstrate a greater propensity for using IMRT. These findings raise questions regarding the ability of certificate of need regulations to control technology dissemination. PMID:22999447

  18. Dose to the intracranial arteries in stereotactic and intensity-modulated radiotherapy for skull base tumors

    SciTech Connect

    Nieder, Carsten . E-mail: cnied@hotmail.com; Grosu, Anca L.; Stark, Sybille; Wiedenmann, Nicole; Busch, Raymonde; Kneschaurek, Peter; Molls, Michael

    2006-03-15

    Purpose: To examine retrospectively the maximum dose to the large skull base/intracranial arteries in fractionated stereotactic radiotherapy (FSRT) and intensity-modulated radiotherapy (IMRT), because of the potential risk of perfusion disturbances. Methods and Materials: Overall, 56 patients with tumors adjacent to at least one major artery were analyzed. Our strategy was to perform FSRT with these criteria: 1.8 Gy per fraction, planning target volume (PTV) enclosed by the 95% isodose, maximum dose 107%. Dose limits were applied to established organs at risk, but not the vessels. If FSRT planning failed to meet any of these criteria, IMRT was planned with the same objectives. Results: In 31 patients (median PTV, 23 cm{sup 3}), the FSRT plan fulfilled all criteria. No artery received a dose {>=}105%. Twenty-five patients (median PTV, 39 cm{sup 3}) needed IMRT planning. In 11 of 25 patients (median PTV, 85 cm{sup 3}), no plan satisfying all our criteria could be calculated. Only in this group, moderately increased maximum vessel doses were observed (106-110%, n = 7, median PTV, 121 cm{sup 3}). The median PTV dose gradient was 29% (significantly different from the 14 patients with satisfactory IMRT plans). Three of the four patients in this group had paranasal sinus tumors. Conclusion: The doses to the major arteries should be calculated in IMRT planning for critical tumor locations if a dose gradient >13% within the PTV can not be avoided because the PTV is large or includes air cavities.

  19. The effect of respiratory motion on forward intensity modulated radiotherapy for breast cancer.

    PubMed

    Song, Taesoo; Suh, Chang-Ok; Lee, Ikjae; Jeong, Kyoungkeun; Keum, Kichang; Lee, Chang Geol; Seong, Jinsil; Cho, Jae Ho

    2008-06-01

    This study evaluated the effect of respiratory movement on field-in-field (FIF) forward intensity-modulated radiotherapy (IMRT) for the treatment of breast cancer. FIF forward IMRT was performed on ten patients receiving radiotherapy to the whole breast after conservation surgery. Assuming that breast motion follows a sophisticated cyclic function, the changes in hot and cold region, dose homogeneity index (DHI), and skin dose were examined at different respiration amplitudes of 1 cm, 2 cm, and 3 cm. FIF forward IMRT significantly improved the hot region, DHI, and skin dose, but slightly worsened the cold region, compared to the two wedged tangential technique (TWT). Interestingly, we found that the respiration amplitude affected the DHI and cold region but had no effect on the hot region and skin dose. The DHI was slightly improved at 1 cm of amplitude probably due to the blurring effect, remained unchanged at 2 cm of amplitude, and was worsened at 3 cm of amplitude. FIF forward IMRT significantly increased the cold region at 2 cm and 3 cm of respiration amplitude compared to the TWT. At 3 cm of respiration amplitude, an average cold region of 3.27 cm(3) was observed. In summary, our data indicate that during FIF forward IMRT, respiration movement has an important effect on various endpoints depending on the respiration amplitude of the patient. PMID:18473492

  20. Intensity modulated radiotherapy induces pro-inflammatory and pro-survival responses in prostate cancer patients

    PubMed Central

    EL-SAGHIRE, HOUSSEIN; VANDEVOORDE, CHARLOT; OST, PIET; MONSIEURS, PIETER; MICHAUX, ARLETTE; DE MEERLEER, GERT; BAATOUT, SARAH; THIERENS, HUBERT

    2014-01-01

    Intensity modulated radiotherapy (IMRT) is one of the modern conformal radiotherapies that is widely used within the context of cancer patient treatment. It uses multiple radiation beams targeted to the tumor, however, large volumes of the body receive low doses of irradiation. Using γ-H2AX and global genome expression analysis, we studied the biological responses induced by low doses of ionizing radiation in prostate cancer patients following IMRT. By means of different bioinformatics analyses, we report that IMRT induced an inflammatory response via the induction of viral, adaptive, and innate immune signaling. In response to growth factors and immune-stimulatory signaling, positive regulation in the progression of cell cycle and DNA replication were induced. This denotes pro-inflammatory and pro-survival responses. Furthermore, double strand DNA breaks were induced in every patient 30 min after the treatment and remaining DNA repair and damage signaling continued after 18–24 h. Nine genes belonging to inflammatory responses (TLR3, SH2D1A and IL18), cell cycle progression (ORC4, SMC2 and CCDC99) and DNA damage and repair (RAD17, SMC6 and MRE11A) were confirmed by quantitative RT-PCR. This study emphasizes that the risk assessment of health effects from the out-of-field low doses during IMRT should be of concern, as these may increase the risk of secondary cancers and/or systemic inflammation. PMID:24435511

  1. Intensity-modulated radiotherapy for pituitary adenomas: The preliminary report of Cleveland Clinic experience

    SciTech Connect

    Mackley, Heath B. . E-mail: hmackley@alumni.upenn.edu; Reddy, Chandana A. M.S.; Lee, S.-Y.; Harnisch, Gayle A.; Mayberg, Marc R.; Hamrahian, Amir H.; Suh, John H.

    2007-01-01

    Purpose: Intensity-modulated radiotherapy (IMRT) is being increasingly used for the treatment of pituitary adenomas. However, there have been few published data on the short- and long-term outcomes of this treatment. This is the initial report of Cleveland Clinic's experience. Methods and Materials: Between February 1998 and December 2003, 34 patients with pituitary adenomas were treated with IMRT. A retrospective chart review was conducted for data analysis. Results: With a median follow-up of 42.5 months, the treatment has proven to be well tolerated, with performance status remaining stable in 90% of patients. Radiographic local control was 89%, and among patients with secretory tumors, 100% had a biochemical response. Only 1 patient required salvage surgery for progressive disease, giving a clinical progression free survival of 97%. The only patient who received more than 46 Gy experienced optic neuropathy 8 months after radiation. Smaller tumor volume significantly correlated with subjective improvements in nonvisual neurologic complaints (p = 0.03), and larger tumor volume significantly correlated with subjective worsening of visual symptoms (p = 0.05). New hormonal supplementation was required for 40% of patients. Younger patients were significantly more likely to require hormonal supplementation (p 0.03). Conclusions: Intensity-modulated radiation therapy is a safe and effective treatment for pituitary adenomas over the short term. Longer follow-up is necessary to determine if IMRT confers any advantage with respect to either tumor control or toxicity over conventional radiation modalities.

  2. Reduced Acute Bowel Toxicity in Patients Treated With Intensity-Modulated Radiotherapy for Rectal Cancer

    SciTech Connect

    Samuelian, Jason M.; Callister, Matthew D.; Ashman, Jonathan B.; Young-Fadok, Tonia M.; Borad, Mitesh J.; Gunderson, Leonard L.

    2012-04-01

    Purpose: We have previously shown that intensity-modulated radiotherapy (IMRT) can reduce dose to small bowel, bladder, and bone marrow compared with three-field conventional radiotherapy (CRT) technique in the treatment of rectal cancer. The purpose of this study was to review our experience using IMRT to treat rectal cancer and report patient clinical outcomes. Methods and Materials: A retrospective review was conducted of patients with rectal cancer who were treated at Mayo Clinic Arizona with pelvic radiotherapy (RT). Data regarding patient and tumor characteristics, treatment, acute toxicity according to the Common Terminology Criteria for Adverse Events v 3.0, tumor response, and perioperative morbidity were collected. Results: From 2004 to August 2009, 92 consecutive patients were treated. Sixty-one (66%) patients were treated with CRT, and 31 (34%) patients were treated with IMRT. All but 2 patients received concurrent chemotherapy. There was no significant difference in median dose (50.4 Gy, CRT; 50 Gy, IMRT), preoperative vs. postoperative treatment, type of concurrent chemotherapy, or history of previous pelvic RT between the CRT and IMRT patient groups. Patients who received IMRT had significantly less gastrointestinal (GI) toxicity. Sixty-two percent of patients undergoing CRT experienced {>=}Grade 2 acute GI side effects, compared with 32% among IMRT patients (p = 0.006). The reduction in overall GI toxicity was attributable to fewer symptoms from the lower GI tract. Among CRT patients, {>=}Grade 2 diarrhea and enteritis was experienced among 48% and 30% of patients, respectively, compared with 23% (p = 0.02) and 10% (p = 0.015) among IMRT patients. There was no significant difference in hematologic or genitourinary acute toxicity between groups. In addition, pathologic complete response rates and postoperative morbidity between treatment groups did not differ significantly. Conclusions: In the management of rectal cancer, IMRT is associated with a

  3. Incidence of and Risk Factors for Mastoiditis after Intensity Modulated Radiotherapy in Nasopharyngeal Carcinoma

    PubMed Central

    Yu, Xiao-Li; Tang, Ling-Long; Chen, Lei; Mao, Yan-Ping; Lin, Li; Zhang, Lu-Lu; Shao, Jian-Yong; Guo, Ying; Ma, Jun; Sun, Ying

    2015-01-01

    Purpose To report the incidence of and risk factors for mastoiditis after intensity-modulated radiotherapy (IMRT) in nasopharyngeal carcinoma (NPC). Patients and Methods Retrospective analysis of pretreatment and follow-up magnetic resonance imaging (MRI) data for 451 patients with NPC treated with IMRT at a single institution. The diagnosis of mastoiditis was based on MRI; otomastoid opacification was rated as Grade 0 (none), 1 (mild), 2 (moderate) or 3 (severe) by radiologists blinded to clinical outcome. This study mainly focused on severe mastoiditis; patients were divided into three groups: the G0M (Grade 0 mastoiditis before treatment) group, G1-2M (Grade 1 to 2 mastoiditis before treatment) group and G3M (Grade 3 mastoiditis before treatment) group. The software SAS9.3 program was used to analyze the data. Results For the entire cohort, the incidence of Grade 3 mastoiditis was 20% before treatment and 31%, 19% and 17% at 3, 12 and 24 months after radiotherapy, respectively. In the G0M group, the incidence of severe mastoiditis was 0% before treatment and 23%, 15% and 13% at 3, 12 and 24 months after radiotherapy, respectively. Multivariate analysis revealed T category (OR=0.68, 95% CI = 0.469 to 0.984), time (OR=0.668, 95% CI = 0.59 to 0.757) and chemotherapy (OR=0.598, 95% CI = 0.343 to 0.934) were independent factors associated with severe mastoiditis in the G0M group after treatment. Conclusions Mastoiditis, as diagnosed by MRI, occurs as a progressive process that regresses and resolves over time in patients with NPC treated using IMRT. PMID:26114761

  4. Hypofractionated Intensity-Modulated Radiotherapy for Carcinoma of the Prostate: Analysis of Toxicity

    SciTech Connect

    Coote, Joanna H.; Wylie, James P.; Cowan, Richard A.; Logue, John P.; Swindell, Ric; Livsey, Jacqueline E.

    2009-07-15

    Purpose: Dose escalation for prostate cancer improves biological control but with a significant increase in late toxicity. Recent estimates of low {alpha}/{beta} ratio for prostate cancer suggest that hypofractionation may result in biological advantage. Intensity-modulated radiotherapy (IMRT) should enable dose escalation to the prostate while reducing toxicity to local organs. We report late toxicity data of a hypofractionated IMRT regime. Methods and Materials: Eligible men had T2-3N0M0 adenocarcinoma prostate, and either Gleason score {>=} 7 or prostate-specific antigen 20-50 ng/L. Patients received 57-60 Gy to prostate in 19-20 fractions using five-field IMRT. All received hormonal therapy for 3 months before radiotherapy to a maximum of 6 months. Toxicity was assessed 2 years postradiotherapy using the RTOG criteria, LENT/SOMA, and UCLA prostate index assessment tools. Results: Acute toxicity was favorable with no RTOG Grade 3 or 4 toxicity. At 2 years, there was 4% Grade 2 bowel and 4.25% Grade 2 bladder toxicity. There was no Grade 3 or 4 bowel toxicity; one patient developed Grade 3 bladder toxicity. UCLA data showed a slight improvement in urinary function at 2 years compared with pretreatment. LENT/SOMA assessments demonstrated general worsening of bowel function at 2 years. Patients receiving 60 Gy were more likely to develop problems with bowel function than those receiving 57 Gy. Conclusions: These data demonstrate that hypofractionated radiotherapy using IMRT for prostate cancer is well tolerated with minimal late toxicity at 2 years posttreatment. Ongoing studies are looking at the efficacy of hypofractionated regimes with respect to biological control.

  5. Intensity-Modulated Radiotherapy-Based Stereotactic Body Radiotherapy for Medically Inoperable Early-Stage Lung Cancer: Excellent Local Control

    SciTech Connect

    Videtic, Gregory M.M.; Stephans, Kevin; Reddy, Chandana; Gajdos, Stephen; Kolar, Matthew; Clouser, Edward; Djemil, Toufik

    2010-06-01

    Purpose: To validate the use of stereotactic body radiotherapy (SBRT) using intensity-modulated radiotherapy (IMRT) beams for medically inoperable Stage I lung cancer. Methods and Materials: From February 2004 to November 2006, a total of 26 patients with 28 lesions received SBRT using a Novalis/BrainLAB system. Immobilization involved a Bodyfix vacuum cushion. A weighted abdominal belt limited respiratory excursion. Computed tomographic simulation images were acquired at rest, full inhalation, and full exhalation and were merged to generate an internal gross tumor volume (ITV). Dose was prescribed to cover the planning target volume (PTV), defined as PTV = ITV + 3-5 mm set-up margin. Heterogeneity corrections were used. Delivery of 50 Gy in five sequential fractions typically used seven nonopposing, noncoplanar beams. Image-guided target verification was provided by BrainLAB-ExacTrac. Results: Among the 26 patients, the mean age was 74 years (range, 49-88 years). Of the patients, 50% were male and 50% female. The median Karnofsky performance status was 70 (range, 40-100). The median follow-up was 30.9 months (range, 10.4-51.4 months). Tissue diagnosis was contraindicated in seven patients (26.9%). There were 22 T1 (78.6%) and six T2 (21.4%) tumors. The median conformality index was 1.38 (range, 1.12-1.8). The median heterogeneity index was 1.08 (range, 1.04-1.2). One patient (3.6%) developed acute Grade 3 dyspnea and one patient developed late Grade 2 chest wall pain. Actuarial local control and overall survival at 3 years were 94.4% and 52%, respectively. Conclusions: Use of IMRT-based delivery of SBRT using restriction of tumor motion in medically inoperable lung cancer demonstrates excellent local control and favorable survival.

  6. Image-Guided Radiotherapy in Near Real Time With Intensity-Modulated Radiotherapy Megavoltage Treatment Beam Imaging

    SciTech Connect

    Mao Weihua Hsu, Annie; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Luxton, Gary; King, Christopher; Xing Lei; Solberg, Timothy

    2009-10-01

    Purpose: To utilize image-guided radiotherapy (IGRT) in near real time by obtaining and evaluating the online positions of implanted fiducials from continuous electronic portal imaging device (EPID) imaging of prostate intensity-modulated radiotherapy (IMRT) delivery. Methods and Materials: Upon initial setup using two orthogonal images, the three-dimensional (3D) positions of all implanted fiducial markers are obtained, and their expected two-dimensional (2D) locations in the beam's-eye-view (BEV) projection are calculated for each treatment field. During IMRT beam delivery, EPID images of the megavoltage treatment beam are acquired in cine mode and subsequently analyzed to locate 2D locations of fiducials in the BEV. Simultaneously, 3D positions are estimated according to the current EPID image, information from the setup portal images, and images acquired at other gantry angles (the completed treatment fields). The measured 2D and 3D positions of each fiducial are compared with their expected 2D and 3D setup positions, respectively. Any displacements larger than a predefined tolerance may cause the treatment system to suspend the beam delivery and direct the therapists to reposition the patient. Results: Phantom studies indicate that the accuracy of 2D BEV and 3D tracking are better than 1 mm and 1.4 mm, respectively. A total of 7330 images from prostate treatments were acquired and analyzed, showing a maximum 2D displacement of 6.7 mm and a maximum 3D displacement of 6.9 mm over 34 fractions. Conclusions: This EPID-based, real-time IGRT method can be implemented on any external beam machine with portal imaging capabilities without purchasing any additional equipment, and there is no extra dose delivered to the patient.

  7. Intensified intensity-modulated radiotherapy in anal cancer with prevalent HPV p16 positivity

    PubMed Central

    Belgioia, Liliana; Vagge, Stefano; Agnese, Dario; Garelli, Stefania; Murialdo, Roberto; Fornarini, Giuseppe; Chiara, Silvana; Gallo, Fabio; Bacigalupo, Almalina; Corvò, Renzo

    2015-01-01

    AIM: To investigate the toxicity and response of intensity-modulated radiotherapy schedule intensified with a simultaneous integrated boost in anal canal cancer. METHODS: From March 2009 to March 2014, we retrospectively analyzed 41 consecutive patients treated with intensity-modulated radiotherapy (IMRT) and concurrent chemotherapy for anal canal squamous cell carcinoma at our center. Radiotherapy was delivered via simultaneous integrated boost (SIB) technique by helical tomotherapy, and doses were adapted to two clinical target volumes according to the tumor-node-metastasis (TNM) stage: 50.6 Gy and 41.4 Gy in 23 fractions in T1N0, 52.8 Gy and 43.2 Gy in 24 fractions in T2N0, and 55 Gy and 45 Gy in 25 fractions in all patients with N positive and/or ≥ T3, respectively, to planning target volumes 1 and 2. The most common chemotherapy regimen was 5-fluorouracil and mitomycin-based. Human papilloma virus (HPV) p16 expression was performed by immunohistochemistry and evaluated in the majority of patients. Acute and late toxicity was scored according to CTCAe v 3.0 and RTOG scales. RESULTS: The median follow-up was 30 mo (range: 12-71). Median age was 63 years (range 32-84). The stage of disease was: stage I in 2 patients, stage II in 13 patients, stage IIIA in 12 patients, and stage IIIB in 14 patients, respectively. Two patients were known to be HIV positive (4.9%). HPV p16 expression status was positive in 29/34 (85.3%) patients. The 4-year progression-free survival and overall survival in HPV-positive patients were 78% and 92%, respectively. Acute grade 3 skin and gastrointestinal toxicities were reported in 5% and 7.3% of patients, respectively; patients’ compliance to the treatment was good due to a low occurrence of severe acute toxicity, although treatment interruptions due to toxicity were required in 7.3% of patients. At 6 mo from end of treatment, 36/40 (90%) patients obtained complete response; during follow-up, 5 (13.8%) patients presented with

  8. Simple Carotid-Sparing Intensity-Modulated Radiotherapy Technique and Preliminary Experience for T1-2 Glottic Cancer

    SciTech Connect

    Rosenthal, David I.; Fuller, Clifton D.; Barker, Jerry L.; Mason, Bryan M.S.; Garcia, John A. C.; Lewin, Jan S.; Holsinger, F. Christopher; Stasney, C. Richard; Frank, Steven J.; Schwartz, David L.; Morrison, William H.; Garden, Adam S.; Ang, K. Kian

    2010-06-01

    Purpose: To investigate the dosimetry and feasibility of carotid-sparing intensity-modulated radiotherapy (IMRT) for early glottic cancer and to report preliminary clinical experience. Methods and Materials: Digital Imaging and Communications in Medicine radiotherapy (DICOM-RT) datasets from 6 T1-2 conventionally treated glottic cancer patients were used to create both conventional IMRT plans. We developed a simplified IMRT planning algorithm with three fields and limited segments. Conventional and IMRT plans were compared using generalized equivalent uniform dose and dose-volume parameters for in-field carotid arteries, target volumes, and organs at risk. We have treated 11 patients with this simplified IMRT technique. Results: Intensity-modulated radiotherapy consistently reduced radiation dose to the carotid arteries (p < 0.05) while maintaining the clinical target volume coverage. With conventional planning, median carotid V35, V50, and V63 were 100%, 100%, and 69.0%, respectively. With IMRT planning these decreased to 2%, 0%, and 0%, respectively (p < 0.01). Radiation planning and treatment times were similar for conventional radiotherapy and IMRT. Treatment results have been excellent thus far. Conclusions: Intensity-modulated radiotherapy significantly reduced unnecessary radiation dose to the carotid arteries compared with conventional lateral fields while maintaining clinical target volume coverage. Further experience and longer follow-up will be required to demonstrate outcomes for cancer control and carotid artery effects.

  9. Adjuvant Radiotherapy for Gastric Cancer: A Dosimetric Comparison of 3-Dimensional Conformal Radiotherapy, Tomotherapy (registered) and Conventional Intensity Modulated Radiotherapy Treatment Plans

    SciTech Connect

    Dahele, Max; Skinner, Matthew; Schultz, Brenda; Cardoso, Marlene; Bell, Chris; Ung, Yee C.

    2010-07-01

    Some patients with gastric cancer benefit from post-operative chemo-radiotherapy, but adequately irradiating the planning target volume (PTV) whilst avoiding organs at risk (OAR) can be difficult. We evaluate 3-dimensional conformal radiotherapy (CRT), conventional intensity-modulated radiotherapy (IMRT) and helical tomotherapy (TT). TT, 2 and 5-field (F) CRT and IMRT treatment plans with the same PTV coverage were generated for 5 patients and compared. Median values are reported. The volume of left/right kidney receiving at least 20Gy (V20) was 57/51% and 51/60% for 2 and 5F-CRT, and 28/14% for TT and 27/19% for IMRT. The volume of liver receiving at least 30Gy (V30) was 45% and 62% for 2 and 5F-CRT, and 37% for TT and 35% for IMRT. With TT, 98% of the PTV received 95-105% of the prescribed dose, compared with 45%, 34% and 28% for 2F-CRT, 5F-CRT and IMRT respectively. Using conventional metrics, conventional IMRT can achieve comparable PTV coverage and OAR sparing to TT, but at the expense of PTV dose heterogeneity. Both irradiate large volumes of normal tissue to low doses. Additional studies are needed to demonstrate the clinical impact of these technologies.

  10. Intensity-Modulated Radiotherapy Might Increase Pneumonitis Risk Relative to Three-Dimensional Conformal Radiotherapy in Patients Receiving Combined Chemotherapy and Radiotherapy: A Modeling Study of Dose Dumping

    SciTech Connect

    Vogelius, Ivan S.; Westerly, David C.; Cannon, George M.; Mackie, Thomas R.; Mehta, Minesh P.; Sugie, Chikao; Bentzen, Soren M.

    2011-07-01

    Purpose: To model the possible interaction between cytotoxic chemotherapy and the radiation dose distribution with respect to the risk of radiation pneumonitis. Methods and Materials: A total of 18 non-small-cell lung cancer patients previously treated with helical tomotherapy at the University of Wisconsin were selected for the present modeling study. Three treatment plans were considered: the delivered tomotherapy plans; a three-dimensional conformal radiotherapy (3D-CRT) plan; and a fixed-field intensity-modulated radiotherapy (IMRT) plan. The IMRT and 3D-CRT plans were generated specifically for the present study. The plans were optimized without adjusting for the chemotherapy effect. The effect of chemotherapy was modeled as an independent cell killing process by considering a uniform chemotherapy equivalent radiation dose added to all voxels of the organ at risk. The risk of radiation pneumonitis was estimated for all plans using the Lyman and the critical volume models. Results: For radiotherapy alone, the critical volume model predicts that the two IMRT plans are associated with a lower risk of radiation pneumonitis than the 3D-CRT plan. However, when the chemotherapy equivalent radiation dose exceeds a certain threshold, the radiation pneumonitis risk after IMRT is greater than after 3D-CRT. This threshold dose is in the range estimated from clinical chemoradiotherapy data sets. Conclusions: Cytotoxic chemotherapy might affect the relative merit of competing radiotherapy plans. More work is needed to improve our understanding of the interaction between chemotherapy and the radiation dose distribution in clinical settings.

  11. A Monte Carlo model for quality assurance of intensity-modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Aaronson, Randi Fogg

    Intensity modulated radiotherapy provides improved target coverage and reduced dose to surrounding normal tissues compared with conformal radiotherapy. However, computational quality assurance is more challenging for the complex fluence maps used in IMRT treatments, and direct measurements can be labor-intensive. A Monte Carlo based phase space model has been developed based on the Novalis linear accelerator to simulate arbitrary static fields and IMRT sequences. The basis for the model is the MCNP4C code, which accounts for the lack of lateral electronic equilibrium present in the small fields used in IMRT. This work is based on a virtual phase space source model, which is a two-step process. In the first step, the open beam fluence is calculated by simulating the components of the linear accelerator treatment head above the field defining multileaf collimator. This is done one time for a machine, and the resulting fluence map is used in all subsequent dose calculations. In the second step, this fluence map is then adjusted to match the physical beam using an intensity grid, which incorporates a detailed model of the multileaf collimator. The intensity grid accounts for the shaped leaf tip geometry and the beam divergence that influence the dose at the edge of the open leaves. It includes the transmission through the leaves, the leakage between them, and the tongue-and-groove design, which affect the dose under the leaves. The variation in beam energy across the field is also incorporated with a look-up table of effective attenuation coefficients based on the position in the field. The model can simulate both segmented and dynamic sequences. Depth dose and profile calculations for three field sizes agree well with measurement. Irregular field calculations in homogeneous media are compared with film measurement, and IMRT plan simulations in heterogeneous media are compared with film measurement and an accepted treatment planning system. These results show the

  12. Intensity-Modulated Whole Abdominal Radiotherapy After Surgery and Carboplatin/Taxane Chemotherapy for Advanced Ovarian Cancer: Phase I Study

    SciTech Connect

    Rochet, Nathalie; Sterzing, Florian; Jensen, Alexandra D.; Dinkel, Julien; Herfarth, Klaus K.; Schubert, Kai; Eichbaum, Michael H.; Schneeweiss, Andreas; Sohn, Christof; Debus, Juergen; Harms, Wolfgang

    2010-04-15

    Purpose: To assess the feasibility and toxicity of consolidative intensity-modulated whole abdominal radiotherapy (WAR) after surgery and chemotherapy in high-risk patients with advanced ovarian cancer. Methods and Materials: Ten patients with optimally debulked ovarian cancer International Federation of Gynecology and Obstetrics Stage IIIc were treated in a Phase I study with intensity-modulated WAR up to a total dose of 30 Gy in 1.5-Gy fractions as consolidation therapy after adjuvant carboplatin/taxane chemotherapy. Treatment was delivered using intensity-modulated radiotherapy in a step-and-shoot technique (n = 3) or a helical tomotherapy technique (n = 7). The planning target volume included the entire peritoneal cavity and the pelvic and para-aortal node regions. Organs at risk were kidneys, liver, heart, vertebral bodies, and pelvic bones. Results: Intensity-modulated WAR resulted in an excellent coverage of the planning target volume and an effective sparing of the organs at risk. The treatment was well tolerated, and no severe Grade 4 acute side effects occurred. Common Toxicity Criteria Grade III toxicities were as follows: diarrhea (n = 1), thrombocytopenia (n = 1), and leukopenia (n = 3). Radiotherapy could be completed by all the patients without any toxicity-related interruption. Median follow-up was 23 months, and 4 patients had tumor recurrence (intraperitoneal progression, n = 3; hepatic metastasis, n = 1). Small bowel obstruction caused by adhesions occurred in 3 patients. Conclusions: The results of this Phase I study showed for the first time, to our knowledge, the clinical feasibility of intensity-modulated whole abdominal radiotherapy, which could offer a new therapeutic option for consolidation treatment of advanced ovarian carcinoma after adjuvant chemotherapy in selected subgroups of patients. We initiated a Phase II study to further evaluate the toxicity of this intensive multimodal treatment.

  13. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy

    SciTech Connect

    Letourneau, Daniel; Keller, Harald; Sharpe, Michael B.; Jaffray, David A.

    2007-05-15

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 deg. of gantry (usually within {+-}1%). For single beam geometry, errors in phantom placement as small as 0.5 mm could be accurately detected (in gradient {>=}1%/mm). In clinical setting, MLC systematic errors of 1 mm on a single MLC bank introduced in the IMRT plan were easily detectable with the QA phantom. The QA phantom demonstrated also sufficient sensitivity for the detection of setup errors as small as 1 mm for the IMRT delivery. These results demonstrated that the prototype can accurately and efficiently verify the entire IG-IMRT process. This tool, in conjunction with image guidance capabilities

  14. Whole-Field Simultaneous Integrated-Boost Intensity-Modulated Radiotherapy for Patients With Nasopharyngeal Carcinoma

    SciTech Connect

    Wong, Frank C.S.; Ng, Alice W.Y.; Lee, Victor H.F.; Lui, Collin M.M.; Yuen, K.-K.; Sze, W.-K.; Leung, T.-W.; Tung, Stewart Y.

    2010-01-15

    Purpose: To retrospectively review the outcomes of our patients with newly diagnosed nondisseminated nasopharyngeal carcinoma treated with intensity-modulated radiotherapy using a whole-field simultaneous integrated-boost technique. Methods and Materials: A total of 175 patients treated with WF-SIB between mid-2004 and 2005 were eligible for study inclusion. The distribution of disease by stage was Stage IA in 10.9%, Stage IIA in 2.3%, Stage IIB in 21.7%, Stage III in 41.1%, Stage IVA in 14.9%, and Stage IVB in 9.1%. Of the 175 patients, 2 (1.2%), 10 (5.7%), and 163 (93.1%) had World Health Organization type I, II, and III histologic features, respectively. We prescribed 70 Gy, 60 Gy, and 54 Gy delivered in 33 fractions within 6.5 weeks at the periphery of three planning target volumes (PTV; PTV70, PTV60, and PTV54, respectively). Of the 175 patients, 46 with early T-stage disease received a brachytherapy boost, and 127 with advanced local or regional disease received chemotherapy. Results: The median follow-up period was 34 months. The overall 3-year local failure-free survival, regional failure-free survival, distant failure-free survival, and overall survival rate was 93.6%, 93.3%, 86.6%, and 87.2%, respectively. Cox regression analysis showed Stage N2-N3 disease (p = .029) and PTV (p = .024) to be independent factors predicting a greater risk of distant failure and poor overall survival, respectively. Grade 3 acute mucositis/pharyngitis occurred in 23.4% of patients, and Stage T4 disease was the only significant predictor of mucositis/pharyngitis (p = .021). Conclusion: Whole-field simultaneous integrated-boost intensity-modulated radiotherapy with a dose >70 Gy achieved excellent locoregional control, without an excess incidence of severe, acute mucositis/pharyngitis, in the present study. Strategies for using such highly conformal treatment for patients with a large tumor and late N-stage disease are potential areas of investigation for future studies.

  15. Phase II Trial of Hypofractionated Image-Guided Intensity-Modulated Radiotherapy for Localized Prostate Adenocarcinoma

    SciTech Connect

    Martin, Jarad M.; Rosewall, Tara; Bayley, Andrew; Bristow, Robert; Chung, Peter; Crook, Juanita; Gospodarowicz, Mary; McLean, Michael; Menard, Cynthia; Milosevic, Michael; Warde, Padraig; Catton, Charles

    2007-11-15

    Purpose: To assess in a prospective trial the feasibility and late toxicity of hypofractionated radiotherapy (RT) for prostate cancer. Methods and Materials: Eligible patients had clinical stage T1c-2cNXM0 disease. They received 60 Gy in 20 fractions over 4 weeks with intensity-modulated radiotherapy including daily on-line image guidance with intraprostatic fiducial markers. Results: Between June 2001 and March 2004, 92 patients were treated with hypofractionated RT. The cohort had a median prostate-specific antigen value of 7.06 ng/mL. The majority had Gleason grade 5-6 (38%) or 7 (59%) disease, and 82 patients had T1c-T2a clinical staging. Overall, 29 patients had low-risk, 56 intermediate-risk, and 7 high-risk disease. Severe acute toxicity (Grade 3-4) was rare, occurring in only 1 patient. Median follow-up was 38 months. According to the Phoenix definition for biochemical failure, the rate of biochemical control at 14 months was 97%. According to the previous American Society for Therapeutic Radiology and Oncology definition, biochemical control at 3 years was 76%. The incidence of late toxicity was low, with no severe (Grade {>=}3) toxicity at the most recent assessment. Conclusions: Hypofractionated RT using 60 Gy in 20 fractions over 4 weeks with image guidance is feasible and is associated with low rates of late bladder and rectal toxicity. At early follow-up, biochemical outcome is comparable to that reported for conventionally fractionated controls. The findings are being tested in an ongoing, multicenter, Phase III trial.

  16. Parotid gland volumetric changes during intensity-modulated radiotherapy in head and neck cancer

    PubMed Central

    Fiorentino, A; Caivano, R; Metallo, V; Chiumento, C; Cozzolino, M; Califano, G; Clemente, S; Pedicini, P; Fusco, V

    2012-01-01

    Objective To evaluate volumetric changes of parotid glands (PGs) during intensity-modulated radiotherapy (IMRT) in head and neck cancer patients. Methods During IMRT all patients underwent kilovolt cone-beam CT (CBCT) scans to verify the set-up positioning in a protocol study. On each CBCT scan, the PGs were retrospectively contoured and evaluated with a dose–volume histogram. Results From February to June 2011, 10 patients were enrolled. 140 CBCT scans were registered (280 PGs): for each patient, a median of 14 CBCT scans were performed (range 14–16). At the start of radiation, the average volume for ipsilateral PGs (iPGs) was 18.77 ml (range 12.9–31.2 ml), whereas for contralateral PGs (cPGs) it was 16.63 ml (range 8.3–28.7 ml). At the last CBCT scan, the average volume loss was 43.5% and 44.0% for the iPG and cPG, respectively. When we analysed the percentage of volume loss, we observed that the volume decreased by linear regression (r2=0.92 for iPG; r2=0.91 for cPG), with an average volume loss rate of 1.5% per day for both PGs. During the third week of treatment the volume of both PGs reduced by 24–30%. Conclusion Our data show that, during IMRT, the shrinkage of PGs should be taken into account. A replan could be indicated in the third week of radiotherapy. PMID:22573295

  17. Retrospective estimate of the quality of intensity-modulated radiotherapy plans for lung cancer

    NASA Astrophysics Data System (ADS)

    Koo, Jihye; Yoon, Myonggeun; Chung, Weon Kuu; Kim, Dong Wook

    2015-07-01

    This study estimated the planning quality of intensity-modulated radiotherapy in 42 lung cancer cases to provide preliminary data for the development of a planning quality assurance algorithm. Organs in or near the thoracic cavity (ipsilateral lung, contralateral lung, heart, liver, esophagus, spinal cord, and bronchus) were selected as organs at risk (OARs). Radiotherapy plans were compared by using the conformity index (CI), coverage index (CVI), and homogeneity index (HI) of the planning target volume (PTV), the OAR-PTV distance and the OAR-PTV overlap volume, and the V10 Gy , V20 Gy , and equivalent uniform dose (EUD) of the OARs. The CI, CVI, and HI of the PTV were 0.54-0.89 (0.77 ± 0.08), 0.90-1.00 (0.98 ± 0.02), and 0.11-0.41, (0.15 ± 0.05), respectively. The mean EUDs (V10 Gy , V20 Gy ) of the ipsilateral lung, contralateral lung, esophagus, cord, liver, heart, and bronchus were 8.07 Gy (28.06, 13.17), 2.59 Gy (6.53, 1.18), 7.02 Gy (26.17, 12.32), 3.56 Gy (13.56, 4.48), 0.72 Gy (2.15, 0.91), 5.14 Gy (19.68, 8.62), and 10.56 Gy (36.08, 19.79), respectively. EUDs tended to decrease as the OAR-PTV distance increased and the OAR-PTV overlap volume decreased. Because the plans in this study were from a single department, relatively few people were involved in treatment planning. Differences in treatment results for a given patient would be much more pronounced if many departments were involved.

  18. Prognostic value of wait time in nasopharyngeal carcinoma treated with intensity modulated radiotherapy: a propensitymatched analysis

    PubMed Central

    Chen, Lei; Tang, Ling-Long; Li, Wen-Fei; Liu, Xu; Zhou, Guan-Qun; Guo, Rui; Sun, Ying; Kang, Tie-Bang; Zeng, Mu-Sheng; Ma, Jun

    2016-01-01

    The aim of this study was to determine the prognostic value of wait time from histological diagnosis to primary treatmen for nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT). Between October 2009 and February 2012, a total of 1672 NPC patients were retrospectively analyzed. A cutoff value of > 4 weeks was used to define prolonged wait time. Matched patients according to the wait time were identified using propensity score matching (PSM), which was also used to identify matched patients for subsequent stratified analyses. Differences in progression-free survival (PFS), overall survival (OS), distant metastasis-free survival (DMFS), and locoregional relapse-free survival (LRFS) were estimated using the Kaplan–Meier method and Cox proportional hazards models. In total, 407 pairs of NPC patients were selected by PSM. The 3-year PFS rate was significantly lower for patients with a prolonged wait time (> 4 weeks) than for those with an acceptable wait time (P = 0.035). Stratified analyses revealed that the negative effects of a prolonged wait time occurred primarily in patients with advanced NPC without neoadjuvant chemotherapy (NACT; PFS:P = 0.040; DMFS:P = 0.028). In multivariate analysis, a prolonged wait time was found to be an independent unfavorable prognostic factor for PFS and DMFS in advanced-staged patients without NACT. These results suggest that a prolonged time (> 4 weeks) between diagnosis and primary radical radiotherapy is a disadvantage for NPC patients, particularly those with advanced disease receiving no NACT. Thus, it is necessary to optimize resources for decreasing this wait time, although additional studies are warranted to further clarify our findings. PMID:26942870

  19. Dose-Dependent Pulmonary Toxicity After Postoperative Intensity-Modulated Radiotherapy for Malignant Pleural Mesothelioma

    SciTech Connect

    Rice, David C. Smythe, W. Roy; Liao Zhongxing; Guerrero, Thomas; Chang, Joe Y.; McAleer, Mary F.; Jeter, Melenda D.; Correa, Arlene Ph.D.; Vaporciyan, Ara A.; Liu, H. Helen; Komaki, Ritsuko; Forster, Kenneth M.; Stevens, Craig W.

    2007-10-01

    Purpose: To determine the incidence of fatal pulmonary events after extrapleural pneumonectomy and hemithoracic intensity-modulated radiotherapy (IMRT) for malignant pleural mesothelioma. Methods and Materials: We retrospectively reviewed the records of 63 consecutive patients with malignant pleural mesothelioma who underwent extrapleural pneumonectomy and IMRT at University of Texas M. D. Anderson Cancer Center. The endpoints studied were pulmonary-related death (PRD) and non-cancer-related death within 6 months of IMRT. Results: Of the 63 patients, 23 (37%) had died within 6 months of IMRT (10 of recurrent cancer, 6 of pulmonary causes [pneumonia in 4 and pneumonitis in 2], and 7 of other noncancer causes [pulmonary embolus in 2, sepsis after bronchopleural fistula in 1, and cause unknown but without pulmonary symptoms or recurrent disease in 4]). On univariate analysis, the factors that predicted for PRD were a lower preoperative ejection fraction (p = 0.021), absolute volume of lung spared at 10 Gy (p = 0.025), percentage of lung volume receiving {>=}20 Gy (V{sub 20}; p 0.002), and mean lung dose (p = 0.013). On multivariate analysis, only V{sub 20} was predictive of PRD (p = 0.017; odds ratio, 1.50; 95% confidence interval, 1.08-2.08) or non-cancer-related death (p = 0.033; odds ratio, 1.21; 95% confidence interval, 1.02-1.45). Conclusion: The results of our study have shown that fatal pulmonary toxicities were associated with radiation to the contralateral lung. V{sub 20} was the only independent determinant for risk of PRD or non-cancer-related death. The mean V{sub 20} of the non-PRD patients was considerably lower than that accepted during standard thoracic radiotherapy, implying that the V{sub 20} should be kept as low as possible after extrapleural pneumonectomy.

  20. Role of Intensity-Modulated Radiotherapy in Reducing Toxicity in Dose Escalation for Localized Prostate Cancer

    SciTech Connect

    Al-Mamgani, Abrahim Heemsbergen, Wilma D.; Peeters, Stephanie T.H.; Lebesque, Joos V.

    2009-03-01

    Purpose: To compare the acute and late gastrointestinal (GI) and genitourinary (GU) toxicity in prostate cancer patients treated to a total dose of 78 Gy with either a three-conformal radiotherapy technique with a sequential boost (SEQ) or a simultaneous integrated boost using intensity-modulated radiotherapy (SIB-IMRT). Patients and Methods: A total of 78 prostate cancer patients participating in the randomized Dutch trial comparing 68 Gy and 78 Gy were the subject of this analysis. They were all treated at the same institution to a total dose of 78 Gy. The median follow-up was 76 and 56 months for the SEQ and SIB-IMRT groups, respectively. The primary endpoints were acute and late GI and GU toxicity. Results: A significantly lower incidence of acute Grade 2 or greater GI toxicity occurred in patients treated with SIB-IMRT compared with SEQ (20% vs. 61%, p = 0.001). For acute GU toxicity and late GI and GU toxicity, the incidence was lower after SIB-IMRT, but these differences were not statistically significant. No statistically significant difference were found in the 5-year freedom from biochemical failure rate (Phoenix definition) between the two groups (70% for the SIB-IMRT group vs. 61% for the SEQ group, p = 0.3). The same was true for the 5-year freedom from clinical failure rate (90% vs. 72%, p = 0.07). Conclusion: The results of our study have shown that SIB-IMRT reduced the toxicity without compromising the outcome in patients with localized prostate cancer treated to 78 Gy radiation.

  1. The Effect of Intensity-Modulated Radiotherapy on Radiation-Induced Second Malignancies

    SciTech Connect

    Ruben, Jeremy D. Davis, Sidney; Evans, Cherie; Jones, Phillip; Gagliardi, Frank; Haynes, Matthew; Hunter, Alistair

    2008-04-01

    Purpose: To compare intensity-modulated radiotherapy (IMRT) with three-dimensional conformal radiotherapy (3D-CRT) in terms of carcinogenic risk for actual clinical scenarios. Method and Materials: Clinically equivalent IMRT plans were generated for prostate, breast, and head-and-neck cases treated with 3D-CRT. Two possible dose-response models for radiocarcinogenesis were generated based on A-bomb survivor data corrected for fractionation. Dose-volume histogram analysis was used to determine dose and its distribution to nontargeted tissues within the planning CT scan volume and thermoluminescent dosimetry for the rest of the body. Carcinogenic estimates were calculated with and without a correction factor accounting for cancer patients' advanced age and reduced longevity. Results: For the model assuming a plateau in risk above 2-Gy single-fraction-equivalent (SFE), IMRT and 3D-CRT produced risks of 1.7% and 2.1%, respectively, for prostate; 1.9% and 1.8%, respectively, for nasopharynx; 1% each for tonsil; and 1.4-2.2% and 1.5-1.6%, respectively, depending on technique, for breast. Assuming a reduction in risk above 2-Gy SFE, risks for IMRT and 3D-CRT were 1.1% and 1.5%, respectively, for prostate; 1.4% and 1.2%, respectively, for nasopharynx; 1% each for tonsil; and 1.3-1.8% vs. 1.3-1.6%, respectively, for breast. Applying a correction factor of 0.5 for cancer patients halved these risks and their relative differences. Conclusions: Carcinogenic risks were comparable in absolute terms between modalities. Risks are dependant on technique used. Risks with IMRT are influenced by monitor unit demand and are therefore software/hardware dependant. The dose-response model accounting for cell killing at higher doses fitted best with actual observed risks.

  2. Feasibility Study of Intensity-Modulated Radiotherapy (IMRT) Treatment Planning Using Brain Functional MRI

    SciTech Connect

    Chang Jenghwa Kowalski, Alex; Hou, Bob; Narayana, Ashwatha

    2008-04-01

    The purpose of this work was to study the feasibility of incorporating functional magnetic resonance imaging (fMRI) information for intensity modulated radiotherapy (IMRT) treatment planning of brain tumors. Three glioma patients were retrospectively replanned for radiotherapy (RT) with additional fMRI information. The fMRI of each patient was acquired using a bilateral finger-tapping paradigm with a gradient echo EPI (Echo Planer Imaging) sequence. The fMRI data were processed using the Analysis of Functional Neuroimaging (AFNI) software package for determining activation volumes, and the volumes were fused with the simulation computed tomography (CT) scan. The actived pixels in left and right primary motor cortexes (PMCs) were contoured as critical structures for IMRT planning. The goal of replanning was to minimize the RT dose to the activation volumes in the PMC regions, while maintaining a similar coverage to the planning target volume (PTV) and keeping critical structures within accepted dose tolerance. Dose-volume histograms of the treatment plans with and without considering the fMRI information were compared. Beam angles adjustment or additional beams were needed for 2 cases to meet the planning criteria. Mean dose to the contralateral and ipsilateral PMC was significantly reduced by 66% and 55%, respectively, for 1 patient. For the other 2 patients, mean dose to contralateral PMC region was lowered by 73% and 69%. In general, IMRT optimization can reduce the RT dose to the PMC regions without compromising the PTV coverage or sparing of other critical organs. In conclusion, it is feasible to incorporate the fMRI information into the RT treatment planning. IMRT planning allows a significant reduction in RT dose to the PMC regions, especially if the region does not lie within the PTV.

  3. Implementing intensity modulated radiotherapy to the prostate bed: Dosimetric study and early clinical results

    SciTech Connect

    Riou, Olivier; Laliberté, Benoit; Azria, David; Menkarios, Cathy; Llacer Moscardo, Carmen; Dubois, Jean-Bernard; Aillères, Norbert; Fenoglietto, Pascal

    2013-07-01

    Salvage intensity modulated radiotherapy (IMRT) to the prostate bed has hardly been studied so far. We present here a feasibility study and early clinical results for 10 patients. These patients were selected on the basis of having either a biochemical relapse or high risk histology after prostatectomy. They were treated using “sliding-window” IMRT to 68 Gy in 34 fractions. Three-dimensional conformal radiotherapy (3D-CRT) plans were generated using the same planning computed tomography data set. Dose coverage of planning target volumes (PTVs) and of organs-at-risk (OAR, namely: rectum, bladder, and femoral heads) were compared. Acute toxicity and chronic toxicity were measured using the Common Toxicity Criteria for Adverse Events version 3.0 scale. IMRT significantly reduces the dose above the prescription dose given to the PTV1 (mean dose: IMRT 67.2 Gy vs 3D-CRT 67.7 Gy (p = 0.0137)), without altering dose coverage for PTV2 (mean dose: IMRT 68.1 Gy vs 3D-CRT 68.0 Gy (p = 0.3750)). Doses to OAR were lower with IMRT and differences were statistically significant (mean dose: IMRT 51.4 Gy vs 3D-CRT 56.6 Gy for rectum (p = 0.002), IMRT 45.1 Gy vs 3D-CRT 53.1 Gy for bladder (p = 0.002), and IMRT 26.1 Gy vs 3D-CRT 28.4 Gy for femoral heads (p = 0.0059)). There was no acute or chronic genitourinary or gastrointestinal toxicity >1 with a median follow-up of 38 months. IMRT to the prostatic fossa is feasible and reduces dose to OAR, with consequential limited toxicity.

  4. Intensity-Modulated Radiotherapy for Head-and-Neck Cancer in the Community Setting

    SciTech Connect

    Seung, Steven Bae, Joseph; Solhjem, Matthew; Bader, Stephen; Gannett, David; Hansen, Eric K.; Louie, Jeannie; Underhill, Kelly Cha Christine

    2008-11-15

    Purpose: To review outcomes with intensity-modulated radiation therapy (IMRT) in the community setting for the treatment of nasopharyngeal and oropharyngeal cancer. Methods and Materials: Between April 2003 and April 2007, 69 patients with histologically confirmed cancer of the nasopharynx and oropharynx underwent IMRT in our practice. The primary sites included nasopharynx (11), base of tongue (18), and tonsil (40). The disease stage distribution was as follows: 2 Stage I, 11 Stage II, 16 Stage III, and 40 Stage IV. All were treated with a simultaneous integrated boost IMRT technique. The median prescribed doses were 70 Gy to the planning target volume, 59.4 Gy to the high-risk subclinical volume, and 54 Gy to the low-risk subclinical volume. Forty-five patients (65%) received concurrent chemotherapy. Toxicity was graded according to the Radiation Therapy Oncology Group toxicity criteria. Progression-free and overall survival rates were estimated with the Kaplan-Meier product-limit method. Results: Median duration of follow-up was 18 months. The estimated 2-year local control, regional control, distant control, and overall survival rates were 98%, 100%, 98%, and 90%, respectively. The most common acute toxicities were dermatitis (32 Grade 1, 32 Grade 2, 5 Grade 3), mucositis (8 Grade 1, 33 Grade 2, 28 Grade 3), and xerostomia (0 Grade 1, 29 Grade 2, 40 Grade 3). Conclusions: Intensity-modulated radiotherapy in the community setting can be accomplished safely and effectively. Systematic internal review systems are recommended for quality control until sufficient experience develops.

  5. Postoperative Intensity-Modulated Radiotherapy in Low-Risk Endometrial Cancers: Final Results of a Phase I Study

    SciTech Connect

    Macchia, Gabriella; Cilla, Savino M.P.; Ferrandina, Gabriella; Padula, Gilbert D.A.; Deodato, Francesco; Digesu, Cinzia; Caravatta, Luciana; Picardi, Vincenzo; Corrado, Giacomo; Piermattei, Angelo; Valentini, Vincenzo; Cellini, Numa; Scambia, Giovanni; Morganti, Alessio Giuseppe

    2010-04-15

    Purpose: To determine the maximum tolerated dose of short-course radiotherapy (intensity-modulated radiotherapy technique) to the upper two thirds of the vagina in endometrial cancers with low risk of local recurrence. Patients and Methods: A Phase I clinical trial was performed. Eligible patients had low-risk resected primary endometrial adenocarcinomas. Radiotherapy was delivered in 5 fractions over 1 week. The planning target volume was the clinical target volume plus 5 mm. The clinical target volume was defined as the upper two thirds of the vagina as evidenced at CT simulation by a vaginal radio-opaque device. The planning target volume was irradiated by a seven-field intensity-modulated radiotherapy technique, planned by the Plato Sunrise inverse planning system. A first cohort of 6 patients received 25 Gy (5-Gy fractions), and a subsequent cohort received 30 Gy (6-Gy fractions). The Common Toxicity Criteria scale, version 3.0, was used to score toxicity. Results: Twelve patients with endometrial cancer were enrolled. Median age was 58 years (range, 49-74 years). Pathologic stage was IB (83.3%) and IC (16.7%). Median tumor size was 30 mm (range, 15-50 mm). All patients completed the prescribed radiotherapy. No patient experienced a dose-limiting toxicity at the first level, and the radiotherapy dose was escalated from 25 to 30 Gy. No patients at the second dose level experienced dose-limiting toxicity. The most common Grade 2 toxicity was gastrointestinal, which was tolerable and manageable. Conclusions: The maximum tolerated dose of short-course radiotherapy was 30 Gy at 6 Gy per fraction. On the basis of this result, we are conducting a Phase II study with radiotherapy delivered at 30 Gy.

  6. Assessment of Extended-Field Radiotherapy for Stage IIIC Endometrial Cancer Using Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, and Helical Tomotherapy

    SciTech Connect

    Lian Jidong Mackenzie, Marc; Joseph, Kurian; Pervez, Nadeem; Dundas, George; Urtasun, Raul; Pearcey, Robert

    2008-03-01

    Purpose: To perform a dosimetric comparison of three-dimensional conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and helical tomotherapy (HT) plans for pelvic and para-aortic RT in postoperative endometrial cancer patients; and to evaluate the integral dose (ID) received by critical structures within the radiation fields. Methods and Materials: We selected 10 patients with Stage IIIC endometrial cancer. For each patient, three plans were created with 3D-CRT, IMRT, and HT. The IMRT and HT plans were both optimized to keep the mean dose to the planning target volume (PTV) the same as that with 3D-CRT. The dosimetry and ID for the critical structures were compared. A paired two-tailed Student t test was used for data analysis. Results: Compared with the 3D-CRT plans, the IMRT plans resulted in lower IDs in the organs at risk (OARs), ranging from -3.49% to -17.59%. The HT plans showed a similar result except that the ID for the bowel increased 0.27%. The IMRT and HT plans both increased the IDs to normal tissue (see and text for definition), pelvic bone, and spine (range, 3.31-19.7%). The IMRT and HT dosimetry showed superior PTV coverage and better OAR sparing than the 3D-CRT dosimetry. Compared directly with IMRT, HT showed similar PTV coverage, lower Ids, and a decreased dose to most OARs. Conclusion: Intensity-modulated RT and HT appear to achieve excellent PTV coverage and better sparing of OARs, but at the expense of increased IDs to normal tissue and skeleton. HT allows for additional improvement in dosimetry and sparing of most OARs.

  7. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy

    SciTech Connect

    Bell, Linda J.; Cox, Jennifer; Eade, Thomas; Rinks, Marianne; Kneebone, Andrew

    2014-10-01

    Variations in rectal and bladder filling can create a tilt of the prostate bed, which generates the potential for a geographic miss during postprostatectomy radiotherapy. The aim of this study is to assess the effect that bladder and rectum filling has on planning target volume angle, to determine a method to assess prostate bed tilt leading to potential geographic miss, and to discuss possible implementation issues. The cone-beam computed tomography images (n = 377) of 40 patients who received postprostatectomy radiotherapy with intensity-modulated radiotherapy were reviewed. The amount of tilt in the prostate bed was defined as the angle change between 2 surgical clips, one in the upper prostate bed and another in the lower. A potential geographic miss was defined as movement of any clip of more than 1 cm in any direction or 0.5 cm posteriorly when aligned to bone anatomy. Variations in bladder and rectum size were correlated with the degree of prostate bed tilt, and the rate of potential geographic miss was determined. A possible clinical use of prostate bed tilt was then assessed for different imaging techniques. A tilt of more than 10° was seen in 20.2% of images, which resulted in a 57.9% geographic miss rate of the superior clip. When tilt remained within 10°, there was only a 9% rate of geographic miss. Potential geographic miss of the inferior surgical clip was rare, occurring in only 1.9% of all images reviewed. The most common occurrence when the prostate bed tilt increased by more than 10° was a smaller bladder and larger rectum (6.4% of all images). The most common occurrence when the prostate bed tilt decreased by more than 10° was a larger bladder and smaller rectum (1.3% of all images). Significant prostate bed tilt (>± 10°) occurred in more than 20% of images, creating a 58% rate of geographic miss. Greatest prostate bed tilt occurred when the bladder size increased or reduced by more than 2 cm or the superior rectum size increased by more

  8. Dosimetric Evaluation of Different Intensity-Modulated Radiotherapy Techniques for Breast Cancer After Conservative Surgery.

    PubMed

    Zhang, Fuli; Wang, Yadi; Xu, Weidong; Jiang, Huayong; Liu, Qingzhi; Gao, Junmao; Yao, Bo; Hou, Jun; He, Heliang

    2015-10-01

    Intensity-modulated radiotherapy (IMRT) potentially leads to a more favorite dose distribution compared to 3-dimensional or conventional tangential radiotherapy (RT) for breast cancer after conservative surgery or mastectomy. The aim of this study was to compare dosimetric parameters of the planning target volume (PTV) and organs at risk (OARs) among helical tomotherapy (HT), inverse-planned IMRT (IP-IMRT), and forward-planned field in field (FP-FIF) IMRT techniques after breast-conserving surgery. Computed tomography scans from 20 patients (12 left sided and 8 right sided) previously treated with T1N0 carcinoma were selected for this dosimetric planning study. We designed HT, IP-IMRT, and FP-FIF plans for each patient. Plans were compared according to dose-volume histogram analysis in terms of PTV homogeneity and conformity indices (HI and CI) as well as OARs dose and volume parameters. Both HI and CI of the PTV showed statistically significant difference among IP-IMRT, FP-FIF, and HT with those of HT were best (P < .05). Compared to FP-FIF, IP-IMRT showed smaller exposed volumes of ipsilateral lung, heart, contralateral lung, and breast, while HT indicated smaller exposed volumes of ipsilateral lung but larger exposed volumes of contralateral lung and breast as well as heart. In addition, HT demonstrated an increase in exposed volume of ipsilateral lung (except for fraction of lung volume receiving >30 Gy and 20 Gy), heart, contralateral lung, and breast compared with IP-IMRT. For breast cancer radiotherapy (RT) after conservative surgery, HT provides better dose homogeneity and conformity of PTV compared to IP-IMRT and FP-FIF techniques, especially for patients with supraclavicular lymph nodes involved. Meanwhile, HT decreases the OAR volumes receiving higher doses with an increase in the volumes receiving low doses, which is known to lead to an increased rate of radiation-induced secondary malignancies. Hence, composite factors including dosimetric advantage

  9. Correcting radiation survey data to account for increased leakage during intensity modulated radiotherapy treatments

    SciTech Connect

    Kairn, T.; Crowe, S. B.; Trapp, J. V.

    2013-11-15

    Purpose: Intensity modulated radiotherapy (IMRT) treatments require more beam-on time and produce more linac head leakage to deliver similar doses to conventional, unmodulated, radiotherapy treatments. It is necessary to take this increased leakage into account when evaluating the results of radiation surveys around bunkers that are, or will be, used for IMRT. The recommended procedure of applying a monitor-unit based workload correction factor to secondary barrier survey measurements, to account for this increased leakage when evaluating radiation survey measurements around IMRT bunkers, can lead to potentially costly overestimation of the required barrier thickness. This study aims to provide initial guidance on the validity of reducing the value of the correction factor when applied to different radiation barriers (primary barriers, doors, maze walls, and other walls) by evaluating three different bunker designs.Methods: Radiation survey measurements of primary, scattered, and leakage radiation were obtained at each of five survey points around each of three different radiotherapy bunkers and the contribution of leakage to the total measured radiation dose at each point was evaluated. Measurements at each survey point were made with the linac gantry set to 12 equidistant positions from 0° to 330°, to assess the effects of radiation beam direction on the results.Results: For all three bunker designs, less than 0.5% of dose measured at and alongside the primary barriers, less than 25% of the dose measured outside the bunker doors and up to 100% of the dose measured outside other secondary barriers was found to be caused by linac head leakage.Conclusions: Results of this study suggest that IMRT workload corrections are unnecessary, for survey measurements made at and alongside primary barriers. Use of reduced IMRT workload correction factors is recommended when evaluating survey measurements around a bunker door, provided that a subset of the measurements used in

  10. Dosimetric Evaluation of Intensity-Modulated Radiotherapy, Volumetric Modulated Arc Therapy, and Helical Tomotherapy for Hippocampal-Avoidance Whole Brain Radiotherapy

    PubMed Central

    Rong, Yi; Evans, Josh; Xu-Welliver, Meng; Pickett, Cadron; Jia, Guang; Chen, Quan; Zuo, Li

    2015-01-01

    Background Whole brain radiotherapy (WBRT) is a vital tool in radiation oncology and beyond, but it can result in adverse health effects such as neurocognitive decline. Hippocampal Avoidance WBRT (HA-WBRT) is a strategy that aims to mitigate the neuro-cognitive side effects of whole brain radiotherapy treatment by sparing the hippocampi while delivering the prescribed dose to the rest of the brain. Several competing modalities capable of delivering HA-WBRT, include: Philips Pinnacle step-and-shoot intensity modulated radiotherapy (IMRT), Varian RapidArc volumetric modulated arc therapy (RapidArc), and helical TomoTherapy (TomoTherapy). Methods In this study we compared these methods using 10 patient datasets. Anonymized planning CT (computerized tomography) scans and contour data based on fused MRI images were collected. Three independent planners generated treatment plans for the patients using three modalities, respectively. All treatment plans met the RTOG 0933 criteria for HA-WBRT treatment. Results In dosimetric comparisons between the three modalities, TomoTherapy has a significantly superior homogeneity index of 0.15 ± 0.03 compared to the other two modalities (0.28 ± .04, p < .005 for IMRT and 0.22 ± 0.03, p < .005 for RapidArc). RapidArc has the fastest average delivery time of 2.5 min compared to the other modalities (15 min for IMRT and 18 min for TomoTherapy). Conclusion TomoTherapy is considered to be the preferred modality for HA-WBRT due to its superior dose distribution. When TomoTherapy is not available or treatment time is a concern, RapidArc can provide sufficient dose distribution meeting RTOG criteria and efficient treatment delivery. PMID:25894615

  11. Interfractional Dose Variations in Intensity-Modulated Radiotherapy With Breath-Hold for Pancreatic Cancer

    SciTech Connect

    Nakamura, Mitsuhiro; Shibuya, Keiko; Nakamura, Akira; Shiinoki, Takehiro; Matsuo, Yukinori; Nakata, Manabu; Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro

    2012-04-01

    Purpose: To investigate the interfractional dose variations for intensity-modulated radiotherapy (RT) combined with breath-hold (BH) at end-exhalation (EE) for pancreatic cancer. Methods and Materials: A total of 10 consecutive patients with pancreatic cancer were enrolled. Each patient was fixed in the supine position on an individualized vacuum pillow with both arms raised. Computed tomography (CT) scans were performed before RT, and three additional scans were performed during the course of chemoradiotherapy using a conventional RT technique. The CT data were acquired under EE-BH conditions (BH-CT) using a visual feedback technique. The intensity-modulated RT plan, which used five 15-MV coplanar ports, was designed on the initial BH-CT set with a prescription dose of 39 Gy at 2.6 Gy/fraction. After rigid image registration between the initial and subsequent BH-CT scans, the dose distributions were recalculated on the subsequent BH-CT images under the same conditions as in planning. Changes in the dose-volume metrics of the gross tumor volume (GTV), clinical target volume (CTV = GTV + 5 mm), stomach, and duodenum were evaluated. Results: For the GTV and clinical target volume (CTV), the 95th percentile of the interfractional variations in the maximal dose, mean dose, dose covering 95% volume of the region of structure, and percentage of the volume covered by the 90% isodose line were within {+-}3%. Although the volume covered by the 39 Gy isodose line for the stomach and duodenum did not exceed 0.1 mL at planning, the volume covered by the 39 Gy isodose line for these structures was up to 11.4 cm{sup 3} and 1.8 cm{sup 3}, respectively. Conclusions: Despite variations in the gastrointestinal state and abdominal wall position at EE, the GTV and CTV were mostly ensured at the planned dose, with the exception of 1 patient. Compared with the duodenum, large variations in the stomach volume receiving high-dose radiation were observed, which might be beyond the

  12. Treatment Planning Study to Determine Potential Benefit of Intensity-Modulated Radiotherapy Versus Conformal Radiotherapy for Unresectable Hepatic Malignancies

    SciTech Connect

    Eccles, Cynthia L.; Bissonnette, Jean-Pierre; Craig, Tim; Taremi, Mojgan; Wu Xia; Dawson, Laura A.

    2008-10-01

    Purpose: To compare intensity-modulated radiotherapy (IMRT) with conformal RT (CRT) for hypofractionated isotoxicity liver RT and explore dose escalation using IMRT for the same/improved nominal risk of liver toxicity in a treatment planning study. Methods and Materials: A total of 26 CRT plans were evaluated. Prescription doses (24-54 Gy within six fractions) were individualized on the basis of the effective liver volume irradiated maintaining {<=}5% risk of radiation-induced liver disease. The dose constraints included bowel (0.5 cm{sup 3}) and stomach (0.5 cm{sup 3}) to {<=}30 Gy, spinal cord to {<=}25 Gy, and planning target volume (PTV) to {<=}140% of the prescribed dose. Two groups were evaluated: (1) PTV overlapping or directly adjacent to serial functioning normal tissues (n = 14), and (2) the liver as the dose-limiting normal tissue (n = 12). IMRT plans using direct machine parameter optimization maintained the CRT plan beam arrangements, an estimated radiation-induced liver disease risk of 5%, and underwent dose escalation, if all normal tissue constraints were maintained. Results: IMRT improved PTV coverage in 19 of 26 plans (73%). Dose escalation was feasible in 9 cases by an average of 3.8 Gy (range, 0.6-13.2) in six fractions. Three of seven plans without improved PTV coverage had small gross tumor volumes ({<=}105 cm{sup 3}) already receiving 54 Gy, the maximal prescription dose allowed. In the remaining cases, the PTV range was 9.6-689 cm{sup 3}; two had overlapped organs at risk; and one had four targets. IMRT did not improve these plans owing to poor target coverage (n = 2) and nonliver (n = 2) dose limits. Conclusion: Direct machine parameter optimization IMRT improved PTV coverage while maintaining normal tissue tolerances in most CRT liver plans. Dose escalation was possible in a minority of patients.

  13. Intensity-Modulated Radiotherapy Results in Significant Decrease in Clinical Toxicities Compared With Conventional Wedge-Based Breast Radiotherapy

    SciTech Connect

    Harsolia, Asif; Kestin, Larry; Grills, Inga; Wallace, Michelle; Jolly, Shruti; Jones, Cortney; Lala, Moinaktar; Martinez, Alvaro; Schell, Scott; Vicini, Frank A. . E-mail: fvicini@beaumont.edu

    2007-08-01

    Purpose: We have previously demonstrated that intensity-modulated radiotherapy (IMRT) with a static multileaf collimator process results in a more homogenous dose distribution compared with conventional wedge-based whole breast irradiation (WBI). In the present analysis, we reviewed the acute and chronic toxicity of this IMRT approach compared with conventional wedge-based treatment. Methods and Materials: A total of 172 patients with Stage 0-IIB breast cancer were treated with lumpectomy followed by WBI. All patients underwent treatment planning computed tomography and received WBI (median dose, 45 Gy) followed by a boost to 61 Gy. Of the 172 patients, 93 (54%) were treated with IMRT, and the 79 patients (46%) treated with wedge-based RT in a consecutive fashion immediately before this cohort served as the control group. The median follow-up was 4.7 years. Results: A significant reduction in acute Grade 2 or worse dermatitis, edema, and hyperpigmentation was seen with IMRT compared with wedges. A trend was found toward reduced acute Grade 3 or greater dermatitis (6% vs. 1%, p = 0.09) in favor of IMRT. Chronic Grade 2 or worse breast edema was significantly reduced with IMRT compared with conventional wedges. No difference was found in cosmesis scores between the two groups. In patients with larger breasts ({>=}1,600 cm{sup 3}, n = 64), IMRT resulted in reduced acute (Grade 2 or greater) breast edema (0% vs. 36%, p <0.001) and hyperpigmentation (3% vs. 41%, p 0.001) and chronic (Grade 2 or greater) long-term edema (3% vs. 30%, p 0.007). Conclusion: The use of IMRT in the treatment of the whole breast results in a significant decrease in acute dermatitis, edema, and hyperpigmentation and a reduction in the development of chronic breast edema compared with conventional wedge-based RT.

  14. Improved Planning Time and Plan Quality Through Multicriteria Optimization for Intensity-Modulated Radiotherapy

    SciTech Connect

    Craft, David L.; Hong, Theodore S.; Shih, Helen A.; Bortfeld, Thomas R.

    2012-01-01

    Purpose: To test whether multicriteria optimization (MCO) can reduce treatment planning time and improve plan quality in intensity-modulated radiotherapy (IMRT). Methods and Materials: Ten IMRT patients (5 with glioblastoma and 5 with locally advanced pancreatic cancers) were logged during the standard treatment planning procedure currently in use at Massachusetts General Hospital (MGH). Planning durations and other relevant planning information were recorded. In parallel, the patients were planned using an MCO planning system, and similar planning time data were collected. The patients were treated with the standard plan, but each MCO plan was also approved by the physicians. Plans were then blindly reviewed 3 weeks after planning by the treating physician. Results: In all cases, the treatment planning time was vastly shorter for the MCO planning (average MCO treatment planning time was 12 min; average standard planning time was 135 min). The physician involvement time in the planning process increased from an average of 4.8 min for the standard process to 8.6 min for the MCO process. In all cases, the MCO plan was blindly identified as the superior plan. Conclusions: This provides the first concrete evidence that MCO-based planning is superior in terms of both planning efficiency and dose distribution quality compared with the current trial and error-based IMRT planning approach.

  15. Marginal Misses After Postoperative Intensity-Modulated Radiotherapy for Head and Neck Cancer

    SciTech Connect

    Chen, Allen M.; Farwell, D. Gregory; Luu, Quang; Chen, Leon M.; Vijayakumar, Srinivasan; Purdy, James A.

    2011-08-01

    Purpose: To describe the spatial distribution of local-regional recurrence (LRR) among patients treated postoperatively with intensity-modulated radiotherapy (IMRT) for head and neck cancer. Methods and Materials: The medical records of 90 consecutive patients treated by gross total resection and postoperative IMRT for squamous cell carcinoma of the head and neck from January 2003 to July 2009 were reviewed. Sites of disease were the oral cavity (43 patients), oropharynx (20 patients), larynx (15 patients), and hypopharynx (12 patients). Fifty patients (56%) received concurrent chemotherapy. Results: Seventeen of 90 patients treated with postoperative IMRT experienced LRR, yielding a 2-year estimate of local regional control of 80%. Among the LRR patients, 11 patients were classified as in-field recurrences, occurring within the physician-designated clinical target volume, and 6 patients were categorized as marginal recurrences. There were no out-of-field geographical misses. Sites of marginal LRRs included the contralateral neck adjacent to the spared parotid gland (3 patients), the dermal/subcutaneous surface (2 patients), and the retropharyngeal/retrostyloid lymph node region (1 patient). Conclusions: Although the incidence of geographical misses was relatively low, the possibility of this phenomenon should be considered in the design of target volumes among patients treated by postoperative IMRT for head and neck cancer.

  16. Treatment of Nasopharyngeal Carcinoma Using Intensity-Modulated Radiotherapy-The National Cancer Centre Singapore Experience

    SciTech Connect

    Tham, Ivan Weng-Keong; Hee, Siew Wan; Yeo, Richard Ming-Chert; Salleh, Patemah; Lee, James; Tan, Terence Wee-Kiat; Fong, Kam Weng; Chua, Eu Tiong; Wee, Joseph Tien-Seng

    2009-12-01

    Purpose: The aim of this study was to determine the efficacy and acute toxicity of our early experience with treating nasopharyngeal carcinoma (NPC) patients with intensity-modulated radiotherapy (IMRT). Methods and materials: A review was conducted on case records of 195 patients with histologically proven, nonmetastatic NPC treated with IMRT between 2002 and 2005. MRI of the head and neck was fused with CT simulation images. All plans had target volumes at three dose levels, with a prescribed dose of 70 Gy to the gross disease, in 2.0-2.12 Gy/fraction over 33-35 fractions. Cisplatin-based chemotherapy was offered to Stage III/IV patients. Results: Median patient age was 52 years, and 69% were male. Median follow-up was 36.5 months. One hundred and twenty-three patients had Stage III/IV disease (63%); 50 (26%) had T4 disease. One hundred and eighty-eight (96%) had complete response; 7 (4%) had partial response. Of the complete responders, 10 (5.3%) had local recurrence, giving a 3-year local recurrence-free survival estimate of 93.1% and a 3-year disease-free survival of 82.1%. Fifty-one patients (26%) had at least one Grade 3 toxicity. Conclusions: Results from our series are comparable to those reported by other centers. Acute toxicity is common. Local failure or persistent disease, especially in patients with bulky T4 disease, are issues that must be addressed in future trials.

  17. Risk of secondary cancers from scattered radiation during intensity-modulated radiotherapies for hepatocellular carcinoma

    PubMed Central

    2014-01-01

    Purpose To evaluate and compare the risks of secondary cancers from therapeutic doses received by patients with hepatocellular carcinoma (HCC) during intensity-modulated radiotherapy (IMRT), volumetric arc therapy (VMAT), and tomotherapy (TOMO). Methods Treatments for five patients with hepatocellular carcinoma (HCC) were planned using IMRT, VMAT, and TOMO. Based on the Biological Effects of Ionizing Radiation VII method, the excess relative risk (ERR), excess absolute risk (EAR), and lifetime attributable risk (LAR) were evaluated from therapeutic doses, which were measured using radiophotoluminescence glass dosimeters (RPLGDs) for each organ inside a humanoid phantom. Results The average organ equivalent doses (OEDs) of 5 patients were measured as 0.23, 1.18, 0.91, 0.95, 0.97, 0.24, and 0.20 Gy for the thyroid, lung, stomach, liver, small intestine, prostate (or ovary), and rectum, respectively. From the OED measurements, LAR incidence were calculated as 83, 46, 22, 30, 2 and 6 per 104 person for the lung, stomach, normal liver, small intestine, prostate (or ovary), and rectum. Conclusions We estimated the secondary cancer risks at various organs for patients with HCC who received different treatment modalities. We found that HCC treatment is associated with a high secondary cancer risk in the lung and stomach. PMID:24886163

  18. A Dosimetric Comparison of Proton and Intensity-Modulated Photon Radiotherapy for Pediatric Parameningeal Rhabdomyosarcomas

    SciTech Connect

    Kozak, Kevin R.; Adams, Judith; Krejcarek, Stephanie J.; Tarbell, Nancy J.; Yock, Torunn I.

    2009-05-01

    Purpose: We compared tumor and normal tissue dosimetry of proton radiation therapy with intensity-modulated radiation therapy (IMRT) for pediatric parameningeal rhabdomyosarcomas (PRMS). Methods and Materials: To quantify dosimetric differences between contemporary proton and photon treatment for pediatric PRMS, proton beam plans were compared with IMRT plans. Ten patients treated with proton radiation therapy at Massachusetts General Hospital had IMRT plans generated. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Proton and IMRT plans provided acceptable and comparable target volume coverage, with at least 99% of the CTV receiving 95% of the prescribed dose in all cases. Improved dose conformality provided by proton therapy resulted in significant sparing of all examined normal tissues except for ipsilateral cochlea and mastoid; ipsilateral parotid gland sparing was of borderline statistical significance (p = 0.05). More profound sparing of contralateral structures by protons resulted in greater dose asymmetry between ipsilateral and contralateral retina, optic nerves, cochlea, and mastoids; dose asymmetry between ipsilateral and contralateral parotids was of borderline statistical significance (p = 0.05). Conclusions: For pediatric PRMS, superior normal tissue sparing is achieved with proton radiation therapy compared with IMRT. Because of enhanced conformality, proton plans also demonstrate greater normal tissue dose distribution asymmetry. Longitudinal studies assessing the impact of proton radiotherapy and IMRT on normal tissue function and growth symmetry are necessary to define the clinical consequences of these differences.

  19. Clinical implementation of dynamic intensity-modulated radiotherapy: Dosimetric aspects and initial experience

    PubMed Central

    Sivakumar, S. S.; Krishnamurthy, K.; Davis, C. A.; Ravichandran, R.; Kannadhasan, S.; Biunkumar, J. P.; El Ghamrawy, Kamal

    2008-01-01

    This paper describes the initial experience of quality assurance (QA) tests performed on the millennium multi-leaf collimator (mMLC) for clinical implementation of intensity-modulated radiotherapy (IMRT) using sliding window technique. The various QA tests verified the mechanical and dosimetric stability of the mMLC of linear accelerator when operated in dynamic mode (dMLC). The mechanical QA tests also verified the positional accuracy and kinetic properties of the dMLC. The stability of dMLC was analyzed qualitatively and quantitatively using radiographic film and Omnipro IMRT software. The output stability, variation in output for different sweeping gap widths, and dosimetric leaf separation were measured. Dose delivery with IMRT was verified against the dose computed by the treatment planning system (TPS). Monitor units (MUs) calculated by the planning system for the IMRT were cross-checked with independent commercial dose management software. Visual inspection and qualitative analysis showed that the leaf positioning accuracy was well within the acceptable limits. Dosimetric QA tests confirmed the dosimetric stability of the mMLC in dynamic mode. The verification of MUs using commercial software confirmed the reliability of the IMRT planning system for dose computation. The dosimetric measurements validated the fractional dose delivery. PMID:19893693

  20. Dosimetric Evaluation of a Simple Planning Technique for Improving Intensity-Modulated Radiotherapy for Nasopharyngeal Cancer

    PubMed Central

    Xie, Wen-Jia; Xie, Liang-Xi

    2015-01-01

    Purpose To evaluate the dosimetric outcomes of a simple planning technique for improving intensity-modulated radiotherapy (IMRT) for nasopharyngeal cancer (NPC). Methods For 39 NPC cases, generally acceptable original plans were generated and were improved by the two planning techniques, respectively: (1) a basal-dose-compensation (BDC) technique, in which the treatment plans were re-optimized based on the original plans; (2) a local-dose-control (LDC) technique, in which the original plans were re-optimized with constraints for hot and cold spots. The BDC, original, and LDC plans were then compared regarding homogeneity index (HI) and conformity index (CI) of planning target volumes (PTVs), organ-at-risk (OAR) sparing and monitor units (MUs) per fraction. The whole planning times were also compared between the BDC and LDC plans. Results The BDC plans had superior HIs / CIs, by 13-24% / 3-243%, respectively, over the original plans. Compared to the LDC plans, the BDC plans provided better HIs only for PTVnx (the PTV of nasopharyngeal primary tumor) by 11% and better CIs for all PTVs by 2-134%. The BDC technique spared most OARs, by 1-9%. The average MUs of the BDC, original, and LDC plans were 2149, 2068 and 2179, respectively. The average whole planning times were 48 and 69 minutes for the BDC and LDC plans, respectively. Conclusions For the IMRT of nasopharyngeal cancer, the BDC planning technique can improve target dose homogeneity, conformity and OAR sparing, with better planning efficiency. PMID:26132167

  1. Predictors of Mastoiditis after Intensity-Modulated Radiotherapy in Nasopharyngeal Carcinoma: A Dose-Volume Analysis

    PubMed Central

    Yao, Ji-Jin; Zhou, Guan-Qun; Jin, Ya-Nan; Zhang, Wang-Jian; Lin, Li; Yu, Xiao-Li; Shao, Jian-Yong; Ma, Jun; Sun, Ying

    2016-01-01

    Background: To identify predictors for development of mastoiditis after intensity-modulated radiation therapy (IMRT) in nasopharyngeal carcinoma (NPC). Methods: Data for 146 NPC patients treated with IMRT was retrospectively reviewed under institutional ethics committee approval. Clinical factors associated with mastoiditis were analyzed. Dose-volume histogram analysis was performed for the Eustachian tube, tympanic cavity, mastoid air cells, cochlea, internal auditory canal and vestibular apparatus to relate doses to radiographic changes in the mastoid. Mastoiditis was assessed using magnetic resonance imaging and was classified as Grade 0 (none), 1 (mild), 2 (moderate) or 3 (severe); Grade 3 mastoiditis was the study end-point. Results: Eighty-eight ears (36%) had radiation-induced mastoiditis: 38/244 (15.6%) mastoid complexes had Grade 1-2 mastoiditis and 50/244 (20.5%) mastoid complexes had Grade 3 mastoiditis. Multivariate analysis revealed a mastoid mean dose > 35.93 Gy (odds ratio [OR]=4.22, P=.003), Eustachian tube mean dose > 53.43 Gy (OR=2.16, P=.034) and advanced T category (T3 and T4; OR=10.33, P=.032) were negative prognostic factors for Grade 3 mastoiditis. Conclusions: Radiation-induced mastoiditis remains a common late toxicity in NPC after radiotherapy. The mean dose to the mastoid air cells and Eustachian tube should be limited to reduce the risk of radiation-induced mastoiditis. PMID:26918040

  2. Intensity-Modulated Radiotherapy in Postoperative Treatment of Oral Cavity Cancers

    SciTech Connect

    Gomez, Daniel R. Zhung, Joanne E.; Gomez, Jennifer; Chan, Kelvin; Wu, Abraham J.; Wolden, Suzanne L.; Pfister, David G.; Shaha, Ashok; Shah, Jatin P.; Kraus, Dennis H.; Wong, Richard J.; Lee, Nancy Y.

    2009-03-15

    Purpose: To present our single-institution experience of intensity-modulated radiotherapy (IMRT) for oral cavity cancer. Methods and Materials: Between September 2000 and December 2006, 35 patients with histologically confirmed squamous cell carcinoma of the oral cavity underwent surgery followed by postoperative IMRT. The sites included were buccal mucosa in 8, oral tongue in 11, floor of the mouth in 9, gingiva in 4, hard palate in 2, and retromolar trigone in 1. Most patients had Stage III-IV disease (80%). Ten patients (29%) also received concurrent postoperative chemotherapy with IMRT. The median prescribed radiation dose was 60 Gy. Results: The median follow-up for surviving patients was 28.1 months (range, 11.9-85.1). Treatment failure occurred in 11 cases as follows: local in 4, regional in 2, and distant metastases in 5. Of the 5 patients with distant metastases, 2 presented with dermal metastases. The 2- and 3-year estimates of locoregional progression-free survival, distant metastasis-free survival, disease-free survival, and overall survival were 84% and 77%, 85% and 85%, 70% and 64%, and 74% and 74%, respectively. Acute Grade 2 or greater dermatitis, mucositis, and esophageal reactions were experienced by 54%, 66%, and 40% of the patients, respectively. Documented late complications included trismus (17%) and osteoradionecrosis (5%). Conclusion: IMRT as an adjuvant treatment after surgical resection for oral cavity tumors is feasible and effective, with promising results and acceptable toxicity.

  3. Accuracy of inhomogeneity correction algorithm in intensity-modulated radiotherapy of head-and-neck tumors

    SciTech Connect

    Yoon, Myonggeun; Lee, Doo-Hyun; Shin, Dongho; Lee, Se Byeong; Park, Sung Yong . E-mail: cool_park@ncc.re.kr; Cho, Kwan Ho

    2007-04-01

    We examined the degree of calculated-to-measured dose difference for nasopharyngeal target volume in intensity-modulated radiotherapy (IMRT) based on the observed/expected ratio using patient anatomy with humanoid head-and-neck phantom. The plans were designed with a clinical treatment planning system that uses a measurement-based pencil beam dose-calculation algorithm. Two kinds of IMRT plans, which give a direct indication of the error introduced in routine treatment planning, were categorized and evaluated. The experimental results show that when the beams pass through the oral cavity in anthropomorphic head-and-neck phantom, the average dose difference becomes significant, revealing about 10% dose difference to prescribed dose at isocenter. To investigate both the physical reasons of the dose discrepancy and the inhomogeneity effect, we performed the 10 cases of IMRT quality assurance (QA) with plastic and humanoid phantoms. Our result suggests that the transient electronic disequilibrium with the increased lateral electron range may cause the inaccuracy of dose calculation algorithm, and the effectiveness of the inhomogeneity corrections used in IMRT plans should be evaluated to ensure meaningful quality assurance and delivery.

  4. Risk of second cancer from scattered radiation of intensity-modulated radiotherapies with lung cancer

    PubMed Central

    2013-01-01

    Purpose To compare the risk of secondary cancer from scattered and leakage doses following intensity-modulated radiotherapy (IMRT), volumetric arc therapy (VMAT) and tomotherapy (TOMO) in patients with lung cancer. Methods IMRT, VMAT and TOMO were planned for five lung cancer patients. Organ equivalent doses (OEDs) are estimated from the measured corresponding secondary doses during irradiation at various points 20 to 80 cm from the iso-center by using radio-photoluminescence glass dosimeter (RPLGD). Results The secondary dose per Gy from IMRT, VMAT and TOMO for lung cancer, measured 20 to 80 cm from the iso-center, are 0.02~2.03, 0.03~1.35 and 0.04~0.46 cGy, respectively. The mean values of relative OED of secondary dose of VMAT and TOMO, which is normalized by IMRT, ranged between 88.63% and 41.59% revealing 88.63% and 41.59% for thyroid, 82.33% and 41.85% for pancreas, 77.97% and 49.41% for bowel, 73.42% and 72.55% for rectum, 74.16% and 81.51% for prostate. The secondary dose and OED from TOMO became similar to those from IMRT and VMAT as the distance from the field edge increased. Conclusions OED based estimation suggests that the secondary cancer risk from TOMO is less than or comparable to the risks from conventional IMRT and VMAT. PMID:23452670

  5. Magnetic resonance assessment of prostate localization variability in intensity-modulated radiotherapy for prostate cancer

    SciTech Connect

    Villeirs, Geert M. . E-mail: Geert.Villeirs@ugent.be; Meerleer, Gert O. de; Verstraete, Koenraad L.; Neve, Wilfried J. de

    2004-12-01

    Purpose: To measure prostate motion with magnetic resonance imaging (MRI) during a course of intensity-modulated radiotherapy. Methods and materials: Seven patients with prostate carcinoma were scanned supine on a 1.5-Tesla MRI system with weekly pretreatment and on-treatment HASTE T2-weighted images in 3 orthogonal planes. The bladder and rectal volumes and position of the prostatic midpoint (PMP) and margins relative to the bony pelvis were measured. Results: All pretreatment positions were at the mean position as computed from the on-treatment scans in each patient. The PMP variability (given as 1 SD) in the anterior-posterior (AP), superior-inferior (SI), and right-left (RL) directions was 2.6, 2.4, and 1.0 mm, respectively. The largest variabilities occurred at the posterior (3.2 mm), superior (2.6 mm), and inferior (2.6 mm) margins. A strong correlation was found between large rectal volume (>95th percentile) and anterior PMP displacement. A weak correlation was found between bladder volume and superior PMP displacement. Conclusions: All pretreatment positions were representative of the subsequent on-treatment positions. A clinical target volume (CTV) expansion of 5.3 mm in any direction was sufficient to ascertain a 95% coverage of the CTV within the planning target volume (PTV), provided that a rectal suppository is administered to avoid rectal overdistension and that the patient has a comfortably filled bladder (<300 mL)

  6. Paclitaxel and cisplatin combined with intensity-modulated radiotherapy for upper esophageal carcinoma

    PubMed Central

    2013-01-01

    Purpose This study was conducted to evaluate the effectiveness and safety of intensity-modulated radiotherapy (IMRT) and concurrent paclitaxel plus cisplatin (TP regimen) for upper esophageal carcinoma. Methods 36 patients of upper esophageal carcinoma were retrospectively analyzed. Patients were treated with IMRT (median 60 Gy) combined with concurrent TP regimen chemotherapy. The Kaplan-Meier analysis was performed in statistical analysis. Toxicities were recorded according to the NCI CTC version 3.0. Results 36 patients aged 43–73 years (median 57 years). The median follow-up period was 14.0 months. The 1-year and 2-year survival rates were 83.3% and 42.8% respectively. The median progression-free survival (PFS) time and overall survival (OS) time were 12.0 (95% CI: 7.8–16.2 months) and 18.0 months (95% CI: 9.9–26.1 months), respectively. Grade 3 neutropenia, radiation-induced esophagitis and radiodermatitis were observed in 5 (13.9%), 3 (8.3%) and 8 (22.2%) patients respectively. There were two treatment-related deaths due to esophageal perforation and hemorrhea. Conclusions For those patients with upper esophageal carcinoma, IMRT combined with concurrent TP regimen chemotherapy was an effective treatment. However, more attention should be paid to the occurrence of perforation and hemorrhea. PMID:23531325

  7. Volumetric Modulated Arc Therapy for Spine Radiosurgery: Superior Treatment Planning and Delivery Compared to Static Beam Intensity Modulated Radiotherapy

    PubMed Central

    Zach, Leor; Tsvang, Lev; Alezra, Dror; Ben Ayun, Maoz

    2016-01-01

    Purpose. Spine stereotactic radiosurgery (SRS) delivers an accurate and efficient high radiation dose to vertebral metastases in 1–5 fractions. We aimed to compare volumetric modulated arc therapy (VMAT) to static beam intensity modulated radiotherapy (IMRT) for spine SRS. Methods and Materials. Ten spine lesions of previously treated SRS patients were planned retrospectively using both IMRT and VMAT with a prescribed dose of 16 Gy to 100% of the planning target volume (PTV). The plans were compared for conformity, homogeneity, treatment delivery time, and safety (spinal cord dose). Results. All evaluated parameters favored the VMAT plan over the IMRT plans. Dmin in the IMRT was significantly lower than in the VMAT plan (7.65 Gy/10.88 Gy, p < 0.001), the Dice Similarity Coefficient (DSC) was found to be significantly better for the VMAT plans compared to the IMRT plans (0.77/0.58, resp., p  value < 0.01), and an almost 50% reduction in the net treatment time was calculated for the VMAT compared to the IMRT plans (6.73 min/12.96 min, p < 0.001). Conclusions. In our report, VMAT provides better conformity, homogeneity, and safety profile. The shorter treatment time is a major advantage and not only provides convenience to the painful patient but also contributes to the precision of this high dose radiation therapy. PMID:26885513

  8. Flattening Filter-Free Beams in Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy for Sinonasal Cancer

    PubMed Central

    Huang, Bao-Tian

    2016-01-01

    Purpose To evaluate the dosimetric impacts of flattening filter-free (FFF) beams in intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) for sinonasal cancer. Methods For fourteen cases, IMRT and VMAT planning was performed using 6-MV photon beams with both conventional flattened and FFF modes. The four types of plans were compared in terms of target dose homogeneity and conformity, organ-at-risk (OAR) sparing, number of monitor units (MUs) per fraction, treatment time and pure beam-on time. Results FFF beams led to comparable target dose homogeneity, conformity, increased number of MUs and lower doses to the spinal cord, brainstem and normal tissue, compared with flattened beams in both IMRT and VMAT. FFF beams in IMRT resulted in improvements by up to 5.4% for sparing of the contralateral optic structures, with shortened treatment time by 9.5%. However, FFF beams provided comparable overall OAR sparing and treatment time in VMAT. With FFF mode, VMAT yielded inferior homogeneity and superior conformity compared with IMRT, with comparable overall OAR sparing and significantly shorter treatment time. Conclusions Using FFF beams in IMRT and VMAT is feasible for the treatment of sinonasal cancer. Our results suggest that the delivery mode of FFF beams may play an encouraging role with better sparing of contralateral optic OARs and treatment efficiency in IMRT, but yield comparable results in VMAT. PMID:26734731

  9. Intensity-Modulated vs. Conformal Radiotherapy of Parotid Gland Tumors: Potential Impact on Hearing Loss

    SciTech Connect

    Lamers-Kuijper, E. Schwarz, M.; Rasch, C.; Mijnheer, B.

    2007-01-01

    In 3-dimensional (3D) conformal radiotherapy of parotid gland tumors, little effort is made to avoid the auditory system or the oral cavity. Damage may occur when the ear is located inside the treatment field. The purpose of this study was to design and evaluate an intensity-modulation radiotherapy (IMRT) class solution, and to compare this technique to a 3D conformal approach with respect to hearing loss. Twenty patients with parotid gland cancer were retrospectively planned with 2 different techniques using the original planning target volume (PTV). First, a conventional technique using a wedged beam pair was applied, yielding a dose distribution conformal to the shape of the PTV. Next, an IMRT technique using a fluence map optimization with predefined constraints was designed. A dose of 66 Gy in the PTV was given at the International Commission on Radiation Units and Measures (ICRU) dose prescription point. Dose-volume histograms of the PTV and organs at risk (OARs), such as auditory system, oral cavity, and spinal cord, were compared. The dose in the OARs was lower in the IMRT plans. The mean volume of the middle ear receiving a dose higher than 50 Gy decreased from 66.5% to 33.4%. The mean dose in the oral cavity decreased from 19.4 Gy to 16.6 Gy. The auditory system can be spared if the distance between the inner ear and the PTV is 0.6 cm or larger, and if the overlap between the middle ear and the PTV is smaller than 10%. The maximum dose in the spinal cord was below 40 Gy in all treatment plans. The mean volume of the PTV receiving less than 95% of the prescribed dose increased in the IMRT plan slightly from 3.3% to 4.3 % (p = 0.01). The mean volume receiving more than 107% increased from 0.9% to 2.5% (p = 0.02). It can be concluded that the auditory system, as well as the oral cavity, can be spared with IMRT, but at the cost of a slightly larger dose inhomogeneity in the PTV. The IMRT technique can therefore, in most cases, be recommended as the treatment

  10. Temporary organ displacement coupled with image-guided, intensity-modulated radiotherapy for paraspinal tumors

    PubMed Central

    2013-01-01

    Background To investigate the feasibility and dosimetric improvements of a novel technique to temporarily displace critical structures in the pelvis and abdomen from tumor during high-dose radiotherapy. Methods Between 2010 and 2012, 11 patients received high-dose image-guided intensity-modulated radiotherapy with temporary organ displacement (TOD) at our institution. In all cases, imaging revealed tumor abutting critical structures. An all-purpose drainage catheter was introduced between the gross tumor volume (GTV) and critical organs at risk (OAR) and infused with normal saline (NS) containing 5-10% iohexol. Radiation planning was performed with the displaced OARs and positional reproducibility was confirmed with cone-beam CT (CBCT). Patients were treated within 36 hours of catheter placement. Radiation plans were re-optimized using pre-TOD OARs to the same prescription and dosimetrically compared with post-TOD plans. A two-tailed permutation test was performed on each dosimetric measure. Results The bowel/rectum was displaced in six patients and kidney in four patients. One patient was excluded due to poor visualization of the OAR; thus 10 patients were analyzed. A mean of 229 ml (range, 80–1000) of NS 5-10% iohexol infusion resulted in OAR mean displacement of 17.5 mm (range, 7–32). The median dose prescribed was 2400 cGy in one fraction (range, 2100–3000 in 3 fractions). The mean GTV Dmin and PTV Dmin pre- and post-bowel TOD IG-IMRT dosimetry significantly increased from 1473 cGy to 2086 cGy (p=0.015) and 714 cGy to 1214 cGy (p=0.021), respectively. TOD increased mean PTV D95 by 27.14% of prescription (p=0.014) while the PTV D05 decreased by 9.2% (p=0.011). TOD of the bowel resulted in a 39% decrease in mean bowel Dmax (p=0.008) confirmed by CBCT. TOD of the kidney significantly decreased mean kidney dose and Dmax by 25% (0.022). Conclusions TOD was well tolerated, reproducible, and facilitated dose escalation to previously radioresistant tumors

  11. Simultaneous Integrated Boost Using Intensity-Modulated Radiotherapy Compared With Conventional Radiotherapy in Patients Treated With Concurrent Carboplatin and 5-Fluorouracil for Locally Advanced Oropharyngeal Carcinoma

    SciTech Connect

    Clavel, Sebastien; Nguyen, David H.A.; Fortin, Bernard; Despres, Philippe; Khaouam, Nader; Donath, David; Soulieres, Denis; Guertin, Louis; Nguyen-Tan, Phuc Felix

    2012-02-01

    Purpose: To compare, in a retrospective study, the toxicity and efficacy of simultaneous integrated boost using intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) in patients treated with concomitant carboplatin and 5-fluorouracil for locally advanced oropharyngeal cancer. Methods and Materials: Between January 2000 and December 2007, 249 patients were treated with definitive chemoradiation. One hundred patients had 70 Gy in 33 fractions using IMRT, and 149 received CRT at 70 Gy in 35 fractions. Overall survival, disease-free survival, and locoregional control were estimated using the Kaplan-Meier method. Results: Median follow-up was 42 months. Three-year actuarial rates for locoregional control, disease-free survival, and overall survival were 95.1% vs. 84.4% (p = 0.005), 85.3% vs. 69.3% (p = 0.001), and 92.1% vs. 75.2% (p < 0.001) for IMRT and CRT, respectively. The benefit of the radiotherapy regimen on outcomes was also observed with a Cox multivariate analysis. Intensity-modulated radiotherapy was associated with less acute dermatitis and less xerostomia at 6, 12, 24, and 36 months. Conclusions: This study suggests that simultaneous integrated boost using IMRT is associated with favorable locoregional control and survival rates with less xerostomia and acute dermatitis than CRT when both are given concurrently with chemotherapy.

  12. Planning With Intensity-Modulated Radiotherapy and Tomotherapy to Modulate Dose Across Breast to Reflect Recurrence Risk (IMPORT High Trial)

    SciTech Connect

    Donovan, Ellen M.; Ciurlionis, Laura; Fairfoul, Jamie; James, Hayley; Mayles, Helen; Manktelow, Sophie; Raj, Sanjay; Tsang, Yat; Tywman, Nicola; Yarnold, John; Coles, Charlotte

    2011-03-15

    Purpose: To establish planning solutions for a concomitant three-level radiation dose distribution to the breast using linear accelerator- or tomotherapy-based intensity-modulated radiotherapy (IMRT), for the U.K. Intensity Modulated and Partial Organ (IMPORT) High trial. Methods and Materials: Computed tomography data sets for 9 patients undergoing breast conservation surgery with implanted tumor bed gold markers were used to prepare three-level dose distributions encompassing the whole breast (36 Gy), partial breast (40 Gy), and tumor bed boost (48 or 53 Gy) treated concomitantly in 15 fractions within 3 weeks. Forward and inverse planned IMRT and tomotherapy were investigated as solutions. A standard electron field was compared with a photon field arrangement encompassing the tumor bed boost volume. The out-of-field doses were measured for all methods. Results: Dose-volume constraints of volume >90% receiving 32.4 Gy and volume >95% receiving 50.4 Gy for the whole breast and tumor bed were achieved. The constraint of volume >90% receiving 36 Gy for the partial breast was fulfilled in the inverse IMRT and tomotherapy plans and in 7 of 9 cases of a forward planned IMRT distribution. An electron boost to the tumor bed was inadequate in 8 of 9 cases. The IMRT methods delivered a greater whole body dose than the standard breast tangents. A contralateral lung volume >2.5 Gy was increased in the inverse IMRT and tomotherapy plans, although it did not exceed the constraint. Conclusion: We have demonstrated a set of widely applicable solutions that fulfilled the stringent clinical trial requirements for the delivery of a concomitant three-level dose distribution to the breast.

  13. Intensity modulated radiotherapy in early stage Hodgkin lymphoma patients: Is it better than three dimensional conformal radiotherapy?

    PubMed Central

    2012-01-01

    Background Cure rate of early Hodgkin Lymphoma are high and avoidance of late toxicities is of paramount importance. This comparative study aims to assess the normal tissue sparing capability of intensity-modulated radiation therapy (IMRT) versus standard three-dimensional conformal radiotherapy (3D-CRT) in terms of dose-volume parameters and normal tissue complication probability (NTCP) for different organs at risk in supradiaphragmatic Hodgkin Lymphoma (HL) patients. Methods Ten HL patients were actually treated with 3D-CRT and all treatments were then re-planned with IMRT. Dose-volume parameters for thyroid, oesophagus, heart, coronary arteries, lung, spinal cord and breast were evaluated. Dose-volume histograms generated by TPS were analyzed to predict the NTCP for the considered organs at risk, according to different endpoints. Results Regarding dose-volume parameters no statistically significant differences were recorded for heart and origin of coronary arteries. We recorded statistically significant lower V30 with IMRT for oesophagus (6.42 vs 0.33, p = 0.02) and lungs (4.7 vs 0.1 p = 0.014 for the left lung and 2.59 vs 0.1 p = 0.017 for the right lung) and lower V20 for spinal cord (17.8 vs 7.2 p = 0.02). Moreover the maximum dose to the spinal cord was lower with IMRT (30.2 vs 19.9, p <0.001). Higher V10 with IMRT for thyroid (64.8 vs 95, p = 0.0019) and V5 for lungs (30.3 vs 44.8, p = 0.03, for right lung and 28.9 vs 48.1, p = 0.001 for left lung) were found, respectively. Higher V5 and V10 for breasts were found with IMRT (V5: 4.14 vs 20.6, p = 0.018 for left breast and 3.3 vs 17, p = 0.059 for right breast; V10: 2.5 vs 13.6 p = 0.035 for left breast and 1.7 vs 11, p = 0.07 for the right breast.) As for the NTCP, our data point out that IMRT is not always likely to significantly increase the NTCP to OARs. Conclusions In HL male patients IMRT seems feasible and accurate while for women HL patients IMRT should be

  14. Intensity-Modulated Radiotherapy in the Treatment of Oropharyngeal Cancer: Clinical Outcomes and Patterns of Failure

    SciTech Connect

    Daly, Megan E.; Le, Quynh-Thu; Maxim, Peter G.; Loo, Billy W.; Kaplan, Michael J.; Fischbein, Nancy J.; Pinto, Harlan; Chang, Daniel T.

    2010-04-15

    Purpose: To report outcomes, failures, and toxicities in patients treated with intensity-modulated radiotherapy (IMRT) for squamous cell carcinoma of the oropharynx. Methods And Materials: Between Aug 2001 and Oct 2007, 107 patients were treated with IMRT with curative intent at Stanford University. Twenty-two patients were treated postoperatively, and 85 were treated definitively. Concurrent platinum-based chemotherapy was administered to 86 patients (80%) and cetuximab to 8 patients (7%). The prescribed dose was 66 Gy at 2.2 Gy/fraction for definitively treated cases and 60 Gy at 2 Gy/fraction for postoperative cases. Median follow-up was 29 months among surviving patients (range, 4-105 months). Results: Eight patients had persistent disease or local-regional failure at a median of 6.5 months (range, 0-9.9 months). Six local failures occurred entirely within the high-risk clinical target volume (CTV) (one with simultaneous distant metastasis). One patient relapsed within the high- and intermediate-risk CTV. One patient had a recurrence at the junction between the IMRT and low-neck fields. Seven patients developed distant metastasis as the first site of failure. The 3-year local-regional control (LRC), freedom from distant metastasis, overall survival, and disease-free survival rates were 92%, 92%, 83%, and 81%, respectively. T stage (T4 vs. T1-T3) was predictive of poorer LRC (p = 0.001), overall survival (p = 0.001), and disease-free survival (p < 0.001) rates. Acute toxicity consisted of 58% grade 3 mucosal and 5% grade 3 skin reactions. Six patients (6%) developed grade >=3 late complications. Conclusions: IMRT provides excellent LRC for oropharyngeal squamous cell carcinoma. Distant metastases are a major failure pattern. No marginal failures were observed.

  15. Prognostic Value of Prevertebral Space Involvement in Nasopharyngeal Carcinoma Based on Intensity-Modulated Radiotherapy

    SciTech Connect

    Zhou Guanqun; Mao YanPing; Chen Lei; Li Wenfei; Liu Lizhi; Sun Ying; Chen Yong; Tian Li; Lin Aihua; Li Li; and others

    2012-03-01

    Purpose: To investigate the prognostic significance of prevertebral space involvement (PSI) in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: A retrospective review of data from 506 biopsy-proven, nonmetastatic NPCs was performed. Patients underwent magnetic resonance imaging examinations and received IMRT as their primary treatment. Results: In this series, 161 NPC patients (31.8%) had PSI. Parapharyngeal space (p < 0.001), skull base (p < 0.001), and paranasal sinuses (p = 0.009) were associated with PSI after multivariate analysis. The 4-year overall survival (OS), local relapse-free survival (LRFS), distant metastasis-free survival (DMFS) for NPC patients with and without PSI was 69.1% and 89.2% (p < 0.0001), 83.9% and 96.4% (p < 0.0001), and 71.6% and 89.6% (p < 0.0001), respectively. Multivariate analysis identified PSI as an independent negative prognostic factor for both OS (HR = 1.478-4.380; p = 0.001) and DMFS (HR = 1.389-4.174; p = 0.002). Patients with PSI had similar survival rates in OS and DMFS (p = 0.241 and p = 0.493, respectively) to that of T4 disease, while the differences between PSI and T3 disease in both OS and DMFS were distinctly significant (p = 0.029 and p = 0.029, respectively). Conclusions: For NPC patients treated with IMRT, PSI was found to be an independent prognostic factor for both OS and DMFS. It seems reasonable that PSI should be classified as a T4 disease on the basis of the current American Joint Committee on Cancer staging classification criteria.

  16. Carotid sparing intensity modulated radiotherapy on early glottic cancer: preliminary study

    PubMed Central

    Choi, Hoon Sik; Jeong, Bae Kwon; Jeong, Hojin; Song, Jin Ho; Kim, Jin Pyeong; Park, Jung Je; Woo, Seung Hoon

    2016-01-01

    Purpose To compare the dose distribution between carotid sparing intensity modulated radiotherapy (IMRT) and opposed lateral field technique (LAFT), and to determine the effects of carotid sparing IMRT in early glottic cancer patients who have risk factors for atherosclerosis. Materials and Methods Ten early glottic cancer patients were treated with carotid sparing IMRT. For each patient, the conventional LAFT plan was developed for comparison. IMRT and LAFT plans were compared in terms of planning target volume (PTV) coverage, conformity index, homogeneity index, and the doses to planning organ at risk volume (PRV) for carotid arteries, spinal cord and pharyngeal constrictor muscle. Results Recurrence was not observed in any patients during the follow-up period. V95% for PTV showed no significant difference between IMRT and LAFT plans, while V100% was significantly higher in the IMRT plan (95.5% vs. 94.6%, p = 0.005). The homogeneity index (11.6%) and conformity index (1.4) in the IMRT plan were significantly better than those in the LAFT plans (8.5% and 5.1, respectively) (p = 0.005). The median V5Gy (90.0%), V25Gy (13.5%), and V50Gy (0%) for carotid artery PRV in the IMRT plan were significantly lower than those in the LAFT plan (99.1%, 89.0%, and 77.3%, respectively) (p = 0.005). Conclusion Our study suggests that carotid sparing IMRT can significantly decrease the dose to carotid arteries compared to LAFT, and it would be considered for early glottic cancer patient with high risk of atherosclerosis. PMID:27104164

  17. Outcomes After Intensity-Modulated Versus Conformal Radiotherapy in Older Men With Nonmetastatic Prostate Cancer

    SciTech Connect

    Bekelman, Justin E.; Mitra, Nandita; Efstathiou, Jason; Liao Kaijun; Sunderland, Robert; Yeboa, Deborah N.; Armstrong, Katrina

    2011-11-15

    Purpose: There is little evidence comparing complications after intensity-modulated (IMRT) vs. three-dimensional conformal radiotherapy (CRT) for prostate cancer. The study objective was to test the hypothesis that IMRT, compared with CRT, is associated with a reduction in bowel, urinary, and erectile complications in elderly men with nonmetastatic prostate cancer. Methods and Materials: We undertook an observational cohort study using registry and administrative claims data from the SEER-Medicare database. We identified men aged 65 years or older diagnosed with nonmetastatic prostate cancer in the United States between 2002 and 2004 who received IMRT (n = 5,845) or CRT (n = 6,753). The primary outcome was a composite measure of bowel complications. Secondary outcomes were composite measures of urinary and erectile complications. We also examined specific subsets of bowel (proctitis/hemorrhage) and urinary (cystitis/hematuria) events within the composite complication measures. Results: IMRT was associated with reductions in composite bowel complications (24-month cumulative incidence 18.8% vs. 22.5%; hazard ratio [HR] 0.86; 95% confidence interval [CI], 0.79-0.93) and proctitis/hemorrhage (HR 0.78; 95% CI, 0.64-0.95). IMRT was not associated with rates of composite urinary complications (HR 0.93; 95% CI, 0.83-1.04) or cystitis/hematuria (HR 0.94; 95% CI, 0.83-1.07). The incidence of erectile complications involving invasive procedures was low and did not differ significantly between groups, although IMRT was associated with an increase in new diagnoses of impotence (HR 1.27, 95% CI, 1.14-1.42). Conclusion: IMRT is associated with a small reduction in composite bowel complications and proctitis/hemorrhage compared with CRT in elderly men with nonmetastatic prostate cancer.

  18. Regional Relapse After Intensity-Modulated Radiotherapy for Head-and-Neck Cancer

    SciTech Connect

    Duprez, Frederic; Bonte, Katrien; De Neve, Wilfried; Boterberg, Tom; De Gersem, Werner; Madani, Indira

    2011-02-01

    Purpose: To evaluate the regional relapse rate in the elective neck using intensity-modulated radiotherapy (IMRT) for head-and-neck cancer. Methods and Materials: We retrospectively analyzed the data from 285 patients treated with IMRT between 2000 and 2008. The median dose prescription to the primary tumor and involved lymph nodes was 69 Gy in 32 fractions. The elective neck was treated simultaneously according to Protocol 1 (multiple dose prescription levels of 56-69 Gy; 2-Gy normalized isoeffective dose, 51-70 Gy; 222 patients) or Protocol 2 (one dose prescription level of 56 Gy; 2-Gy normalized isoeffective dose, 51 Gy; 63 patients). Primary surgery or lymph node dissection was performed before IMRT in 72 (25%) and 157 (55%) patients, respectively. Also, 92 patients (32%) received concomitant chemotherapy. The median follow-up of living patients was 27.4 months (range, 0.3-99). Results: Regional, local, and distant relapse were observed in 16 (5.6%), 35 (12.3%), and 47 (16.5%) patients, respectively. The 2- and 5-year rate of regional relapse was 7% and 10%, respectively, with a trend favoring Protocol 2 (p = 0.06). Seven isolated regional relapses were detected at a median follow-up of 7.3 months in patients treated with Protocol 1 and none in those treated with Protocol 2. Percutaneous gastrostomy was required more frequently in patients who received Protocol 1 (p = 0.079). Conclusion: Isolated regional relapse is rare after IMRT for head-and-neck cancer. Elective neck node doses >51 Gy for a 2-Gy normalized isoeffective dose do not seem to improve regional control.

  19. Helical Tomotherapy of Nasopharyngeal Carcinoma-Any Advantages Over Conventional Intensity-Modulated Radiotherapy?

    SciTech Connect

    Wu, W.C. Vincent Mui, Wing-lun A.; Fung, Wing-ki W.

    2010-07-01

    Helical tomotherapy uses different planning algorithm and dose delivery method from the linear accelerator (linac)-based intensity-modulated radiotherapy (IMRT). This study compared the dosimetric outcomes between the tomotherapy plans and conventional linac-based IMRT plans in the treatment of nasopharyngeal carcinoma (NPC). Fifteen stage II-III cancer (American Joint Committee on Cancer) NPC patients treated by tomotherapy were conveniently recruited. Apart from the tomotherapy plans, a 7-field 6-MV photon conventional IMRT plan was computed for each patient with the same CT dataset and reference from the dose constraints and target dose prescriptions of the tomotherapy plans using the XiO treatment planning system. Average values of the dose parameters including the conformity index (CI), homogeneity index (HI), maximum and minimum doses of the target volumes, and the maximum and mean doses of the organs at risk (OAR) were compared between the two treatment methods. Better dose coverage of the planning target volume (PTV) was demonstrated in the tomotherapy plans, in which the differences in the maximum and mean doses reached statistical significance (p < 0.05). Besides, the CI of the tomotherapy plans were significantly higher than the conventional linac-based plans for the nasopharynx PTV (NP-PTV) and neck lymphatics PTV (LN-PTV) (p = 0.017 and 0.010, respectively). The HI was significantly smaller in both NP-PTV and LN-PTV (p = 0.024 and < 0.001, respectively). Among the OAR, the brain stem and spinal cord doses in the tomotherapy plans were lower than that of the conventional IMRT plans. However, the doses to the other OAR did not show significant dosimetric differences. In the treatment of nasopharyngeal carcinoma, tomotherapy plans were superior to the 7-field conventional IMRT plans in PTV dose conformity and homogeneity and the sparing of the brain stem and spinal cord. However, no significant advantages were observed for the rest of the OAR.

  20. Concurrent Chemotherapy and Intensity-Modulated Radiotherapy for Locoregionally Advanced Laryngeal and Hypopharyngeal Cancers

    SciTech Connect

    Lee, Nancy Y. O'Meara, William; Chan, Kelvin; Della-Bianca, Cesar; Mechalakos, James G.; Zhung, Joanne; Wolden, Suzanne L.; Narayana, Ashwatha; Kraus, Dennis; Shah, Jatin P.; Pfister, David G.

    2007-10-01

    Purpose: To perform a retrospective review of laryngeal/hypopharyngeal carcinomas treated with concurrent chemotherapy and intensity-modulated radiotherapy (IMRT). Methods and Materials: Between January 2002 and June 2005, 20 laryngeal and 11 hypopharyngeal carcinoma patients underwent IMRT with concurrent platinum-based chemotherapy; most patients had Stage IV disease. The prescription of the planning target volume for gross, high-risk, and low-risk subclinical disease was 70, 59.4, and 54 Gy, respectively. Acute/late toxicities were retrospectively scored using the Common Toxicity Criteria scale. The 2-year local progression-free, regional progression-free, laryngectomy-free, distant metastasis-free, and overall survival rates were calculated using the Kaplan-Meier method. Results: The median follow-up of the living patients was 26 months (range, 17-58 months). The 2-year local progression-free, regional progression-free, laryngectomy-free, distant metastasis-free, and overall survival rate was 86%, 94%, 89%, 92%, and 63%, respectively. Grade 2 mucositis or higher occurred in 48% of patients, and all experienced Grade 2 or higher pharyngitis during treatment. Xerostomia continued to decrease over time from the end of RT, with none complaining of Grade 2 toxicity at this analysis. The 2-year post-treatment percutaneous endoscopic gastrostomy-dependency rate for those with hypopharyngeal and laryngeal tumors was 31% and 15%, respectively. The most severe late complications were laryngeal necrosis, necrotizing fascitis, and a carotid rupture resulting in death 3 weeks after salvage laryngectomy. Conclusion: These preliminary results have shown that IMRT achieved encouraging locoregional control of locoregionally advanced laryngeal and hypopharyngeal carcinomas. Xerostomia improved over time. Pharyngoesophageal stricture with percutaneous endoscopic gastrostomy dependency remains a problem, particularly for patients with hypopharyngeal carcinoma and, to a lesser

  1. Percutaneous Endoscopic Gastrostomy in Oropharyngeal Cancer Patients Treated With Intensity-Modulated Radiotherapy With Concurrent Chemotherapy

    PubMed Central

    Romesser, Paul B.; Romanyshyn, Jonathan C.; Schupak, Karen D.; Setton, Jeremy; Riaz, Nadeem; Wolden, Suzanne L.; Gelblum, Daphna Y.; Sherman, Eric J.; Kraus, Dennis; Lee, Nancy Y.

    2016-01-01

    BACKGROUND The clinical benefit of routine placement of prophylactic percutaneous endoscopic gastrostomy (pPEG) tubes was assessed in patients with oropharyngeal cancer (OPC) who are undergoing intensity-modulated radiotherapy (IMRT) with concurrent chemotherapy. METHODS From 1998 through 2009, 400 consecutive patients with OPC who underwent chemoradiation were included. Of these, 325 had a pPEG and 75 did not (nPEG). Weight and albumin change from baseline to mid-IMRT, end of IMRT, 1 month post-IMRT, and 3 months post-IMRT were evaluated. The treating physicians prospectively recorded acute and late toxicities. RESULTS Significantly lower absolute weight loss at end of IMRT (6.80 kg vs 8.38 kg, P = .007), 1 month post-IMRT (9.06 kg vs 11.33 kg, P = .006), and 3 months post-IMRT (11.10 kg vs 13.09 kg, P = .044) was noted in the pPEG versus nPEG groups. This benefit in reduction of percent weight loss was consistently significant only among patients with BMI < 25. Significant differences were noted in hospital admission rate (15.1% vs 26.7%, P = .026) and volume of nonchemotherapy hydration (8.9 liters vs 17.2 liters, P = .004). There were no differences in percent albumin change, acute dysphagia, acute mucositis, acute xerostomia, chronic dysphagia, radiation treatment duration, and overall survival. Multivariate analysis noted age >55 years (P < .001), female sex (P < .001), and T3/4 category disease (P < .001) were significantly associated with prolonged PEG use. CONCLUSIONS Although pPEG reduced absolute and percent weight loss and need for hospitalizations in our cohort of patients with OPC undergoing chemoradiation, no differences were noted in radiation treatment duration, toxicity, and overall survival. Prolonged PEG use correlated with age >55 years, female sex, and T3/T4 tumors. PMID:22707358

  2. Automated Weekly Replanning for Intensity-Modulated Radiotherapy of Cervix Cancer

    SciTech Connect

    Stewart, James

    2010-10-01

    Purpose: The adoption of intensity-modulated radiotherapy (IMRT) to treat cervical malignancies has been limited in part by complex organ and tumor motion during treatment. This study explores the limits of a highly adaptive, small-margin treatment scenario to accommodate this motion. In addition, the dosimetric consequences of organ and tumor motion are modeled using a combination of deformable registration and fractional dose accumulation techniques. Methods and Materials: Thirty-three cervix cancer patients had target volumes and organs-at-risk contoured on fused, pretreatment magnetic resonance-computed tomography images and weekly magnetic resonance scans taken during treatment. The dosimetric impact of interfraction organ and target motion was compared for two hypothetical treatment scenarios: a 3-mm margin plan with no replanning, and a 3-mm margin plan with an automated replan performed on the updated weekly patient geometry. Results: Of the 33 patients, 24 (73%) met clinically acceptable target coverage (98% of the clinical target volume receiving at least 95% of the prescription dose) using the 3-mm margin plan without replanning. The range in dose to 98% of the clinical target volume across all patients was 7.9% of the prescription dose if no replanning was performed. After weekly replanning, this range was tightened to 2.6% of the prescription dose and all patients met clinically acceptable target coverage while maintaining organ-at-risk dose sparing. Conclusions: The dosimetric impact of anatomical motion underscores the challenges of applying IMRT to treat cervix cancer. An appropriate adaptive strategy can ensure target coverage for small-margin IMRT treatments and maintain favorable organ-at-risk dose sparing.

  3. Automated Planning of Tangential Breast Intensity-Modulated Radiotherapy Using Heuristic Optimization

    SciTech Connect

    Purdie, Thomas G.; Dinniwell, Robert E.; Letourneau, Daniel; Hill, Christine; Sharpe, Michael B.

    2011-10-01

    Purpose: To present an automated technique for two-field tangential breast intensity-modulated radiotherapy (IMRT) treatment planning. Method and Materials: A total of 158 planned patients with Stage 0, I, and II breast cancer treated using whole-breast IMRT were retrospectively replanned using automated treatment planning tools. The tools developed are integrated into the existing clinical treatment planning system (Pinnacle{sup 3}) and are designed to perform the manual volume delineation, beam placement, and IMRT treatment planning steps carried out by the treatment planning radiation therapist. The automated algorithm, using only the radio-opaque markers placed at CT simulation as inputs, optimizes the tangential beam parameters to geometrically minimize the amount of lung and heart treated while covering the whole-breast volume. The IMRT parameters are optimized according to the automatically delineated whole-breast volume. Results: The mean time to generate a complete treatment plan was 6 min, 50 s {+-} 1 min 12 s. For the automated plans, 157 of 158 plans (99%) were deemed clinically acceptable, and 138 of 158 plans (87%) were deemed clinically improved or equal to the corresponding clinical plan when reviewed in a randomized, double-blinded study by one experienced breast radiation oncologist. In addition, overall the automated plans were dosimetrically equivalent to the clinical plans when scored for target coverage and lung and heart doses. Conclusion: We have developed robust and efficient automated tools for fully inversed planned tangential breast IMRT planning that can be readily integrated into clinical practice. The tools produce clinically acceptable plans using only the common anatomic landmarks from the CT simulation process as an input. We anticipate the tools will improve patient access to high-quality IMRT treatment by simplifying the planning process and will reduce the effort and cost of incorporating more advanced planning into clinical

  4. Changes Mimicking New Leptomeningeal Disease After Intensity-Modulated Radiotherapy for Medulloblastoma

    SciTech Connect

    Muscal, Jodi A.; Jones, Jeremy Y.; Paulino, Arnold C.; Bertuch, Alison A.; Su, Jack; Woo, Shiao Y.; Mahoney, Donald H.; Chintagumpala, Murali

    2009-01-01

    Purpose: Acute and late changes in magnetic resonance imaging of the pediatric brain have been described after radiotherapy (RT). We report the post-RT neuroimaging changes in the posterior fossa after intensity-modulated RT (IMRT) in children with medulloblastoma and contrast them with those of leptomeningeal disease. Methods and Materials: We performed a retrospective review of 53 consecutive children with medulloblastoma who were treated with craniospinal RT followed by IMRT to the posterior fossa and chemotherapy between 1997 and 2006. Results: After IMRT to the posterior fossa, 8 (15%) of 53 patients developed increased fluid-attenuated inversion-recovery signal changes in the brainstem or cerebellum and patchy, multifocal, nodular contrast enhancement at a median of 6 months. The enhancement superficially resembled leptomeningeal disease. However, the enhancement resolved without intervention at a median of 6 months later. The accompanying fluid-attenuated inversion-recovery signal changes occasionally preceded the enhancement, were often parenchymal in location, and resolved or persisted to a lesser degree. All 8 patients with transient magnetic resonance imaging changes in the posterior fossa were alive at last follow-up. In contrast, leptomeningeal disease occurred in 8 (15%) of our 53 patients at a median of 19.5 months after IMRT completion. Of these 8 patients, 7 demonstrated initial nodular enhancement outside the conformal field, and 7 patients died. Conclusion: Magnetic resonance imaging changes can occur in the posterior fossa of children treated with IMRT for medulloblastoma. In our experience, these transient changes occur at a characteristic time and location after RT, allowing them to be distinguished from leptomeningeal disease.

  5. Simultaneous Integrated Boost Intensity-Modulated Radiotherapy in Patients With High-Grade Gliomas

    SciTech Connect

    Cho, Kwan Ho; Kim, Joo-Young; Lee, Seung Hoon

    2010-10-01

    Purpose: We analyzed outcomes of simultaneous integrated boost (SIB) intensity-modulated radiotherapy (IMRT) in patients with high-grade gliomas, compared with a literature review. Methods and Materials: Forty consecutive patients (WHO grade III, 14 patients; grade IV, 26 patients) treated with SIB-IMRT were analyzed. A dose of 2.0 Gy was delivered to the planning target volume with a SIB of 0.4 Gy to the gross tumor volume with a total dose of 60 Gy to the gross tumor volume and 50 Gy to the planning target volume in 25 fractions during 5 weeks. Twenty patients received temozolomide chemotherapy. Results: At a median follow-up of 13.4 months (range, 3.7-55.9 months), median survival was 14.8 months. One- and 2-year survival rates were 78% and 65%, respectively, for patients with grade III tumors and 56% and 31%, respectively, for patients with grade IV tumors. Age ({<=}50 vs. >50), grade (III vs. IV), subtype (astrocytoma vs. oligodendroglioma or mixed), and a Zubrod performance score (0-1 vs. >2) were predictive of survival. Of 25 (63%) patients who had recurrences, 17 patients had local failure, 9 patients had regional failure, and 1 patient had distant metastasis. Toxicities were acceptable. Conclusions: SIB-IMRT with the dose/fractionation used in this study is feasible and safe, with a survival outcome similar to the historical control. The shortening of treatment time by using SIB-IMRT may be of value, although further investigation is warranted to prove its survival advantage.

  6. OUTCOMES AFTER INTENSITY-MODULATED VERSUS CONFORMAL RADIOTHERAPY IN OLDER MEN WITH NONMETASTATIC PROSTATE CANCER

    PubMed Central

    Bekelman, Justin E.; Mitra, Nandita; Efstathiou, Jason; Liao, Kaijun; Sunderland, Robert; Yeboa, Deborah N.; Armstrong, Katrina

    2013-01-01

    Purpose There is little evidence comparing complications after intensity-modulated (IMRT) vs. three-dimensional conformal radiotherapy (CRT) for prostate cancer. The study objective was to test the hypothesis that IMRT, compared with CRT, is associated with a reduction in bowel, urinary, and erectile complications in elderly men with nonmetastatic prostate cancer. Methods and Materials We undertook an observational cohort study using registry and administrative claims data from the SEER-Medicare database. We identified men aged 65 years or older diagnosed with nonmetastatic prostate cancer in the United States between 2002 and 2004 who received IMRT (n = 5,845) or CRT (n = 6,753). The primary outcome was a composite measure of bowel complications. Secondary outcomes were composite measures of urinary and erectile complications. We also examined specific subsets of bowel (proctitis/hemorrhage) and urinary (cystitis/hematuria) events within the composite complication measures. Results IMRT was associated with reductions in composite bowel complications (24-month cumulative incidence 18.8% vs. 22.5%; hazard ratio [HR] 0.86; 95% confidence interval [CI], 0.79–0.93) and proctitis/hemorrhage (HR 0.78; 95% CI, 0.64–0.95). IMRT was not associated with rates of composite urinary complications (HR 0.93; 95% CI, 0.83–1.04) or cystitis/hematuria (HR 0.94; 95% CI, 0.83–1.07). The incidence of erectile complications involving invasive procedures was low and did not differ significantly between groups, although IMRT was associated with an increase in new diagnoses of impotence (HR 1.27, 95% CI, 1.14–1.42). Conclusion IMRT is associated with a small reduction in composite bowel complications and proctitis/hemorrhage compared with CRT in elderly men with nonmetastatic prostate cancer. PMID:21498008

  7. Intensity-Modulated Radiotherapy for Sinonasal Tumors: Ghent University Hospital Update

    SciTech Connect

    Madani, Indira Bonte, Katrien; Vakaet, Luc; Boterberg, Tom; Neve, Wilfried de

    2009-02-01

    Purpose: To report the long-term outcome of intensity-modulated radiotherapy (IMRT) for sinonasal tumors. Methods and Materials: Between July 1998 and November 2006, 84 patients with sinonasal tumors were treated with IMRT to a median dose of 70 Gy in 35 fractions. Of the 84 patients, 73 had a primary tumor and 11 had local recurrence. The tumor histologic type was adenocarcinoma in 54, squamous cell carcinoma in 17, esthesioneuroblastoma in 9, and adenoid cystic carcinoma in 4. The tumors were located in the ethmoid sinus in 47, maxillary sinus in 19, nasal cavity in 16, and multiple sites in 2. Postoperative IMRT was performed in 75 patients and 9 patients received primary IMRT. Results: The median follow-up of living patients was 40 months (range, 8-106). The 5-year local control, overall survival, disease-specific survival, disease-free survival, and freedom from distant metastasis rate was 70.7%, 58.5%, 67%, 59.3%, and 82.2%, respectively. No difference was found in local control and survival between patients with primary or recurrent tumors. On multivariate analysis, invasion of the cribriform plate was significantly associated with lower local control (p = 0.0001) and overall survival (p = 0.0001). Local and distant recurrence was detected in 19 and 10 patients, respectively. Radiation-induced blindness was not observed. One patient developed Grade 3 radiation-induced retinopathy and neovascular glaucoma. Nonocular late radiation-induced toxicity comprised complete lacrimal duct stenosis in 1 patient and brain necrosis in 3 patients. Osteoradionecrosis of the maxilla and brain necrosis were detected in 1 of the 5 reirradiated patients. Conclusion: IMRT for sinonasal tumors provides low rates of radiation-induced toxicity without blindness with high local control and survival. IMRT could be considered as the treatment of choi0008.

  8. High-dose simultaneously integrated breast boost using intensity-modulated radiotherapy and inverse optimization

    SciTech Connect

    Hurkmans, Coen W. . E-mail: coen.hurkmans@cze.nl; Meijer, Gert J.; Vliet-Vroegindeweij, Corine van; Cassee, Jorien

    2006-11-01

    Purpose: Recently a Phase III randomized trial has started comparing a boost of 16 Gy as part of whole-breast irradiation to a high boost of 26 Gy in young women. Our main aim was to develop an efficient simultaneously integrated boost (SIB) technique for the high-dose arm of the trial. Methods and Materials: Treatment planning was performed for 5 left-sided and 5 right-sided tumors. A tangential field intensity-modulated radiotherapy technique added to a sequentially planned 3-field boost (SEQ) was compared with a simultaneously planned technique (SIB) using inverse optimization. Normalized total dose (NTD)-corrected dose volume histogram parameters were calculated and compared. Results: The intended NTD was produced by 31 fractions of 1.66 Gy to the whole breast and 2.38 Gy to the boost volume. The average volume of the PTV-breast and PTV-boost receiving more than 95% of the prescribed dose was 97% or more for both techniques. Also, the mean lung dose and mean heart dose did not differ much between the techniques, with on average 3.5 Gy and 2.6 Gy for the SEQ and 3.8 Gy and 2.6 Gy for the SIB, respectively. However, the SIB resulted in a significantly more conformal irradiation of the PTV-boost. The volume of the PTV-breast, excluding the PTV-boost, receiving a dose higher than 95% of the boost dose could be reduced considerably using the SIB as compared with the SEQ from 129 cc (range, 48-262 cc) to 58 cc (range, 30-102 cc). Conclusions: A high-dose simultaneously integrated breast boost technique has been developed. The unwanted excessive dose to the breast was significantly reduced.

  9. Intensity modulation with respiratory gating for radiotherapy of the pleural space

    SciTech Connect

    Ahmed, Raef S.; Shen, Sui; Ove, Roger; Duan, Jun; Fiveash, John B.; Russo, Suzanne M. . E-mail: suzrusso@msn.com

    2007-04-01

    We wanted to describe a technique for the implementation of intensity-modulated radiotherapy (IMRT) with a real-time position monitor (RPM) respiratory gating system for the treatment of pleural space with intact lung. The technique is illustrated by a case of pediatric osteosarcoma, metastatic to the pleura of the right lung. The patient was simulated in the supine position where a breathing tracer and computed tomography (CT) scans synchronized at end expiration were acquired using the RPM system. The gated CT images were used to define target volumes and critical structures. Right pleural gated IMRT delivered at end expiration was prescribed to a dose of 44 Gy, with 55 Gy delivered to areas of higher risk via simultaneous integrated boost (SIB) technique. IMRT was necessary to avoid exceeding the tolerance of intact lung. Although very good coverage of the target volume was achieved with a shell-shaped dose distribution, dose over the targets was relatively inhomogeneous. Portions of target volumes necessarily intruded into the right lung, the liver, and right kidney, limiting the degree of normal tissue sparing that could be achieved. The radiation doses to critical structures were acceptable and well tolerated. With intact lung, delivering a relatively high dose to the pleura with acceptable doses to surrounding normal tissues using respiratory gated pleural IMRT is feasible. Treatment delivery during a limited part of the respiratory cycle allows for reduced CT target volume motion errors, with reduction in the portion of the planning margin that accounts for respiratory motion, and subsequent increase in the therapeutic ratio.

  10. Clinical Outcome and Prognostic Factors of Intensity-Modulated Radiotherapy for T4 Stage Nasopharyngeal Carcinoma

    PubMed Central

    Luo, Yangkun; Gao, Yang; Yang, Guangquan; Lang, Jinyi

    2016-01-01

    Objective. To analyze the clinical outcomes and prognostic factors of intensity-modulated radiotherapy (IMRT) for T4 stage nasopharyngeal carcinoma (NPC). Methods. Between March 2005 and March 2010, 110 patients with T4 stage NPC without distant metastases were treated. All patients received IMRT. Induction and/or concurrent chemotherapy were given. 47 (42.7%) patients received IMRT replanning. Results. The 5-year local recurrence-free survival (LRFS), regional recurrence-free survival (RRFS), distant metastasis-free survival (DMFS), progression-free survival (PFS), and overall survival (OS) rates were 90.1%, 97.0%, 67.5%, 63.9%, and 64.5%, respectively. Eleven patients experienced local-regional failure and total distant metastasis occurred in 34 patients. 45 patients died and 26 patients died of distant metastasis alone. The 5-year LRFS rates were 97.7% and 83.8% for the patients that received and did not receive IMRT replanning, respectively (P = 0.023). Metastasis to the retropharyngeal lymph nodes (RLN) was associated with inferior 5-year OS rate (61.0% versus 91.7%, P = 0.034). The gross tumor volume of the right/left lymph nodes (GTVln) was an independent prognostic factor for DMFS (P = 0.006) and PFS (P = 0.018). GTVln was with marginal significance as the prognostic factor for OS (P = 0.050). Conclusion. IMRT provides excellent local-regional control for T4 stage NPC. Benefit of IMRT replanning may be associated with improvement in local control. Incorporating GTVln into the N staging system may provide better prognostic information. PMID:27195286

  11. Clinical Outcome of Adjuvant Treatment of Endometrial Cancer Using Aperture-Based Intensity-Modulated Radiotherapy

    SciTech Connect

    Bouchard, Myriam; Nadeau, Sylvain M.Sc.; Gingras, Luc; Raymond, Paul-Emile; Beaulieu, Frederic; Beaulieu, Luc; Fortin, Andre; Germain, Isabelle

    2008-08-01

    Purpose: To assess disease control and acute and chronic toxicity with aperture-based intensity-modulated radiotherapy (AB-IMRT) for postoperative pelvic irradiation of endometrial cancer. Methods and Materials: Between January and July 2005, after hysterectomy for endometrial cancer, 15 patients received 45 Gy to the pelvis using AB-IMRT. The AB-IMRT plans were generated by an in-house treatment planning system (Ballista). The AB-IMRT plans were used for treatment and were dosimetrically compared with three other approaches: conventional four-field, enlarged four-field, and beamlet-based IMRT (BB-IMRT). Disease control and toxicity were prospectively recorded and compared with retrospective data from 30 patients treated with a conventional four-field technique. Results: At a median follow-up of 27 months (range, 23-30), no relapse was noted among the AB-IMRT group compared with five relapses in the control group (p = 0.1). The characteristics of each group were similar, except for the mean body mass index, timing of brachytherapy, and applicator type used. Patients treated with AB-IMRT experienced more frequent Grade 2 or greater gastrointestinal acute toxicity (87% vs. 53%, p 0.02). No statistically significant difference was noted between the two groups regarding the incidence or severity of chronic toxicities. AB-IMRT plans significantly improved target coverage (93% vs. 76% of planning target volume receiving 45 Gy for AB-IMRT vs. conventional four-field technique, respectively). The sparing of organs at risk was similar to that of BB-IMRT. Conclusion: The results of our study have shown that AB-IMRT provides excellent disease control with equivalent late toxicity compared with the conventional four-field technique. AB-IMRT provided treatment delivery and quality assurance advantages compared with BB-IMRT and could reduce the risk of second malignancy compared with BB-IMRT.

  12. Multiobjective inverse planning for intensity modulated radiotherapy with constraint-free gradient-based optimization algorithms

    NASA Astrophysics Data System (ADS)

    Lahanas, Michael; Schreibmann, Eduard; Baltas, Dimos

    2003-09-01

    We consider the behaviour of the limited memory L-BFGS algorithm as a representative constraint-free gradient-based algorithm which is used for multiobjective (MO) dose optimization for intensity modulated radiotherapy (IMRT). Using a parameter transformation, the positivity constraint problem of negative beam fluences is entirely eliminated: a feature which to date has not been fully understood by all investigators. We analyse the global convergence properties of L-BFGS by searching for the existence and the influence of possible local minima. With a fast simulated annealing (FSA) algorithm we examine whether the L-BFGS solutions are globally Pareto optimal. The three examples used in our analysis are a brain tumour, a prostate tumour and a test case with a C-shaped PTV. In 1% of the optimizations global convergence is violated. A simple mechanism practically eliminates the influence of this failure and the obtained solutions are globally optimal. A single-objective dose optimization requires less than 4 s for 5400 parameters and 40 000 sampling points. The elimination of the problem of negative beam fluences and the high computational speed permit constraint-free gradient-based optimization algorithms to be used for MO dose optimization. In this situation, a representative spectrum of possible solutions is obtained which contains information such as the trade-off between the objectives and range of dose values. Using simple decision making tools the best of all the possible solutions can be chosen. We perform an MO dose optimization for the three examples and compare the spectra of solutions, firstly using recommended critical dose values for the organs at risk and secondly, setting these dose values to zero.

  13. Candidate Dosimetric Predictors of Long-Term Swallowing Dysfunction After Oropharyngeal Intensity-Modulated Radiotherapy

    SciTech Connect

    Schwartz, David L.; Hutcheson, Katherine; Barringer, Denise; Tucker, Susan L.; Kies, Merrill; Ang, K. Kian; Morrison, William H.; Rosenthal, David I.; Garden, Adam S.; Dong Lei; Lewin, Jan S.

    2010-12-01

    Purpose: To investigate long-term swallowing function in oropharyngeal cancer patients treated with intensity-modulated radiotherapy (IMRT), and to identify novel dose-limiting criteria predictive for dysphagia. Methods and Materials: Thirty-one patients with Stage IV oropharyngeal squamous carcinoma enrolled on a Phase II trial were prospectively evaluated by modified barium swallow studies at baseline, and 6, 12, and 24 months post-IMRT treatment. Candidate dysphagia-associated organs at risk were retrospectively contoured into original treatment plans. Twenty-one (68%) cases were base of tongue and 10 (32%) were tonsil. Stage distribution was T1 (12 patients), T2 (10), T3 (4), T4 (2), and TX (3), and N2 (24), N3 (5), and NX (2). Median age was 52.8 years (range, 42-78 years). Thirteen patients (42%) received concurrent chemotherapy during IMRT. Thirteen (42%) were former smokers. Mean dose to glottic larynx for the cohort was limited to 18 Gy (range, 6-39 Gy) by matching IMRT to conventional low-neck fields. Results: Dose-volume constraints (V30 < 65% and V35 < 35% for anterior oral cavity and V55 < 80% and V65 < 30% for high superior pharyngeal constrictors) predictive for objective swallowing dysfunction were identified by univariate and multivariate analyses. Aspiration and feeding tube dependence were observed in only 1 patient at 24 months. Conclusions: In the context of glottic laryngeal shielding, we describe candidate oral cavity and superior pharyngeal constrictor organs at risk and dose-volume constraints associated with preserved long-term swallowing function; these constraints are currently undergoing prospective validation. Strict protection of the glottic larynx via beam-split IMRT techniques promises to make chronic aspiration an uncommon outcome.

  14. Intensity-Modulated Radiotherapy for Head and Neck Cancer of Unknown Primary: Toxicity and Preliminary Efficacy

    SciTech Connect

    Klem, Michelle L. Mechalakos, James G.; Wolden, Suzanne L.; Zelefsky, Michael J.; Singh, Bhuvanesh; Kraus, Dennis; Shaha, Ashok; Shah, Jatin; Pfister, David G.; Lee, Nancy Y.

    2008-03-15

    Purpose: Unknown primary head and neck cancers often require comprehensive mucosal and bilateral neck irradiation. With conventional techniques, significant toxicity can develop. Intensity-modulated radiotherapy (IMRT) has the potential to minimize the toxicity. Methods and Materials: Between 2000 and 2005, 21 patients underwent IMRT for unknown primary head and neck cancer at our center. Of the 21 patients, 5 received IMRT with definitive intent and 16 as postoperative therapy; 14 received concurrent chemotherapy and 7 IMRT alone. The target volumes included the bilateral neck and mucosal surface. The median dose was 66 Gy. Acute and chronic toxicities, esophageal strictures, and percutaneous endoscopic gastrostomy tube dependence were evaluated. Progression-free survival, regional progression-free survival, distant metastasis-free survival, and overall survival were estimated with Kaplan-Meier curves. Results: With a median follow-up of 24 months, the 2-year regional progression-free survival, distant metastasis-free survival, and overall survival rate was 90%, 90%, and 85%, respectively. Acute grade 1 and 2 xerostomia was seen in 57% and 43% of patients, respectively. Salivary function improved with time. Percutaneous endoscopic gastrostomy tube placement was required in 72% with combined modality treatment and 43% with IMRT alone. Only 1 patient required percutaneous endoscopic gastrostomy support at the last follow-up visit. Two patients treated with combined modality and one treated with IMRT alone developed esophageal strictures, but all had improvement or resolution with dilation. Conclusion: The preliminary analysis of IMRT for unknown primary head and neck cancer has shown acceptable toxicity and encouraging efficacy. The analysis of the dosimetric variables showed excellent tumor coverage and acceptable doses to critical normal structures. Esophageal strictures developed but were effectively treated with dilation. Techniques to limit the esophageal dose

  15. Is Planned Neck Dissection Necessary for Head and Neck Cancer After Intensity-Modulated Radiotherapy?

    SciTech Connect

    Yao Min |. E-mail: min-yao@uiowa.edu; Hoffman, Henry T.; Funk, Gerry F. |; Chang, Kristi; Smith, Russell B. |; Tan Huaming; Clamon, Gerald H.; Dornfeld, Ken |; Buatti, John M. |

    2007-07-01

    Purpose: The objective of this study was to determine regional control of local regional advanced head and neck squamous cell carcinoma (HNSCC) treated with intensity-modulated radiotherapy (IMRT), along with the role and selection criteria for neck dissection after IMRT. Methods and Materials: A total of 90 patients with stage N2A or greater HNSCC were treated with definitive IMRT from December 1999 to July 2005. Three clinical target volumes were defined and were treated to 70 to 74 Gy, 60 Gy, and 54 Gy, respectively. Neck dissection was performed for selected patients after IMRT. Selection criteria evolved during this period with emphasis on post-IMRT [{sup 18}F] fluorodeoxyglucose positron emission tomography in recent years. Results: Median follow-up for all patients was 29 months (range, 0.2-74 months). All living patients were followed at least 9 months after completing treatment. Thirteen patients underwent neck dissection after IMRT because of residual lymphadenopathy. Of these, 6 contained residual viable tumor. Three patients with persistent adenopathy did not undergo neck dissection: 2 refused and 1 had lung metastasis. Among the remaining 74 patients who were observed without neck dissection, there was only 1 case of regional failure. Among all 90 patients in this study, the 3-year local and regional control was 96.3% and 95.4%, respectively. Conclusions: Appropriately delivered IMRT has excellent dose coverage for cervical lymph nodes. A high radiation dose can be safely delivered to the abnormal lymph nodes. There is a high complete response rate. Routine planned neck dissection for patients with N2A and higher stage after IMRT is not necessary. Post-IMRT [{sup 18}F] fluorodeoxyglucose positron emission tomography is a useful tool in selecting patients appropriate for neck dissection.

  16. Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer

    SciTech Connect

    Lopez Guerra, Jose L.; Gomez, Daniel R.; Zhuang Yan; Levy, Lawrence B.; Eapen, George; Liu, Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing

    2012-07-15

    Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received {>=}60 Gy radio(chemo)therapy for primary NSCLC in 1998-2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient's preradiation value at the following time intervals: 0-4 (T1), 5-8 (T2), and 9-12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy or

  17. Image-Guided Intensity-Modulated Photon Radiotherapy Using Multifractionated Regimen to Paraspinal Chordomas and Rare Sarcomas

    SciTech Connect

    Terezakis, Stephanie A. Lovelock, D. Michael; Bilsky, Mark H.; Hunt, Margaret A.; Zatcky, Joan N.P.; Yamada, Yoshiya

    2007-12-01

    Purpose: Image-guided intensity-modulated radiotherapy enables delivery of high-dose radiation to tumors close to the spinal cord. We report our experience with multifractionated regimens using image-guided intensity-modulated radiotherapy to treat gross paraspinal disease to doses beyond cord tolerance. Methods and Materials: We performed a retrospective review of 27 consecutive patients with partially resected or unresectable paraspinal tumors irradiated to >5,300 cGy in standard fractionation. Results: The median follow-up was 17.4 months (range, 2.1-47.3). Eighteen sarcomas, seven chordomas, and two ependymomas were treated. The median dose to the planning target volume was 6,600 cGy (range, 5,396-7,080) in 180- or 200-cGy fractions. The median planning target volume was 164 cm{sup 3} (range, 29-1,116). Seven patients developed recurrence at the treatment site (26%), and 6 of these patients had high-grade tumors. Three patients with recurrence had metastatic disease at the time of radiotherapy. The 2-year local control rate was 65%, and the 2-year overall survival rate was 79%. Of the 5 patients who died, 4 had metastatic disease at death. Twenty-three patients (84%) reported either no pain or improved pain at the last follow-up visit. Sixteen patients discontinued narcotic use after treatment (62.5%). Twenty-three patients (89%) had a stable or improved American Spine Injury Association score at the last follow-up visit. No patient experienced radiation-induced myelopathy. Conclusions: The dose to paraspinal tumors has traditionally been limited to respect cord tolerance. With image-guided intensity-modulated radiotherapy, greater doses of radiation delivered in multiple fractions can be prescribed with excellent target coverage, effective palliation, and acceptable toxicity and local control.

  18. Transitioning from conventional radiotherapy to intensity-modulated radiotherapy for localized prostate cancer: changing focus from rectal bleeding to detailed quality of life analysis.

    PubMed

    Yamazaki, Hideya; Nakamura, Satoaki; Nishimura, Takuya; Yoshida, Ken; Yoshioka, Yasuo; Koizumi, Masahiko; Ogawa, Kazuhiko

    2014-11-01

    With the advent of modern radiation techniques, we have been able to deliver a higher prescribed radiotherapy dose for localized prostate cancer without severe adverse reactions. We reviewed and analyzed the change of toxicity profiles of external beam radiation therapy (EBRT) from the literature. Late rectal bleeding is the main adverse effect, and an incidence of >20% of Grade ≥2 adverse events was reported for 2D conventional radiotherapy of up to 70 Gy. 3D conformal radiation therapy (3D-CRT) was found to reduce the incidence to ∼10%. Furthermore, intensity-modulated radiation therapy (IMRT) reduced it further to a few percentage points. However, simultaneously, urological toxicities were enhanced by dose escalation using highly precise external radiotherapy. We should pay more attention to detailed quality of life (QOL) analysis, not only with respect to rectal bleeding but also other specific symptoms (such as urinary incontinence and impotence), for two reasons: (i) because of the increasing number of patients aged >80 years, and (ii) because of improved survival with elevated doses of radiotherapy and/or hormonal therapy; age is an important prognostic factor not only for prostate-specific antigen (PSA) control but also for adverse reactions. Those factors shift the main focus of treatment purpose from survival and avoidance of PSA failure to maintaining good QOL, particularly in older patients. In conclusion, the focus of toxicity analysis after radiotherapy for prostate cancer patients is changing from rectal bleeding to total elaborate quality of life assessment. PMID:25204643

  19. Simultaneous integrated intensity-modulated radiotherapy boost for locally advanced gynecological cancer: Radiobiological and dosimetric considerations

    SciTech Connect

    Guerrero, Mariana; Li, X. Allen . E-mail: ali@radonc.mcw.edu; Ma Lijun; Linder, Jeanette; Deyoung, Chad; Erickson, Beth

    2005-07-01

    Purpose: Whole-pelvis irradiation (WPI) followed by a boost to the tumor site is the standard of practice for the radiotherapeutic management of locally advanced gynecologic cancers. The boost is frequently administered by use of brachytherapy or, occasionally, external-beam radiotherapy (EBRT) when brachytherapy does not provide sufficient coverage because of the size of the tumor or the geometry of the patient. In this work, we propose using an intensity-modulated radiotherapy (IMRT) simultaneous integrated boost (SIB), which is a single-phase process, to replace the conventional two-phase process involving WPI plus a boost. Radiobiological modeling is used to design appropriate regimens for the IMRT SIB. To demonstrate feasibility, a dosimetric study is carried out on an example patient. Methods and Materials: The standard linear-quadratic (LQ) model is used to calculate the biologically effective dose (BED) and equivalent uniform dose (EUD). A series of regimens that are biologically equivalent to those conventional two-phase treatments is calculated for the proposed SIB. A commercial inverse planning system (Corvus) was used to generate IMRT SIB plans for a sample patient case that used the newly designed fractionations. The dose-volume histogram (DVH) and EUD of both the target and normal structures for conventional treatments and the SIB are compared. A sparing factor was introduced to characterize the sparing of normal structures. Results: Fractionation regimes that are equivalent to the conventional treatments and are suitable for the IMRT SIB are deduced. For example, a SIB plan with 25 x 3.1 Gy (77.5 Gy) to a tumor is equivalent to a conventional treatment of EBRT of 45 Gy to the whole pelvis in 25 fractions plus a high-dose rate (HDR) brachytherapy boost with 30 Gy in 5 fractions. The normal tissue BED is found to be lower for the SIB plan than for the whole-pelvis plus HDR scheme when a sparing factor for the critical structures is considered. This

  20. A fixed-jaw method to protect critical organs during intensity-modulated radiotherapy

    SciTech Connect

    Chen, Jiayun; Chen, Xinyuan; Huang, Manni; Dai, Jianrong

    2014-01-01

    Intensity-modulated radiotherapy (IMRT) plays an important role in cancer radiotherapy. For some patients being treated with IMRT, the extremely low tolerances of critical organs (such as lens, ovaries, and testicles) cannot be met during treatment planning. The aim of this article is to introduce a new planning method to overcome that problem. In current planning practice, jaw positions are automatically set to cover all target volumes by the planning system (e.g., Pinnacle{sup 3} system). Because of such settings, critical organs may be fully blocked by the multileaf collimator (MLC), but they still sit in the field that is shaped by collimator jaws. These critical organs receive doses from the transmission and leakage of MLC leaves. We manually fixed jaw positions to block them to further reduce such doses. This method has been used for different treatment sites in our clinic, and it was thoroughly evaluated in patients with radical hysterectomy plus ovarian transposition after surgery. For each patient, 2 treatment plans were designed with the same optimization parameters: the original plan with automatically chosen jaw positions (called O-plan) and the plan with fixed-jaw positions (named F-plan). In the F-plan, the jaws were manually fixed to block the ovaries. For target coverage, the mean conformity index (CI) of the F-plan (1.28 ± 0.02) was remarkably lower than that of the O-plan (1.53 ± 0.09) (p < 0.05). The F-plan and the O-plan performed similarly in target dose homogeneity. Meanwhile, for the critical organ sparing, the mean dose of both ovaries were much lower in the F-plan than that in the O-plan (p < 0.05). The V{sub 20}, V{sub 30}, and V{sub 40} of bladder were also lower in the F-plan (93.57 ± 1.98, 73.99 ± 5.76, and 42.33 ± 3.7, respectively) than those in the O-plan (97.98 ± 1.11, 85.07 ± 4.04, and 49.71 ± 3.63, respectively) (p < 0.05). The maximum dose to the spinal cord planning organ at risk (OAR) volume (PRV) in the O-plan (3940

  1. Feasibility of dose escalation using intensity-modulated radiotherapy in posthysterectomy cervical carcinoma

    SciTech Connect

    D'Souza, Warren D. . E-mail: wdsou001@umaryland.edu; Ahamad, Anesa A.; Iyer, Revathy B.; Salehpour, Mohammad R.; Jhingran, Anuja; Eifel, Patricia J.

    2005-03-15

    Purpose: To evaluate retrospectively the utility of intensity-modulated radiotherapy (IMRT) in reducing the volume of normal tissues receiving radiation at varying dose levels when the female pelvis after hysterectomy is treated to doses of 50.4 Gy and 54 Gy. Methods and materials: Computed tomography scans from 10 patients who had previously undergone conventional postoperative RT were selected. The clinical tumor volume (vaginal apex and iliac nodes) and organs at risk were contoured. Margins were added to generate the planning tumor volume. The Pinnacle and Corvus planning systems were used to develop conventional and IMRT plans, respectively. Conventional four-field plans were prescribed to deliver 45 Gy (4F{sub 45Gy}) or 50.4 Gy; eight-field IMRT plans were prescribed to deliver 50.4 Gy (IMRT{sub 50.4Gy}) or 54 Gy (IMRT{sub 54Gy}) to the planning tumor volume. All plans were normalized so that {>=}97% of the planning tumor volume received the prescribed dose. Student's t test was used to compare the volumes of organs at risk receiving the same doses with different plans. Results: The mean volume of bowel receiving {>=}45 Gy was lower with the IMRT{sub 50.4Gy} (33% lower) and IMRT{sub 54Gy} (18% lower) plans than with the 4F{sub 45Gy} plan. The mean volume of rectum receiving {>=}45 Gy or {>=}50 Gy was also significantly reduced with the IMRT plans despite an escalation of the prescribed dose from 45 Gy with the conventional plans to 54 Gy with IMRT. The mean volume of bladder treated to 45 Gy was the same or slightly lower with the IMRT{sub 50.4Gy} and IMRT{sub 54Gy} plans compared with the 4F{sub 45Gy} plan. Compared with the 4F{sub 45Gy} plan, the IMRT{sub 50.4Gy} plan resulted in a smaller volume of bowel receiving 35-45 Gy and a larger volume of bowel receiving 50-55 Gy. Compared with the 4F{sub 45Gy} plan, the IMRT{sub 54Gy} plan resulted in smaller volumes of bowel receiving 45-50 Gy; however, small volumes of bowel received 55-60 Gy with the IMRT plan

  2. Distant Metastases in Head-and-Neck Squamous Cell Carcinoma Treated With Intensity-Modulated Radiotherapy

    SciTech Connect

    Yao Min; Lu Minggen; Savvides, Panayiotis S.; Rezaee, Rod; Zender, Chad A.; Lavertu, Pierre; Buatti, John M.; Machtay, Mitchell

    2012-06-01

    Purpose: To determine the pattern and risk factors for distant metastases in head-and-neck squamous cell carcinoma (HNSCC) after curative treatment with intensity-modulated radiotherapy (IMRT). Methods and Materials: This was a retrospective study of 284 HNSCC patients treated in a single institution with IMRT. Sites included were oropharynx (125), oral cavity (70), larynx (55), hypopharynx (17), and unknown primary (17). American Joint Committee on Cancer stage distribution includes I (3), II (19), III (42), and IV (203). There were 224 males and 60 females with a median age of 57. One hundred eighty-six patients were treated with definitive IMRT and 98 postoperative IMRT. One hundred forty-nine patients also received concurrent cisplatin-based chemotherapy. Results: The median follow-up for all patients was 22.8 months (range, 0.07-77.3 months) and 29.5 months (4.23-77.3 months) for living patients. The 3-year local recurrence-free survival, regional recurrence-free survival, locoregional recurrence-free survival, distant metastasis-free survival, and overall survival were 94.6%, 96.4%, 92.5%, 84.1%, and 68.95%, respectively. There were 45 patients with distant metastasis. In multivariate analysis, distant metastasis was strongly associated with N stage (p = 0.046), T stage (p < 0.0001), and pretreatment maximum standardized uptake value of the lymph node (p = 0.006), but not associated with age, gender, disease sites, pretreatment standardized uptake value of the primary tumor, or locoregional control. The freedom from distant metastasis at 3 years was 98.1% for no factors, 88.6% for one factor, 68.3% for two factors, and 41.7% for three factors (p < 0.0001 by log-rank test). Conclusion: With advanced radiation techniques and concurrent chemotherapy, the failure pattern has changed with more patients failing distantly. The majority of patients with distant metastases had no local or regional failures, indicating that these patients might have microscopic distant

  3. Nasopharyngeal Carcinoma in Children: Comparison of Conventional and Intensity-Modulated Radiotherapy

    SciTech Connect

    Laskar, Siddhartha Bahl, Gaurav; Muckaden, MaryAnn; Pai, Suresh K.; Gupta, Tejpal; Banavali, Shripad; Arora, Brijesh; Sharma, Dayanand; Kurkure, Purna A.; Ramadwar, Mukta; Viswanathan, Seethalaxhmi; Rangarajan, Venkatesh; Qureshi, Sajid; Deshpande, Deepak D.; Shrivastava, Shyam K.; Dinshaw, Ketayun A.

    2008-11-01

    Purpose: To evaluate the efficacy of intensity-modulated radiotherapy (IMRT) in reducing the acute toxicities associated with conventional RT (CRT) in children with nasopharyngeal carcinoma. Patients and Methods: A total of 36 children with nonmetastatic nasopharyngeal carcinoma, treated at the Tata Memorial Hospital between June 2003 and December 2006, were included in this study. Of the 36 patients, 28 were boys and 8 were girls, with a median age of 14 years; 4 (11%) had Stage II and 10 (28%) Stage III disease at presentation. All patients had undifferentiated carcinoma and were treated with a combination of chemotherapy and RT. Of the 36 patients, 19 underwent IMRT and 17 underwent CRT. Results: After a median follow-up of 27 months, the 2-year locoregional control, disease-free, and overall survival rate was 76.5%, 60.6%, and 71.3%, respectively. A significant reduction in acute Grade 3 toxicities of the skin (p = 0.006), mucous membrane (p = 0.033), and pharynx (p = 0.035) was noted with the use of IMRT. The median time to the development of Grade 2 toxicity was delayed with IMRT (skin, 35 vs. 25 days, p = 0.016; mucous-membrane, 39 vs. 27 days, p = 0.002; and larynx, 50 vs. 28 days, p = 0.009). The duration of RT significantly influenced disease-free survival on multivariate analysis (RT duration >52 days, hazard ratio = 5.49, 95% confidence interval, 1.14-26.45, p = 0.034). The average mean dose to the first and second planning target volume was 71.8 Gy and 62.5 Gy with IMRT compared with 66.3 Gy (p = 0.001) and 64.4 Gy (p = 0.046) with CRT, respectively. Conclusion: The results of our study have shown that IMRT significantly reduces and delays the onset of acute toxicity, resulting in improved tolerance and treatment compliance for children with nasopharyngeal carcinoma. Also, IMRT provided superior target coverage and normal tissue sparing compared with CRT.

  4. Experience-Based Quality Control of Clinical Intensity-Modulated Radiotherapy Planning

    SciTech Connect

    Moore, Kevin L.; Brame, R. Scott; Low, Daniel A.; Mutic, Sasa

    2011-10-01

    Purpose: To incorporate a quality control tool, according to previous planning experience and patient-specific anatomic information, into the intensity-modulated radiotherapy (IMRT) plan generation process and to determine whether the tool improved treatment plan quality. Methods and Materials: A retrospective study of 42 IMRT plans demonstrated a correlation between the fraction of organs at risk (OARs) overlapping the planning target volume and the mean dose. This yielded a model, predicted dose = prescription dose (0.2 + 0.8 [1 - exp(-3 overlapping planning target volume/volume of OAR)]), that predicted the achievable mean doses according to the planning target volume overlap/volume of OAR and the prescription dose. The model was incorporated into the planning process by way of a user-executable script that reported the predicted dose for any OAR. The script was introduced to clinicians engaged in IMRT planning and deployed thereafter. The script's effect was evaluated by tracking {delta} = (mean dose-predicted dose)/predicted dose, the fraction by which the mean dose exceeded the model. Results: All OARs under investigation (rectum and bladder in prostate cancer; parotid glands, esophagus, and larynx in head-and-neck cancer) exhibited both smaller {delta} and reduced variability after script implementation. These effects were substantial for the parotid glands, for which the previous {delta} = 0.28 {+-} 0.24 was reduced to {delta} = 0.13 {+-} 0.10. The clinical relevance was most evident in the subset of cases in which the parotid glands were potentially salvageable (predicted dose <30 Gy). Before script implementation, an average of 30.1 Gy was delivered to the salvageable cases, with an average predicted dose of 20.3 Gy. After implementation, an average of 18.7 Gy was delivered to salvageable cases, with an average predicted dose of 17.2 Gy. In the prostate cases, the rectum model excess was reduced from {delta} = 0.28 {+-} 0.20 to {delta} = 0.07 {+-} 0

  5. Extended field intensity-modulated radiotherapy plus concurrent nedaplatin treatment in cervical cancer

    PubMed Central

    LIU, YUNQIN; YU, JINMING; QIAN, LITING; ZHANG, HONGYAN; MA, JUN

    2016-01-01

    The present study assessed the efficacy and toxicity of definitive extended-field intensity-modulated radiotherapy (EF-IMRT) plus concurrent chemotherapy in cervical cancer. A total of 48 patients with cervical cancer received the planning target volume between 39.6 and 50.4 Gy in 1.8–2.0 Gy daily fractions, while the enlarged pelvic and/or para-aortic nodes were treated with a total dose of 55–60 Gy in 2.0–2.4 Gy daily fractions using simultaneous integrated boost-IMRT. All patients underwent high dose-rate brachytherapy. Concurrent to EF-IMRT, nedaplatin was administered weekly at a median dose of 30 mg/m2 (range, 25–40 mg/m2) for 5 weeks with a total of 150 mg/m2. Of the 48 patients, 46 patients exhibited initial complete responses and 2 patients had partial responses, with a response rate of 100%. After 4–24 months of treatment, 12 patients (27.08%) had local and/or distant failure and 39 patients (81.25%) were alive at the last follow-up. The 12-month overall survival (OS) and disease-free survival (DFS) were 87.5 and 75.8%, respectively, while the 24-month OS and DFS were 69.7 and 49.7%, respectively. Grade ≥3 acute neutropenia and thrombcytopenia occurred in 20 (41.7%) and 4 (8.3%) patients, respectively, while 2 patients (4.2%) developed grade ≥3 diarrhea and 2 (4.2%) had grade ≥3 late toxicities. However, no patients exhibited grade ≥3 vomiting. Thus, concurrent nedaplatin chemotherapy with definitive EF-IMRT was effective and relatively safe for treating patients with cervical cancer. Furthermore, EF-IMRT was able to deliver ≤60 Gy to enlarged para-aortic and/or pelvic nodes using simultaneous integrated boost without increased acute and late gastrointestinal toxicity. PMID:27123128

  6. Dosimetric investigation of breath-hold intensity-modulated radiotherapy for pancreatic cancer

    SciTech Connect

    Nakamura, Mitsuhiro; Kishimoto, Shun; Iwamura, Kohei; Shiinoki, Takehiro; Nakamura, Akira; Matsuo, Yukinori; Shibuya, Keiko; Hiraoka, Masahiro

    2012-01-15

    Purpose: To experimentally investigate the effects of variations in respiratory motion during breath-holding (BH) at end-exhalation (EE) on intensity-modulated radiotherapy (BH-IMRT) dose distribution using a motor-driven base, films, and an ionization chamber. Methods: Measurements were performed on a linear accelerator, which has a 120-leaf independently moving multileaf collimator with 5-mm leaf width at the isocenter for the 20-cm central field. Polystyrene phantoms with dimensions of 40 x 40 x 10 cm were set on a motor-driven base. All gantry angles of seven IMRT plans (a total of 35 fields) were changed to zero, and doses were then delivered to a film placed at a depth of 4 cm and an ionization chamber at a depth of 5 cm in the phantom with a dose rate of 600 MU/min under the following conditions: pulsation from the abdominal aorta and baseline drift with speeds of 0.2 mm/s (BD{sub 0.2mm/s}) and 0.4 mm/s (BD{sub 0.4mm/s}). As a reference for comparison, doses were also delivered to the chamber and film under stationary conditions. Results: In chamber measurements, means {+-} standard deviations of the dose deviations between stationary and moving conditions were -0.52% {+-} 1.03% (range: -3.41-1.05%), -0.07% {+-} 1.21% (range: -1.88-4.31%), and 0.03% {+-} 1.70% (range: -2.70-6.41%) for pulsation, BD{sub 0.2mm/s}, and BD{sub 0.4mm/s}, respectively. The {gamma} passing rate ranged from 99.5% to 100.0%, even with the criterion of 2%/1 mm for pulsation pattern. In the case of BD{sub 0.4mm/s}, the {gamma} passing rate for four of 35 fields (11.4%) did not reach 90% with a criterion of 3%/3 mm. The differences in {gamma} passing rate between BD{sub 0.2mm/s} and BD{sub 0.4mm/s} were statistically significant for each criterion. Taking {gamma} passing rates of > 90% as acceptable with a criterion of 3%/3 mm, large differences were observed in the {gamma} passing rate between the baseline drift of {<=}5 mm and that of >5 mm (minimum {gamma} passing rate: 92.0% vs 82

  7. Salivary Gland Tumors Treated With Adjuvant Intensity-Modulated Radiotherapy With or Without Concurrent Chemotherapy

    SciTech Connect

    Schoenfeld, Jonathan D.; Sher, David J.; Norris, Charles M.; Haddad, Robert I.; Posner, Marshall R.; Balboni, Tracy A.; Tishler, Roy B.

    2012-01-01

    Purpose: To analyze the recent single-institution experience of patients with salivary gland tumors who had undergone adjuvant intensity-modulated radiotherapy (IMRT), with or without concurrent chemotherapy. Patients and Methods: We performed a retrospective analysis of 35 salivary gland carcinoma patients treated primarily at the Dana-Farber Cancer Institute between 2005 and 2010 with surgery and adjuvant IMRT. The primary endpoints were local control, progression-free survival, and overall survival. The secondary endpoints were acute and chronic toxicity. The median follow-up was 2.3 years (interquartile range, 1.2-2.8) among the surviving patients. Results: The histologic types included adenoid cystic carcinoma in 15 (43%), mucoepidermoid carcinoma in 6 (17%), adenocarcinoma in 3 (9%), acinic cell carcinoma in 3 (9%), and other in 8 (23%). The primary sites were the parotid gland in 17 (49%), submandibular glands in 6 (17%), tongue in 4 (11%), palate in 4 (11%), and other in 4 (11%). The median radiation dose was 66 Gy, and 22 patients (63%) received CRT. The most common chemotherapy regimen was carboplatin and paclitaxel (n = 14, 64%). A trend was seen for patients undergoing CRT to have more adverse prognostic factors, including Stage T3-T4 disease (CRT, n = 12, 55% vs. n = 4, 31%, p = .29), nodal positivity (CRT, n = 8, 36% vs. n = 1, 8%, p = .10), and positive margins (n = 13, 59% vs. n = 5, 38%, p = .30). One patient who had undergone CRT developed an in-field recurrence, resulting in an overall actuarial 3-year local control rate of 92%. Five patients (14%) developed distant metastases (1 who had undergone IMRT only and 4 who had undergone CRT). Acute Grade 3 mucositis, esophagitis, and dermatitis occurred in 8%, 8%, and 8% (1 each) of IMRT patients and in 18%, 5%, and 14% (4, 1, and 3 patients) of the CRT group, respectively. No acute Grade 4 toxicity occurred. The most common late toxicity was Grade 1 xerostomia (n = 8, 23%). Conclusions: Treatment of

  8. A dosimetric analysis of volumetric-modulated arc radiotherapy with jaw width restriction vs 7 field intensity-modulated radiotherapy for definitive treatment of cervical cancer

    PubMed Central

    Huang, B; Fang, Z; Huang, Y; Lin, P

    2014-01-01

    Objective: Radiation therapy treatment planning was performed to compare the dosimetric difference between volumetric-modulated arc radiotherapy (RapidArc™ v. 10; Varian® Medical Systems, Palo Alto, CA) and 7-field intensity-modulated radiotherapy (7f-IMRT) in the definitive treatment of cervical cancer. Methods: 13 patients with cervical cancer were enrolled in this study. Planning target volume (PTV) 50 and PTV60 were prescribed at a dose of 50 and 60 Gy in 28 fractions, respectively. The dose to the PTV60 was delivered as a simultaneous integrated boost to the pelvic lymph nodes. Owing to the mechanical limitation of the multileaf collimator in which the maximum displacement was limited to 15 cm, two types of RapidArc with different jaw width restrictions (15 and 20–23 cm) were investigated to evaluate their dosimetric differences. The RapidArc plan type with dosimetric superiority was then compared against the 7f-IMRT on the target coverage, sparing of the organs at risk (OARs), monitor units, treatment time and delivery accuracy to determine whether RapidArc is beneficial for the treatment of cervical cancer. Results: The 15-cm jaw width restriction had better performance compared with the restrictions that were longer than 15 cm in the sparing of the OARs. The 15-cm RapidArc spared the OARs, that is, the bladder, rectum, small intestine, femoral heads and bones, and improved treatment efficiency compared with 7f-IMRT. Both techniques delivered a high quality-assurance passing rate (>90%) according to the Γ3mm,3% criterion. Conclusion: RapidArc with a 15-cm jaw width restriction spares the OARs and improves treatment efficiency in cervical cancer compared with 7f-IMRT. Advances in knowledge: This study describes the dosimetric superiority of RapidArc with a 15-cm jaw width restriction and explores the feasibility of using RapidArc for the definitive treatment of cervical cancer. PMID:24834477

  9. Modulated photon radiotherapy (XMRT): an algorithm for the simultaneous optimization of photon beamlet energy and intensity in external beam radiotherapy (EBRT) planning

    NASA Astrophysics Data System (ADS)

    McGeachy, Philip; Villarreal-Barajas, Jose Eduardo; Zinchenko, Yuriy; Khan, Rao

    2016-02-01

    This is a proof of principle study on an algorithm for optimizing external beam radiotherapy in terms of both photon beamlet energy and fluence. This simultaneous beamlet energy and fluence optimization is denoted modulated photon radiotherapy (XMRT). XMRT is compared with single-energy intensity modulated radiotherapy (IMRT) for five clinically relevant test geometries to determine whether treating beamlet energy as a decision variable improves the dose distributions. All test geometries were modelled in a cylindrical water phantom. XMRT optimized the fluence for 6 and 18 MV beamlets while IMRT optimized with only 6 MV and only 18 MV. CERR (computational environment for radiotherapy research) was used to calculate the dose deposition matrices and the resulting dose for XMRT and IMRT solutions. Solutions were compared via their dose volume histograms and dose metrics, such as the mean, maximum, and minimum doses for each structure. The homogeneity index (HI) and conformity number (CN) were calculated to assess the quality of the target dose coverage. Complexity of the resulting fluence maps was minimized using the sum of positive gradients technique. The results showed XMRT’s ability to improve healthy-organ dose reduction while yielding comparable coverage of the target relative to IMRT for all geometries. All three energy-optimization approaches yielded similar HI and CNs for all geometries, as well as a similar degree of fluence map complexity. The dose reduction provided by XMRT was demonstrated by the relative decrease in the dose metrics for the majority of the organs at risk (OARs) in all geometries. Largest reductions ranged between 5% to 10% in the mean dose to OARs for two of the geometries when compared with both single-energy IMRT schemes. XMRT has shown potential dosimetric benefits through improved OAR sparing by allowing beam energy to act as a degree of freedom in the EBRT optimization process.

  10. Modulated photon radiotherapy (XMRT): an algorithm for the simultaneous optimization of photon beamlet energy and intensity in external beam radiotherapy (EBRT) planning.

    PubMed

    McGeachy, Philip; Villarreal-Barajas, Jose Eduardo; Zinchenko, Yuriy; Khan, Rao

    2016-02-21

    This is a proof of principle study on an algorithm for optimizing external beam radiotherapy in terms of both photon beamlet energy and fluence. This simultaneous beamlet energy and fluence optimization is denoted modulated photon radiotherapy (XMRT). XMRT is compared with single-energy intensity modulated radiotherapy (IMRT) for five clinically relevant test geometries to determine whether treating beamlet energy as a decision variable improves the dose distributions. All test geometries were modelled in a cylindrical water phantom. XMRT optimized the fluence for 6 and 18 MV beamlets while IMRT optimized with only 6 MV and only 18 MV. CERR (computational environment for radiotherapy research) was used to calculate the dose deposition matrices and the resulting dose for XMRT and IMRT solutions. Solutions were compared via their dose volume histograms and dose metrics, such as the mean, maximum, and minimum doses for each structure. The homogeneity index (HI) and conformity number (CN) were calculated to assess the quality of the target dose coverage. Complexity of the resulting fluence maps was minimized using the sum of positive gradients technique. The results showed XMRT's ability to improve healthy-organ dose reduction while yielding comparable coverage of the target relative to IMRT for all geometries. All three energy-optimization approaches yielded similar HI and CNs for all geometries, as well as a similar degree of fluence map complexity. The dose reduction provided by XMRT was demonstrated by the relative decrease in the dose metrics for the majority of the organs at risk (OARs) in all geometries. Largest reductions ranged between 5% to 10% in the mean dose to OARs for two of the geometries when compared with both single-energy IMRT schemes. XMRT has shown potential dosimetric benefits through improved OAR sparing by allowing beam energy to act as a degree of freedom in the EBRT optimization process. PMID:26808280

  11. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: Initial report on a randomized controlled clinical trial

    SciTech Connect

    Pow, Edmond; Kwong, Dora; McMillan, Anne S. . E-mail: annemcmillan@hku.hk; Wong, May; Sham, Jonathan; Leung, Lucullus; Leung, W. Keung

    2006-11-15

    Purpose: To compare directly the effect of intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) on salivary flow and quality of life (QoL) in patients with early-stage nasopharyngeal carcinoma (NPC). Methods and Materials: Fifty-one patients with T2, N0/N1, M0 NPC took part in a randomized controlled clinical study and received IMRT or CRT. Stimulated whole (SWS) and parotid (SPS) saliva flow were measured and Medical Outcomes Short Form 36 (SF-36), European Organization for Research and Treatment of Cancer (EORTC) core quetionnaire, and EORTC head-and-neck module (QLQ-H and N35) were completed at baseline and 2, 6, and 12 months after radiotherapy. Results: Forty-six patients (88%) were in disease remission 12 months after radiotherapy. At 12 months postradiotherapy, 12 (50.0%) and 20 patients (83.3%) in the IMRT group had recovered at least 25% of preradiotherapy SWS and SPS flow respectively, compared with 1 (4.8%) and 2 patients (9.5%), respectively, in the CRT group. Global health scores showed continuous improvement in QoL after both treatments (p < 0.001). However, after 12 months subscale scores for role-physical, bodily pain, and physical function were significantly higher in the IMRT group, indicating a better condition (p < 0.05). Dry mouth and sticky saliva were problems in both groups 2 months after treatment. In the IMRT group, there was consistent improvement over time with xerostomia-related symptoms significantly less common than in the CRT group at 12 months postradiotherapy. Conclusions: IMRT was significantly better than CRT in terms of parotid sparing and improved QoL for early-stage disease. The findings support the case for assessment of health-related QoL in relation to head-and-neck cancer using a site-specific approach.

  12. Comparison of Heart and Coronary Artery Doses Associated With Intensity-Modulated Radiotherapy Versus Three-Dimensional Conformal Radiotherapy for Distal Esophageal Cancer

    SciTech Connect

    Kole, Thomas P.; Aghayere, Osarhieme; Kwah, Jason; Yorke, Ellen D.; Goodman, Karyn A.

    2012-08-01

    Purpose: To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Methods and Materials: Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters were statistically evaluated using the Wilcoxon rank-sum test. Results: Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Conclusions: Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D

  13. Spine radiosurgery for the local treatment of spine metastases: Intensity-modulated radiotherapy, image guidance, clinical aspects and future directions

    PubMed Central

    de Moraes, Fabio Ynoe; Taunk, Neil Kanth; Laufer, Ilya; Neves-Junior, Wellington Furtado Pimenta; Hanna, Samir Abdallah; de Andrade Carvalho, Heloisa; Yamada, Yoshiya

    2016-01-01

    Many cancer patients will develop spinal metastases. Local control is important for preventing neurologic compromise and to relieve pain. Stereotactic body radiotherapy or spinal radiosurgery is a new radiation therapy technique for spinal metastasis that can deliver a high dose of radiation to a tumor while minimizing the radiation delivered to healthy, neighboring tissues. This treatment is based on intensity-modulated radiotherapy, image guidance and rigid immobilization. Spinal radiosurgery is an increasingly utilized treatment method that improves local control and pain relief after delivering ablative doses of radiation. Here, we present a review highlighting the use of spinal radiosurgery for the treatment of metastatic tumors of the spine. The data used in the review were collected from both published studies and ongoing trials. We found that spinal radiosurgery is safe and provides excellent tumor control (up to 94% local control) and pain relief (up to 96%), independent of histology. Extensive data regarding clinical outcomes are available; however, this information has primarily been generated from retrospective and nonrandomized prospective series. Currently, two randomized trials are enrolling patients to study clinical applications of fractionation schedules spinal Radiosurgery. Additionally, a phase I clinical trial is being conducted to assess the safety of concurrent stereotactic body radiotherapy and ipilimumab for spinal metastases. Clinical trials to refine clinical indications and dose fractionation are ongoing. The concomitant use of targeted agents may produce better outcomes in the future. PMID:26934240

  14. Intensity-modulated radiotherapy (IMRT) for carcinoma of the maxillary sinus: A comparison of IMRT planning systems

    SciTech Connect

    Ahmed, Raef S. . E-mail: Rahmed@uabmc.edu; Ove, Roger; Duan, Jun; Popple, Richard; Cobb, Glenn

    2006-10-01

    The treatment of maxillary sinus carcinoma with forward planning can be technically difficult when the neck also requires radiotherapy. This difficulty arises because of the need to spare the contralateral face while treating the bilateral neck. There is considerable potential for error in clinical setup and treatment delivery. We evaluated intensity-modulated radiotherapy (IMRT) as an improvement on forward planning, and compared several inverse planning IMRT platforms. A composite dose-volume histogram (DVH) was generated from a complex forward planned case. We compared the results with those generated by sliding window fixed field dynamic multileaf collimator (MLC) IMRT, using sets of coplanar beams. All setups included an anterior posterior (AP) beam, and 3-, 5-, 7-, and 9-field configurations were evaluated. The dose prescription and objective function priorities were invariant. We also evaluated 2 commercial tomotherapy IMRT delivery platforms. DVH results from all of the IMRT approaches compared favorably with the forward plan. Results for the various inverse planning approaches varied considerably across platforms, despite an attempt to prescribe the therapy similarly. The improvement seen with the addition of beams in the fixed beam sliding window case was modest. IMRT is an effective means of delivering radiotherapy reliably in the complex setting of maxillary sinus carcinoma with neck irradiation. Differences in objective function definition and optimization algorithms can lead to unexpected differences in the final dose distribution, and our evaluation suggests that these factors are more significant than the beam arrangement or number of beams.

  15. Hypofractionated Accelerated Radiotherapy Using Concomitant Intensity-Modulated Radiotherapy Boost Technique for Localized High-Risk Prostate Cancer: Acute Toxicity Results

    SciTech Connect

    Lim, Tee S.; Cheung, Patrick Loblaw, D. Andrew; Morton, Gerard; Sixel, Katharina E.; Pang, Geordi; Basran, Parminder; Zhang Liying; Tirona, Romeo; Szumacher, Ewa; Danjoux, Cyril; Choo, Richard; Thomas, Gillian

    2008-09-01

    Purpose: To evaluate the acute toxicities of hypofractionated accelerated radiotherapy (RT) using a concomitant intensity-modulated RT boost in conjunction with elective pelvic nodal irradiation for high-risk prostate cancer. Methods and Materials: This report focused on 66 patients entered into this prospective Phase I study. The eligible patients had clinically localized prostate cancer with at least one of the following high-risk features (Stage T3, Gleason score {>=}8, or prostate-specific antigen level >20 ng/mL). Patients were treated with 45 Gy in 25 fractions to the pelvic lymph nodes using a conventional four-field technique. A concomitant intensity-modulated radiotherapy boost of 22.5 Gy in 25 fractions was delivered to the prostate. Thus, the prostate received 67.5 Gy in 25 fractions within 5 weeks. Next, the patients underwent 3 years of adjuvant androgen ablative therapy. Acute toxicities were assessed using the Common Terminology Criteria for Adverse Events, version 3.0, weekly during treatment and at 3 months after RT. Results: The median patient age was 71 years. The median pretreatment prostate-specific antigen level and Gleason score was 18.7 ng/L and 8, respectively. Grade 1-2 genitourinary and gastrointestinal toxicities were common during RT but most had settled at 3 months after treatment. Only 5 patients had acute Grade 3 genitourinary toxicity, in the form of urinary incontinence (n = 1), urinary frequency/urgency (n = 3), and urinary retention (n = 1). None of the patients developed Grade 3 or greater gastrointestinal or Grade 4 or greater genitourinary toxicity. Conclusion: The results of the present study have indicated that hypofractionated accelerated RT with a concomitant intensity-modulated RT boost and pelvic nodal irradiation is feasible with acceptable acute toxicity.

  16. Radiotherapy for Early Mediastinal Hodgkin Lymphoma According to the German Hodgkin Study Group (GHSG): The Roles of Intensity-Modulated Radiotherapy and Involved-Node Radiotherapy

    SciTech Connect

    Koeck, Julia; Abo-Madyan, Yasser; Lohr, Frank; Stieler, Florian; Kriz, Jan; Mueller, Rolf-Peter; Wenz, Frederik; Eich, Hans Theodor

    2012-05-01

    Purpose: Cure rates of early Hodgkin lymphoma (HL) are high, and avoidance of late complications and second malignancies have become increasingly important. This comparative treatment planning study analyzes to what extent target volume reduction to involved-node (IN) and intensity-modulated (IM) radiotherapy (RT), compared with involved-field (IF) and three-dimensional (3D) RT, can reduce doses to organs at risk (OAR). Methods and Materials: Based on 20 computed tomography (CT) datasets of patients with early unfavorable mediastinal HL, we created treatment plans for 3D-RT and IMRT for both the IF and IN according to the guidelines of the German Hodgkin Study Group (GHSG). As OAR, we defined heart, lung, breasts, and spinal cord. Dose-volume histograms (DVHs) were evaluated for planning target volumes (PTVs) and OAR. Results: Average IF-PTV and IN-PTV were 1705 cm{sup 3} and 1015 cm{sup 3}, respectively. Mean doses to the PTVs were almost identical for all plans. For IF-PTV/IN-PTV, conformity was better with IMRT and homogeneity was better with 3D-RT. Mean doses to the heart (17.94/9.19 Gy for 3D-RT and 13.76/7.42 Gy for IMRT) and spinal cord (23.93/13.78 Gy for 3D-RT and 19.16/11.55 Gy for IMRT) were reduced by IMRT, whereas mean doses to lung (10.62/8.57 Gy for 3D-RT and 12.77/9.64 Gy for IMRT) and breasts (left 4.37/3.42 Gy for 3D-RT and 6.04/4.59 Gy for IMRT, and right 2.30/1.63 Gy for 3D-RT and 5.37/3.53 Gy for IMRT) were increased. Volume exposed to high doses was smaller for IMRT, whereas volume exposed to low doses was smaller for 3D-RT. Pronounced benefits of IMRT were observed for patients with lymph nodes anterior to the heart. IN-RT achieved substantially better values than IF-RT for almost all OAR parameters, i.e., dose reduction of 20% to 50%, regardless of radiation technique. Conclusions: Reduction of target volume to IN most effectively improves OAR sparing, but is still considered investigational. For the time being, IMRT should be considered for

  17. Clinical Outcome in Posthysterectomy Cervical Cancer Patients Treated With Concurrent Cisplatin and Intensity-Modulated Pelvic Radiotherapy: Comparison With Conventional Radiotherapy

    SciTech Connect

    Chen, M.-F.; Tseng, C.-J.; Tseng, C.-C.; Kuo, Y.-C.; Yu, C.-Y.; Chen, W.-C. . E-mail: rto_chen@yahoo.com.tw

    2007-04-01

    Purpose: To assess local control and acute and chronic toxicity with intensity-modulated radiation therapy (IMRT) as adjuvant treatment of cervical cancer. Methods and Materials: Between April 2002 and February 2006, 68 patients at high risk of cervical cancer after hysterectomy were treated with adjuvant pelvic radiotherapy and concurrent chemotherapy. Adjuvant chemotherapy consisted of cisplatin (50 mg/m{sup 2}) for six cycles every week. Thirty-three patients received adjuvant radiotherapy by IMRT. Before the IMRT series was initiated, 35 other patients underwent conventional four-field radiotherapy (Box-RT). The two groups did not differ significantly in respect of clinicopathologic and treatment factors. Results: IMRT provided compatible local tumor control compared with Box-RT. The actuarial 1-year locoregional control for patients in the IMRT and Box-RT groups was 93% and 94%, respectively. IMRT was well tolerated, with significant reduction in acute gastrointestinal (GI) and genitourinary (GU) toxicities compared with the Box-RT group (GI 36 vs. 80%, p = 0.00012; GU 30 vs. 60%, p = 0.022). Furthermore, the IMRT group had lower rates of chronic GI and GU toxicities than the Box-RT patients (GI 6 vs. 34%, p = 0.002; GU 9 vs. 23%, p = 0.231). Conclusion: Our results suggest that IMRT significantly improved the tolerance to adjuvant chemoradiotherapy with compatible locoregional control compared with conventional Box-RT. However, longer follow-up and more patients are needed to confirm the benefits of IMRT.

  18. Quality of Life After Hypofractionated Concomitant Intensity-Modulated Radiotherapy Boost for High-Risk Prostate Cancer

    SciTech Connect

    Quon, Harvey; Cheung, Patrick C.F.; Loblaw, D. Andrew; Morton, Gerard; Pang, Geordi; Szumacher, Ewa; Danjoux, Cyril; Choo, Richard; Kiss, Alex; Mamedov, Alexandre; Deabreu, Andrea

    2012-06-01

    Purpose: To evaluate the change in health-related quality of life (QOL) of patients with high-risk prostate cancer treated using hypofractionated radiotherapy combined with long-term androgen deprivation therapy. Methods and Materials: A prospective Phase I-II study enrolled patients with any of the following: clinical Stage T3 disease, prostate-specific antigen level {>=}20 ng/mL, or Gleason score 8-10. Radiotherapy consisted of 45 Gy (1.8 Gy per fraction) to the pelvic lymph nodes with a concomitant 22.5 Gy intensity-modulated radiotherapy boost to the prostate, for a total of 67.5 Gy (2.7 Gy per fraction) in 25 fractions over 5 weeks. Daily image guidance was performed using three gold seed fiducials. Quality of life was measured using the Expanded Prostate Cancer Index Composite (EPIC), a validated tool that assesses four primary domains (urinary, bowel, sexual, and hormonal). Results: From 2004 to 2007, 97 patients were treated. Median follow-up was 39 months. Compared with baseline, at 24 months there was no statistically significant change in the mean urinary domain score (p = 0.99), whereas there were decreases in the bowel (p < 0.01), sexual (p < 0.01), and hormonal (p < 0.01) domains. The proportion of patients reporting a clinically significant difference in EPIC urinary, bowel, sexual, and hormonal scores at 24 months was 27%, 31%, 55%, and 60%, respectively. However, moderate and severe distress related to these symptoms was minimal, with increases of only 3% and 5% in the urinary and bowel domains, respectively. Conclusions: Hypofractionated radiotherapy combined with long-term androgen deprivation therapy was well tolerated. Although there were modest rates of clinically significant patient-reported urinary and bowel toxicity, most of this caused only mild distress, and moderate and severe effects on QOL were limited. Additional follow-up is ongoing to characterize long-term QOL.

  19. Treatment outcome of localized prostate cancer by 70 Gy hypofractionated intensity-modulated radiotherapy with a customized rectal balloon

    PubMed Central

    Kim, Hyunjung; Kim, Jun Won; Hong, Sung Joon; Rha, Koon Ho; Lee, Chang-Geol; Yang, Seung Choul; Choi, Young Deuk; Suh, Chang-Ok

    2014-01-01

    Purpose We aimed to analyze the treatment outcome and long-term toxicity of 70 Gy hypofractionated intensity-modulated radiotherapy (IMRT) for localized prostate cancer using a customized rectal balloon. Materials and Methods We reviewed medical records of 86 prostate cancer patients who received curative radiotherapy between January 2004 and December 2011 at our institution. Patients were designated as low (12.8%), intermediate (20.9%), or high risk (66.3%). Thirty patients received a total dose of 70 Gy in 28 fractions over 5 weeks via IMRT (the Hypo-IMRT group); 56 received 70.2 Gy in 39 fractions over 7 weeks via 3-dimensional conformal radiotherapy (the CF-3DRT group, which served as a reference for comparison). A customized rectal balloon was placed in Hypo-IMRT group throughout the entire radiotherapy course. Androgen deprivation therapy was administered to 47 patients (Hypo-IMRT group, 17; CF-3DRT group, 30). Late genitourinary (GU) and gastrointestinal (GI) toxicity were evaluated according to the Radiation Therapy Oncology Group criteria. Results The median follow-up period was 74.4 months (range, 18.8 to 125.9 months). The 5-year actuarial biochemical relapse-free survival rates for low-, intermediate-, and high-risk patients were 100%, 100%, and 88.5%, respectively, for the Hypo-IMRT group and 80%, 77.8%, and 63.6%, respectively, for the CF-3DRT group (p < 0.046). No patient presented with acute or late GU toxicity ≥grade 3. Late grade 3 GI toxicity occurred in 2 patients (3.6%) in the CF-3DRT group and 1 patient (3.3%) in the Hypo-IMRT group. Conclusion Hypo-IMRT with a customized rectal balloon resulted in excellent biochemical control rates with minimal toxicity in localized prostate cancer patients. PMID:25324991

  20. Tumor Regression and Patterns of Distant Metastasis of T1-T2 Nasopharyngeal Carcinoma with Intensity-Modulated Radiotherapy

    PubMed Central

    Wu, Ming-Yao; He, Xia-Yun; Hu, Chao-Su

    2016-01-01

    Purpose To study tumor regression and failure patterns in T1-T2 non-metastatic nasopharyngeal carcinoma (NPC) after intensity-modulated radiotherapy (IMRT). Methods A retrospective analysis of 139 nasopharyngeal carcinoma patients treated with IMRT between January 2005 and December 2010 in our center was performed. According to the AJCC staging system, all primary lesions were attributed to T1 and T2. The prescription doses were 66 Gy at 30 fractions to gross tumor volume of the nasopharynx and the positive neck nodes, 60 Gy to high-risk clinical target volume and 54 Gy to low-risk clinical target volume. Patients staged III, IV A/B or II (lymph node measured 4 cm or more in diameter) received platinum-based chemotherapy. Results By the end of radiotherapy, 7.2% (10/139), 23.7% (33/139), and 9.4% (13/139) of patients had residual lesions in the nasopharynx, cervical lymph nodes and retropharyngeal lymph nodes, respectively. The majority of patients had complete remission within 6 months of radiotherapy completion. Five months after IMRT, three patients with residual tumors in the cervical lymph nodes underwent surgery. Among these patients, two patients had positive pathological findings, and one patient had negative findings. With a median follow-up of 59 months, the 5-year overall survival, local control, regional control and distant metastasis-free rates were 87.8%, 96.7%, 94.9% and 89.1%, respectively. Fifteen patients developed distant metastases, representing the primary failure pattern. Conclusions Most residual lesions that persisted after IMRT vanished completely in six months. Considering the potential damage to normal structures, clinicians should be cautious when considering the use of boost irradiation after radiotherapy. Distant metastasis was the primary cause of treatment failure, which was significantly higher in N2-3 patients than in N0-1. Additional studies to better understand distant metastases are needed. PMID:27119991

  1. [{sup 18}FDG] PET-CT-Based Intensity-Modulated Radiotherapy Treatment Planning of Head and Neck Cancer

    SciTech Connect

    El-Bassiouni, Mazen; Ciernik, I. Frank Davis, J. Bernard; El-Attar, Inas; Reiner, Beatrice; Burger, Cyrill; Goerres, Gerhard W.; Studer, Gabriela M.

    2007-09-01

    Purpose: To define the best threshold for tumor volume delineation of the (18) fluoro-2-deoxy-glucose positron emission tomography ({sup 18}FDG-PET) signal for radiotherapy treatment planning of intensity-modulated radiotherapy (IMRT) in head and neck cancer. Methods and Materials: In 25 patients with head-and-neck cancer, CT-based gross tumor volume (GTV{sub CT}) was delineated. After PET-CT image fusion, window level (L) was adapted to best fit the GTV{sub CT}, and GTV{sub PET} was delineated. Tumor maximum (S) and background uptake (B) were measured, and the threshold of the background-subtracted tumor maximum uptake (THR) was used for PET signal segmentation. Gross tumor volumes were expanded to planning target volumes (PTVs) and analyzed. Results: The mean value of S was 40 kBq/mL, S/B ratio was 16, and THR was 26%. The THR correlated with S (r = -0.752), but no correlation between THR and the S/B ratio was seen (r = -0.382). In 77% of cases, S was >30 kBq/mL, and in 23% it was {<=}30 kBq/mL, with a mean THR of 21.4% and 41.6%, respectively (p < 0.001). Using PTV{sub PET} in radiotherapy treatment planning resulted in a reduced PTV in 72% of cases, while covering 88.2% of GTV{sub CT}, comparable to the percentage of GTV{sub PET} covered by PTV{sub CT} (p = 0.15). Conclusions: A case-specific PET signal threshold is optimal in PET-based radiotherapy treatment planning. Signal gating using a THR of 20% in tumors with S >30% {+-} 1.6% kBq/mL and 40% in tumors with S {<=}30% {+-} 1.6% kBq/mL is suitable.

  2. Comparison of intensity-modulated radiotherapy with three-dimensional conformal radiation therapy planning for glioblastoma multiforme

    SciTech Connect

    Chan, Maria F.; Schupak, Karen; Burman, Chandra; Chui, C.-S.; Ling, C. Clifton

    2003-12-31

    This study was designed to assess the feasibility and potential benefit of using intensity-modulated radiotherapy (IMRT) planning for patients newly diagnosed with glioblastoma multiforme (GBM). Five consecutive patients with confirmed histopathologically GBM were entered into the study. These patients were planned and treated with 3-dimensional conformal radiation therapy (3DCRT) using our standard plan of 3 noncoplanar wedged fields. They were then replanned with the IMRT method that included a simultaneous boost to the gross tumor volume (GTV). The dose distributions and dose-volume histograms (DHVs) for the planning treatment volume (PTV), GTV, and the relevant critical structures, as obtained with 3DCRT and IMRT, respectively, were compared. In both the 3DCRT and IMRT plans, 59.4 Gy was delivered to the GTV plus a margin of 2.5 cm, with doses to critical structures below the tolerance threshold. However, with the simultaneous boost in IMRT, a higher tumor dose of {approx}70 Gy could be delivered to the GTV, while still maintaining the uninvolved brain at dose levels of the 3DCRT technique. In addition, our experience indicated that IMRT planning is less labor intensive and time consuming than 3DCRT planning. Our study shows that IMRT planning is feasible and efficient for radiotherapy of GBM. In particular, IMRT can deliver a simultaneous boost to the GTV while better sparing the normal brain and other critical structures.

  3. Limited Advantages of Intensity-Modulated Radiotherapy Over 3D Conformal Radiation Therapy in the Adjuvant Management of Gastric Cancer

    SciTech Connect

    Alani, Shlomo; Soyfer, Viacheslav; Strauss, Natan; Schifter, Dan; Corn, Benjamin W.

    2009-06-01

    Purpose: Although chemoradiotherapy was considered the standard adjuvant treatment for gastric cancer, a recent Phase III trial (Medical Research Council Adjuvant Gastric Infusional Chemotherapy [MAGIC]) did not include radiotherapy in the randomization scheme because it was considered expendable. Given radiotherapy's potential, efforts needed to be made to optimize its use for treating gastric cancer. We assessed whether intensity-modulated radiotherapy (IMRT) could improve upon our published results in patients treated with three-dimensional (3D) conformal therapy. Methods and Materials: Fourteen patients with adenocarcinoma of the stomach were treated with adjuvant chemoradiotherapy using a noncoplanar four-field arrangement. Subsequently, a nine-field IMRT plan was designed using a CMS Xio IMRT version 4.3.3 module. Two IMRT beam arrangements were evaluated: beam arrangement 1 consisted of gantry angles of 0 deg., 53 deg., 107 deg., 158 deg., 204 deg., 255 deg., and 306 deg.. Beam arrangement 2 consisted of gantry angles of 30 deg., 90 deg., 315 deg., and 345 deg.; a gantry angle of 320 deg./couch, 30 deg.; and a gantry angle of 35{sup o}/couch, 312{sup o}. Both the target volume coverage and the dose deposition in adjacent critical organs were assessed in the plans. Dose-volume histograms were generated for the clinical target volume, kidneys, spine, and liver. Results: Comparison of the clinical target volumes revealed satisfactory coverage by the 95% isodose envelope using either IMRT or 3D conformal therapy. However, IMRT was only marginally better than 3D conformal therapy at protecting the spine and kidneys from radiation. Conclusions: IMRT confers only a marginal benefit in the adjuvant treatment of gastric cancer and should be used only in the small subset of patients with risk factors for kidney disease or those with a preexisting nephropathy.

  4. A Phase II Trial of Arc-Based Hypofractionated Intensity-Modulated Radiotherapy in Localized Prostate Cancer

    SciTech Connect

    Lock, Michael; Best, Lara; Wong, Eugene; Bauman, Glenn; D'Souza, David; Venkatesan, Varagur; Sexton, Tracy; Ahmad, Belal; Izawa, Jonathan; Rodrigues, George

    2011-08-01

    Purpose: To evaluate acute and late genitourinary (GU) and gastrointestinal (GI) toxicity and biochemical control of hypofractionated, image-guided (fiducial markers or ultrasound guidance), simplified intensity-modulated arc therapy for localized prostate cancer. Methods and Materials: This Phase II prospective clinical trial for T1a-2cNXM0 prostate cancer enrolled 66 patients who received 63.2 Gy in 20 fractions over 4 weeks. Fiducial markers were used for image guidance in 30 patients and daily ultrasound for the remainder. Toxicity was scored according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0. Results: Median follow-up was 36 months. Acute Phase Grade 2 and 3 toxicity was 34% and 9% for GU vs. 25% and 10% for GI symptoms. One Grade 4 acute GI toxicity occurred in a patient with unrecognized Crohn's disease. Late Grade 2 and 3 toxicity for GU was 14% and 5%, and GI toxicity was 25% and 3%. One late GI Grade 4 toxicity was observed in a patient with significant comorbidities (anticoagulation, vascular disease). Acute GI toxicity {>=}Grade 2 was shown to be a predictor for late toxicity Grade {>=}2 (p < 0.001). The biochemical disease-free survival at 3 years was 95%. Conclusions: Hypofractionated simplified intensity-modulated arc therapy radiotherapy given as 63.2 Gy in 20 fractions demonstrated promising biochemical control rates; however, higher rates of acute Grade 3 GU and GI toxicity and higher late Grade 2 GU and GI toxicity were noted. Ongoing randomized controlled trials should ultimately clarify issues regarding patient selection and the true rate of severe toxicity that can be directly attributed to hypofractionated radiotherapy.

  5. Positron Emission Tomography-Guided, Focal-Dose Escalation Using Intensity-Modulated Radiotherapy for Head and Neck Cancer

    SciTech Connect

    Madani, Indira . E-mail: indira@krtkg1.ugent.be; Duthoy, Wim; Derie, Cristina R.N.; De Gersem, Werner Ir.; Boterberg, Tom; Saerens, Micky; Jacobs, Filip Ir.; Gregoire, Vincent; Lonneux, Max; Vakaet, Luc; Vanderstraeten, Barbara; Bauters, Wouter; Bonte, Katrien; Thierens, Hubert; Neve, Wilfried de

    2007-05-01

    Purpose: To assess the feasibility of intensity-modulated radiotherapy (IMRT) using positron emission tomography (PET)-guided dose escalation, and to determine the maximum tolerated dose in head and neck cancer. Methods and Materials: A Phase I clinical trial was designed to escalate the dose limited to the [{sup 18}-F]fluoro-2-deoxy-D-glucose positron emission tomography ({sup 18}F-FDG-PET)-delineated subvolume within the gross tumor volume. Positron emission tomography scanning was performed in the treatment position. Intensity-modulated radiotherapy with an upfront simultaneously integrated boost was employed. Two dose levels were planned: 25 Gy (level I) and 30 Gy (level II), delivered in 10 fractions. Standard IMRT was applied for the remaining 22 fractions of 2.16 Gy. Results: Between 2003 and 2005, 41 patients were enrolled, with 23 at dose level I, and 18 at dose level II; 39 patients completed the planned therapy. The median follow-up for surviving patients was 14 months. Two cases of dose-limiting toxicity occurred at dose level I (Grade 4 dermitis and Grade 4 dysphagia). One treatment-related death at dose level II halted the study. Complete response was observed in 18 of 21 (86%) and 13 of 16 (81%) evaluated patients at dose levels I and II (p < 0.7), respectively, with actuarial 1-year local control at 85% and 87% (p n.s.), and 1-year overall survival at 82% and 54% (p = 0.06), at dose levels I and II, respectively. In 4 of 9 patients, the site of relapse was in the boosted {sup 18}F-FDG-PET-delineated region. Conclusions: For head and neck cancer, PET-guided dose escalation appears to be well-tolerated. The maximum tolerated dose was not reached at the investigated dose levels.

  6. A Matched Control Analysis of Adjuvant and Salvage High-Dose Postoperative Intensity-Modulated Radiotherapy for Prostate Cancer

    SciTech Connect

    Ost, Piet; De Troyer, Bart; Fonteyne, Valerie; Oosterlinck, Willem; De Meerleer, Gert

    2011-08-01

    Purpose: It is unclear whether immediate adjuvant radiotherapy for high-risk disease at prostatectomy (capsule perforation, seminal vesicle invasion, and/or positive surgical margins) is equivalent to delayed salvage radiotherapy at biochemical recurrence. We performed a matched case analysis comparing high-dose adjuvant intensity modulated radiotherapy (A-IMRT) with salvage IMRT (S-IMRT). Methods and Materials: One hundred forty-four patients with high-risk disease at prostatectomy were referred for A-IMRT, and 134 patients with high-risk disease were referred at biochemical recurrence (rising prostate-specific antigen [PSA], following prostatectomy, above 0.2 ng/ml) for S-IMRT. Patients were matched in a 1:1 ratio according to preoperative PSA level, Gleason score, and pT stage. Median doses of 74 Gy and 76 Gy were prescribed for A-IMRT and S-IMRT, respectively. We report biochemical relapse free survival (bRFS) rates using the Kaplan-Meier method. Univariate and multivariate analyses were used to examine tumour- and treatment-related factors. Results: A total of 178 patients were matched (89:89). From the end of radiotherapy, the median follow-up was 36 months for both groups. The 3-year bRFS rate for the A-IMRT group was 90% compared to 65% for the S-IMRT group (p < 0.05). On multivariate analysis, S-IMRT, Gleason grades of {>=}4+3, perineural invasion, preoperative PSA level of {>=}10 ng/ml, and omission of androgen deprivation (AD) were independent predictors for a reduced bRFS (p < 0.05). From the date of surgery, the median follow-up was 43 and 60 months for A-IMRT and S-IMRT, respectively. The 3-year bRFS rate for A-IMRT was 91% compared to 79% for S-IMRT (p < 0.05). On multivariate analysis, Gleason grades of {>=}4+3, perineural invasion, and omission of AD were independent predictors for a reduced bRFS (p < 0.05). S-IMRT was no longer an independent prognostic factor (p = 0.08). Conclusions: High-dose A-IMRT significantly improves 3-year bRFS compared to

  7. Recurrence in Region of Spared Parotid Gland After Definitive Intensity-Modulated Radiotherapy for Head and Neck Cancer

    SciTech Connect

    Cannon, Donald M.; Lee, Nancy Y.

    2008-03-01

    Purpose: To discuss the implications of three examples of periparotid recurrence after definitive intensity-modulated radiotherapy (IMRT) for head and neck cancer (HNC). Methods and Materials: We present 3 patients with HNC who underwent definitive IMRT with concurrent chemotherapy and later had treatment failure in or near a spared parotid gland. Two patients had bilateral multilevel nodal disease, and all had Level II nodal disease ipsilateral to the site of recurrence. The patients were treated using dose-painting IMRT with a dose of 70 Gy to the gross tumor volume and 59.4 Gy or 54 Gy to the high-risk or low-risk clinical tumor volume, respectively. The parotid glands were spared bilaterally. The patients had not undergone any surgical treatment for HNC before radiotherapy. Results: All patients had treatment failure in the region of a spared parotid gland. Failure in the 2 patients with bilateral multilevel nodal involvement occurred in the periparotid lymph nodes. The third patient developed a dermal metastasis near the tail of a spared parotid gland. On pretreatment imaging, the 2 patients with nodal failure had small nonspecific periparotid nodules that showed no hypermetabolic activity on positron emission tomography. Conclusion: For HNC patients receiving definitive IMRT, nonspecific positron emission tomography-negative periparotid nodules on pretreatment imaging should raise the index of suspicion for subclinical disease in the presence of multilevel or Level II nodal metastases. Additional evaluation of such nodules might be indicated before sparing the ipsilateral parotid gland.

  8. A Study of Image-Guided Intensity-Modulated Radiotherapy With Fiducials for Localized Prostate Cancer Including Pelvic Lymph Nodes

    SciTech Connect

    Hsu, Annie; Pawlicki, Todd; Luxton, Gary; Hara, Wendy; King, Christopher R. . E-mail: crking@stanford.edu

    2007-07-01

    Purpose: To study the impact on nodal coverage and dose to fixed organs at risk when using daily fiducial localization of the prostate to deliver intensity-modulated radiotherapy (IMRT). Methods and Materials: Five patients with prostate cancer in whom prostate and pelvic nodes were irradiated with IMRT were studied. Dose was prescribed such that 95% of the prostate planning target volume (PTV) and 90% of the nodal PTV were covered. Random and systematic prostate displacements in the anterior-posterior, superior-inferior, and left-right directions were simulated to shift the original isocenter of the IMRT plan. The composite dose during the course of treatment was calculated. Results: Compared with a static setup, simulating random shifts reduced dose by less than 1.5% for nodal hotspot (i.e., dose to 1 cm{sup 3}), by less than 1% for the 90% nodal PTV coverage, and by less than 0.5% for the nodal mean dose. Bowel and femoral head hotspots were reduced by less than 1.5% and 2%, respectively. A 10-mm systematic offset reduced nodal coverage by up to 10%. Conclusion: The use of prostate fiducials for daily localization during IMRT treatment results in negligible changes in dose coverage of pelvic nodes or normal tissue sparing in the absence of a significant systematic offset. This offers a simple and practical solution to the problem of image-guided radiotherapy for prostate cancer when including pelvic nodes.

  9. A prospective comparison of acute intestinal toxicity following whole pelvic versus small field intensity-modulated radiotherapy for prostate cancer

    PubMed Central

    Kim, Yeon Joo; Park, Jin-hong; Yun, In-Ha; Kim, Young Seok

    2016-01-01

    Purpose To compare the acute intestinal toxicity of whole pelvic (WP) and small field (SF) intensity-modulated radiotherapy (IMRT) for prostate cancer using dosimetric and metabolic parameters as well as clinical findings. Methods Patients who received IMRT in either a definitive or postoperative setting were prospectively enrolled. Target volume and organs at risk including intestinal cavity (IC) were delineated in every patient by a single physician. The IC volume that received a 10–50 Gy dose at 5-Gy intervals (V10–V50) and the percentage of irradiated volume as a fraction of total IC volume were calculated. Plasma citrulline levels, as an objective biological marker, were checked at three time points: baseline and after exposure to 30 Gy and 60 Gy. Results Of the 41 patients, only six experienced grade 1 acute intestinal toxicity. Although all dose–volume parameters were significantly worse following WP than SF IMRT, there was no statistically significant relationship between these dosimetric parameters and clinical symptoms. Plasma citrulline levels did not show a serial decrease by radiotherapy volume difference (WP versus SF) and were not relevant to the irradiated doses. Conclusion Given that WP had comparable acute intestinal toxicities to those associated with SF, WP IMRT appears to be a feasible approach for the treatment of prostate cancer despite dosimetric disadvantages. PMID:27022287

  10. Carotid-Sparing Intensity-Modulated Radiotherapy for Early-Stage Squamous Cell Carcinoma of the True Vocal Cord

    SciTech Connect

    Chera, Bhishamjit S.; Amdur, Robert J.; Morris, Christopher G.; Mendenhall, William M.

    2010-08-01

    Purpose: To compare radiation doses to carotid arteries among various radiotherapy techniques for treatment of early-stage squamous cell carcinoma (SCC) of the true vocal cords. Methods and Materials: Five patients were simulated using computed tomography (CT). Clinical and planning target volumes (PTV) were created for bilateral and unilateral stage T1 vocal cord cancers. Planning risk volumes for the carotid arteries and spinal cord were delineated. For each patient, three treatment plans were designed for bilateral and unilateral target volumes: opposed laterals (LATS), three-dimensional conformal radiotherapy (3DCRT), and intensity-modulated radiotherapy (IMRT), for a total of 30 plans. More than 95% of the PTV received the prescription dose (63Gy at 2.25 Gy per treatment). Results: Carotid dose was lowest with IMRT. With a bilateral vocal cord target, the median carotid dose was 10Gy with IMRT vs. 25 Gy with 3DCRT and 38 Gy with LATS (p < 0.05); with a unilateral target, the median carotid dose was 4 Gy with IMRT vs. 19 Gy with 3DCRT and 39 Gy with LATS (p < 0.05). The dosimetric tradeoff with IMRT is a small area of high dose in the PTV. The worst heterogeneity results were at a maximum point dose of 80 Gy (127%) in a unilateral target that was close to the carotid. Conclusions: There is no question that IMRT can reduce the dose to the carotid arteries in patients with early-stage vocal cord cancer. The question is whether the potential advantage of reducing the carotid dose outweighs the risk of tumor recurrence due to contouring errors and organ motion and the risk of complications from dose heterogeneity.

  11. A Novel Dose Constraint to Reduce Xerostomia in Head-and-Neck Cancer Patients Treated With Intensity-Modulated Radiotherapy

    SciTech Connect

    Strigari, Lidia; Benassi, Marcello; Arcangeli, Giorgio; Bruzzaniti, Vicente; Giovinazzo, Giuseppe; Marucci, Laura

    2010-05-01

    Purpose: To investigate the predictors of incidence and duration of xerostomia (XT) based on parotid glands (PG), submandibular glands (SMG), and both glands taken as a whole organ (TG) in head-and-neck cancer patients treated with intensity-modulated radiotherapy. Methods and Materials: A prospective study was initiated in May 2003. Sixty-three head-and-neck patients (44 with nasopharynx cancer) were included in the analysis. Using the dose-volume histogram the PG, SMG, and TG mean doses were calculated. Unstimulated and stimulated salivary flow were measured and XT-related questionnaires were compiled before and at 3, 6, 12, 18, and 24 months after radiotherapy. Salivary gland toxicity was evaluated using the Radiation Therapy Oncology Group scale, and Grade >=3 toxicity was used as the endpoint. The XT incidence was investigated according to descriptive statistics and univariate and multivariate analysis. The Bonferroni method was used for multiple comparison adjustment. Results: After a reduced flow at 3 months after radiotherapy, recovery of salivary flow was observed over time. Primary site and salivary gland mean doses and volumes were identified in univariate analysis as prognostic factors. Multivariate analysis confirmed that TG mean dose (p = 0.00066) and pretreatment stimulated salivary flow (p = 0.00420) are independent factors for predicting XT. Conclusion: The TG mean dose correlates with XT as assessed by Radiation Therapy Oncology Group criteria, salivary output, and XT-related questionnaires. Our results suggest that TG mean dose is a candidate dose constraint for reducing XT, requiring considerably more validation in non-nasopharyngeal cancer patients.

  12. Hypopharyngeal Squamous Cell Carcinoma: Three-Dimensional or Intensity-Modulated Radiotherapy? A Single Institution’s Experience

    PubMed Central

    Katsoulakis, Evangelia; Riaz, Nadeem; Hu, Man; Morris, Luc; Sherman, Eric; McBride, Sean; Lee, Nancy

    2016-01-01

    Objectives/Hypothesis Compare outcomes of hypopharyngeal carcinoma that received conventional radiotherapy versus intensity-modulated radiotherapy (IMRT). Study Design Retrospective single-institution trial. Methods Between April 1990 and May 2011, 100 patients with hypopharyngeal cancer underwent curative radiotherapy (RT) at our institution: 50 with IMRT and 50 with conventional RT. The median age was 63 years. There were 12 T1, 22 T2, 37 T3, and 28 T4 patients. The majority of patients (82%) had nodal disease: 54% N2 and 8% N3. The majority of patients (83%) received chemotherapy. Of the patients who received chemotherapy, 84% received a platinum-based regimen. The median RT dose was 7,000 cGy. The majority of patients (62%) had prophylactic percutaneous endoscopic gastrostomy tube placement. Toxicities were reviewed. Local control (LC), locoregional control (LRC), freedom from distant metastasis (FFM) rates, functional larynx preservation (LP), laryngectomy-free survival (LFS), and overall-survival (OS) curves were generated using the Kaplan-Meier method. The log-rank test was used to test prognostic variables. Results With a median follow up of 48.4 months, the 3/5-year LC, LRC, FFM, LP, LFS and OS rates were 74%/69%, 77%/74%, 70%/66%, 51%/29%, 49.6%/31.8%, and 49%/34%, respectively. The median OS was 2.9 years. The 3-year LC rate for IMRT was 77% versus 81% for conventional RT (P = .91); 3-year LRC for IMRT was 85% versus 76% for conventional RT (P = .32). There was no increased local failure with IMRT. There was no difference in the rate of stricture with IMRT (32%) versus conventional RT (25.3%) (P = .86). Conclusions IMRT achieved comparable LC and LRC rates to conventional RT. PMID:26597398

  13. Intensity-Modulated Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer: A Dose-Escalation Planning Study

    SciTech Connect

    Lievens, Yolande; Nulens, An; Gaber, Mousa Amr; Defraene, Gilles; De Wever, Walter; Stroobants, Sigrid; Van den Heuvel, Frank

    2011-05-01

    Purpose: To evaluate the potential for dose escalation with intensity-modulated radiotherapy (IMRT) in positron emission tomography-based radiotherapy planning for locally advanced non-small-cell lung cancer (LA-NSCLC). Methods and Materials: For 35 LA-NSCLC patients, three-dimensional conformal radiotherapy and IMRT plans were made to a prescription dose (PD) of 66 Gy in 2-Gy fractions. Dose escalation was performed toward the maximal PD using secondary endpoint constraints for the lung, spinal cord, and heart, with de-escalation according to defined esophageal tolerance. Dose calculation was performed using the Eclipse pencil beam algorithm, and all plans were recalculated using a collapsed cone algorithm. The normal tissue complication probabilities were calculated for the lung (Grade 2 pneumonitis) and esophagus (acute toxicity, grade 2 or greater, and late toxicity). Results: IMRT resulted in statistically significant decreases in the mean lung (p <.0001) and maximal spinal cord (p = .002 and 0005) doses, allowing an average increase in the PD of 8.6-14.2 Gy (p {<=}.0001). This advantage was lost after de-escalation within the defined esophageal dose limits. The lung normal tissue complication probabilities were significantly lower for IMRT (p <.0001), even after dose escalation. For esophageal toxicity, IMRT significantly decreased the acute NTCP values at the low dose levels (p = .0009 and p <.0001). After maximal dose escalation, late esophageal tolerance became critical (p <.0001), especially when using IMRT, owing to the parallel increases in the esophageal dose and PD. Conclusion: In LA-NSCLC, IMRT offers the potential to significantly escalate the PD, dependent on the lung and spinal cord tolerance. However, parallel increases in the esophageal dose abolished the advantage, even when using collapsed cone algorithms. This is important to consider in the context of concomitant chemoradiotherapy schedules using IMRT.

  14. Superiority of helical tomotherapy on liver sparing and dose escalation in hepatocellular carcinoma: a comparison study of three-dimensional conformal radiotherapy and intensity-modulated radiotherapy

    PubMed Central

    Zhao, Qianqian; Wang, Renben; Zhu, Jian; Jin, Linzhi; Zhu, Kunli; Xu, Xiaoqing; Feng, Rui; Jiang, Shumei; Qi, Zhonghua; Yin, Yong

    2016-01-01

    Background and purpose To compare the difference of liver sparing and dose escalation between three-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT), and helical tomotherapy (HT) for hepatocellular carcinoma. Patients and methods Sixteen unresectable HCC patients were enrolled in this study. First, some evaluation factors of 3DCRT, IMRT, and HT plans were calculated with prescription dose at 50 Gy/25 fractions. Then, the doses were increased using HT or IMRT independently until either the plans reached 70 Gy or any normal tissue reached the dose limit according to quantitative analysis of normal tissue effects in the clinic criteria. Results The conformal index of 3DCRT was lower than that of IMRT (P<0.001) or HT (P<0.001), and the homogeneity index of 3DCRT was higher than that of IMRT (P<0.001) or HT (P<0.001). HT took the longest treatment time (P<0.001). For V50% (fraction of normal liver treated to at least 50% of the isocenter dose) of the normal liver, there was a significant difference: 3DCRT > IMRT > HT (P<0.001). HT had a lower Dmean (mean dose) and V20 (Vn, the percentage of organ volume receiving ≥n Gy) of liver compared with 3DCRT (P=0.005 and P=0.005, respectively) or IMRT (P=0.508 and P=0.007, respectively). Dmean of nontarget normal liver and V30 of liver were higher for 3DCRT than IMRT (P=0.005 and P=0.005, respectively) or HT (P=0.005 and P=0.005, respectively). Seven patients in IMRT (43.75%) and nine patients in HT (56.25%) reached the isodose 70 Gy, meeting the dose limit of the organs at risk. Conclusion HT may provide significantly better liver sparing and allow more patients to achieve higher prescription dose in HCC radiotherapy. PMID:27445485

  15. Hippocampal-Sparing Whole-Brain Radiotherapy: A 'How-To' Technique Using Helical Tomotherapy and Linear Accelerator-Based Intensity-Modulated Radiotherapy

    SciTech Connect

    Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.; Tewatia, Dinesh; Rowley, Howard; Kuo, John S.; Khuntia, Deepak; Tome, Wolfgang A.

    2010-11-15

    Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume was 3.3 cm{sup 3}, occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy{sub 2} using helical tomotherapy and by 81% to 0.73 Gy{sub 2} using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.

  16. Three-dimensional conformal versus intensity-modulated radiotherapy dose planning in stereotactic radiotherapy: Application of standard quality parameters for plan evaluation

    SciTech Connect

    Grzadziel, Aleksandra; Grosu, Anca-Ligia . E-mail: anca-ligia.grosu@lrz.tum.de; Kneschaurek, Peter

    2006-11-15

    Purpose: The implementation of intensity-modulated radiotherapy (IMRT) technique into clinical practice is becoming routine, but still lacks a generally accepted method for plan evaluation. We present a comparison of the dose distribution of conformal three-dimensional radiotherapy plans with IMRT plans for cranial lesions in stereotactic radiotherapy. The primary aim of this study was to judge the quality of the treatment plans. The next purpose was to assess the usefulness of several quality factors for plan evaluation. Methods and Materials: Five patients, who were treated in our department, were analyzed. Four had meningioma and one had pituitary adenoma. For each case, 10 different plans were created and analyzed: 2 conventional conformal three-dimensional plans and 8 IMRT plans, using the 'step and shoot' delivery method. The first conventional plan was an individually designed beam arrangement and was used for patient treatment. The second plan was a standard plan with the same beam arrangement for all patients. Beam arrangements from the conformal plans were the base for the inversely planned IMRT. To evaluate the plans, the following factors were investigated: minimal and maximal dose to the planning target volume, homogeneity index, coverage index, conformity index, and tumor control probabilities and normal tissue complication probabilities. These quantities were incorporated into scoring factors and assigned to each plan. Results: The greatest homogeneity was reached in the conformal plans and IMRT plans with high planning target volume priority in the optimization process. This consequently led to a better probability of tumor control. Better protection of organs at risk and thereby lower normal tissue complication probabilities were achieved in the IMRT plans with increased weighting of the organs at risk. Conclusion: These results show the efficiency, as well as some limitations, of the IMRT techniques. The use of different quality factors allowed us

  17. RapidArc radiotherapy planning for prostate cancer: Single-arc and double-arc techniques vs. intensity-modulated radiotherapy

    SciTech Connect

    Sze, Henry C.K.; Lee, Michael C.H.; Hung, Wai-Man; Yau, Tsz-Kok; Lee, Anne W.M.

    2012-04-01

    RapidArc is a novel technique using arc radiotherapy aiming to achieve intensity-modulated radiotherapy (IMRT)-quality radiotherapy plans with shorter treatment time. This study compared the dosimetric quality and treatment efficiency of single-arc (SA) vs. double-arc (DA) and IMRT in the treatment of prostate cancer. Fourteen patients were included in the analysis. The planning target volume (PTV), which contained the prostate gland and proximal seminal vesicles, received 76 Gy in 38 fractions. Seven-field IMRT, SA, and DA plans were generated for each patient. Dosimetric quality in terms of the minimum PTV dose, PTV hotspot, inhomogeneity, and conformity index; and sparing of rectum, bladder, and femoral heads as measured by V70, V-40, and V20 (% of volume receiving >70 Gy, 40 Gy, and 20 Gy, respectively), treatment efficiency as assessed by monitor units (MU) and treatment time were compared. All plan objectives were met satisfactorily by all techniques. DA achieved the best dosimetric quality with the highest minimum PTV dose, lowest hotspot, and the best homogeneity and conformity. It was also more efficient than IMRT. SA achieved the highest treatment efficiency with the lowest MU and shortest treatment time. The mean treatment time for a 2-Gy fraction was 4.80 min, 2.78 min, and 1.30 min for IMRT, DA, and SA, respectively. However, SA also resulted in the highest rectal dose. DA could improve target volume coverage and reduce treatment time and MU while maintaining equivalent normal tissue sparing when compared with IMRT. SA achieved the greatest treatment efficiency but with the highest rectal dose, which was nonetheless within tolerable limits. For busy units with high patient throughput, SA could be an acceptable option.

  18. High-Dose, Single-Fraction Image-Guided Intensity-Modulated Radiotherapy for Metastatic Spinal Lesions

    SciTech Connect

    Yamada, Yoshiya Bilsky, Mark H.; Lovelock, D. Michael; Venkatraman, Ennapadam S.; Toner, Sean; Johnson, Jared; Zatcky, Joan N.P.; Zelefsky, Michael J.; Fuks, Zvi

    2008-06-01

    Purpose: To report tumor control and toxicity for patients treated with image-guided intensity-modulated radiotherapy (RT) for spinal metastases with high-dose single-fraction RT. Methods and Materials: A total of 103 consecutive spinal metastases in 93 patients without high-grade epidural spinal cord compression were treated with image-guided intensity-modulated RT to doses of 18-24 Gy (median, 24 Gy) in a single fraction between 2003 and 2006. The spinal cord dose was limited to a 14-Gy maximal dose. The patients were prospectively examined every 3-4 months with clinical assessment and cross-sectional imaging. Results: The overall actuarial local control rate was 90% (local failure developed in 7 patients) at a median follow-up of 15 months (range, 2-45 months). The median time to local failure was 9 months (range, 2-15 months) from the time of treatment. Of the 93 patients, 37 died. The median overall survival was 15 months. In all cases, death was from progression of systemic disease and not local failure. The histologic type was not a statistically significant predictor of survival or local control. The radiation dose was a significant predictor of local control (p = 0.03). All patients without local failure also reported durable symptom palliation. Acute toxicity was mild (Grade 1-2). No case of radiculopathy or myelopathy has developed. Conclusion: High-dose, single-fraction image-guided intensity-modulated RT is a noninvasive intervention that appears to be safe and very effective palliation for patients with spinal metastases, with minimal negative effects on quality of life and a high probability of tumor control.

  19. Development of a novel treatment planning test for credentialing rotational intensity-modulated radiotherapy techniques in the UK

    PubMed Central

    Ciurlionis, L; Clark, C; Venables, K

    2013-01-01

    Objective: The increasing use of tomotherapy and volumetric-modulated arc therapy in UK centres will result in more centres choosing to use this technology in a clinical trial setting. The Radiotherapy Trials Quality Assurance (RTTQA) group has developed a new procedure to integrate into the UK intensity-modulated radiotherapy (IMRT) credentialing programme to cover rotational IMRT delivery techniques. Methods: A planning test [three-dimensional treatment planning system (3DTPS)] was designed specifically for rotational IMRT techniques. The feasibility of using this test in the credentialing programme for rotational IMRT was validated by 10 experienced UK centres. The study included five centres using Varian RapidArc™ (RA) (Varian Medical Systems, Milpitas, CA), two using Elekta VMAT™ (VMAT) (Elekta Inc., Norcross, GA) and three using helical tomotherapy (HT) plans. Centres were asked to carry out their own in-house quality assurance (QA) for the plans submitted for this study. A survey was sent out to centres aiming to gather information on their experience in undertaking the exercise and their QA results. Results: All centres fulfilled the primary goal by achieving the dose constraints of the primary planning target volume and organ at risk. Seven centres (three RA, one VMAT and three HT plans) were able to fulfil the secondary goal. Among those seven centres, three centres (two RA and one VMAT plans) achieved the tertiary goal. The results of the survey indicated that the 3DTPS test is a clinically relevant and practical planning test to be used. Conclusion: A planning test for rotational therapy techniques was developed for the RTTQA IMRT credentialing programme. Advances in knowledge: This study validated the feasibility of a 3DTPS test to be used as part of a credentialing programme for rotational IMRT techniques in the UK. PMID:23385993

  20. Radiobiologic comparison of helical tomotherapy, intensity modulated radiotherapy, and conformal radiotherapy in treating lung cancer accounting for secondary malignancy risks

    SciTech Connect

    Komisopoulos, Georgios; Mavroidis, Panayiotis; Rodriguez, Salvador; Stathakis, Sotirios; Papanikolaou, Nikos; Nikiforidis, Georgios C.; Sakellaropoulos, Georgios C.

    2014-01-01

    The aim of the present study is to examine the importance of using measures to predict the risk of inducing secondary malignancies in association with the clinical effectiveness of treatment plans in terms of tumor control and normal tissue complication probabilities. This is achieved by using radiobiologic parameters and measures, which may provide a closer association between clinical outcome and treatment delivery. Overall, 4 patients having been treated for lung cancer were examined. For each of them, 3 treatment plans were developed based on the helical tomotherapy (HT), multileaf collimator-based intensity modulated radiation therapy (IMRT), and 3-dimensional conformal radiation therapy (CRT) modalities. The different plans were evaluated using the complication-free tumor control probability (p{sub +}), the overall probability of injury (p{sub I}), the overall probability of control/benefit (p{sub B}), and the biologically effective uniform dose (D{sup ¯¯}). These radiobiologic measures were used to develop dose-response curves (p-D{sup ¯¯} diagram), which can help to evaluate different treatment plans when used in conjunction with standard dosimetric criteria. The risks for secondary malignancies in the heart and the contralateral lung were calculated for the 3 radiation modalities based on the corresponding dose-volume histograms (DVHs) of each patient. Regarding the overall evaluation of the different radiation modalities based on the p{sub +} index, the average values of the HT, IMRT, and CRT are 67.3%, 61.2%, and 68.2%, respectively. The corresponding average values of p{sub B} are 75.6%, 70.5%, and 71.0%, respectively, whereas the average values of p{sub I} are 8.3%, 9.3%, and 2.8%, respectively. Among the organs at risk (OARs), lungs show the highest probabilities for complications, which are 7.1%, 8.0%, and 1.3% for the HT, IMRT, and CRT modalities, respectively. Similarly, the biologically effective prescription doses (D{sub B}{sup ¯¯}) for the

  1. Functional Image-Guided Radiotherapy Planning in Respiratory-Gated Intensity-Modulated Radiotherapy for Lung Cancer Patients With Chronic Obstructive Pulmonary Disease

    SciTech Connect

    Kimura, Tomoki; Nishibuchi, Ikuno; Murakami, Yuji; Kenjo, Masahiro; Kaneyasu, Yuko; Nagata, Yasushi

    2012-03-15

    Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung. Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.

  2. Radiochromic film based transit dosimetry for verification of dose delivery with intensity modulated radiotherapy

    SciTech Connect

    Chung, Kwangzoo; Lee, Kiho; Shin, Dongho; Kyung Lim, Young; Byeong Lee, Se; Yoon, Myonggeun; Son, Jaeman; Yong Park, Sung

    2013-02-15

    Purpose: To evaluate the transit dose based patient specific quality assurance (QA) of intensity modulated radiation therapy (IMRT) for verification of the accuracy of dose delivered to the patient. Methods: Five IMRT plans were selected and utilized to irradiate a homogeneous plastic water phantom and an inhomogeneous anthropomorphic phantom. The transit dose distribution was measured with radiochromic film and was compared with the computed dose map on the same plane using a gamma index with a 3% dose and a 3 mm distance-to-dose agreement tolerance limit. Results: While the average gamma index for comparisons of dose distributions was less than one for 98.9% of all pixels from the transit dose with the homogeneous phantom, the passing rate was reduced to 95.0% for the transit dose with the inhomogeneous phantom. Transit doses due to a 5 mm setup error may cause up to a 50% failure rate of the gamma index. Conclusions: Transit dose based IMRT QA may be superior to the traditional QA method since the former can show whether the inhomogeneity correction algorithm from TPS is accurate. In addition, transit dose based IMRT QA can be used to verify the accuracy of the dose delivered to the patient during treatment by revealing significant increases in the failure rate of the gamma index resulting from errors in patient positioning during treatment.

  3. Dose-volume factors associated with ear disorders following intensity modulated radiotherapy in nasopharyngeal carcinoma

    PubMed Central

    Yao, Ji-Jin; Zhou, Guan-Qun; Lin, Li; Zhang, Wang-Jian; Peng, Ying-Lin; Chen, Lei; Tang, Ling-Long; Mao, Yan-Ping; Ma, Jun; Sun, Ying

    2015-01-01

    This study is to identify significant dosimetric parameters for ear disorders in nasopharyngeal carcinoma (NPC) patients treated with intensity modulated therapy only. Ninety-seven patients with NPC were retrospectively reviewed. Organs at risk (OARs) in the auditory apparatus were contoured. Dose–volume histogram parameters were generated for the Eustachian tube (ET), tympanic cavity (TC), mastoid air cells, vestibular apparatus, cochlea and internal auditory canal (IAC). Ear disorders were rated 0 (none), 1 (mild) or 2 (severe) by a clinician blinded to radiation doses; Grade 2 ear disorders was the study end-point. Multivariate analysis revealed ET.D30 (dose to 30% of ET volume) >52.75 Gy and M.D0.5CC (dose to 0.5 ml of mastoid volume) >41.04 Gy (OR = 3.77, P = 0.012 and OR = 1.27, P = 0.033, respectively) were associated with Grade 2 ear disorders. Our results demonstrated that post-irradiation ear disorders remain a common late toxicity in NPC after IMRT. ET.D30 and M.D0.5CC should be considered during IMRT treatment plan optimization, review and approval. PMID:26323586

  4. Proton Radiotherapy for Pediatric Bladder/Prostate Rhabdomyosarcoma: Clinical Outcomes and Dosimetry Compared to Intensity-Modulated Radiation Therapy

    SciTech Connect

    Cotter, Shane E.; Herrup, David A.; Friedmann, Alison; Macdonald, Shannon M.; Pieretti, Raphael V.; Robinson, Gregoire; Adams, Judith; Tarbell, Nancy J.; Yock, Torunn I.

    2011-12-01

    Purpose: In this study, we report the clinical outcomes of 7 children with bladder/prostate rhabdomyosarcoma (RMS) treated with proton radiation and compare proton treatment plans with matched intensity-modulated radiation therapy (IMRT) plans, with an emphasis on dose savings to reproductive and skeletal structures. Methods and Materials: Follow-up consisted of scheduled clinic appointments at our institution or direct communication with the treating physicians for referred patients. Each proton radiotherapy plan used for treatment was directly compared to an IMRT plan generated for the study. Clinical target volumes and normal tissue volumes were held constant to facilitate dosimetric comparisons. Each plan was optimized for target coverage and normal tissue sparing. Results: Seven male patients were treated with proton radiotherapy for bladder/prostate RMS at the Massachusetts General Hospital between 2002 and 2008. Median age at treatment was 30 months (11-70 months). Median follow-up was 27 months (10-90 months). Four patients underwent a gross total resection prior to radiation, and all patients received concurrent chemotherapy. Radiation doses ranged from 36 cobalt Gray equivalent (CGE) to 50.4 CGE. Five of 7 patients were without evidence of disease and with intact bladders at study completion. Target volume dosimetry was equivalent between the two modalities for all 7 patients. Proton radiotherapy led to a significant decrease in mean organ dose to the bladder (25.1 CGE vs. 33.2 Gy; p = 0.03), testes (0.0 CGE vs. 0.6 Gy; p = 0.016), femoral heads (1.6 CGE vs. 10.6 Gy; p = 0.016), growth plates (21.7 CGE vs. 32.4 Gy; p = 0.016), and pelvic bones (8.8 CGE vs. 13.5 Gy; p = 0.016) compared to IMRT. Conclusions: This study provides evidence of significant dose savings to normal structures with proton radiotherapy compared to IMRT and is well tolerated in this patient population. The long-term impact of these reduced doses can be tested in future studies

  5. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance

    PubMed Central

    2014-01-01

    Background Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). Methods A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1–2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5–7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. Results The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p < 0.001). For GU toxicity the numbers were 41.8% and 29.7%, respectively (p = 0.011). On multivariate analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p < 0.001, HR = 11.59 [CI: 6.67-20.14]). 3DCRT was also associated with an increased risk of developing GU toxicity compared to IG-IMRT. The 3-year actuarial biochemical progression-free survival probability was 86.0% for 3DCRT and 90.3% for IG-IMRT (p = 0.386). On multivariate analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. Conclusion The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction. PMID:24495815

  6. Intensity modulated proton therapy.

    PubMed

    Kooy, H M; Grassberger, C

    2015-07-01

    Intensity modulated proton therapy (IMPT) implies the electromagnetic spatial control of well-circumscribed "pencil beams" of protons of variable energy and intensity. Proton pencil beams take advantage of the charged-particle Bragg peak-the characteristic peak of dose at the end of range-combined with the modulation of pencil beam variables to create target-local modulations in dose that achieves the dose objectives. IMPT improves on X-ray intensity modulated beams (intensity modulated radiotherapy or volumetric modulated arc therapy) with dose modulation along the beam axis as well as lateral, in-field, dose modulation. The clinical practice of IMPT further improves the healthy tissue vs target dose differential in comparison with X-rays and thus allows increased target dose with dose reduction elsewhere. In addition, heavy-charged-particle beams allow for the modulation of biological effects, which is of active interest in combination with dose "painting" within a target. The clinical utilization of IMPT is actively pursued but technical, physical and clinical questions remain. Technical questions pertain to control processes for manipulating pencil beams from the creation of the proton beam to delivery within the patient within the accuracy requirement. Physical questions pertain to the interplay between the proton penetration and variations between planned and actual patient anatomical representation and the intrinsic uncertainty in tissue stopping powers (the measure of energy loss per unit distance). Clinical questions remain concerning the impact and management of the technical and physical questions within the context of the daily treatment delivery, the clinical benefit of IMPT and the biological response differential compared with X-rays against which clinical benefit will be judged. It is expected that IMPT will replace other modes of proton field delivery. Proton radiotherapy, since its first practice 50 years ago, always required the highest level of

  7. Intensity modulated proton therapy

    PubMed Central

    Grassberger, C

    2015-01-01

    Intensity modulated proton therapy (IMPT) implies the electromagnetic spatial control of well-circumscribed “pencil beams” of protons of variable energy and intensity. Proton pencil beams take advantage of the charged-particle Bragg peak—the characteristic peak of dose at the end of range—combined with the modulation of pencil beam variables to create target-local modulations in dose that achieves the dose objectives. IMPT improves on X-ray intensity modulated beams (intensity modulated radiotherapy or volumetric modulated arc therapy) with dose modulation along the beam axis as well as lateral, in-field, dose modulation. The clinical practice of IMPT further improves the healthy tissue vs target dose differential in comparison with X-rays and thus allows increased target dose with dose reduction elsewhere. In addition, heavy-charged-particle beams allow for the modulation of biological effects, which is of active interest in combination with dose “painting” within a target. The clinical utilization of IMPT is actively pursued but technical, physical and clinical questions remain. Technical questions pertain to control processes for manipulating pencil beams from the creation of the proton beam to delivery within the patient within the accuracy requirement. Physical questions pertain to the interplay between the proton penetration and variations between planned and actual patient anatomical representation and the intrinsic uncertainty in tissue stopping powers (the measure of energy loss per unit distance). Clinical questions remain concerning the impact and management of the technical and physical questions within the context of the daily treatment delivery, the clinical benefit of IMPT and the biological response differential compared with X-rays against which clinical benefit will be judged. It is expected that IMPT will replace other modes of proton field delivery. Proton radiotherapy, since its first practice 50 years ago, always required the

  8. Can Intensity-Modulated Radiotherapy Preserve Oral Health-Related Quality of Life of Nasopharyngeal Carcinoma Patients?

    SciTech Connect

    Pow, Edmond H.N.; Kwong, Dora L.W.; Sham, Jonathan S.T.; Lee, Victor H.F.; Ng, Sherry C.Y.

    2012-06-01

    Purpose: To investigate the changes in salivary function and oral health-related quality of life for patients with nasopharyngeal carcinoma treated by intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 57 patients with early-stage nasopharyngeal carcinoma received IMRT. The parotid and whole saliva flow was measured, and the Medical Outcomes Study 36-item short form, European Organization for Research and Treatment of Cancer Quality of Life questionnaire-C30, European Organization for Research and Treatment of Cancer Quality of Life questionnaire 35-item head-and-neck module, and Oral Health Impact Profile questionnaires were completed at baseline and 2, 6, 12, 18, and 24 months after IMRT. Results: Parotid saliva flow recovered fully after 1 year and maintained. Whole saliva flow recovered partially to 40% of baseline. A general trend of deterioration in most quality of life scales was observed after IMRT, followed by gradual recovery. Persistent oral-related symptoms were found 2 years after treatment. Conclusion: IMRT for early-stage nasopharyngeal carcinoma could only partially preserve the whole salivary function and oral health-related quality of life.

  9. A simple optimization approach for improving target dose homogeneity in intensity-modulated radiotherapy for sinonasal cancer

    PubMed Central

    Lu, Jia-Yang; Zhang, Ji-Yong; Li, Mei; Cheung, Michael Lok-Man; Li, Yang-Kang; Zheng, Jing; Huang, Bao-Tian; Zhang, Wu-Zhe

    2015-01-01

    Homogeneous target dose distribution in intensity-modulated radiotherapy (IMRT) for sinonasal cancer (SNC) is challenging to achieve. To solve this problem, we established and evaluated a basal-dose-compensation (BDC) optimization approach, in which the treatment plan is further optimized based on the initial plans. Generally acceptable initial IMRT plans for thirteen patients were created and further optimized individually by (1) the BDC approach and (2) a local-dose-control (LDC) approach, in which the initial plan is further optimized by addressing hot and cold spots. We compared the plan qualities, total planning time and monitor units (MUs) among the initial, BDC, LDC IMRT plans and volumetric modulated arc therapy (VMAT) plans. The BDC approach provided significantly superior dose homogeneity/conformity by 23%–48%/6%–9% compared with both the initial and LDC IMRT plans, as well as reduced doses to the organs at risk (OARs) by up to 18%, with acceptable MU numbers. Compared with VMAT, BDC IMRT yielded superior homogeneity, inferior conformity and comparable overall OAR sparing. The planning of BDC, LDC IMRT and VMAT required 30, 59 and 58 minutes on average, respectively. Our results indicated that the BDC optimization approach can achieve significantly better dose distributions with shorter planning time in the IMRT for SNC. PMID:26497620

  10. Multivariate analysis of factors predicting prostate dose in intensity-modulated radiotherapy

    SciTech Connect

    Tomita, Tsuneyuki; Nakamura, Mitsuhiro; Hirose, Yoshinori; Kitsuda, Kenji; Notogawa, Takuya; Miki, Katsuhito; Nakamura, Kiyonao; Ishigaki, Takashi

    2014-01-01

    We conducted a multivariate analysis to determine relationships between prostate radiation dose and the state of surrounding organs, including organ volumes and the internal angle of the levator ani muscle (LAM), based on cone-beam computed tomography (CBCT) images after bone matching. We analyzed 270 CBCT data sets from 30 consecutive patients receiving intensity-modulated radiation therapy for prostate cancer. With patients in the supine position on a couch with the HipFix system, data for center of mass (COM) displacement of the prostate and the state of individual organs were acquired and compared between planning CT and CBCT scans. Dose distributions were then recalculated based on CBCT images. The relative effects of factors on the variance in COM, dose covering 95% of the prostate volume (D{sub 95%}), and percentage of prostate volume covered by the 100% isodose line (V{sub 100%}) were evaluated by a backward stepwise multiple regression analysis. COM displacement in the anterior-posterior direction (COM{sub AP}) correlated significantly with the rectum volume (δVr) and the internal LAM angle (δθ; R = 0.63). Weak correlations were seen for COM in the left-right (R = 0.18) and superior-inferior directions (R = 0.31). Strong correlations between COM{sub AP} and prostate D{sub 95%} and V{sub 100%} were observed (R ≥ 0.69). Additionally, the change ratios in δVr and δθ remained as predictors of prostate D{sub 95%} and V{sub 100%}. This study shows statistically that maintaining the same rectum volume and LAM state for both the planning CT simulation and treatment is important to ensure the correct prostate dose in the supine position with bone matching.

  11. Experimental investigation of the response of an amorphous silicon EPID to intensity modulated radiotherapy beams

    SciTech Connect

    Greer, Peter B.; Vial, Philip; Oliver, Lyn; Baldock, Clive

    2007-11-15

    The aim of this work was to experimentally determine the difference in response of an amorphous silicon (a-Si) electronic portal imaging device (EPID) to the open and multileaf collimator (MLC) transmitted beam components of intensity modulated radiation therapy (IMRT) beams. EPID dose response curves were measured for open and MLC transmitted (MLC{sub tr}) 10x10 cm{sup 2} beams at central axis and with off axis distance using a shifting field technique. The EPID signal was obtained by replacing the flood-field correction with a pixel sensitivity variation matrix correction. This signal, which includes energy-dependent response, was then compared to ion-chamber measurements. An EPID calibration method to remove the effect of beam energy variations on EPID response was developed for IMRT beams. This method uses the component of open and MLC{sub tr} fluence to an EPID pixel calculated from the MLC delivery file and applies separate radially dependent calibration factors for each component. The calibration procedure does not correct for scatter differences between ion chamber in water measurements and EPID response; these must be accounted for separately with a kernel-based approach or similar method. The EPID response at central axis for the open beam was found to be 1.28{+-}0.03 of the response for the MLC{sub tr} beam, with the ratio increasing to 1.39 at 12.5 cm off axis. The EPID response to MLC{sub tr} radiation did not change with off-axis distance. Filtering the beam with copper plates to reduce the beam energy difference between open and MLC{sub tr} beams was investigated; however, these were not effective at reducing EPID response differences. The change in EPID response for uniform sliding window IMRT beams with MLC{sub tr} dose components from 0.3% to 69% was predicted to within 2.3% using the separate EPID response calibration factors for each dose component. A clinical IMRT image calibrated with this method differed by nearly 30% in high MLC{sub tr

  12. Elective Lymph Node Irradiation With Intensity-Modulated Radiotherapy: Is Conventional Dose Fractionation Necessary?

    SciTech Connect

    Bedi, Meena; Firat, Selim; Semenenko, Vladimir A.; Schultz, Christopher; Tripp, Patrick; Byhardt, Roger; Wang, Dian

    2012-05-01

    Purpose: Intensity-modulated radiation therapy (IMRT) is the standard of care for head-and-neck cancer (HNC). We treated patients with HNC by delivering either a moderate hypofractionation (MHF) schedule (66 Gy at 2.2 Gy per fraction to the gross tumor [primary and nodal]) with standard dose fractionation (54-60 Gy at 1.8-2.0 Gy per fraction) to the elective neck lymphatics or a conventional dose and fractionation (CDF) schedule (70 Gy at 2.0 Gy per fraction) to the gross tumor (primary and nodal) with reduced dose to the elective neck lymphatics. We analyzed these two cohorts for treatment outcomes. Methods and Materials: Between November 2001 and February 2009, 89 patients with primary carcinomas of the oral cavity, larynx, oropharynx, hypopharynx, and nasopharynx received definitive IMRT with or without concurrent chemotherapy. Twenty patients were treated using the MHF schedule, while 69 patients were treated with the CDF schedule. Patient characteristics and dosimetry plans were reviewed. Patterns of failure including local recurrence (LR), regional recurrence (RR), distant metastasis (DM), disease-free survival (DFS), overall survival (OS), and toxicities, including rate of feeding tube placement and percentage of weight loss, were reviewed and analyzed. Results: Median follow-up was 31.2 months. Thirty-five percent of patients in the MHF cohort and 77% of patients in the CDF cohort received chemotherapy. No RR was observed in either cohort. OS, DFS, LR, and DM rates for the entire group at 2 years were 89.3%, 81.4%, 7.1%, and 9.4%, respectively. Subgroup analysis showed no significant differences in OS (p = 0.595), DFS (p = 0.863), LR (p = 0.833), or DM (p = 0.917) between these two cohorts. Similarly, no significant differences were observed in rates of feeding tube placement and percentages of weight loss. Conclusions: Similar treatment outcomes were observed for MHF and CDF cohorts. A dose of 50 Gy at 1.43 Gy per fraction may be sufficient to electively

  13. Effect of Intensity-Modulated Pelvic Radiotherapy on Second Cancer Risk in the Postoperative Treatment of Endometrial and Cervical Cancer

    SciTech Connect

    Zwahlen, Daniel R. Ruben, Jeremy D.; Jones, Phillip; Gagliardi, Frank; Millar, Jeremy L.; Schneider, Uwe

    2009-06-01

    Purpose: To estimate and compare intensity-modulated radiotherapy (IMRT) with three-dimensional conformal radiotherapy (3DCRT) in terms of second cancer risk (SCR) for postoperative treatment of endometrial and cervical cancer. Methods and Materials: To estimate SCR, the organ equivalent dose concept with a linear-exponential, a plateau, and a linear dose-response model was applied to dose distributions, calculated in a planning computed tomography scan of a 68-year-old woman. Three plans were computed: four-field 18-MV 3DCRT and nine-field IMRT with 6- and 18-MV photons. SCR was estimated as a function of target dose (50.4 Gy/28 fractions) in organs of interest according to the International Commission on Radiological Protection Results: Cumulative SCR relative to 3DCRT was +6% (3% for a plateau model, -4% for a linear model) for 6-MV IMRT and +26% (25%, 4%) for the 18-MV IMRT plan. For an organ within the primary beam, SCR was +12% (0%, -12%) for 6-MV and +5% (-2%, -7%) for 18-MV IMRT. 18-MV IMRT increased SCR 6-7 times for organs away from the primary beam relative to 3DCRT and 6-MV IMRT. Skin SCR increased by 22-37% for 6-MV and 50-69% for 18-MV IMRT inasmuch as a larger volume of skin was exposed. Conclusion: Cancer risk after IMRT for cervical and endometrial cancer is dependent on treatment energy. 6-MV pelvic IMRT represents a safe alternative with respect to SCR relative to 3DCRT, independently of the dose-response model. 18-MV IMRT produces second neutrons that modestly increase the SCR.

  14. Improved Dosimetric and Clinical Outcomes With Intensity-Modulated Radiotherapy for Head-and-Neck Cancer of Unknown Primary Origin

    SciTech Connect

    Chen, Allen M.; Li Baoqing; Farwell, D. Gregory; Marsano, Joseph; Vijayakumar, Srinivasan; Purdy, James A.

    2011-03-01

    Purpose: To compare differences in dosimetric, clinical, and quality-of-life endpoints among a cohort of patients treated by intensity-modulated radiotherapy (IMRT) and conventional radiotherapy (CRT) for head-and-neck cancer of unknown primary origin. Methods and Materials: The medical records of 51 patients treated by radiation therapy for squamous cell carcinoma of the head and neck presenting as cervical lymph node metastasis of occult primary origin were reviewed. Twenty-four patients (47%) were treated using CRT, and 27 (53%) were treated using IMRT. The proportions of patients receiving concurrent chemotherapy were 54% and 63%, respectively. Results: The 2-year estimates of overall survival, local-regional control, and disease-specific survival for the entire patient population were 86%, 89%, and84%, respectively. There were no significant differences in any of these endpoints with respect to radiation therapy technique (p > 0.05 for all). Dosimetric analysis revealed that the use of IMRT resulted in significant improvements with respect to mean dose and V30 to the contralateral (spared) parotid gland. In addition, mean doses to the ipsilateral inner and middle ear structures were significantly reduced with IMRT (p < 0.05 for all). The incidence of severe xerostomia in the late setting was 58% and 11% among patients treated by CRT and IMRT, respectively (p < 0.001). The percentages of patients who were G-tube dependent at 6 months after treatment were 42% and 11%, respectively (p < 0.001). Conclusions: IMRT results in significant improvements in the therapeutic ratio among patients treated by radiation therapy for head-and-neck cancer of unknown primary origin.

  15. Dosimetric Comparison of Intensity-Modulated Stereotactic Radiotherapy With Other Stereotactic Techniques for Locally Recurrent Nasopharyngeal Carcinoma

    SciTech Connect

    Kung, Shiris Wai Sum; Wu, Vincent Wing Cheung; Kam, Michael Koon Ming; Leung, Sing Fai; Yu, Brian Kwok Hung; Ngai, Dennis Yuen Kan; Wong, Simon Chun Fai; Chan, Anthony Tak Cheung

    2011-01-01

    Purpose: Locally recurrent nasopharyngeal carcinoma (NPC) patients can be salvaged by reirradiation with a substantial degree of radiation-related complications. Stereotactic radiotherapy (SRT) is widely used in this regard because of its rapid dose falloff and high geometric precision. The aim of this study was to examine whether the newly developed intensity-modulated stereotactic radiotherapy (IMSRT) has any dosimetric advantages over three other stereotactic techniques, including circular arc (CARC), static conformal beam (SmMLC), and dynamic conformal arc (mARC), in treating locally recurrent NPC. Methods and Materials: Computed tomography images of 32 patients with locally recurrent NPC, previously treated with SRT, were retrieved from the stereotactic planning system for contouring and computing treatment plans. Treatment planning of each patient was performed for the four treatment techniques: CARC, SmMLC, mARC, and IMSRT. The conformity index (CI) and homogeneity index (HI) of the planning target volume (PTV) and doses to the organs at risk (OARs) and normal tissue were compared. Results: All four techniques delivered adequate doses to the PTV. IMSRT, SmMLC, and mARC delivered reasonably conformal and homogenous dose to the PTV (CI <1.47, HI <0.53), but not for CARC (p < 0.05). IMSRT presented with the smallest CI (1.37) and HI (0.40). Among the four techniques, IMSRT spared the greatest number of OARs, namely brainstem, temporal lobes, optic chiasm, and optic nerve, and had the smallest normal tissue volume in the low-dose region. Conclusion: Based on the dosimetric comparison, IMSRT was optimal for locally recurrent NPC by delivering a conformal and homogenous dose to the PTV while sparing OARs.

  16. Clinical-dosimetric relationship between lacrimal gland dose and ocular toxicity after intensity-modulated radiotherapy for sinonasal tumours

    PubMed Central

    Batth, S S; Sreeraman, R; Dienes, E; Beckett, L A; Daly, M E; Cui, J; Mathai, M; Purdy, J A

    2013-01-01

    Objective: To characterise the relationship between lacrimal gland dose and ocular toxicity among patients treated by intensity-modulated radiotherapy (IMRT) for sinonasal tumours. Methods: 40 patients with cancers involving the nasal cavity and paranasal sinuses were treated with IMRT to a median dose of 66.0 Gy. Toxicity was scored using the Radiation Therapy Oncology Group morbidity criteria based on conjunctivitis, corneal ulceration and keratitis. The paired lacrimal glands were contoured as organs at risk, and the mean dose, maximum dose, V10, V20 and V30 were determined. Statistical analysis was performed using logistic regression and the Akaike information criterion (AIC). Results: The maximum and mean dose to the ipsilateral lacrimal gland were 19.2 Gy (range, 1.4–75.4 Gy) and 14.5 Gy (range, 11.1–67.8 Gy), respectively. The mean V10, V20 and V30 values were 50%, 25% and 17%, respectively. The incidence of acute and late Grade 3+ toxicities was 23% and 19%, respectively. Based on logistic regression and AIC, the maximum dose to the ipsilateral lacrimal gland was identified as a more significant predictor of acute toxicity (AIC, 53.89) and late toxicity (AIC, 32.94) than the mean dose (AIC, 56.13 and 33.83, respectively). The V20 was identified as the most significant predictor of late toxicity (AIC, 26.81). Conclusion: A dose–response relationship between maximum dose to the lacrimal gland and ocular toxicity was established. Our data suggesting a threshold relationship may be useful in establishing dosimetric guidelines for IMRT planning that may decrease the risk of acute and late lacrimal toxicities in the future. Advances in knowledge: A threshold relationship between radiation dose to the lacrimal gland and ocular toxicity was demonstrated, which may aid in treatment planning and reducing the morbidity of radiotherapy for sinonasal tumours. PMID:24167183

  17. Intensity-Modulated Radiotherapy of Pelvic Lymph Nodes in Locally Advanced Prostate Cancer: Planning Procedures and Early Experiences

    SciTech Connect

    Muren, Ludvig Paul Wasbo, Ellen; Helle, Svein Inge; Hysing, Liv Bolstad; Karlsdottir, Asa; Odland, Odd Harald; Valen, Harald; Ekerold, Randi; Johannessen, Dag Clement

    2008-07-15

    Purpose: We present planning and early clinical outcomes of a study of intensity-modulated radiotherapy (IMRT) for locally advanced prostate cancer. Methods and Materials: A total of 43 patients initially treated with an IMRT plan delivering 50 Gy to the prostate, seminal vesicles, and pelvic lymph nodes, followed by a conformal radiotherapy (CRT) plan delivering 20 Gy to the prostate and seminal vesicles, were studied. Dose-volume histogram (DVH) data for the added plans were compared with dose-volume histogram data for the sum of two CRT plans for 15 cases. Gastrointestinal (GI) and genitourinary (GU) toxicity, based on the Radiation Therapy Oncology Group scoring system, was recorded weekly throughout treatment as well as 3 to 18 months after treatment and are presented. Results: Treatment with IMRT both reduced normal tissue doses and increased the minimum target doses. Intestine volumes receiving more than 40 and 50 Gy were significantly reduced (e.g., at 50 Gy, from 81 to 19 cm{sup 3}; p = 0.026), as were bladder volumes above 40, 50, and 60 Gy, rectum volumes above 30, 50, and 60 Gy, and hip joint muscle volumes above 20, 30, and 40 Gy. During treatment, Grade 2 GI toxicity was reported by 12 of 43 patients (28%), and Grade 2 to 4 GU toxicity was also observed among 12 patients (28%). With 6 to 18 months of follow-up, 2 patients (5%) experienced Grade 2 GI effects and 7 patients (16%) experienced Grade 2 GU effects. Conclusions: Use of IMRT for pelvic irradiation in prostate cancer reduces normal tissue doses, improves target coverage, and has a promising toxicity profile.

  18. Efficacy and Toxicity of Chemoradiotherapy Using Intensity-Modulated Radiotherapy for Unknown Primary of Head and Neck

    SciTech Connect

    Sher, David J.; Balboni, Tracy A.; Haddad, Robert I.; Norris, Charles M.; Posner, Marshall R.; Wirth, Lori J.; Goguen, Laura A.; Annino, Donald; Tishler, Roy B.

    2011-08-01

    Purpose: No single standard treatment paradigm is available for head-and-neck squamous cell carcinoma of an unknown primary (HNCUP). Bilateral neck radiotherapy with mucosal axis irradiation is widely used, with or without chemotherapy and/or surgical resection. Intensity-modulated radiotherapy (IMRT) is a highly conformal method for delivering radiation that is becoming the standard of care and might reduce the long-term treatment-related sequelae. We report the Dana-Farber Cancer Institute experience with IMRT-based treatment for HNCUP. Patients and Materials: A retrospective study of all patients treated at the Dana-Farber Cancer Institute for HNCUP with IMRT between August 2004 and January 2009. The primary endpoint was overall survival; the secondary endpoints were locoregional and distant control, and acute and chronic toxicity. Results: A total of 24 patients with HNCUP were included. Of these patients, 22 had Stage N2 disease or greater. All patients underwent neck computed tomography, positron emission tomography-computed tomography, and examination under anesthesia with directed biopsies. Of the 24 patients, 22 received concurrent chemotherapy, and 7 (29%) also underwent induction chemotherapy. The median involved nodal dose was 70 Gy, and the median mucosal dose was 60 Gy. With a median follow-up of 2.1 years, the 2-year actuarial overall survival and locoregional control rate was 92% and 100%, respectively. Only 25% of the patients had Grade 2 xerostomia, although 11 patients (46%) required esophageal dilation for stricture. Conclusion: In a single-institution series, IMRT-based chemoradiotherapy for HNCUP was associated with superb overall survival and locoregional control. The xerostomia rates were promising, but the aggressive therapy was associated with significant rates of esophageal stenosis.

  19. Prognostic Value of Cavernous Sinus Invasion in Patients with Nasopharyngeal Carcinoma Treated with Intensity-Modulated Radiotherapy

    PubMed Central

    Du, Xiao-Jing; Lan, Mei; Guo, Ying; Zheng, Lie; Xia, Yun-Fei; Luo, Wei

    2016-01-01

    Purpose To investigate the prognostic value of cavernoussinus invasion (CSI) in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT). Patients and Methods Retrospective review of data from 1,087 patients with biopsy-proven, non-metastatic NPC. All patients were diagnosed using magnetic resonance imaging (MRI) scans and received IMRT as the primary treatment. Results The incidence of cavernoussinus invasion in this cohort was 12.1%. In univariate analysis, 5-year overall survival (OS) (70.6% vs. 88.5%, P < 0.001) and distant metastasis-free survival (DMFS) (71.4% vs. 87.7%, P < 0.001), but not locoregional relapse-free survival (LRFS) (93.9% vs. 93.7%, P = 0.341), were significantly different between patients with and without cavernoussinus invasion. In the T4 subgroup, the 5-year OS, DMFS, and LRFS of patients with and without cavernoussinus extension were 70.6% vs. 81.9% (P = 0.011), 71.4% vs. 84.1% (P = 0.011), and 91.2% vs. 89.7% (P = 0.501), respectively. In multivariate analysis, cavernoussinus invasion was an independent prognostic factor for poorer OS (HR = 1.782; P = 0.013) and DMFS (HR = 1.771; P = 0.016), but not LRFS (HR = 0.632; P = 0.294). In patients with lymph node metastasis, the DMFS rates of patients with and without cavernoussinus invasion were significantly different (P < 0.001). Preliminaryanalysis indicated that neoadjuvant chemotherapy led to better DMFS and OS in patients with cavernoussinus invasion than concurrent chemotherapy or radiotherapy alone; however, the differences were not significant. Conclusions In the IMRT era, cavernoussinus invasion remains a prognostic factor for poor DMFS and OS in NPC, even in patients with T4 disease. PMID:26824230

  20. Prognostic value of wait time in nasopharyngeal carcinoma treated with intensity modulated radiotherapy: a propensity matched analysis.

    PubMed

    Chen, Yu-Pei; Mao, Yan-Ping; Zhang, Wen-Na; Chen, Lei; Tang, Ling-Long; Li, Wen-Fei; Liu, Xu; Zhou, Guan-Qun; Guo, Rui; Sun, Ying; Kang, Tie-Bang; Zeng, Mu-Sheng; Ma, Jun

    2016-03-22

    The aim of this study was to determine the prognostic value of wait time from histological diagnosis to primary treatmen for nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT). Between October 2009 and February 2012, a total of 1672 NPC patients were retrospectively analyzed. A cutoff value of > 4 weeks was used to define prolonged wait time. Matched patients according to the wait time were identified using propensity score matching (PSM), which was also used to identify matched patients for subsequent stratified analyses. Differences in progression-free survival (PFS), overall survival (OS), distant metastasis-free survival (DMFS), and locoregional relapse-free survival (LRFS) were estimated using the Kaplan-Meier method and Cox proportional hazards models. In total, 407 pairs of NPC patients were selected by PSM. The 3-year PFS rate was significantly lower for patients with a prolonged wait time (> 4 weeks) than for those with an acceptable wait time (P = 0.035). Stratified analyses revealed that the negative effects of a prolonged wait time occurred primarily in patients with advanced NPC without neoadjuvant chemotherapy (NACT; PFS:P = 0.040; DMFS:P = 0.028). In multivariate analysis, a prolonged wait time was found to be an independent unfavorable prognostic factor for PFS and DMFS in advanced-staged patients without NACT. These results suggest that a prolonged time (> 4 weeks) between diagnosis and primary radical radiotherapy is a disadvantage for NPC patients, particularly those with advanced disease receiving no NACT. Thus, it is necessary to optimize resources for decreasing this wait time, although additional studies are warranted to further clarify our findings. PMID:26942870

  1. Dose differences in intensity-modulated radiotherapy plans calculated with pencil beam and Monte Carlo for lung SBRT.

    PubMed

    Liu, Han; Zhuang, Tingliang; Stephans, Kevin; Videtic, Gregory; Raithel, Stephen; Djemil, Toufik; Xia, Ping

    2015-01-01

    For patients with medically inoperable early-stage non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy, early treatment plans were based on a simpler dose calculation algorithm, the pencil beam (PB) calculation. Because these patients had the longest treatment follow-up, identifying dose differences between the PB calculated dose and Monte Carlo calculated dose is clinically important for understanding of treatment outcomes. Previous studies found significant dose differences between the PB dose calculation and more accurate dose calculation algorithms, such as convolution-based or Monte Carlo (MC), mostly for three-dimensional conformal radiotherapy (3D CRT) plans. The aim of this study is to investigate whether these observed dose differences also exist for intensity-modulated radiotherapy (IMRT) plans for both centrally and peripherally located tumors. Seventy patients (35 central and 35 peripheral) were retrospectively selected for this study. The clinical IMRT plans that were initially calculated with the PB algorithm were recalculated with the MC algorithm. Among these paired plans, dosimetric parameters were compared for the targets and critical organs. When compared to MC calculation, PB calculation overestimated doses to the planning target volumes (PTVs) of central and peripheral tumors with different magnitudes. The doses to 95% of the central and peripheral PTVs were overestimated by 9.7% ± 5.6% and 12.0% ± 7.3%, respectively. This dose overestimation did not affect doses to the critical organs, such as the spinal cord and lung. In conclusion, for NSCLC treated with IMRT, dose differences between the PB and MC calculations were different from that of 3D CRT. No significant dose differences in critical organs were observed between the two calculations. PMID:26699560

  2. Are We Influencing Outcome in Oropharynx Cancer With Intensity-Modulated Radiotherapy? An Inter-Era Comparison

    SciTech Connect

    Hodge, C. Wesley Bentzen, Soren M.; Wong, Gordon; Palazzi-Churas, Karen L.; Wiederholt, Peg A.; Gondi, Vinai; Richards, Gregory M.; Hartig, Gregory K.; Harari, Paul M.

    2007-11-15

    Purpose: To analyze the outcome in all oropharynx cancer patients treated at University of Wisconsin during 1995-2005 and highlight the methodologic challenge in comparing outcome after intensity-modulated radiotherapy (IMRT) with that of historical controls. Methods and Materials: Outcomes were compared in 195 oropharynx cancer patients after definitive radiotherapy with curative intent in the pre-IMRT era (pre-IMRT, n = 105), after IMRT (IMRT+, n = 52) or after non-IMRT techniques during the IMRT era (IMRT-, n = 38). Results: With a median follow-up of 30.4 months, the 3-year overall survival rate in IMRT+, IMRT-, and pre-IMRT patients was 88.2%, 81.1%, and 67.7%, respectively; and for locoregional control was 96.1%, 78.1%, and 81.1%. Patients from the IMRT era more frequently received concurrent chemotherapy (67% vs. 6%, p < 0.001) and underwent adjuvant neck dissection (52% vs. 29%, p = 0.002). Patients with T3-4 disease and bilateral neck disease were significantly less likely to receive IMRT. Cox regression analysis identified IMRT as a significant prognostic factor (p = 0.04); however, after including T stage in the model, IMRT lost independent significance (p = 0.2). Analysis of a potential effect of IMRT on Grade 3+ mucositis or skin reaction was also hampered by the change in other treatment characteristics. Conclusions: Outcomes in oropharynx cancer have improved at our institution since the introduction of IMRT. However, multiple factors have contributed to this improvement, and presentation of IMRT outcomes without the full context of historical and contemporary controls may yield data that overstate outcome after IMRT.

  3. Parotid Gland Dose in Intensity-Modulated Radiotherapy for Head and Neck Cancer: Is What You Plan What You Get?

    SciTech Connect

    O'Daniel, Jennifer C.; Garden, Adam S.; Schwartz, David L.; Wang He; Ang, Kian K.; Ahamad, Anesa; Rosenthal, David I.; Morrison, William H.; Asper, Joshua A.; Zhang Lifei; Tung Shihming; Mohan, Radhe; Dong Lei

    2007-11-15

    Purpose: To quantify the differences between planned and delivered parotid gland and target doses, and to assess the benefits of daily bone alignment for head and neck cancer patients treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Eleven head and neck cancer patients received two CT scans per week with an in-room CT scanner over the course of their radiotherapy. The clinical IMRT plans, designed with 3-mm to 4-mm planning margins, were recalculated on the repeat CT images. The plans were aligned using the actual treatment isocenter marked with radiopaque markers (BB) and bone alignment to the cervical vertebrae to simulate image-guided setup. In-house deformable image registration software was used to map daily dose distributions to the original treatment plan and to calculate a cumulative delivered dose distribution for each patient. Results: Using conventional BB alignment led to increases in the parotid gland mean dose above the planned dose by 5 to 7 Gy in 45% of the patients (median, 3.0 Gy ipsilateral, p = 0.026; median, 1.0 Gy contralateral, p = 0.016). Use of bone alignment led to reductions relative to BB alignment in 91% of patients (median, 2 Gy; range, 0.3-8.3 Gy; 15 of 22 parotids improved). However, the parotid dose from bone alignment was still greater than planned (median, 1.0 Gy, p = 0.007). Neither approach affected tumor dose coverage. Conclusions: With conventional BB alignment, the parotid gland mean dose was significantly increased above the planned mean dose. Using daily bone alignment reduced the parotid dose compared with BB alignment in almost all patients. A 3- to 4-mm planning margin was adequate for tumor dose coverage.

  4. Grading xerostomia by physicians or by patients after intensity-modulated radiotherapy of head-and-neck cancer

    SciTech Connect

    Meirovitz, Amichay; Murdoch-Kinch, Carol Anne; Schipper, Mathew; Pan, Charlie; Eisbruch, Avraham . E-mail: eisbruch@umich.edu

    2006-10-01

    Purpose: To assess observer-based vs. patient self-reported scoring of xerostomia after intensity-modulated radiotherapy (IMRT) of head-and-neck (HN) cancer. Methods: A total of 38 patients who had received IMRT for HN cancer underwent xerostomia evaluations 6 to 24 months after completion of therapy using three methods each time: (1) Grading by 3 observers according to the Radiotherapy Oncology Group/European Organization for Research and Therapy of Cancer (RTOG/EORTC) system; (2) patient self-reported validated xerostomia questionnaire (XQ); and (3) major salivary gland flow measurements. Results: The interobserver agreement regarding the RTOG/EORTC grades was moderate: {kappa}-coefficient 0.54 (95% CI = 0.31-0.76). The correlations between the average RTOG/EORTC grades and the salivary flow rates were not statistically significant. A trend for significant correlation was observed between these grades and the percent (relative to the pretherapy) nonstimulated salivary flow rates (p = 0.07), but not with the percent stimulated flow rates. Better correlations were found between grading made more than the median time (15 min) after the last liquid sipping and the nonstimulated (but not the stimulated) flows compared with grading made shortly after sipping. In contrast, significant correlations were found between the XQ scores and the nonstimulated (p < 0.005) and the stimulated (p < 0.005) salivary flow rates, as well as with the percentages of the corresponding pretherapy values (p = 0.002 and 0.038, respectively). No significant correlation was found between the RTOG/EORTC grades and the XQ scores. The observer-based grades underestimated the severity of xerostomia compared with the patient self-reported scores. Conclusions: Patient self-reported, rather than physician-assessed scores, should be the main end points in evaluating xerostomia.

  5. Dose-Effect Relationships for the Submandibular Salivary Glands and Implications for Their Sparing by Intensity Modulated Radiotherapy

    SciTech Connect

    Murdoch-Kinch, Carol-Anne; Vineberg, Karen A.; Ship, Jonathan

    2008-10-01

    Purpose: Submandibular salivary glands (SMGs) dysfunction contributes to xerostomia after radiotherapy (RT) of head-and-neck (HN) cancer. We assessed SMG dose-response relationships and their implications for sparing these glands by intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 148 HN cancer patients underwent unstimulated and stimulated SMG salivary flow rate measurements selectively from Wharton's duct orifices, before RT and periodically through 24 months after RT. Correlations of flow rates and mean SMG doses were modeled throughout all time points. IMRT replanning in 8 patients whose contralateral level I was not a target incorporated the results in a new cost function aiming to spare contralateral SMGs. Results: Stimulated SMG flow rates decreased exponentially by (1.2%){sup Gy} as mean doses increased up to 39 Gy threshold, and then plateaued near zero. At mean doses {<=}39 Gy, but not higher, flow rates recovered over time at 2.2%/month. Similarly, the unstimulated salivary flow rates decreased exponentially by (3%){sup Gy} as mean dose increased and recovered over time if mean dose was <39 Gy. IMRT replanning reduced mean contralateral SMG dose by average 12 Gy, achieving {<=}39 Gy in 5 of 8 patients, without target underdosing, increasing the mean doses to the parotid glands and swallowing structures by average 2-3 Gy. Conclusions: SMG salivary flow rates depended on mean dose with recovery over time up to a threshold of 39 Gy. Substantial SMG dose reduction to below this threshold and without target underdosing is feasible in some patients, at the expense of modestly higher doses to some other organs.

  6. Dose-Effect Relationships for the Submandibular Salivary Glands and Implications for Their Sparing by Intensity Modulated Radiotherapy

    PubMed Central

    Murdoch-Kinch, Carol-Anne; Kim, Hyugnjin M.; Vineberg, Karen A; Ship, Jonathan A.; Eisbruch, Avraham

    2012-01-01

    Purpose Submandibular salivary glands (SMGs) dysfunction contributes to xerostomia after radiotherapy (RT) of head and neck (HN) cancer. We assessed SMG dose-response relationships and their implications for sparing these glands by intensity modulated radiotherapy (IMRT). Patients and Methods 148 HN cancer patients underwent unstimulated and stimulated SMG salivary flow rate measurements selectively from Wharton’s duct orifices, before RT and periodically through 24 months after RT. Correlations of flow rates and mean SMG doses were modeled throughout all time points. IMRT re-planning in eight patients whose contralateral level I was not a target incorporated the results in a new cost function aiming to spare contralateral SMGs. Results Stimulated SMG flow rates decreased exponentially by (1.2%)Gy as mean doses increased up to 39 Gy threshold, and then plateaued near zero. At mean doses ≤39 Gy, but not higher, flow rates recovered over time at 2.2%/month. Similarly, the unstimulated salivary flow rates decreased exponentially by (3%)Gy as mean dose increased and recovered over time if mean dose was <39 Gy. IMRT re-planning reduced mean contralateral SMG dose by average 12 Gy, achieving ≤39 Gy in 5/8 patients, without target under-dosing, increasing the mean doses to the parotid glands and swallowing structures by average 2–3 Gy. Conclusions SMG salivary flow rates depended on mean dose with recovery over time up to a threshold of 39 Gy. Substantial SMG dose reduction to below this threshold and without target under-dosing is feasible in some patients, at the expense of modestly higher doses to some other organs. PMID:18337023

  7. Limiting the risk of cardiac toxicity with esophageal-sparing intensity modulated radiotherapy for locally advanced lung cancers

    PubMed Central

    Panettieri, Vanessa; Ruben, Jeremy D.; Senthi, Sashendra

    2016-01-01

    Background Intensity modulated radiotherapy (IMRT) is routinely utilized in the treatment of locally advanced non-small cell lung cancer (NSCLC). RTOG 0617 found that overall survival was impacted by increased low (5 Gy) and intermediate (30 Gy) cardiac doses. We evaluated the impact of esophageal-sparing IMRT on cardiac doses with and without the heart considered in the planning process and predicted toxicity compared to 3D-conventional radiotherapy (3DCRT). Methods Ten consecutive patients with N2 Stage III NSCLC treated to 60 Gy in 30 fractions, between February 2012 and September 2014, were evaluated. For each patient, 3DCRT and esophageal-sparing IMRT plans were generated. IMRT plans were then created with and without the heart considered in the optimization process. To compare plans, the dose delivered to 95% and 99% of the target (D95% and D99%), and doses to the esophagus, lung and heart were compared by determining the volume receiving X dose (VXGy) and the normal tissue complication probability (NTCP) calculated. Results IMRT reduced maximum esophagus dose to below 60 Gy in all patients and produced significant reductions to V50Gy, V40Gy and esophageal NTCP. The cost of this reduction was a non-statistically, non-clinically significant increase in low dose (5 Gy) lung exposure that did not worsen lung NTCP. IMRT plans produced significant cardiac sparing, with the amount of improvement correlating to the amount of heart overlapping with the target. When included in plan optimization, for selected patients further sparing of the heart and improvement in heart NTCP was possible. Conclusions Esophageal-sparing IMRT can significantly spare the heart even if it is not considered in the optimization process. Further sparing can be achieved if plan optimization constrains low and intermediate heart doses, without compromising lung doses. PMID:27162670

  8. Randomized Controlled Trial of Forward-Planned Intensity Modulated Radiotherapy for Early Breast Cancer: Interim Results at 2 Years

    SciTech Connect

    Barnett, Gillian C.; Wilkinson, Jennifer S.; Moody, Anne M.; Wilson, Charles B.; Twyman, Nicola; Wishart, Gordon C.; Burnet, Neil G.; Coles, Charlotte E.

    2012-02-01

    Purpose: This single-center randomized trial was designed to investigate whether intensity-modulated radiotherapy (IMRT) reduces late toxicity in patients with early-stage breast cancer. Methods and Materials: The standard tangential plans of 1,145 nonselected patients were analyzed. The patients with inhomogeneous plans were randomized to a simple method of forward-planned IMRT or standard radiotherapy (RT). The primary endpoint was serial photographic assessment of breast shrinkage. Results: At 2 years, no significant difference was found in the development of any photographically assessed breast shrinkage between the patients randomized to the interventional or control group (odds ratio, 1.51; 95% confidence interval, 0.83-1.58; p = .41). The patients in the control group were more likely to develop telangiectasia than those in the IMRT group (odds ratio, 1.68; 95% confidence interval 1.13-2.40; p = .009). Poor baseline surgical cosmesis resulted in poor overall cosmesis at 2 years after RT. In patients who had good surgical cosmesis, those randomized to IMRT were less likely to deteriorate to a moderate or poor overall cosmesis than those in the control group (odds ratio, 0.63; 95% confidence interval, 0.39-1.03, p = .061). Conclusions: IMRT can lead to a significant reduction in telangiectasia at comparatively early follow-up of only 2 years after RT completion. An important component of breast induration and shrinkage will actually result from the surgery and not from the RT. Surgical cosmesis is an important determinant of overall cosmesis and could partially mask the longer term benefits of IMRT at this early stage.

  9. Lowering Whole-Body Radiation Doses in Pediatric Intensity-Modulated Radiotherapy Through the Use of Unflattened Photon Beams;Flattening filter; Pediatric; Intensity-modulated radiotherapy; Second cancers; Radiation-induced malignancies

    SciTech Connect

    Cashmore, Jason; Ramtohul, Mark; Ford, Dan

    2011-07-15

    Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.

  10. Risk Factors for Hearing Loss in Patients Treated With Intensity-Modulated Radiotherapy for Head-and-Neck Tumors

    SciTech Connect

    Zuur, Charlotte L.; Dreschler, Wouter A.; Balm, Alfons J.; Rasch, Coen R.

    2009-06-01

    Purpose: Radiotherapy (RT) is a common treatment of head-and-neck carcinoma. The objective of this study was to perform a prospective multivariate assessment of the dose-effect relationship between intensity-modulated RT and hearing loss. Methods and Materials: Pure tone audiometry at 0.250-16 kHz was obtained before and after treatment in 101 patients (202 ears). All patients received full-course intensity-modulated RT (range, 56-70 Gy), with a median cochlear dose of 11.4 Gy (range, 0.2-69.7). Results: Audiometry was performed 1 week before and a median of 9 weeks (range, 1-112) after treatment. The mean hearing deterioration at pure tone average air-conduction 1-2-4 kHz was small (from 28.6 dB HL to 30.1 dB HL). However, individual patients showed clinically significant hearing loss, with 10-dB threshold shift incidences of 13% and 18% at pure tone averages air-conduction 1-2-4 kHz and 8-10-12.5 kHz, respectively. Post-treatment hearing capability was unfavorable in the case of greater inner ear radiation doses (p <0.0001), unfavorable baseline hearing capability (p <0.0001), green-eyed patients (p <0.0001), and older age (p <0.0001). Using multivariate analysis, a prediction of individual hearing capabiltity after treatment was made. Conclusion: RT-induced hearing loss in the mean population is modest. However, clinically significant hearing loss was observed in older patients with green eyes and unfavorable pretreatment hearing. In these patients, the intended radiation dose may be adjusted according to the proposed predictive model, aiming to decrease the risk of ototoxicity.

  11. The Failure Patterns of Oral Cavity Squamous Cell Carcinoma After Intensity-Modulated Radiotherapy-University of Iowa Experience

    SciTech Connect

    Yao Min . E-mail: min-yao@uiowa.edu; Chang, Kristi; Funk, Gerry F.; Lu Heming; Tan Huaming; Wacha, Judith C; Dornfeld, Kenneth J.; Buatti, John M.

    2007-04-01

    Purpose: Determine the failure patterns of oral cavity squamous cell carcinoma (SCC) treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Between May 2001 and July 2005, 55 patients with oral cavity SCC were treated with IMRT for curative intent. Forty-nine received postoperative IMRT, 5 definitive IMRT, and 1 neoadjuvant. Three target volumes were defined (clinical target CTV1, CTV2, and CTV3). The failure patterns were determined by coregistration or comparison of the treatment planning computed tomography to the images obtained at the time of recurrence. Results: The median follow-up for all patients was 17.1 months (range, 0.27-59.3 months). The median follow-up for living patients was 23.9 months (range, 9.3-59.3 months). Nine patients had locoregional failures: 4 local failures only, 2 regional failures only, and 3 had both local and regional failures. Five patients failed distantly; of these, 3 also had locoregional failures. The 2-year overall survival, disease-specific survival, local recurrence-free survival, locoregional recurrence-free survival, and distant disease-free survival was 68%, 74%, 85%, 82%, and 89%, respectively. The median time from treatment completion to locoregional recurrence was 4.1 months (range, 3.0-12.1 months). Except for 1 patient who failed in contralateral lower neck outside the radiation field, all failed in areas that had received a high dose of radiation. The locoregional control is strongly correlated with extracapsular extension. Conclusions: Intensity-modulated RT is effective for oral cavity SCC. Most failures are in-field failures. Further clinical studies are necessary to improve the outcomes of patients with high-risk features, particularly for those with extracapsular extension.

  12. Dosimetric Comparison of Combined Intensity-Modulated Radiotherapy (IMRT) and Proton Therapy Versus IMRT Alone for Pelvic and Para-Aortic Radiotherapy in Gynecologic Malignancies

    SciTech Connect

    Berman Milby, Abigail; Both, Stefan; Ingram, Mark; Lin, Lilie L.

    2012-03-01

    Purpose: To perform a dosimetric comparison of intensity-modulated radiotherapy (IMRT), passive scattering proton therapy (PSPT), and intensity-modulated proton therapy (IMPT) to the para-aortic (PA) nodal region in women with locally advanced gynecologic malignancies. Methods and Materials: The CT treatment planning scans of 10 consecutive patients treated with IMRT to the pelvis and PA nodes were identified. The clinical target volume was defined by the primary tumor for patients with cervical cancer and by the vagina and paravaginal tissues for patients with endometrial cancer, in addition to the regional lymph nodes. The IMRT, PSPT, and IMPT plans were generated using the Eclipse Treatment Planning System and were analyzed for various dosimetric endpoints. Two groups of treatment plans including proton radiotherapy were created: IMRT to pelvic nodes with PSPT to PA nodes (PSPT/IMRT), and IMRT to pelvic nodes with IMPT to PA nodes (IMPT/IMRT). The IMRT and proton RT plans were optimized to deliver 50.4 Gy or Gy (relative biologic effectiveness [RBE)), respectively. Dose-volume histograms were analyzed for all of the organs at risk. The paired t test was used for all statistical comparison. Results: The small-bowel V{sub 20}, V{sub 30}, V{sub 35}, andV{sub 40} were reduced in PSPT/IMRT by 11%, 18%, 27%, and 43%, respectively (p < 0.01). Treatment with IMPT/IMRT demonstrated a 32% decrease in the small-bowel V{sub 20}. Treatment with PSPT/IMRT showed statistically significant reductions in the body V{sub 5-20}; IMPT/IMRT showed reductions in the body V{sub 5-15}. The dose received by half of both kidneys was reduced by PSPT/IMRT and by IMPT/IMRT. All plans maintained excellent coverage of the planning target volume. Conclusions: Compared with IMRT alone, PSPT/IMRT and IMPT/IMRT had a statistically significant decrease in dose to the small and large bowel and kidneys, while maintaining excellent planning target volume coverage. Further studies should be done to

  13. Quality of Life and Survival Outcome for Patients With Nasopharyngeal Carcinoma Receiving Three-Dimensional Conformal Radiotherapy vs. Intensity-Modulated Radiotherapy-A Longitudinal Study

    SciTech Connect

    Fang, F.-M. Chien, C.-Y.; Tsai, W.-L.; Chen, H.-C.; Hsu, H.-C.; Lui, C.-C.; Huang, T.-L.

    2008-10-01

    Purpose: To investigate the changes of quality of life (QoL) and survival outcomes for patients with nasopharyngeal carcinoma (NPC) treated by three-dimensional conformal radiotherapy (3D-CRT) vs. intensity-modulated radiotherapy (IMRT). Methods and Materials: Two hundred and three newly diagnosed NPC patients, who were curatively treated by 3D-CRT (n = 93) or IMRT (n = 110) between March 2002 and July 2004, were analyzed. The distributions of clinical stage according to American Joint Committee on Cancer 1997 were I: 15 (7.4%), II: 78 (38.4%), III: 74 (36.5%), and IV: 36 (17.7%). QoL was longitudinally assessed by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30 and the EORTC QLQ-H and N35 questionnaires at the five time points: before RT, during RT (36 Gy), and 3 months, 12 months, and 24 months after RT. Results: The 3-year locoregional control, metastasis-free survival, and overall survival rates were 84.8%, 76.7%, and 81.7% for the 3D-CRT group, respectively, compared with 84.2%, 82.6%, and 85.4% for the IMRT group (p value > 0.05). A general trend of maximal deterioration in most QoL scales was observed during RT, followed by a gradual recovery thereafter. There was no significant difference in most scales between the two groups at each time point. The exception was that patients treated by IMRT had a both statistically and clinically significant improvement in global QoL, fatigue, taste/smell, dry mouth, and feeling ill at the time point of 3 months after RT. Conclusions: The potential advantage of IMRT over 3D-CRT in treating NPC patients might occur in QoL outcome during the recovery phase of acute toxicity.

  14. Dosimetric correlation of acute and late toxicities in high-risk prostate cancer patients treated with three-dimensional conformal radiotherapy followed by intensity modulated radiotherapy boost

    PubMed Central

    Kapoor, Rakesh; Bansal, Anshuma; Kumar, Narendra; Oinam, Arun S.

    2016-01-01

    Introduction: In prostate cancer, higher radiation doses are often related to higher local control rates. However, the clinical effect of these higher doses on normal tissue toxicities is generally overlooked. We dosimetrically analyze sequential intensity modulated radiotherapy (IMRT) plans in high-risk prostate cancer patients and correlate them with acute and late normal tissue toxicities. Materials and Methods: Twenty-five high-risk prostate cancer patients were planned with three-dimensional conformal radiotherapy to a dose of 50 Gy delivered in 25 fractions in 5 weeks, followed by seven-field IMRT boost, to a dose of 24 Gy delivered in 12 fractions in 2.5 weeks, along with hormonal therapy. Acute and late toxicities were analyzed using Radiation Therapy Oncology Group toxicity criteria. Student's t-test was used for correlating doses received by normal tissues with toxicity grade. Five-year disease-free survival (DFS) and biochemical relapse-free survival (RFS) were evaluated using Kaplan–Meier analysis. Results: Median follow-up of patients was 65 months. Of 25 patients, two developed acute Grade 2 rectal toxicity. Only 1 patient developed acute Grade 2 bladder toxicity. Late Grade 2 and 3 rectal toxicity was seen in 2 and 1 patient, respectively. Late Grade 2 and 3 bladder toxicity was seen in 1 patient each. Grade 2 or more acute rectal toxicity correlated significantly with rectal volume receiving >70 Gy (P = 0.04). The 5-year DFS and biochemical RFS was 70.2% and 79.2%, respectively. One patient failed locally and seven failed at distant sites. Conclusion: Sequential IMRT with a dose of 74 Gy and maximum androgen blockade is well tolerated in high-risk patients in Indian setup with adequate control rates. PMID:27555679

  15. Dosimetric Advantage of Intensity-Modulated Radiotherapy for Whole Ventricles in the Treatment of Localized Intracranial Germinoma

    SciTech Connect

    Sakanaka, Katsuyuki; Mizowaki, Takashi; Hiraoka, Masahiro

    2012-02-01

    Purpose: To investigate the dosimetric advantage of intensity-modulated radiotherapy (IMRT) for whole ventricles (WV) in patients with a localized intracranial germinoma receiving induction chemotherapy. Methods and Materials: Data from 12 consecutive patients with localized intracranial germinomas who received induction chemotherapy and radiotherapy were used. Four-field coplanar three-dimensional conformal radiotherapy (3D-CRT) and seven-field coplanar IMRT plans were created. In both plans, 24 Gy was prescribed in 12 fractions for the planning target volume (PTV) involving WV and tumor bed. In IMRT planning, optimization was conducted to reduce the doses to the organs at risk (OARs) as much as possible, keeping the minimum dose equivalent to that of 3D-CRT. The 3D-CRT and IMRT plans were compared in terms of the dose-volume statistics for target coverage and the OARs. Results: IMRT significantly increased the percentage volume of the PTV receiving 24 Gy compared with 3D-CRT (93.5% vs. 84.8%; p = 0.007), while keeping target homogeneity equivalent to 3D-CRT (p = 0.869). The absolute percentage reduction in the irradiated volume of the normal brain receiving 100%, 75%, 50%, and 25% of 24 Gy ranged from 0.7% to 16.0% in IMRT compared with 3D-CRT (p < 0.001). No significant difference was observed in the volume of the normal brain receiving 10% and 5% of 24 Gy between IMRT and 3D-CRT. Conformation number was significantly improved in IMRT (p < 0.001). For other OARs, the mean dose to the cochlea was reduced significantly in IMRT by 22.3% of 24 Gy compared with 3D-CRT (p < 0.001). Conclusions: Compared with 3D-CRT, IMRT for WV improved the target coverage and reduced the irradiated volume of the normal brain in patients with intracranial germinomas receiving induction chemotherapy. IMRT for WV with induction chemotherapy could reduce the late side effects from cranial irradiation without compromising control of the tumor.

  16. Optimization and quality assurance of an image-guided radiation therapy system for intensity-modulated radiation therapy radiotherapy

    SciTech Connect

    Tsai, Jen-San; Micaily, Bizhan; Miyamoto, Curtis

    2012-10-01

    To develop a quality assurance (QA) of XVI cone beam system (XVIcbs) for its optimal imaging-guided radiotherapy (IGRT) implementation, and to construe prostate tumor margin required for intensity-modulated radiation therapy (IMRT) if IGRT is unavailable. XVIcbs spatial accuracy was explored with a humanoid phantom; isodose conformity to lesion target with a rice phantom housing a soap as target; image resolution with a diagnostic phantom; and exposure validation with a Radcal ion chamber. To optimize XVIcbs, rotation flexmap on coincidency between gantry rotational axis and that of XVI cone beam scan was investigated. Theoretic correlation to image quality of XVIcbs rotational axis stability was elaborately studied. Comprehensive QA of IGRT using XVIcbs has initially been explored and then implemented on our general IMRT treatments, and on special IMRT radiotherapies such as head and neck (H and N), stereotactic radiation therapy (SRT), stereotactic radiosurgery (SRS), and stereotactic body radiotherapy (SBRT). Fifteen examples of prostate setup accounted for 350 IGRT cone beam system were analyzed. IGRT accuracy results were in agreement {+-} 1 mm. Flexmap 0.25 mm met the manufacturer's specification. Films confirmed isodose coincidence with target (soap) via XVIcbs, otherwise not. Superficial doses were measured from 7.2-2.5 cGy for anatomic diameters 15-33 cm, respectively. Image quality was susceptible to rotational stability or patient movement. IGRT using XVIcbs on general IMRT treatments such as prostate, SRT, SRS, and SBRT for setup accuracy were verified; and subsequently coordinate shifts corrections were recorded. The 350 prostate IGRT coordinate shifts modeled to Gaussian distributions show central peaks deviated off the isocenter by 0.6 {+-} 3.0 mm, 0.5 {+-} 4.5 mm in the X(RL)- and Z(SI)-coordinates, respectively; and 2.0 {+-} 3.0 mm in the Y(AP)-coordinate as a result of belly and bladder capacity variations. Sixty-eight percent of confidence was

  17. Dosimetric effect of Elekta Beam Modulator micromultileaf in three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for prostate cancer

    SciTech Connect

    Carosi, Alessandra Ingrosso, Gianluca; Ponti, Elisabetta; Tolu, Barbara; Murgia, Alessandra; Cristino, Daniela di; Santoni, Riccardo

    2014-07-01

    The purpose of this study is to analyze the dosimetric effect of Elekta Beam Modulator in 3-dimensional conformal radiation therapy (3DCRT) and in intensity-modulated radiation therapy (IMRT) for localized prostate cancer. We compared treatment plans developed with 2 different Elekta multileaf collimators (MLC): Beam Modulator micro-MLC (mMLC) (4-mm leaf width at the isocenter) and standard MLC (10-mm leaf width at the isocenter). The comparison was performed for 15 patients with localized prostate cancer in 3DCRT and IMRT delivery; a total of 60 treatment plans were processed. The dose-volume histograms were used to provide the quantitative comparison between plans. In particular, we analyzed differences between rectum and bladder sparing in terms of a set of appropriate Vx (percentage of organ at risk [OAR] volume receiving the x dose) and differences between target conformity and coverage in terms of coverage factor and conformation number. Our analysis demonstrates that in 3DCRT there is an advantage in the use of Elekta Beam Modulator mMLC in terms of organ sparing; in particular, a significant decrease in rectal V{sub 60} and V{sub 50} (p = 0.001) and in bladder V{sub 70} and V{sub 65} (p = 0.007 and 0.002, respectively) was found. Moreover, a better target dose conformity was obtained (p = 0.002). IMRT plans comparison demonstrated no significant differences between the use of the 4 or 10-mm MLCs. Our analysis shows that in 3DCRT the use of the Elekta Beam Modulator mMLC gives a gain in target conformity and in OARs dose sparing whereas in IMRT plans there is no advantage.

  18. Whole brain radiotherapy plus simultaneous in-field boost with image guided intensity-modulated radiotherapy for brain metastases of non-small cell lung cancer

    PubMed Central

    2014-01-01

    Background Whole brain radiotherapy (WBRT) plus sequential focal radiation boost is a commonly used therapeutic strategy for patients with brain metastases. However, recent reports on WBRT plus simultaneous in-field boost (SIB) also showed promising outcomes. The objective of present study is to retrospectively evaluate the efficacy and toxicities of WBRT plus SIB with image guided intensity-modulated radiotherapy (IG-IMRT) for inoperable brain metastases of NSCLC. Methods Twenty-nine NSCLC patients with 87 inoperable brain metastases were included in this retrospective study. All patients received WBRT at a dose of 40 Gy/20 f, and SIB boost with IG-IMRT at a dose of 20 Gy/5 f concurrent with WBRT in the fourth week. Prior to each fraction of IG-IMRT boost, on-line positioning verification and correction were used to ensure that the set-up errors were within 2 mm by cone beam computed tomography in all patients. Results The one-year intracranial control rate, local brain failure rate, and distant brain failure rate were 62.9%, 13.8%, and 19.2%, respectively. The two-year intracranial control rate, local brain failure rate, and distant brain failure rate were 42.5%, 30.9%, and 36.4%, respectively. Both median intracranial progression-free survival and median survival were 10 months. Six-month, one-year, and two-year survival rates were 65.5%, 41.4%, and 13.8%, corresponding to 62.1%, 41.4%, and 10.3% of intracranial progression-free survival rates. Patients with Score Index for Radiosurgery in Brain Metastases (SIR) >5, number of intracranial lesions <3, and history of EGFR-TKI treatment had better survival. Three lesions (3.45%) demonstrated radiation necrosis after radiotherapy. Grades 2 and 3 cognitive impairment with grade 2 radiation leukoencephalopathy were observed in 4 (13.8%) and 4 (13.8%) patients. No dosimetric parameters were found to be associated with these late toxicities. Patients received EGFR-TKI treatment had higher incidence of grades 2–3

  19. Comparison of the dosimetries of 3-dimensions Radiotherapy (3D-RT) with linear accelerator and intensity modulated radiotherapy (IMRT) with helical tomotherapy in children irradiated for neuroblastoma

    PubMed Central

    2012-01-01

    Background Intensity modulated radiotherapy is an efficient radiotherapy technique to increase dose in target volumes and decrease irradiation dose in organs at risk. This last objective is mainly relevant in children. However, previous results suggested that IMRT could increase low dose, factor of risk for secondary radiation induced cancer. This study was performed to compare dose distributions with 3D-radiotherapy (3D-RT) and IMRT with tomotherapy (HT) in children with neuroblastoma. Seven children with neuroblastoma were irradiated. Treatment plans were calculated for 3D-RT, and for HT. For the volume of interest, the PTV-V95% and conformity index were calculated. Dose constraints of all the organs at risk and integral dose were compared. Results The conformity index was statistically better for HT than for 3D-RT. PTV-V95% constraint was reached in 6 cases with HT compared to 2 cases with 3D-RT. For the ipsilateral kidney of the tumor, the V12 Gy constraint was reached for 3 patients with both methods. The values were lower with HT than with 3D-RT in two cases and higher in one case. The threshold was not reached for one patient with either technique, but the value was lower with HT than with 3D-RT. For the contralateral kidney of the tumors, the V12 Gy constraint was reached for all patients with both methods. The values were lower with HT than with 3D-RT in 5 of 7 children, equal in one patient and higher in one patient. The organ-at-risk volumes receiving low doses were significantly lower with 3D-RT but larger for the highest doses, compared to those irradiated with HT. The integral doses were not different. Conclusions IMRT with HT allows a better conformity treatment, a more frequently acceptable PTV-V95% than 3D-RT and, concomitantly, a better shielding of the kidneys. The integral doses are comparable between both techniques but consideration of differences in dose distribution between the two techniques, for the organs at risk, has to be taken in

  20. Intensity-Modulated Radiotherapy Causes Fewer Side Effects than Three-Dimensional Conformal Radiotherapy When Used in Combination With Brachytherapy for the Treatment of Prostate Cancer

    SciTech Connect

    Forsythe, Kevin; Blacksburg, Seth; Stone, Nelson; Stock, Richard G.

    2012-06-01

    Purpose: To measure the benefits of intensity-modulated radiotherapy (IMRT) compared with three-dimensional conformal radiotherapy (3D-CRT) when used in combination with brachytherapy for the treatment of prostate cancer. Methods and Materials: We conducted a retrospective review of all patients with localized prostate cancer who received external-beam radiotherapy (EBRT) in combination with brachytherapy with at least 1 year follow-up (n = 812). Combination therapy consisted of {sup 103}Pd or {sup 125}I implant, followed by a course of EBRT. From 1993 to March 2003 521 patients were treated with 3D-CRT, and from April 2003 to March 2009 291 patients were treated with IMRT. Urinary symptoms were prospectively measured with the International Prostate Symptom Score questionnaire with a single quality of life (QOL) question; rectal bleeding was assessed per the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring Schema. The Pearson {chi}{sup 2} test was used to compare toxicities experienced by patients who were treated with either IMRT or 3D-CRT. Logistic regression analyses were also performed to rule out possible confounding factors. Results: Within the first 3 months after treatment, patients treated with 3D-CRT scored their urinary symptoms as follows: 19% mild, 44% moderate, and 37% severe; patients treated with IMRT scored their urinary symptoms as follows: 36% mild, 47% moderate, and 17% severe (p < 0.001). The 3D-CRT patients rated their QOL as follows: 35% positive, 20% neutral, and 45% negative; IMRT patients rated their QOL as follows: 51% positive, 18% neutral, and 31% negative (p < 0.001). After 1 year of follow-up there was no longer any difference in urinary morbidity between the two groups. Logistic regression confirmed the differences in International Prostate Symptom Score and QOL in the acute setting (p < 0.001 for both). Grade {>=}2 rectal bleeding was reported by 11% of 3D

  1. Long-Term Outcome After Static Intensity-Modulated Total Body Radiotherapy Using Compensators Stratified by Pediatric and Adult Cohorts

    SciTech Connect

    Schneider, Ralf A. Schultze, Juergen; Jensen, J. Martin; Hebbinghaus, Dieter; Galalae, Razvan M.

    2008-01-01

    Purpose: To report the long-term outcome after total body irradiation with intensity-modulating compensators and allogeneic/autologous transplantation, especially in terms of therapy-related toxicity in pediatric and adult cohorts. Methods and Materials: A total of 257 consecutive patients (40 children and 217 adults) have been treated since 1983 with TBI using static intensity-modulated radiotherapy for hematologic malignancies. The total dose of 12 Gy was applied in six fractions within 3 days before allogeneic (n = 174) or autologous (n = 83) transplantation. The median follow-up was 9.2 years. Results: The 5-year overall survival rate was 47.9% (49.8% for the adults and 37.5% for the children, p = 0.171). The 5-year tumor-related mortality rate was 23%, and the 5-year treatment-related mortality rate 29.2% (29.5% in the adults and 27.5% in the pediatric patients). Interstitial pneumonitis developed in 28 (10.9%) of 257 patients and in 12.5% of the pediatric cohort. The interstitial pneumonitis rate was 25% in pediatric patients treated with a 12-Gy lung dose compared with 4.2% for those treated to an 11-Gy lung dose. The overall survival rate stratified by lung dose was 26.7% for 12 Gy and 52.4% for 11 Gy (p = 0.001). The incidence of veno-occlusive disease and cataract was 5.8% and 6.6% in all patients and 12.5% and 15% in the pediatric patients, respectively (p < 0.05). Secondary malignancies were found in 4.3% of all patients, all in the adult cohort at transplantation. Conclusion: Static intensity-modulated total body irradiation with a total dose of 12 Gy before allogeneic/autologous transplantation is a successful treatment with good long-term outcome and acceptable therapy-related toxicities. Constraining the lung dose to 11 Gy substantially lowered the actuarial treatment-related mortality. This effect was especially striking in the pediatric patients.

  2. Prognostic implications of dynamic serum lactate dehydrogenase assessments in nasopharyngeal carcinoma patients treated with intensity-modulated radiotherapy

    PubMed Central

    Zhou, Guan-Qun; Ren, Xian-Yue; Mao, Yan-Ping; Chen, Lei; Sun, Ying; Liu, Li-Zhi; Li, Li; Lin, Ai-Hua; Mai, Hai-Qiang; Ma, Jun

    2016-01-01

    The prognostic value of dynamic serum lactate dehydrogenase (LDH) levels in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT) hasn’t been explored. We retrospectively analyzed 1,428 cases of NPC treated with IMRT with or without chemotherapy. Elevated pre- and/or post-treatment LDH levels were found to be associated with unfavorable overall survival (OS), disease-free survival (DFS) and distant metastasis-free survival (DMFS), but not with local relapse-free survival (LRFS). The dynamic variations in LDH levels were prognostic factors for OS, DFS and DMFS, but not for LRFS. Multivariate analysis revealed that the N category, T category, post-treatment serum LDH level and age were independent prognostic factors for OS. Our results demonstrated that dynamic variations in LDH levels were associated with risk of distant failure and death, which may shed light on the dynamics of the disease and the response to therapy. We consider that LDH measurements will be of great clinical importance in the management of NPC, especially, when considering “decision points” in treatment algorithms. Therefore, we strongly recommend that LDH levels should be determined before and after treatment in NPC patients and the results integrated into decisions regarding treatment strategies. PMID:26928265

  3. Prognostic Value of Subclassification Using MRI in the T4 Classification Nasopharyngeal Carcinoma Intensity-Modulated Radiotherapy Treatment

    SciTech Connect

    Chen Lei; Liu Lizhi; Chen Mo; Li Wenfei; Yin Wenjing; Lin Aihua; Sun Ying; Li Li; Ma Jun

    2012-09-01

    Purpose: To subclassify patients with the T4 classification nasopharyngeal carcinoma (NPC), according to the seventh edition of the American Joint Committee on Cancer staging system, using magnetic resonance imaging (MRI), and to evaluate the prognostic value of subclassification after intensity-modulated radiotherapy (IMRT). Methods and Materials: A total of 140 patients who underwent MRI and were subsequently histologically diagnosed with nondisseminated classification T4 NPC received IMRT as their primary treatment and were included in this retrospective study. T4 patients were subclassified into two grades: T4a was defined as a primary nasopharyngeal tumor with involvement of the masticator space only; and T4b was defined as involvement of the intracranial region, cranial nerves, and/or orbit. Results: The 5-year overall survival (OS) rate and distant metastasis-free survival (DMFS) rate for T4a patients (82.5% and 87.0%, respectively), were significantly higher than for T4b patients (62.6% and 66.8%; p = 0.033 and p = 0.036, respectively). The T4a/b subclassification was an independent prognostic factor for OS (hazard ratio = 2.331, p = 0.032) and DMFS (hazard ratio = 2.602, p = 0.034), and had no significant effect on local relapse-free survival. Conclusions: Subclassification of T4 patients, as T4a or T4b, using MRI according to the site of invasion, has prognostic value for the outcomes of IMRT treatment in NPC.

  4. Dosimetric evaluation of a simple planning method for improving intensity-modulated radiotherapy for stage III lung cancer

    PubMed Central

    Lu, Jia-Yang; Lin, Zhu; Zheng, Jing; Lin, Pei-Xian; Cheung, Michael Lok-Man; Huang, Bao-Tian

    2016-01-01

    This study aimed to evaluate the dosimetric outcomes of a base-dose-plan-compensation (BDPC) planning method for improving intensity-modulated radiotherapy (IMRT) for stage III lung cancer. For each of the thirteen included patients, three types of planning methods were applied to obtain clinically acceptable plans: (1) the conventional optimization method (CO); (2) a split-target optimization method (STO), in which the optimization objectives were set higher dose for the target with lung density; (3) the BDPC method, which compensated for the optimization-convergence error by further optimization based on the CO plan. The CO, STO and BDPC methods were then compared regarding conformity index (CI), homogeneity index (HI) of the target, organs at risk (OARs) sparing and monitor units (MUs). The BDPC method provided better HI/CI by 54%/7% on average compared to the CO method and by 38%/3% compared to the STO method. The BDPC method also spared most of the OARs by up to 9%. The average MUs of the CO, STO and BDPC plans were 890, 937 and 1023, respectively. Our results indicated that the BDPC method can effectively improve the dose distribution in IMRT for stage III lung cancer, at the expense of more MUs. PMID:27009235

  5. Dosimetric evaluation of a simple planning method for improving intensity-modulated radiotherapy for stage III lung cancer.

    PubMed

    Lu, Jia-Yang; Lin, Zhu; Zheng, Jing; Lin, Pei-Xian; Cheung, Michael Lok-Man; Huang, Bao-Tian

    2016-01-01

    This study aimed to evaluate the dosimetric outcomes of a base-dose-plan-compensation (BDPC) planning method for improving intensity-modulated radiotherapy (IMRT) for stage III lung cancer. For each of the thirteen included patients, three types of planning methods were applied to obtain clinically acceptable plans: (1) the conventional optimization method (CO); (2) a split-target optimization method (STO), in which the optimization objectives were set higher dose for the target with lung density; (3) the BDPC method, which compensated for the optimization-convergence error by further optimization based on the CO plan. The CO, STO and BDPC methods were then compared regarding conformity index (CI), homogeneity index (HI) of the target, organs at risk (OARs) sparing and monitor units (MUs). The BDPC method provided better HI/CI by 54%/7% on average compared to the CO method and by 38%/3% compared to the STO method. The BDPC method also spared most of the OARs by up to 9%. The average MUs of the CO, STO and BDPC plans were 890, 937 and 1023, respectively. Our results indicated that the BDPC method can effectively improve the dose distribution in IMRT for stage III lung cancer, at the expense of more MUs. PMID:27009235

  6. Evaluation of the Dosimetric Feasibility of Hippocampal Sparing Intensity-Modulated Radiotherapy in Patients with Locally Advanced Nasopharyngeal Carcinoma

    PubMed Central

    Gan, Hua; Denniston, Kyle A.; Li, Sicong; Tan, Wenyong; Wang, Zhaohua

    2014-01-01

    Purpose The objective of this study was to evaluate the dosimetric feasibility of using hippocampus (HPC) sparing intensity-modulated radiotherapy (IMRT) in patients with locally advanced nasopharyngeal carcinoma (NPC). Materials/Methods Eight cases of either T3 or T4 NPC were selected for this study. Standard IMRT treatment plans were constructed using the volume and dose constraints for the targets and organs at risk (OAR) per Radiation Therapy Oncology Group (RTOG) 0615 protocol. Experimental plans were constructed using the same criteria, with the addition of the HPC as an OAR. The two dose-volume histograms for each case were compared for the targets and OARs. Results All plans achieved the protocol dose criteria. The homogeneity index, conformity index, and coverage index for the planning target volumes (PTVs) were not significantly compromised by the avoidance of the HPC. The doses to all OARs, excluding the HPC, were similar. Both the dose (Dmax, D2%, D40%, Dmean, Dmedian, D98% and Dmin) and volume (V5, V10, V15, V20, V30, V40 and V50) parameters for the HPC were significantly lower in the HPC sparing plans (p<0.05), except for Dmin (P = 0.06) and V5 (P = 0.12). Conclusions IMRT for patients with locally advanced NPC exposes the HPC to a significant radiation dose. HPC sparing IMRT planning significantly decreases this dose, with minimal impact on the therapeutic targets and other OARs. PMID:24587184

  7. Definitive extended field intensity-modulated radiotherapy and concurrent cisplatin chemosensitization in the treatment of IB2-IIIB cervical cancer

    PubMed Central

    Zhang, Guangyu; He, Fangfang; Fu, Chunli; Zhang, Youzhong; Yang, Qiuan; Wang, Jianbo

    2014-01-01

    Objective To assess the toxicity of delivering extended field intensity-modulated radiotherapy (EF-IMRT) and concurrent cisplatin chemotherapy for locally advanced cervical carcinoma. Methods Forty-five patients who underwent EF-IMRT and concurrent cisplatin chemotherapy for the treatment of stage IB2 to IIIB cervical cancer were retrospectively reviewed. The clinical target volume included all areas of gross and potentially microscopic disease and regional lymph node regions. All patients underwent high-dose-rate brachytherapy. The acute and late toxicity were scored using the Common Terminology Criteria for Adverse Events and the Radiation Therapy Oncology Group late radiation morbidity scoring criteria, respectively. Results The median follow-up was 28 months (range, 5 to 62 months). Forty-two patients had a complete response, and three had a persistent disease. Of those 42 patients, 15 patients (35.7%) had recurrence. The regions of recurrence were in-field in 2 patients and out-field in 13 patients. Acute grade ≥3 gastrointestinal, genitourinary and hematologic toxicity occurred in 3, 1, and 9 patients, respectively. Three patients (6.7%) suffered from late grade 3 toxicities. Seven patients experienced ovarian transposition, 5 of those patients (71%) maintained ovarian function. Thirty-eight patients (84.4%) were alive at the last follow-up. Conclusion Concurrent cisplatin chemotherapy with EF-IMRT was safe. The acute and late toxicities are acceptable. EF-IMRT provides an opportunity to preserve endocrine function for patients with ovarian transposition. PMID:24459576

  8. Comparative analysis of volumetric-modulated arc therapy and intensity-modulated radiotherapy for base of tongue cancer.

    PubMed

    Nithya, L; Raj, N Arunai Nambi; Kumar, Arulraj; Rathinamuthu, Sasikumar; Pandey, Manish Bhushan

    2014-04-01

    The aim of this study was to compare the various dosimetric parameters of dynamic multileaf collimator (MLC) intensity modulated radiation therapy (IMRT) plans with volumetric modulated arc therapy (VMAT) plans for base of tongue cases. All plans were done in Monaco planning system for Elekta synergy linear accelerator with 80 MLC. IMRT plans were planned with nine stationary beams, and VMAT plans were done for 360° arc with single arc or dual arc. The dose to the planning target volumes (PTV) for 70, 63, and 56 Gy was compared. The dose to 95, 98, and 50% volume of PTV were analyzed. The homogeneity index (HI) and the conformity index (CI) of the PTV70 were also analyzed. IMRT and VMAT plan showed similar dose coverage, HI, and CI. Maximum dose and dose to 1-cc volume of spinal cord, planning risk volume (PRV) cord, and brain stem were compared. IMRT plan and VMAT plan showed similar results except for the 1 cc of PRV cord that received slightly higher dose in VMAT plan. Mean dose and dose to 50% volume of right and left parotid glands were analyzed. VMAT plan gave better sparing of parotid glands than IMRT. In normal tissue dose analyses VMAT was better than IMRT. The number of monitor units (MU) required for delivering the good quality of the plan and the time required to deliver the plan for IMRT and VMAT were compared. The number of MUs for VMAT was higher than that of IMRT plans. However, the delivery time was reduced by a factor of two for VMAT compared with IMRT. VMAT plans yielded good quality of the plan compared with IMRT, resulting in reduced treatment time and improved efficiency for base of tongue cases. PMID:24872611

  9. 3D-Conformal Versus Intensity-Modulated Postoperative Radiotherapy of Vaginal Vault: A Dosimetric Comparison

    SciTech Connect

    Cilla, Savino; Macchia, Gabriella Digesu, Cinzia; Deodato, Francesco; Romanella, Michele; Ferrandina, Gabriella; Padula, Gilbert; Picardi, Vincenzo; Scambia, Giovanni; Morganti, Alessio Giuseppe

    2010-07-01

    We evaluated a step-and-shoot IMRT plan in the postoperative irradiation of the vaginal vault compared with equispaced beam arrangements (3-5) 3D-radiotherapy (RT) optimized plans. Twelve patients were included in this analysis. Four plans for each patient were compared in terms of dose-volume histograms, homogeneity index (HI), and conformity index (CI): (1) 3 equispaced beam arrangement 3D-RT; (2) 4 equispaced beam arrangement 3D-RT; (3) 5 equispaced beam arrangement 3D-RT; (4) step-and-shoot IMRT technique. CI showed a good discrimination between the four plans. The mean scores of CI were 0.58 (range: 0.38-0.67) for the 3F-CRT plan, 0.58 (range: 0.41-0.66) for 4F-CRT, 0.62 (range: 0.43-0.68) for 5F-CRT and 0.69 (range: 0.58-0.78) for the IMRT plan. A significant improvement of the conformity was reached by the IMRT plan (p < 0.001 for all comparisons). As expected, the increment of 3D-CRT fields was associated with an improvement of target dose conformity and homogeneity; on the contrary, in the IMRT plans, a better conformity was associated to a worse target dose homogeneity. A significant reduction in terms of D{sub mean}, V90%, V95%, V100% was recorded for rectal and bladder irradiation with the IMRT plan. Surprisingly, IMRT supplied a significant dose reduction also for rectum and bladder V30% and V50%. A significant dosimetric advantage of IMRT over 3D-RT in the adjuvant treatment of vaginal vault alone in terms of treatment conformity and rectum and bladder sparing is shown.

  10. Prospective Trial of High-Dose Reirradiation Using Daily Image Guidance With Intensity-Modulated Radiotherapy for Recurrent and Second Primary Head-and-Neck Cancer

    SciTech Connect

    Chen, Allen M.; Farwell, D. Gregory; Luu, Quang; Cheng, Suzan; Donald, Paul J.; Purdy, James A.

    2011-07-01

    Purpose: To report a single-institutional experience using intensity-modulated radiotherapy with daily image-guided radiotherapy for the reirradiation of recurrent and second cancers of the head and neck. Methods and Materials: Twenty-one consecutive patients were prospectively treated with intensity-modulated radiotherapy from February 2006 to March 2009 to a median dose of 66 Gy (range, 60-70 Gy). None of these patients received concurrent chemotherapy. Daily helical megavoltage CT scans were obtained before each fraction as part of an image-guided radiotherapy registration protocol for patient alignment. Results: The 1- and 2-year estimates of in-field control were 72% and 65%, respectively. A total of 651 daily megavoltage CT scans were obtained. The mean systematic shift to account for interfraction motion was 1.38 {+-} 1.25 mm, 1.79 {+-} 1.45 mm, and 1.98 {+-} 1.75 mm for the medial-lateral, superior-inferior, and anterior-posterior directions, respectively. Pretreatment shifts of >3 mm occurred in 19% of setups in the medial-lateral, 27% in the superior-inferior, and 33% in the anterior-posterior directions, respectively. There were no treatment-related fatalities or hospitalizations. Complications included skin desquamation, odynophagia, otitis externa, keratitis, naso-lacrimal duct stenosis, and brachial plexopathy. Conclusions: Intensity-modulated radiotherapy with daily image guidance results in effective disease control with relatively low morbidity and should be considered for selected patients with recurrent and second primary cancers of the head and neck.

  11. Single-arc volumetric-modulated arc therapy (sVMAT) as adjuvant treatment for gastric cancer: Dosimetric comparisons with three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT)

    SciTech Connect

    Wang, Xin; Li, Guangjun; Zhang, Yingjie; Bai, Sen; Xu, Feng; Wei, Yuquan; Gong, Youling

    2013-01-01

    To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMAT plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.

  12. Tumor Control Outcomes After Hypofractionated and Single-Dose Stereotactic Image-Guided Intensity-Modulated Radiotherapy for Extracranial Metastases From Renal Cell Carcinoma

    SciTech Connect

    Zelefsky, Michael J.; Greco, Carlo; Motzer, Robert; Magsanoc, Juan Martin; Pei Xin; Lovelock, Michael; Mechalakos, Jim; Zatcky, Joan; Fuks, Zvi; Yamada, Yoshiya

    2012-04-01

    Purpose: To report tumor local progression-free outcomes after treatment with single-dose, image-guided, intensity-modulated radiotherapy and hypofractionated regimens for extracranial metastases from renal cell primary tumors. Patients and Methods: Between 2004 and 2010, 105 lesions from renal cell carcinoma were treated with either single-dose, image-guided, intensity-modulated radiotherapy to a prescription dose of 18-24 Gy (median, 24) or hypofractionation (three or five fractions) with a prescription dose of 20-30 Gy. The median follow-up was 12 months (range, 1-48). Results: The overall 3-year actuarial local progression-free survival for all lesions was 44%. The 3-year local progression-free survival for those who received a high single-dose (24 Gy; n = 45), a low single-dose (<24 Gy; n = 14), or hypofractionation regimens (n = 46) was 88%, 21%, and 17%, respectively (high single dose vs. low single dose, p = .001; high single dose vs. hypofractionation, p < .001). Multivariate analysis revealed the following variables were significant predictors of improved local progression-free survival: 24 Gy dose compared with a lower dose (p = .009) and a single dose vs. hypofractionation (p = .008). Conclusion: High single-dose, image-guided, intensity-modulated radiotherapy is a noninvasive procedure resulting in high probability of local tumor control for metastatic renal cell cancer generally considered radioresistant according to the classic radiobiologic ranking.

  13. A method to dynamically balance intensity modulated radiotherapy dose between organs-at-risk

    SciTech Connect

    Das, Shiva K.

    2009-05-15

    The IMRT treatment planning process typically follows a path that is based on the manner in which the planner interactively adjusts the target and organ-at-risk (OAR) constraints and priorities. The time-intensive nature of this process restricts the planner from fully understanding the dose trade-off between structures, making it unlikely that the resulting plan fully exploits the extent to which dose can be redistributed between anatomical structures. Multiobjective Pareto optimization has been used in the past to enable the planner to more thoroughly explore alternatives in dose trade-off by combining pre-generated Pareto optimal solutions in real time, thereby potentially tailoring a plan more exactly to requirements. However, generating the Pareto optimal solutions can be nonintuitive and computationally time intensive. The author presents an intuitive and fast non-Pareto approach for generating optimization sequences (prior to planning), which can then be rapidly combined by the planner in real time to yield a satisfactory plan. Each optimization sequence incrementally reduces dose to one OAR at a time, starting from the optimization solution where dose to all OARs are reduced with equal priority, until user-specified target coverage limits are violated. The sequences are computationally efficient to generate, since the optimization at each position along a sequence is initiated from the end result of the previous position in the sequence. The pre-generated optimization sequences require no user interaction. In real time, a planner can more or less instantaneously visualize a treatment plan by combining the dose distributions corresponding to user-selected positions along each of the optimization sequences (target coverage is intrinsically maintained in the combination). Interactively varying the selected positions along each of the sequences enables the planner to rapidly understand the nature of dose trade-off between structures and, thereby, arrive at a

  14. Efficacy and Safety of Intensity-Modulated Radiotherapy Following Transarterial Chemoembolization in Patients With Unresectable Hepatocellular Carcinoma

    PubMed Central

    Zhang, Tao; Zhao, Yu-Ting; Wang, Zhi; Li, Cheng-Rui; Jin, Jing; Jia, Angela Y.; Wang, Shu-Lian; Song, Yong-Wen; Liu, Yue-Ping; Ren, Hua; Fang, Hui; Bao, Hui; Liu, Xin-Fan; Yu, Zi-Hao; Li, Ye-Xiong; Wang, Wei-Hu

    2016-01-01

    Abstract Three-dimensional conformal radiotherapy in combination with transarterial chemoembolization (TACE) has been beneficial in patients with unresectable hepatocellular carcinoma (HCC). There have been few clinical reports on the use of intensity-modulated radiotherapy (IMRT) in combination with TACE for these patients. The purpose of this study was to assess the efficacy and toxicity of IMRT following TACE in unresectable HCC. The medical records of consecutive patients with unresectable HCC, who underwent IMRT following TACE from January 2009 to June 2014, were retrospectively reviewed in order to assess the overall survival (OS), progression-free survival (PFS), tumor response, and treatment-associated toxicity. A total of 64 lesions in 54 patients were included in the analysis. IMRT was delivered at a median dose of 50 Gy (range 44–70 Gy) at 1.8 to 2.0 Gy per fraction. The overall response rate was achieved in 64.8% of patients with complete response in 20.4% of patients at 3 months after completion of IMRT. The median OS was 20.2 months (95% CI = 8.6–31.9), and the actuarial 1-, 2-, and 3-year OS rates were 84.6%, 49.7%, and 36.7%, respectively. The median PFS was 10.5 months (95% CI = 7.3–13.7) and the 1-, 2-, and 3-year PFS rates were 44.2%, 23.4%, and 14.6%, respectively. The responders had a significantly higher OS rate than the nonresponders (3-year OS 48.0% vs 14.4%, P = 0.001). During and the first month following IMRT, 10 (18.5%) patients developed grade 3 hematological toxicity, and 3 (5.6%) developed grade 3 hepatic toxicity. No patient experienced grade 4 or 5 toxicity. Radiation-induced liver disease was not observed. Our findings suggest that IMRT following TACE could be a favorable treatment option for both its safety profile and clinical benefit in patients with unresectable HCC. PMID:27227954

  15. Intensity-Modulated Radiotherapy Reduces Gastrointestinal Toxicity in Patients Treated With Androgen Deprivation Therapy for Prostate Cancer

    SciTech Connect

    Sharma, Navesh K.; Li Tianyu; Chen, David Y.; Pollack, Alan; Horwitz, Eric M.; Buyyounouski, Mark K.

    2011-06-01

    Purpose: Androgen deprivation therapy (AD) has been shown to increase late Grade 2 or greater rectal toxicity when used concurrently with three-dimensional conformal radiotherapy (3D-CRT). Intensity-modulated radiotherapy (IMRT) has the potential to reduce toxicity by limiting the radiation dose received by the bowel and bladder. The present study compared the genitourinary and gastrointestinal (GI) toxicity in men treated with 3D-CRT+AD vs. IMRT+AD. Methods and Materials: Between July 1992 and July 2004, 293 men underwent 3D-CRT (n = 170) or IMRT (n = 123) with concurrent AD (<6 months, n = 123; {>=}6 months, n = 170). The median radiation dose was 76 Gy for 3D-CRT (International Commission on Radiation Units and Measurements) and 76 Gy for IMRT (95% to the planning target volume). Toxicity was assessed by a patient symptom questionnaire that was completed at each visit and recorded using a Fox Chase Modified Late Effects Normal Tissue Task radiation morbidity scale. Results: The mean follow-up was 86 months (standard deviation, 29.3) for the 3D-CRT group and 40 months (standard deviation, 9.7) for the IMRT group. Acute GI toxicity (odds ratio, 4; 95% confidence interval, 1.6-11.7; p = .005) was significantly greater with 3D-CRT than with IMRT and was independent of the AD duration (i.e., <6 vs. {>=}6 months). The interval to the development of late GI toxicity was significantly longer in the IMRT group. The 5-year Kaplan-Meier estimate for Grade 2 or greater GI toxicity was 20% for 3D-CRT and 8% for IMRT (p = .01). On multivariate analysis, Grade 2 or greater late GI toxicity (hazard ratio, 2.1; 95% confidence interval, 1.1-4.3; p = .04) was more prevalent in the 3D-CRT patients. Conclusion: Compared with 3D-CRT, IMRT significantly decreased the acute and late GI toxicity in patients treated with AD.

  16. Phase I Trial of Hypofractionated Intensity-Modulated Radiotherapy With Temozolomide Chemotherapy for Patients With Newly Diagnosed Glioblastoma Multiforme

    SciTech Connect

    Chen Changhu; Damek, Denise; Gaspar, Laurie E.; Waziri, Allen; Lillehei, Kevin; Kleinschmidt-DeMasters, B.K.; Robischon, Monica; Stuhr, Kelly; Rusthoven, Kyle E.; Kavanagh, Brian D.

    2011-11-15

    Purpose: To determine the maximal tolerated biologic dose intensification of radiotherapy using fractional dose escalation with temozolomide (TMZ) chemotherapy in patients with newly diagnosed glioblastoma multiforme. Methods and Materials: Patients with newly diagnosed glioblastoma multiforme after biopsy or resection and with adequate performance status, bone marrow, and organ function were eligible. The patients underwent postoperative intensity-modulated radiotherapy (IMRT) with concurrent and adjuvant TMZ. All patients received a total dose of 60 Gy to the surgical cavity and residual tumor, with a 5-mm margin. IMRT biologic dose intensification was achieved by escalating from 3 Gy/fraction (Level 1) to 6 Gy/fraction (Level 4) in 1-Gy increments. Concurrent TMZ was given at 75 mg/m{sup 2}/d for 28 consecutive days. Adjuvant TMZ was given at 150-200 mg/m{sup 2}/d for 5 days every 28 days. Dose-limiting toxicity was defined as any Common Terminology Criteria for Adverse Events, version 3, Grade 3-4 nonhematologic toxicity, excluding Grade 3 fatigue, nausea, and vomiting. A standard 3+3 Phase I design was used. Results: A total of 16 patients were accrued (12 men and 4 women, median age, 69 years; range, 34-84. The median Karnofsky performance status was 80 (range, 60-90). Of the 16 patients, 3 each were treated at Levels 1 and 2, 4 at Level 3, and 6 at Level 4. All patients received IMRT and concurrent TMZ according to the protocol, except for 1 patient, who received 14 days of concurrent TMZ. The median number of adjuvant TMZ cycles was 7.5 (range, 0-12). The median survival was 16.2 months (range, 3-33). One patient experienced vision loss in the left eye 7 months after IMRT. Four patients underwent repeat surgery for suspected tumor recurrence 6-12 months after IMRT; 3 had radionecrosis. Conclusions: The maximal tolerated IMRT fraction size was not reached in our study. Our results have shown that 60 Gy IMRT delivered in 6-Gy fractions within 2 weeks with

  17. SU-E-T-608: Performance Comparison of Four Commercial Treatment Planning Systems Applied to Intensity-Modulated Radiotherapy

    SciTech Connect

    Cao, Y; Li, R; Chi, Z

    2014-06-01

    Purpose: To compare the performances of four commercial treatment planning systems (TPS) used for the intensity-modulated radiotherapy (IMRT). Methods: Ten patients of nasopharyngeal (4 cases), esophageal (3 cases) and cervical (3 cases) cancer were randomly selected from a 3-month IMRT plan pool at one radiotherapy center. For each patient, four IMRT plans were newly generated by using four commercial TPS (Corvus, Monaco, Pinnacle and Xio), and then verified with Matrixx (two-dimensional array/IBA Company) on Varian23EX accelerator. A pass rate (PR) calculated from the Gamma index by OminiPro IMRT 1.5 software was evaluated at four plan verification standards (1%/1mm, 2%/2mm, 3%/3mm, 4%/4mm and 5%/5mm) for each treatment plan. Overall and multiple pairwise comparisons of PRs were statistically conducted by analysis of covariance (ANOVA) F and LSD tests among four TPSs. Results: Overall significant (p>0.05) differences of PRs were found among four TPSs with F test values of 3.8 (p=0.02), 21.1(>0.01), 14.0 (>0.01), 8.3(>0.01) at standards of 1%/1mm to 4%/4mm respectively, except at 5%/5mm standard with 2.6 (p=0.06). All means (standard deviation) of PRs at 3%/3mm of 94.3 ± 3.3 (Corvus), 98.8 ± 0.8 (Monaco), 97.5± 1.7 (Pinnacle), 98.4 ± 1.0 (Xio) were above 90% and met clinical requirement. Multiple pairwise comparisons had not demonstrated a consistent low or high pattern on either TPS. Conclusion: Matrixx dose verification results show that the validation pass rates of Monaco and Xio plans are relatively higher than those of the other two; Pinnacle plan shows slight higher pass rate than Corvus plan; lowest pass rate was achieved by the Corvus plan among these four kinds of TPS.

  18. Reducing the Risk of Xerostomia and Mandibular Osteoradionecrosis: The Potential Benefits of Intensity Modulated Radiotherapy in Advanced Oral Cavity Carcinoma

    SciTech Connect

    Ahmed, Merina; Hansen, Vibeke N.; Harrington, Kevin J.; Nutting, Christopher M.

    2009-10-01

    Radiation therapy for squamous cell carcinoma of the oral cavity may be curative, but carries a risk of permanent damage to bone, salivary glands, and other soft tissues. We studied the potential of intensity modulated radiotherapy (IMRT) to improve target volume coverage, and normal tissue sparing for advanced oral cavity carcinoma (OCC). Six patients with advanced OCC requiring bilateral irradiation to the oral cavity and neck were studied. Standard 3D conformal radiotherapy (3DCRT) and inverse-planned IMRT dose distributions were compared by using dose-volume histograms. Doses to organs at risk, including spinal cord, parotid glands, and mandible, were assessed as surrogates of radiation toxicity. PTV1 mean dose was 60.8 {+-} 0.8 Gy for 3DCRT and 59.8 {+-} 0.1 Gy for IMRT (p = 0.04). PTV1 dose range was 24.7 {+-} 6 Gy for 3DCRT and 15.3 {+-} 4 Gy for IMRT (p = 0.001). PTV2 mean dose was 54.5 {+-} 0.8 Gy for 3DCRT and for IMRT was 54.2 {+-} 0.2 Gy (p = 0.34). PTV2 dose range was improved by IMRT (7.8 {+-} 3.2 Gy vs. 30.7 {+-} 12.8 Gy, p = 0.006). Homogeneity index (HI) values for PTV2 were closer to unity using IMRT (p = 0.0003). Mean parotid doses were 25.6 {+-} 2.7 Gy for IMRT and 42.0 {+-} 8.8 Gy with 3DCRT (p = 0.002). The parotid V30 in all IMRT plans was <45%. The mandible V50, V55, and V60 were significantly lower for the IMRT plans. Maximum spinal cord and brain stem doses were similar for the 2 techniques. IMRT provided superior target volume dose homogeneity and sparing of organs at risk. The magnitude of reductions in dose to the salivary glands and mandible are likely to translate into reduced incidence of xerostomia and osteoradionecrosis for patients with OCC.

  19. Effect of Radiotherapy and Chemotherapy on the Risk of Mucositis During Intensity-Modulated Radiation Therapy for Oropharyngeal Cancer

    SciTech Connect

    Sanguineti, Giuseppe; Sormani, Maria Pia; Marur, Shanthi; Gunn, G. Brandon; Rao, Nikhil; Cianchetti, Marco; Ricchetti, Francesco; McNutt, Todd; Wu Binbin; Forastiere, Arlene

    2012-05-01

    Purpose: To define the roles of radiotherapy and chemotherapy on the risk of Grade 3+ mucositis during intensity-modulated radiation therapy (IMRT) for oropharyngeal cancer. Methods and Materials: 164 consecutive patients treated with IMRT at two institutions in nonoverlapping treatment eras were selected. All patients were treated with a dose painting approach, three dose levels, and comprehensive bilateral neck treatment under the supervision of the same radiation oncologist. Ninety-three patients received concomitant chemotherapy (cCHT) and 14 received induction chemotherapy (iCHT). Individual information of the dose received by the oral mucosa (OM) was extracted as absolute cumulative dose-volume histogram (DVH), corrected for the elapsed treatment days and reported as weekly (w) DVH. Patients were seen weekly during treatment, and peak acute toxicity equal to or greater than confluent mucositis at any point during the course of IMRT was considered the endpoint. Results: Overall, 129 patients (78.7%) reached the endpoint. The regions that best discriminated between patients with/without Grade 3+ mucositis were found at 10.1 Gy/w (V10.1) and 21 cc (D21), along the x-axis and y-axis of the OM-wDVH, respectively. On multivariate analysis, D21 (odds ratio [OR] = 1.016, 95% confidence interval [CI], 1.009-1.023, p < 0.001) and cCHT (OR = 4.118, 95% CI, 1.659-10.217, p = 0.002) were the only independent predictors. However, V10.1 and D21 were highly correlated (rho = 0.954, p < 0.001) and mutually interchangeable. cCHT would correspond to 88.4 cGy/w to at least 21 cc of OM. Conclusions: Radiotherapy and chemotherapy act independently in determining acute mucosal toxicity; cCHT increases the risk of mucosal Grade 3 toxicity Almost-Equal-To 4 times over radiation therapy alone, and it is equivalent to an extra Almost-Equal-To 6.2 Gy to 21 cc of OM over a 7-week course.

  20. Reducing the risk of xerostomia and mandibular osteoradionecrosis: the potential benefits of intensity modulated radiotherapy in advanced oral cavity carcinoma.

    PubMed

    Ahmed, Merina; Hansen, Vibeke N; Harrington, Kevin J; Nutting, Christopher M

    2009-01-01

    Radiation therapy for squamous cell carcinoma of the oral cavity may be curative, but carries a risk of permanent damage to bone, salivary glands, and other soft tissues. We studied the potential of intensity modulated radiotherapy (IMRT) to improve target volume coverage, and normal tissue sparing for advanced oral cavity carcinoma (OCC). Six patients with advanced OCC requiring bilateral irradiation to the oral cavity and neck were studied. Standard 3D conformal radiotherapy (3DCRT) and inverse-planned IMRT dose distributions were compared by using dose-volume histograms. Doses to organs at risk, including spinal cord, parotid glands, and mandible, were assessed as surrogates of radiation toxicity. PTV1 mean dose was 60.8 +/- 0.8 Gy for 3DCRT and 59.8 +/- 0.1 Gy for IMRT (p = 0.04). PTV1 dose range was 24.7 +/- 6 Gy for 3DCRT and 15.3 +/- 4 Gy for IMRT (p = 0.001). PTV2 mean dose was 54.5 +/- 0.8 Gy for 3DCRT and for IMRT was 54.2 +/- 0.2 Gy (p = 0.34). PTV2 dose range was improved by IMRT (7.8 +/- 3.2 Gy vs. 30.7 +/- 12.8 Gy, p = 0.006). Homogeneity index (HI) values for PTV2 were closer to unity using IMRT (p = 0.0003). Mean parotid doses were 25.6 +/- 2.7 Gy for IMRT and 42.0 +/- 8.8 Gy with 3DCRT (p = 0.002). The parotid V30 in all IMRT plans was <45%. The mandible V50, V55, and V60 were significantly lower for the IMRT plans. Maximum spinal cord and brain stem doses were similar for the 2 techniques. IMRT provided superior target volume dose homogeneity and sparing of organs at risk. The magnitude of reductions in dose to the salivary glands and mandible are likely to translate into reduced incidence of xerostomia and osteoradionecrosis for patients with OCC. PMID:19647632

  1. Impact of Intensity-Modulated Radiotherapy on Health-Related Quality of Life for Head and Neck Cancer Patients: Matched-Pair Comparison with Conventional Radiotherapy

    SciTech Connect

    Graff, Pierre . E-mail: p.graff@nancy.fnclcc.fr; Lapeyre, Michel; Desandes, Emmanuel; Ortholan, Cecile; Bensadoun, Rene-Jean; Alfonsi, Marc; Maingon, Philippe; Giraud, Philippe; Bourhis, Jean; Marchesi, Vincent; Mege, Alice; Peiffert, Didier

    2007-04-01

    Purpose: To assess the benefit of intensity-modulated radiotherapy (IMRT) compared with conventional RT for the quality of life (QOL) of head and neck cancer survivors. Methods and Materials: Cross-sectional QOL measures (European Organization for Research and Treatment of Cancer QOL questionnaire C30 and head and neck cancer module) were used with a French multicenter cohort of patients cured of head and neck cancer (follow-up {>=} 1 year) who had received bilateral neck RT ({>=} 45 Gy) as a part of their initial treatment. We compared the QOL mean scores regarding RT modality (conventional RT vs. IMRT). The patients of the two groups were matched (one to one) according to the delay between the end of RT and the timing of the QOL evaluation and the T stage. Each QOL item was divided into two relevant levels of severity: 'not severe' (responses, 'not at all' and 'a little') vs. 'severe' (responses 'quite a bit' and 'very much'). The association between the type of RT and the prevalence of severe symptoms was approximated, through multivariate analysis using the prevalence odds ratio. Results: Two comparable groups (67 pairs) were available. Better scores were observed on the head and neck cancer module QOL questionnaire for the IMRT group, especially for dry mouth and sticky saliva (p < 0.0001). Severe symptoms were more frequent with conventional RT concerning saliva modifications and oral discomfort. The adjusted prevalence odds ratios were 3.17 (p = 0.04) for dry mouth, 3.16 (p = 0.02) for sticky saliva, 3.58 (p = 0.02) for pain in the mouth, 3.35 (p = 0.04) for pain in the jaw, 2.60 (p = 0.02) for difficulties opening the mouth, 2.76 (p = 0.02) for difficulties with swallowing, and 2.68 (p = 0.03) for trouble with eating. Conclusion: The QOL assessment of head and neck cancer survivors demonstrated the benefit of IMRT, particularly in the areas of salivary dysfunction and oral discomfort.

  2. Predictors of Local Control After Single-Dose Stereotactic Image-Guided Intensity-Modulated Radiotherapy for Extracranial Metastases

    SciTech Connect

    Greco, Carlo; Zelefsky, Michael J.; Lovelock, Michael; Fuks, Zvi; Hunt, Margie; Rosenzweig, Kenneth; Zatcky, Joan; Kim, Balem; Yamada, Yoshiya

    2011-03-15

    Purpose: To report tumor local control after treatment with single-dose image-guided intensity-modulated radiotherapy (SD-IGRT) to extracranial metastatic sites. Methods and Materials: A total of 126 metastases in 103 patients were treated with SD-IGRT to prescription doses of 18-24 Gy (median, 24 Gy) between 2004 and 2007. Results: The overall actuarial local relapse-free survival (LRFS) rate was 64% at a median follow-up of 18 months (range, 2-45 months). The median time to failure was 9.6 months (range, 1-23 months). On univariate analysis, LRFS was significantly correlated with prescription dose (p = 0.029). Stratification by dose into high (23 to 24 Gy), intermediate (21 to 22 Gy), and low (18 to 20 Gy) dose levels revealed highly significant differences in LRFS between high (82%) and low doses (25%) (p < 0.0001). Overall, histology had no significant effect on LRFS (p = 0.16). Renal cell histology displayed a profound dose-response effect, with 80% LRFS at the high dose level (23 to 24 Gy) vs. 37% with low doses ({<=}22 Gy) (p = 0.04). However, for patients who received the high dose level, histology was not a statistically significant predictor of LRFS (p = 0.90). Target organ (bone vs. lymph node vs. soft tissues) (p = 0.5) and planning target volume size (p = 0.55) were not found to be associated with long-term LRFS probability. Multivariate Cox regression analysis confirmed prescription dose to be a significant predictor of LRFS (p = 0.003). Conclusion: High-dose SD-IGRT is a noninvasive procedure resulting in high probability of local tumor control. Single-dose IGRT may be effectively used to locally control metastatic deposits regardless of histology and target organ, provided sufficiently high doses (> 22 Gy) of radiation are delivered.

  3. Intensity-modulated radiotherapy following null-margin resection is associated with improved survival in the treatment of intrahepatic cholangiocarcinoma

    PubMed Central

    Jia, Angela Y.; Wu, Jian-Xiong; Zhao, Yu-Ting; Li, Ye-Xiong; Wang, Zhi; Rong, Wei-Qi; Wang, Li-Ming; Jin, Jing; Wang, Shu-Lian; Song, Yong-Wen; Liu, Yue-Ping; Ren, Hua; Fang, Hui; Wang, Wen-Qing; Liu, Xin-Fan; Yu, Zi-Hao

    2015-01-01

    Background The current study is the first to examine the effectiveness and toxicity of postoperative intensity-modulated radiotherapy (IMRT) in the treatment of intrahepatic cholangiocarcinoma (ICC) abutting the vasculature. Specifically, we aim to assess the role of IMRT in patients with ICC undergoing null-margin (no real resection margin) resection. Methods Thirty-eight patients with ICC adherent to major blood vessels were included in this retrospective study. Null-margin resection was performed on all patients; 14 patients were further treated with IMRT. The median radiation dose delivered was 56.8 Gy (range, 50-60 Gy). The primary endpoints were overall survival (OS) and disease-free survival (DFS). Results At a median follow-up of 24.6 months, the median OS and DFS of all patients (n=38) were 17.7 months (95% CI, 13.2-22.2) and 9.9 months (95% CI, 2.8-17.0), respectively. Median OS was 21.8 months (95% CI, 15.5-28.1) among the 14 patients in the postoperative IMRT group and 15.0 months (95% CI, 9.2-20.9) among the 24 patients in the surgery-only group (P=0.049). Median DFS was 12.5 months (95% CI, 6.8-18.2) in the postoperative IMRT group and 5.5 months (95% CI, 0.7-12.3) in the surgery-only group (P=0.081). IMRT was well-tolerated. Acute toxicity included one case of Grade 3 leukopenia; late toxicity included one case of asymptomatic duodenal ulcer discovered through endoscopy. Conclusions The study results suggest that postoperative IMRT is a safe and effective treatment option following null-margin resections of ICC. Larger prospective and randomized trials are necessary to establish postoperative IMRT as a standard practice for the treatment of ICC adherent to major hepatic vessels. PMID:25830032

  4. Acute Toxicity in High-Risk Prostate Cancer Patients Treated With Androgen Suppression and Hypofractionated Intensity-Modulated Radiotherapy

    SciTech Connect

    Pervez, Nadeem; Small, Cormac; MacKenzie, Marc; Yee, Don; Parliament, Matthew; Ghosh, Sunita; Mihai, Alina; Amanie, John; Murtha, Albert; Field, Colin; Murray, David; Fallone, Gino; Pearcey, Robert

    2010-01-15

    Purpose: To report acute toxicity resulting from radiotherapy (RT) dose escalation and hypofractionation using intensity-modulated RT (IMRT) treatment combined with androgen suppression in high-risk prostate cancer patients. Methods and Materials: Sixty patients with a histological diagnosis of high-risk prostatic adenocarcinoma (having either a clinical Stage of >=T3a or an initial prostate-specific antigen [PSA] level of >=20 ng/ml or a Gleason score of 8 to 10 or a combination of a PSA concentration of >15 ng/ml and a Gleason score of 7) were enrolled. RT prescription was 68 Gy in 25 fractions (2.72 Gy/fraction) over 5 weeks to the prostate and proximal seminal vesicles. The pelvic lymph nodes and distal seminal vesicles concurrently received 45 Gy in 25 fractions. The patients were treated with helical TomoTherapy-based IMRT and underwent daily megavoltage CT image-guided verification prior to each treatment. Acute toxicity scores were recorded weekly during RT and at 3 months post-RT, using Radiation Therapy Oncology Group acute toxicity scales. Results: All patients completed RT and follow up for 3 months. The maximum acute toxicity scores were as follows: 21 (35%) patients had Grade 2 gastrointestinal (GI) toxicity; 4 (6.67%) patients had Grade 3 genitourinary (GU) toxicity; and 30 (33.33%) patients had Grade 2 GU toxicity. These toxicity scores were reduced after RT; there were only 8 (13.6%) patients with Grade 1 GI toxicity, 11 (18.97%) with Grade 1 GU toxicity, and 5 (8.62%) with Grade 2 GU toxicity at 3 months follow up. Only the V60 to the rectum correlated with the GI toxicity. Conclusion: Dose escalation using a hypofractionated schedule to the prostate with concurrent pelvic lymph node RT and long-term androgen suppression therapy is well tolerated acutely. Longer follow up for outcome and late toxicity is required.

  5. Volumetric tumor burden and its effect on brachial plexus dosimetry in head and neck intensity-modulated radiotherapy

    SciTech Connect

    Romesser, Paul B.; Qureshi, Muhammad M.; Kovalchuk, Nataliya; Truong, Minh Tam

    2014-07-01

    To determine the effect of gross tumor volume of the primary (GTV-P) and nodal (GTV-N) disease on planned radiation dose to the brachial plexus (BP) in head and neck intensity-modulated radiotherapy (IMRT). Overall, 75 patients underwent definitive IMRT to a median total dose of 69.96 Gy in 33 fractions. The right BP and left BP were prospectively contoured as separate organs at risk. The GTV was related to BP dose using the unpaired t-test. Receiver operating characteristics curves were constructed to determine optimized volumetric thresholds of GTV-P and GTV-N corresponding to a maximum BP dose cutoff of > 66 Gy. Multivariate analyses were performed to account for factors associated with a higher maximal BP dose. A higher maximum BP dose (> 66 vs ≤ 66 Gy) correlated with a greater mean GTV-P (79.5 vs 30.8 cc; p = 0.001) and ipsilateral GTV-N (60.6 vs 19.8 cc; p = 0.014). When dichotomized by the optimized nodal volume, patients with an ipsilateral GTV-N ≥ 4.9 vs < 4.9 cc had a significant difference in maximum BP dose (64.2 vs 59.4 Gy; p = 0.001). Multivariate analysis confirmed that an ipsilateral GTV-N ≥ 4.9 cc was an independent predictor for the BP to receive a maximal dose of > 66 Gy when adjusted individually for BP volume, GTV-P, the use of a low anterior neck field technique, total planned radiation dose, and tumor category. Although both the primary and the nodal tumor volumes affected the BP maximal dose, the ipsilateral nodal tumor volume (GTV-N ≥ 4.9 cc) was an independent predictor for high maximal BP dose constraints in head and neck IMRT.

  6. Dosimetric Comparison of Bone Marrow-Sparing Intensity-Modulated Radiotherapy Versus Conventional Techniques for Treatment of Cervical Cancer

    SciTech Connect

    Mell, Loren K.; Tiryaki, Hanifi; Ahn, Kang-Hyun; Mundt, Arno J.; Roeske, John C.; Aydogan, Bulent

    2008-08-01

    Purpose: To compare bone marrow-sparing intensity-modulated pelvic radiotherapy (BMS-IMRT) with conventional (four-field box and anteroposterior-posteroanterior [AP-PA]) techniques in the treatment of cervical cancer. Methods and Materials: The data from 7 cervical cancer patients treated with concurrent chemotherapy and IMRT without BMS were analyzed and compared with data using four-field box and AP-PA techniques. All plans were normalized to cover the planning target volume with the 99% isodose line. The clinical target volume consisted of the pelvic and presacral lymph nodes, uterus and cervix, upper vagina, and parametrial tissue. Normal tissues included bowel, bladder, and pelvic bone marrow (PBM), which comprised the lumbosacral spine and ilium and the ischium, pubis, and proximal femora (lower pelvis bone marrow). Dose-volume histograms for the planning target volume and normal tissues were compared for BMS-IMRT vs. four-field box and AP-PA plans. Results: BMS-IMRT was superior to the four-field box technique in reducing the dose to the PBM, small bowel, rectum, and bladder. Compared with AP-PA plans, BMS-IMRT reduced the PBM volume receiving a dose >16.4 Gy. BMS-IMRT reduced the volume of ilium, lower pelvis bone marrow, and bowel receiving a dose >27.7, >18.7, and >21.1 Gy, respectively, but increased dose below these thresholds compared with the AP-PA plans. BMS-IMRT reduced the volume of lumbosacral spine bone marrow, rectum, small bowel, and bladder at all dose levels in all 7 patients. Conclusion: BMS-IMRT reduced irradiation of PBM compared with the four-field box technique. Compared with the AP-PA technique, BMS-IMRT reduced lumbosacral spine bone marrow irradiation and reduced the volume of PBM irradiated to high doses. Therefore BMS-IMRT might reduce acute hematologic toxicity compared with conventional techniques.

  7. Quality assurance for radiotherapy in prostate cancer: Point dose measurements in intensity modulated fields with large dose gradients

    SciTech Connect

    Escude, Lluis . E-mail: lluis.escude@gmx.net; Linero, Dolors; Molla, Meritxell; Miralbell, Raymond

    2006-11-15

    Purpose: We aimed to evaluate an optimization algorithm designed to find the most favorable points to position an ionization chamber (IC) for quality assurance dose measurements of patients treated for prostate cancer with intensity-modulated radiotherapy (IMRT) and fields up to 10 cm x 10 cm. Methods and Materials: Three cylindrical ICs (PTW, Freiburg, Germany) were used with volumes of 0.6 cc, 0.125 cc, and 0.015 cc. Dose measurements were made in a plastic phantom (PMMA) at 287 optimized points. An algorithm was designed to search for points with the lowest dose gradient. Measurements were made also at 39 nonoptimized points. Results were normalized to a reference homogeneous field introducing a dose ratio factor, which allowed us to compare measured vs. calculated values as percentile dose ratio factor deviations {delta}F (%). A tolerance range of {delta}F (%) of {+-}3% was considered. Results: Half of the {delta}F (%) values obtained at nonoptimized points were outside the acceptable range. Values at optimized points were widely spread for the largest IC (i.e., 60% of the results outside the tolerance range), whereas for the two small-volume ICs, only 14.6% of the results were outside the tolerance interval. No differences were observed when comparing the two small ICs. Conclusions: The presented optimization algorithm is a useful tool to determine the best IC in-field position for optimal dose measurement conditions. A good agreement between calculated and measured doses can be obtained by positioning small volume chambers at carefully selected points in the field. Large chambers may be unreliable even in optimized points for IMRT fields {<=}10 cm x 10 cm.

  8. Multibeam inverse intensity-modulated radiotherapy (IMRT) for whole breast irradiation: a single center experience in China

    PubMed Central

    Ma, Jinli; Mei, Xin; Chen, Jiayi; Yu, Xiaoli; Guo, Xiaomao

    2015-01-01

    Purpose To present the clinical experience in our cancer center with multibeam inverse intensity-modulated radiotherapy (IMRT) for early stage breast cancer (BC) patients with whole breast irradiation (WBI). Methods We retrospectively analyzed 622 patients with Stage 0 to III BC treated from 2008 to 2011 with wide local excision and WBI, using an inverse IMRT technique. All of the patients were prescribed a total dose of 50 Gy to the whole breast in 2-Gy fractions, followed by a tumor bed boost of 10 Gy in 5 fractions using an electron beam. Results Of all of the patients, 132 (21.2%) received whole breast plus regional lymph node (RLN) irradiation. 438 of 622 patients had records of acute skin toxicity based on common terminology criteria (CTC) for adverse events. Two hundred eighty (64%) patients had Grade 0/1 toxicity, 153 (35%) had Grade 2 and only 4 patients experienced grade 3 toxicity. Seventy patients (16%) had moist desquamation. Univariate analysis revealed that breast planning target volume was the only predictive factor for Grade ≥2 acute dermatitis (P = 0.002). After 4 years, 170 patients reported cosmetic results by self-assessment, of whom 151 (89%) patients reported good/excellent cosmetic results, and 17 (11%) patients reported fair assessments. For invasive cancer, the four-year rate of freedom from locoregional recurrence survival was 98.3%. Regarding carcinoma in situ, no patients experienced recurrence. Conclusion BC patients who underwent conservative surgery followed by inverse IMRT plan exhibited acceptable acute toxicities and clinical outcomes. Longer follow-up is needed. PMID:26393681

  9. Modeling secondary cancer risk following paediatric radiotherapy: a comparison of intensity modulated proton therapy and photon therapy

    NASA Astrophysics Data System (ADS)

    Shin, Naomi

    Proton radiotherapy is known to reduce the radiation dose delivered to normal healthy tissue compared to photon techniques. The increase in normal tissue sparing could result in fewer acute and late effects from radiation therapy. In this work proton therapy plans were created for patients previously treated using photon therapy. Intensity modulated proton therapy (IMPT) plans were planned using inverse planning in VarianRTM's Eclipse(TM) treatment planning system with a scanning proton beam model to the same relative biological effectiveness (RBE)-weighted prescription dose as the photon plan. Proton and photon plans were compared for target dose conformity and homogeneity, body volumes receiving 2 Gy and 5 Gy, integral dose, dose to normal tissues and second cancer risk. Secondary cancer risk was determined using two methods. The relative risk of secondary cancer was found using the method described by Nguyen et al. 1 by applying a linear relationship between integral dose and relative risk of secondary cancer. The second approach used Schneider et al. 's organ equivalent dose concept to describe the dose in the body and then calculate the excess absolute risk and cumulative risk for solid cancers in the body. IMPT and photon plans had similar target conformity and homogeneity. However IMPT plans had reduced integral dose and volumes of the body receiving low dose. Overall the risk of radiation induced secondary cancer was lower for IMPT plans compared to the corresponding photon plans with a reduction of ~36% using the integral dose model and ˜50% using the organ equivalent dose model. *Please refer to dissertation for footnotes.

  10. Cervical Lymph Node Metastases From Unknown Primary Cancer: A Single-Institution Experience With Intensity-Modulated Radiotherapy

    SciTech Connect

    Villeneuve, Hugo; Despres, Philippe; Fortin, Bernard; Filion, Edith; Donath, David; Soulieres, Denis; Guertin, Louis; Ayad, Tarek; Christopoulos, Apostolos; Nguyen-Tan, Phuc Felix

    2012-04-01

    Purpose: To determine the effectiveness and rate of complications of intensity-modulated radiotherapy (IMRT) in the treatment of cervical lymph node metastases from unknown primary cancer. Methods and Materials: Between February 2005 and November 2008, 25 patients with an unknown primary cancer underwent IMRT, with a median radiation dose of 70 Gy. The bilateral neck and ipsilateral putative pharyngeal mucosa were included in the target volume. All patients had squamous cell carcinoma, except for 1 patient who had adenosquamous differentiation. They were all treated with curative intent. Of the 25 included patients, 20 were men and 5 were women, with a median age of 54 years. Of these patients, 3 had Stage III, 18 had Stage IVa, and 4 had Stage IVb. Of the 25 patients, 18 (72%) received platinum-based chemotherapy in a combined-modality setting. Neck dissection was reserved for residual disease after definitive IMRT. Overall survival, disease-free survival, and locoregional control were calculated using the Kaplan-Meier method. Results: With a median follow-up of 38 months, the overall survival, disease-free survival, and locoregional control rates were all 100% at 3 years. No occurrence of primary cancer was observed during the follow-up period. The reported rates of xerostomia reduced with the interval from the completion of treatment. Nine patients (36%) reported Grade 2 or greater xerostomia at 6 months, and only 2 (8%) of them reported the same grade of salivary function toxicity after 24 months of follow-up. Conclusion: In our institution, IMRT for unknown primary cancer has provided good overall and disease-free survival in all the patients with an acceptable rate of complications. IMRT allowed us to address the bilateral neck and ipsilateral putative pharyngeal mucosa with minimal late salivary function toxicity. The use of concurrent chemotherapy and IMRT for more advanced disease led to good clinical results with reasonable toxicities.

  11. Intensity-modulated radiotherapy in patients with locally advanced rectal cancer reduces volume of bowel treated to high dose levels

    SciTech Connect

    Urbano, M. Teresa Guerrero; Henrys, Anthony J.; Adams, Elisabeth J.; Norman, Andrew R.; Bedford, James L.; Harrington, Kevin J.; Nutting, Christopher M.; Dearnaley, David P.; Tait, Diana M. . E-mail: jenny.pearson@rmh.nthames.nhs.uk

    2006-07-01

    Purpose: To investigate the potential for intensity-modulated radiotherapy (IMRT) to spare the bowel in rectal tumors. Methods and Materials: The targets (pelvic nodal and rectal volumes), bowel, and bladder were outlined in 5 patients. All had conventional, three-dimensional conformal RT and forward-planned multisegment three-field IMRT plans compared with inverse-planned simultaneous integrated boost nine-field equally spaced IMRT plans. Equally spaced seven-field and five-field and five-field, customized, segmented IMRT plans were also evaluated. Results: Ninety-five percent of the prescribed dose covered at least 95% of both planning target volumes using all but the conventional plan (mean primary and pelvic planning target volume receiving 95% of the prescribed dose was 32.8 {+-} 13.7 Gy and 23.7 {+-} 4.87 Gy, respectively), reflecting a significant lack of coverage. The three-field forward planned IMRT plans reduced the volume of bowel irradiated to 45 Gy and 50 Gy by 26% {+-} 16% and 42% {+-} 27% compared with three-dimensional conformal RT. Additional reductions to 69 {+-} 51 cm{sup 3} to 45 Gy and 20 {+-} 21 cm{sup 3} to 50 Gy were obtained with the nine-field equally spaced IMRT plans-64% {+-} 11% and 64% {+-} 20% reductions compared with three-dimensional conformal RT. Reducing the number of beams and customizing the angles for the five-field equally spaced IMRT plan did not significantly reduce bowel sparing. Conclusion: The bowel volume irradiated to 45 Gy and 50 Gy was significantly reduced with IMRT, which could potentially lead to less bowel toxicity. Reducing the number of beams did not reduce bowel sparing and the five-field customized segmented IMRT plan is a reasonable technique to be tested in clinical trials.

  12. Simultaneous integrated boost to intraprostatic lesions using different energy levels of intensity-modulated radiotherapy and volumetric-arc therapy

    PubMed Central

    Sonmez, S; Erbay, G; Guler, O C; Arslan, G

    2014-01-01

    Objective: This study compared the dosimetry of volumetric-arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) with a dynamic multileaf collimator using the Monte Carlo algorithm in the treatment of prostate cancer with and without simultaneous integrated boost (SIB) at different energy levels. Methods: The data of 15 biopsy-proven prostate cancer patients were evaluated. The prescribed dose was 78 Gy to the planning target volume (PTV78) including the prostate and seminal vesicles and 86 Gy (PTV86) in 39 fractions to the intraprostatic lesion, which was delineated by MRI or MR-spectroscopy. Results: PTV dose homogeneity was better for IMRT than VMAT at all energy levels for both PTV78 and PTV86. Lower rectum doses (V30–V50) were significantly higher with SIB compared with PTV78 plans in both IMRT and VMAT plans at all energy levels. The bladder doses at high dose level (V60–V80) were significantly higher in IMRT plans with SIB at all energy levels compared with PTV78 plans, but no significant difference was observed in VMAT plans. VMAT plans resulted in a significant decrease in the mean monitor units (MUs) for 6, 10, and 15 MV energy levels both in plans with and those without SIB. Conclusion: Dose escalation to intraprostatic lesions with 86 Gy is safe without causing serious increase in organs at risk (OARs) doses. VMAT is advantageous in sparing OARs and requiring less MU than IMRT. Advances in knowledge: VMAT with SIB to intraprostatic lesion is a feasible method in treating prostate cancer. Additionally, no dosimetric advantage of higher energy is observed. PMID:24319009

  13. Relationship Between Pelvic Organ-at-Risk Dose and Clinical Target Volume in Postprostatectomy Patients Receiving Intensity-Modulated Radiotherapy

    SciTech Connect

    Stanic, Sinisa; Mathai, Mathew; Cui Jing; Purdy, James A.; Valicenti, Richard K.

    2012-04-01

    Purpose: To investigate dose-volume consequences of inclusion of the seminal vesicle (SV) bed in the clinical target volume (CTV) for the rectum and bladder using biological response indices in postprostatectomy patients receiving intensity-modulated radiotherapy (IMRT). Methods and Materials: We studied 10 consecutive patients who underwent prostatectomy for prostate cancer and subsequently received adjuvant or salvage RT to the prostate fossa. The CTV to planning target volume (PTV) expansion was 7 mm, except posterior expansion, which was 5 mm. Two IMRT plans were generated for each patient, including either the prostate fossa alone or the prostate fossa with the SV bed, but identical in all other aspects. Prescription dose was 68.4 Gy in 1.8-Gy fractions prescribed to {>=}95% PTV. Results: With inclusion of the SV bed in the treatment volume, PTV increased and correlated with PTV-bladder and PTV-rectum volume overlap (Spearman {rho} 0.91 and 0.86, respectively; p < 0.05). As a result, the dose delivered to the bladder and rectum was higher (p < 0.05): mean bladder dose increased from 11.3 {+-} 3.5 Gy to 21.2 {+-} 6.6 Gy, whereas mean rectal dose increased from 25.8 {+-} 5.5 Gy to 32.3 {+-} 5.5 Gy. Bladder and rectal equivalent uniform dose correlated with mean bladder and rectal dose. Inclusion of the SV bed in the treatment volume increased rectal normal tissue complication probability from 2.4% to 4.8% (p < 0.01). Conclusions: Inclusion of the SV bed in the CTV in postprostatectomy patients receiving IMRT increases bladder and rectal dose, as well as rectal normal tissue complication probability. The magnitude of PTV-bladder and PTV-rectal volume overlap and subsequent bladder and rectum dose increase will be higher if larger PTV expansion margins are used.

  14. Early Clinical Outcome With Concurrent Chemotherapy and Extended-Field, Intensity-Modulated Radiotherapy for Cervical Cancer

    SciTech Connect

    Beriwal, Sushil . E-mail: beriwals@upmc.edu; Gan, Gregory N.; Heron, Dwight E.; Selvaraj, Raj N.; Kim, Hayeon; Lalonde, Ron; Kelley, Joseph L.; Edwards, Robert P.

    2007-05-01

    Purpose: To assess the early clinical outcomes with concurrent cisplatin and extended-field intensity-modulated radiotherapy (EF-IMRT) for carcinoma of the cervix. Methods and Materials: Thirty-six patients with Stage IB2-IVA cervical cancer treated with EF-IMRT were evaluated. The pelvic lymph nodes were involved in 19 patients, and of these 19 patients, 10 also had para-aortic nodal disease. The treatment volume included the cervix, uterus, parametria, presacral space, upper vagina, and pelvic, common iliac, and para-aortic nodes to the superior border of L1. Patients were assessed for acute toxicities according to the National Cancer Institute Common Toxicity Criteria for Adverse Events, version 3.0. All late toxicities were scored with the Radiation Therapy Oncology Group late toxicity score. Results: All patients completed the prescribed course of EF-IMRT. All but 2 patients received brachytherapy. Median length of treatment was 53 days. The median follow-up was 18 months. Acute Grade {>=}3 gastrointestinal, genitourinary, and myelotoxicity were seen in 1, 1, and 10 patients, respectively. Thirty-four patients had complete response to treatment. Of these 34 patients, 11 developed recurrences. The first site of recurrence was in-field in 2 patients (pelvis in 1, pelvis and para-aortic in 1) and distant in 9 patients. The 2-year actuarial locoregional control, disease-free survival, overall survival, and Grade {>=}3 toxicity rates for the entire cohort were 80%, 51%, 65%, and 10%, respectively. Conclusion: Extended-field IMRT with concurrent chemotherapy was tolerated well, with acceptable acute and early late toxicities. The locoregional control rate was good, with distant metastases being the predominant mode of failure. We are continuing to accrue a larger number of patients and longer follow-up data to further extend our initial observations with this approach.

  15. Australasian Gastrointestinal Trials Group (AGITG) Contouring Atlas and Planning Guidelines for Intensity-Modulated Radiotherapy in Anal Cancer

    SciTech Connect

    Ng, Michael; Leong, Trevor; Chander, Sarat; Chu, Julie; Kneebone, Andrew; Carroll, Susan; Wiltshire, Kirsty; Ngan, Samuel; Kachnic, Lisa

    2012-08-01

    Purpose: To develop a high-resolution target volume atlas with intensity-modulated radiotherapy (IMRT) planning guidelines for the conformal treatment of anal cancer. Methods and Materials: A draft contouring atlas and planning guidelines for anal cancer IMRT were prepared at the Australasian Gastrointestinal Trials Group (AGITG) annual meeting in September 2010. An expert panel of radiation oncologists contoured an anal cancer case to generate discussion on recommendations regarding target definition for gross disease, elective nodal volumes, and organs at risk (OARs). Clinical target volume (CTV) and planning target volume (PTV) margins, dose fractionation, and other IMRT-specific issues were also addressed. A steering committee produced the final consensus guidelines. Results: Detailed contouring and planning guidelines and a high-resolution atlas are provided. Gross tumor and elective target volumes are described and pictorially depicted. All elective regions should be routinely contoured for all disease stages, with the possible exception of the inguinal and high pelvic nodes for select, early-stage T1N0. A 20-mm CTV margin for the primary, 10- to 20-mm CTV margin for involved nodes and a 7-mm CTV margin for the elective pelvic nodal groups are recommended, while respecting anatomical boundaries. A 5- to 10-mm PTV margin is suggested. When using a simultaneous integrated boost technique, a dose of 54 Gy in 30 fractions to gross disease and 45 Gy to elective nodes with chemotherapy is appropriate. Guidelines are provided for OAR delineation. Conclusion: These consensus planning guidelines and high-resolution atlas complement the existing Radiation Therapy Oncology Group (RTOG) elective nodal ano-rectal atlas and provide additional anatomic, clinical, and technical instructions to guide radiation oncologists in the planning and delivery of IMRT for anal cancer.

  16. Intensity-Modulated Radiotherapy for Tumors of the Nasal Cavity and Paranasal Sinuses: Clinical Outcomes and Patterns of Failure

    SciTech Connect

    Wiegner, Ellen A.; Daly, Megan E.; Murphy, James D.; Abelson, Jonathan; Chapman, Chris H.; Chung, Melody; Yu, Yao; Colevas, A. Dimitrios; Kaplan, Michael J.; Fischbein, Nancy; Le, Quynh-Thu; Chang, Daniel T.

    2012-05-01

    Purpose: To report outcomes in patients treated with intensity-modulated radiotherapy (IMRT) for tumors of the paranasal sinuses and nasal cavity (PNS/NC). Methods/Materials: Between June 2000 and December 2009, 52 patients with tumors of the PNS/NC underwent postoperative or definitive radiation with IMRT. Twenty-eight (54%) patients had squamous cell carcinoma (SCC). Twenty-nine patients (56%) received chemotherapy. The median follow-up was 26.6 months (range, 2.9-118.4) for all patients and 30.9 months for living patients. Results: Eighteen patients (35%) developed local-regional failure (LRF) at median time of 7.2 months. Thirteen local failures (25%) were observed, 12 in-field and 1 marginal. Six regional failures were observed, two in-field and four out-of-field. No patients treated with elective nodal radiation had nodal regional failure. Two-year local-regional control (LRC), in-field LRC, freedom from distant metastasis (FFDM), and overall survival (OS) were 64%, 74%, 71%, and 66% among all patients, respectively, and 43%, 61%, 61%, and 53% among patients with SCC, respectively. On multivariate analysis, SCC and >1 subsite involved had worse LRC (p = 0.0004 and p = 0.046, respectively) and OS (p = 0.003 and p = 0.046, respectively). Cribriform plate invasion (p = 0.005) and residual disease (p = 0.047) also had worse LRC. Acute toxicities included Grade {>=}3 mucositis in 19 patients (37%), and Grade 3 dermatitis in 8 patients (15%). Six patients had Grade {>=}3 late toxicity including one optic toxicity. Conclusions: IMRT for patients with PNS/NC tumors has good outcomes compared with historical series and is well tolerated. Patients with SCC have worse LRC and OS. LRF is the predominant pattern of failure.

  17. A dosimetric comparison of two-phase adaptive intensity-modulated radiotherapy for locally advanced nasopharyngeal cancer.

    PubMed

    Chitapanarux, Imjai; Chomprasert, Kittisak; Nobnaop, Wannapa; Wanwilairat, Somsak; Tharavichitkul, Ekasit; Jakrabhandu, Somvilai; Onchan, Wimrak; Traisathit, Patrinee; Van Gestel, Dirk

    2015-05-01

    The purpose of this investigation was to evaluate the potential dosimetric benefits of a two-phase adaptive intensity-modulated radiotherapy (IMRT) protocol for patients with locally advanced nasopharyngeal cancer (NPC). A total of 17 patients with locally advanced NPC treated with IMRT had a second computed tomography (CT) scan after 17 fractions in order to apply and continue the treatment with an adapted plan after 20 fractions. To simulate the situation without adaptation, a hybrid plan was generated by applying the optimization parameters of the original treatment plan to the anatomy of the second CT scan. The dose-volume histograms (DVHs) and dose statistics of the hybrid plan and the adapted plan were compared. The mean volume of the ipsilateral and contralateral parotid gland decreased by 6.1 cm(3) (30.5%) and 5.4 cm(3) (24.3%), respectively. Compared with the hybrid plan, the adapted plan provided a higher dose to the target volumes with better homogeneity, and a lower dose to the organs at risk (OARs). The Dmin of all planning target volumes (PTVs) increased. The Dmax of the spinal cord and brainstem were lower in 94% of the patients (1.6-5.9 Gy, P < 0.001 and 2.1-9.9 Gy, P < 0.001, respectively). The Dmean of the contralateral parotid decreased in 70% of the patients (range, 0.2-4.4 Gy). We could not find a relationship between dose variability and weight loss. Our two-phase adaptive IMRT protocol improves dosimetric results in terms of target volumes and OARs in patients with locally advanced NPC. PMID:25666189

  18. Strategies for Online Organ Motion Correction for Intensity-Modulated Radiotherapy of Prostate Cancer: Prostate, Rectum, and Bladder Dose Effects

    SciTech Connect

    Rijkhorst, Erik-Jan; Lakeman, Annemarie; Nijkamp, Jasper; Bois, Josien de; Herk, Marcel van; Lebesque, Joos V.; Sonke, Jan-Jakob

    2009-11-15

    Purpose: To quantify and evaluate the accumulated prostate, rectum, and bladder dose for several strategies including rotational organ motion correction for intensity-modulated radiotherapy (IMRT) of prostate cancer using realistic organ motion data. Methods and Materials: Repeat computed tomography (CT) scans of 19 prostate patients were used. Per patient, two IMRT plans with different uniform margins were created. To quantify prostate and seminal vesicle motion, repeat CT clinical target volumes (CTVs) were matched onto the planning CTV using deformable registration. Four different strategies, from online setup to full motion correction, were simulated. Rotations were corrected for using gantry and collimator angle adjustments. Prostate, rectum, and bladder doses were accumulated for each patient, plan, and strategy. Minimum CTV dose (D{sub min}), rectum equivalent uniform dose (EUD, n = 0.13), and bladder surface receiving >=78 Gy (S78), were calculated. Results: With online CTV translation correction, a 7-mm margin was sufficient (i.e., D{sub min} >= 95% of the prescribed dose for all patients). A 4-mm margin required additional rotational correction. Margin reduction lowered the rectum EUD(n = 0.13) by approx2.6 Gy, and the bladder S78 by approx1.9%. Conclusions: With online correction of both translations and rotations, a 4-mm margin was sufficient for 15 of 19 patients, whereas the remaining four patients had an underdosed CTV volume <1%. Margin reduction combined with online corrections resulted in a similar or lower dose to the rectum and bladder. The more advanced the correction strategy, the better the planned and accumulated dose agreed.

  19. Prognostic score models for survival of nasopharyngeal carcinoma patients treated with intensity-modulated radiotherapy and chemotherapy

    PubMed Central

    Zeng, Lei; Guo, Pi; Li, Jin-Gao; Han, Fei; Li, Qiang; Lu, Yong; Deng, Xiao-Wu; Zhang, Qing-Ying; Lu, Tai-Xiang

    2015-01-01

    Purpose To establish accurate prognostic score models to predict survival for patients with nasopharyngeal carcinoma (NPC), treated with intensity-modulated radiotherapy (IMRT) and chemotherapy. Materials and methods Six hundred and seventy-five patients with newly diagnosed, nonmetastatic and histologically proven NPC who were treated with IMRT and chemotherapy were analyzed retrospectively. Samples were split randomly into a training set (n = 338) and a test set (n = 337) to analyze. All data from the training set were used to perform an extensive survival analysis and to develop multivariate nomograms based on Cox regression. Data from the test set was used as an external validation set. Risk group stratification was proposed for the nomograms. Results The nomograms are able to predict survival with a C-index for external validation of local recurrence-free survival (LRFS; 0.66, 95% CI: 0.58-0.74), distant metastasis-free survival (DMFS; 0.73, 95% CI: 0.66-0.79), and disease-specific survival (DSS; 0.73, 95% CI: 0.67-0.79). The calibration curve for probability of survival showed good agreement between prediction by nomogram and actual observation. The C-index of the nomogram for LRFS, DMFS and DSS were statistically higher than the C-index values of the AJCC seventh edition (P < 0.001). In the test set, the nomogram discrimination was also superior to the AJCC Staging systems (P < 0.001). The stratification in risk groups allows significant distinction between Kaplan-Meier curves for outcome. Conclusions Prognostic score models were successfully established and validated to predict LRFS, DMFS, and DSS over a 5-year period after IMRT and chemotherapy, which will be useful for individual treatment. PMID:26415223

  20. DOSIMETRIC CONSEQUENCES OF USING CONTRAST-ENHANCED COMPUTED TOMOGRAPHIC IMAGES FOR INTENSITY-MODULATED STEREOTACTIC BODY RADIOTHERAPY PLANNING.

    PubMed

    Yoshikawa, Hiroto; Roback, Donald M; Larue, Susan M; Nolan, Michael W

    2015-01-01

    Potential benefits of planning radiation therapy on a contrast-enhanced computed tomography scan (ceCT) should be weighed against the possibility that this practice may be associated with an inadvertent risk of overdosing nearby normal tissues. This study investigated the influence of ceCT on intensity-modulated stereotactic body radiotherapy (IM-SBRT) planning. Dogs with head and neck, pelvic, or appendicular tumors were included in this retrospective cross-sectional study. All IM-SBRT plans were constructed on a pre- or ceCT. Contours for tumor and organs at risk (OAR) were manually constructed and copied onto both CT's; IM-SBRT plans were calculated on each CT in a manner that resulted in equal radiation fluence. The maximum and mean doses for OAR, and minimum, maximum, and mean doses for targets were compared. Data were collected from 40 dogs per anatomic site (head and neck, pelvis, and limbs). The average dose difference between minimum, maximum, and mean doses as calculated on pre- and ceCT plans for the gross tumor volume was less than 1% for all anatomic sites. Similarly, the differences between mean and maximum doses for OAR were less than 1%. The difference in dose distribution between plans made on CTs with and without contrast enhancement was tolerable at all treatment sites. Therefore, although caution would be recommended when planning IM-SBRT for tumors near "reservoirs" for contrast media (such as the heart and urinary bladder), findings supported the use of ceCT with this dose calculation algorithm for both target delineation and IM-SBRT treatment planning. PMID:26242716

  1. Experience with combination of nimotuzumab and intensity-modulated radiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma

    PubMed Central

    Zhai, Rui-ping; Ying, Hong-mei; Kong, Fang-fang; Du, Cheng-run; Huang, Shuang; Zhou, Jun-jun; Hu, Chao-su

    2015-01-01

    Aim To evaluate the efficacy and safety of using nimotuzumab in combination with intensity-modulated radiotherapy (IMRT) in the primary treatment of locoregionally advanced nasopharyngeal carcinoma. Methods Between December 2009 and December 2013, 38 newly diagnosed patients with stage III–IV nasopharyngeal carcinoma were treated with IMRT and nimotuzumab concomitantly. The distribution of disease was stage III in 20 (52.6%), stage IV A in 9 (23.7%), and stage IV B in 9 (23.7%). All the patients received at least two cycles of cisplatin-based neoadjuvant chemotherapy followed by nimotuzumab 200 mg/week concurrently with IMRT. Acute and late radiation-related toxicities were graded according to the Acute and Late Radiation Morbidity Scoring Criteria of Radiation Therapy Oncology Group. Results With a median follow-up of 39.7 months (range, 13.3–66.5 months), the estimated 3-year local recurrence-free survival, regional recurrence-free survival, distant metastasis-free survival, progression failure-free survival, and overall survival rates were 92.8%, 92.9%, 89.5%, 78.7%, and 87.5%, respectively. The median cycle for nimotuzumab addition was 6 weeks. Grade 3 radiation-induced mucositis accounted for 36.8% of treated people. No skin rash and infusion reaction were observed, distinctly from what is reported in cetuximab-treated patients. Conclusion Nimotuzumab plus IMRT showed promising outcomes in terms of locoregional control and survival, without increasing the incidence of radiation-related toxicities for patients. PMID:26604795

  2. The efficacy and toxicity of individualized intensity-modulated radiotherapy based on the tumor extension patterns of nasopharyngeal carcinoma

    PubMed Central

    Zhou, Guan-Qun; Guo, Rui; Zhang, Fan; Zhang, Yuan; Xu, Lin; Zhang, Lu-Lu; Lin, Ai-Hua; Ma, Jun; Sun, Ying

    2016-01-01

    Background To evaluate the efficacy and toxicity of intensity-modulated radiotherapy (IMRT) using individualized clinical target volumes (CTVs) based on the loco-regional extension patterns of nasopharyngeal carcinoma (NPC). Methods From December 2009 to February 2012, 220 patients with histologically-proven, non-disseminated NPC were prospectively treated with IMRT according to an individualized delineation protocol. CTV1 encompassed the gross tumor volume, entire nasopharyngeal mucosa and structures within the pharyngobasilar fascia with a margin. CTV2 encompassed bilateral high risk anatomic sites and downstream anatomic sites adjacent to primary tumor, bilateral retropharyngeal regions, levels II, III and Va, and prophylactic irradiation was gave to one or two levels beyond clinical lymph nodes involvement. Clinical outcomes and toxicities were evaluated. Results Median follow-up was 50.8 (range, 1.3–68.0) months, four-year local relapse-free, regional relapse-free, distant metastasis-free, disease-free and overall survival rates were 94.7%, 97.0%, 91.7%, 87.2% and 91.9%, respectively. Acute severe (≥ grade 3) mucositis, dermatitis and xerostomia were observed in 27.6%, 3.6% and zero patients, respectively. At 1 year, xerostomia was mild, with frequencies of Grade 0, 1, 2 and 3 xerostomia of 27.9%, 63.3%, 8.3% and 0.5%, respectively. Conclusions IMRT using individualized CTVs provided high rates of local and regional control and a favorable toxicity profile in NPC. Individualized CTV delineation strategy is a promising one that may effectively avoid unnecessary or missed irradiation, and deserve optimization to define more precise individualized CTVs. PMID:26980744

  3. Intensity-Modulated Radiotherapy for Oral Cavity Squamous Cell Carcinoma: Patterns of Failure and Predictors of Local Control

    SciTech Connect

    Daly, Megan E.; Le, Quynh-Thu; Kozak, Margaret M.; Maxim, Peter G.; Murphy, James D.; Hsu, Annie; Loo, Billy W.; Kaplan, Michael J.; Fischbein, Nancy J.; Chang, Daniel T.

    2011-08-01

    Purpose: Few studies have evaluated the use of intensity-modulated radiotherapy (IMRT) for squamous cell carcinoma (SCC) of the oral cavity (OC). We report clinical outcomes and failure patterns for these patients. Methods and Materials: Between October 2002 and June 2009, 37 patients with newly diagnosed SCC of the OC underwent postoperative (30) or definitive (7) IMRT. Twenty-five patients (66%) received systemic therapy. The median follow-up was 38 months (range, 10-87 months). The median interval from surgery to RT was 5.9 weeks (range, 2.1-10.7 weeks). Results: Thirteen patients experienced local-regional failure at a median of 8.1 months (range, 2.4-31.9 months), and 2 additional patients experienced local recurrence between surgery and RT. Seven local failures occurred in-field (one with simultaneous nodal and distant disease) and two at the margin. Four regional failures occurred, two in-field and two out-of-field, one with synchronous metastases. Six patients experienced distant failure. The 3-year actuarial estimates of local control, local-regional control, freedom from distant metastasis, and overall survival were 67%, 53%, 81%, and 60% among postoperative patients, respectively, and 60%, 60%, 71%, and 57% among definitive patients. Four patients developed Grade {>=}2 chronic toxicity. Increased surgery to RT interval predicted for decreased LRC (p = 0.04). Conclusions: Local-regional control for SCC of the OC treated with IMRT with or without surgery remains unsatisfactory. Definitive and postoperative IMRT have favorable toxicity profiles. A surgery-to-RT interval of <6 weeks improves local-regional control. The predominant failure pattern was local, suggesting that both improvements in target delineation and radiosensitization and/or dose escalation are needed.

  4. An attenuation integral digital imaging technique for the treatment portal verification of conventional and intensity-modulated radiotherapy

    SciTech Connect

    Guan Huaiqun

    2010-07-15

    Purpose: To propose an attenuation integral digital imaging (AIDI) technique for the treatment portal verification of conventional and intensity-modulated radiotherapy (IMRT). Methods: In AIDI technique, an open in air fluence image I{sub o} and a patient fluence image I were acquired under the same exposure. Then after doing the dark field correction for both the I{sub o} and I, the AIDI image was simply calculated as log(I{sub o}/I), which is the attenuation integral along the ray path from the x-ray source to a detector pixel element. Theoretical analysis for the low contrast detection and the contrast to noise ratio (CNR) of AIDI was presented and compared to those for the fluence imaging. With AIDI, the variation of x-ray fluence and the variation of individual detector pixel's response can be automatically compensated without using the flood field correction. Results: The AIDI image for a contrast detail phantom demonstrated that it can efficiently suppress the background structures such as the couch and generate better visibility for low contrast objects with megavoltage x rays. The AIDI image acquired for a Catphan 500 phantom using a 60 deg. electronic dynamic wedge field also revealed more contrast disks than the fluence imaging did. Finally, AIDI for an IMRT field of a head/neck patient successfully displayed the anatomical structures underneath the treatment portal but not shown in fluence imaging. Conclusions: For IMRT and high degree wedge beams, direct imaging using them is difficult because their photon fluence is highly nonuniform. But AIDI can be used for the treatment portal verification of these beams.

  5. Intensity-Modulated Radiotherapy Using Implanted Fiducial Markers With Daily Portal Imaging: Assessment of Prostate Organ Motion

    SciTech Connect

    Chen Jergin . E-mail: jergin.chen@hci.utah.edu; Lee, R. Jeffrey; Handrahan, Diana; Sause, William T.

    2007-07-01

    Purpose: To assess our single institutional experience with daily localization, using fiducials for prostate radiotherapy. Methods and Materials: From January 2004 to September 2005, 33 patients were treated with 1,097 intensity-modulated radiation treatments, using three implanted fiducials. Daily portal images were obtained before treatments. Shifts were made for deviations {>=}3 mm in the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) dimensions. Results: Of 1,097 treatments, 987 (90%) required shifts. Shifts were made in the LR, SI, and AP dimensions in 51%, 67%, and 58% of treatments, respectively. In the LR dimension, the median distance shifted was 5 mm. Of 739 shifts in the SI dimension, 73% were in the superior direction for a median distance of 6 mm, and 27% were shifted inferiorly for a median distance of 5 mm. The majority of shifts in the AP dimension were in the anterior direction (87%). Median distances shifted in the anterior and posterior directions were 5 mm and 4 mm, respectively. The median percentage of treatments requiring shifts per patient was 93% (range, 57-100%). Median deviations in the LR, SI, and AP dimensions were 3 mm, 4 mm, and 3 mm, respectively. Deviations in the SI and AP dimensions were more often in the superior rather than inferior (60% vs. 29%) and in the anterior rather than posterior (70% vs. 16%) directions. Conclusions: Interfraction prostate motion is significant. Daily portal imaging with implanted fiducials improves localization of the prostate, and is necessary for the reduction of treatment margins.

  6. Preliminary analysis of the sequential simultaneous integrated boost technique for intensity-modulated radiotherapy for head and neck cancers

    PubMed Central

    Miyazaki, Masayoshi; Nishiyama, Kinji; Ueda, Yoshihiro; Ohira, Shingo; Tsujii, Katsutomo; Isono, Masaru; Masaoka, Akira; Teshima, Teruki

    2016-01-01

    The aim of this study was to compare three strategies for intensity-modulated radiotherapy (IMRT) for 20 head-and-neck cancer patients. For simultaneous integrated boost (SIB), doses were 66 and 54 Gy in 30 fractions for PTVboost and PTVelective, respectively. Two-phase IMRT delivered 50 Gy in 25 fractions to PTVelective in the First Plan, and 20 Gy in 10 fractions to PTVboost in the Second Plan. Sequential SIB (SEQ-SIB) delivered 55 Gy and 50 Gy in 25 fractions, respectively, to PTVboost and PTVelective using SIB in the First Plan and 11 Gy in 5 fractions to PTVboost in the Second Plan. Conformity indexes (CIs) (mean ± SD) for PTVboost and PTVelective were 1.09 ± 0.05 and 1.34 ± 0.12 for SIB, 1.39 ± 0.14 and 1.80 ± 0.28 for two-phase IMRT, and 1.14 ± 0.07 and 1.60 ± 0.18 for SEQ-SIB, respectively. CI was significantly highest for two-phase IMRT. Maximum doses (Dmax) to the spinal cord were 42.1 ± 1.5 Gy for SIB, 43.9 ± 1.0 Gy for two-phase IMRT and 40.3 ± 1.8 Gy for SEQ-SIB. Brainstem Dmax were 50.1 ± 2.2 Gy for SIB, 50.5 ± 4.6 Gy for two-phase IMRT and 47.4 ± 3.6 Gy for SEQ-SIB. Spinal cord Dmax for the three techniques was significantly different, and brainstem Dmax was significantly lower for SEQ-SIB. The compromised conformity of two-phase IMRT can result in higher doses to organs at risk (OARs). Lower OAR doses in SEQ-SIB made SEQ-SIB an alternative to SIB, which applies unconventional doses per fraction. PMID:26983983

  7. Comparison of inverse-planned three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for non-small-cell lung cancer

    SciTech Connect

    Christian, Judith A. . E-mail: judith.christian@nuh.nhs.uk; Bedford, James L.; Webb, Steve; Brada, Michael

    2007-03-01

    Purpose: Lungs are the major dose-limiting organ during radiotherapy (RT) for non-small-cell lung cancer owing to the development of pneumonitis. This study compared intensity-modulated RT (IMRT) with three-dimensional conformal RT (3D-CRT) in reducing the dose to the lungs. Methods: Ten patients with localized non-small-cell lung cancer underwent computed tomography (CT). The planning target volume (PTV) was defined and the organs at risk were outlined. An inverse-planning program, AutoPlan, was used to design the beam angle-optimized six-field noncoplanar 3D-CRT plans. Each 3D-CRT plan was compared with a series of five IMRT plans per patient. The IMRT plans were created using a commercial algorithm and consisted of a series of three, five, seven, and nine equidistant coplanar field arrangements and one six-field noncoplanar plan. The planning objectives were to minimize the lung dose while maintaining the dose to the PTV. The percentage of lung volume receiving >20 Gy (V{sub 20}) and the percentage of the PTV covered by the 90% isodose (PTV{sub 90}) were the primary endpoints. The PTV{sub 90}/V{sub 20} ratio was used as the parameter accounting for both the reduction in lung volume treated and the PTV coverage. Results: All IMRT plans, except for the three-field coplanar plans, improved the PTV{sub 90}/V{sub 20} ratio significantly compared with the optimized 3D-CRT plan. Nine coplanar IMRT beams were significantly better than five or seven coplanar IMRT beams, with an improved PTV{sub 90}/V{sub 20} ratio. Conclusion: The results of our study have shown that IMRT can reduce the dose to the lungs compared with 3D-CRT by improving the conformity of the plan.

  8. Volumetric Arc Therapy and Intensity-Modulated Radiotherapy for Primary Prostate Radiotherapy With Simultaneous Integrated Boost to Intraprostatic Lesion With 6 and 18 MV: A Planning Comparison Study

    SciTech Connect

    Ost, Piet; Speleers, Bruno; De Meerleer, Gert; De Neve, Wilfried; Fonteyne, Valerie; Villeirs, Geert; De Gersem, Werner

    2011-03-01

    Purpose: The aim of the present study was to compare intensity-modulated radiotherapy (IMRT) with volumetric arc therapy (VMAT), in the treatment of prostate cancer with maximal dose escalation to the intraprostatic lesion (IPL), without violating the organ-at-risk constraints. Additionally, the use of 6-MV photons was compared with 18-MV photons for all techniques. Methods and Materials: A total of 12 consecutive prostate cancer patients with an IPL on magnetic resonance imaging were selected for the present study. Plans were made for three IMRT field setups (three, five, and seven fields) and one VMAT field setup (single arc). First, optimal plans were created for every technique using biologic and physical planning aims. Next, an additional escalation to the IPL was planned as high as possible without violating the planning aims of the first step. Results: No interaction between the technique and photon energy (p = .928) occurred. No differences were found between the 6- and 18-MV photon beams, except for a reduction in the number of monitor units needed for 18 MV (p < .05). All techniques, except for three-field IMRT, allowed for dose escalation to a median dose of {>=}93 {+-} 6 Gy (mean {+-} standard deviation) to the IPL. VMAT was superior to IMRT for rectal volumes receiving 20-50 Gy (p < .05). Conclusion: VMAT allowed for dose escalation to the IPL with better sparing of the rectum than static three-, five-, and seven-field IMRT setups. High-energy photons had no advantage over low-energy photons.

  9. Pitfalls and Challenges to Consider before Setting up a Lung Cancer Intensity-modulated Radiotherapy Service: A Review of the Reported Clinical Experience.

    PubMed

    Shrimali, R K; Mahata, A; Reddy, G D; Franks, K N; Chatterjee, S

    2016-03-01

    Intensity-modulated radiotherapy (IMRT) is being increasingly used for the treatment of non-small cell lung cancer (NSCLC), despite the absence of published randomised controlled trials. Planning studies and retrospective series have shown a decrease in known predictors of lung toxicity (V20 and mean lung dose) and the maximum spinal cord dose. Potential dosimetric advantages, accessibility of technology, a desire to escalate dose or a need to meet normal organ dose constraints are some of the factors recognised as supporting the use of IMRT. However, IMRT may not be appropriate for all patients being treated with radical radiotherapy. Unique problems with using IMRT for NSCLC include organ and tumour motion because of breathing and the potential toxicity from low doses of radiotherapy to larger amounts of lung tissue. Caution should be exercised as there is a paucity of prospective data regarding the efficacy and safety of IMRT in lung cancer when compared with three-dimensional conformal radiotherapy and IMRT data from other cancer sites should not be extrapolated. This review looks at the use of IMRT in NSCLC, addresses the challenges and highlights the potential benefits of using this complex radiotherapy technique. PMID:26329504

  10. A comparative dosimetric study on tangential photon beams, intensity-modulated radiation therapy (IMRT) and modulated electron radiotherapy (MERT) for breast cancer treatment

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Ding, M.; Li, J. S.; Lee, M. C.; Pawlicki, T.; Deng, J.

    2003-04-01

    Recently, energy- and intensity-modulated electron radiotherapy (MERT) has garnered a growing interest for the treatment of superficial targets. In this work, we carried out a comparative dosimetry study to evaluate MERT, photon beam intensity-modulated radiation therapy (IMRT) and conventional tangential photon beams for the treatment of breast cancer. A Monte Carlo based treatment planning system has been investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We have compared breast treatment plans generated using this home-grown treatment optimization and dose calculation software for these treatment techniques. The MERT plans were planned with up to two gantry angles and four nominal energies (6, 9, 12 and 16 MeV). The tangential photon treatment plans were planned with 6 MV wedged photon beams. The IMRT plans were planned using both multiple-gantry 6 MV photon beams or two 6 MV tangential beams. Our results show that tangential IMRT can reduce the dose to the lung, heart and contralateral breast compared to conventional tangential wedged beams (up to 50% reduction in high dose volume or 5 Gy in the maximum dose). MERT can reduce the maximum dose to the lung by up to 20 Gy and to the heart by up to 35 Gy compared to conventional tangential wedged beams. Multiple beam angle IMRT can significantly reduce the maximum dose to the lung and heart (up to 20 Gy) but it induces low and medium doses to a large volume of normal tissues including lung, heart and contralateral breast. It is concluded that MERT has superior capabilities to achieve dose conformity both laterally and in the depth direction, which will be well suited for treating superficial targets such as breast cancer.

  11. Poster — Thur Eve — 35: The impact of intensity- and energy-modulated photon radiotherapy (XMRT) optimization on a variety of organ geometries

    SciTech Connect

    McGeachy, P.; Villarreal-Barajas, J. E.; Khan, R.; Zinchenko, Y.

    2014-08-15

    We previously reported on a novel, modulated in both energy and intensity; photon radiotherapy (XMRT) optimization technique. The purpose of this investigation was to test this XMRT optimization against conventional intensity modulated radiotherapy (IMRT) optimization on four different organ test geometries. All geometries mimicked clinically relevant scenarios. Both IMRT and XMRT were based on a linear programming approach where the objective function was the mean dose to healthy organs and organ-specific linear dose-point constraints were used. For IMRT, the beam energy was fixed to 6 MV while XMRT optimized in terms of both 6 and 18 MV beams. All plans consisted of a seven beam coplanar arrangement. All organ geometries were contoured on a 25cm diameter cylindrical water phantom in open source radiotherapy research software known as CERR. Solutions for both IMRT and XMRT were obtained for each geometry using a numerical solver Gurobi. Analyzing the quality of the solutions was done by comparing dose distributions and dose volume histograms calculated using CERR. For all four geometries, IMRT and XMRT solutions were comparable in terms of target coverage. For two of the geometries, IMRT provided an advantage in terms of reduced dose to the healthy structures. XMRT showed improved dose reduction to healthy organs for one geometry and a comparable dose distribution to IMRT for the remaining geometry. The inability to exploit the benefits of using multiple energies may be attributed to limited water phantom diameter and having the majority of the organs in close proximity to the transverse axis.

  12. Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy in Postoperative Treatment of Endometrial and Cervical Cancer

    SciTech Connect

    Small, William Mell, Loren K.; Anderson, Penny; Creutzberg, Carien; De Los Santos, Jennifer; Gaffney, David; Jhingran, Anuja; Portelance, Lorraine; Schefter, Tracey; Iyer, Revathy; Varia, Mahesh; Winter, Kathryn M.S.; Mundt, Arno J.

    2008-06-01

    Purpose: To develop an atlas of the clinical target volume (CTV) definitions for postoperative radiotherapy of endometrial and cervical cancer to be used for planning pelvic intensity-modulated radiotherapy. Methods and Materials: The Radiation Therapy Oncology Group led an international collaberation of cooperative groups in the development of the atlas. The groups included the Radiation Therapy Oncology Group, Gynecologic Oncology Group, National Cancer Institute of Canada, European Society of Therapeutic Radiology and Oncology, and American College of Radiology Imaging Network. The members of the group were asked by questionnaire to define the areas that were to be included in the CTV and to outline theses areas on individual computed tomography images. The initial formulation of the group began in late 2004 and culminated with a formal consensus conference in June 2005. Results: The committee achieved a consensus CTV definition for postoperative therapy for endometrial and cervical cancer. The CTV should include the common, external, and internal iliac lymph node regions. The upper 3.0 cm of the vagina and paravaginal soft tissue lateral to the vagina should also be included. For patients with cervical cancer, or endometrial cancer with cervical stromal invasion, it is also recommended that the CTV include the presacral lymph node region. Conclusion: This report serves as an international template for the definition of the CTV for postoperative intensity-modulated radiotherapy for endometrial and cervical cancer.

  13. Clinical efficacy of percutaneous vertebroplasty combined with intensity-modulated radiotherapy for spinal metastases in patients with NSCLC

    PubMed Central

    Li, Yi; Qing, Yi; Zhang, Zhimin; Li, Mengxia; Xie, Jiaying; Wang, Ge; Wang, Dong

    2015-01-01

    Objective This study aimed to evaluate the safety and efficacy of percutaneous vertebroplasty (PVP) combined with intensity-modulated radiotherapy (IMRT) for metastatic lesions of patients with non-small-cell lung cancer (NSCLC) at centrum vertebrae. Methods A total of 39 patients with spinal metastatic NSCLC (stage IV) were treated with PVP followed by IMRT (30 Gy/10F/2 W) for metastatic lesion at centrum vertebrae under local anesthesia. Retrospective analysis was done with medical records and radiological data. The change of visual analog scale (VAS), activities of daily living, and kyphotic angle was measured preoperatively. The presence of complications was assessed preoperatively (baseline) at 24 hours, 1 week, and 1, 3, 6, 12, and 24 months postoperatively, or until the patient died or was lost to follow-up. Survival was assessed in the group. Results A total of 39 consecutive patients were successfully treated with PVP via a translateral approach and IMRT. Their mean VAS score decreased from 7.93±1.09 preoperatively to 4.14±1.15 by the 24-hour postoperative time point and was 3.92±1.23 at 1 week, 4.27±1.93 at 1 month, 3.24±1.35 at 3 months, 2.27±0.96 at 6 months, and 2.59±1.55 at 12 months after the procedure. The mean VAS score at all of the postoperative time points was decreased significantly from the preoperative baseline score (P<0.05). Activities of daily living evaluation showed that the patients had a significantly high life quality after the combined approach (50.9±11.7 vs 82.3±9.9, P<0.05). No severe complications were observed. Mild complications included two cases (5.13%) of asymptomatic cement leakage into the epidural space and one case (2.56%) of paravertebral leakage. Median survival time was extended to 13 months. Conclusion The safety and efficacy of PVP combined with IMRT in patients with NSCLC with metastatic lesions at centrum vertebrae and the ability to prevent the diseased vertebrae from further deformation and tumor

  14. Outcomes of Patients With Head-and-Neck Cancer of Unknown Primary Origin Treated With Intensity-Modulated Radiotherapy

    SciTech Connect

    Shoushtari, Asal; Saylor, Drew; Kerr, Kara-Lynne; Sheng, Ke; Thomas, Christopher; Jameson, Mark; Reibel, James; Shonka, David; Levine, Paul; Read, Paul

    2011-11-01

    Purpose: To analyze survival, failure patterns, and toxicity in patients with head-and-neck carcinoma of unknown primary origin (HNCUP) treated with intensity-modulated radiotherapy (IMRT). Methods and materials: Records from 27 patients with HNCUP treated during the period 2002-2008 with IMRT were reviewed retrospectively. Nodal staging ranged from N1 to N3. The mean preoperative dose to gross or suspected disease, Waldeyer's ring, and uninvolved bilateral cervical nodes was 59.4, 53.5, and 51.0 Gy, respectively. Sixteen patients underwent neck dissection after radiation and 4 patients before radiation. Eight patients with advanced nodal disease (N2b-c, N3) or extracapsular extension received chemotherapy. Results: With a median follow-up of 41.9 months (range, 25.3-93.9 months) for nondeceased patients, the 5-year actuarial overall survival, disease-free survival, and nodal control rates were 70.9%, 85.2%, and 88.5%, respectively. Actuarial disease-free survival rates for N1, N2, and N3 disease were 100%, 94.1%, and 50.0%, respectively, at 5 years. When stratified by nonadvanced (N1, N2a nodal disease without extracapsular spread) vs. advanced nodal disease (N2b, N2c, N3), the 5-year actuarial disease-free survival rate for the nonadvanced nodal disease group was 100%, whereas for the advanced nodal disease group it was significantly lower at 66.7% (p = 0.017). Three nodal recurrences were observed: in 1 patient with bulky N2b disease and 2 in patients with N3 disease. No nodal failures occurred in patients with N1 or N2a disease who received only radiation and surgery. Conclusion: Definitive IMRT to 50-56 Gy followed by neck dissection results in excellent nodal control and overall and disease-free survival, with acceptable toxicity for patients with T0N1 or nonbulky T0N2a disease without extracapsular spread. Patients with extracapsular spread, advanced N2 disease, or N3 disease may benefit from concurrent chemotherapy, targeted therapeutic agents, or

  15. Dosimetric comparison of different multileaf collimator leaves in treatment planning of intensity-modulated radiotherapy for cervical cancer

    SciTech Connect

    Wang, Shichao; Ai, Ping; Xie, Li; Xu, Qingfeng; Bai, Sen; Lu, You; Li, Ping; Chen, Nianyong

    2013-01-01

    To study the effect of multileaf collimator (MLC) leaf widths (standard MLC [sMLC] width of 10 mm and micro-MLC [mMLC] width of 4 mm) on intensity-modulated radiotherapy (IMRT) for cervical cancer. Between January 2010 and August 2010, a retrospective analysis was conducted on 12 patients with cervical cancer. The treatment plans for all patients were generated with the same machine setup parameters and optimization methods in a treatment planning system (TPS) based on 2 commercial Elekta MLC devices. The dose distribution for the planning tumor volume (PTV), the dose sparing for organs at risk (OARs), the monitor units (MUs), and the number of IMRT segments were evaluated. For the delivery efficiency, the MUs were significantly higher in the sMLC-IMRT plan than in the mMLC-IMRT plan (802 ± 56.9 vs 702 ± 56.7; p < 0.05). The number of segments in the plans were 58.75 ± 1.8 and 59 ± 1.04 (p > 0.05). For the planning quality, the conformity index (CI) between the 2 paired IMRT plans with the mMLC and the sMLC did not differ significantly (average: 0.817 ± 0.024 vs 0.810 ± 0.028; p > 0.05). The differences of the homogeneity index (HI) between the 2 paired plans were statistically significant (average: 1.122 ± 0.010 vs 1.132 ± 0.014; p < 0.01). For OARs, the rectum, bladder, small intestine, and bony pelvis were evaluated in terms of V{sub 10}, V{sub 20}, V{sub 30}, and V{sub 40}, percentage of contoured OAR volumes receiving 10, 20, 30, and 40 Gy, respectively, and the mean dose (D{sub mean}) received. The IMRT plans with the mMLC protected the OARs better than the plans with the sMLC. There were significant differences (p < 0.05) in evaluated parameters between the 2 paired IMRT plans, except for V{sub 30} and V{sub 40} of the rectum and V{sub 10}, V{sub 20}, V{sub 40}, and D{sub mean} of the bladder. IMRT plans with the mMLC showed advantages over the plans with the sMLC in dose homogeneity for targets, dose sparing of OARs, and fewer MUs in cervical cancer.

  16. SU-E-T-379: Concave Approximations of Target Volume Dose Metrics for Intensity- Modulated Radiotherapy Treatment Planning

    SciTech Connect

    Xie, Y; Chen, Y; Wickerhauser, M; Deasy, J

    2014-06-01

    Purpose: The widely used treatment plan metric Dx (mimimum dose to the hottest x% by volume of the target volume) is simple to interpret and use, but is computationally poorly behaved (non-convex), this impedes its use in computationally efficient intensity-modulated radiotherapy (IMRT) treatment planning algorithms. We therefore searched for surrogate metrics that are concave, computationally efficient, and accurately correlated to Dx values in IMRT treatment plans. Methods: To find concave surrogates of D95—and more generally, Dx values with variable x values—we tested equations containing one or two generalized equivalent uniform dose (gEUD) functions. Fits were obtained by varying gEUD ‘a’ parameter values, as well as the linear equation coefficients. Fitting was performed using a dataset of dose-volume histograms from 498 de-identified head and neck IMRT treatment plans. Fit characteristics were tested using a crossvalidation process. Reported root-mean-square error values were averaged over the cross-validation shuffles. Results: As expected, the two-gEUD formula provided a superior fit, compared to the single-gEUD formula. The best approximation uses two gEUD terms: 16.25 x gEUD[a=0.45] – 15.30 x gEUD[a=1.75] – 0.69. The average root-mean-square error on repeated (70/30) cross validation was 0.94 Gy. In addition, a formula was found that reasonably approximates Dx for x between 80% and 96%. Conclusion: A simple concave function using two gEUD terms was found that correlates well with PTV D95s for these head and neck treatment plans. More generally, a formula was found that represents well the Dx for x values from 80% to 96%, thus providing a computationally efficient formula for use in treatment planning optimization. The formula may need to be adjusted for other institutions with different treatment planning protocols. We conclude that the strategy of replacing Dx values with gEUD-based formulas is promising.

  17. Whole breast and excision cavity radiotherapy plan comparison: Conformal radiotherapy with sequential boost versus intensity-modulated radiation therapy with a simultaneously integrated boost

    SciTech Connect

    Small, Katherine; Kelly, Chris; Beldham-Collins, Rachael; Gebski, Val

    2013-03-15

    A comparative study was conducted comparing the difference between (1) conformal radiotherapy (CRT) to the whole breast with sequential boost excision cavity plans and (2) intensity-modulated radiation therapy (IMRT) to the whole breast with simultaneously integrated boost to the excision cavity. The computed tomography (CT) data sets of 25 breast cancer patients were used and the results analysed to determine if either planning method produced superior plans. CT data sets from 25 past breast cancer patients were planned using (1) CRT prescribed to 50 Gy in 25 fractions (Fx) to the whole-breast planning target volume (PTV) and 10 Gy in 5Fx to the excision cavity and (2) IMRT prescribed to 60 Gy in 25Fx, with 60 Gy delivered to the excision cavity PTV and 50 Gy delivered to the whole-breast PTV, treated simultaneously. In total, 50 plans were created, with each plan evaluated by PTV coverage using conformity indices, plan maximum dose, lung dose, and heart maximum dose for patients with left-side lesions. CRT plans delivered the lowest plan maximum doses in 56% of cases (average CRT = 6314.34 cGy, IMRT = 6371.52 cGy). They also delivered the lowest mean lung dose in 68% of cases (average CRT = 1206.64 cGy, IMRT = 1288.37 cGy) and V20 in 88% of cases (average CRT = 20.03%, IMRT = 21.73%) and V30 doses in 92% of cases (average CRT = 16.82%, IMRT = 17.97%). IMRT created more conformal plans, using both conformity index and conformation number, in every instance, and lower heart maximum doses in 78.6% of cases (average CRT = 5295.26 cGy, IMRT = 5209.87 cGy). IMRT plans produced superior dose conformity and shorter treatment duration, but a slightly higher planning maximum and increased lung doses. IMRT plans are also faster to treat on a daily basis, with shorter fractionation.

  18. Treatment of left sided breast cancer for a patient with funnel chest: Volumetric-modulated arc therapy vs. 3D-CRT and intensity-modulated radiotherapy

    SciTech Connect

    Haertl, Petra M.; Pohl, Fabian; Weidner, Karin; Groeger, Christian; Koelbl, Oliver; Dobler, Barbara

    2013-04-01

    This case study presents a rare case of left-sided breast cancer in a patient with funnel chest, which is a technical challenge for radiation therapy planning. To identify the best treatment technique for this case, 3 techniques were compared: conventional tangential fields (3D conformal radiotherapy [3D-CRT]), intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT). The plans were created for a SynergyS® (Elekta, Ltd, Crawley, UK) linear accelerator with a BeamModulator™ head and 6-MV photons. The planning system was Oncentra Masterplan® v3.3 SP1 (Nucletron BV, Veenendal, Netherlands). Calculations were performed with collapsed cone algorithm. Dose prescription was 50.4 Gy to the average of the planning target volume (PTV). PTV coverage and homogeneity was comparable for all techniques. VMAT allowed reducing dose to the ipsilateral organs at risk (OAR) and the contralateral breast compared with IMRT and 3D-CRT: The volume of the left lung receiving 20 Gy was 19.3% for VMAT, 26.1% for IMRT, and 32.4% for 3D-CRT. In the heart, a D{sub 15%} of 9.7 Gy could be achieved with VMAT compared with 14 Gy for IMRT and 46 Gy for 3D-CRT. In the contralateral breast, D{sub 15%} was 6.4 Gy for VMAT, 8.8 Gy for IMRT, and 10.2 Gy for 3D-CRT. In the contralateral lung, however, the lowest dose was achieved with 3D-CRT with D{sub 10%} of 1.7 Gy for 3D-CRT, and 6.7 Gy for both IMRT and VMAT. The lowest number of monitor units (MU) per 1.8-Gy fraction was required by 3D-CRT (192 MU) followed by VMAT (518 MU) and IMRT (727 MU). Treatment time was similar for 3D-CRT (3 min) and VMAT (4 min) but substantially increased for IMRT (13 min). VMAT is considered the best treatment option for the presented case of a patient with funnel chest. It allows reducing dose in most OAR without compromising target coverage, keeping delivery time well below 5 minutes.

  19. SU-E-T-394: The Use of Jaw Tracking in Intensity Modulated and Volumetric Modulated Arc Radiotherapy for Spine Stereotactic Radiosurgery

    SciTech Connect

    Chin, K; Wen, N; Huang, Y; Kim, J; Zhao, B; Siddiqui, S; Chetty, I; Ryu, S

    2014-06-01

    Purpose: To evaluate the potential advantages of jaw tracking for intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in spine radiosurgery. Methods: VMAT and IMRT plans were retrospectively generated for ten patients. Six plans for each patient were created in the Eclipse treatment planning system for a Varian Truebeam equipped with a Millennium 120 MLC. Plans were created to study IMRT and VMAT plans with and without jaw tracking, as well as IMRT plans of different flattening filter free (FFF) energies. Plans were prescribed to the 90% isodose line to 16 or 18 Gy in one fraction to cover 95% of the target. Planning target volume (PTV) coverage, conformity index (CI), dose to spinal cord, distance to fall off from the 90% to 50% isodose line (DTF), as well as delivery time were evaluated. Ion chamber and film measurements were performed to verify calculated and measured dose distributions. Results: Jaw tracking decreased the spinal cord dose for both IMRT and VMAT plans, but a larger decrease was seen with the IMRT plans (p=0.004 vs p=0.04). The average D10% for the spinal cord was least for the 6MV FFF IMRT plan with jaw tracking and was greatest for the 10MV FFF plan without jaw tracking. Treatment times between IMRT and VMAT plans with or without jaw tracking were not significantly different. Measured plans showed greater than 98.5% agreement for planar dose gamma analysis (3%/2 mm) and less than 2.5% for point dose analysis compared to calculated plans. Conclusion: Jaw tracking can be used to help decrease spinal cord dose without any change in treatment delivery or calculation accuracy. Lower dose to the spinal cord was achieved using 6 MV beams compared to 10 MV beams, though 10 MV may be justified in some cases to decrease skin dose.

  20. Protocol for the isotoxic intensity modulated radiotherapy (IMRT) in stage III non-small cell lung cancer (NSCLC): a feasibility study

    PubMed Central

    Haslett, Kate; Franks, Kevin; Harden, Susan; Hatton, Matthew; McDonald, Fiona; Ashcroft, Linda; Falk, Sally; Groom, Nicki; Harris, Catherine; McCloskey, Paula; Whitehurst, Philip; Bayman, Neil

    2016-01-01

    Introduction The majority of stage III patients with non-small cell lung cancer (NSCLC) are unsuitable for concurrent chemoradiotherapy, the non-surgical gold standard of care. As the alternative treatment options of sequential chemoradiotherapy and radiotherapy alone are associated with high local failure rates, various intensification strategies have been employed. There is evidence to suggest that altered fractionation using hyperfractionation, acceleration, dose escalation, and individualisation may be of benefit. The MAASTRO group have pioneered the concept of ‘isotoxic’ radiotherapy allowing for individualised dose escalation using hyperfractionated accelerated radiotherapy based on predefined normal tissue constraints. This study aims to evaluate whether delivering isotoxic radiotherapy using intensity modulated radiotherapy (IMRT) is achievable. Methods and analysis Isotoxic IMRT is a multicentre feasibility study. From June 2014, a total of 35 patients from 7 UK centres, with a proven histological or cytological diagnosis of inoperable NSCLC, unsuitable for concurrent chemoradiotherapy will be recruited. A minimum of 2 cycles of induction chemotherapy is mandated before starting isotoxic radiotherapy. The dose of radiation will be increased until one or more of the organs at risk tolerance or the maximum dose of 79.2 Gy is reached. The primary end point is feasibility, with accrual rates, local control and overall survival our secondary end points. Patients will be followed up for 5 years. Ethics and dissemination The study has received ethical approval (REC reference: 13/NW/0480) from the National Research Ethics Service (NRES) Committee North West—Greater Manchester South. The trial is conducted in accordance with the Declaration of Helsinki and Good Clinical Practice (GCP). The trial results will be published in a peer-reviewed journal and presented internationally. Trial registration number NCT01836692; Pre-results. PMID:27084277

  1. Intensity-Modulated Radiotherapy as Primary Therapy for Prostate Cancer: Report on Acute Toxicity After Dose Escalation With Simultaneous Integrated Boost to Intraprostatic Lesion

    SciTech Connect

    Fonteyne, Valerie Villeirs, Geert; Speleers, Bruno; Neve, Wilfried de; Wagter, Carlos de; Lumen, Nicolas; Meerleer, Gert de

    2008-11-01

    Purpose: To report on the acute toxicity of a third escalation level using intensity-modulated radiotherapy for prostate cancer (PCa) and the acute toxicity resulting from delivery of a simultaneous integrated boost (SIB) to an intraprostatic lesion (IPL) detected on magnetic resonance imaging (MRI), with or without spectroscopy. Methods and Materials: Between January 2002 and March 2007, we treated 230 patients with intensity-modulated radiotherapy to a third escalation level as primary therapy for prostate cancer. If an IPL (defined by MRI or MRI plus spectroscopy) was present, a SIB was delivered to the IPL. To report on acute toxicity, patients were seen weekly during treatment and 1 and 3 months after treatment. Toxicity was scored using the Radiation Therapy Oncology Group toxicity scale, supplemented by an in-house-developed scoring system. Results: The median dose to the planning target volume was 78 Gy. An IPL was found in 118 patients. The median dose to the MRI-detected IPL and MRI plus spectroscopy-detected IPL was 81 Gy and 82 Gy, respectively. No Grade 3 or 4 acute gastrointestinal toxicity developed. Grade 2 acute gastrointestinal toxicity was present in 26 patients (11%). Grade 3 genitourinary toxicity was present in 15 patients (7%), and 95 patients developed Grade 2 acute genitourinary toxicity (41%). No statistically significant increase was found in Grade 2-3 acute gastrointestinal or genitourinary toxicity after a SIB to an IPL. Conclusion: The results of our study have shown that treatment-induced acute toxicity remains low when intensity-modulated radiotherapy to 80 Gy as primary therapy for prostate cancer is used. In addition, a SIB to an IPL did not increase the severity or incidence of acute toxicity.

  2. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    SciTech Connect

    Yim, Jackie; Suttie, Clare; Bromley, Regina; Morgia, Marita; Lamoury, Gillian

    2015-09-15

    We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with the 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D{sub 105%} and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT.

  3. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    PubMed Central

    Yim, Jackie; Suttie, Clare; Bromley, Regina; Morgia, Marita; Lamoury, Gillian

    2015-01-01

    Introduction We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Methods Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with the 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. Results The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D105% and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Conclusion Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT. PMID:26451240

  4. Daily Image Guidance With Cone-Beam Computed Tomography for Head-and-Neck Cancer Intensity-Modulated Radiotherapy: A Prospective Study

    SciTech Connect

    Den, Robert B.; Doemer, Anthony; Kubicek, Greg; Bednarz, Greg; Galvin, James M.; Keane, William M.; Xiao Ying; Machtay, Mitchell

    2010-04-15

    Purpose: To report on a prospective clinical trial of the use of daily kilovoltage cone-beam computed tomography (CBCT) to evaluate the interfraction and residual error motion of patients undergoing intensity-modulated radiotherapy for head-and-neck cancer. Methods and Materials: Patients were treated with intensity-modulated radiotherapy with an Elekta linear accelerator using a mounted CBCT scanner. CBCT was performed before every treatment, and translational (but not rotational) corrections were performed. At least once per week, a CBCT scan was obtained after intensity-modulated radiotherapy. Variations were measured in the medial-lateral, superoinferior, and anteroposterior dimensions, as well as in the rotation around these axes. Results: A total of 28 consecutive patients (1,013 CBCT scans) were studied. The average interfraction shift was 1.4 +- 1.4, 1.7 +- 1.9, and 1.8 +- 2.1 mm in the medial-lateral, superoinferior, and anteroposterior dimensions, respectively. The corresponding average residual error shifts were 0.7 +- 0.8, 0.9 +- 0.9, and 0.9 +- 0.9 mm. These data indicate that in the absence of daily CBCT image-guided radiotherapy, a clinical target volume to planning target volume margin of 3.9, 4.1, and 4.9 mm is needed in the medial-lateral, superoinferior, and anteroposterior dimensions, respectively. With daily CBCT, corresponding margins of 1.6, 2.5, and 1.9 mm should be acceptable. Subgroup analyses showed that larynx cancers and/or intratreatment weight loss indicate a need for slightly larger clinical target volume to planning target volume margins. Conclusion: The results of our study have shown that image-guided radiotherapy using CBCT for head-and-neck cancer is effective. These data suggest it allows a reduction in the clinical target volume to planning target volume margins by about 50%, which could facilitate future studies of dose escalation and/or improved toxicity reduction. Caution is particularly warranted for cases in which the

  5. Evaluation of Uncertainty-Based Stopping Criteria for Monte Carlo Calculations of Intensity-Modulated Radiotherapy and Arc Therapy Patient Dose Distributions

    SciTech Connect

    Vanderstraeten, Barbara Olteanu, Ana Maria Luiza; Reynaert, Nick; Leal, Antonio; Neve, Wilfried de; Thierens, Hubert

    2007-10-01

    Purpose: To formulate uncertainty-based stopping criteria for Monte Carlo (MC) calculations of intensity-modulated radiotherapy and intensity-modulated arc therapy patient dose distributions and evaluate their influence on MC simulation times and dose characteristics. Methods and Materials: For each structure of interest, stopping criteria were formulated as follows: {sigma}{sub rel} {<=}{sigma}{sub rel,tol} or D{sigma}{sub rel} {<=}D{sub lim}{sigma}{sub rel,tol} within {>=}95% of the voxels, where {sigma}{sub rel} represents the relative statistical uncertainty on the estimated dose, D. The tolerated uncertainty ({sigma}{sub rel,tol}) was 2%. The dose limit (D{sub lim}) equaled the planning target volume (PTV) prescription dose or a dose value related to the organ at risk (OAR) planning constraints. An intensity-modulated radiotherapy-lung, intensity-modulated radiotherapy-ethmoid sinus, and intensity-modulated arc therapy-rectum patient case were studied. The PTV-stopping criteria-based calculations were compared with the PTV+OAR-stopping criteria-based calculations. Results: The MC dose distributions complied with the PTV-stopping criteria after 14% (lung), 21% (ethmoid), and 12% (rectum) of the simulation times of a 100 million histories reference calculation, and increased to 29%, 44%, and 51%, respectively, by the addition of the OAR-stopping criteria. Dose-volume histograms corresponding to the PTV-stopping criteria, PTV+OAR-stopping criteria, and reference dose calculations were indiscernible. The median local dose differences between the PTV-stopping criteria and the reference calculations amounted to 1.4% (lung), 2.1% (ethmoid), and 2.5% (rectum). Conclusions: For the patient cases studied, the MC calculations using PTV-stopping criteria only allowed accurate treatment plan evaluation. The proposed stopping criteria provided a flexible tool to assist MC patient dose calculations. The structures of interest and appropriate values of {sigma}{sub rel

  6. Health-Related Quality of Life in Patients With Locally Advanced Prostate Cancer After 76 Gy Intensity-Modulated Radiotherapy vs. 70 Gy Conformal Radiotherapy in a Prospective and Longitudinal Study

    SciTech Connect

    Lips, Irene Dehnad, Human; Kruger, Arto Boeken; Moorselaar, Jeroen van; Heide, Uulke van; Battermann, Jan; Vulpen, Marco van

    2007-11-01

    Purpose: To compare quality of life (QoL) after 70 Gy conformal radiotherapy with QoL after 76 Gy intensity-modulated radiotherapy (IMRT) in patients with locally advanced prostate carcinoma. Methods and Materials: Seventy-eight patients with locally advanced prostate cancer were treated with 70 Gy three-field conformal radiotherapy, and 92 patients received 76 Gy IMRT with fiducial markers for position verification. Quality of life was measured by RAND-36, the European Organization for Research and Treatment of Cancer core questionnaire (EORTC QLQ-C30(+3)), and the prostate-specific EORTC QLQ-PR25, before radiotherapy (baseline) and 1 month and 6 months after treatment. Quality of life changes in time (baseline vs. 1 month and baseline vs. 6 months) of {>=}10 points were considered clinically relevant. Results: Differences between the treatment groups for QoL changes over time occurred in several QoL domains. The 76-Gy group revealed no significant deterioration in QoL compared with the 70-Gy group. The IMRT 76-Gy group even demonstrated a significantly better change in QoL from baseline to 1 month in several domains. The conformal 70-Gy group revealed temporary deterioration in pain, role functioning, and urinary symptoms; for the IMRT 76-Gy group a better QoL in terms of change in health existed after 1 month, which persisted after 6 months. For both treatment groups temporary deterioration in physical role restriction occurred after 1 month, and an improvement in emotional role restriction occurred after 6 months. Sexual activity was reduced after treatment for both groups and remained decreased after 6 months. Conclusions: Intensity-modulated radiotherapy and accurate position verification seem to provide a possibility to increase the radiation dose for prostate cancer without deterioration in QoL.

  7. Volumetric-modulated arc therapy vs conventional fixed-field intensity-modulated radiotherapy in a whole-ventricular irradiation: A planning comparison study

    SciTech Connect

    Sakanaka, Katsuyuki; Mizowaki, Takashi; Sato, Sayaka; Ogura, Kengo; Hiraoka, Masahiro

    2013-07-01

    This study evaluated the dosimetric difference between volumetric-modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (cIMRT) in whole-ventricular irradiation. Computed tomography simulation data for 13 patients were acquired to create plans for VMAT and cIMRT. In both plans, the same median dose (100% = 24 Gy) was prescribed to the planning target volume (PTV), which comprised a tumor bed and whole ventricles. During optimization, doses to the normal brain and body were reduced, provided that the dose constraints of the target coverage were satisfied. The dose-volume indices of the PTV, normal brain, and body as well as monitor units were compared between the 2 techniques by using paired t-tests. The results showed no significant difference in the homogeneity index (0.064 vs 0.065; p = 0.824) of the PTV and conformation number (0.78 vs 0.77; p = 0.065) between the 2 techniques. In the normal brain and body, the dose-volume indices showed no significant difference between the 2 techniques, except for an increase in the volume receiving a low dose in VMAT; the absolute volume of the normal brain and body receiving 1 Gy of radiation significantly increased in VMAT by 1.6% and 8.3%, respectively, compared with that in cIMRT (1044 vs 1028 mL for the normal brain and 3079.2 vs 2823.3 mL for the body; p<0.001). The number of monitor units to deliver a 2.0-Gy fraction was significantly reduced in VMAT compared with that in cIMRT (354 vs 873, respectively; p<0.001). In conclusion, VMAT delivers IMRT to complex target volumes such as whole ventricles with fewer monitor units, while maintaining target coverage and conformal isodose distribution comparable to cIMRT; however, in addition to those characteristics, the fact that the volume of the normal brain and body receiving a low dose would increase in VMAT should be considered.

  8. Hypofractionated Boost to the Dominant Tumor Region With Intensity Modulated Stereotactic Radiotherapy for Prostate Cancer: A Sequential Dose Escalation Pilot Study

    SciTech Connect

    Miralbell, Raymond; Molla, Meritxell; Rouzaud, Michel; Hidalgo, Alberto; Toscas, Jose Ignacio; Lozano, Joan; Sanz, Sergi B.Sc.; Ares, Carmen; Jorcano, Sandra; Linero, Dolors; Escude, Lluis

    2010-09-01

    Purpose: To evaluate the feasibility, tolerability, and preliminary outcomes in patients with prostate cancer treated according to a hypofractionated dose escalation protocol to boost the dominant tumor-bearing region of the prostate. Methods and Materials: After conventional fractionated external radiotherapy to 64 to 64.4Gy, 50 patients with nonmetastatic prostate cancer were treated with an intensity-modulated radiotherapy hypofractionated boost under stereotactic conditions to a reduced prostate volume to the dominant tumor region. A rectal balloon inflated with 60cc of air was used for internal organ immobilization. Five, 8, and 8 patients were sequentially treated with two fractions of 5, 6, or 7Gy, respectively (normalized total dose in 2Gy/fraction [NTD{sub 2Gy}] < 100Gy, low-dose group), whereas 29 patients received two fractions of 8Gy each (NTD{sub 2Gy} > 100Gy, high-dose group). Androgen deprivation was given to 33 patients. Acute and late toxicities were assessed according to the Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer (RTOG/EORTC) scoring system. Results: Two patients presented with Grade 3 acute urinary toxicity. The 5-year probabilities of {>=}Grade 2 late urinary and late low gastrointestinal (GI) toxicity-free survival were 82.2% {+-} 7.4% and 72.2% {+-} 7.6%, respectively. The incidence and severity of acute or late toxicities were not correlated with low- vs. high-dose groups, pelvic irradiation, age, or treatment with or without androgen deprivation. The 5-year biochemical disease-free survival (b-DFS) and disease-specific survival were 98% {+-} 1.9% and 100%, respectively. Conclusion: Intensity-modulated radiotherapy hypofractionated boost dose escalation under stereotactic conditions was feasible, and showed excellent outcomes with acceptable long-term toxicity. This approach may well be considered an alternative to high-dose-rate brachytherapy.

  9. Hypothyroidism as a Consequence of Intensity-Modulated Radiotherapy With Concurrent Taxane-Based Chemotherapy for Locally Advanced Head-and-Neck Cancer

    SciTech Connect

    Diaz, Roberto; Jaboin, Jerry J.; Morales-Paliza, Manuel; Koehler, Elizabeth; Phillips, John G.; Stinson, Scott; Gilbert, Jill; Chung, Christine H.; Murphy, Barbara A.; Murphy, Patrick B.; Shyr, Yu; Cmelak, Anthony J.

    2010-06-01

    Purpose: To conduct a retrospective review of 168 consecutively treated locally advanced head-and-neck cancer (LAHNC) patients treated with intensity-modulated radiotherapy (IMRT)/chemotherapy, to determine the rate and risk factors for developing hypothyroidism. Methods and Materials: Intensity-modulated radiotherapy was delivered in 33 daily fractions to 69.3 Gy to gross disease and 56.1 Gy to clinically normal cervical nodes. Dose-volume histograms (DVHs) of IMRT plans were used to determine radiation dose to thyroid and were compared with DVHs using conventional three-dimensional radiotherapy (3D-RT) in 10 of these same patients randomly selected for replanning and with DVHs of 16 patients in whom the thyroid was intentionally avoided during IMRT. Weekly paclitaxel (30 mg/m{sup 2}) and carboplatin area under the curve-1 were given concurrently with IMRT. Results: Sixty-one of 128 evaluable patients (47.7%) developed hypothyroidism after a median of 1.08 years after IMRT (range, 2.4 months to 3.9 years). Age and volume of irradiated thyroid were associated with hypothyroidism development after IMRT. Compared with 3D-RT, IMRT with no thyroid dose constraints resulted in significantly higher minimum, maximum, and median dose (p < 0.0001) and percentage thyroid volume receiving 10, 20, and 60 Gy (p < 0.05). Compared with 3D-RT, IMRT with thyroid dose constraints resulted in lower median dose and percentage thyroid volume receiving 30, 40, and 50 Gy (p < 0.005) but higher minimum and maximum dose (p < 0.005). Conclusions: If not protected, IMRT for LAHNC can result in higher radiation to the thyroid than with conventional 3D-RT. Techniques to reduce dose and volume of radiation to thyroid tissue with IMRT are achievable and recommended.

  10. Whole Abdominopelvic Radiotherapy Using Intensity-Modulated Arc Therapy in the Palliative Treatment of Chemotherapy-Resistant Ovarian Cancer With Bulky Peritoneal Disease: A Single-Institution Experience

    SciTech Connect

    De Meerleer, Gert; Vandecasteele, Katrien; Ost, Piet; Delrue, Louke; Denys, Hannelore; Makar, Amin; Speleers, Bruno; Van Belle, Simon; Van den Broecke, Rudy; Fonteyne, Valerie; De Neve, Wilfried

    2011-03-01

    Purpose: To retrospectively review our experience with whole abdominopelvic radiotherapy (WAPRT) using intensity-modulated arc therapy in the palliative treatment of chemotherapy-resistant ovarian cancer with bulky peritoneal disease. Methods and Materials: Between April 2002 and April 2008, 13 patients were treated with WAPRT using intensity-modulated arc therapy. We prescribed a dose of 33 Gy to be delivered in 22 fractions of 1.5 Gy to the abdomen and pelvis. All patients had International Federation of Gynecology and Obstetrics Stage III or IV ovarian cancer at the initial diagnosis. At referral, the median age was 61 years, and the patients had been heavily pretreated with surgery and chemotherapy. All patients had symptoms from their disease, including gastrointestinal obstruction or subobstruction in 6, minor gastrointestinal symptoms in 2, pain in 4, ascites in 1, and vaginal bleeding in 2. A complete symptom or biochemical response required complete resolution of the patient's symptoms or cancer antigen-125 level. A partial response required {>=}50% resolution of these parameters. The actuarial survival was calculated from the start of radiotherapy. Results: The median overall survival was 21 weeks, with a 6-month overall survival rate of 45%. The 9 patients who completed treatment obtained a complete symptom response, except for ascites (partial response). The median and mean response duration (all symptoms grouped) was 24 and 37 weeks, respectively. Of the 6 patients presenting with obstruction or subobstruction, 4 obtained a complete symptom response (median duration, 16 weeks). Conclusion: WAPRT delivered using intensity-modulated arc therapy offers important palliation in the case of peritoneal metastatic ovarian cancer. WAPRT resolved intestinal obstruction for a substantial period.

  11. Coplanar intensity-modulated radiotherapy class solution for patients with prostate cancer with bilateral hip prostheses with and without nodal involvement

    SciTech Connect

    Lee, Young K.; McVey, Gerard P.; South, Chris P.; Dearnaley, David P.

    2013-07-01

    Dose distributions for prostate radiotherapy are difficult to predict in patients with bilateral hip prostheses in situ, due to image distortions and difficulty in dose calculation. The feasibility of delivering curative doses to prostate using intensity-modulated radiotherapy (IMRT) in patients with bilateral hip prostheses was evaluated. Planning target volumes for prostate only (PTV1) and pelvic nodes (PTV2) were generated from data on 5 patients. PTV1 and PTV2 dose prescriptions were 70 Gy and 60 Gy, respectively, in 35 fractions, and an additional nodal boost of 65 Gy was added for 1 plan. Rectum, bladder, and bowel were also delineated. Beam angles and segments were chosen to best avoid entering through the prostheses. Dose-volume data were assessed with respect to clinical objectives. The plans achieved the required prescription doses to the PTVs. Five-field IMRT plans were adequate for patients with relatively small prostheses (head volumes<60 cm{sup 3}) but 7-field plans were required for patients with larger prostheses. Bowel and bladder doses were clinically acceptable for all patients. Rectal doses were deemed clinically acceptable, although the V{sub 50} {sub Gy} objective was not met for 4/5 patients. We describe an IMRT solution for patients with bilateral hip prostheses of varying size and shape, requiring either localized or whole pelvic radiotherapy for prostate cancer.

  12. Re-irradiation of unresectable recurrent head and neck cancer: using Helical Tomotherapy as image-guided intensity-modulated radiotherapy

    PubMed Central

    Jeong, Songmi; Yoo, Eun Jung; Kim, Ji Yoon; Han, Chi Wha; Kim, Ki Jun

    2013-01-01

    Purpose Re-irradiation (re-RT) is considered a treatment option for inoperable locoregionally recurrent head and neck cancer (HNC) after prior radiotherapy. We evaluated the efficacy and safety of re-RT using Helical Tomotherapy as image-guided intensity-modulated radiotherapy in recurrent HNC. Materials and Methods Patients diagnosed with recurrent HNC and received re-RT were retrospectively reviewed. Primary endpoint was overall survival (OS) and secondary endpoints were locoregional control and toxicities. Results The median follow-up period of total 9 patients was 18.7 months (range, 4.1 to 76 months) and that of 3 alive patients was 49 months (range, 47 to 76 months). Median dose of first radiotherapy and re-RT was 64.8 and 47.5 Gy10. Median cumulative dose of the two courses of radiotherapy was 116.3 Gy10 (range, 91.8 to 128.9 Gy10) while the median interval between the two courses of radiation was 25 months (range, 4 to 137 months). The response rate after re-RT of the evaluated 8 patients was 75% (complete response, 4; partial response, 2). Median locoregional relapse-free survival after re-RT was 11.9 months (range, 3.4 to 75.1 months) and 5 patients eventually presented with treatment failure (in-field failure, 2; in- and out-field failure, 2; out-field failure, 1). Median OS of the 8 patients was 20.3 months (range, 4.1 to 75.1 months). One- and two-year OS rates were 62.5% and 50%, respectively. Grade 3 leucopenia developed in one patient as acute toxicity, and grade 2 osteonecrosis and trismus as chronic toxicity in another patient. Conclusion Re-RT using Helical Tomotherapy for previously irradiated patients with unresectable locoregionally recurrent HNC may be a feasible treatment option with long-term survival and acceptable toxicities. PMID:24501708

  13. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    SciTech Connect

    Shirvani, Shervin M.; Komaki, Ritsuko; Heymach, John V.; Fossella, Frank V.

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non-small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39-86). The median follow-up duration was 21 months (range, 4-58) in all patients and 26 months (range, 4-58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive intensity-modulated

  14. SU-E-P-51: Dosimetric Comparison to Organs at Risk Sparing Using Volumetric-Modulated Arc Therapy Versus Intensity-Modulated Radiotherapy in Postoperative Radiotherapy of Left-Sided Breast Cancer

    SciTech Connect

    Qiao, L; Deng, G; Xie, J; Cheng, J; Liang, N; Zhang, J; Zhang, J; Luo, H

    2015-06-15

    Purpose: To compare the dosimetric characteristics of volumetric-modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for left-sided breast cancer patients with modified radical mastectomy. Methods: Twenty-four left-sided breast cancer patients treated with modified radical mastectomy were selected in this study. The planning target volume (PTV) was generated by using 7-mm uniform expansion of the clinical target volume (CTV) in all direction except the skin surface. The organs at risk (OARs) included heart, left lung, right lung, and right breast. Dose volume histograms (DVHs) were utilized to evaluate the dose distribution in PTV and OARs. Results: Both VMAT and IMRT plans met the requirement of PTV coverage. VMAT was superior to IMRT in terms of conformity, with a statistically significant difference (p=0.024). Mean doses, V5 and V10 of heart and both lungs in VMAT plans were significantly decreased compared to IMRT plans (P<0.05), but in terms of heart volume irradiated by high doses (V30 and V45), no significant differences were observed (P>0.05). For right breast, VMAT showed the reduction of V5 in comparison with IMRT (P<0.05). Additionally, the mean number of monitor units (MU) and treatment time in VMAT (357.21, 3.62 min) were significantly less than those in IMRT (1132.85, 8.74 min). Conclusion: VMAT showed similar PTV coverage and significant advantage in OARs sparing compared with IMRT, especially in terms of decreased volumes irradiated by low doses, while significantly reducing the treatment time and MU number.

  15. Comparative efficiency of the multi-leaf collimator and variable-aperture collimator in intensity-modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Anderson, J. W.; Symonds-Tayler, R.; Hartmann, G.; Echner, G.; Lang, C.; Schlegel, W.; Webb, S.

    2006-04-01

    The potential of the variable-aperture collimator (VAC) in intensity-modulated radiation therapy (IMRT) has been evaluated by comparing its performance with that of the multi-leaf collimator (MLC). This comparison used a decomposition algorithm to find the series of collimator segments that would treat a given intensity-modulated beam (IMB). Collimator performance was measured using both the number of segments required to complete the IMB and the monitor-unit efficiency of the treatment. The VAC was modelled with aperture sizes from 4 × 4 cm to 20 × 20 cm, and these apertures were allowed to be located anywhere within the IMB. To enable a direct comparison, a similar scanning MLC was modelled at the same range of aperture sizes. Using both collimators, decompositions were run on 10 × 10 and 20 × 20 random IMBs with integer bixel values ranging from 1 to 10. Clinical IMBs from lung, head and neck, and pelvic patients were taken from a Pinnacle treatment-planning system and tested in the same manner. It was found that for all treatment sites, a small, scanning MLC performs as well or better than an equivalent sized VAC in both number of segments and monitor-unit efficiency, and would be an efficient choice for centres looking for a simple collimator for IMRT.

  16. Treatment Plan Technique and Quality for Single-Isocenter Stereotactic Ablative Radiotherapy of Multiple Lung Lesions with Volumetric-Modulated Arc Therapy or Intensity-Modulated Radiosurgery

    PubMed Central

    Quan, Kimmen; Xu, Karen M.; Lalonde, Ron; Horne, Zachary D.; Bernard, Mark E.; McCoy, Chuck; Clump, David A.; Burton, Steven A.; Heron, Dwight E.

    2015-01-01

    The aim of this study is to provide a practical approach to the planning technique and evaluation of plan quality for the multi-lesion, single-isocenter stereotactic ablative radiotherapy (SABR) of the lung. Eleven patients with two or more lung lesions underwent single-isocenter volumetric-modulated arc therapy (VMAT) radiosurgery or IMRS. All plans were normalized to the target maximum dose. For each plan, all targets were treated to the same dose. Plan conformity and dose gradient were maximized with dose-control tuning structures surrounding targets. For comparison, multi-isocenter plans were retrospectively created for four patients. Conformity index (CI), homogeneity index (HI), gradient index (GI), and gradient distance (GD) were calculated for each plan. V5, V10, and V20 of the lung and organs at risk (OARs) were collected. Treatment time and total monitor units (MUs) were also recorded. One patient had four lesions and the remainder had two lesions. Six patients received VMAT and five patients received intensity-modulated radiosurgery (IMRS). For those treated with VMAT, two patients received 3-arc VMAT and four received 2-arc VMAT. For those treated with IMRS, two patients were treated with 10 and 11 beams, respectively, and the rest received 12 beams. Prescription doses ranged from 30 to 54 Gy in three to five fractions. The median prescribed isodose line was 84% (range: 80–86%). The median maximum dose was 57.1 Gy (range: 35.7–65.1 Gy). The mean combined PTV was 49.57 cm3 (range: 14.90–87.38 cm3). For single-isocenter plans, the median CI was 1.15 (range: 0.97–1.53). The median HI was 1.19 (range: 1.16–1.28). The median GI was 4.60 (range: 4.16–7.37). The median maximum radiation dose (Dmax) to total lung was 55.6 Gy (range: 35.7–62.0 Gy). The median mean radiation dose to the lung (Dmean) was 4.2 Gy (range: 1.1–9.3 Gy). The median lung V5 was 18.7% (range: 3.8–41.3%). There was no significant difference in CI, HI, GI

  17. Assessment of Planning Target Volume Margins for Intensity-Modulated Radiotherapy of the Prostate Gland: Role of Daily Inter- and Intrafraction Motion

    SciTech Connect

    Tanyi, James A.; He, Tongming; Summers, Paige A.; Mburu, Ruth G.; Kato, Catherine M.; Rhodes, Stephen M.; Hung, Arthur Y.; Fuss, Martin

    2010-12-01

    Purpose: To determine planning target volume margins for prostate intensity-modulated radiotherapy based on inter- and intrafraction motion using four daily localization techniques: three-point skin mark alignment, volumetric imaging with bony landmark registration, volumetric imaging with implanted fiducial marker registration, and implanted electromagnetic transponders (beacons) detection. Methods and Materials: Fourteen patients who underwent definitive intensity-modulated radiotherapy for prostate cancer formed the basis of this study. Each patient was implanted with three electromagnetic transponders and underwent a course of 39 treatment fractions. Daily localization was based on three-point skin mark alignment followed by transponder detection and patient repositioning. Transponder positioning was verified by volumetric imaging with cone-beam computed tomography of the pelvis. Relative motion between the prostate gland and bony anatomy was quantified by offline analyses of daily cone-beam computed tomography. Intratreatment organ motion was monitored continuously by the Calypso (registered) System for quantification of intrafraction setup error. Results: As expected, setup error (that is, inter- plus intrafraction motion, unless otherwise stated) was largest with skin mark alignment, requiring margins of 7.5 mm, 11.4 mm, and 16.3 mm, in the lateral (LR), longitudinal (SI), and vertical (AP) directions, respectively. Margin requirements accounting for intrafraction motion were smallest for transponder detection localization techniques, requiring margins of 1.4 mm (LR), 2.6 mm (SI), and 2.3 mm (AP). Bony anatomy alignment required 2.1 mm (LR), 9.4 mm (SI), and 10.5 mm (AP), whereas image-guided marker alignment required 2.8 mm (LR), 3.7 mm (SI), and 3.2 mm (AP). No marker migration was observed in the cohort. Conclusion: Clinically feasible, rapid, and reliable tools such as the electromagnetic transponder detection system for pretreatment target localization

  18. Phase I-II Trial of Concurrent Capecitabine and Oxaliplatin With Preoperative Intensity-Modulated Radiotherapy in Patients With Locally Advanced Rectal Cancer

    SciTech Connect

    Aristu, Jose Javier Arbea, Leire; Rodriguez, Javier; Hernandez-Lizoain, Jose Luis; Sola, Jesus Javier; Moreno, Marta M.D.; Azcona, Juan Diego; Diaz-Gonzalez, Juan Antonio; Garcia-Foncillas, Jesus Miguel; Martinez-Monge, Rafael

    2008-07-01

    Purpose: To identify the maximal tolerated dose level of preoperative intensity-modulated radiotherapy combined with capecitabine and oxaliplatin and to evaluate the efficacy. Patients and Methods: Patients with rectal T3-T4 and/or N0-N+ rectal cancer received capecitabine 825 mg/m{sup 2} twice daily Monday through Friday and oxaliplatin 60 mg/m{sup 2} intravenously on Days 1, 8, and 15, concurrently with intensity-modulated radiotherapy. The radiation dose was increased in 5.0-Gy steps in cohorts of 3 patients starting from 37.5 Gy in 15 fractions (dose level [DL] 1). DL2 and DL3 were designed to reach 42.5 Gy in 17 fractions and 47.5 Gy in 19 fractions, respectively. Results: No dose-limiting toxicity was observed at DL1 or DL2. Of the 3 patients treated at DL3, 1 presented with Grade 3 diarrhea, which was considered a dose-limiting toxicity, and 3 additional patients were added. Of the 6 patients treated at DL3, no new dose-limiting toxicities were observed, and DL3 was identified as the recommended dose in this study. Eight additional patients were treated at 47.5 Gy. Grade 2 proctitis was the most frequent adverse event (40%); Grade 3 diarrhea occurred in 2 patients (10%). All patients underwent surgery, and 17 patients (85%) underwent R0 resection. Four patients (20%) presented with a histologic response of Grade 4, 11 (55%) with Grade 3+, 2 (15%) with Grade 3, and 2 patients (10%) with Grade 2. Conclusion: The maximal tolerated dose in this study was 47.5 Gy. The high rates of pathologic response of Grade 3+ and 4 must be confirmed through the accrual of new patients in the Phase II study.

  19. Comparison of long-term survival and toxicity of simultaneous integrated boost vs conventional fractionation with intensity-modulated radiotherapy for the treatment of nasopharyngeal carcinoma

    PubMed Central

    Tao, Hengmin; Wei, Yumei; Huang, Wei; Gai, Xiujuan; Li, Baosheng

    2016-01-01

    Aim In recent years, the intensity-modulated radiotherapy with simultaneous integrated boost (IMRT-SIB) and intensity-modulated radiotherapy with conventional fractionation (IMRT-CF) have been involved in the treatment of nasopharyngeal carcinoma (NPC). However, the potential clinical effects and toxicities are still controversial. Methods Here, 107 patients with biopsy-proven locally advanced NPC between March 2004 and January 2011 were enrolled in the retrospective study. Among them, 54 patients received IMRT-SIB, and 53 patients received IMRT-CF. Subsequently, overall survival (OS), 5-year progression-free survival (PFS), 5-year locoregional recurrence-free survival (LRFS), and relevant toxicities were analyzed. Results In the present study, all patients completed the treatment, and the overall median follow-up time was 80 months (range: 8–126 months). The 5-year OS analysis revealed no significant difference between the IMRT-SIB and IMRT-CF groups (80.9% vs 80.5%, P=0.568). In addition, there were also no significant between-group differences in 5-year PFS (73.3% vs 74.4%, P=0.773) and 5-year LRFS (88.1% vs 90.8%, P=0.903). Notably, the dose to critical organs (spinal cord, brainstem, and parotid gland) in patients treated by IMRT-CF was significantly lower than that in patients treated by IMRT-SIB (all P<0.05). Conclusion Both IMRT-SIB and IMRT-CF techniques are effective in treating locally advanced NPC, with similar OS, PFS, and LRFS. However, IMRT-CF has more advantages than IMRT-SIB in protecting spinal cord, brainstem, and parotid gland from acute and late toxicities, such as xerostomia. Further prospective study is warranted to confirm our findings. PMID:27099518

  20. Can All Centers Plan Intensity-Modulated Radiotherapy (IMRT) Effectively? An External Audit of Dosimetric Comparisons Between Three-Dimensional Conformal Radiotherapy and IMRT for Adjuvant Chemoradiation for Gastric Cancer

    SciTech Connect

    Chung, Hans T. Lee, Brian; Park, Eileen; Lu, Jiade J.; Xia Ping

    2008-07-15

    Purpose: To compare dosimetric endpoints between three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) at our center with limited IMRT experience, and to perform an external audit of the IMRT plans. Methods and Materials: Ten patients, who received adjuvant chemoradiation for gastric cancer, formed the study cohort. For standardization, the planning target volume (PTV) and organs at risk were recontoured with the assistance of a study protocol radiologic atlas. The cohort was replanned with CMS Xio to generate coplanar 3D-CRT and IMRT plans. All 10 datasets, including volumes but without the plans (i.e., blinded), were transmitted to an experienced center where IMRT plans were designed using Nomos Corvus (IMRT-C) and ADAC Pinnacle (IMRT-P). All IMRT plans were normalized to D95% receiving 45 Gy. Results: Intensity-modulated radiotherapy yielded higher PTV V45 (volume that receives {>=}45 Gy) (p < 0.001) than 3D-CRT. No difference in V20 was seen in the right (p = 0.9) and left (p 0.3) kidneys, but the liver mean dose (p < 0.001) was superior with IMRT. For the external audit, IMRT-C (p = 0.002) and IMRT-P (p < 0.001) achieved significantly lower left kidney V20 than IMRT, and IMRT-P (p < 0.001) achieved lower right kidney V20 than IMRT. The IMRT-C (p = 0.003) but not IMRT-P (p = 0.6) had lower liver mean doses than IMRT. Conclusions: At our institution with early IMRT experience, IMRT improved PTV dose coverage and liver doses but not kidney doses. An external audit of IMRT plans showed that an experienced center can yield superior IMRT plans.

  1. First dose-map measured with a polycrystalline diamond 2D dosimeter under an intensity modulated radiotherapy beam

    NASA Astrophysics Data System (ADS)

    Scaringella, M.; Zani, M.; Baldi, A.; Bucciolini, M.; Pace, E.; de Sio, A.; Talamonti, C.; Bruzzi, M.

    2015-10-01

    A prototype of bidimensional dosimeter made on a 2.5×2.5 cm2 active area polycrystalline Chemical Vapour Deposited (pCVD) diamond film, equipped with a matrix of 12×12 contacts connected to the read-out electronics, has been used to evaluate a map of dose under Intensity Modulated Radiation Therapy (IMRT) fields for a possible application in pre-treatment verifications of cancer treatments. Tests have been performed under a 6-10 MVRX beams with IMRT fields for prostate and breast cancer. Measurements have been taken by measuring the 144 pixels in different positions, obtained by shifting the device along the x/y axes to span a total map of 14.4×10 cm2. Results show that absorbed doses measured by our pCVD diamond device are consistent with those calculated by the Treatment Planning System (TPS).

  2. Effect of Prolonged Radiotherapy Treatment Time on Survival Outcomes after Intensity-Modulated Radiation Therapy in Nasopharyngeal Carcinoma

    PubMed Central

    Luo, Dong-Hua; Shen, Ting; Mai, Dong-Mei; Hu, Wei-Han; Mo, Hao-Yuan

    2015-01-01

    Purpose To estimate the influence of prolonged radiation treatment time (RTT) on survival outcomes in nasopharyngeal carcinoma after continuous intensity-modulated radiation therapy. Methods and Materials Retrospectively review 321 patients with NPC treated between October 2009 and December 2010 and all of them underwent simultaneous accelerated intensity-modulated radiation therapy. The fractionated dose was 2–2.47 Gy/F (median 2.27 Gy), and the total dose for nasopharyngeal region was 64–74 Gy/ 28–33 fractions. The association of prolonged RTT and treatment interruption with PFS, LRFS and DFFS were assessed by univariate analysis and multivariate analysis. Survival analyses were carried out using Kaplan–Meier methodology and the log-rank test was used to assess the difference. The Cox regression proportional hazard model was used for multivariate analyses and evaluating the prognostic parameters for PFS, LRFS and DFFS. Results Univariate analysis revealed no significant associations between prolonged RTT and PFS, LRFS, DFFS when dichotomized using various cut-off values (all P>0.05). In multivariate analysis, RTT (range, 36–63 days) as a continuous variable, had no influence on any survival outcome as well (P>0.05). T and N classification were independent prognostic factors for PFS, LRFS and DFFS (all P<0.05, except T classification for LRFS, P = 0.057). Age was an independent prognostic factor for PFS (hazard ratio [HR], 1.033; P = 0.008) and DFFS (HR, 1.032; P = 0.043). Conclusion We conclude that no such association between survival outcomes and radiation treatment duration (range: 36–63 days) can be found in the present retrospective study, however, we have to remind that prolongation in treatment should be limited in clinical application and interruptions caused by any reason should be minimized as much as possible. PMID:26506559

  3. Quantification of Trade-Off Between Parotid Gland Sparing and Planning Target Volume Underdosages in Clinically Node-Negative Head-and-Neck Intensity-Modulated Radiotherapy

    SciTech Connect

    Kruijf, Wilhelmus de . E-mail: kruijf.de.w@bvi.nl; Heijmen, Ben; Levendag, Peter C.

    2007-05-01

    Purpose: To quantify the trade-off between parotid gland sparing and planning target volume (PTV) underdosages for head-and-neck intensity-modulated radiotherapy. Methods and Materials: A planning study was performed for 4 patients with either soft palate or tonsil tumors treated with external radiotherapy up to 46 Gy. The trade-off between underdosages in the PTV and sparing of the parotid glands was investigated by systematically varying the optimization objectives for the inverse planning. A new way of presenting dose-volume information allows easy detection of small PTV subvolumes with underdosages that cannot be assessed in conventional cumulative dose-volume histograms. A simple radiobiological model to estimate the control probability for an electively irradiated neck level was developed. Results: The average dose to the parotid glands can decrease by >10 Gy by allowing the PTV to be underdosed in such a way that the radiobiological model predicts a decrease in subclinical disease control probability of (typically) 1% to a few percent. Conclusion: The trade-off between parotid gland sparing and underdosages in the PTV has been quantified by the use of an alternative method to present dose-volume information and by the use of a radiobiological model to predict subclinical disease control probability.

  4. Investigating the Temporal Effects of Respiratory-Gated and Intensity-Modulated Radiotherapy Treatment Delivery on In Vitro Survival: An Experimental and Theoretical Study

    SciTech Connect

    Keall, Paul J. Chang, Michael; Benedict, Stanley; Thames, Howard; Vedam, S. Sastry; Lin, Peck-Sun

    2008-08-01

    Purpose: To experimentally and theoretically investigate the temporal effects of respiratory-gated and intensity-modulated radiotherapy (IMRT) treatment delivery on in vitro survival. Methods and Materials: Experiments were designed to isolate the effects of periodic irradiation (gating), partial tumor irradiation (IMRT), and extended treatment time (gating and IMRT). V79 Chinese hamster lung fibroblast cells were irradiated to 2 Gy with four delivery methods and a clonogenic assay performed. Theoretical incomplete repair model calculations were performed using the incomplete repair model. Results: Treatment times ranged from 1.67 min (conformal radiotherapy, CRT) to 15 min (gated IMRT). Survival fraction calculations ranged from 68.2% for CRT to 68.7% for gated IMRT. For the same treatment time (5 min), gated delivery alone and IMRT delivery alone both had a calculated survival fraction of 68.3%. The experimental values ranged from 65.7% {+-} 1.0% to 67.3% {+-} 1.3%, indicating no significant difference between the experimental observations and theoretical calculations. Conclusion: The theoretical results predicted that of the three temporal effects of radiation delivery caused by gating and IMRT, extended treatment time was the dominant effect. Care should be taken clinically to ensure that the use of gated IMRT does not significantly increase treatment times, by evaluating appropriate respiratory gating duty cycles and IMRT delivery complexity.

  5. Phase I Trial of Preoperative Hypofractionated Intensity-Modulated Radiotherapy with Incorporated Boost and Oral Capecitabine in Locally Advanced Rectal Cancer

    SciTech Connect

    Freedman, Gary M. . E-mail: G_Freedman@FCCC.edu; Meropol, Neal J.; Sigurdson, Elin R.; Hoffman, John; Callahan, Elaine; Price, Robert; Cheng, Jonathan; Cohen, Steve; Lewis, Nancy; Watkins-Bruner, Deborah; Rogatko, Andre; Konski, Andre

    2007-04-01

    Purpose: To determine the safety and efficacy of preoperative hypofractionated radiotherapy using intensity-modulated radiotherapy (IMRT) and an incorporated boost with concurrent capecitabine in patients with locally advanced rectal cancer. Methods and Materials: The eligibility criteria included adenocarcinoma of the rectum, T3-T4 and/or N1-N2 disease, performance status 0 or 1, and age {>=}18 years. Photon IMRT and an incorporated boost were used to treat the whole pelvis to 45 Gy and the gross tumor volume plus 2 cm to 55 Gy in 25 treatments within 5 weeks. The study was designed to escalate the dose to the gross tumor volume in 5-Gy increments in 3-patient cohorts. Capecitabine was given orally 825 mg/m{sup 2} twice daily for 7 days each week during RT. The primary endpoint was the maximal tolerated radiation dose, and the secondary endpoints were the pathologic response and quality of life. Results: Eight patients completed RT at the initial dose level of 55 Gy. The study was discontinued because of toxicity-six Grade 3 toxicities occurred in 3 (38%) of 8 patients. All patients went on to definitive surgical resection, and no patient had a pathologically complete response. Conclusion: This regimen, using hypofractionated RT with an incorporated boost, had unacceptable toxicity despite using standard doses of capecitabine and IMRT. Additional research is needed to determine whether IMRT is able to reduce the side effects during and after pelvic RT with conventional dose fractionation.

  6. SU-E-P-58: Dosimetric Study of Conventional Intensity-Modulated Radiotherapy and Knowledge-Based Radiation Therapy for Postoperation of Cervix Cancer

    SciTech Connect

    Ma, C; Yin, Y

    2015-06-15

    Purpose: To compare the dosimetric difference of the target volume and organs at risk(OARs) between conventional intensity-modulated radiotherapy(C-IMRT) and knowledge-based radiation therapy (KBRT) plans for cervix cancer. Methods: 39 patients with cervical cancer after surgery were randomly selected, 20 patient plans were used to create the model, the other 19 cases used for comparative evaluation. All plans were designed in Eclipse system. The prescription dose was 30.6Gy, 17 fractions, OARs dose satisfied to the clinical requirement. A paired t test was used to evaluate the differences of dose-volume histograms (DVH). Results: Comparaed to C-IMRT plan, the KBRT plan target can achieve the similar target dose coverage, D98,D95,D2,HI and CI had no difference (P≥0.05). The dose of rectum, bladder and femoral heads had no significant differences(P≥0.05). The time was used to design treatment plan was significant reduced. Conclusion: This study shows that postoperative radiotherapy of cervical KBRT plans can achieve the similar target and OARs dose, but the shorter designing time.

  7. Accelerated Hypofractionated Intensity-Modulated Radiotherapy With Concurrent and Adjuvant Temozolomide for Patients With Glioblastoma Multiforme: A Safety and Efficacy Analysis

    SciTech Connect

    Panet-Raymond, Valerie; Souhami, Luis; Roberge, David; Kavan, Petr; Shakibnia, Lily; Muanza, Thierry; Lambert, Christine; Leblanc, Richard; Del Maestro, Rolando; Guiot, Marie-Christine; Shenouda, George

    2009-02-01

    Purpose: Despite multimodality treatments, the outcome of patients with glioblastoma multiforme remains poor. In an attempt to improve results, we have begun a program of accelerated hypofractionated intensity-modulated radiotherapy (hypo-IMRT) with concomitant and adjuvant temozolomide (TMZ). Methods and Materials: Between March 2004 and June 2006, 35 unselected patients with glioblastoma multiforme were treated with hypo-IMRT. During a 4-week period, using a concomitant boost technique, a dose of 60 Gy and 40 Gy were delivered in 20 fractions prescribed to the periphery of the gross tumor volume and planning target volume, respectively. TMZ was administered according to the regimen of Stupp et al. Results: The median follow-up was 12.6 months. Of the 35 patients, 29 (82.8%) completed the combined modality treatment, and 25 (71.4%) received a median of four cycles of adjuvant TMZ. The median overall survival was 14.4 months, and the median disease-free survival was 7.7 months. The median survival time differed significantly between patients who underwent biopsy and those who underwent partial or total resection (7.1 vs. 16.1 months, p = 0.035). The median survival was also significantly different between patients with methylated vs. unmethylated 0-6-methylguanine-DNA methyltransferase promoters (14.4 vs. 8.7 months, p = 0.049). The pattern of failure was predominantly central, within 2 cm of the initial gross tumor volume. Grade 3-4 toxicity was limited to 1 patient with nausea and emesis during adjuvant TMZ administration. Conclusion: The results of our study have shown that hypo-IMRT with concomitant and adjuvant TMZ is well tolerated with a useful 2-week shortening of radiotherapy. Despite a high number of patients with poor prognostic features (74.3% recursive partitioning analysis class V or VI), the median survival was comparable to that after standard radiotherapy fractionation schedules plus TMZ.

  8. Evaluation of Four-Dimensional Computed Tomography-Based Intensity-Modulated and Respiratory-Gated Radiotherapy Techniques for Pancreatic Carcinoma

    SciTech Connect

    Geld, Ylanga G. van der; Triest, Baukelien van; Verbakel, Wilko; Soernsen de Koste, John R. van; Senan, Suresh; Slotman, Ben J.; Lagerwaard, Frank J.

    2008-11-15

    Purpose: To compare conformal radiotherapy (CRT), intensity-modulated radiotherapy (IMRT), and respiration-gated radiotherapy (RGRT) planning techniques for pancreatic cancer. All target volumes were determined using four-dimensional computed tomography scans (4D CT). Methods and Materials: The pancreatic tumor and enlarged regional lymph nodes were contoured on all 10 phases of a planning 4D CT scan for 10 patients, and the planning target volumes (PTV{sub allphases}) were generated. Three consecutive respiratory phases for RGRT delivery in both inspiration and expiration were identified, and the corresponding PTVs (PTV{sub inspiration} and PTV{sub expiration}) and organ at risk volumes created. Treatment plans using CRT and IMRT, with and without RGRT, were created for each PTV. Results: Compared with the CRT plans, IMRT significantly reduced the mean volume of right kidney exposed to 20 Gy from 27.7% {+-} 17.7% to 16.0% {+-} 18.2% (standard deviation) (p < 0.01), but this was not achieved for the left kidney (11.1% {+-} 14.2% to 5.7% {+-} 6.5%; p = 0.1). The IMRT plans also reduced the mean gastric, hepatic, and small bowel doses (p < 0.01). No additional reductions in the dose to the kidneys or other organs at risk were seen when RGRT plans were combined with either CRT or IMRT, and the findings for RGRT in end-expiration and end-inspiration were similar. Conclusion: 4D CT-based IMRT plans for pancreatic tumors significantly reduced the radiation doses to the right kidney, liver, stomach, and small bowel compared with CRT plans. The additional dosimetric benefits from RGRT appear limited in this setting.

  9. A case study of radiotherapy planning for Intensity Modulation Radiation Therapy for the whole scalp with matching electron treatment

    SciTech Connect

    Sponseller, Patricia; Paravathaneni, Upendra

    2013-07-01

    The purpose of this report is to communicate a technique to match an electron field to the dose distribution of an Intensity-Modulated Radiation Therapy (IMRT) plan. A patient with multiple areas of squamous cell carcinoma over the scalp was treated using 60 Gy in 2.0-Gy fractions to the entire scalp and first echelon nodes with multiple 6-MV photon fields. To deliver an adequate dose to the scalp, a custom 1.0-cm bolus helmet was fashioned using a solid piece of aquaplast. Along with the IMRT scalp treatment, a left zygoma area was treated with electrons matching the anterior border of the IMRT dose distribution. The border was matched by creating a left lateral field with the multileaf collimator shaped to the IMRT dose distribution. The result indicated an adequate dose to the skin match between the IMRT plan and the electron field. Results were confirmed using optically stimulated luminescence placed at the skin match area, so that the dose matched the prescription within 10%.

  10. Anatomic and Dosimetric Changes During the Treatment Course of Intensity-Modulated Radiotherapy for Locally Advanced Nasopharyngeal Carcinoma

    SciTech Connect

    Wang Xin; Lu Jiade; Xiong Xiaopeng; Zhu Guopei; Ying Hongmei; He Shaoqin; Hu Weigang; Hu Chaosu

    2010-07-01

    Many patients with nasopharyngeal carcinoma (NPC) have marked anatomic change during intensity-modulated radiation therapy (IMRT). In this study, the magnitude of anatomic changes and its dosimetric effects were quantified. Fifteen patients with locally advanced NPC treated with IMRT had repeated computed tomography (CT) after 18 fractions. A hybrid plan was made to the anatomy of the second computed tomography scan. The dose of the original plan, hybrid plan, and new plan were compared. The mean volume of left and right parotid decreased 6.19 mL and 6.44 mL, respectively. The transverse diameters of the upper bound of odontoid process, the center of odontoid process, and the center of C2 vertebral body slices contracted with the mean contraction of 8.2 mm, 9.4 mm, and 7.6 mm. Comparing the hybrid plan with the treatment plan, the coverage of target was maintained while the maximum dose to the brain stem and spinal cord increased by 0.08 to 6.51 Gy and 0.05 to 7.8 Gy. The mean dose to left and right parotid increased by 2.97 Gy and 2.57 Gy, respectively. A new plan reduced the dose of spinal cord, brain stem, and parotids. Measurable anatomic changes occurring during the IMRT for locally advanced NPC maintained the coverage of targets but increased the dose to critical organs. Those patients might benefit from replanning.

  11. Obtaining Normal Tissue Constraints Using Intensity Modulated Radiotherapy (IMRT) in Patients with Oral Cavity, Oropharnygeal, and Laryngeal Carcinoma

    SciTech Connect

    Skinner, William K.J.

    2009-01-01

    The purpose of this study was to evaluate normal tissue dose constraints while maintaining planning target volume (PTV) prescription without reducing PTV margins. Sixteen patients with oral cavity carcinoma (group I), 27 patients with oropharyngeal carcinoma (group II), and 28 patients with laryngeal carcinoma (group III) were reviewed. Parotid constraints were a mean dose to either parotid < 26 Gy (PP1), 50% of either parotid < 30 Gy (PP2), or 20 cc of total parotid < 20 Gy (PP3). Treatment was intensity modulated radiation therapy (IMRT) with simultaneous integrated boost (SIB). All patients met constraints for cord and brain stem. The mandibular constraints were met in 66%, 29%, and 57% of patients with oral, oropharyngeal, and laryngeal cancers, respectively. Mean dose of 26 Gy (PP1) was achieved in 44%, 41%, and 38% of oral, oropharyngeal, and laryngeal patients. PP2 (parotid constraint of 30 Gy to less than 50% of one parotid) was the easiest to achieve (group I, II, and III: 82%, 76%, and 78%, respectively). PP3 (20 cc of total parotid < 20 Gy) was difficult, and was achieved in 25%, 17%, and 35% of oral, oropharyngeal, and laryngeal patients, respectively. Mean parotid dose of 26 Gy was met 40% of the time. However, a combination of constraints allowed for sparing of the parotid based on different criteria and was met in high numbers. This was accomplished without reducing PTV-parotid overlap. What dose constraint best correlates with subjective and objective functional outcomes remains a focus for future study.

  12. Optimal field-splitting algorithm in intensity-modulated radiotherapy: Evaluations using head-and-neck and female pelvic IMRT cases

    SciTech Connect

    Dou, Xin; Kim, Yusung; Bayouth, John E.; Buatti, John M.; Wu, Xiaodong

    2013-04-01

    To develop an optimal field-splitting algorithm of minimal complexity and verify the algorithm using head-and-neck (H and N) and female pelvic intensity-modulated radiotherapy (IMRT) cases. An optimal field-splitting algorithm was developed in which a large intensity map (IM) was split into multiple sub-IMs (≥2). The algorithm reduced the total complexity by minimizing the monitor units (MU) delivered and segment number of each sub-IM. The algorithm was verified through comparison studies with the algorithm as used in a commercial treatment planning system. Seven IMRT, H and N, and female pelvic cancer cases (54 IMs) were analyzed by MU, segment numbers, and dose distributions. The optimal field-splitting algorithm was found to reduce both total MU and the total number of segments. We found on average a 7.9 ± 11.8% and 9.6 ± 18.2% reduction in MU and segment numbers for H and N IMRT cases with an 11.9 ± 17.4% and 11.1 ± 13.7% reduction for female pelvic cases. The overall percent (absolute) reduction in the numbers of MU and segments were found to be on average −9.7 ± 14.6% (−15 ± 25 MU) and −10.3 ± 16.3% (−3 ± 5), respectively. In addition, all dose distributions from the optimal field-splitting method showed improved dose distributions. The optimal field-splitting algorithm shows considerable improvements in both total MU and total segment number. The algorithm is expected to be beneficial for the radiotherapy treatment of large-field IMRT.

  13. Long-term outcomes from dose-escalated image-guided intensity-modulated radiotherapy with androgen deprivation: encouraging results for intermediate- and high-risk prostate cancer

    PubMed Central

    Wilcox, Shea W; Aherne, Noel J; Benjamin, Linus C; Wu, Bosco; de Campos Silva, Thomaz; McLachlan, Craig S; McKay, Michael J; Last, Andrew J; Shakespeare, Thomas P

    2014-01-01

    Purpose Dose-escalated (DE) radiotherapy in the setting of localized prostate cancer has been shown to improve biochemical disease-free survival (bDFS) in several studies. In the same group of patients, androgen deprivation therapy (ADT) has been shown to confer a survival benefit when combined with radiotherapy doses of up to 70 Gy; however, there is currently little long-term data on patients who have received high-dose intensity-modulated radiotherapy (IMRT) with ADT. We report the long-term outcomes in a large cohort of patients treated with the combination of DE image-guided IMRT (IG-IMRT) and ADT. Methods and materials Patients with localized prostate cancer were identified from a centralized database across an integrated cancer center. All patients received DE IG-IMRT, combined with ADT, and had a minimum follow up of 12 months post-radiotherapy. All relapse and toxicity data were collected prospectively. Actuarial bDFS, metastasis-free survival, prostate cancer-specific survival, and multivariate analyses were calculated using the SPSS v20.0 statistical package. Results Seven hundred and eighty-two eligible patients were identified with a median follow up of 46 months. Overall, 4.3% of patients relapsed, 2.0% developed distant metastases, and 0.6% died from metastatic prostate cancer. At 5-years, bDFS was 88%, metastasis-free survival was 95%, and prostate cancer-specific survival was 98%. Five-year grade 2 genitourinary and gastrointestinal toxicity was 2.1% and 3.4%, respectively. No grade 3 or 4 late toxicities were reported. Pretreatment prostate specific antigen (P=0.001) and Gleason score (P=0.03) were significant in predicting biochemical failure on multivariate analysis. Conclusion There is a high probability of tumor control with DE IG-IMRT combined with androgen deprivation, and this is a technique with a low probability of significant late toxicity. Our long term results corroborate the safety and efficacy of treating with IG-IMRT to high doses

  14. Kidney-Sparing Methods for Extended-Field Intensity-Modulated Radiotherapy (EF-IMRT) in Cervical Carcinoma Treatment.

    PubMed

    Kunogi, Hiroaki; Yamaguchi, Nanae; Terao, Yasuhisa; Sasai, Keisuke

    2016-01-01

    Coplanar extended-field intensity-modulated radiation therapy (EF-IMRT) targeting the whole-pelvic and para-aortic lymph nodes in patients with advanced cervical cancer results in impaired creatinine clearance. An improvement in renal function cannot be expected unless low-dose (approximately 10 Gy) kidney exposure is reduced. The dosimetric method should be considered during EF-IMRT planning to further reduce low-dose exposure to the kidneys. To assess the usefulness of non-coplanar EF-IMRT with kidney-avoiding beams to spare the kidneys during cervical carcinoma treatment in dosimetric analysis between non-coplanar and coplanar EF-IMRT, we compared the doses of the target organ and organs at risk, including the kidney, in 10 consecutive patients. To estimate the influence of EFRT on renal dysfunction, creatinine clearance values after treatment were also examined in 18 consecutive patients. Of these 18 patients, 10 patients who were included in the dosimetric analysis underwent extended field radiation therapy (EFRT) with concurrent chemotherapy, and eight patients underwent whole-pelvis radiation therapy with concurrent chemotherapy to treat cervical carcinoma between April 2012 and March 2015 at our institution. In the dosimetric analysis, non-coplanar EF-IMRT was effective at reducing low-dose (approximately 10 Gy) exposure to the kidneys, thus maintaining target coverage and sparing other organs at risk, such as the small bowel, rectum, and bladder, compared with coplanar EF-IMRT. Renal function in all 10 patients who underwent EFRT, including coplanar EF-IMRT (with kidney irradiation), was low after treatment, and differed significantly from that of the eight patients who underwent WPRT (no kidney irradiation) 6 months after the first day of treatment (P = 0.005). In conclusion, non-coplanar EF-IMRT should be considered in patients with advanced cervical cancer, particularly in patients with a long life expectancy or with pre-existing renal dysfunction. PMID

  15. Kidney-Sparing Methods for Extended-Field Intensity-Modulated Radiotherapy (EF-IMRT) in Cervical Carcinoma Treatment

    PubMed Central

    Kunogi, Hiroaki; Yamaguchi, Nanae; Terao, Yasuhisa; Sasai, Keisuke

    2016-01-01

    Coplanar extended-field intensity-modulated radiation therapy (EF-IMRT) targeting the whole-pelvic and para-aortic lymph nodes in patients with advanced cervical cancer results in impaired creatinine clearance. An improvement in renal function cannot be expected unless low-dose (approximately 10 Gy) kidney exposure is reduced. The dosimetric method should be considered during EF-IMRT planning to further reduce low-dose exposure to the kidneys. To assess the usefulness of non-coplanar EF-IMRT with kidney-avoiding beams to spare the kidneys during cervical carcinoma treatment in dosimetric analysis between non-coplanar and coplanar EF-IMRT, we compared the doses of the target organ and organs at risk, including the kidney, in 10 consecutive patients. To estimate the influence of EFRT on renal dysfunction, creatinine clearance values after treatment were also examined in 18 consecutive patients. Of these 18 patients, 10 patients who were included in the dosimetric analysis underwent extended field radiation therapy (EFRT) with concurrent chemotherapy, and eight patients underwent whole-pelvis radiation therapy with concurrent chemotherapy to treat cervical carcinoma between April 2012 and March 2015 at our institution. In the dosimetric analysis, non-coplanar EF-IMRT was effective at reducing low-dose (approximately 10 Gy) exposure to the kidneys, thus maintaining target coverage and sparing other organs at risk, such as the small bowel, rectum, and bladder, compared with coplanar EF-IMRT. Renal function in all 10 patients who underwent EFRT, including coplanar EF-IMRT (with kidney irradiation), was low after treatment, and differed significantly from that of the eight patients who underwent WPRT (no kidney irradiation) 6 months after the first day of treatment (P = 0.005). In conclusion, non-coplanar EF-IMRT should be considered in patients with advanced cervical cancer, particularly in patients with a long life expectancy or with pre-existing renal dysfunction. PMID

  16. Dosimetric implications of residual seminal vesicle motion in fiducial-guided intensity-modulated radiotherapy for prostate cancer

    SciTech Connect

    Stenmark, Matthew H.; Vineberg, Karen; Ten Haken, Randall K.; Hamstra, Daniel A.; Feng, Mary

    2012-10-01

    To determine whether residual interfraction seminal vesicle (SV) displacement necessitates specific planning target volume (PTV) margins during fiducial-guided intensity modulated radiation therapy (IMRT) of the prostate. A planning computed tomography (CT) scan and 2 subsequent CT scans were prospectively obtained for 20 prostate cancer patients with intraprostatic fiducial markers. After CT registration, SV displacement relative to the prostate was quantified as a function of margin size for both the proximal (1 cm) SV (PSV) and the full SV (FSV). Two IMRT plans were simulated for each patient (prostate + PSV and prostate + FSV) both with a uniform 5-mm PTV margin. Minimum clinical target volume (CTV) dose (D{sub min}) and the volume of SV receiving 95% of the prescription dose (V{sub 95%}) were assessed during treatment and compared with the initial plan. In all cases, SV displacement with respect to the prostate was greater for the FSV compared with the PSV. To ensure at least 95% geometrical coverage of the CTV for 90% of patients, margins of 5 and 8 mm were required for the PSV and FSV, respectively. Dosimetrically, residual SV displacement had minimal impact on PSV coverage compared with FSV coverage. For the PSV D{sub min} was {>=}95% of the prescribed dose in 90% of patients with an overall mean V{sub 95%} of 99.6 {+-} 0.8%; for the FSV D{sub min} was {>=}95% of the prescribed dose in only 45% of patients with a mean V{sub 95%} of 97.9 {+-} 2.4%. The SVs move differentially from the prostate and exhibit greater variation with increasing distance from the prostate. For plans targeting just the prostate and PSVs, 5-mm PTV expansions are adequate. However, despite daily localization of the prostate, larger PTV margins are required for cases where the intent is to completely cover the FSV.

  17. Intensity-modulated radiotherapy for nasopharyngeal carcinoma: Clinical correlation of dose to the pharyngo-esophageal axis and dysphagia

    SciTech Connect

    Fua, Tsien F. . E-mail: tsien-fei.fua@petermac.org; Corry, June; Milner, Alvin D.; Cramb, Jim; Walsham, Sue F.; Peters, Lester J.

    2007-03-15

    Purpose: The aim of this study was to quantify the dose delivered to the pharyngo-esophageal axis using different intensity-modulated radiation therapy (IMRT) techniques for treatment of nasopharyngeal carcinoma and to correlate this with acute swallowing toxicity. Methods and Materials: The study population consisted of 28 patients treated with IMRT between February 2002 and August 2005: 20 with whole field IMRT (WF-IMRT) and 8 with IMRT fields junctioned with an anterior neck field with central shielding (j-IMRT). Dose to the pharyngo-esophageal axis was measured using dose-volume histograms. Acute swallowing toxicity was assessed by review of dysphagia grade during treatment and enteral feeding requirements. Results: The mean pharyngo-esophageal dose was 55.2 Gy in the WF-IMRT group and 27.2 Gy in the j-IMRT group, p < 0.001. Ninety-five percent (19/20) of the WF-IMRT group developed Grade 3 dysphagia compared with 62.5% (5/8) of the j-IMRT group, p = 0.06. Feeding tube duration was a median of 38 days for the WF-IMRT group compared with 6 days for the j-IMRT group, p = 0.04. Conclusions: Clinical vigilance must be maintained when introducing new technology to ensure that unanticipated adverse effects do not result. Although newer planning systems can reduce the dose to the pharyngo-esophageal axis with WF-IMRT, the j-IMRT technique is preferred at least in patients with no gross disease in the lower neck.

  18. The use of film dosimetry of the penumbra region to improve the accuracy of intensity modulated radiotherapy

    SciTech Connect

    Arnfield, Mark R.; Otto, Karl; Aroumougame, Vijayan R.; Alkins, Ryan D.

    2005-01-01

    Accurate measurements of the penumbra region are important for the proper modeling of the radiation beam for linear accelerator-based intensity modulated radiation therapy. The usual data collection technique with a standard ionization chamber artificially broadens the measured beam penumbrae due to volume effects. The larger the chamber, the greater is the spurious increase in penumbra width. This leads to inaccuracies in dose calculations of small fields, including small fields or beam segments used in IMRT. This source of error can be rectified by the use of film dosimetry for penumbra measurements because of its high spatial resolution. The accuracy of IMRT calculations with a pencil beam convolution model in a commercial treatment planning system was examined using commissioning data with and without the benefit of film dosimetry of the beam penumbrae. A set of dose-spread kernels of the pencil beam model was calculated based on commissioning data that included beam profiles gathered with a 0.6-cm-i.d. ionization chamber. A second set of dose-spread kernels was calculated using the same commissioning data with the exception of the penumbrae, which were measured with radiographic film. The average decrease in the measured width of the 80%-20% penumbrae of various square fields of size 3-40 cm, at 5 cm depth in water-equivalent plastic was 0.27 cm. Calculations using the pencil beam model after it was re-commissioned using film dosimetry of the penumbrae gave better agreement with measurements of IMRT fields, including superior reproduction of high dose gradient regions and dose extrema. These results show that accurately measuring the beam penumbrae improves the accuracy of the dose distributions predicted by the treatment planning system and thus is important when commissioning beam models used for IMRT.

  19. Dosimetric difference amongst 3 techniques: TomoTherapy, sliding-window intensity-modulated radiotherapy (IMRT), and RapidArc radiotherapy in the treatment of late-stage nasopharyngeal carcinoma (NPC)

    SciTech Connect

    Lee, Francis Kar-ho Yip, Celia Wai-yi; Cheung, Frankie Chun-hung; Leung, Alex Kwok-cheung; Chau, Ricky Ming-chun; Ngan, Roger Kai-cheong

    2014-04-01

    To investigate the dosimetric difference amongst TomoTherapy, sliding-window intensity-modulated radiotherapy (IMRT), and RapidArc radiotherapy in the treatment of late-stage nasopharyngeal carcinoma (NPC). Ten patients with late-stage (Stage III or IV) NPC treated with TomoTherapy or IMRT were selected for the study. Treatment plans with these 3 techniques were devised according to departmental protocol. Dosimetric parameters for organ at risk and treatment targets were compared between TomoTherapy and IMRT, TomoTherapy and RapidArc, and IMRT and RapidArc. Comparison amongst the techniques was done by statistical tests on the dosimetric parameters, total monitor unit (MU), and expected delivery time. All 3 techniques achieved similar target dose coverage. TomoTherapy achieved significantly lower doses in lens and mandible amongst the techniques. It also achieved significantly better dose conformity to the treatment targets. RapidArc achieved significantly lower dose to the eye and normal tissue, lower total MU, and less delivery time. The dosimetric advantages of the 3 techniques were identified in the treatment of late-stage NPC. This may serve as a guideline for selection of the proper technique for different clinical cases.

  20. Dosimetric effects of multileaf collimator leaf width on intensity-modulated radiotherapy for head and neck cancer

    SciTech Connect

    Hong, Chae-Seon; Ju, Sang Gyu Kim, Minkyu; Kim, Jin Man; Han, Youngyih; Ahn, Yong Chan; Choi, Doo Ho; Park, Hee Chul; Kim, Jung-in; Nam, Heerim; Suh, Tae-Suk

    2014-02-15

    Purpose: The authors evaluated the effects of multileaf collimator (MLC) leaf width (2.5 vs. 5 mm) on dosimetric parameters and delivery efficiencies of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) for head and neck (H and N) cancers. Methods: The authors employed two types of mock phantoms: large-sized head and neck (LH and N) and small-sized C-shape (C-shape) phantoms. Step-and-shoot IMRT (S and S-IMRT) and VMAT treatment plans were designed with 2.5- and 5.0-mm MLC for both C-shape and LH and N phantoms. Their dosimetric characteristics were compared in terms of the conformity index (CI) and homogeneity index (HI) for the planning target volume (PTV), the dose to organs at risk (OARs), and the dose-spillage volume. To analyze the effects of the field and arc numbers, 9-field IMRT (9F-IMRT) and 13-field IMRT (13F-IMRT) plans were established for S and S-IMRT. For VMAT, single arc (VMAT{sub 1}) and double arc (VMAT{sub 2}) plans were established. For all plans, dosimetric verification was performed using the phantom to examine the relationship between dosimetric errors and the two leaf widths. Delivery efficiency of the two MLCs was compared in terms of beam delivery times, monitor units (MUs) per fraction, and the number of segments for each plan. Results: 2.5-mm MLC showed better dosimetric characteristics in S and S-IMRT and VMAT for C-shape, providing better CI for PTV and lower spinal cord dose and high and intermediate dose-spillage volume as compared with the 5-mm MLC (p < 0.05). However, no significant dosimetric benefits were provided by the 2.5-mm MLC for LH and N (p > 0.05). Further, beam delivery efficiency was not observed to be significantly associated with leaf width for either C-shape or LH and N. However, MUs per fraction were significantly reduced for the 2.5-mm MLC for the LH and N. In dosimetric error analysis, absolute dose evaluations had errors of less than 3%, while the Gamma passing rate was

  1. Dosimetric benefit of DMLC tracking for conventional and sub-volume boosted prostate intensity-modulated arc radiotherapy

    PubMed Central

    Pommer, Tobias; Falk, Marianne; Poulsen, Per R.; Keall, Paul J.; O’Brien, Ricky T.; Petersen, Peter Meidahl; Rosenschöld, Per Munck af

    2013-01-01

    This study investigated the dosimetric impact of uncompensated motion and motion compensation with dynamic multileaf collimator (DMLC) tracking for prostate intensity modulated arc therapy. Two treatment approaches were investigated; a conventional approach with a uniform radiation dose to the target volume and an intraprostatic lesion (IPL) boosted approach with an increased dose to a subvolume of the prostate. The impact on plan quality of optimizations with a leaf position constraint, which limited the distance between neighbouring adjacent MLC leaves, was also investigated. Deliveries were done with and without DMLC tracking on a linear acceleration with a high-resolution MLC. A cylindrical phantom containing two orthogonal diode arrays was used for dosimetry. A motion platform reproduced six patient-derived prostate motion traces, with the average displacement ranging from 1.0 to 8.9 mm during the first 75 seconds. A research DMLC tracking system was used for real-time motion compensation with optical monitoring for position input. The gamma index was used for evaluation, with measurements with a static phantom or the planned dose as reference, using 2% and 2 mm gamma criteria. The average pass rate with DMLC tracking was 99.9% (range 98.7–100%, measurement as reference), whereas the pass rate for untracked deliveries decreased distinctly as the average displacement increased, with an average pass rate of 61.3% (range 32.7–99.3%). Dose-volume histograms showed that DMLC tracking maintained the planned dose distributions in the presence of motion whereas traces with > 3 mm average displacement caused clear plan degradation for untracked deliveries. The dose to the rectum and bladder had an evident dependence on the motion direction and amplitude for untracked deliveries, and the dose to the rectum was slightly increased for IPL boosted plans compared to conventional plans for anterior motion with large amplitude. In conclusion, optimization using a leaf

  2. Dosimetric benefit of DMLC tracking for conventional and sub-volume boosted prostate intensity-modulated arc radiotherapy

    NASA Astrophysics Data System (ADS)

    Pommer, Tobias; Falk, Marianne; Poulsen, Per R.; Keall, Paul J.; O'Brien, Ricky T.; Meidahl Petersen, Peter; Rosenschöld, Per Munck af

    2013-04-01

    This study investigated the dosimetric impact of uncompensated motion and motion compensation with dynamic multileaf collimator (DMLC) tracking for prostate intensity modulated arc therapy. Two treatment approaches were investigated; a conventional approach with a uniform radiation dose to the target volume and an intraprostatic lesion (IPL) boosted approach with an increased dose to a subvolume of the prostate. The impact on plan quality of optimizations with a leaf position constraint, which limited the distance between neighbouring adjacent MLC leaves, was also investigated. Deliveries were done with and without DMLC tracking on a linear acceleration with a high-resolution MLC. A cylindrical phantom containing two orthogonal diode arrays was used for dosimetry. A motion platform reproduced six patient-derived prostate motion traces, with the average displacement ranging from 1.0 to 8.9 mm during the first 75 s. A research DMLC tracking system was used for real-time motion compensation with optical monitoring for position input. The gamma index was used for evaluation, with measurements with a static phantom or the planned dose as reference, using 2% and 2 mm gamma criteria. The average pass rate with DMLC tracking was 99.9% (range 98.7-100%, measurement as reference), whereas the pass rate for untracked deliveries decreased distinctly as the average displacement increased, with an average pass rate of 61.3% (range 32.7-99.3%). Dose-volume histograms showed that DMLC tracking maintained the planned dose distributions in the presence of motion whereas traces with >3 mm average displacement caused clear plan degradation for untracked deliveries. The dose to the rectum and bladder had an evident dependence on the motion direction and amplitude for untracked deliveries, and the dose to the rectum was slightly increased for IPL boosted plans compared to conventional plans for anterior motion with large amplitude. In conclusion, optimization using a leaf position

  3. Image-guided intensity-modulated radiotherapy for prostate cancer: Dose constraints for the anterior rectal wall to minimize rectal toxicity

    SciTech Connect

    Peterson, Jennifer L.; Buskirk, Steven J.; Heckman, Michael G.; Diehl, Nancy N.; Bernard, Johnny R.; Tzou, Katherine S.; Casale, Henry E.; Bellefontaine, Louis P.; Serago, Christopher; Kim, Siyong; Vallow, Laura A.; Daugherty, Larry C.; Ko, Stephen J.

    2014-04-01

    Rectal adverse events (AEs) are a major concern with definitive radiotherapy (RT) treatment for prostate cancer. The anterior rectal wall is at the greatest risk of injury as it lies closest to the target volume and receives the highest dose of RT. This study evaluated the absolute volume of anterior rectal wall receiving a high dose to identify potential ideal dose constraints that can minimize rectal AEs. A total of 111 consecutive patients with Stage T1c to T3a N0 M0 prostate cancer who underwent image-guided intensity-modulated RT at our institution were included. AEs were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. The volume of anterior rectal wall receiving 5 to 80 Gy in 2.5-Gy increments was determined. Multivariable Cox regression models were used to identify cut points in these volumes that led to an increased risk of early and late rectal AEs. Early AEs occurred in most patients (88%); however, relatively few of them (13%) were grade ≥2. At 5 years, the cumulative incidence of late rectal AEs was 37%, with only 5% being grade ≥2. For almost all RT doses, we identified a threshold of irradiated absolute volume of anterior rectal wall above which there was at least a trend toward a significantly higher rate of AEs. Most strikingly, patients with more than 1.29, 0.73, or 0.45 cm{sup 3} of anterior rectal wall exposed to radiation doses of 67.5, 70, or 72.5 Gy, respectively, had a significantly increased risk of late AEs (relative risks [RR]: 2.18 to 2.72; p ≤ 0.041) and of grade ≥ 2 early AEs (RR: 6.36 to 6.48; p = 0.004). Our study provides evidence that definitive image-guided intensity-modulated radiotherapy (IG-IMRT) for prostate cancer is well tolerated and also identifies dose thresholds for the absolute volume of anterior rectal wall above which patients are at greater risk of early and late complications.

  4. Intensity-Modulated Radiotherapy for Complex-Shaped Meningioma of the Skull Base: Long-Term Experience of a Single Institution

    SciTech Connect

    Milker-Zabel, Stefanie . E-mail: Stefanie_Milker-Zabel@med.uni-heidelberg.de; Zabel-du Bois, Angelika; Huber, Peter; Schlegel, Wolfgang; Debus, Juergen

    2007-07-01

    Purpose: We analyzed our long-term experience with intensity-modulated radiotherapy (IMRT) in patients with complex-shaped meningioma of the skull base. Patients and Methods: Between January 1998 and December 2004, 94 patients with complex-shaped meningioma were treated using IMRT at our institution. Tumor distribution was: World Health Organization (WHO) Grade 1 in 54.3%, WHO Grade 2 in 9.6%, and WHO Grade 3 in 4.2%. In 31.9% of patients, the clinical and radiologic characteristics of the tumor were consistent with the diagnosis of meningioma. Twenty-six patients received radiotherapy as primary treatment and 14 patients postoperative for residual disease. Fifty-four patients were treated after local recurrence. Median target volume was 81.4 mL, median total dose was 57.6 Gy given in 32 fractions. Results: Median follow-up was 4.4 years. Overall local control was 93.6%. Sixty-nine patients had stable disease based on computed tomography/magnetic resonance imaging (MRI), whereas 19 had a tumor volume reduction after IMRT. Six patients showed local tumor progression on MRI 22.3 months' median after IMRT. Three patients died from non-treatment-related conditions after IMRT. In 39.8% of the patients, preexisting neurologic deficits improved. Worsening of preexisting neurologic symptoms was seen in 4 patients and 2 patients developed new clinical symptoms from local tumor progression. Transient side effects such as headache were seen in 7 patients. Treatment-induced loss of vision was seen in 1 of 53 reirradiated patients with a Grade 3 meningioma 9 months after retreatment with IMRT. Conclusion: These data demonstrate that IMRT is an effective and safe treatment modality for long-term local control of complex-shaped and otherwise difficult to treat meningioma.

  5. A quantitative assessment of volumetric and anatomic changes of the parotid gland during intensity-modulated radiotherapy for head and neck cancer using serial computed tomography

    SciTech Connect

    Ajani, Abdallah A.; Qureshi, Muhammad M.; Kovalchuk, Nataliya; Orlina, Lawrence; Sakai, Osamu; Truong, Minh Tam

    2013-10-01

    To evaluate the change in volume and movement of the parotid gland measured by serial contrast-enhanced computed tomography scans in patients with head and neck cancer treated with parotid-sparing intensity-modulated radiotherapy (IMRT). A prospective study was performed on 13 patients with head and neck cancer undergoing dose-painted IMRT to 69.96 Gy in 33 fractions. Serial computed tomography scans were performed at baseline, weeks 2, 4, and 6 of radiotherapy (RT), and at 6 weeks post-RT. The parotid volume was contoured at each scan, and the movement of the medial and lateral borders was measured. The patient's body weight was recorded at each corresponding week during RT. Regression analyses were performed to ascertain the rate of change during treatment as a percent change per fraction in parotid volume and distance relative to baseline. The mean parotid volume decreased by 37.3% from baseline to week 6 of RT. The overall rate of change in parotid volume during RT was−1.30% per fraction (−1.67% and−0.91% per fraction in≥31 Gy and<31 Gy mean planned parotid dose groups, respectively, p = 0.0004). The movement of parotid borders was greater in the≥31 Gy mean parotid dose group compared with the<31 Gy group (0.22% per fraction and 0.14% per fraction for the lateral border and 0.19% per fraction and 0.06% per fraction for the medial border, respectively). The median change in body weight was−7.4% (range, 0.75% to−17.5%) during RT. A positive correlation was noted between change in body weight and parotid volume during the course of RT (Spearman correlation coefficient, r = 0.66, p<0.01). Head and neck IMRT results in a volume loss of the parotid gland, which is related to the planned parotid dose, and the patient's weight loss during RT.

  6. A quantitative assessment of volumetric and anatomic changes of the parotid gland during intensity-modulated radiotherapy for head and neck cancer using serial computed tomography.

    PubMed

    Ajani, Abdallah A; Qureshi, Muhammad M; Kovalchuk, Nataliya; Orlina, Lawrence; Sakai, Osamu; Truong, Minh Tam

    2013-01-01

    To evaluate the change in volume and movement of the parotid gland measured by serial contrast-enhanced computed tomography scans in patients with head and neck cancer treated with parotid-sparing intensity-modulated radiotherapy (IMRT). A prospective study was performed on 13 patients with head and neck cancer undergoing dose-painted IMRT to 69.96Gy in 33 fractions. Serial computed tomography scans were performed at baseline, weeks 2, 4, and 6 of radiotherapy (RT), and at 6 weeks post-RT. The parotid volume was contoured at each scan, and the movement of the medial and lateral borders was measured. The patient's body weight was recorded at each corresponding week during RT. Regression analyses were performed to ascertain the rate of change during treatment as a percent change per fraction in parotid volume and distance relative to baseline. The mean parotid volume decreased by 37.3% from baseline to week 6 of RT. The overall rate of change in parotid volume during RT was-1.30% per fraction (-1.67% and-0.91% per fraction in≥31Gy and<31Gy mean planned parotid dose groups, respectively, p = 0.0004). The movement of parotid borders was greater in the≥31Gy mean parotid dose group compared with the<31Gy group (0.22% per fraction and 0.14% per fraction for the lateral border and 0.19% per fraction and 0.06% per fraction for the medial border, respectively). The median change in body weight was-7.4% (range, 0.75% to-17.5%) during RT. A positive correlation was noted between change in body weight and parotid volume during the course of RT (Spearman correlation coefficient, r = 0.66, p<0.01). Head and neck IMRT results in a volume loss of the parotid gland, which is related to the planned parotid dose, and the patient's weight loss during RT. PMID:23558146

  7. WE-G-BRF-01: Adaptation to Intrafraction Tumor Deformation During Intensity-Modulated Radiotherapy: First Proof-Of-Principle Demonstration

    SciTech Connect

    Ge, Y; OBrien, R; Shieh, C; Booth, J; Keall, P

    2014-06-15

    Purpose: Intrafraction tumor deformation limits targeting accuracy in radiotherapy and cannot be adapted to by current motion management techniques. This study simulated intrafractional treatment adaptation to tumor deformations using a dynamic Multi-Leaf Collimator (DMLC) tracking system during Intensity-modulated radiation therapy (IMRT) treatment for the first time. Methods: The DMLC tracking system was developed to adapt to the intrafraction tumor deformation by warping the planned beam aperture guided by the calculated deformation vector field (DVF) obtained from deformable image registration (DIR) at the time of treatment delivery. Seven single phantom deformation images up to 10.4 mm deformation and eight tumor system phantom deformation images up to 21.5 mm deformation were acquired and used in tracking simulation. The intrafraction adaptation was simulated at the DMLC tracking software platform, which was able to communicate with the image registration software, reshape the instantaneous IMRT field aperture and log the delivered MLC fields.The deformation adaptation accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the reference aperture. The incremental deformations were arbitrarily determined to take place equally over the delivery interval. The geometric target coverage of delivery with deformation adaptation was compared against the delivery without adaptation. Results: Intrafraction deformation adaptation during dynamic IMRT plan delivery was simulated for single and system deformable phantoms. For the two particular delivery situations, over the treatment course, deformation adaptation improved the target coverage by 89% for single target deformation and 79% for tumor system deformation compared with no-tracking delivery. Conclusion: This work demonstrated the principle of real-time tumor deformation tracking using a DMLC. This is the first step towards the development of an

  8. Toxicity Assessment of Pelvic Intensity-Modulated Radiotherapy With Hypofractionated Simultaneous Integrated Boost to Prostate for Intermediate- and High-Risk Prostate Cancer

    SciTech Connect

    McCammon, Robert; Rusthoven, Kyle E.; Kavanagh, Brian; Newell, Sherri B.S.; Newman, Francis M.S.; Raben, David

    2009-10-01

    Purpose: To evaluate the toxicity of pelvic intensity-modulated radiotherapy (IMRT) with hypofractionated simultaneous integrated boost (SIB) to the prostate for patients with intermediate- to high-risk prostate cancer. Methods and Materials: A retrospective toxicity analysis was performed in 30 consecutive patients treated definitively with pelvic SIB-IMRT, all of whom also received androgen suppression. The IMRT plans were designed to deliver 70 Gy in 28 fractions (2.5 Gy/fraction) to the prostate while simultaneously delivering 50.4 Gy in 28 fractions (1.8 Gy/fraction) to the pelvic lymph nodes. The National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0, was used to score toxicity. Results: The most common acute Grade 2 events were cystitis (36.7%) and urinary frequency/urgency (26.7%). At a median follow-up of 24 months, late toxicity exceeding Grade 2 in severity was uncommon, with two Grade 3 events and one Grade 4 event. Grade 2 or greater acute bowel toxicity was associated with signficantly greater bowel volume receiving {>=}25 Gy (p = .04); Grade 2 or greater late bowel toxicity was associated with a higher bowel maximal dose (p = .04) and volume receiving {>=}50 Gy (p = .02). Acute or late bladder and rectal toxicity did not correlate with any of the dosimetric parameters examined. Conclusion: Pelvic IMRT with SIB to the prostate was well tolerated in this series, with low rates of Grade 3 or greater acute and late toxicity. SIB-IMRT combines pelvic radiotherapy and hypofractionation to the primary site and offers an accelerated approach to treating intermediate- to high-risk disease. Additional follow-up is necessary to fully define the long-term toxicity after hypofractionated, whole pelvic treatment combined with androgen suppression.

  9. Intensity-Modulated Radiotherapy is Associated With Improved Global Quality of Life Among Long-term Survivors of Head-and-Neck Cancer

    SciTech Connect

    Chen, Allen M.; Farwell, D. Gregory; Luu, Quang; Vazquez, Esther G.; Lau, Derick H.; Purdy, James A.

    2012-09-01

    Purpose: To compare the long-term quality of life among patients treated with and without intensity-modulated radiotherapy (IMRT) for head-and-neck cancer. Methods and Materials: University of Washington Quality of Life instrument scores were reviewed for 155 patients previously treated with radiation therapy for locally advanced head-and-neck cancer. All patients were disease free and had at least 2 years of follow-up. Eighty-four patients (54%) were treated with IMRT. The remaining 71 patients (46%) were treated with three-dimensional conformal radiotherapy (3D CRT) by use of initial opposed lateral fields matched to a low anterior neck field. Results: The mean global quality of life scores were 67.5 and 80.1 for the IMRT patients at 1 and 2 years, respectively, compared with 55.4 and 57.0 for the 3D CRT patients, respectively (p < 0.001). At 1 year after the completion of radiation therapy, the proportion of patients who rated their global quality of life as 'very good' or 'outstanding' was 51% and 41% among patients treated by IMRT and 3DCRT, respectively (p = 0.11). At 2 years, the corresponding percentages increased to 73% and 49%, respectively (p < 0.001). On multivariate analysis accounting for sex, age, radiation intent (definitive vs. postoperative), radiation dose, T stage, primary site, use of concurrent chemotherapy, and neck dissection, the use of IMRT was the only variable independently associated with improved quality of life (p = 0.01). Conclusion: The early quality of life improvements associated with IMRT not only are maintained but apparently become more magnified over time. These data provide powerful evidence attesting to the long-term benefits of IMRT for head-and-neck cancer.

  10. Comparative dosimetric study of three-dimensional conformal, dynamic conformal arc, and intensity-modulated radiotherapy for brain tumor treatment using Novalis system

    SciTech Connect

    Ding Meisong . E-mail: Meisong.Ding@uchsc.edu; Newman, Francis M.S.; Kavanagh, Brian D.; Stuhr, Kelly M.S.; Johnson, Tim K.; Gaspar, Laurie E.

    2006-11-15

    Purpose: To investigate the dosimetric differences among three-dimensional conformal radiotherapy (3D-CRT), dynamic conformal arc therapy (DCAT), and intensity-modulated radiotherapy (IMRT) for brain tumor treatment. Methods and Materials: Fifteen patients treated with Novalis were selected. We performed 3D-CRT, DCAT, and IMRT plans for all patients. The margin for the planning target volume (PTV) was 1 mm, and the specific prescription dose was 90% for all plans. The target coverage at the prescription dose, conformity index (CI), and heterogeneity index were analyzed for all plans. Results: For small tumors (PTV {<=}2 cm{sup 3}), the three dosimetric parameters had approximate values for both 3D-CRT and DCAT plans. The CI for the IMRT plans was high. For medium tumors (PTV >2 to {<=}100 cm{sup 3}), the three plans were competitive with each other. The IMRT plans had a greater CI, better target coverage at the prescription dose, and a better heterogeneity index. For large tumors (PTV >100 cm{sup 3}), the IMRT plan had good target coverage at the prescription dose and heterogeneity index and approximate CI values as those in the 3D-CRT and DCAT plans. Conclusion: The results of our study have shown that DCAT is suitable for most cases in the treatment of brain tumors. For a small target, 3D-CRT is useful, and IMRT is not recommended. For larger tumors, IMRT is superior to 3D-CRT and very competitive in sparing critical structures, especially for big tumors.

  11. SU-E-T-275: Radiobiological Evaluation of Intensity Modulated Radiotherapy Treatment for Locally Advanced Head and Neck Squamous Cell Carcinomas

    SciTech Connect

    Rekha Reddy, B.; Ravikumar, M.; Tanvir Pasha, C.R; Anil Kumar, M.R; Varatharaj, C.; Pyakuryal, A; Narayanasamy, Ganesh

    2014-06-01

    Purpose: To evaluate the radiobiological outcome of Intensity Modulated Radiotherapy Treatment (IMRT) for locally advanced head and neck squamous cell carcinomas using HART (Histogram Analysis in Radiation Therapy; J Appl Clin Med Phys 11(1): 137–157, 2010) program and compare with the clinical outcomes. Methods: We have treated 20 patients of stage III and IV HNSCC Oropharynx and hypopharynx with accelerated IMRT technique and concurrent chemotherapy. Delineation of tumor and normal tissues were done using Danish Head and Neck Cancer Group (DAHANCA) contouring guidelines and radiotherapy was delivered to a dose of 70Gy in 35 fractions to the primary and involved lymph nodes, 63Gy to intermediate risk areas and 56 Gy to lower risk areas, Monday to Saturday, 6 Days/week using 6 MV Photons with an expected overall treatment time of 6 weeks. The TCP and NTCP's were calculated from the dose-volume histogram (DVH) statistics using the Poisson Statistics (PS) and JT Lyman models respectively and the Resultwas correlated with clinical outcomes of the patients with mean follow up of 24 months. Results: Using HART program, the TCP (0.89± 0.01) of primary tumor and the NTCP for parotids (0.20±0.12), spinal cord (0.05±0.01), esophagus (0.30±0.2), mandible (0.35±0.21), Oral cavity (0.37±0.18), Larynx (0.30±0.15) were estimated and correlated with clinical outcome of the patients. Conclusion: Accelerated IMRT with Chemotherapy is a clinical feasible option in the treatment of locally advanced HNSCC with encouraging initial tumour response and acceptable acute toxicities. The correlation between the clinical outcomes and radiobiological model estimated parameters using HART programs are found to be satisfactory.

  12. Intensity-modulated radiotherapy for gliomas:dosimetric effects of changes in gross tumor volume on organs at risk and healthy brain tissue

    PubMed Central

    Yang, Zhen; Zhang, Zijian; Wang, Xia; Hu, Yongmei; Lyu, Zhiping; Huo, Lei; Wei, Rui; Fu, Jun; Hong, Jidong

    2016-01-01

    Aim The aim of this study was to explore the effects of changes in the gross tumor volume (GTV) on dose distribution in organs at risk (OARs) and healthy brain tissue in patients with gliomas. Methods Eleven patients suffering from gliomas with intensity-modulated radiotherapy (IMRT) plans treated with a simultaneous integrated boost technique planned before therapy (initial plans) were prospectively enrolled. At the end of radiotherapy, patients underwent repeat computed tomography and magnetic resonance imaging, and IMRT was replanned. The GTV and dosimetric parameters between the initial and replanned IMRT were compared using the Wilcoxon two-related-sample test, and correlations between the initial GTV and the replanned target volumes were assessed using the bivariate correlation test. Results The volume of the residual tumor did not change significantly (P>0.05), the volume of the surgical cavity decreased significantly (P<0.05), and the GTV and target volumes decreased significantly at the end of IMRT (all P<0.05). The near-maximum dose to OARs and volumes of healthy brain tissue receiving total doses of 10–50 Gy were lower in the replanned IMRT than in the initial IMRT (all P<0.05). The GTV in the initial plan was significantly positively correlated with the changes in the GTV and planning target volume 1 that occurred during IMRT (all P<0.05). Conclusion The reduction in the GTV in patients with gliomas resulted from shrinkage of the surgical cavity during IMRT, leading to decreased doses to the OARs and healthy brain tissue. Such changes appeared to be most meaningful in patients with large initial GTV values. PMID:27366091

  13. Three-dimensional customized bolus for intensity-modulated radiotherapy in a patient with Kimura's disease involving the auricle.

    PubMed

    Park, J W; Yea, J W

    2016-05-01

    In radiotherapy, a commercial bolus often does not provide a suitable fit over irregular surfaces. To address this issue, we fabricated a customized bolus using 3D printing technology. The aim of our study was to evaluate the application of this 3D-printed bolus in a clinical setting. The patient was a 45-year-old man with recurrent Kimura's disease involving the auricle, receiving radiotherapy in our oncology department. A customized bolus, 5mm in thickness, was fabricated based on reconstruction of computed tomography (CT) images. The bolus was printed on a Dimension 1200 series SST 3D printer. Repeat CT-based simulation indicated an acceptable fit of the 3D-printed bolus to the target region, with a maximum air gap of less than 5mm at the tragus. Most of the surface area of the target region was covered by the 95% isodose line. The plan with the 3D-printed bolus improved target coverage compared to that without a bolus. And the plan with the 3D-printed bolus yielded comparable results to those with the paraffin wax bolus. In conclusion, a customized bolus using a 3D printer was successfully applied to an irregular surface. PMID:27020714

  14. Comparison of Three-Dimensional (3D) Conformal Proton Radiotherapy (RT), 3D Conformal Photon RT, and Intensity-Modulated RT for Retroperitoneal and Intra-Abdominal Sarcomas

    SciTech Connect

    Swanson, Erika L.; Indelicato, Daniel J.; Louis, Debbie; Flampouri, Stella; Li, Zuofeng; Morris, Christopher G.; Paryani, Nitesh; Slopsema, Roelf

    2012-08-01

    Purpose: To compare three-dimensional conformal proton radiotherapy (3DCPT), intensity-modulated photon radiotherapy (IMRT), and 3D conformal photon radiotherapy (3DCRT) to predict the optimal RT technique for retroperitoneal sarcomas. Methods and Materials: 3DCRT, IMRT, and 3DCPT plans were created for treating eight patients with retroperitoneal or intra-abdominal sarcomas. The clinical target volume (CTV) included the gross tumor plus a 2-cm margin, limited by bone and intact fascial planes. For photon plans, the planning target volume (PTV) included a uniform expansion of 5 mm. For the proton plans, the PTV was nonuniform and beam-specific. The prescription dose was 50.4 Gy/Cobalt gray equivalent CGE. Plans were normalized so that >95% of the CTV received 100% of the dose. Results: The CTV was covered adequately by all techniques. The median conformity index was 0.69 for 3DCPT, 0.75 for IMRT, and 0.51 for 3DCRT. The median inhomogeneity coefficient was 0.062 for 3DCPT, 0.066 for IMRT, and 0.073 for 3DCRT. The bowel median volume receiving 15 Gy (V15) was 16.4% for 3DCPT, 52.2% for IMRT, and 66.1% for 3DCRT. The bowel median V45 was 6.3% for 3DCPT, 4.7% for IMRT, and 15.6% for 3DCRT. The median ipsilateral mean kidney dose was 22.5 CGE for 3DCPT, 34.1 Gy for IMRT, and 37.8 Gy for 3DCRT. The median contralateral mean kidney dose was 0 CGE for 3DCPT, 6.4 Gy for IMRT, and 11 Gy for 3DCRT. The median contralateral kidney V5 was 0% for 3DCPT, 49.9% for IMRT, and 99.7% for 3DCRT. Regardless of technique, the median mean liver dose was <30 Gy, and the median cord V50 was 0%. The median integral dose was 126 J for 3DCPT, 400 J for IMRT, and 432 J for 3DCRT. Conclusions: IMRT and 3DCPT result in plans that are more conformal and homogenous than 3DCRT. Based on Quantitative Analysis of Normal Tissue Effects in Clinic benchmarks, the dosimetric advantage of proton therapy may be less gastrointestinal and genitourinary toxicity.

  15. Comparison of bone marrow sparing intensity modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3DCRT) in carcinoma of anal canal: a prospective study

    PubMed Central

    Rattan, Rajit; Bahl, Amit; Gupta, Rajesh; Oinam, Arun S.; Kaur, Satinder

    2016-01-01

    Background Chemoradiation (CRT) is the standard of care in anal canal carcinoma. CRT leads to suppression of iliac bone marrow (BM) leading to hematological toxicity. Intensity modulated radiation therapy (IMRT) technique can be used to decrease radiation dose to iliac BM and thus decrease haematological toxicity. This study aims to compare the haematological and gastrointestinal toxicity in BM sparing IMRT with three-dimensional conformal radiation therapy (3DCRT) in anal carcinoma patients. Methods Twenty untreated, biopsy proven anal canal carcinoma (stages I–III) patients were randomized into IMRT and 3DCRT arm. All patients received CRT with 45 Gy in 25 fractions at 1.8 Gy/fraction and weekly concurrent inj. cisplatin and 5-FU. Patients were evaluated for acute haematological and gastrointestinal toxicity during treatment. Additional dosimetric comparison was made between the two groups. Results Incidence of worst hematological toxicity grade II (GII) and GIII was seen in 40% [4] vs. 30% [3] and 20% [2] vs. 0% [0] respectively, in 3DCRT and IMRT group. However these did not come as statistically significant (P=0.228). Incidence of worst gastrointestinal toxicity during treatment in terms of GII was 30% [3] vs. 50% [5] and GIII was 60% [6] vs. 0% [0] in 3DCRT and IMRT group respectively (P=0.010). Other parameters indicating better tolerance of treatment with IMRT arm than 3DCRT arm were lesser need for administration of parenteral fluid 10% [1] vs. 60% [6] (P=0.019); lesser need for blood transfusion 0% [0] vs. 20% [2] (P=0.060) in IMRT arm than in 3DCRT arm respectively. Patient requiring supportive care during treatment like need for anti-motility drugs and WHO. Step II analgesics also favored IMRT arm. Overall treatment time for Arm B (33.40 days) was less than what was seen in Arm A patients (36.8 days), although difference was not statistically significant (P=0.569). In terms of dosimetric analysis, arm B with the use of IMRT showed superiority over arm

  16. Nasopharyngeal carcinoma with intracranial extension in the era of intensity-modulated radiotherapy: case-control study using propensity score matching method.

    PubMed

    Cao, Cai-Neng; Luo, Jing-Wei; Gao, Li; Xu, Guo-Zhen; Yi, Jun-Lin; Huang, Xiao-Dong; Li, Su-Yan; Xiao, Jian-Ping; Zhang, Zhong

    2016-08-01

    The objective of the study was to evaluate long-term survival outcomes and toxicity of T4 classification nasopharyngeal carcinoma (NPC) with intracranial extension (IE group) or without intracranial extension (non-IE group) after intensity-modulated radiotherapy (IMRT) using the propensity score matching method. After generating propensity scores given the covariates of age, sex, N classification, and concurrent chemotherapy, 132 patients in each group were matched. The 5-year local failure-free survival rate and the 5-year overall survival rate in the IE group were lower than the patients in the non-IE group (74.6 vs. 88.9 %, p = .008; 51.1 vs. 71.9 %, p = .005). Grade 2 hypothyroidism was more common in the IE group (13.2 vs. 3.4 %, p = .029). For patients with T4 classification NPC after IMRT, patients with intracranial extension need more attention to the thyroid gland function and are more likely to experience local failure and death than patients without intracranial extension. PMID:26282900

  17. LASSO-based NTCP model for radiation-induced temporal lobe injury developing after intensity-modulated radiotherapy of nasopharyngeal carcinoma

    PubMed Central

    Kong, Cheng; Zhu, Xiang-zhi; Lee, Tsair-Fwu; Feng, Ping-bo; Xu, Jian-hua; Qian, Pu-dong; Zhang, Lan-fang; He, Xia; Huang, Sheng-fu; Zhang, Yi-qin

    2016-01-01

    We investigated the incidence of temporal lobe injury (TLI) in 132 nasopharyngeal carcinoma (NPC) patients who had undergone intensity-modulated radiotherapy (IMRT) in our hospital between March 2005 and November 2009; and identified significant dosimetric predictors of TLI development. Contrast-enhanced lesions or cysts in the temporal lobes, as detected by magnetic resonance imaging (MRI), were regarded as radiation-induced TLIs. We used the least absolute shrinkage and selection operator (LASSO) method to select Dmax (the maximum point dose) and the D1cc (the top dose delivered to a 1-mL volume) from 15 dose-volume-histogram-associated and four clinically relevant candidate factors; the Dmax and the D1cc were the most significant predictors of TLI development. We drew dose-response curves for Dmax and D1cc. The tolerance dose (TD) for the 5% and 50% probabilities of TLI development were 69.0 ± 1.6 and 82.1 ± 2.4 Gy for Dmax and 62.8 ± 2.2 and 80.9 ± 3.4 Gy for D1cc, respectively. The incidence of TLI in NPC patients after IMRT was higher than expected because the therapeutic window is narrow. High-quality longitudinal studies are needed to gain further insight into the complex spatiotemporal effects of non-uniform irradiation on TLI development in NPC patients. PMID:27210263

  18. Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy for the Definitive Treatment of Cervix Cancer

    SciTech Connect

    Lim, Karen; Portelance, Lorraine; Creutzberg, Carien; Juergenliemk-Schulz, Ina M.; Mundt, Arno; Mell, Loren K.; Mayr, Nina; Viswanathan, Akila; Jhingran, Anuja; Erickson, Beth; De Los Santos, Jennifer; Gaffney, David; Yashar, Catheryn; Beriwal, Sushil; Wolfson, Aaron

    2011-02-01

    Purpose: Accurate target definition is vitally important for definitive treatment of cervix cancer with intensity-modulated radiotherapy (IMRT), yet a definition of clinical target volume (CTV) remains variable within the literature. The aim of this study was to develop a consensus CTV definition in preparation for a Phase 2 clinical trial being planned by the Radiation Therapy Oncology Group. Methods and Materials: A guidelines consensus working group meeting was convened in June 2008 for the purposes of developing target definition guidelines for IMRT for the intact cervix. A draft document of recommendations for CTV definition was created and used to aid in contouring a clinical case. The clinical case was then analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with kappa statistics as a measure of agreement between participants. Results: Nineteen experts in gynecological radiation oncology generated contours on axial magnetic resonance images of the pelvis. Substantial STAPLE agreement sensitivity and specificity values were seen for gross tumor volume (GTV) delineation (0.84 and 0.96, respectively) with a kappa statistic of 0.68 (p < 0.0001). Agreement for delineation of cervix, uterus, vagina, and parametria was moderate. Conclusions: This report provides guidelines for CTV definition in the definitive cervix cancer setting for the purposes of IMRT, building on previously published guidelines for IMRT in the postoperative setting.

  19. Neoadjuvant chemotherapy in locally advanced nasopharyngeal carcinoma: Defining high-risk patients who may benefit before concurrent chemotherapy combined with intensity-modulated radiotherapy

    PubMed Central

    Du, Xiao-Jing; Tang, Ling-Long; Chen, Lei; Mao, Yan-Ping; Guo, Rui; Liu, Xu; Sun, Ying; Zeng, Mu-Sheng; Kang, Tie-Bang; Shao, Jian-Yong; Lin, Ai-Hua; Ma, Jun

    2015-01-01

    The purpose of this study was to create a prognostic model for distant metastasis in patients with locally advanced NPC who accept concurrent chemotherapy combined with intensity-modulated radiotherapy (CCRT) to identify high-risk patients who may benefit from neoadjuvant chemotherapy (NACT). A total of 881 patients with newly-diagnosed, non-disseminated, biopsy-proven locoregionally advanced NPC were retrospectively reviewed; 411 (46.7%) accepted CCRT and 470 (53.3%) accepted NACT followed by CCRT. Multivariate analysis demonstrated N2–3 disease, plasma Epstein–Barr virus (EBV) DNA > 4000 copies/mL, serum albumin ≤46 g/L and platelet count >300 k/cc were independent prognostic factors for distant metastasis in the CCRT group. Using these four factors, a prognostic model was developed, as follows: 1) low-risk group: 0–1 risk factors; and 2) high-risk group: 2–4 risk factors. In the high-risk group, patients who accepted NACT + CCRT had significantly higher distant metastasis-free survival and progression-free survival rates than the CCRT group (P = 0.001; P = 0.011). This simple prognostic model for distant metastasis in locoregionally advanced NPC may facilitate with the selection of high-risk patients who may benefit from NACT prior to CCRT. PMID:26564805

  20. Determination of dosimetric leaf gap using amorphous silicon electronic portal imaging device and its influence on intensity modulated radiotherapy dose delivery

    PubMed Central

    Balasingh, S. Timothy Peace; Singh, I. Rabi Raja; Rafic, K. Mohamathu; Babu, S. Ebenezer Suman; Ravindran, B. Paul

    2015-01-01

    As complex treatment techniques such as intensity modulated radiotherapy (IMRT) entail the modeling of rounded leaf-end transmission in the treatment planning system, it is important to accurately determine the dosimetric leaf gap (DLG) value for a precise calculation of dose. The advancements in the application of the electronic portal imaging device (EPID) in quality assurance (QA) and dosimetry have facilitated the determination of DLG in this study. The DLG measurements were performed using both the ionization chamber (DLGion) and EPID (DLGEPID) for sweeping gap fields of different widths. The DLGion values were found to be 1.133 mm and 1.120 mm for perpendicular and parallel orientations of the 0.125 cm3 ionization chamber, while the corresponding DLGEPID values were 0.843 mm and 0.819 mm, respectively. It was found that the DLG was independent of volume and orientation of the ionization chamber, depth, source to surface distance (SSD), and the rate of dose delivery. Since the patient-specific QA tests showed comparable results between the IMRT plans based on the DLGEPID and DLGion, it is concluded that the EPID can be a suitable alternative in the determination of DLG. PMID:26500398

  1. LASSO-based NTCP model for radiation-induced temporal lobe injury developing after intensity-modulated radiotherapy of nasopharyngeal carcinoma.

    PubMed

    Kong, Cheng; Zhu, Xiang-Zhi; Lee, Tsair-Fwu; Feng, Ping-Bo; Xu, Jian-Hua; Qian, Pu-Dong; Zhang, Lan-Fang; He, Xia; Huang, Sheng-Fu; Zhang, Yi-Qin

    2016-01-01

    We investigated the incidence of temporal lobe injury (TLI) in 132 nasopharyngeal carcinoma (NPC) patients who had undergone intensity-modulated radiotherapy (IMRT) in our hospital between March 2005 and November 2009; and identified significant dosimetric predictors of TLI development. Contrast-enhanced lesions or cysts in the temporal lobes, as detected by magnetic resonance imaging (MRI), were regarded as radiation-induced TLIs. We used the least absolute shrinkage and selection operator (LASSO) method to select Dmax (the maximum point dose) and the D1cc (the top dose delivered to a 1-mL volume) from 15 dose-volume-histogram-associated and four clinically relevant candidate factors; the Dmax and the D1cc were the most significant predictors of TLI development. We drew dose-response curves for Dmax and D1cc. The tolerance dose (TD) for the 5% and 50% probabilities of TLI development were 69.0 ± 1.6 and 82.1 ± 2.4 Gy for Dmax and 62.8 ± 2.2 and 80.9 ± 3.4 Gy for D1cc, respectively. The incidence of TLI in NPC patients after IMRT was higher than expected because the therapeutic window is narrow. High-quality longitudinal studies are needed to gain further insight into the complex spatiotemporal effects of non-uniform irradiation on TLI development in NPC patients. PMID:27210263

  2. Dose-volume relationships for moderate or severe neck muscle atrophy after intensity-modulated radiotherapy in patients with nasopharyngeal carcinoma.

    PubMed

    Zhang, Lu-Lu; Wang, Xiao-Ju; Zhou, Guan-Qun; Tang, Ling-Long; Lin, Ai-Hua; Ma, Jun; Sun, Ying

    2015-01-01

    This study aimed to identify the dosimetric parameters and radiation dose tolerances associated with moderate or severe sternocleidomastoid muscle (SCM) atrophy after intensity-modulated radiotherapy (IMRT) in nasopharyngeal carcinoma (NPC). We retrospectively analysed 138 patients treated with IMRT between 2011 and 2012 for whom IMRT treatment plans and pretreatment and 3-year post-IMRT MRI scans were available. The association between mean dose (Dmean), maximum dose (Dmax), VX (% SCM volume that received more than X Gy), DX (dose to X% of the SCM volume) at X values of 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80 and SCM atrophy at 3 years after IMRT were analyzed. All dosimetric parameters, except V40, V50 and V80, were significantly associated with moderate or severe SCM atrophy. Multivariate analysis showed that V65 was an independent predictor of moderate or severe SCM atrophy (P < 0.001). Receiver operating characteristic (ROC) curve indicated a V65 of 21.47% (area under ROC curves, 0.732; P < 0.001) was the tolerated dose for moderate or severe SCM atrophy. We suggest a limit of 21.47% for V65 to optimize NPC treatment planning, whilst minimizing the risk of moderate or severe SCM atrophy. PMID:26678599

  3. The Evolution of and Risk Factors for Neck Muscle Atrophy and Weakness in Nasopharyngeal Carcinoma Treated With Intensity-Modulated Radiotherapy

    PubMed Central

    Zhang, Lu-Lu; Mao, Yan-Ping; Zhou, Guan-Qun; Tang, Ling-Long; Qi, Zhen-Yu; Lin, Li; Yao, Ji-Jin; Ma, Jun; Lin, Ai-Hua; Sun, Ying

    2015-01-01

    Abstract The aim of this study was to investigate the evolution of sternocleidomastoid muscle (SCM) atrophy in nasopharyngeal carcinoma (NPC) patients following intensity-modulated radiotherapy (IMRT), and the relationship between SCM atrophy and neck weakness. Data were retrospectively analyzed from 223 biopsy-proven NPC patients with no distant metastasis who underwent IMRT with or without chemotherapy. The volume of SCM was measured on pretreatment magnetic resonance imaging (MRI), and MRIs were conducted 1, 2, and 3 years after the completion of IMRT. Change in SCM volume was calculated and classified using the late effects of normal tissues–subjective, objective, management, and analytic system. The grade of neck muscle weakness, classified by the Common Terminology Criteria for Adverse Events V 3.0, was measured 3 years after the completion of IMRT. The average SCM atrophy ratio was −10.97%, −18.65%, and −22.25% at 1, 2, and 3 years postirradiation, respectively. Multivariate analysis indicated N stage and the length of time after IMRT were independent prognostic variables. There were significant associations between the degree of SCM atrophy and neck weakness. Radical IMRT can cause significant SCM atrophy in NPC patients. A more advanced N stage was associated with more severe SCM atrophy, but no difference was observed between N2 and N3. SCM atrophy progresses over time during the 3 years following IMRT. Grade of SCM atrophy is significantly associated with neck weakness. PMID:26252307

  4. Dose-volume relationships for moderate or severe neck muscle atrophy after intensity-modulated radiotherapy in patients with nasopharyngeal carcinoma

    PubMed Central

    Zhang, Lu-Lu; Wang, Xiao-Ju; Zhou, Guan-Qun; Tang, Ling-Long; Lin, Ai-Hua; Ma, Jun; Sun, Ying

    2015-01-01

    This study aimed to identify the dosimetric parameters and radiation dose tolerances associated with moderate or severe sternocleidomastoid muscle (SCM) atrophy after intensity-modulated radiotherapy (IMRT) in nasopharyngeal carcinoma (NPC). We retrospectively analysed 138 patients treated with IMRT between 2011 and 2012 for whom IMRT treatment plans and pretreatment and 3-year post-IMRT MRI scans were available. The association between mean dose (Dmean), maximum dose (Dmax), VX (% SCM volume that received more than X Gy), DX (dose to X% of the SCM volume) at X values of 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80 and SCM atrophy at 3 years after IMRT were analyzed. All dosimetric parameters, except V40, V50 and V80, were significantly associated with moderate or severe SCM atrophy. Multivariate analysis showed that V65 was an independent predictor of moderate or severe SCM atrophy (P < 0.001). Receiver operating characteristic (ROC) curve indicated a V65 of 21.47% (area under ROC curves, 0.732; P < 0.001) was the tolerated dose for moderate or severe SCM atrophy. We suggest a limit of 21.47% for V65 to optimize NPC treatment planning, whilst minimizing the risk of moderate or severe SCM atrophy. PMID:26678599

  5. Prospective Preference Assessment of Patients' Willingness to Participate in a Randomized Controlled Trial of Intensity-Modulated Radiotherapy Versus Proton Therapy for Localized Prostate Cancer

    SciTech Connect

    Shah, Anand; Efstathiou, Jason A.; Paly, Jonathan J.; Halpern, Scott D.; Bruner, Deborah W.; Christodouleas, John P.; Coen, John J.; Deville, Curtiland; Vapiwala, Neha; Shipley, William U.; Zietman, Anthony L.; Hahn, Stephen M.; Bekelman, Justin E.

    2012-05-01

    Purpose: To investigate patients' willingness to participate (WTP) in a randomized controlled trial (RCT) comparing intensity-modulated radiotherapy (IMRT) with proton beam therapy (PBT) for prostate cancer (PCa). Methods and Materials: We undertook a qualitative research study in which we prospectively enrolled patients with clinically localized PCa. We used purposive sampling to ensure a diverse sample based on age, race, travel distance, and physician. Patients participated in a semi-structured interview in which they reviewed a description of a hypothetical RCT, were asked open-ended and focused follow-up questions regarding their motivations for and concerns about enrollment, and completed a questionnaire assessing characteristics such as demographics and prior knowledge of IMRT or PBT. Patients' stated WTP was assessed using a 6-point Likert scale. Results: Forty-six eligible patients (33 white, 13 black) were enrolled from the practices of eight physicians. We identified 21 factors that impacted patients' WTP, which largely centered on five major themes: altruism/desire to compare treatments, randomization, deference to physician opinion, financial incentives, and time demands/scheduling. Most patients (27 of 46, 59%) stated they would either 'definitely' or 'probably' participate. Seventeen percent (8 of 46) stated they would 'definitely not' or 'probably not' enroll, most of whom (6 of 8) preferred PBT before their physician visit. Conclusions: A substantial proportion of patients indicated high WTP in a RCT comparing IMRT and PBT for PCa.

  6. NOTE: Dosimetric evaluation of inspiration and expiration breath-hold for intensity-modulated radiotherapy planning of non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Tahir, Bilal A.; Bragg, Christopher M.; Lawless, Sarah E.; Hatton, Matthew Q. F.; Ireland, Rob H.

    2010-04-01

    The purpose of this study was to compare target coverage and lung tissue sparing between inspiration and expiration breath-hold intensity-modulated radiotherapy (IMRT) plans for patients with non-small cell lung cancer (NSCLC). In a prospective study, seven NSCLC patients gave written consent to undergo both moderate deep inspiration and end-expiration breath-hold computed tomography (CT), which were used to generate five-field IMRT plans. Dose was calculated with a scatter and an inhomogeneity correction algorithm. The percentage of the planning target volume (PTV) receiving 90% of the prescription dose (PTV90), the volume of total lung receiving >= 10 Gy (V10) and >= 20 Gy (V20) and the mean lung dose (MLD) were compared by the Student's paired t-test. Compared with the expiration plans, the mean ± SD reductions for V10, V20 and MLD on the inspiration plans were 4.0 ± 3.7% (p = 0.031), 2.5 ± 2.3% (p = 0.028) and 1.1 ± 0.7 Gy (p = 0.007), respectively. Conversely, a mean difference of 1.1 ± 1.1% (p = 0.044) in PTV90 was demonstrated in favour of expiration. When using IMRT, inspiration breath-hold can reduce the dose to normal lung tissue while expiration breath-hold can improve the target coverage. The improved lung sparing at inspiration may outweigh the modest improvements in target coverage at expiration.

  7. Determination of optimal number of beams in direct machine parameter optimization-based intensity modulated radiotherapy for head and neck cases

    PubMed Central

    Ranganathan, Vaitheeswaran; Maria Das, K. J.

    2016-01-01

    This paper aims to introduce an algorithm called “sensitivity-based beam number selection (SBBNS)” for fully automated and case-specific determination of an optimal number of equispaced beams in intensity-modulated radiotherapy (IMRT). We tested the algorithm in five head and neck cases of varying complexity. We used direct machine parameter optimization method coupled with Auto Plan feature available in Pinnacle TPS (Version 9.10.0) for optimization. The Pearson correlation test shows a correlation of 0.88 between predicted and actual optimal number of beams, which indicates that SBBNS method is capable of predicting optimal number of beams for head and neck cases with reasonable accuracy. The major advantage of the algorithm is that it intrinsically takes into account various case- and machine-specific factors for the determination of optimal number. The study demonstrates that the algorithm can be effectively applied to IMRT scenarios to determine case specific and optimal number of beams for head and neck cases. PMID:27217625

  8. Baseline Serum Lactate Dehydrogenase Levels for Patients Treated With Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma: A Predictor of Poor Prognosis and Subsequent Liver Metastasis

    SciTech Connect

    Zhou Guanqun; Tang Linglong; Mao Yanping; Chen Lei; Li Wenfei; Sun Ying; Liu Lizhi; Li Li; Lin Aihua; Ma Jun

    2012-03-01

    Purpose: To evaluate the prognostic value of baseline serum lactate dehydrogenase (LDH) levels in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Cases of NPC (n = 465) that involved treatment with IMRT with or without chemotherapy were retrospectively analyzed. Results: The mean ({+-}SD) and median baseline serum LDH levels for this cohort were 172.77 {+-} 2.28 and 164.00 IU/L, respectively. Levels of LDH were significantly elevated in patients with locoregionally advanced disease (p = 0.016). Elevated LDH levels were identified as a prognostic factor for rates of overall survival (OS), disease-free survival (DFS), and distant metastasis-free survival (DMFS), with p values <0.001 in the univariate analysis and p < 0.001, p = 0.004, and p = 0.003, respectively, in the multivariate analysis. Correspondingly, the prognostic impact of patient LDH levels was found to be statistically significant for rates of OS, DFS, and DMFS (p = 0.028, 0.024, and 0.020, respectively). For patients who experienced subsequent liver failure after treatment, markedly higher pretreatment serum LDH levels were detected compared with patients experiencing distant metastasis events at other sites (p = 0.032). Conclusions: Elevated baseline LDH levels are associated with clinically advanced disease and are a poor prognosticator for OS, DFS, and DMFS for NPC patients. These results suggest that elevated serum levels of LDH should be considered when evaluating treatment options.

  9. Improving target dose coverage and organ-at-risk sparing in intensity-modulated radiotherapy of advanced laryngeal cancer by a simple optimization technique

    PubMed Central

    Lu, J-Y; Wu, L-L; Zhang, J-Y; Zheng, J; Cheung, M L-M; Ma, C-C; Xie, L-X

    2015-01-01

    Objective: To evaluate a simple optimization technique intended to improve planning target volume (PTV) dose coverage and organ-at-risk (OAR) sparing in intensity-modulated radiotherapy (IMRT) of advanced laryngeal cancer. Methods: Generally acceptable initial IMRT plans were generated for 12 patients and were improved individually by the following two techniques: (1) base dose function-based (BDF) technique, in which the treatment plans were reoptimized based on the initial IMRT plans; (2) dose-controlling structure-based (DCS) technique, in which the initial IMRT plans were reoptimized by adding constraints for hot and cold spots. The initial, BDF and DCS IMRT plans and additionally generated volumetric modulated arc therapy (VMAT) plans were compared concerning homogeneity index (HI) and conformity index (CI) of PTVs prescribed at 70 Gy/60 Gy (PTV70/PTV60), OAR sparing, monitor units (MUs) per fraction and total planning time. Results: Compared with the initial IMRT and DCS IMRT plans, the BDF technique provided superior HI/CI, by approximately 19–37%/4–11%, and lower doses to most OARs, by approximately 1–7%, except for the comparable HI of PTV60 to DCS IMRT plans. Compared with VMAT plans, the BDF technique provided comparable HI, CI and most-OAR sparing, except for the superior HI of PTV70, by approximately 13%. The BDF technique produced more MUs and reduced the planning time. Conclusion: The BDF optimization technique for IMRT of advanced laryngeal cancer can improve target dose homogeneity and conformity, spare most OARs and is efficient. Advances in knowledge: A novel optimization technique for improving IMRT was assessed and found to be effective and efficient. PMID:25494885

  10. Definition and visualisation of regions of interest in post-prostatectomy image-guided intensity modulated radiotherapy

    SciTech Connect

    Bell, Linda J Cox, Jennifer; Eade, Thomas; Rinks, Marianne; Kneebone, Andrew

    2014-09-15

    Standard post-prostatectomy radiotherapy (PPRT) image verification uses bony anatomy alignment. However, the prostate bed (PB) moves independently of bony anatomy. Cone beam computed tomography (CBCT) can be used to soft tissue match, so radiation therapists (RTs) must understand pelvic anatomy and PPRT clinical target volumes (CTV). The aims of this study are to define regions of interest (ROI) to be used in soft tissue matching image guidance and determine their visibility on planning CT (PCT) and CBCT. Published CTV guidelines were used to select ROIs. The PCT scans (n = 23) and CBCT scans (n = 105) of 23 post-prostatectomy patients were reviewed. Details on ROI identification were recorded. Eighteen patients had surgical clips. All ROIs were identified on PCTs at least 90% of the time apart from mesorectal fascia (MF) (87%) due to superior image quality. When surgical clips are present, the seminal vesicle bed (SVB) was only seen in 2.3% of CBCTs and MF was unidentifiable. Most other structures were well identified on CBCT. The anterior rectal wall (ARW) was identified in 81.4% of images and penile bulb (PB) in 68.6%. In the absence of surgical clips, the MF and SVB were always identified; the ARW was identified in 89.5% of CBCTs and PB in 73.7%. Surgical clips should be used as ROIs when present to define SVB and MF. In the absence of clips, SVB, MF and ARW can be used. RTs must have a strong knowledge of soft tissue anatomy and PPRT CTV to ensure coverage and enable soft tissue matching.

  11. Temporal Evolution of Parotid Volume and Parotid Apparent Diffusion Coefficient in Nasopharyngeal Carcinoma Patients Treated by Intensity-Modulated Radiotherapy Investigated by Magnetic Resonance Imaging: A Pilot Study

    PubMed Central

    Juan, Chun-Jung; Cheng, Cheng-Chieh; Chiu, Su-Chin; Jen, Yee-Min; Liu, Yi-Jui; Chiu, Hui-Chu; Kao, Hung-Wen; Wang, Chih-Wei; Chung, Hsiao-Wen; Huang, Guo-Shu; Hsu, Hsian-He

    2015-01-01

    Purpose To concurrently quantify the radiation-induced changes and temporal evolutions of parotid volume and parotid apparent diffusion coefficient (ADC) in nasopharyngeal carcinoma (NPC) patients treated by intensity-modulated radiotherapy by using magnetic resonance imaging (MRI). Materials and Methods A total of 11 NPC patients (9 men and 2 women; 48.7 ± 11.7 years, 22 parotid glands) were enrolled. Radiation dose, parotid sparing volume, severity of xerostomia, and radiation-to-MR interval (RMI) was recorded. MRI studies were acquired four times, including one before and three after radiotherapy. The parotid volume and the parotid ADC were measured. Statistical analysis was performed using SPSS and MedCalc. Bonferroni correction was applied for multiple comparisons. A P value less than 0.05 was considered as statistically significant. Results The parotid volume was 26.2 ± 8.0 cm3 before radiotherapy. The parotid ADC was 0.8 ± 0.15 × 10−3 mm2/sec before radiotherapy. The parotid glands received a radiation dose of 28.7 ± 4.1 Gy and a PSV of 44.1 ± 12.6%. The parotid volume was significantly smaller at MR stage 1 and stage 2 as compared to pre-RT stage (P < .005). The volume reduction ratio was 31.2 ± 13.0%, 26.1 ± 13.5%, and 17.1 ± 16.6% at stage 1, 2, and 3, respectively. The parotid ADC was significantly higher at all post-RT stages as compared to pre-RT stage reciprocally (P < .005 at stage 1 and 2, P < .05 at stage 3). The ADC increase ratio was 35.7 ± 17.4%, 27.0 ± 12.8%, and 20.2 ± 16.6% at stage 1, 2, and 3, respectively. The parotid ADC was negatively correlated to the parotid volume (R = -0.509; P < .001). The parotid ADC was positively associated with the radiation dose significantly (R2 = 0.212; P = .0001) and was negatively associated with RMI significantly (R2 = 0.203; P = .00096) significantly. Multiple regression analysis further showed that the post-RT parotid ADC was related to the radiation dose and RMI significantly (R2 = 0

  12. Changes in salivary gland function after radiotherapy of head and neck tumors measured by quantitative pertechnetate scintigraphy: Comparison of intensity-modulated radiotherapy and conventional radiation therapy with and without Amifostine

    SciTech Connect

    Muenter, Marc W. . E-mail: m.muenter@dkfz.de; Hoffner, Simone; Hof, Holger; Herfarth, Klaus K.; Haberkorn, Uwe; Rudat, Volker; Huber, Peter; Debus, Juergen; Karger, Christian P.

    2007-03-01

    Purpose: The aim of this study was to compare changes in salivary gland function after intensity-modulated radiotherapy (IMRT) and conventional radiotherapy (RT), with or without Amifostine, for tumors of the head-and-neck region using quantitative salivary gland scintigraphy (QSGS). Methods and Materials: A total of 75 patients received pre- and post-therapeutic QSGS to quantify the salivary gland function. In all, 251 salivary glands were independently evaluated. Changes in the maximum uptake ({delta}U) and relative excretion rate ({delta}F) both pre- and post-RT were determined to characterize radiation-induced changes in the salivary gland function. In addition, dose-response curves were calculated. Results: In all groups, maximum uptake and relative excretion rate were reduced after RT ({delta}U {<=}0 and {delta}F {<=}0). The reduction was significantly lower for IMRT than for conventional RT. For the parotid glands, the reduction was smaller for the IMRT-low than for the IMRT-high group. For the Amifostine-high and the conventional group the difference was significant only for one parameter ({delta}U, parotid and submandibular glands, p < 0.05). In contrast to this, the difference between the Amifostine-low and the conventional group was always significant or at least showed a clear trend for both changes in U and F. In regard to the endpoint 'reduction of the salivary gland excretion rate of more than 50%,' the dose-response curves yielded D{sub 50}-values of 34.2 {+-} 12.2 Gy for the conventionally treated group and 36.8 {+-} 2.9 Gy for the IMRT group. For the Amifostine group, an increased D{sub 50}-values of 46.3 {+-} 2.3 Gy was obtained. Conclusion: Intensity-modulated RT can significantly reduce the loss of parotid gland function when respecting a certain dose threshold. Conventional RT plus Amifostine prevents reduced salivary gland function only in the patient group treated with <40.6 Gy.

  13. SU-E-P-21: Impact of MLC Position Errors On Simultaneous Integrated Boost Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma

    SciTech Connect

    Chengqiang, L; Yin, Y; Chen, L

    2015-06-15

    Purpose: To investigate the impact of MLC position errors on simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) for patients with nasopharyngeal carcinoma. Methods: To compare the dosimetric differences between the simulated plans and the clinical plans, ten patients with locally advanced NPC treated with SIB-IMRT were enrolled in this study. All plans were calculated with an inverse planning system (Pinnacle3, Philips Medical System{sub )}. Random errors −2mm to 2mm{sub )},shift errors{sub (} 2mm,1mm and 0.5mm) and systematic extension/ contraction errors (±2mm, ±1mm and ±0.5mm) of the MLC leaf position were introduced respectively into the original plans to create the simulated plans. Dosimetry factors were compared between the original and the simulated plans. Results: The dosimetric impact of the random and system shift errors of MLC position was insignificant within 2mm, the maximum changes in D95% of PGTV,PTV1,PTV2 were-0.92±0.51%,1.00±0.24% and 0.62±0.17%, the maximum changes in the D0.1cc of spinal cord and brainstem were 1.90±2.80% and −1.78±1.42%, the maximum changes in the Dmean of parotids were1.36±1.23% and −2.25±2.04%.However,the impact of MLC extension or contraction errors was found significant. For 2mm leaf extension errors, the average changes in D95% of PGTV,PTV1,PTV2 were 4.31±0.67%,4.29±0.65% and 4.79±0.82%, the averaged value of the D0.1cc to spinal cord and brainstem were increased by 7.39±5.25% and 6.32±2.28%,the averaged value of the mean dose to left and right parotid were increased by 12.75±2.02%,13.39±2.17% respectively. Conclusion: The dosimetric effect was insignificant for random MLC leaf position errors up to 2mm. There was a high sensitivity to dose distribution for MLC extension or contraction errors.We should pay attention to the anatomic changes in target organs and anatomical structures during the course,individual radiotherapy was recommended to ensure adaptive doses.

  14. Dosimetric Comparison Between Intensity-Modulated with Coplanar Field and 3D Conformal Radiotherapy with Noncoplanar Field for Postocular Invasion Tumor

    SciTech Connect

    Tu Wenyong; Liu Lu Zeng Jun; Yin Weidong; Li Yun

    2010-07-01

    This study presents a dosimetric optimization effort aiming to compare noncoplanar field (NCF) on 3 dimensions conformal radiotherapy (3D-CRT) and coplanar field (CF) on intensity-modulated radiotherapy (IMRT) planning for postocular invasion tumor. We performed a planning study on the computed tomography data of 8 consecutive patients with localized postocular invasion tumor. Four fields NCF 3D-CRT in the transverse plane with gantry angles of 0-10 deg., 30-45 deg., 240-270 deg., and 310-335 deg. degrees were isocentered at the center of gravity of the target volume. The geometry of the beams was determined by beam's eye view. The same constraints were prepared with between CF IMRT optimization and NCF 3D-CRT treatment. The maximum point doses (D max) for the different optic pathway structures (OPS) with NCF 3D-CRT treatment should differ in no more than 3% from those with the NCF IMRT plan. Dose-volume histograms (DVHs) were obtained for all targets and organ at risk (OAR) with both treatment techniques. Plans with NCF 3D-CRT and CF IMRT constraints on target dose in homogeneity were computed, as well as the conformity index (CI) and homogeneity index (HI) in the target volume. The PTV coverage was optimal with both NCF 3D-CRT and CF IMRT plans in the 8 tumor sites. No difference was noted between the two techniques for the average D{sub max} and D{sub min} dose. NCF 3D-CRT and CF IMRT will yield similar results on CI. However, HI was a significant difference between NCF 3D-CRT and CF IMRT plan (p < 0.001). Physical endpoints for target showed the mean target dose to be low in the CF IMRT plan, caused by a large target dose in homogeneity (p < 0.001). The impact of NCF 3D-CRT versus CF IMRT set-up is very slight. NCF3D-CRT is one of the treatment options for postocular invasion tumor. However, constraints for OARs are needed.

  15. SU-E-T-166: Evaluation of Integral Dose in Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy for Head and Neck Cancer Patient

    SciTech Connect

    Al-Basheer, A; Hunag, J; Kaminski, J; Dasher, B; Howington, J; Stewart, J; Martin, D; Kong, F; Jin, J

    2014-06-01

    Purpose: Volumetric Modulated Arc Therapy (VMAT) usually achieves higher conformity of radiation doses to targets and less delivery time than Intensity Modulated Radiation Therapy (IMRT). We hypothesized that VMAT will increase integral dose (ID) to patients which will decrease the count of white blood count (WBC) lymphocytes, and consequently has a subsequent impact on the immune system. The purpose of this study is to evaluate the ID to patients undergoing IMRT and VMAT for Head and Neck cancers and its impact on the immune system. Methods: As a pilot study, 30 head and neck patients who received 9-fields IMRT or 3-arcs Radip-Arcbased VMAT were included in this study. Ten of these patients who received the VMAT plans were re-planned using IMRT with the same objectives. ID was calculated for all cases. All patients also had a baseline WBC obtained prior to treatment, and 3 sets of labs drawn during the course of radiation treatment. Results: For the 10 re-planned patients, the mean ID was 13.3 Gy/voxel (range 10.2–17.5 Gy/voxel) for the 9-fields IMRT plans, and was 15.9 Gy/voxel (range 12.4-20.9 Gy/voxel) for the 3-Arc VMAT plan (p=0.01). The integral dose was significant correlated with reducing WBC count during RT even when controlling for concurrent chemotherapy (R square =0.56, p=0.008). Conclusion: Although VMAT can deliver higher radiation dose conformality to targets, this benefit is achieved generally at the cost of greater integral doses to normal tissue outside the planning target volume (PTV). Lower WBC counts during RT were associated with higher Integral doses even when controlling for concurrent chemotherapy. This study is ongoing in our Institution to exam the impact of integral doses and WBC on overall survival.

  16. Dosimetric and clinical toxicity comparison of critical organ preservation with three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, and RapidArc for the treatment of locally advanced cancer of the pancreatic head

    PubMed Central

    Jin, L.; Wang, R.; Jiang, S.; Yue, J.; Liu, T.; Dou, X.; Zhu, K.; Feng, R.; Xu, X.; Chen, D.; Yin, Y.

    2016-01-01

    Purpose We compared dosimetry and clinical toxicity for 3-dimensional conformal radiotherapy (3D-crt), intensity-modulated radiotherapy (imrt), and RapidArc (Varian Medical Systems, Palo Alto, CA, U.S.A.) in locally advanced pancreatic cancer (lapcc). We hypothesized that the technique with better sparing of organs at risk (oars) and better target dose distributions could lead to decreased clinical toxicity. Methods The study analyzed 280 patients with lapcc who had undergone radiotherapy. The dosimetry comparison was performed using 20 of those patients. Dose–volume histograms for the target volume and the oars were compared. The clinical toxicity comparison used the 280 patients who received radiation with 3D-crt, imrt, or RapidArc. Results Compared with 3D-crt, RapidArc and imrt both achieved a better conformal index, homogeneity index, V95%, and V110%. Compared with 3D-crt or imrt, RapidArc reduced the V10, V20, and mean dose to duodenum, the V20 of the right kidney, and the liver mean dose. Compared with 3D-crt, RapidArc reduced the V35, and V45 of duodenum, the mean dose to small bowel, and the V15 of right kidney. The incidences of grades 3 and 4 diarrhea (p = 0.037) and anorexia (p = 0.042) were lower with RapidArc than with 3D-crt, and the incidences of grades 3 and 4 diarrhea (p = 0.027) were lower with RapidArc than with imrt. Conclusions Compared with 3D-crt or imrt, RapidArc showed better sparing of oars, especially duodenum, small bowel, and right kidney. Also, fewer acute grades 3 and 4 gastrointestinal toxicities were seen with RapidArc than with 3D-crt or imrt. A technique with better sparing of oars and better target dose distributions could result in decreased clinical toxicities during radiation treatment for lapcc. PMID:26966412

  17. Forward Intensity-Modulated Radiotherapy Planning in Breast Cancer to Improve Dose Homogeneity: Feasibility of Class Solutions

    SciTech Connect

    Peulen, Heike; Hanbeukers, Bianca; Boersma, Liesbeth; Baardwijk, Angela van; Ende, Piet van den; Houben, Ruud; Jager, Jos; Murrer, Lars; Borger, Jacques

    2012-01-01

    Purpose: To explore forward planning methods for breast cancer treatment to obtain homogeneous dose distributions (using International Commission on Radiation Units and Measurements criteria) within normal tissue constraints and to determine the feasibility of class solutions. Methods and Materials: Treatment plans were optimized in a stepwise procedure for 60 patients referred for postlumpectomy irradiation using strict dose constraints: planning target volume (PTV){sub 95%} of >99%; V{sub 107%} of <1.8 cc; heart V{sub 5Gy} of <10% and V{sub 10Gy} of <5%; and mean lung dose of <7 Gy. Treatment planning started with classic tangential beams. Optimization was done by adding a maximum of four segments before adding beams, in a second step. A breath-hold technique was used for heart sparing if necessary. Results: Dose constraints were met for all 60 patients. The classic tangential beam setup was not sufficient for any of the patients; in one-third of patients, additional segments were required (<3), and in two-thirds of patients, additional beams (<2) were required. Logistic regression analyses revealed central breast diameter (CD) and central lung distance as independent predictors for transition from additional segments to additional beams, with a CD cut-off point at 23.6 cm. Conclusions: Treatment plans fulfilling strict dose homogeneity criteria and normal tissue constraints could be obtained for all patients by stepwise dose intensity modification using limited numbers of segments and additional beams. In patients with a CD of >23.6 cm, additional beams were always required.

  18. Simulational study of a dosimetric comparison between a Gamma Knife treatment plan and an intensity-modulated radiotherapy plan for skull base tumors

    PubMed Central

    Nakazawa, Hisato; Mori, Yoshimasa; Komori, Masataka; Tsugawa, Takahiko; Shibamoto, Yuta; Kobayashi, Tatsuya; Hashizume, Chisa; Uchiyama, Yukio; Hagiwara, Masahiro

    2014-01-01

    Fractionated stereotactic radiotherapy (SRT) is performed with a linear accelerator-based system such as Novalis. Recently, Gamma Knife Perfexion (PFX) featured the Extend system with relocatable fixation devices available for SRT. In this study, the dosimetric results of these two modalities were compared from the viewpoint of conformity, heterogeneity and gradient in target covering. A total of 14 patients with skull base tumors were treated with Novalis intensity-modulated (IM)-SRT. Treatment was planned on an iPlan workstation. Five- to seven-beam IM-SRT was performed in 14–18 fractions with a fraction dose of 2.5 or 3 Gy. With these patients' data, additional treatment planning was simulated using a GammaPlan workstation for PFX-SRT. Reference CT images with planning structure contour sets on iPlan, including the planning target volume (PTV, 1.1–102.2 ml) and organs at risk, were exported to GammaPlan in DICOM-RT format. Dosimetric results for Novalis IM-SRT and PFX-SRT were evaluated in the same prescription doses. The isocenter number of PFX was between 12 and 50 at the isodose contour of 50–60%. The PTV coverage was 95–99% for Novalis and 94–98% for PFX. The conformity index (CI) was 1.11–1.61 and 1.04–1.15, the homogeneity index (HI) was 1.1–3.62 and 2.3–3.25, and the gradient index (GI) was 3.72–7.97 and 2.54–3.39 for Novalis and PFX, respectively. PTV coverage by Novalis and PFX was almost equivalent. PFX was superior in CI and GI, and Novalis was better in HI. Better conformality would be achieved by PFX, when the homogeneity inside tumors is less important. PMID:24351459

  19. Intensity modulated radiotherapy (IMRT) in the treatment of children and Adolescents - a single institution's experience and a review of the literature

    PubMed Central

    Sterzing, Florian; Stoiber, Eva M; Nill, Simeon; Bauer, Harald; Huber, Peter; Debus, Jürgen; Münter, Marc W

    2009-01-01

    Background While IMRT is widely used in treating complex oncological cases in adults, it is not commonly used in pediatric radiation oncology for a variety of reasons. This report evaluates our 9 year experience using stereotactic-guided, inverse planned intensity-modulated radiotherapy (IMRT) in children and adolescents in the context of the current literature. Methods Between 1999 and 2008 thirty-one children and adolescents with a mean age of 14.2 years (1.5 - 20.5) were treated with IMRT in our department. This heterogeneous group of patients consisted of 20 different tumor entities, with Ewing's sarcoma being the largest (5 patients), followed by juvenile nasopharyngeal fibroma, esthesioneuroblastoma and rhabdomyosarcoma (3 patients each). In addition a review of the available literature reporting on technology, quality, toxicity, outcome and concerns of IMRT was performed. Results With IMRT individualized dose distributions and excellent sparing of organs at risk were obtained in the most challenging cases. This was achieved at the cost of an increased volume of normal tissue receiving low radiation doses. Local control was achieved in 21 patients. 5 patients died due to progressive distant metastases. No severe acute or chronic toxicity was observed. Conclusion IMRT in the treatment of children and adolescents is feasible and was applied safely within the last 9 years at our institution. Several reports in literature show the excellent possibilities of IMRT in selective sparing of organs at risk and achieving local control. In selected cases the quality of IMRT plans increases the therapeutic ratio and outweighs the risk of potentially increased rates of secondary malignancies by the augmented low dose exposure. PMID:19775449

  20. Clinical Study of the Necessity of Replanning Before the 25th Fraction During the Course of Intensity-Modulated Radiotherapy for Patients With Nasopharyngeal Carcinoma

    SciTech Connect

    Wang Wei; Yang Haihua; Hu Wei; Shan Guoping; Ding Weijun; Yu Changhui; Wang Biyun; Wang Xufeng; Xu Qianyi

    2010-06-01

    Purpose: To quantify the target and normal structures on dose distributing variations during intensity-modulated radiotherapy (IMRT) and to assess the value of replanning for nasopharyngeal carcinoma (NPC) patients. Methods and Materials: Twenty-eight NPC patients treated with IMRT were recruited. The IMRT was delivered in 33 fractions, to 70 to 76Gy, to the gross tumor volume (GTV). Before the 25th fraction of IMRT, a new simulation computed tomography (CT) scan was acquired for all patients. According to the dose constraint criterion in the Radiation Therapy Oncology Group (RTOG) 0225 protocol, the replanning was generated on the new simulation CT. With the Quality Assessment Center of a CORVUS 6.3 treatment planning system, a phantom plan was generated for each patient by applying the beam configurations of the initial plan to the anatomy of the new simulation CT. The dose-volume histograms of the phantom plan were compared with the replanning. Results: The percentage of prescription dose delivered to the clinical target volume (CTV1) was significantly increased by 4.91% +- 10.89%, whereas the maximum dose to the spinal cord, mean dose to the left parotid, and V30 to the right parotid were significantly decreased by 5.00 +- 9.23Gy, 4.23 +- 10.03Gy, and 11.47% +- 18.89% respectively in the replanning, compared with the phantom plan (p < 0.05). Based on the dose constraint criterion in the RTOG0225 protocol, 50% of phantom plans (14/28) were out of limit for the dose to the normal critical structures, whereas no plan was out of limit in replanning (p < 0.001). Conclusion: Replanning for patients with NPC before the 25th fraction during IMRT helps to ensure adequate dose to the target volumes and safe doses to critical normal structures.

  1. Tomotherapy and Multifield Intensity-Modulated Radiotherapy Planning Reduce Cardiac Doses in Left-Sided Breast Cancer Patients With Unfavorable Cardiac Anatomy

    SciTech Connect

    Coon, Alan B.; Dickler, Adam; Kirk, Michael C.

    2010-09-01

    Purpose: For patients with left-sided breast cancers, radiation treatment to the intact breast results in high doses to significant volumes of the heart, increasing the risk of cardiac morbidity, particularly in women with unfavorable cardiac anatomy. We compare helical tomotherapy (TOMO) and inverse planned intensity modulated radiation therapy (IMRT) with three-dimensional conformal radiotherapy using opposed tangents (3D-CRT) for reductions in cardiac volumes receiving high doses. Methods and Materials: Fifteen patients with left-sided breast cancers and unfavorable cardiac anatomy, determined by a maximum heart depth (MHD) of {>=}1.0 cm within the tangent fields, were planned for TOMO and IMRT with five to seven beam angles, in addition to 3D-CRT. The volumes of heart and left ventricle receiving {>=}35 Gy (V35) were compared for the plans, as were the mean doses to the contralateral breast and the volume receiving {>=}20 Gy (V20) for the ipsilateral lung. Results: The mean MHD was 1.7 cm, and a significant correlation was observed between MHD and both heart and left ventricle V35. The V35s for IMRT (0.7%) and TOMO (0.5%) were significantly lower than for 3D-CRT (3.6%). The V20 for IMRT (22%) was significantly higher than for 3D-CRT (15%) or TOMO (18%), but the contralateral breast mean dose for TOMO (2.48 Gy) was significantly higher than for 3D-CRT (0.93 Gy) or IMRT (1.38 Gy). Conclusions: Both TOMO and IMRT can significantly reduce cardiac doses, with modest increases in dose to other tissues in left-sided breast cancer patients with unfavorable cardiac anatomy.

  2. Postoperative Intensity-Modulated Radiotherapy for Squamous Cell Carcinoma of the External Auditory Canal and Middle Ear: Treatment Outcomes, Marginal Misses, and Perspective on Target Delineation

    SciTech Connect

    Chen, Wan-Yu; Kuo, Sung-Hsin; Chen, Yu-Hsuan; Lu, Szu-Huai; Tsai, Chiao-Ling; Chia-Hsien Cheng, Jason; Hong, Ruey-Long; Chen, Ya-Fang; Hsu, Chuan-Jen; Lin, Kai-Nan; Ko, Jenq-Yuh; Lou, Pei-Jen; Wang, Cheng-Ping; Chong, Fok-Ching; Wang, Chun-Wei

    2012-03-15

    Purpose: To report outcomes of the rare disease of squamous cell carcinoma (SCC) of the external auditory canal (EAC) and middle ear treated with surgery and postoperative intensity-modulated radiotherapy (IMRT). Failure patterns related to spatial dose distribution were also analyzed to provide insight into target delineation. Methods and Materials: A retrospective review was conducted of the records of 11 consecutive patients with SCC of the EAC and middle ear who were treated with curative surgery and postoperative IMRT at one institution between January 2007 and February 2010. The prescribed IMRT dose was 60 to 66 Gy at 2 Gy per fraction. Three patients also received concurrent cisplatin-based chemotherapy, and 1 patient received concurrent oral tegafur/uracil. The median follow-up time was 19 months (range, 6-33 months). Results: Four patients had locoregional recurrence, yielding an estimated 2-year locoregional control rate of 70.7%. Among them, 1 patient had persistent disease after treatment, and 3 had marginal recurrence. Distant metastasis occurred in 1 patient after extensive locoregional recurrence, yielding an estimated 2-year distant control rate of 85.7%. The estimated 2-year overall survival was 67.5%. The three cases of marginal recurrence were near the preauricular space and glenoid fossa of the temporomandibular joint, adjacent to the apex of the ear canal and glenoid fossa of the temporomandibular joint, and in the postauricular subcutaneous area and ipsilateral parotid nodes, respectively. Conclusions: Marginal misses should be recognized to improve target delineation. When treating SCC of the EAC and middle ear, care should be taken to cover the glenoid fossa of the temporomandibular joint and periauricular soft tissue. Elective ipsilateral parotid irradiation should be considered. The treatment planning procedure should also be refined to balance subcutaneous soft-tissue dosimetry and toxicity.

  3. Weekly Dose-Volume Parameters of Mucosa and Constrictor Muscles Predict the Use of Percutaneous Endoscopic Gastrostomy During Exclusive Intensity-Modulated Radiotherapy for Oropharyngeal Cancer

    SciTech Connect

    Sanguineti, Giuseppe; Gunn, G. Brandon; Parker, Brent C.; Endres, Eugene J.; Zeng Jing; Fiorino, Claudio

    2011-01-01

    Purpose: To define predictors of percutaneous endoscopic gastrostomy (PEG) use during intensity-modulated radiotherapy (IMRT) for oropharyngeal cancer. Methods and Materials: Data for 59 consecutive patients treated with exclusive IMRT at a single institution were recovered. Of 59 patients, 25 were treated with hyperfractionation (78 Gy, 1.3 Gy per fraction, twice daily; 'HYPER'); and 34 of 59 were treated with a once-daily fractionation schedule (66 Gy, 2.2 Gy per fraction, or 70 Gy, 2 Gy per fraction; 'no-HYPER'). On the basis of symptoms during treatment, a PEG tube could have been placed as appropriate. A number of clinical/dosimetric factors, including the weekly dose-volume histogram of oral mucosa (OM DVHw) and weekly mean dose to constrictors and larynx, were considered. The OM DVHw of patients with and without PEG were compared to assess the most predictive dose-volume combinations. Results: Of 59 patients, 22 needed a PEG tube during treatment (for 15 of 22, {>=}3 months). The best cutoff values for OM DVHw were V9.5 Gy/week <64 cm{sup 3} and V10 Gy/week <54 cm{sup 3}. At univariate analysis, fractionation, mean weekly dose to OM and superior and middle constrictors, and OM DVHw were strongly correlated with the risk of PEG use. In a stepwise multivariate logistic analysis, OM V9.5 Gy/week ({>=}64 vs. <64 cm{sup 3}) was the most predictive parameter (odds ratio 30.8, 95% confidence interval 3.7-254.2, p = 0.0015), confirmed even in the no-HYPER subgroup (odds ratio 21, 95% CI 2.1 confidence interval 210.1, p = 0.01). Conclusions: The risk of PEG use is drastically reduced when OM V9.5-V10 Gy/week is <50-60 cm{sup 3}. These data warrant prospective validation.

  4. Intensity-Modulated Radiotherapy in the Treatment of Oropharyngeal Cancer: An Update of the Memorial Sloan-Kettering Cancer Center Experience

    SciTech Connect

    Setton, Jeremy; Caria, Nicola; Romanyshyn, Jonathan; Koutcher, Lawrence; Wolden, Suzanne L.; Zelefsky, Michael J.; Rowan, Nicholas; Sherman, Eric J.; Fury, Matthew G.; Pfister, David G.; Wong, Richard J.; Shah, Jatin P.; Kraus, Dennis H.; Shi Weiji; Zhang Zhigang; Schupak, Karen D.; Gelblum, Daphna Y.; Rao, Shyam D.; Lee, Nancy Y.

    2012-01-01

    Purpose: To update the Memorial Sloan-Kettering Cancer Center's experience with intensity-modulated radiotherapy (IMRT) in the treatment of oropharyngeal cancer (OPC). Methods and Materials: Between September 1998 and April 2009, 442 patients with histologically confirmed OPC underwent IMRT at our center. There were 379 men and 63 women with a median age of 57 years (range, 27-91). The disease was Stage I in 2%, Stage II in 4%, Stage III in 21%, and Stage IV in 73% of patients. The primary tumor subsite was tonsil in 50%, base of tongue in 46%, pharyngeal wall in 3%, and soft palate in 2%. The median prescription dose to the planning target volume of the gross tumor was 70 Gy for definitive (n = 412) cases and 66 Gy for postoperative cases (n = 30). A total 404 patients (91%) received chemotherapy, including 389 (88%) who received concurrent chemotherapy, the majority of which was platinum-based. Results: Median follow-up among surviving patients was 36.8 months (range, 3-135). The 3-year cumulative incidence of local failure, regional failure, and distant metastasis was 5.4%, 5.6%, and 12.5%, respectively. The 3-year OS rate was 84.9%. The incidence of late dysphagia and late xerostomia {>=}Grade 2 was 11% and 29%, respectively. Conclusions: Our results confirm the feasibility of IMRT in achieving excellent locoregional control and low rates of xerostomia. According to our knowledge, this study is the largest report of patients treated with IMRT for OPC.

  5. Intensity-Modulated Radiotherapy of Head and Neck Cancer Aiming to Reduce Dysphagia: Early Dose-Effect Relationships for the Swallowing Structures

    SciTech Connect

    Feng, Felix Y.; Kim, Hyungjin M.; Lyden, Teresa H.; Haxer, Marc J.; Feng, Mary; Worden, Frank P.; Eisbruch, Avraham . E-mail: eisbruch@umich.edu

    2007-08-01

    Purpose: To present initial results of a clinical trial of intensity-modulated radiotherapy (IMRT) aiming to spare the swallowing structures whose dysfunction after chemoradiation is a likely cause of dysphagia and aspiration, without compromising target doses. Methods and Materials: This was a prospective, longitudinal study of 36 patients with Stage III-IV oropharyngeal (31) or nasopharyngeal (5) cancer. Definitive chemo-IMRT spared salivary glands and swallowing structures: pharyngeal constrictors (PC), glottic and supraglottic larynx (GSL), and esophagus. Lateral but not medial retropharyngeal nodes were considered at risk. Dysphagia endpoints included objective swallowing dysfunction (videofluoroscopy), and both patient-reported and observer-rated scores. Correlations between doses and changes in these endpoints from pre-therapy to 3 months after therapy were assessed. Results: Significant correlations were observed between videofluoroscopy-based aspirations and the mean doses to the PC and GSL, as well as the partial volumes of these structures receiving 50-65 Gy; the highest correlations were associated with doses to the superior PC (p = 0.005). All patients with aspirations received mean PC doses >60 Gy or PC V{sub 65} >50%, and GSL V{sub 50} >50%. Reduced laryngeal elevation and epiglottic inversion were correlated with mean PC and GSL doses (p < 0.01). All 3 patients with strictures had PC V{sub 70} >50%. Worsening patient-reported liquid swallowing was correlated with mean PC (p = 0.05) and esophageal (p 0.02) doses. Only mean PC doses were correlated with worsening patient-reported solid swallowing (p = 0.04) and observer-rated swallowing scores (p = 0.04). Conclusions: These dose-volume-effect relationships provide initial IMRT optimization goals and motivate further efforts to reduce swallowing structures doses to reduce dysphagia and aspiration.

  6. Validating the RTOG-Endorsed Brachial Plexus Contouring Atlas: An Evaluation of Reproducibility Among Patients Treated by Intensity-Modulated Radiotherapy for Head-and-Neck Cancer

    SciTech Connect

    Yi, Sun K.; Hall, William H.; Mathai, Mathew; Dublin, Arthur B.; Gupta, Vishal; Purdy, James A.; Chen, Allen M.

    2012-03-01

    Purpose: To evaluate interobserver variability for contouring the brachial plexus as an organ-at-risk (OAR) and to analyze its potential dosimetric consequences in patients treated with intensity-modulated radiotherapy (IMRT) for head-and-neck cancer. Methods and Materials: Using the Radiation Therapy Oncology Group (RTOG)-endorsed brachial plexus contouring atlas, three radiation oncologists independently delineated the OAR on treatment planning computed-tomography (CT) axial scans from 5 representative patients undergoing IMRT to a prescribed dose of 70 Gy for head-and-neck cancer. Dose-volume histograms for the brachial plexus were calculated, and interobserver differences were quantified by comparing various dosimetric statistics. Qualitative analysis was performed by visually assessing the overlapping contours on a single beam's eye view. Results: Brachial plexus volumes for the 5 patients across observers were 26 cc (18-35 cc), 25 cc (21-30 cc), 29 cc (28-32 cc), 29 cc (23-38 cc), and 29 cc (23-34 cc). On qualitative analysis, minimal variability existed except at the inferolateral portion of the OAR, where slight discrepancies were noted among the physicians. Maximum doses to the brachial plexus ranged from 71.6 to 72.6 Gy, 75.2 to 75.8 Gy, 69.1 to 71.0 Gy, 76.4 to 76.9 Gy, and 70.6 to 71.4 Gy. Respective volumes receiving doses greater than 60 Gy (V60) were 8.6 to 10.9 cc, 6.2 to 8.1 cc, 8.2 to 11.6 cc, 8.3 to 10.5 cc, and 5.6 to 9.8 cc. Conclusion: The RTOG-endorsed brachial plexus atlas provides a consistent set of guidelines for contouring this OAR with essentially no learning curve. Adoption of these contouring guidelines in the clinical setting is encouraged.

  7. Commissioning and quality assurance for intensity modulated radiotherapy with dynamic multileaf collimator: experience of the Pontificia Universidad Católica de Chile.

    PubMed

    Venencia, Carlos Daniel; Besa, Pelayo

    2004-01-01

    The objective of this paper is to present our experience in the commissioning and quality assurance (QA) for intensity modulated radiotherapy (IMRT) using dynamic multileaf collimator (dMLC), sliding window technique. Using Varian equipment solution, the connectivity and operation between all IMRT chain components was checked. Then the following test were done: stability of leaf positioning and leaf speed, sensitivity to treatment interruptions (acceleration and deceleration), evaluation of standard field patterns, stability of dMLC output, segmental dose accuracy check, average leaf transmission, dosimetric leaf separation, effects of lateral disequilibrium between adjacent leaves in dose profiles and multiple carriage field verification. Standard patterns were generated for verification: uniform field, pyramid, hole, wedge, peaks and chair. Weekly QA Protocol include: sweeping gap output, Garden Fence Test (narrow bands, 2 mm wide, of exposure spaced at 2-cm intervals) and segmental dose accuracy check. Monthly QA include: sweeping gap output at multiple gantry and collimator angle, sweeping gap output off-axis, Picket Fence Test (eight consecutive movements of a 5-cm wide rectangular field spaced at 5-cm intervals), stability of leaf speed and leaf motor current test (PWM test). Patient QA procedure consists of an absolute dose measurement for all treatments fields in the treatment condition, analysis of actual leaf position versus planned leaf position (dynalog files) for each treatment field, film relative dose determination for each field, film relative dose determination for the plan (all treatment fields) in two axial planes and patient positioning verification with orthogonal films. The tests performed showed acceptable result. After more than one year of IMRT treatment the routine QA machine checks confirm the precision and stability of the IMRT system. PMID:15753938

  8. Dosimetric Benefits of Intensity-Modulated Radiotherapy Combined With the Deep-Inspiration Breath-Hold Technique in Patients With Mediastinal Hodgkin's Lymphoma

    SciTech Connect

    Paumier, Amaury; Ghalibafian, Mithra; Gilmore, Jennifer; Beaudre, Anne; Blanchard, Pierre; El Nemr, Mohammed; Azoury, Farez; Al Hamokles, Hweej; Lefkopoulos, Dimitri; Girinsky, Theodore

    2012-03-15

    Purpose: To assess the additional benefits of using the deep-inspiration breath-hold (DIBH) technique with intensity-modulated radiotherapy (IMRT) in terms of the protection of organs at risk for patients with mediastinal Hodgkin's disease. Methods and Materials: Patients with early-stage Hodgkin's lymphoma with mediastinal involvement were entered into the study. Two simulation computed tomography scans were performed for each patient: one using the free-breathing (FB) technique and the other using the DIBH technique with a dedicated spirometer. The clinical target volume, planning target volume (PTV), and organs at risk were determined on both computed tomography scans according to the guidelines of the European Organization for Research and Treatment of Cancer. In both cases, 30 Gy in 15 fractions was prescribed. The dosimetric parameters retrieved for the statistical analysis were PTV coverage, mean heart dose, mean coronary artery dose, mean lung dose, and lung V20. Results: There were no significant differences in PTV coverage between the two techniques (FB vs. DIBH). The mean doses delivered to the coronary arteries, heart, and lungs were significantly reduced by 15% to 20% using DIBH compared with FB, and the lung V20 was reduced by almost one third. The dose reduction to organs at risk was greater for masses in the upper part of the mediastinum. IMRT with DIBH was partially implemented in 1 patient. This combination will be extended to other patients in the near future. Conclusions: Radiation exposure of the coronary arteries, heart, and lungs in patients with mediastinal Hodgkin's lymphoma was greatly reduced using DIBH with IMRT. The greatest benefit was obtained for tumors in the upper part of the mediastinum. The possibility of a wider use in clinical practice is currently under investigation in our department.

  9. Evaluation of the dosimetric impact of applying flattening filter-free beams in intensity-modulated radiotherapy for early-stage upper thoracic carcinoma of oesophagus

    PubMed Central

    Zhang, Wuzhe; Lin, Zhixiong; Yang, Zhining; Fang, Weisheng; Lai, Peibo; Lu, Jiayang; Wu, Vincent WC

    2015-01-01

    Introduction Flattening filter-free (FFF) radiation beams have recently become clinically available on modern linear accelerators in radiation therapy. This study aimed to evaluate the dosimetric impact of using FFF beams in intensity-modulated radiotherapy (IMRT) for early-stage upper thoracic oesophageal cancer. Methods Eleven patients with primary stage upper thoracic oesophageal cancer were recruited. For each patient, two IMRT plans were computed using conventional beams (Con-P) and FFF beams (FFF-P), respectively. Both plans employed a five-beam arrangement and were prescribed with 64 Gy to (planning target volume) PTV1 and 54 Gy to PTV2 in 32 fractions using 6 MV photons. The dose parameters of the target volumes and organs at risks (OARs), and treatment parameters including the monitor units (MU) and treatment time (TT) for Con-P and FFF-P were recorded and compared. Results The mean D5 of PTV1 and PTV2 were higher in FFF-P than Con-P by 0.4 Gy and 0.3 Gy, respectively. For the OARs, all the dose parameters did not show significant difference between the two plans except the mean V5 and V10 of the lung in which the FFF-P was lower (46.7% vs. 47.3% and 39.1% vs. 39.6%, respectively). FFF-P required 54% more MU but 18.4% less irradiation time when compared to Con-P. Conclusion The target volume and OARs dose distributions between the two plans were comparable. However, FFF-P was more effective in sparing the lung from low dose and reduced the mean TT compared with Con-P. Long-term clinical studies are suggested to evaluate the radiobiological effects of FFF beams. PMID:26229675

  10. Evaluation of the dosimetric impact of applying flattening filter-free beams in intensity-modulated radiotherapy for early-stage upper thoracic carcinoma of oesophagus

    SciTech Connect

    Zhang, Wuzhe; Lin, Zhixiong; Yang, Zhining; Fang, Weisheng; Lai, Peibo; Lu, Jiayang; Wu, Vincent WC

    2015-06-15

    Flattening filter-free (FFF) radiation beams have recently become clinically available on modern linear accelerators in radiation therapy. This study aimed to evaluate the dosimetric impact of using FFF beams in intensity-modulated radiotherapy (IMRT) for early-stage upper thoracic oesophageal cancer. Eleven patients with primary stage upper thoracic oesophageal cancer were recruited. For each patient, two IMRT plans were computed using conventional beams (Con-P) and FFF beams (FFF-P), respectively. Both plans employed a five-beam arrangement and were prescribed with 64 Gy to (planning target volume) PTV1 and 54 Gy to PTV2 in 32 fractions using 6 MV photons. The dose parameters of the target volumes and organs at risks (OARs), and treatment parameters including the monitor units (MU) and treatment time (TT) for Con-P and FFF-P were recorded and compared. The mean D{sub 5} of PTV1 and PTV2 were higher in FFF-P than Con-P by 0.4 Gy and 0.3 Gy, respectively. For the OARs, all the dose parameters did not show significant difference between the two plans except the mean V{sub 5} and V{sub 10} of the lung in which the FFF-P was lower (46.7% vs. 47.3% and 39.1% vs. 39.6%, respectively). FFF-P required 54% more MU but 18.4% less irradiation time when compared to Con-P. The target volume and OARs dose distributions between the two plans were comparable. However, FFF-P was more effective in sparing the lung from low dose and reduced the mean TT compared with Con-P. Long-term clinical studies are suggested to evaluate the radiobiological effects of FFF beams.

  11. Long-Term Clinical Outcome of Intensity-Modulated Radiotherapy for Inoperable Non-Small Cell Lung Cancer: The MD Anderson Experience

    SciTech Connect

    Jiang Zhiqin; Yang Kunyu; Komaki, Ritsuko; Wei Xiong; Tucker, Susan L.; Zhuang Yan; Martel, Mary K.; Vedam, Sastray; Balter, Peter; Zhu Guangying; Gomez, Daniel; Lu, Charles; Mohan, Radhe; Cox, James D.; Liao Zhongxing

    2012-05-01

    Purpose: In 2007, we published our initial experience in treating inoperable non-small-cell lung cancer (NSCLC) with intensity-modulated radiation therapy (IMRT). The current report is an update of that experience with long-term follow-up. Methods and Materials: Patients in this retrospective review were 165 patients who began definitive radiotherapy, with or without chemotherapy, for newly diagnosed, pathologically confirmed NSCLC to a dose of {>=}60 Gy from 2005 to 2006. Early and late toxicities assessed included treatment-related pneumonitis (TRP), pulmonary fibrosis, esophagitis, and esophageal stricture, scored mainly according to the Common Terminology Criteria for Adverse Events 3.0. Other variables monitored were radiation-associated dermatitis and changes in body weight and Karnofsky performance status. The Kaplan-Meier method was used to compute survival and freedom from radiation-related acute and late toxicities as a function of time. Results: Most patients (89%) had Stage III to IV disease. The median radiation dose was 66 Gy given in 33 fractions (range, 60-76 Gy, 1.8-2.3 Gy per fraction). Median overall survival time was 1.8 years; the 2-year and 3-year overall survival rates were 46% and 30%. Rates of Grade {>=}3 maximum TRP (TRP{sub max}) were 11% at 6 months and 14% at 12 months. At 18 months, 86% of patients had developed Grade {>=}1 maximum pulmonary fibrosis (pulmonary fibrosis{sub max}) and 7% Grade {>=}2 pulmonary fibrosis{sub max}. The median times to maximum esophagitis (esophagitis{sub max}) were 3 weeks (range, 1-13 weeks) for Grade 2 and 6 weeks (range, 3-13 weeks) for Grade 3. A higher percentage of patients who experienced Grade 3 esophagitis{sub max} later developed Grade 2 to 3 esophageal stricture. Conclusions: In our experience, using IMRT to treat NSCLC leads to low rates of pulmonary and esophageal toxicity, and favorable clinical outcomes in terms of survival.

  12. Megavoltage Cone Beam Computed Tomography Dose and the Necessity of Reoptimization for Imaging Dose-Integrated Intensity-Modulated Radiotherapy for Prostate Cancer

    SciTech Connect

    Akino, Yuichi; Koizumi, Masahiko; Sumida, Iori; Takahashi, Yutaka; Ogata, Toshiyuki; Ota, Seiichi; Isohashi, Fumiaki; Konishi, Koji; Yoshioka, Yasuo

    2012-04-01

    Purpose: Megavoltage cone beam computed tomography (MV-CBCT) dose can be integrated with the patient's prescription. Here, we investigated the effects of imaging dose and the necessity for additional optimization when using intensity-modulated radiotherapy (IMRT) to treat prostate cancer. Methods and Materials: An arc beam mimicking MV-CBCT was generated using XiO (version 4.50; Elekta, Stockholm, Sweden). The monitor units (MU) for dose calculation were determined by conforming the calculated dose to the dose measured using an ionization chamber. IMRT treatment plans of 22 patients with prostate cancer were retrospectively analyzed. Arc beams of 3, 5, 8, and 15 MU were added to the IMRT plans, and the dose covering 95% of the planning target volume (PTV) was normalized to the prescribed dose with (reoptimization) or without optimization (compensation). Results: PTV homogeneity and conformality changed negligibly with MV-CBCT integration. For critical organs, an imaging dose-dependent increase was observed for the mean rectal/bladder dose (D{sub mean}), and reoptimization effectively suppressed the D{sub mean} elevations. The bladder generalized equivalent uniform dose (gEUD) increased with imaging dose, and reoptimization suppressed the gEUD elevation when 5- to 15-MU CBCT were added, although rectal gEUD changed negligibly with any imaging dose. Whereas the dose elevation from the simple addition of the imaging dose uniformly increased rectal and bladder dose, the rectal D{sub mean} increase of compensation plans was due mainly to low-dose volumes. In contrast, bladder high-dose volumes were increased by integrating the CBCT dose, and reoptimization reduced them when 5- to 15-MU CBCT were added. Conclusion: Reoptimization is clearly beneficial for reducing dose to critical organs, elevated by addition of high-MU CBCT, especially for the bladder. For low-MU CBCT aimed at bony structure visualization, compensation is sufficient.

  13. Dosimetric and Clinical Outcomes of Involved-Field Intensity-Modulated Radiotherapy After Chemotherapy for Early-Stage Hodgkin's Lymphoma With Mediastinal Involvement

    SciTech Connect

    Lu Ningning; Li Yexiong; Wu Runye; Zhang Ximei; Wang Weihu; Jin Jing; Song Yongwen; Fang Hui; Ren Hua; Wang Shulian; Liu Yueping; Liu Xinfan; Chen Bo; Dai Jianrong; Yu Zihao

    2012-09-01

    Purpose: To evaluate the dosimetric and clinical outcomes of involved-field intensity-modulated radiotherapy (IF-IMRT) for patients with early-stage Hodgkin's lymphoma (HL) with mediastinal involvement. Methods and Materials: Fifty-two patients with early-stage HL that involved the mediastinum were reviewed. Eight patients had Stage I disease, and 44 patients had Stage II disease. Twenty-three patients (44%) presented with a bulky mediastinum, whereas 42 patients (81%) had involvement of both the mediastinum and either cervical or axillary nodes. All patients received combination chemotherapy followed by IF-IMRT. The prescribed radiation dose was 30-40 Gy. The dose-volume histograms of the target volume and critical normal structures were evaluated. Results: The median mean dose to the primary involved regions (planning target volume, PTV1) and boost area (PTV2) was 37.5 Gy and 42.1 Gy, respectively. Only 0.4% and 1.3% of the PTV1 and 0.1% and 0.5% of the PTV2 received less than 90% and 95% of the prescribed dose, indicating excellent PTV coverage. The median mean lung dose and V20 to the lungs were 13.8 Gy and 25.9%, respectively. The 3-year overall survival, local control, and progression-free survival rates were 100%, 97.9%, and 96%, respectively. No Grade 4 or 5 acute or late toxicities were reported. Conclusions: Despite the large target volume, IF-IMRT gave excellent dose coverage and a favorable prognosis, with mild toxicity in patients with early-stage mediastinal HL.

  14. Twice-Weekly Hypofractionated Intensity-Modulated Radiotherapy for Localized Prostate Cancer With Low-Risk Nodal Involvement: Toxicity and Outcome From a Dose Escalation Pilot Study

    SciTech Connect

    Zilli, Thomas; Jorcano, Sandra; Rouzaud, Michel; Dipasquale, Giovanna; Nouet, Philippe; Toscas, Jose Ignacio; Casanova, Nathalie; Wang, Hui; Escude, Lluis; Molla, Meritxell; Linero, Dolors; Weber, Damien C.; Miralbell, Raymond

    2011-10-01

    Purpose: To evaluate the toxicity and preliminary outcome of patients with localized prostate cancer treated with twice-weekly hypofractionated intensity-modulated radiotherapy (IMRT). Methods and Materials: Between 2003 and 2006, 82 prostate cancer patients with a nodal involvement risk {<=}20% (Roach index) have been treated to the prostate with or without seminal vesicles with 56 Gy (4 Gy/fraction twice weekly) and an overall treatment time of 6.5 weeks. Acute and late genitourinary (GU) and gastrointestinal (GI) toxicities were scored according to the Radiation Therapy Oncology Group (RTOG) grading system. Median follow-up was 48 months (range, 9-67 months). Results: All patients completed the treatment without interruptions. No patient presented with Grade {>=}3 acute GU or GI toxicity. Of the patients, 4% presented with Grade 2 GU or GI persistent acute toxicity 6 weeks after treatment completion. The estimated 4-year probability of Grade {>=}2 late GU and GI toxicity-free survival were 94.2% {+-} 2.9% and 96.1% {+-} 2.2%, respectively. One patient presented with Grade 3 GI and another patient with Grade 4 GU late toxicity, which were transitory in both cases. The 4-year actuarial biochemical relapse-free survival was 91.3% {+-} 5.9%, 76.4% {+-} 8.8%, and 77.5% {+-} 8.9% for low-, intermediate-, and high-risk groups, respectively. Conclusions: In patients with localized prostate cancer, acute and late toxicity were minimal after dose-escalation administering twice-weekly 4 Gy to a total dose of 56 Gy, with IMRT. Further prospective trials are warranted to further assess the best fractionation schemes for these patients.

  15. Proposal for the 8th Edition of the AJCC/UICC Staging System for Nasopharyngeal Cancer in the Era of Intensity-Modulated Radiotherapy

    PubMed Central

    Pan, Jian Ji; Ng, Wai Tong; Zong, Jing Feng; Chan, Lucy L. K.; O’Sullivan, Brian; Lin, Shao Jun; Sze, Henry C. K.; Chen, Yun Bin; Choi, Horace C.W.; Guo, Qiao Juan; Kan, Wai Kuen; Xiao, You Ping; Wei, Xu; Le, Quynh Thu; Glastonbury, Christine M.; Colevas, A. Dimitrios; Weber, Randal S.; Shah, Jatin P.; Lee, Anne W. M.

    2016-01-01

    BACKGROUND An accurate staging system is crucial for cancer management. Evaluations for continual suitability and improvement are needed as staging and treatment methods evolve. METHODS This was a retrospective study of 1609 patients with nasopharyngeal carcinoma investigated by magnetic resonance imaging, staged with the 7th edition of the American Joint Committee on Cancer (AJCC)/International Union Against Cancer (UICC) staging system, and irradiated by intensity-modulated radiotherapy at 2 centers in Hong Kong and mainland China. RESULTS Among the patients without other T3/T4 involvement, there were no significant differences in overall survival (OS) between medial pterygoid muscle (MP)±lateral pterygoid muscle (LP), prevertebral muscle, and parapharyngeal space involvement. Patients with extensive soft tissue involvement beyond the aforementioned structures had poor OS similar to that of patients with intracranial extension and/or cranial nerve palsy. Only 2% of the patients had lymph nodes>6cm above the supraclavicular fossa (SCF), and their outcomes resembled the outcomes of those with low extension. Replacing SCF with the lower neck (extension below the caudal border of the cricoid cartilage) did not affect the hazard distinction between different N categories. With the proposed T and N categories, there were no significant differences in outcome between T4N0-2 and T1-4N3 disease. CONCLUSIONS After a review by AJCC/UICC preparatory committees, the changes recommended for the 8th edition include changing MP/LP involvement from T4 to T2, adding prevertebral muscle involvement as T2, replacing SCF with the lower neck and merging this with a maximum nodal diameter>6 cm as N3, and merging T4 and N3 as stage IVA criteria. These changes will lead not only to a better distinction of hazards between adjacent stages/categories but also to optimal balance in clinical practicability and global applicability. PMID:26588425

  16. Should All Nasopharyngeal Carcinoma with Paranasal Sinus Invasion Be Staged as T3 in the Intensity-Modulated Radiotherapy Era? A Study of 1811 Cases

    PubMed Central

    Zhang, Yuan; Peng, Hao; Guo, Rui; Li, Wen-Fei; Chen, Lei; Liu, Xu; Tang, Ling-Long; Liu, Li-Zhi; Li, Li; Liu, Qing; Sun, Ying; Ma, Jun

    2016-01-01

    Background: Currently, there is no uniform consensus regarding the appropriate staging for invasion of the paranasal sinuses in nasopharyngeal carcinoma (NPC). In the current AJCC staging system for NPC, paranasal sinus invasion is defined within the T3 classification. However, according to the Chinese 2008 staging system, which is also widely used in the regions where NPC is endemic in China, paranasal sinus invasion is classified as T4 disease. Methods: Patients (n = 1811) with non-metastatic, histologically-proven NPC treated with intensity-modulated radiotherapy (IMRT) were retrospectively analyzed. Results: Paranasal sinus invasion was identified in 289/1811 patients (16.0%). Multivariate analysis revealed ethmoid sinus invasion (HR, 2.889; 95% CI, 1.362-6.131; P = 0.006) and maxillary sinus invasion (HR, 3.110; 95% CI, 1.439-6.721; P = 0.004) were independent prognostic factors for local relapse-free survival (LRFS). T3 patients with ethmoid sinus or maxillary sinus invasion had similar 3-year LRFS (83.6% vs. 92.2%, P = 0.132) as T4 patients, and had poorer LRFS (83.6% vs. 98.3%, P = 0.006) than T3 patients with sphenoid sinus invasion alone. Also, T3 patients with sphenoid sinus invasion alone had similar 3-year LRFS (98.3 vs. 96.4%, P = 0.391) as T3 patients without paranasal sinus invasion, and a trend toward higher LRFS (98.3% vs. 92.2%, P = 0.065) than T4 patients. Conclusion: In patients underwent IMRT, tumors with ethmoid sinus or maxillary sinus invasion had a higher risk of local failure than those with sphenoid sinus invasion alone. Sphenoid sinus invasion alone should be classified as T3 disease and ethmoid sinus or maxillary sinus involvement as T4 disease in the current AJCC staging system for NPC. PMID:27390611

  17. Initial Evaluation of Treatment-Related Pneumonitis in Advanced-Stage Non-Small-Cell Lung Cancer Patients Treated With Concurrent Chemotherapy and Intensity-Modulated Radiotherapy

    SciTech Connect

    Yom, Sue S.; Liao Zhongxing . E-mail: zliao@mdanderson.org; Liu, H. Helen; Tucker, Susan L.; Hu, C.-S.; Wei Xiong; Wang Xuanming; Wang Shulian; Mohan, Radhe; Cox, James D.; Komaki, Ritsuko

    2007-05-01

    Purpose: To investigate the rate of high-grade treatment-related pneumonitis (TRP) in patients with advanced non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and intensity-modulated radiotherapy (IMRT). Methods and Materials: From August 2002 to August 2005, 151 NSCLC patients were treated with IMRT. We excluded patients who did not receive concurrent chemotherapy or who had early-stage cancers, a history of major lung surgery, prior chest RT, a dose <50 Gy, or IMRT combined with three-dimensional conformal RT (3D-CRT). Toxicities were graded by Common Terminology Criteria for Adverse Events version 3.0. Grade {>=}3 TRP for 68 eligible IMRT patients was compared with TRP among 222 similar patients treated with 3D-CRT. Results: The median follow-up durations for the IMRT and 3D-CRT patients were 8 months (range, 0-27 months) and 9 months (range, 0-56 months), respectively. The median IMRT and 3D-CRT doses were 63 Gy. The median gross tumor volume was 194 mL (range, 21-911 mL) for IMRT, compared with 142 mL (range, 1.5-1,186 mL) for 3D-CRT (p = 0.002). Despite the IMRT group's larger gross tumor volume, the rate of Grade {>=}3 TRP at 12 months was 8% (95% confidence interval 4%-19%), compared with 32% (95% confidence interval 26%-40%) for 3D-CRT (p = 0.002). Conclusions: In advanced NSCLC patients treated with chemoradiation, IMRT resulted in significantly lower levels of Grade {>=}3 TRP compared with 3D-CRT. Clinical, dosimetric, and patient selection factors that may have influenced rates of TRP require continuing investigation. A randomized trial comparing IMRT with 3D-CRT has been initiated.

  18. Lack of Osteoradionecrosis of the Mandible After Intensity-Modulated Radiotherapy for Head and Neck Cancer: Likely Contributions of Both Dental Care and Improved Dose Distributions

    SciTech Connect

    Ben-David, Merav A.; Diamante, Maximiliano; Vineberg, Karen A.; Stroup, Cynthia; Murdoch-Kinch, Carol-Anne . E-mail: eisbruch@med.umich.edu

    2007-06-01

    Purpose: To assess the prevalence and dosimetric and clinical predictors of mandibular osteoradionecrosis (ORN) in patients with head and neck cancer who underwent a pretherapy dental evaluation and prophylactic treatment according to a uniform policy and were treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Between 1996 and 2005, all patients with head-and-neck cancer treated with parotid gland-sparing IMRT in prospective studies underwent a dental examination and prophylactic treatment according to a uniform policy that included extractions of high-risk, periodontally involved, and nonrestorable teeth in parts of the mandible expected to receive high radiation doses, fluoride supplements, and the placement of guards aiming to reduce electron backscatter off metal teeth restorations. The IMRT plans included dose constraints for the maximal mandibular doses and reduced mean parotid gland and noninvolved oral cavity doses. A retrospective analysis of Grade 2 or worse (clinical) ORN was performed. Results: A total of 176 patients had a minimal follow-up of 6 months. Of these, 31 (17%) had undergone teeth extractions before RT and 13 (7%) after RT. Of the 176 patients, 75% and 50% had received {>=}65 Gy and {>=}70 Gy to {>=}1% of the mandibular volume, respectively. Falloff across the mandible characterized the dose distributions: the average gradient (in the axial plane containing the maximal mandibular dose) was 11 Gy (range, 1-27 Gy; median, 8 Gy). At a median follow-up of 34 months, no cases of ORN had developed (95% confidence interval, 0-2%). Conclusion: The use of a strict prophylactic dental care policy and IMRT resulted in no case of clinical ORN. In addition to the dosimetric advantages offered by IMRT, meticulous dental prophylactic care is likely an essential factor in reducing ORN risk.

  19. Intensity-Modulated and 3D-Conformal Radiotherapy for Whole-Ventricular Irradiation as Compared With Conventional Whole-Brain Irradiation in the Management of Localized Central Nervous System Germ Cell Tumors

    SciTech Connect

    Chen, Michael Jenwei; Silva Santos, Adriana da; Sakuraba, Roberto Kenji; Lopes, Cleverson Perceu; Goncalves, Vinicius Demanboro; Weltman, Eduardo; Ferrigno, Robson; Cruz, Jose Carlos

    2010-02-01

    Purpose: To compare the sparing potential of cerebral hemispheres with intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for whole-ventricular irradiation (WVI) and conventional whole-brain irradiation (WBI) in the management of localized central nervous system germ cell tumors (CNSGCTs). Methods and Materials: Ten cases of patients with localized CNSGCTs and submitted to WVI by use of IMRT with or without a 'boost' to the primary lesion were selected. For comparison purposes, similar treatment plans were produced by use of 3D-CRT (WVI with or without boost) and WBI (opposed lateral fields with or without boost), and cerebral hemisphere sparing was evaluated at dose levels ranging from 2 Gy to 40 Gy. Results: The median prescription dose for WVI was 30.6 Gy (range, 25.2-37.5 Gy), and that for the boost was 16.5 Gy (range, 0-23.4 Gy). Mean irradiated cerebral hemisphere volumes were lower for WVI with IMRT than for 3D-CRT and were lower for WVI with 3D-CRT than for WBI. Intensity-modulated radiotherapy was associated with the lowest irradiated volumes, with reductions of 7.5%, 12.2%, and 9.0% at dose levels of 20, 30, and 40 Gy, respectively, compared with 3D-CRT. Intensity-modulated radiotherapy provided statistically significant reductions of median irradiated volumes at all dose levels (p = 0.002 or less). However, estimated radiation doses to peripheral areas of the body were 1.9 times higher with IMRT than with 3D-CRT. Conclusions: Although IMRT is associated with increased radiation doses to peripheral areas of the body, its use can spare a significant amount of normal central nervous system tissue compared with 3D-CRT or WBI in the setting of CNSGCT treatment.

  20. SU-E-T-417: The Impact of Normal Tissue Constraints On PTV Dose Homogeneity for Intensity Modulated Radiotherapy (IMRT), Volume Modulated Arc Therapy (VMAT) and Tomotherapy

    SciTech Connect

    Peng, J; McDonald, D; Ashenafi, M; Ellis, A; Vanek, K

    2014-06-01

    Purpose: Complex intensity modulated arc therapy tends to spread low dose to normal tissue(NT)regions to obtain improved target conformity and homogeneity and OAR sparing.This work evaluates the trade-offs between PTV homogeneity and reduction of the maximum dose(Dmax)spread to NT while planning of IMRT,VMAT and Tomotherapy. Methods: Ten prostate patients,previously planned with step-and-shoot IMRT,were selected.To fairly evaluate how PTV homogeneity was affected by NT Dmax constraints,original IMRT DVH objectives for PTV and OARs(femoral heads,and rectal and bladder wall)applied to 2 VMAT plans in Pinnacle(V9.0), and Tomotherapy(V4.2).The only constraint difference was the NT which was defined as body contours excluding targets,OARs and dose rings.NT Dmax constraint for 1st VMAT was set to the prescription dose(Dp).For 2nd VMAT(VMAT-NT)and Tomotherapy,it was set to the Dmax achieved in IMRT(~70-80% of Dp).All NT constraints were set to the lowest priority.Three common homogeneity indices(HI),RTOG-HI=Dmax/Dp,moderated-HI=D95%/D5% and complex-HI=(D2%-D98%)/Dp*100 were calculated. Results: All modalities with similar dosimetric endpoints for PTV and OARs.The complex-HI shows the most variability of indices,with average values of 5.9,4.9,9.3 and 6.1 for IMRT,VMAT,VMAT-NT and Tomotherapy,respectively.VMAT provided the best PTV homogeneity without compromising any OAR/NT sparing.Both VMAT-NT and Tomotherapy,planned with more restrictive NT constraints,showed reduced homogeneity,with VMAT-NT showing the worst homogeneity(P<0.0001)for all HI.Tomotherapy gave the lowest NT Dmax,with slightly decreased homogeneity compared to VMAT. Finally, there was no significant difference in NT Dmax or Dmean between VMAT and VMAT-NT. Conclusion: PTV HI is highly dependent on permitted NT constraints. Results demonstrated that VMAT-NT with more restrictive NT constraints does not reduce Dmax NT,but significantly receives higher Dmax and worse target homogeneity.Therefore, it is critical

  1. Is intensity-modulated radiotherapy better than conventional radiation treatment and three-dimensional conformal radiotherapy for mediastinal masses in patients with Hodgkin's disease, and is there a role for beam orientation optimization and dose constraints assigned to virtual volumes?

    SciTech Connect

    Girinsky, Theodore . E-mail: girinsky@igr.fr; Pichenot, Charlotte; Beaudre, Anne; Ghalibafian, Mithra; Lefkopoulos, Dimitri

    2006-01-01

    Purpose: To evaluate the role of beam orientation optimization and the role of virtual volumes (VVs) aimed at protecting adjacent organs at risk (OARs), and to compare various intensity-modulated radiotherapy (IMRT) setups with conventional treatment with anterior and posterior fields and three-dimensional conformal radiotherapy (3D-CRT). Methods and Materials: Patients with mediastinal masses in Hodgkin's disease were treated with combined modality therapy (three to six cycles of adriamycin, bleomycin, vinblastine, and dacarbazine [ABVD] before radiation treatment). Contouring and treatment planning were performed with Somavision and CadPlan Helios (Varian Systems, Palo Alto, CA). The gross tumor volume was determined according to the prechemotherapy length and the postchemotherapy width of the mediastinal tumor mass. A 10-mm isotropic margin was added for the planning target volume (PTV). Because dose constraints assigned to OARs led to unsatisfactory PTV coverage, VVs were designed for each patient to protect adjacent OARs. The prescribed dose was 40 Gy to the PTV, delivered according to guidelines from International Commission on Radiation Units and Measurements Report No. 50. Five different IMRT treatment plans were compared with conventional treatment and 3D-CRT. Results: Beam orientation was important with respect to the amount of irradiated normal tissues. The best compromise in terms of PTV coverage and protection of normal tissues was obtained with five equally spaced beams (5FEQ IMRT plan) using dose constraints assigned to VVs. When IMRT treatment plans were compared with conventional treatment and 3D-CRT, dose conformation with IMRT was significantly better, with greater protection of the heart, coronary arteries, esophagus, and spinal cord. The lungs and breasts in women received a slightly higher radiation dose with IMRT compared with conventional treatments. The greater volume of normal tissue receiving low radiation doses could be a cause for

  2. First Clinical Release of an Online, Adaptive, Aperture-Based Image-Guided Radiotherapy Strategy in Intensity-Modulated Radiotherapy to Correct for Inter- and Intrafractional Rotations of the Prostate

    SciTech Connect

    Deutschmann, Heinz; Kametriser, Gerhard; Steininger, Philipp; Scherer, Philipp; Schoeller, Helmut; Gaisberger, Christoph; Mooslechner, Michaela; Mitterlechner, Bernhard; Weichenberger, Harald; Fastner, Gert; Wurstbauer, Karl; Jeschke, Stephan; Forstner, Rosemarie; Sedlmayer, Felix

    2012-08-01

    Purpose: We developed and evaluated a correction strategy for prostate rotations using direct adaptation of segments in intensity-modulated radiotherapy (IMRT). Method and Materials: Implanted fiducials (four gold markers) were used to determine interfractional translations, rotations, and dilations of the prostate. We used hybrid imaging: The markers were automatically detected in two pretreatment planar X-ray projections; their actual position in three-dimensional space was reconstructed from these images at first. The structure set comprising prostate, seminal vesicles, and adjacent rectum wall was transformed accordingly in 6 degrees of freedom. Shapes of IMRT segments were geometrically adapted in a class solution forward-planning approach, derived within seconds on-site and treated immediately. Intrafractional movements were followed in MV electronic portal images captured on the fly. Results: In 31 of 39 patients, for 833 of 1013 fractions (supine, flat couch, knee support, comfortably full bladder, empty rectum, no intraprostatic marker migrations >2 mm of more than one marker), the online aperture adaptation allowed safe reduction of margins clinical target volume-planning target volume (prostate) down to 5 mm when only interfractional corrections were applied: Dominant L-R rotations were found to be 5.3 Degree-Sign (mean of means), standard deviation of means {+-}4.9 Degree-Sign , maximum at 30.7 Degree-Sign . Three-dimensional vector translations relative to skin markings were 9.3 {+-} 4.4 mm (maximum, 23.6 mm). Intrafractional movements in 7.7 {+-} 1.5 min (maximum, 15.1 min) between kV imaging and last beam's electronic portal images showed further L-R rotations of 2.5 Degree-Sign {+-} 2.3 Degree-Sign (maximum, 26.9 Degree-Sign ), and three-dimensional vector translations of 3.0 {+-}3.7 mm (maximum, 10.2 mm). Addressing intrafractional errors could further reduce margins to 3 mm. Conclusion: We demonstrated the clinical feasibility of an online

  3. Prospective evaluation of quality of life 54 months after high-dose intensity-modulated radiotherapy for localized prostate cancer

    PubMed Central

    2013-01-01

    Objective To determine late toxicity and quality of life (QoL) in patients with localized prostate cancer after high-dose intensity-modulated radiotherapy (IMRT). Patient and methods This was a prospective study in patients with localized prostate adenocarcinoma who had been treated by IMRT (76 Gy) between February and November 2006. Physicians scored acute and late toxicity using the Common Terminology Criteria for Adverse Events (version 3.0). Patients completed cancer and prostate-specific QoL questionnaires (EORTC QLQ-C30 and QLQ-PR25) before IMRT (baseline) and at 2, 6, 18 and 54 months. Result Data were available for 38 patients (median age, 73 years) (18% low risk; 60% intermediate risk; 32% high risk). The incidence of urinary and gastrointestinal toxicity was respectively: immediately post IMRT: 36.8% and 23.7% (grade 1), 5.3% and 5.3% (grade 2), 2.6% and 0% (grade 3); at 18 months: 23.7% and 10.3% (grade 1), 26.3% and 13.2% (grade 2), 0% and 2.6% (grade 3); at 54 months: 34.2% and 23.7% (grade 1), 5.3% and 15.8% (grade 2), 5.3% and 0% (grade 3). At 54 months, significant worsening was reported by patients for 11/19 QoL items but the worsening was clinically relevant (>10 points) for 7 items only: physical, role as well as social functioning, fatigue, pain, dyspnoea and constipation. There was no significant difference between 54-month and baseline QoL scores for global health, gastrointestinal symptoms, treatment-related symptoms and sexual function. However, there was significant - but clinically non-relevant (<10 points) - worsening of urinary symptom. Conclusion High-dose IMRT to the prostate with accurate patient positioning did not induce any clinically relevant worsening in late urinary and gastrointestinal QoL at 54 months. Impaired physical and role functioning may be related to age and comorbidities. PMID:23510499

  4. A comparison of anatomical and dosimetric variations in the first 15 fractions, and between fractions 16 and 25, of intensity-modulated radiotherapy for nasopharyngeal carcinoma.

    PubMed

    Yang, Haihua; Tu, Yu; Wang, Wei; Hu, Wei; Ding, Weijun; Yu, Changhui; Zhou, Chao

    2013-01-01

    The purpose of this study was to compare anatomical and dosimetric variations in first 15 fractions, and between fractions 16 and 25, during intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC). Twenty-three NPC patients who received IMRT in 33 fractions were enrolled. Each patient had two repeat computed tomography (CT) scans before the 16th and 25th fraction. Hybrid IMRT plans were generated to evaluate the dosimetric changes. There was a significant decrease of the transverse diameter of nasopharyngeal and neck as well as gross tumor volume (GTV) in the primary nasopharyngeal carcinoma (GTVnx) and involved lymph nodes (GTVnd) during the first 15 fractions, and between fraction 16 and 25 (p < 0.05). Consequently, there was a significant reduction of the percentage of the volume receiving the prescribed dose (V100) of CTV1 and GTVnd, which was more prominent after the first 15 fractions treatment compared to that between fraction 16 and 25 (p < 0.05). Additionally, there was a significant increase in the mean dose (Dmean) and percentage of volume receiving ≥ 30 Gy (V30) to the bilateral parotid in the first 15 fractions (p < 0.05), but not between fraction 16 and 25. While the maximum dose to the spinal cord was significantly increased both in the first 15 fractions, and between fraction 16 and 25 (p < 0.05), the increase of the percent of spinal cord volume receiving ≥ 40 Gy (V40) was significantly higher in the first 15 fractions compared to that between fraction 16 and 25 (p < 0.05). Based on the dose constraint criterion in the RTOG0225 protocol, a total 39.1% (9/23) of phantom plan 1 (generated by applying the beam configurations of the original IMRT treatment plan to the anatomy of the second CT scan) and 17.4% (4/23) of phantom 2 (generated by applying the beam configurations of the replan 1 to the anatomy of the third CT scan) were out of limit for the dose to the normal critical structures. In conclusion, our data indicated that

  5. SU-E-P-48: Evaluation of Intensity Modulated Radiotherapy (IMRT) with Three Different Commercial Planning Systems for the Treatment of Cervical Cancer

    SciTech Connect

    Liu, D; Chi, Z; Yang, H; Miao, M; Jing, Z

    2015-06-15

    Purpose: To investigate the performances of three commercial treatment planning systems (TPS) for intensity modulated radiotherapy (IMRT) optimization regarding cervical cancer. Methods: For twenty cervical cancer patients, three IMRT plans were retrospectively re-planned: one with Pinnacle TPS,one with Oncentra TPS and on with Eclipse TPS. The total prescribed dose was 50.4 Gy delivered for PTV and 58.8 Gy for PTVnd by simultaneous integrated boost technique. The treatments were delivered using the Varian 23EX accelerator. All optimization schemes generated clinically acceptable plans. They were evaluated based on target coverage, homogeneity (HI) and conformity (CI). The organs at risk (OARs) were analyzed according to the percent volume under some doses and the maximum doses. The statistical method of the collected data of variance analysis was used to compare the difference among the quality of plans. Results: IMRT with Eclipse provided significant better HI, CI and all the parameters of PTV. However, the trend was not extension to the PTVnd, it was still significant better at mean dose, D50% and D98%, but plans with Oncentra showed significant better in the hight dosage volume, such as maximum dose and D2%. For the bladder wall, there were not notable difference among three groups, although Pinnacle and Oncentra systems provided a little lower dose sparing at V50Gy of bladder and rectal wall and V40Gy of bladder wall, respectively. V40Gy of rectal wall (p=0.037), small intestine (p=0.001 for V30Gy, p=0.010 for maximum dose) and V50Gy of right-femoral head (p=0.019) from Eclipse plans showed significant better than other groups. Conclusion: All SIB-IMRT plans were clinically acceptable which were generated by three commercial TPSs. The plans with Eclipse system showed advantages over the plans with Oncentra and Pinnacle system in the overwhelming majority of the dose coverage for targets and dose sparing of OARs in cervical cancer.

  6. Dose-Escalated Intensity-Modulated Radiotherapy Is Feasible and May Improve Locoregional Control and Laryngeal Preservation in Laryngo-Hypopharyngeal Cancers

    SciTech Connect

    Miah, Aisha B.; Bhide, Shreerang A.; Guerrero-Urbano, M. Teresa; Clark, Catharine; Bidmead, A. Margaret; St Rose, Suzanne; Barbachano, Yolanda; A'Hern, Roger; Tanay, Mary; Hickey, Jennifer; Nicol, Robyn; Newbold, Kate L.; Harrington, Kevin J.; Nutting, Christopher M.

    2012-02-01

    Purpose: To determine the safety and outcomes of induction chemotherapy followed by dose-escalated intensity-modulated radiotherapy (IMRT) with concomitant chemotherapy in locally advanced squamous cell cancer of the larynx and hypopharynx (LA-SCCL/H). Methods and Materials: A sequential cohort Phase I/II trial design was used to evaluate moderate acceleration and dose escalation. Patients with LA-SCCL/H received IMRT at two dose levels (DL): DL1, 63 Gy/28 fractions (Fx) to planning target volume 1 (PTV1) and 51.8 Gy/28 Fx to PTV2; DL2, 67.2 Gy/28 Fx and 56 Gy/28 Fx to PTV1 and PTV2, respectively. Patients received induction cisplatin/5-fluorouracil and concomitant cisplatin. Acute and late toxicities and tumor control rates were recorded. Results: Between September 2002 and January 2008, 60 patients (29 DL1, 31 DL2) with Stage III (41% DL1, 52% DL2) and Stage IV (52% DL1, 48% DL2) disease were recruited. Median (range) follow-up for DL1 was 51.2 (12.1-77.3) months and for DL2 was 36.2 (4.2-63.3) months. Acute Grade 3 (G3) dysphagia was higher in DL2 (87% DL2 vs. 59% DL1), but other toxicities were equivalent. One patient in DL1 required dilatation of a pharyngeal stricture (G3 dysphagia). In DL2, 2 patients developed benign pharyngeal strictures at 1 year. One underwent a laryngo-pharyngectomy and the other a dilatation. No other G3/G4 toxicities were reported. Overall complete response was 79% (DL1) and 84% (DL2). Two-year locoregional progression-free survival rates were 64.2% (95% confidence interval, 43.5-78.9%) in DL1 and 78.4% (58.1-89.7%) in DL2. Two-year laryngeal preservation rates were 88.7% (68.5-96.3%) in DL1 and 96.4% (77.7-99.5%) in DL2. Conclusions: At a mean follow-up of 36 months, dose-escalated chemotherapy-IMRT at DL2 has so far been safe to deliver. In this study, DL2 delivered high rates of locoregional control, progression-free survival, and organ preservation and has been selected as the experimental arm in a Cancer Research UK Phase III

  7. Anterior Myocardial Territory May Replace the Heart as Organ at Risk in Intensity-Modulated Radiotherapy for Left-Sided Breast Cancer

    SciTech Connect

    Tan Wenyong; Liu Dong; Xue Chenbin; Xu Jiaozhen; Li Beihui; Chen Zhengwang; Hu Desheng; Wang Xionghong

    2012-04-01

    Purpose: We investigated whether the heart could be replaced by the anterior myocardial territory (AMT) as the organ at risk (OAR) in intensity-modulated radiotherapy (IMRT) of the breast for patients with left-sided breast cancer. Methods and Materials: Twenty-three patients with left-sided breast cancer who received postoperative radiation after breast-conserving surgery were studied. For each patient, we generated five IMRT plans including heart (H), left ventricle (LV), AMT, LV+AMT, and H+LV as the primary OARs, respectively, except both lungs and right breast, which corresponded to IMRT(H), IMRT(LV), IMRT(AMT), IMRT(LV+AMT), and IMRT(H+LV). For the planning target volumes and OARs, the parameters of dose-volume histograms were compared. Results: The homogeneity index, conformity index, and coverage index were not compromised significantly in IMRT(AMT), IMRT(LV) and IMRT(LV+ AMT), respectively, when compared with IMRT(H). The mean dose to the heart, LV, and AMT decreased 5.3-21.5% (p < 0.05), 19.9-29.5% (p < 0.05), and 13.3-24.5% (p < 0.05), respectively. Similarly, the low (e.g., V5%), middle (e.g., V20%), and high (e.g., V30%) dose-volume of the heart, LV, and AMT decreased with different levels. The mean dose and V10% of the right lung increased by 9.2% (p < 0.05) and 27.6% (p < 0.05), respectively, in IMRT(LV), and the mean dose and V5% of the right breast decreased significantly in IMRT(AMT) and IMRT(LV+AMT). IMRT(AMT) was the preferred plan and was then compared with IMRT(H+LV); the majority of dose-volume histogram parameters of OARs including the heart, LV, AMT, both lungs, and the right breast were not statistically different. However, the low dose-volume of LV increased and the middle dose-volume decreased significantly (p < 0.05) in IMRT(AMT). Also, those of the right lung (V10%, V15%) and right breast (V5%, V10%) decreased significantly (p < 0.05). Conclusions: The AMT may replace the heart as the OAR in left-sided breast IMRT after breast

  8. No Impairment of Quality of Life 18 Months After High-Dose Intensity-Modulated Radiotherapy for Localized Prostate Cancer: A Prospective Study

    SciTech Connect

    Marchand, Virginie; Bourdin, Sylvain; Charbonnel, Christelle; Rio, Emmanuel

    2010-07-15

    Purpose: To determine prospectively intermediate-term toxicity and quality of life (QoL) of prostate cancer patients after intensity-modulated radiotherapy (IMRT). Patients and Methods: Fifty-five patients with localized prostate adenocarcinoma were treated by IMRT (76 Gy). Physicians scored acute and late toxicity using the Common Terminology Criteria for Adverse Events version 3.0. Patients assessed general and prostate-specific QoL before IMRT (baseline) and at 2, 6, and 18 months using European Organization for Research and Treatment of Cancer questionnaires QLQ-C30(+3) and QLQ-PR25. Results: Median age was 73 years (range, 54-80 years). Risk categories were 18% low risk, 60% intermediate risk, and 22% high risk; 45% of patients received hormonal therapy (median duration, 6 months). The incidence of urinary and bowel toxicity immediately after IMRT was, respectively, 38% and 13% (Grade 2) and 2% and none (Grade 3); at 18 months it was 15% and 11% (Grade 2) and none (Grade 3). Significant worsening of QoL was reported at 2 months with regard to fatigue (+11.31, p = 1.10{sup -7}), urinary symptoms (+9.07, p = 3.10{sup -11}), dyspnea (+7.27, p = 0.008), and emotional (-7.02, p = 0.002), social (-6.36, p = 0.003), cognitive (-4.85, p = 0.004), and physical (-3.39, p = 0.007) functioning. Only fatigue (+5.86, p = 0.003) and urinary symptoms (+5.86, p = 0.0004) had not improved by 6 months. By 18 months all QoL scores except those for dyspnea (+8.02, p = 0.01) and treatment-related symptoms (+4.24, p = 0.01) had returned to baseline. These adverse effects were exacerbated by hormonal therapy. Conclusion: High-dose IMRT with accurate positioning induces only a temporary worsening of QoL.

  9. Fluorine-18-Labeled Fluoromisonidazole Positron Emission and Computed Tomography-Guided Intensity-Modulated Radiotherapy for Head and Neck Cancer: A Feasibility Study

    PubMed Central

    Lee, Nancy Y.; Mechalakos, James G.; Nehmeh, Sadek; Lin, Zhixiong; Squire, Olivia D.; Cai, Shangde; Chan, Kelvin; Zanzonico, Pasquale B.; Greco, Carlo; Ling, Clifton C.; Humm, John L.; Schöder, Heiko

    2010-01-01

    Purpose Hypoxia renders tumor cells radioresistant, limiting locoregional control from radiotherapy (RT). Intensity-modulated RT (IMRT) allows for targeting of the gross tumor volume (GTV) and can potentially deliver a greater dose to hypoxic subvolumes (GTVh) while sparing normal tissues. A Monte Carlo model has shown that boosting the GTVh increases the tumor control probability. This study examined the feasibility of fluorine-18–labeled fluoromisonidazole positron emission tomography/computed tomography (18F-FMISO PET/CT)–guided IMRT with the goal of maximally escalating the dose to radioresistant hypoxic zones in a cohort of head and neck cancer (HNC) patients. Methods and Materials 18F-FMISO was administered intravenously for PET imaging. The CT simulation, fluorodeoxyglucose PET/CT, and 18F-FMISO PET/CT scans were co-registered using the same immobilization methods. The tumor boundaries were defined by clinical examination and available imaging studies, including fluorodeoxyglucose PET/CT. Regions of elevated 18F-FMISO uptake within the fluorodeoxyglucose PET/CT GTV were targeted for an IMRT boost. Additional targets and/or normal structures were contoured or transferred to treatment planning to generate 18F-FMISO PET/CT-guided IMRT plans. Results The heterogeneous distribution of 18F-FMISO within the GTV demonstrated variable levels of hypoxia within the tumor. Plans directed at performing 18F-FMISO PET/CT–guided IMRT for 10 HNC patients achieved 84 Gy to the GTVh and 70 Gy to the GTV, without exceeding the normal tissue tolerance. We also attempted to deliver 105 Gy to the GTVh for 2 patients and were successful in 1, with normal tissue sparing. Conclusion It was feasible to dose escalate the GTVh to 84 Gy in all 10 patients and in 1 patient to 105 Gy without exceeding the normal tissue tolerance. This information has provided important data for subsequent hypoxia-guided IMRT trials with the goal of further improving locoregional control in HNC

  10. SU-E-J-116: Uncertainties Associated with Dose Summation of High-Dose Rate Brachytherapy and Intensity Modulated Radiotherapy for Gynecological Cases

    SciTech Connect

    Kauweloa, K; Bergamo, A; Gutierrez, A; Stathakis, S; Papanikolaou, N; Kirby, N; Mavroidis, P

    2015-06-15

    Purpose: Determining the cumulative dose distribution (CDD) for gynecological patients treated with both high-dose rate (HDR) brachytherapy and intensity-modulated radiotherapy (IMRT) is challenging. The purpose of this work is to study the uncertainty of performing this with a structure-guided deformable (SGD) approach in Velocity. Methods: For SGD, the Hounsfield units inside specified contours are overridden to set uniform values. Deformable image registration (DIR) is the run on these process images, which forces the DIR to focus on these contour boundaries. 18 gynecological cancer patients were used in this study. The original bladder and rectum planning contours for these patients were used to drive the SGD. A second set of contours were made of the bladder by the same person with the intent of carefully making them completely consistent with each other. This second set was utilized to evaluate the spatial accuracy of the SGD. The determined spatial accuracy was then multiplied by the local dose gradient to determine a dose uncertainty associated with the SGD dose warping. The normal tissue complication probability (NTCP) was then calculated for each dose volume histogram (DVH) that included four different probabilistic uncertainties associated with the spatial errors (e.g., 68.3% and 95.4%). Results: The NTCPs for each DVH (e.g., NTCP-−95.4%, NTCP-−68.3%, NTCP-68.3%, NTCP-95.4%) differed amongst patients. All patients had an NTCP-−95.4% close to 0%, while NTCP-95.4% ranged from 0.67% to 100%. Nine patients had an NTCP-−95.4% less than 50% while the remaining nine patients had NTCP-95.4% greater than 50%. Conclusion: The uncertainty associated with this CDD technique renders a large NTCP uncertainty. Thus, it is currently not practical for clinical use. The two ways to improve this would be to use more precise contours to drive the SGD and to use a more accurate DIR algorithm.

  11. Dosimetric comparison between intensity-modulated radiotherapy and RapidArc with single arc and dual arc for malignant glioma involving the parietal lobe

    PubMed Central

    YUAN, JUN; LEI, MINGJUN; YANG, ZHEN; FU, JUN; HUO, LEI; HONG, JIDONG

    2016-01-01

    The aim of the present study was to evaluate the difference in treatment plan quality, monitor units (MUs) per fraction and dosimetric parameters between IMRT (intensity-modulated radiotherapy) and RapidArc with single arc (RA1) and dual arc (RA2) for malignant glioma involving the parietal lobe. Treatment plans for IMRT and RA1 and RA2 were prepared for 10 patients with malignant gliomas involving the parietal lobe. The Wilcoxon matched-pair signed-rank test was used to compare the plan quality, monitor units and dosimetric parameters between IMRT and RA1 and RA2 through dose-volume histograms. Dnear-max (D2%) to the left lens, right lens and left optical nerve in RA1 were less compared with those in IMRT; D2% to the right lens and right optic nerve in RA2 were less compared with those in IMRT. D2% to the optic chiasma in RA2 was small compared with that in RA1. The median dose (D50%) to the right lens and right optic nerve in RA1 and RA2 was less compared with the identical parameters in IMRT, and D50% to the brain stem in RA2 was less compared with that in RA1. The volume receiving at least 45 Gy (V45) or V50 in normal brain tissue (whole brain minus the planning target volume 2; B-P) in RA1 was less compared with that in IMRT. V30, V35, V40, V45, or V50 in B-P in RA2 was less compared with that in IMRT. The MUs per fraction in RA1 and RA2 were significantly less compared with those in IMRT. All differences with a P-value<0.05 were considered to be significantly different. In conclusion, RA1 and RA2 markedly reduced the MUs per fraction, and spared partial organs at risk and B-P compared with IMRT. PMID:27330795

  12. Protocol for a phase III randomised trial of image-guided intensity modulated radiotherapy (IG-IMRT) and conventional radiotherapy for late small bowel toxicity reduction after postoperative adjuvant radiation in Ca cervix

    PubMed Central

    Chopra, Supriya; Engineer, Reena; Mahantshetty, Umesh; Misra, Shagun; Phurailatpam, Reena; Paul, Siji N; Kannan, Sadhna; Kerkar, Rajendra; Maheshwari, Amita; Shylasree, TS; Ghosh, Jaya; Gupta, Sudeep; Thomas, Biji; Singh, Shalini; Sharma, Sanjiv; Chilikuri, Srinivas; Shrivastava, Shyam Kishore

    2012-01-01

    Introduction External beam radiation followed by vaginal brachytherapy (±chemotherapy) leads to reduction in the risk of local recurrence and improves progression-free survival in patients with adverse risk factors following Wertheim's hysterectomy albeit at the risk of late bowel toxicity. Intensity Modulated Radiotherapy (IMRT) results in reduction in bowel doses and has potential to reduce late morbidity, however, needs to be confirmed prospectively in a randomised trial. The present randomised trial tests reduction if any in late small bowel toxicity with the use of IMRT in postoperative setting. Methods and analysis Patients more than 18 years of age who need adjuvant (chemo) radiation will be eligible. Patients with residual pelvic or para-aortic nodal disease, history of multiple abdominal surgeries or any other medical bowel condition will be excluded. The trial will randomise patients into standard radiation or IMRT. The primary aim is to compare differences in late grades II–IV bowel toxicity between the two arms. The secondary aims of the study focus on evaluating correlation of dose–volume parameters and late toxicity and quality of life. The trial is planned as a multicentre randomised study. The trial is designed to detect a 13% difference in late grades II–IV bowel toxicity with an α of 0.05 and β of 0.80. A total of 240 patients will be required to demonstrate the aforesaid difference. Ethics and dissemination The trial is approved by institutional ethics review board and will be routinely monitored as per standard guidelines. The study results will be disseminated via peer reviewed scientific journals, conference presentations and submission to regulatory authorities. Registration The trial is registered with clinicaltrials.gov (NCT 01279135). PMID:23242243

  13. Intensity-Modulated Radiation Therapy Versus 3D Conformal Radiotherapy for Postoperative Gynecologic Cancer: Are They Covering the Same Planning Target Volume?

    PubMed Central

    Patil, Nikhilesh; D'souza, David; Millman, Barbara; Yaremko, Brian P; Leung, Eric; Whiston, Frances; Hajdok, George; Wong, Eugene

    2016-01-01

    Background and Purpose: This study compares dosimetric parameters of planning target volume (PTV) coverage and organs at risk (OAR) sparing when postoperative radiotherapy for gynecologic cancers is delivered using volumetric modulated arc therapy (VMAT) versus a four-field (4FLD) box technique. Material and Methods: From July to December 2012, women requiring postoperative radiation for gynecologic cancers were treated with a standardized VMAT protocol. Two sets of optimized 4FLD plans were retrospectively generated: one based on standard anatomical borders (4FLD) and one based on the clinical target volume (CTV) created for VMAT with a 2 cm expansion guiding field border placement (4FLD+2). Ninety-five percent isodose curves were generated to evaluate PTV coverage. Results: VMAT significantly improved dose conformity compared with 4FLD and 4FLD+2 plans (p < 0.001) and provided additional coverage of the PTV posteriorly and superiorly, corresponding to coverage of the presacral and proximal iliac vessels. There was a significant reduction in dose to all OARs with VMAT, including a 58% reduction in the volume of the small bowel receiving more than 45 Gy (p=0.005). Conclusions: Despite treating a larger volume, radiotherapy using a 4FLD technique is less homogenous and provides inferior coverage of the PTV compared with VMAT. With meticulous treatment planning and delivery, VMAT effectively encompasses the PTV and minimizes dose to OARs. PMID:26973802

  14. SU-E-T-592: Relationship Between Dose of Distribution and Area of Segment Fields Among Different Intensity-Modulated Radiotherapy Planning in Cervix Cancer

    SciTech Connect

    Qiu, R; Wang, Y; Cao, Y; Zhang, R; Shang, K; Chi, Z

    2014-06-01

    Purpose: In premise of uninfluenced to dose distribution of tumor target and organ at risk(OAR) in cervical cancer,area of segment fields was changed to increase efficacy and optimize treatment method by designing different plan of intensity modulated radiotherapy(IMRT). Methods: 12 cases of cervical cancer were confirmed in pathology and treated with step and shoot IMRT. Dose of PTV was 50Gy/25fractions. Every patient was designed 9 treatment plans of IMRT by Pinnacle 8.0m planning system,each plan was used with 9 beams of uniform distribution and fixing incidence direction(200°,240°,280°,320°,0°,40°,80°,120°and 160°respectively),and designed for delivery on Elekta Synergy linear accelerator. All plans were optimized with the direct machine parameter optimization(DMPO) algorithm using the same set of optimization objectives. Number of maximum segment field was defined at 80 and minimum MU in each segment was 5MU,and minimal segment area was 2*1cm{sup 2},2*2cm{sup 2},3*3cm{sup 2},4*4cm{sup 2},5*5cm{sup 2},6*6cm{sup 2},7*7cm{sup 2},8*8cm{sup 2}and 9*9cm{sup 2},respectively.Coverage,homogeneity and conformity of PTV,sparing of OAR, MU and number of segment were compared. Results: In this group, mean volume of PTV was 916.8±228.7 cm{sup 3}. Compared with the area of minimal segment field increased from 2*1cm{sup 2} to 9*9 cm{sup 2},the number of mean MU was decreased from 1405±170 to 490±47 and the number of segment field was reduced from 76±4 to 39±7 respectively(p<0.05). When the limit of minimal segment area was increased from 2*1cm{sup 2} to 7*7 cm{sup 2},dose distribution of PTV,OAR,CI,HI and V{sub 2} {sub 3} were not different (p>0.05),but when the minimal segment area was 8*8 cm{sup 2} and 9*9 cm{sup 2},they were changed compared with 7*7 cm{sup 2} and below(p<0.05). Conclusion: The minimal segment field of IMRT plan designed by Pinnacle 8.0m planning system in cervical carcinoma should be enlarge reasonably and minimal segment area of 7*7 cm

  15. Involved-Node and Involved-Field Volumetric Modulated Arc vs. Fixed Beam Intensity-Modulated Radiotherapy for Female Patients With Early-Stage Supra-Diaphragmatic Hodgkin Lymphoma: A Comparative Planning Study

    SciTech Connect

    Weber, Damien C.; Peguret, Nicolas; Dipasquale, Giovanna; Cozzi, Luca

    2009-12-01

    Purpose: A comparative treatment planning study was performed to compare volumetric-modulated arc (RA) to conventional intensity modulated (IMRT) for involved-field (IFRT) and involved-node (INRT) radiotherapy for Hodgkin lymphoma (HL). Methods and Materials: Plans for 10 early-stage HL female patients were computed for RA and IMRT. First, the planning target volume (PTV) coverage and organs at risk (OAR) dose deposition was assessed between the two modalities. Second, the OAR (lung, breast, heart, thyroid, and submandibular gland) dose-volume histograms were computed and compared for IFRT and INRT, respectively. Results: For IFRT and INRT, PTV coverage was equally homogeneous with both RA and IMRT. By and large, the OAR irradiation with IFRT planning was not significantly different between RA and IMRT. For INRT, doses computed for RA were, however, usually lower than those with IMRT, particularly so for the lung, breast, and thyroid. Regardless of RA and IMRT modalities, a significant 20-50% decrease of the OAR computed mean doses was observed with INRT when compared with IFRT (Breast D{sub Mean} 1.5 +- 1.1 vs. 2.6 +- 1.7 Gy, p < 0.01 and 1.6 +- 1.1 vs. 2.9 +- 1.9 Gy, p < 0.01 for RA and IMRT, respectively). Conclusions: RA and IMRT results in similar level of dose homogeneity. With INRT but not IFRT planning, the computed doses to the PTV and OAR were usually higher and lower with RA when compared to IMRT. Regardless of the treatment modality, INRT when compared with IFRT planning led to a significant decrease in OAR doses, particularly so for the breast and heart.

  16. A comparison of volumetric modulated arc therapy and sliding-window intensity-modulated radiotherapy in the treatment of Stage I-II nasal natural killer/T-cell lymphoma.

    PubMed

    Liu, Xianfeng; Yang, Yong; Jin, Fu; He, Yanan; Zhong, Mingsong; Luo, Huanli; Qiu, Da; Li, Chao; Yang, Han; He, Guanglei; Wang, Ying

    2016-01-01

    This article is aimed to compare the dosimetric differences between volumetric modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) for Stage I-II nasal natural killer/T-cell lymphoma (NNKTL). Ten patients with Stage I-II NNKTL treated with IMRT were replanned with VMAT (2 arcs). The prescribed dose of the planning target volume (PTV) was 50Gy in 25 fractions. The VMAT plans with the Anisotropic Analytical Algorithm (Version 8.6.15) were based on an Eclipse treatment planning system; the monitor units (MUs) and treatment time (T) were scored to measure the expected treatment efficiency. All the 10 patients under the study were subject to comparisons regarding the quality of target coverage, the efficiency of delivery, and the exposure of normal adjacent organs at risk (OARs). The study shows that VMAT was associated with a better conformal index (CI) and homogeneity index (HI) (both p < 0.05) but slightly higher dose to OARs than IMRT. The MUs with VMAT (650.80 ± 24.59) were fewer than with IMRT (1300.10 ± 57.12) (relative reduction of 49.94%, p = 0.00) when using 2-Gy dose fractions. The treatment time with VMAT (3.20 ± 0.02 minutes) was shorter than with IMRT (7.38 ± 0.18 minutes) (relative reduction of 56.64%, p = 0.00). We found that VMAT and IMRT both provide satisfactory target dosimetric coverage and OARs sparing clinically. Likely to deliver a bit higher dose to OARs, VMAT in comparison with IMRT, is still a better choice for treatment of patients with Stage I-II NNKTL, thanks to better dose distribution, fewer MUs, and shorter delivery time. PMID:26428072

  17. Planning analysis for locally advanced lung cancer: dosimetric and efficiency comparisons between intensity-modulated radiotherapy (IMRT), single-arc/partial-arc volumetric modulated arc therapy (SA/PA-VMAT)

    PubMed Central

    2011-01-01

    Purpose To analyze the differences between the intensity-modulated radiotherapy (IMRT), single/partial-arc volumetric modulated arc therapy (SA/PA-VMAT) techniques in treatment planning for locally advanced lung cancer. Materials and methods 12 patients were retrospectively studied. In each patient's case, several parameters were analyzed based on the dose-volume histograms (DVH) of the IMRT, SA/PA-VMAT plans respectively. Also, each plan was delivered to a phantom for time comparison. Results The SA-VMAT plans showed the superior target dose coverage, although the minimum/mean/maximum doses to the target were similar. For the total and contralateral lungs, the higher V5/10, lower V20/30 and mean lung dose (MLD) were observed in the SA/PA-VMAT plans (p < 0.05, respectively). The PA-VMAT technique improves the dose sparing (V20, V30 and MLD) of the controlateral lung more notably, comparing to those parameters of the IMRT and SA-VMAT plans respectively. The delivered monitor units (MUs) and treatment times were reduced significantly with VMAT plans, especially PA-VMAT plans (for MUs: mean 458.3 vs. 439.2 vs. 435.7 MUs, p < 0.05 and for treatment time: mean 13.7 vs. 10.6 vs. 6.4 minutes, p < 0.01). Conclusions The SA-VMAT technique achieves highly conformal dose distribution to the target. Comparing to the IMRT plans, the higher V5/10, lower V20/30 and MLD were observed in the total and contralateral lungs in the VMAT plans, especially in the PA-VMAT plans. The SA/PA-VMAT plans also reduced treatment time with more efficient dose delivering. But the clinical benefit of the VMAT technique for locally advanced lung cancer needs further investigations. PMID:22014217

  18. A comparative dosimetric study of volumetric-modulated arc therapy vs. fixed field intensity-modulated radiotherapy in postoperative irradiation of stage IB-IIA high-risk cervical cancer

    PubMed Central

    QIAO, LILI; CHENG, JIAN; LIANG, NING; XIE, JIAN; LUO, HUI; ZHANG, JIANDONG

    2016-01-01

    The aim of the present study was to compare the dosimetry features of volumetric-modulated arc therapy (VMAT) and fixed field intensity-modulated radiotherapy (f-IMRT) in postoperative irradiation of stage IB-IIA high-risk cervical cancer. Fifteen patients exhibiting stage IB-IIA high-risk cervical cancer, who had been treated with postoperative adjuvant concurrent radiochemotherapy, were selected. The clinical target volume (CTV) and organs at risk (OARs) were delineated according to contrast computed tomography images. The planning target volume (PTV) was subsequently produced by using 1 cm uniform expansion of the CTV. The treatment plans were intended to deliver 50 Gy in 25 fractions. The OARs that were contoured included the bladder, rectum, small bowel and femoral heads. Dose volume histograms were used to evaluate the dose distribution in the PTV and OARs. VMAT and f-IMRT treatment plans resulted in similar dose coverage of the PTV. VMAT was superior to f-IMRT in conformity (P<0.05), and resulted in a reduction of OARs irradiated at high dose levels (V40 and V50) compared with f-IMRT (P<0.05), particularly for the bladder. However, the doses of low levels (V10 and V20) delivered to OARs with f-IMRT were slightly reduced compared with VMAT (P<0.05). For ambilateral femoral heads, VMAT demonstrated improved sparing compared with f-IMRT, with regard to D5 (P<0.05). Furthermore, VMAT treatment plans revealed a significant reduction in monitor units (MU) and treatment time. VMAT techniques exhibited similar PTV coverage compared with f-IMRT. At doses of high levels delivered to OARs, VMAT demonstrated improved sparing compared with f-IMRT, particularly for the bladder, while significantly reducing treatment time and MU number. PMID:26893675

  19. Potential for reduced radiation-induced toxicity using intensity-modulated arc therapy for whole-brain radiotherapy with hippocampal sparing.

    PubMed

    Pokhrel, Damodar; Sood, Sumit; Lominska, Christopher; Kumar, Pravesh; Badkul, Rajeev; Jiang, Hongyu; Wang, Fen

    2015-01-01

    The purpose of this study was to retrospectively investigate the accuracy, plan quality, and efficiency of using intensity-modulated arc therapy (IMAT) for whole brain radiotherapy (WBRT) patients with sparing not only the hippocampus (following RTOG 0933 compliance criteria) but also other organs at risk (OARs). A total of 10 patients previously treated with nonconformal opposed laterals whole-brain radiotherapy (NC-WBRT) were retrospectively replanned for hippocampal sparing using IMAT treatment planning. The hippocampus was volumetrically contoured on fused diagnostic T1-weighted MRI with planning CT images and hippocampus avoidance zone (HAZ) was generated using a 5 mm uniform margin around the hippocampus. Both hippocampi were defined as one paired organ. Whole brain tissue minus HAZ was defined as the whole-brain planning target volume (WB-PTV). Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5 mm leaf width at isocenter) and 6 MV beam for a prescription dose of 30 Gy in 10 fractions following RTOG 0933 dosimetric criteria. Two full coplanar arcs with orbits avoidance sectors were used. In addition to RTOG criteria, doses to other organs at risk (OARs), such as parotid glands, cochlea, external/middle ear canals, skin, scalp, optic pathways, brainstem, and eyes/lens, were also evaluated. Subsequently, dose delivery efficiency and accuracy of each IMAT plan was assessed by delivering quality assurance (QA) plans with a MapCHECK device, recording actual beam-on time and measuring planed vs. measured dose agreement using a gamma index. On IMAT plans, following RTOG 0933 dosimetric criteria, the maximum dose to WB-PTV, mean WB-PTV D2%, and mean WB-PTV D98% were 34.9 ± 0.3 Gy, 33.2 ± 0.4 Gy, and 26.0± 0.4Gy, respectively. Accordingly, WB-PTV received the prescription dose of 30Gy and mean V30 was 90.5% ± 0.5%. The D100%, and

  20. Intensity-Modulated Proton Therapy Reduces the Dose to Normal Tissue Compared With Intensity-Modulated Radiation Therapy or Passive Scattering Proton Therapy and Enables Individualized Radical Radiotherapy for Extensive Stage IIIB Non-Small-Cell Lung Cancer: A Virtual Clinical Study

    SciTech Connect

    Zhang Xiaodong; Li Yupeng; Pan Xiaoning; Xiaoqiang, Li; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Chang, Joe Y.

    2010-06-01

    Purpose: To compare dose volume histograms of intensity-modulated proton therapy (IMPT) with those of intensity-modulated radiation therapy (IMRT) and passive scattering proton therapy (PSPT) for the treatment of stage IIIB non-small-cell lung cancer (NSCLC) and to explore the possibility of individualized radical radiotherapy. Methods and Materials: Dose volume histograms designed to deliver IMRT at 60 to 63 Gy, PSPT at 74 Gy, and IMPT at the same doses were compared and the use of individualized radical radiotherapy was assessed in patients with extensive stage IIIB NSCLC (n = 10 patients for each approach). These patients were selected based on their extensive disease and were considered to have no or borderline tolerance to IMRT at 60 to 63 Gy, based on the dose to normal tissue volume constraints (lung volume receiving 20 Gy [V20] of <35%, total mean lung dose <20 Gy; spinal cord dose, <45 Gy). The possibility of increasing the total tumor dose with IMPT for each patient without exceeding the dose volume constraints (maximum tolerated dose [MTD]) was also investigated. Results: Compared with IMRT, IMPT spared more lung, heart, spinal cord, and esophagus, even with dose escalation from 63 Gy to 83.5 Gy, with a mean MTD of 74 Gy. Compared with PSPT, IMPT allowed further dose escalation from 74 Gy to a mean MTD of 84.4 Gy (range, 79.4-88.4 Gy) while all parameters of normal tissue sparing were kept at lower or similar levels. In addition, IMPT prevented lower-dose target coverage in patients with complicated tumor anatomies. Conclusions: IMPT reduces the dose to normal tissue and allows individualized radical radiotherapy for extensive stage IIIB NSCLC.

  1. Single arc volumetric-modulated arc therapy is sufficient for nasopharyngeal carcinoma: a dosimetric comparison with dual arc VMAT and dynamic MLC and step-and-shoot intensity-modulated radiotherapy

    PubMed Central

    2013-01-01

    Background The performance of single arc VMAT (VMAT1) for nasopharyngeal carcinoma (NPC) on the Axesse linac has not been well described in previous studies. The purpose of this study is to assess the feasibility of VMAT1 for NPC by comparing the dosimetry, delivery efficiency, and accuracy with dual arc VMAT (VMAT2), dynamic MLC intensity-modulated radiotherapy (dIMRT), and step-and-shoot intensity-modulated radiotherapy (ssIMRT). Methods Twenty consecutive patients with non-metastatic NPC were selected to be planned with VMAT1, VMAT2, dIMRT and ssIMRT using Monaco 3.2 TPS on the Axesse™ linear accelerator. Three planning target volumes (PTVs), contoured as high risk, moderate risk and low risk regions, were set to receive median absorbed-dose (D50%) of 72.6 Gy, 63.6 Gy and 54 Gy, respectively. The Homogeneity Index (HI), Conformity Index (CI), Dose Volume Histograms (DVHs), delivery efficiency and accuracy were all evaluated. Results Mean HI of PTV72.6 is better with VMAT1(0.07) and VMAT2(0.07) than dIMRT(0.09) and ssIMRT(0.09). Mean HI of PTV63.6 is better with VMAT1(0.21) and VMAT2(0.21) than dIMRT and ssIMRT. Mean CI of PTV72.6 is also better with VMAT1(0.57) and VMAT2(0.57) than dIMRT(0.49) and ssIMRT(0.5). Mean CI of PTV63.6 is better with VMAT1(0.76) and VMAT2(0.76) than dIMRT(0.73) and ssIMRT(0.73). VMAT had significantly improved homogeneity and conformity compared with IMRT. There was no significant difference between VMAT1 and VMAT2 in PTV coverage. Dose to normal tissues was acceptable for all four plan groups. VMAT1 and VMAT2 showed no significant difference in normal tissue sparring, whereas the mean dose of the parotid gland of dIMRT was significantly reduced compared to VMAT1 and VMAT2. The mean delivery time for VMAT1, VMAT2, dIMRT and ssIMRT was 2.7 min, 3.9 min, 5.7 min and 14.1 min, respectively. VMAT1 reduced the average delivery time by 29.8%, 51.1% and 80.8% compared with VMAT2, dIMRT and ssIMRT, respectively. VMAT and IMRT could all be

  2. Planning tools for modulated electron radiotherapy

    SciTech Connect

    Surucu, Murat; Klein, Eric E.; Mamalui-Hunter, Maria; Mansur, David B.; Low, Daniel A.

    2010-05-15

    Purpose: To develop tools to plan modulated electron radiotherapy (MERT) and to compare the MERT plans to conventional or intensity modulated radiotherapy (IMRT) treatment plans. Methods: Monte Carlo dose calculations of electron fields shaped with the inherent photon multileaf collimators (MLCs) were investigated in this study. Treatment plans for four postmastectomy breast cancer patients were generated using MERT. The distances from the patient skin surfaces to the distal planning target volume surfaces were computed along the beam axis direction to determine the physical depth. Electron beam energies were selected to provide target coverage at these depths and energy bins were generated. A custom built MERT treatment planning graphical user interface (MERTgui) was used to shape the electron bins into deliverable electron segments. Monte Carlo dose distribution simulations were performed using the MLC-defined segments generated from the MERTgui. A custom built superposition gui was used to combine doses for each segment using relative weights and final MERT treatment plans were compared to the conventional or IMRT treatment plans. In addition, a demonstration of combined MERT and IMRT treatment plans was performed. Results: The MERT treatment plans provided acceptable target organ coverage in all cases. Relative to 3D conventional or IMRT treatment plans, the MERT plans predicted lower heart doses in all cases; average of the heart D{sub 20} of all plans was reduced from 14.1 to 3.3 Gy. The contralateral breast and contralateral lung doses decreased substantially with MERT planning compared to IMRT (on average, contralateral breast heart D{sub 20} was reduced from 8.7 to 0.7 Gy and contralateral lung D{sub 20} was reduced from 8.4 to 1.2 Gy with MERT). Ipsilateral lung D{sub 20} was lower with MERT than with the conventional plans (44.6 vs 29.2 Gy with MERT), but greater when compared against IMRT treatment plans (25.4 vs 28.9 Gy with MERT). A MERT and IMRT

  3. Volumetric-modulated arc therapy (RapidArc) vs. conventional fixed-field intensity-modulated radiotherapy for {sup 18}F-FDG-PET-guided dose escalation in oropharyngeal cancer: A planning study

    SciTech Connect

    Teoh, May; Beveridge, Sabeena; Wood, Katie; Whitaker, Stephen; Adams, Elizabeth; Rickard, Donna; Jordan, Tom; Nisbet, Andrew; Clark, Catharine H.

    2013-04-01

    Fluorine-18-fluorodeoxyglucose-positron emission tomography ({sup 18}F-FDG-PET)–guided focal dose escalation in oropharyngeal cancer may potentially improve local control. We evaluated the feasibility of this approach using volumetric-modulated arc therapy (RapidArc) and compared these plans with fixed-field intensity-modulated radiotherapy (IMRT) focal dose escalation plans. Materials and methods: An initial study of 20 patients compared RapidArc with fixed-field IMRT using standard dose prescriptions. From this cohort, 10 were included in a dose escalation planning study. Dose escalation was applied to {sup 18}F-FDG-PET–positive regions in the primary tumor at dose levels of 5% (DL1), 10% (DL2), and 15% (DL3) above standard radical dose (65 Gy in 30 fractions). Fixed-field IMRT and double-arc RapidArc plans were generated for each dataset. Dose-volume histograms were used for plan evaluation and comparison. The Paddick conformity index (CI{sub Paddick}) and monitor units (MU) for each plan were recorded and compared. Both IMRT and RapidArc produced clinically