Science.gov

Sample records for inter-island cable project

  1. An Economic Analysis of the Kilauea Geothermal Development and Inter-Island Cable Project

    SciTech Connect

    1990-03-01

    A study by NEA completed in April 1987 shows that a large scale (500 MW) geothermal development on the big island of Hawaii and the inter-island power transmission cable is economically infeasible. This updated report, utilizing additional information available since 1987, reaches the same conclusion: (1) The state estimate of $1.7 billion for development cost of the geothermal project is low and extremely optimistic. more realistic development costs are shown to be in the range of $3.4 to $4.3 billion and could go as high as $4.6 billion. (2) Compared to alternative sources of power generation, geothermal can be 1.7 to 2.4 times as costly as oil, and 1.2 to 1.7 times as costly as a solar/oil generating system. (3) yearly operation and maintenance costs for the large scale geothermal project are estimated to be 44.7 million, 72% greater than a solar/oil generating system. (4) Over a 40-year period ratepayers could pay, on average, between 1.3 (17.2%) and 2.4 cents (33%) per kWh per year more for electricity produced by geothermal than they are currently paying (even with oil prices stabilizing at $45 per barrel in 2010). (5) A comparable solar/oil thermal energy development project is technologically feasible, could be island specific, and would cost 20% to 40% less than the proposed geothermal development. (6) Conservation is the cheapest alternative of all, can significantly reduce demand, and provides the greatest return to ratepayers. There are better options than geothermal. Before the State commits the people of Hawaii to future indebtedness and unnecessary electricity rate increases, more specific study should be conducted on the economic feasibility, timing, and magnitude of the geothermal project. The California experience at The Geyers points up the fact that it can be a very risky and disappointing proposition. The state should demand that proponents and developers provide specific answers to geothermals troubling questions before they make an

  2. Renewable Energy and Inter-Island Power Transmission (Presentation)

    SciTech Connect

    Gevorgian, V.

    2011-05-01

    This presentation summarizes recent findings pertaining to inter-island connection of renewable and other energy sources, in particular, as these findings relate cable options, routing, specifications, and pros and cons.

  3. Flat conductor cable commercialization project

    NASA Technical Reports Server (NTRS)

    Hogarth, P.; Wadsworth, E.

    1977-01-01

    An undercarpet flat conductor cable and a baseboard flat conductor cable system were studied for commercialization. The undercarpet system is designed for use in office and commercial buildings. It employs a flat power cable, protected by a grounded metal shield, that terminates in receptacles mounted on the floor. It is designed to interface with a flat conductor cable telephone system. The baseboard system consists of a flat power cable mounted in a plastic raceway; both the raceway and the receptacles are mounted on the surface of the baseboard. It is designed primarily for use in residential buildings, particularly for renovation and concrete and masonry construction.

  4. Design and Evaluation of Ybco Cable for the Albany Hts Cable Project

    NASA Astrophysics Data System (ADS)

    Ohya, M.; Yumura, H.; Ashibe, Y.; Ito, H.; Masuda, T.; Sato, K.

    2008-03-01

    The Albany Cable Project's aim is to develop a 350 meter long HTS cable system with a capacity of 800 A at 34.5 kV, located between two substations in the National Grid Power Company's grid. In-grid use of BSCCO HTS cable began on July 20, 2006, and successful long-term operation proceeded as planned. The cable system consists of two cables, one 320 meters long and the other 30 meters, a cable-to-cable splice in a vault, two terminations, and a cooling system. In Phase-II of the Albany project, this autumn, the 30-meter section will be replaced with YBCO cable. The test manufacturing and evaluation of YBCO cable has been carried out using SuperPower's YBCO wires in order to confirm the credibility of the cable design. No degradation of the critical current was found at any stage of manufacture. The fault-current test, involving a 1-meter sample carrying 23 kA at 38 cycles, was conducted under open-bath conditions. The temperature increases at the conductor and shield were comparable to those of the BSCCO core, and no Ic degradation was found after the fault-current test. After the design suitability was confirmed, a 30-meter YBCO cable was manufactured. The critical current of the conductor and the shield were approximately 2.6 kA and 2.4 kA, respectively, almost the same as the design values, considering the wire's Ic and the effect of the magnetic field. The AC loss of the sample cable was 0.34 W/m/phase at 800 Arms and 60 Hz. Following favorable shipping test results, the YBCO cable was shipped to the United States, and arrived at the site in June 2007.

  5. Development of HTS Cable System for ALBANY Project

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Yumura, H.; Takigawa, H.; Ito, H.; Ashibe, Y.; Kato, T.; Suzawa, C.; Masuda, T.; Sato, K.; Isojima, S.

    2006-06-01

    High temperature superconducting (HTS) cable is anticipated to transmit a large amount of electricity with a compact size and can reduce the transmission loss and greenhouse gas emission. The Albany project is being undertaken to verify the practicability of a long HTS cable in the real grid by performing a long-term operation test. The cable is 350-meter long and carries 800 A at 34.5 kV between two electric power substations (Menands and Riverside) in Albany, N.Y. [1]. The project is scheduled to run from 2002 to 2007 and is proceeding as planned. The HTS cable and its apparatus were manufactured in Japan, and the cable was shipped to the USA in the middle of August. After it arrives at the site, the cable installation and the apparatus assembly will be carried out sequentially. This system is expected to begin operating early next year after initial cooling. This paper gives an overview and the current status of the development of the HTS cable system.

  6. Copper Cable Recycling System - The INEEL LSDDP Demonstration Project

    SciTech Connect

    Conner, Craig C; Meservey, Richard Harlan; Rosenberger, S.

    2001-02-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for the deactivation and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) and the DOE’s office of Science and Technology (OST) sponsors Large Scale Demonstration and Deployment Projects (LSDDPs). The increasing number of deactivation and decommissioning (D&D) activities at nuclear facilities can generate hundreds of tons of cables per facility consuming valuable resources such as disposal space and copper. Driven by increasing environmental concerns as well as economical pressures there is a developing need for the recycling of the uncontaminated copper. As part of the LSDDP program the NUKEM Copper Cable Recycling System (CCRS) was demonstrated November 1999 at the Idaho National Engineering and Environmental Laboratory (INEEL). This process allows recovering and recycling the uncontaminated copper contained in surface contaminated cables. The NUKEM CCRS was originally developed in Germany for the use during the D&D of commercial power plants. Up to date the CCRS has successfully processed in Germany more than 200 metric tons of contaminated cables resulting in virtually 100% free release of copper under the German standards. A total of 13.5 tons non and surrogate contaminated cables in a wide variety of sizes were successfully processed during the technology demonstration at INEEL. The assessment has demonstrated the mobility and flexibility of this new process.

  7. Black Creek Hydro Project high-line cable penstock installation

    SciTech Connect

    Fonnesbeck, K.C.; Ellicock, R.

    1995-12-31

    The Black Creek Hydro Project is a remote, high head, run-of-river, small hydro project located near Seattle, Washington. The comparatively small size of this project was not indicative of the difficulties and challenges presented to the design engineers and construction contractors involved in it`s completion. The most difficult of these challenges was the design and installation of a buried penstock on very steep and heavily forested terrain. This paper will concentrate on construction of the Black Creek penstock, and specifically, that portion of the penstock which required innovative application of a suspended {open_quotes}high-line{close_quotes} cable operation as used is commonly for logging of steep slopes. For this project, the cable installation and yarder equipment were utilized for a variety of purposes including, clearing and logging of the slope, to secure heavy equipment and machinery required to excavate the penstock trench, transport and placement of the individual pipe joints and finally to encase the pipe with lean concrete. The successful application of this approach contributed greatly to the timely completion of the project. This paper will offer background information on the selection and design of the cable Installation as well as highlights of the solutions that were developed to overcome the design and construction problems encountered. Finally, cost data will be offered to those who may be faced with similar undertakings caused by the steep and difficult sites attracting more attention in present days.

  8. Development of cable drive systems for an automated assembly project

    NASA Technical Reports Server (NTRS)

    Monroe, Charles A., Jr.

    1990-01-01

    In a robotic assembly project, a method was needed to accurately position a robot and a structure which the robot was to assemble. The requirements for high precision and relatively long travel distances dictated the use of cable drive systems. The design of the mechanisms used in translating the robot and in rotating the assembly under construction is discussed. The design criteria are discussed, and the effect of particular requirements on the design is noted. Finally, the measured performance of the completed mechanism is compared with design requirements.

  9. 76 FR 78159 - Safety Zone; Submarine Cable Installation Project; Chicago River South Branch, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Submarine Cable Installation Project... publishing a notice of proposed rulemaking (NPRM) with respect to this. The final details for this project... the submarine cable installation project. Waiting for a comment period to run would prevent the...

  10. Test Results For a 25-m Prototype Fault Current Limiting HTS Cable for Project Hydra

    SciTech Connect

    Rey, Christopher M; Duckworth, Robert C; Demko, Jonathan A; Ellis, Alvin R; Gouge, Michael J; James, David Randy; Tuncer, Enis

    2010-01-01

    The Oak Ridge National Laboratory (ORNL) has tested a 25-m long prototype High Temperature Superconducting (HTS) cable with inherent Fault-Current Limiting (FCL) capability at its recently upgraded HTS cable test facility in Oak Ridge, TN. The HTS-FCL cable and terminations were designed and fabricated by Ultera, which is a joint venture of Southwire and nkt cables with FCL features and HTS wire provided by American Superconductor Corporation. The overall project is sponsored by the U.S. Department of Homeland Security. The ultimate goal of the 25-m HTS-FCL cable test program was to verify the design and ensure the operational integrity for the eventual installation of a ~ 200-m fully functional HTS-FCL cable in the Consolidated Edison electric grid located in downtown New York City. The 25-m HTS-FCL cable consisted of a three-phase (3- ) Triax design with a cold dielectric between the phases. The HTS-FCL cable had an operational voltage of 13.8 kV phase-to-phase and an operating current of 4000 Arms per phase, which is the highest operating current to date of any HTS cable. The 25-m HTS-FCL cable was subjected to a series of cryogenic and electrical tests. Test results from the 25-m HTS-FCL cable are presented and discussed.

  11. Test Results for a 25 Meter Prototype Fault Current Limiting Hts Cable for Project Hydra

    NASA Astrophysics Data System (ADS)

    Rey, C. M.; Duckworth, R. C.; Demko, J. A.; Ellis, A.; James, D. R.; Gouge, M. J.; Tuncer, E.

    2010-04-01

    The Oak Ridge National Laboratory (ORNL) has tested a 25-m long prototype High Temperature Superconducting (HTS) cable with inherent Fault-Current Limiting (FCL) capability at its HTS cable test facility. The HTS-FCL cable and terminations were designed and fabricated by Ultera, which is a joint venture between Southwire and nkt cables. System integration and HTS wire were provided by American Superconductor Corporation who was the overall team leader of the project. The ultimate goal of the 25-m HTS-FCL cable test program was to verify the design and ensure the operational integrity for the eventual installation of a ˜200-m fully functional HTS-FCL cable in the Consolidated Edison electric grid located in downtown New York City. The 25-m HTS-FCL cable consisted of a three-phase (3-Φ) HTS Triax™ design with a cold dielectric between the phases. The HTS-FCL cable had an operational voltage of 13.8 kV phase-to-phase (7967 V phase-to-ground) and an operating current of 4000 Arms per phase, which is the highest operating current to date of any HTS cable. The 25-m HTS-FCL cable was subjected to a series of cryogenic and electrical tests. Test results from the 25-m HTS-FCL cable are presented and discussed.

  12. Albany Hts Cable Project Long Term In-Grid Operation Status Update

    NASA Astrophysics Data System (ADS)

    Yumura, H.; Masuda, T.; Watanabe, M.; Takigawa, H.; Ashibe, Y.; Ito, H.; Hirose, M.; Sato, K.

    2008-03-01

    High-temperature superconducting (HTS) cable systems are expected to be a solution for improvement of the power grid and three demonstration projects in the real grid are under way in the United States. One of them is the Albany, NY Cable Project, involving the installation and operation of a 350 meter HTS cable system with a capacity of 34.5kV, 800A, connecting between two substations in National Grid's electric utility system. A 320 meter and a 30 meter cable are installed in underground conduit and connected together in a vault. The cables were fabricated with 70km of DI-BSCCO wire in a 3 core-in-one cryostat structure. The cable installation of a 320 meter and a 30 meter section was completed successfully using the same pulling method as a conventional underground cable. After the cable installation, the joint and two terminations were assembled at the Albany site. After the initial cooling of the system, the commissioning tests such as the critical current, heat loss measurement and DC withstand voltage test were conducted successfully. The in-grid operation began on July 20th, 2006 and operated successfully in unattended condition through May 1st, 2007. In the 2nd phase of the Albany project, the 30 meter section is to be replaced by a YBCO cable. The YBCO cable had been developed and a new 30 meter cable was manufactured by using SuperPower's YBCO coated conductors. This paper describes the latest status of the Albany cable project.

  13. Test results of a 30-m HTS cable pre-demonstration system in Yokohama project

    NASA Astrophysics Data System (ADS)

    Yumura, H.; Ashibe, Y.; Ohya, M.; Itoh, H.; Watanabe, M.; Yatsuka, K.; Masuda, T.; Honjo, S.; Mimura, T.; Kitoh, Y.; Noguchi, Y.

    2010-11-01

    High temperature superconducting cable demonstration project supported by Ministry of Economy, Trade and Industry and New Energy and Industrial Technology Development Organization has started since FY 2007 in Japan. Target of this project is to operate a 66 kV, 200 MVA HTS cable in a live grid in order to demonstrate its reliability and stable operation. A demonstration site has been decided to Asahi substation which is located in Yokohama. The cable length will be decided to between 200 and 300 m depending on a site configuration. Various preliminary tests such as critical current, ac losses, fault current loading, mechanical tests, have been conducted by using short core samples in order to confirm a HTS cable design and a cable-to-cable joint structure. From these test results, a HTS cable, a joint and a termination have been designed to meet the required specifications. To verify their performances before the installation of the HTS cable system in Yokohama, a 30-m HTS cable was manufactured and various sample tests were conducted as shipping test. The critical current of the HTS conductor and shield were 6.1 kA and 7.1 kA, respectively. The AC loss was 0.83 W/m/ph at 2 kA rms, 60 Hz. As withstand voltage tests, AC 90 kV for 3 h and lightning impulse at ±385 kV were applied to cable core, successfully. These test results has confirmed that the 30-m cable had good properties as designed and satisfied the required specifications. After the success of the shipping tests, the 30-m HTS cable pre-demonstration system has been installed at SEI factory. The cable system will be operated and checked the various performances in this summer.

  14. Haines - Scagway Submarine Cable Intertie Project, Haines to Scagway, Alaska Final Technical and Construction Report

    SciTech Connect

    See, Alan; Rinehart, Bennie N; Marin, Glen

    1998-11-01

    The Haines to Skagway submarine cable project is located n Taiya Inlet, at the north end of Lynn Canal, in Southeast Alaska. The cable is approximately 15 miles long, with three landings and splice vaults. The cable is 35 kV, 3-Phase, and armored. The cable interconnects the Goat Lake Hydro Project near Skagway with the community of Haines. Both communities are now on 100% hydroelectric power. The Haines to Skagway submarine cable is the result of AP&T's goal of an alternative, economic, and environmentally friendly energy source for the communities served and to eliminate the use of diesel fuel as the primary source of energy. Diesel units will continue to be used as a backup system.

  15. 76 FR 56973 - Office of National Marine Sanctuaries Final Policy and Permit Guidance for Submarine Cable Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... Policy and Permit Guidance for Submarine Cable Projects AGENCY: Office of National Marine Sanctuaries...) has developed final policy and permitting guidance for submarine cable projects proposed in national... install and maintain submarine cables in sanctuaries are reviewed consistently and in a manner...

  16. Status of 275 kV REBCO HTS Cable Development in the NEDO Project

    NASA Astrophysics Data System (ADS)

    Mukoyama, Shinichi; Yagi, Masashi; Okuma, Takeshi; Maruyama, Osamu; Shiohara, Yuu; Hayakawa, Naoki; Mizutani, Teruyoshi

    A 275 kV 3 kA high temperature superconducting cable (HTS cable), which could be used as a backbone power line in the future, was developed in the NEDO project called M-PACC. One of the most important developments of a high voltage HTS cable was the high voltage insulation technology. A design guideline and a test specification that was necessary to design, product and demonstrate of a 275 kV, 3 kA HTS cable have been studied by obtaining the various experimental data such as AC withstand voltage, impulse withstand voltage, partial discharge inception stress, and the V-t characteristics of the insulation, on the basis of the Japan Electrical Standards (JEC) and the International Electrotechnical Commission (IEC). Moreover, the 275 kV, 3 kA HTS cable with a length of 30 m was demonstrated under a long-term voltage and current loading test.

  17. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    NASA Astrophysics Data System (ADS)

    Maguire, J. F.; Yuan, J.

    2009-10-01

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  18. The 345 kV underground/underwater Long Island Sound cable project

    SciTech Connect

    Grzan, J.; Hahn, E.I. ); Casalaina, R.V.; Kansog, J.O.C. )

    1993-07-01

    A high voltage underground/underwater cable system was installed to increase the transmission capacity from the mainland of New York to Long Island. In terms of weight and diameter, the self-contained, fluid-filled (SCFF) cable used for the underwater portion of the project is the largest underwater cable in the world. The use of high-pressure, fluid-filled (HPFF) pipe-type cable on the land portion represents the largest application of paper-polypropylene-paper (PPP) insulated cable in the United States. State-of-the-art technologies were implemented in the use of fiber optic cables for relay protection and SCADA/RTU, temperature monitoring and leak detection systems, SF[sub 6] gas-insulated substations, and underwater cable laying and embedment techniques. This paper discusses the design and installation of a 750 MVA, 43 km (26.6 mi), 345 kV underground/underwater electric transmission system installed by the New York Power Authority (NYPA).

  19. A quantitative analysis of inter-island telephony traffic in the Pacific Basin Region (PBR)

    NASA Astrophysics Data System (ADS)

    Evans, D. D.; Arth, C. H.

    1980-09-01

    As part of NASA's continuing assessment of future communication satellite requirements, a study was conducted to quantitatively scope current and future telecommunication traffic demand in the South Pacific Archipelagos. This demand was then converted to equivalent satellite transponder capacities. Only inter-island telephony traffic for the Pacific Basin Region was included. The results show that if all this traffic were carried by a satellite system, one-third of a satellite transponder would be needed to satisfy the base-year (1976-1977) requirement and about two-thirds of a satellite transponder would be needed to satisfy the forecasted 1985 requirement.

  20. A quantitative analysis of inter-island telephony traffic in the Pacific Basin Region (PBR)

    NASA Technical Reports Server (NTRS)

    Evans, D. D.; Arth, C. H.

    1980-01-01

    As part of NASA's continuing assessment of future communication satellite requirements, a study was conducted to quantitatively scope current and future telecommunication traffic demand in the South Pacific Archipelagos. This demand was then converted to equivalent satellite transponder capacities. Only inter-island telephony traffic for the Pacific Basin Region was included. The results show that if all this traffic were carried by a satellite system, one-third of a satellite transponder would be needed to satisfy the base-year (1976-1977) requirement and about two-thirds of a satellite transponder would be needed to satisfy the forecasted 1985 requirement.

  1. The Salem Cable Television Project: A Demonstration of the Use of Cable Television and Paraprofessional Tutors as an Alternative to Traditional ABE Classroom Instruction.

    ERIC Educational Resources Information Center

    Wiesner, Peter

    Adult education opportunities can be increased through cable television technology, which provides home-based instruction as an alternative to the strictures of the classroom or learning center. The 18-month Salem project used television for primary instruction together with the services of paraprofessional tutors as a personal contact for…

  2. Utilization of Cable Television to Provide Instruction and Information Services to CETA-Eligible Persons in Marshalltown. Project Report.

    ERIC Educational Resources Information Center

    Streff, Deborah

    A project was undertaken by the Iowa Valley Community College District (IVCCD) to provide information and instruction via cable television to persons eligible for Comprehensive Employment and Training Act (CETA) programs. The project sought to identify and enroll at least 15 CETA-eligible persons in each of 3 programs; "TV High School," designed…

  3. Ocean thermal conversion (OTEC) project bottom cable protection study. Analysis and selection of protection techniques

    SciTech Connect

    Not Available

    1981-10-01

    General guidelines and procedures for cable protection are given for the four proposed Ocean Thermal Energy Conversion (OTEC) plant sites and cable routes, together with seafloor scenarios and protection strategies for each site. Burial of the cable below the seafloor is the recommended and best method of protecting OTEC cables from the hazards existing at all sites, namely, chafe and corrosion, hydrodynamic forces, trawler/dredge, and ship anchor. For landslides and earthquakes the only feasible method of protection, although limited, is to provide slack, in the cable, i.e. lay extra length. Trenches for burying the cable are recommended to be constructed a) by blasting through hard bottom at Hawaii for the first nautical mile (n.m.) and at Puerto Rico for the first 0.9 n.m; b)by a plowing machine at Hawaii for the next 0.5 n.m.; c) by a trenching machine at Guam for the first 0.55 n.m.; d) by a trenching /laying machine at Florida for 110 n.m.; and e) by a conventional floating dredge for 15 n.m. For the outshore segments of the cable routes it is recommenced to lay the cable on th seafloor because bottom sediments are soft enough to permit the cable to bury itself. Except for the Florida route, a normal cable laying vessel is recommended for laying the cable from plant site to landfall and for performing the protection details which are temie concrete cover over the cable at Hawaii for 0.5 n.m. and split pipe and rock anchor at Puerto Rico for 0l2 n.m.

  4. Cable and Line Inspection Mechanism

    NASA Technical Reports Server (NTRS)

    Ross, Terence J. (Inventor)

    2003-01-01

    An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.

  5. Cable and line inspection mechanism

    NASA Technical Reports Server (NTRS)

    Ross, Terence J. (Inventor)

    2003-01-01

    An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.

  6. 77 FR 59749 - Safety Zone; Submarine Cable Installation Project; Chicago River, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ...: ] Table of Acronyms DHS Department of Homeland Security FR Federal Register NPRM Notice of Proposed... cables in the vicinity of both the West Adams Street and West Jackson Boulevard bridges. This temporary... the installation of submarine cables in the vicinity of both the West Adams Street and West...

  7. Molecular and mathematical modeling analyses of inter-island transmission of rabies into a previously rabies-free island in the Philippines.

    PubMed

    Tohma, Kentaro; Saito, Mariko; Demetria, Catalino S; Manalo, Daria L; Quiambao, Beatriz P; Kamigaki, Taro; Oshitani, Hitoshi

    2016-03-01

    Rabies is endemic in the Philippines and dog bites are a major cause of rabies cases in humans. The rabies control program has not been successful in eliminating rabies because of low vaccination coverage among dogs. Therefore, more effective and feasible strategies for rabies control are urgently required in the country. To control rabies, it is very important to know if inter-island transmission can occur because rabies can become endemic once the virus is introduced in areas that previously had no reported cases. Our molecular epidemiological study suggests that inter-island transmission events can occur; therefore, we further investigated these inter-island transmission using phylogenetic and modeling approaches. We investigate inter-island transmission between Luzon and Tablas Islands in the Philippines. Phylogenetic analysis and mathematical modeling demonstrate that there was a time lag of several months to a year from rabies introduction to initial case detection, indicating the difficulties in recognizing the initial rabies introductory event. There had been no rabies cases reported in Tablas Island; however, transmission chain was sustained on this island after the introduction of rabies virus because of low vaccination coverage among dogs. Across the islands, a rabies control program should include control of inter-island dog transportation and rabies vaccination to avoid viral introduction from the outside and to break transmission chains after viral introduction. However, this program has not yet been completely implemented and transmission chains following inter-island virus transmission are still observed. Local government units try to control dog transport; however, it should be more strictly controlled, and a continuous rabies control program should be implemented to prevent rabies spread even in rabies-free areas. PMID:26656835

  8. Ocean thermal conversion (OTEC) project bottom cable protection study: environmental characteristics and hazards analysis

    SciTech Connect

    Chern, C.; Tudor, W.

    1981-10-01

    Seafloor cable-protection criteria and technology as applied to the four proposed OTEC plant sites and cable routes at Hawaii, Puerto Rico, Guam and Florida were examined. Study of environmental characteristics for each site covered: (A) natural factors of location, tide and currents, wind and wave, bottom soil type and seafloor movement; and (B) man-made factors such as ship traffic, fishing activities, ocean mining, government regulations. These characteristics were studied to determine the hazards which are potential sources of damage to a cable system. Hazards include: chafe and corrosion, hydrodynamic forces due to wave and current action, mudslides, earthquakes, trawler and/or dredge action and ship anchors. An analysis of the history of submarine-cable failures was conducted. Included are the probabilities of damage related to water depth. Probabilities become minimal for all hazards in water depths of 1500 feet and more. Chafe and corrosion had the highest probability of causing damage to a seafloor cable compared to the other hazards. Because of the hazards present at all sites, cable burial is recommended as the best means of protection.

  9. COPPER CABLE RECYCLING TECHNOLOGY

    SciTech Connect

    Chelsea Hubbard

    2001-05-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D&D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D&D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness of separating

  10. Cable Diagnostic Focused Initiative

    SciTech Connect

    Hartlein, R.A.; Hampton, R.N.

    2010-12-30

    This report summarizes an extensive effort made to understand how to effectively use the various diagnostic technologies to establish the condition of medium voltage underground cable circuits. These circuits make up an extensive portion of the electric delivery infrastructure in the United States. Much of this infrastructure is old and experiencing unacceptable failure rates. By deploying efficient diagnostic testing programs, electric utilities can replace or repair circuits that are about to fail, providing an optimal approach to improving electric system reliability. This is an intrinsically complex topic. Underground cable systems are not homogeneous. Cable circuits often contain multiple branches with different cable designs and a range of insulation materials. In addition, each insulation material ages differently as a function of time, temperature and operating environment. To complicate matters further, there are a wide variety of diagnostic technologies available for assessing the condition of cable circuits with a diversity of claims about the effectiveness of each approach. As a result, the benefits of deploying cable diagnostic testing programs have been difficult to establish, leading many utilities to avoid the their use altogether. This project was designed to help address these issues. The information provided is the result of a collaborative effort between Georgia Tech NEETRAC staff, Georgia Tech academic faculty, electric utility industry participants, as well as cable system diagnostic testing service providers and test equipment providers. Report topics include: •How cable systems age and fail, •The various technologies available for detecting potential failure sites, •The advantages and disadvantages of different diagnostic technologies, •Different approaches for utilities to employ cable system diagnostics. The primary deliverables of this project are this report, a Cable Diagnostic Handbook (a subset of this report) and an online

  11. High Temperature Superconducting Underground Cable

    SciTech Connect

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  12. Cable Economics.

    ERIC Educational Resources Information Center

    Cable Television Information Center, Washington, DC.

    A guide to the economic factors that influence cable television systems is presented. Designed for local officials who must have some familiarity with cable operations in order to make optimum decisions, the guide analyzes the financial framework of a cable system, not only from the operators viewpoint, but also from the perspective of the…

  13. Cable Television.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    The Federal Communications Commission (FCC) presents a brief description of cable television and explains some basic regulations pertaining to it. The history of cable regulation covers the initial jurisdiction, economic considerations of the regulation, court tests, and the holding of public hearings. The major provisions of new cable rules are…

  14. Superconductor cable

    DOEpatents

    Allais, Arnaud; Schmidt, Frank; Marzahn, Erik

    2010-05-04

    A superconductor cable is described, having a superconductive flexible cable core (1) , which is laid in a cryostat (2, 3, 4), in which the cable core (1) runs in the cryostat (2, 3, 4) in the form of a wave or helix at room temperature.

  15. Project NEPTUNE: an innovative, powered, fibre-optic cabled deep ocean observatory spanning the Juan de Fuca plate, NE Pacific

    NASA Astrophysics Data System (ADS)

    Barnes, C.; Delaney, J.

    2003-04-01

    NEPTUNE is an innovative facility, a deep-water cabled observatory, that will transform marine science. MARS and VENUS are deep and shallow-water test bed facilities for NEPTUNE located in Monterey Canyon, California and in southern British Columbia, respectively; both were funded in 2002. NEPTUNE will be a network of over 30 subsea observatories covering the 200,000 sq. km Juan de Fuca tectonic plate, Northeast Pacific. It will draw power via two shore stations and receive and exchange data with scientists through 3000 km of submarine fiber-optic cables. Each observatory, and cabled extensions, will host and power many scientific instruments on the surrounding seafloor, in seafloor boreholes and buoyed through the water column. Remotely operated and autonomous vehicles will reside at depth, recharge at observatories, and respond to distant labs. Continuous near-real-time multidisciplinary measurement series will extend over 30 years. Free from the limitations of battery life, ship schedules/ accommodations, bad weather and delayed access to data, scientists will monitor remotely their deep-sea experiments in real time on the Internet, and routinely command instruments to respond to storms, plankton blooms, earthquakes, eruptions, slope slides and other events. Scientists will be able to pose entirely new sets of questions and experiments to understand complex, interacting Earth System processes such as the structure and seismic behavior of the ocean crust; dynamics of hot and cold fluids and gas hydrates in the upper ocean crust and overlying sediments; ocean climate change and its effect on the ocean biota at all depths; and the barely known deep-sea ecosystem dynamics and biodiversity. NEPTUNE is a US/Canada (70/30) partnership to design, test, build and operate the network on behalf of a wide scientific community. The total cost of the project is estimated at about U.S. 250 million from concept to operation. Over U.S. 50 million has already been funded for

  16. Cable compliance

    NASA Technical Reports Server (NTRS)

    Kerley, J.; Eklund, W.; Burkhardt, R.; Rossoni, P.

    1992-01-01

    The object of the investigation was to solve mechanical problems using cable-in-bending and cable-in-torsion. These problems included robotic contacts, targets, and controls using cable compliance. Studies continued in the use of cable compliance for the handicapped and the elderly. These included work stations, walkers, prosthetic knee joints, elbow joints, and wrist joints. More than half of these objects were met, and models were made and studies completed on most of the others. It was concluded that the many different and versatile solutions obtained only opened the door to many future challenges.

  17. Cable compliance

    NASA Astrophysics Data System (ADS)

    Kerley, J.; Eklund, W.; Burkhardt, R.; Rossoni, P.

    1992-06-01

    The object of the investigation was to solve mechanical problems using cable-in-bending and cable-in-torsion. These problems included robotic contacts, targets, and controls using cable compliance. Studies continued in the use of cable compliance for the handicapped and the elderly. These included work stations, walkers, prosthetic knee joints, elbow joints, and wrist joints. More than half of these objects were met, and models were made and studies completed on most of the others. It was concluded that the many different and versatile solutions obtained only opened the door to many future challenges.

  18. Robotic Arm Biobarrier Cable

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander on the 14th Martian day of the mission (June 7, 2008), shows the cable that held the Robotic Arm's biobarrier in place during flight has snapped. The cable's springs retracted to release the biobarrier right after landing.

    To the lower right of the image a spring is visible. Extending from that spring is a length of cable that snapped during the biobarrier's release. A second spring separated from the cable when it snapped and has been photographed on the ground under the lander near one of the legs.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Data Base On Cables And Connectors

    NASA Technical Reports Server (NTRS)

    Bowen, Arlen R.; Oliver, John D.

    1995-01-01

    Report describes Connector Adapter Cable Information Data Base (CONNAID) computer program, managing data base containing necessary information concerning electrical connectors, breakout boxes, adapter cables, backshells, and pertinent torque specifications for engineering project.

  20. Phylogeny, Floral Evolution, and Inter-Island Dispersal in Hawaiian Clermontia (Campanulaceae) Based on ISSR Variation and Plastid Spacer Sequences

    PubMed Central

    Givnish, Thomas J.; Bean, Gregory J.; Ames, Mercedes; Lyon, Stephanie P.; Sytsma, Kenneth J.

    2013-01-01

    Previous studies based on DNA restriction-site and sequence variation have shown that the Hawaiian lobeliads are monophyletic and that the two largest genera, Cyanea and Clermontia, diverged from each other ca. 9.7 Mya. Sequence divergence among species of Clermontia is quite limited, however, and extensive hybridization is suspected, which has interfered with production of a well-resolved molecular phylogeny for the genus. Clermontia is of considerable interest because several species posses petal-like sepals, raising the question of whether such a homeotic mutation has arisen once or several times. In addition, morphological and molecular studies have implied different patterns of inter-island dispersal within the genus. Here we use nuclear ISSRs (inter-simple sequence repeat polymorphisms) and five plastid non-coding sequences to derive biparental and maternal phylogenies for Clermontia. Our findings imply that (1) Clermontia is not monophyletic, with Cl. pyrularia nested within Cyanea and apparently an intergeneric hybrid; (2) the earliest divergent clades within Clermontia are native to Kauài, then Òahu, then Maui, supporting the progression rule of dispersal down the chain toward progressively younger islands, although that rule is violated in later-evolving taxa in the ISSR tree; (3) almost no sequence divergence among several Clermontia species in 4.5 kb of rapidly evolving plastid DNA; (4) several apparent cases of hybridization/introgression or incomplete lineage sorting (i.e., Cl. oblongifolia, peleana, persicifolia, pyrularia, samuelii, tuberculata), based on extensive conflict between the ISSR and plastid phylogenies; and (5) two origins and two losses of petaloid sepals, or—perhaps more plausibly—a single origin and two losses of this homeotic mutation, with its introgression into Cl. persicifolia. Our phylogenies are better resolved and geographically more informative than others based on ITS and 5S-NTS sequences and nuclear SNPs, but agree

  1. Phylogeny, floral evolution, and inter-island dispersal in Hawaiian Clermontia (Campanulaceae) based on ISSR variation and plastid spacer sequences.

    PubMed

    Givnish, Thomas J; Bean, Gregory J; Ames, Mercedes; Lyon, Stephanie P; Sytsma, Kenneth J

    2013-01-01

    Previous studies based on DNA restriction-site and sequence variation have shown that the Hawaiian lobeliads are monophyletic and that the two largest genera, Cyanea and Clermontia, diverged from each other ca. 9.7 Mya. Sequence divergence among species of Clermontia is quite limited, however, and extensive hybridization is suspected, which has interfered with production of a well-resolved molecular phylogeny for the genus. Clermontia is of considerable interest because several species posses petal-like sepals, raising the question of whether such a homeotic mutation has arisen once or several times. In addition, morphological and molecular studies have implied different patterns of inter-island dispersal within the genus. Here we use nuclear ISSRs (inter-simple sequence repeat polymorphisms) and five plastid non-coding sequences to derive biparental and maternal phylogenies for Clermontia. Our findings imply that (1) Clermontia is not monophyletic, with Cl. pyrularia nested within Cyanea and apparently an intergeneric hybrid; (2) the earliest divergent clades within Clermontia are native to Kauài, then Òahu, then Maui, supporting the progression rule of dispersal down the chain toward progressively younger islands, although that rule is violated in later-evolving taxa in the ISSR tree; (3) almost no sequence divergence among several Clermontia species in 4.5 kb of rapidly evolving plastid DNA; (4) several apparent cases of hybridization/introgression or incomplete lineage sorting (i.e., Cl. oblongifolia, peleana, persicifolia, pyrularia, samuelii, tuberculata), based on extensive conflict between the ISSR and plastid phylogenies; and (5) two origins and two losses of petaloid sepals, or--perhaps more plausibly--a single origin and two losses of this homeotic mutation, with its introgression into Cl. persicifolia. Our phylogenies are better resolved and geographically more informative than others based on ITS and 5S-NTS sequences and nuclear SNPs, but agree with

  2. 52. View of sitdown cable car, cable way, and stream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. View of sit-down cable car, cable way, and stream gaging station, looking southeast. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  3. 51. View of sitdown cable car and cable way for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of sit-down cable car and cable way for stream gaging, looking west. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  4. Magnet cable manufacturing

    SciTech Connect

    Royet, J.

    1985-07-01

    The superconducting magnets used in the construction of particle accelerators are mostly built from flat, multistrand cables with rectangular or keystoned cross sections. The superconducting strands are mostly circular but a design of a cable made of preflattened wires was proposed a few years ago under the name of Berkeley flat; such cable shows some interesting characteristics. Another design consists of a few smaller precabled wires (e.g. 6 around 1). This configuration allows smaller filaments and a better transposition of the current elements. The Superconducting Super Collider project involves the largest amount of superconducting cable ever envisaged for a single machine. Furthermore, the design calls for exceptional accuracy and improved characteristics of the cable. A part of the SSC research and development program is focused on these important questions. In this paper we emphasize the difference between the conventional cabling and wires with superconducting. A new concept for the tooling will be introduced as well as the necessary characteristics of a specialized cabler. 5 figs.

  5. Superconductor cable

    DOEpatents

    Allais, Arnaud; Schmidt, Frank (Langenhagen, DE

    2009-12-15

    A superconductor cable includes a superconductive cable core (1) and a cryostat (2) enclosing the same. The cable core (1) has a superconductive conductor (3), an insulation (4) surrounding the same and a shielding (5) surrounding the insulation (4). A layer (3b) of a dielectric or semiconducting material is applied to a central element (3a) formed from a normally conducting material as a strand or tube and a layer (3c) of at least one wire or strip of superconductive material is placed helically on top. The central element (3a) and the layer (3c) are connected to each other in an electrically conducting manner at the ends of the cable core (1).

  6. Cable manufacture

    NASA Technical Reports Server (NTRS)

    Gamble, P.

    1972-01-01

    A survey is presented of flat electrical cable manufacturing, with particular reference to patented processes. The economics of manufacture based on an analysis of material and operating costs is considered for the various methods. Attention is given to the competitive advantages of the several processes and their resulting products. The historical area of flat cable manufacture is presented to give a frame of reference for the survey.

  7. Test plan and report for Space Shuttle launch environment testing of Bergen cable technology safety cable

    NASA Technical Reports Server (NTRS)

    Ralph, John

    1992-01-01

    Bergen Cable Technology (BCT) has introduced a new product they refer to as 'safety cable'. This product is intended as a replacement for lockwire when installed per Aerospace Standard (AS) 4536 (included in Appendix D of this document). Installation of safety cable is reportedly faster and more uniform than lockwire. NASA/GSFC proposes to use this safety cable in Shuttle Small Payloads Project (SSPP) applications on upcoming Shuttle missions. To assure that BCT safety cable will provide positive locking of fasteners equivalent to lockwire, the SSPP will conduct vibration and pull tests of the safety cable.

  8. Cable Television.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    This report provides information about cable television and the Federal Communications Commission's (FCC) responsibilities in regulating its operation. The initial jurisdiction and rules covered in this report pertain to the court test, public hearing, certificate of compliance, franchising, signal carriage, leapfrogging, access and origination…

  9. Aeolic vibration of aerial electricity transmission cables

    NASA Astrophysics Data System (ADS)

    Avila, A.; Rodriguez-Vera, Ramon; Rayas, Juan A.; Barrientos, Bernardino

    2005-02-01

    A feasibility study for amplitude and frequency vibration measurement in aerial electricity transmission cable has been made. This study was carried out incorporating a fringe projection method for the experimental part and horizontal taut string model for theoretical one. However, this kind of model ignores some inherent properties such as cable sag and cable inclination. Then, this work reports advances on aeolic vibration considering real cables. Catenary and sag are considered in our theoretical model in such a way that an optical theodolite for measuring has been used. Preliminary measurements of the catenary as well as numerical simulation of a sagged cable vibration are given.

  10. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  11. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  12. Superconductor cable

    DOEpatents

    Smith, Jr., Darrell F.; Lake, Bill L.; Ballinger, Ronald G.

    1988-01-01

    A superconducting cable comprising an in-situ-formed type II superconductor, e.g. Nb.sub.3 Sn, in association with a stabilizing conductor both in heat transfer relationship with at least one passage adapted to carry liquified gaseous refrigerant. The conductor and said at least one passage are enclosed by a sheath comprising an alloy consisting essentially of about 49% nickel, about 4% chromium, about 3% niobium, about 1.4% titanium, about 1% aluminum, balance essentially iron.

  13. CABLE CONNECTOR

    DOEpatents

    Caller, J.M.

    1962-05-01

    An electrical connector is designed for utilization in connection with either round or flat coaxial cables. The connector comprises a bayonet-type coupling arrangement with a splined movable locking sleeve adapted to lock together components of the connector. A compression spring is attached to one of the connector components and functions to forcibly separate mating components when the locking sleeve is in an unlocked condition so as to minimize the possibility of leaving the conductors electrically coupled. (AEC)

  14. Instruction: Cable and Slow-Scan. Workshop.

    ERIC Educational Resources Information Center

    Pachuta, Jack

    The Rockford Cable Project is an experimental program using two-way cable television to train firefighters in prefire planning. The instructional design calls for firefighters across the city to view videotapes simultaneously and respond to computerized questions via a specially-designed pushbutton terminal. The project provides for centralized…

  15. Cable shield connecting device

    DOEpatents

    Silva, Frank A.

    1979-01-01

    A cable shield connecting device for installation on a high voltage cable of the type having a metallic shield, the device including a relatively conformable, looped metal bar for placement around a bared portion of the metallic shield to extend circumferentially around a major portion of the circumference of the metallic shield while being spaced radially therefrom, a plurality of relatively flexible metallic fingers affixed to the bar, projecting from the bar in an axial direction and spaced circumferentially along the bar, each finger being attached to the metallic shield at a portion located remote from the bar to make electrical contact with the metallic shield, and a connecting conductor integral with the bar.

  16. Capacitor discharge process for welding braided cable

    DOEpatents

    Wilson, Rick D.

    1995-01-01

    A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

  17. Cable Television Service; Cable Television Relay Service.

    ERIC Educational Resources Information Center

    Federal Register, 1972

    1972-01-01

    The rules and regulations of the Federal Communications Commission (FCC) concerning cable television service and cable relay service are presented along with the comments of the National Cable Television Association, the National Association of Broadcasters, the Association of Maximum Service Telecasters, and a major group of program suppliers.…

  18. Pay Cable: A Viable Advertising Medium?

    ERIC Educational Resources Information Center

    Krugman, Dean M.; Barban, Arnold M.

    Cable television, which cannot only clarify local signals to weak signal areas but can also bring in distant signals to areas which have been receiving few signals, has the capacity to present special television programs to customers for extra fees. The number of pay cable subscribers is growing and industry projections are that it will reach 20…

  19. Seismic cable compass system

    SciTech Connect

    Burrage, E.C.

    1984-11-06

    An apparatus for determining the azimuthal direction of a marine streamer cable at selected points along the cable. The apparatus comprises a pod that is clamped to the cable and contains a gimbaled magnetic compass and mean for establishing two-way communication between the pod and the cable.

  20. Cable Tensiometer for Aircraft

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  1. Mitochondrial genomes and divergence times of crocodile newts: inter-islands distribution of Echinotriton andersoni and the origin of a unique repetitive sequence found in Tylototriton mt genomes.

    PubMed

    Kurabayashi, Atsushi; Nishitani, Takuma; Katsuren, Seiki; Oumi, Shohei; Sumida, Masayuki

    2012-01-01

    Crocodile newts, which constitute the genera Echinotriton and Tylototriton, are known as living fossils, and these genera comprise many endangered species. To identify mitochondrial (mt) genes suitable for future population genetic analyses for endangered taxa, we determined the complete nucleotide sequences of the mt genomes of the Japanese crocodile newt Echinotriton andersoni and Himalayan crocodile newt Tylototriton verrucosus. Although the control region (CR) is known as the most variable mtDNA region in many animal taxa, the CRs of crocodile newts are highly conservative. Rather, the genes of NADH dehydrogenase subunits and ATPase subunit 6 were found to have high sequence divergences and to be usable for population genetics studies. To estimate the inter-population divergence ages of E. andersoni endemic to the Ryukyu Islands, we performed molecular dating analysis using whole and partial mt genomic data. The estimated divergence ages of the inter-island individuals are older than the paleogeographic segmentation ages of the islands, suggesting that the lineage splits of E. andersoni populations were not caused by vicariant events. Our phylogenetic analysis with partial mt sequence data also suggests the existence of at least two more undescribed species in the genus Tylototriton. We also found unusual repeat sequences containing the 3' region of cytochrome apoenzyme b gene, whole tRNA-Thr gene, and a noncoding region (the T-P noncoding region characteristic in caudate mtDNAs) from T. verrucosus mtDNA. Similar repeat sequences were found in two other Tylototriton species. The Tylototriton taxa with the repeats become a monophyletic group, indicating a single origin of the repeat sequences. The intra-and inter-specific comparisons of the repeat sequences suggest the occurrences of homologous recombination-based concerted evolution among the repeat sequences. PMID:22531793

  2. EduCable. Evaluation of Station KUON-TV, Lincoln, Nebraska. Cable Television Research Program Demonstration. CPB Technical Report #8006.

    ERIC Educational Resources Information Center

    Corporation for Public Broadcasting, Washington, DC.

    Documentation of the status of the University of Nebraska-Lincoln Television Department's Cable Television Communications Research Project is provided, along with a report of an evaluation which was undertaken both to determine the impact and effectiveness of the EduCable program service to cable system subscribers and to assess the viability of…

  3. A Type of Non-cable Self-Posioning Seismograph Served For SinoProbe Project In China

    NASA Astrophysics Data System (ADS)

    Yang, H.; Lin, J.; Chen, Z.; Zhang, L.; Huaizhu, Z.; Zheng, F.; Seismic Instrument Design Team

    2011-12-01

    A type of cableless self-positioning telemetry seismograph designed for deep exploration is introduced in this article. The seismograph adopts 24-bit ADC and the analog circuits are designed carefully to attain a low noise level of 300nV RMS. It also uses 24-bit DAC and FPGA circuits to perform self-test including noise level, trace crosstalk, CMRR, harmonic distortion, geophone resitor testing, pulse testing, gain calibration and etc. As the testing result shows, the analog acquisition performances are similar to the most popular seismograph 428XL system from Sercel. However, the seismograph has a different structure with 428XL. It gets rid of cables and stores seismic data in mass non-volatile memory, and meanwhile it employs GPS combined with Compass global navigation satellite system to implement synchronous data aquisiton and self-positioning. In addition, the seismograph has a built-in WiFi module and can communicate with a cental server in Ad-hoc mode or AP mode depending on the distance between the seismograph and the central server. The working status and seismic data quality can be monitored through the WiFi network and some seismic data can be transmitted back on demand. When the distance between adjacent seismographs exceed 500 metres, the Compass global navigation satellite system which supports global communication can be used to send necessary data. At last, dynamic power management is emplyed and the system working voltage and frequency will be changed as the system runs into different status, and also all circuit modules can be switched off when not needed. Because of all the benefits listed above, the seismograph can be used in a variety of ways as needed, such as seismic network, deep seismic reflection exploration, wide-angle seismic reflection and refraction exploration, ore zone seismic exploration and etc. To sum up, the cable-less self-positioning seismograph employs mass non-volatile storage technology, global navigation satellite sytem, Wi

  4. Marine cable location system

    SciTech Connect

    Zachariadis, R.G.

    1984-05-01

    An acoustic positioning system locates a marine cable at an exploration site, such cable employing a plurality of hydrophones at spaced-apart positions along the cable. A marine vessel measures water depth to the cable as the vessel passes over the cable and interrogates the hydrophones with sonar pulses along a slant range as the vessel travels in a parallel and horizontally offset path to the cable. The location of the hydrophones is determined from the recordings of water depth and slant range.

  5. Cable load sensing device

    DOEpatents

    Beus, Michael J.; McCoy, William G.

    1998-01-01

    Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable "no-load" condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.

  6. Cable load sensing device

    SciTech Connect

    Beus, M.J.; McCoy, W.G.

    1996-12-31

    Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable no-load condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.

  7. Cutting Edge Cable Management.

    ERIC Educational Resources Information Center

    Peach, Roger

    1997-01-01

    Describes how one school district was able to efficiently install fragile telecommunication cabling throughout its high school and save thousands of dollars. Discusses solutions to some common cable-management problems. (GR)

  8. Vertex Detector Cable Considerations

    SciTech Connect

    Cooper, William E.; /Fermilab

    2009-02-01

    Vertex detector cable requirements are considered within the context of the SiD concept. Cable material should be limited so that the number of radiation lengths represented is consistent with the material budget. In order to take advantage of the proposed accelerator beam structure and allow cooling by flow of dry gas, 'pulsed power' is assumed. Potential approaches to power distribution, cable paths, and cable design for operation in a 5 T magnetic field are described.

  9. Marine cable location system

    SciTech Connect

    Ottsen, H.; Barker, Th.

    1985-04-23

    An acoustic positioning system for locating a marine cable at an exploration site employs a plurality of acoustic transponders, each having a characteristic frequency, at spaced-apart positions along the cable. A marine vessel measures the depth to the transponders as the vessel passes over the cable and measures the slant range from the vessel to each of the acoustic transponders as the vessel travels in a parallel and horizontally offset path to the cable.

  10. Cable-fault locator

    NASA Technical Reports Server (NTRS)

    Cason, R. L.; Mcstay, J. J.; Heymann, A. P., Sr.

    1979-01-01

    Inexpensive system automatically indicates location of short-circuited section of power cable. Monitor does not require that cable be disconnected from its power source or that test signals be applied. Instead, ground-current sensors are installed in manholes or at other selected locations along cable run. When fault occurs, sensors transmit information about fault location to control center. Repair crew can be sent to location and cable can be returned to service with minimum of downtime.

  11. Colleges and Cable Franchising.

    ERIC Educational Resources Information Center

    Glenn, Neal D.

    After noting issues of audience appeal and financial and philosophical support for educational broadcasting, this paper urges community colleges to play an active role in the process of cable franchising. The paper first describes a cable franchise as a contract between a government unit and the cable television (CATV) company which specifies what…

  12. Molds for cable dielectrics

    DOEpatents

    Roose, L.D.

    1996-12-10

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. 5 figs.

  13. Molds for cable dielectrics

    DOEpatents

    Roose, Lars D.

    1996-01-01

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made.

  14. Cables and fire hazards

    NASA Technical Reports Server (NTRS)

    Zanelli, C.; Philbrick, S.; Beretta, G.

    1986-01-01

    Besides describing the experiments conducted to develop a nonflammable cable, this article discusses several considerations regarding other hazards which might result from cable fires, particularly the toxicity and opacity of the fumes emitted by the burning cable. In addition, this article examines the effects of using the Oxygen Index as a gauge of quality control during manufacture.

  15. Modeling vibration response and damping of cables and cabled structures

    NASA Astrophysics Data System (ADS)

    Spak, Kaitlin S.; Agnes, Gregory S.; Inman, Daniel J.

    2015-02-01

    In an effort to model the vibration response of cabled structures, the distributed transfer function method is developed to model cables and a simple cabled structure. The model includes shear effects, tension, and hysteretic damping for modeling of helical stranded cables, and includes a method for modeling cable attachment points using both linear and rotational damping and stiffness. The damped cable model shows agreement with experimental data for four types of stranded cables, and the damped cabled beam model shows agreement with experimental data for the cables attached to a beam structure, as well as improvement over the distributed mass method for cabled structure modeling.

  16. Commercialization of Medium Voltage HTS Triax TM Cable Systems

    SciTech Connect

    Knoll, David

    2012-12-31

    The original project scope that was established in 2007 aimed to install a 1,700 meter (1.1 mile) medium voltage HTS Triax{TM} cable system into the utility grid in New Orleans, LA. In 2010, however, the utility partner withdrew from the project, so the 1,700 meter cable installation was cancelled and the scope of work was reduced. The work then concentrated on the specific barriers to commercialization of HTS cable technology. The modified scope included long-length HTS cable design and testing, high voltage factory test development, optimized cooling system development, and HTS cable life-cycle analysis. In 2012, Southwire again analyzed the market for HTS cables and deemed the near term market acceptance to be low. The scope of work was further reduced to the completion of tasks already started and to testing of the existing HTS cable system in Columbus, OH. The work completed under the project included: • Long-length cable modeling and analysis • HTS wire evaluation and testing • Cable testing for AC losses • Optimized cooling system design • Life cycle testing of the HTS cable in Columbus, OH • Project management. The 200 meter long HTS Triax{TM} cable in Columbus, OH was incorporated into the project under the initial scope changes as a test bed for life cycle testing as well as the site for an optimized HTS cable cooling system. The Columbus cable utilizes the HTS TriaxTM design, so it provided an economical tool for these of the project tasks.

  17. Applying Diagnostics to Enhance Cable System Reliability (Cable Diagnostic Focused Initiative, Phase II)

    SciTech Connect

    Hartlein, Rick; Hampton, Nigel; Perkel, Josh; Hernandez, JC; Elledge, Stacy; del Valle, Yamille; Grimaldo, Jose; Deku, Kodzo

    2015-07-25

    The Cable Diagnostic Focused Initiative (CDFI) played a significant and powerful role in clarifying the concerns and understanding the benefits of performing diagnostic tests on underground power cable systems. This project focused on the medium and high voltage cable systems used in utility transmission and distribution (T&D) systems. While many of the analysis techniques and interpretations are applicable to diagnostics and cable systems outside of T&D, areas such as generating stations (nuclear, coal, wind, etc.) and other industrial environments were not the focus. Many large utilities in North America now deploy diagnostics or have changed their diagnostic testing approach as a result of this project. Previous to the CDFI, different diagnostic technology providers individually promoted their approach as the “the best” or “the only” means of detecting cable system defects.

  18. Electronically controlled cable wrapper

    DOEpatents

    Young, Thomas M.

    1984-01-01

    A spindle assembly engages and moves along a length of cable to be wrapped with insulating tape. Reels of insulating tape are mounted on a outer rotatable spindle which revolves around the cable to dispense insulating tape. The rate of movement of the spindle assembly along the length of the cable is controlled by a stepper motor which is programmably synchronized to the rate at which rotatable spindle wraps the cable. The stepper motor drives a roller which engages the cable and moves the spindle assembly along the length of the cable as it is being wrapped. The spindle assembly is mounted at the end of an articulated arm which allows free movement of the spindle assembly and allows the spindle assembly to follow lateral movement of the cable.

  19. Electronically controlled cable wrapper

    DOEpatents

    Young, T.M.

    1982-08-17

    A spindle assembly engages and moves along a length of cable to be wrapped with insulating tape. Reels of insulating tape are mounted on a outer rotatable spindle which revolves around the cable to dispense insulating tape. The rate of movement of the spindle assembly along the length of the cable is controlled by a stepper motor which is programmably synchronized to the rate at which rotatable spindle wraps the cable. The stepper motor drives a roller which engages the cable and moves the spindle assembly along the length of the cable as it is being wrapped. The spindle assembly is mounted at the end of an articulated arm which allows free movement of the spindle assembly and allows the spindle assembly to follow lateral movement of the cable.

  20. Magnet cable manufacturing

    SciTech Connect

    Royet, J.

    1990-10-01

    The cable is the heart of a superconducting accelerator magnet. Since the initial development of the Rutherford Cable more than twenty years ago, many improvements in manufacturing techniques have increased the current carrying capacity. When the Tevatron cable was specified fifteen years ago the current carrying capacity was 1800 A/mm{sup 2} at a field of 5.3T. During the intervening years it has been increased to 3000 A/mm{sup 2}. These improvements were due to refinements in the fabrication of the strands and the formation of the cable from the strands. The metallurgists were able to impart significant gains in performance by improving the homogeneity of the conductor. The engineers and technicians who designed and built the modern cabling machines made an enormous contribution by significantly reducing the degradation of wire performance that occurs when the wire was cabled. The fact that these gains were made while increasing the speed of cabling is one of the technological advances that made accelerators like the SSC possible. This article describes the cabling machines that were built to manufacture the cable for the full scale SSC prototype magnets and the low beta quadrupoles for the Fermilab Tevatron. This article also presents a compendium of the knowledge that was gained in the struggle to make high performance cable to exacting dimensional standards and at the throughput needed for the SSC. The material is an important part of the technology transfer from the Department of energy Laboratories to Industry.

  1. Cable Tester Box

    NASA Technical Reports Server (NTRS)

    Lee, Jason H.

    2011-01-01

    Cables are very important electrical devices that carry power and signals across multiple instruments. Any fault in a cable can easily result in a catastrophic outcome. Therefore, verifying that all cables are built to spec is a very important part of Electrical Integration Procedures. Currently, there are two methods used in lab for verifying cable connectivity. (1) Using a Break-Out Box and an ohmmeter this method is time-consuming but effective for custom cables and (2) Commercial Automated Cable Tester Boxes this method is fast, but to test custom cables often requires pre-programmed configuration files, and cables used on spacecraft are often uniquely designed for specific purposes. The idea is to develop a semi-automatic continuity tester that reduces human effort in cable testing, speeds up the electrical integration process, and ensures system safety. The JPL-Cable Tester Box is developed to check every single possible electrical connection in a cable in parallel. This system indicates connectivity through LED (light emitting diode) circuits. Users can choose to test any pin/shell (test node) with a single push of a button, and any other nodes that are shorted to the test node, even if they are in the same connector, will light up with the test node. The JPL-Cable Tester Boxes offers the following advantages: 1. Easy to use: The architecture is simple enough that it only takes 5 minutes for anyone to learn how operate the Cable Tester Box. No pre-programming and calibration are required, since this box only checks continuity. 2. Fast: The cable tester box checks all the possible electrical connections in parallel at a push of a button. If a cable normally takes half an hour to test, using the Cable Tester Box will improve the speed to as little as 60 seconds to complete. 3. Versatile: Multiple cable tester boxes can be used together. As long as all the boxes share the same electrical potential, any number of connectors can be tested together.

  2. Cable suspended windmill

    NASA Technical Reports Server (NTRS)

    Farmer, Moses G. (Inventor)

    1990-01-01

    A windmill is disclosed which includes an airframe having an upwind end and a downwind end. The first rotor is rotatably connected to the airframe, and a generator is supported by the airframe and driven by the rotor. The airframe is supported vertically in an elevated disposition by poles which extend vertically upwardly from the ground and support cables which extend between the vertical poles. Suspension cables suspend the airframe from the support cable.

  3. Cable fault locator research

    NASA Astrophysics Data System (ADS)

    Cole, C. A.; Honey, S. K.; Petro, J. P.; Phillips, A. C.

    1982-07-01

    Cable fault location and the construction of four field test units are discussed. Swept frequency sounding of mine cables with RF signals was the technique most thoroughly investigated. The swept frequency technique is supplemented with a form of moving target indication to provide a method for locating the position of a technician along a cable and relative to a suspected fault. Separate, more limited investigations involved high voltage time domain reflectometry and acoustical probing of mine cables. Particular areas of research included microprocessor-based control of the swept frequency system, a microprocessor based fast Fourier transform for spectral analysis, and RF synthesizers.

  4. Evolution of a mature cable TV network

    NASA Astrophysics Data System (ADS)

    Ajibulu, Ade

    1993-11-01

    The research summarized in this paper is part of a work undertaken for the RACE (Research into Advanced Communications for Europe) program project 1044. It investigates the prospects for upgrading existing cable TV networks to an infrastructure capable of providing jointly cable TV and telecoms services. This is a topical issue as services are now being developed which blur the distinction between cable TV and telecoms services, and in some countries the broadcasting and telecommunications industries are coming closer together. Technological development is leading regulation in the sense that, while in technological terms broadcasting and telecommunications services are approaching each other, in many countries the regulation of the two industries is still staunchly separate. However, in the Netherlands and Belgium there are signs that this situation is changing and the European Commission may also facilitate the provision of some telecoms services over cable TV networks through its Open Network Provision program.

  5. Cable Television and Education.

    ERIC Educational Resources Information Center

    Stern, Joseph L.

    Cable television can augment educational broadcast services and also provide a level of individualized educational services not possible with either broadcasting or classroom audiovisual aids. The extra channels provided by cable television allow the following extra services for education: 1) broadcast of a multitude of programs, including delayed…

  6. Multistrand superconductor cable

    DOEpatents

    Borden, Albert R.

    1985-01-01

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.

  7. Submarine cable route survey

    SciTech Connect

    Herrouin, G.; Scuiller, T.

    1995-12-31

    The growth of telecommunication market is very significant. From the beginning of the nineties, more and more the use of optical fiber submarine cables is privileged to that of satellites. These submarine telecommunication highways require accurate surveys in order to select the optimum route and determine the cable characteristics. Advanced technology tools used for these surveys are presented along with their implementation.

  8. Multistrand superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easil

  9. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Each cable, cable fitting, turnbuckle, splice, and pulley must be approved. In addition— (1) No cable... cable system must be designed so that there will be no hazardous change in cable tension throughout...

  10. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Each cable, cable fitting, turnbuckle, splice, and pulley must be approved. In addition— (1) No cable... cable system must be designed so that there will be no hazardous change in cable tension throughout...

  11. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Each cable, cable fitting, turnbuckle, splice, and pulley must be approved. In addition— (1) No cable... cable system must be designed so that there will be no hazardous change in cable tension throughout...

  12. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Each cable, cable fitting, turnbuckle, splice, and pulley must be approved. In addition— (1) No cable... cable system must be designed so that there will be no hazardous change in cable tension throughout...

  13. Automated wireless monitoring system for cable tension using smart sensors

    NASA Astrophysics Data System (ADS)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jongwoong; Cho, Soojin; Spencer, Billie F.; Yun, Chung-Bang

    2013-04-01

    Cables are critical load carrying members of cable-stayed bridges; monitoring tension forces of the cables provides valuable information for SHM of the cable-stayed bridges. Monitoring systems for the cable tension can be efficiently realized using wireless smart sensors in conjunction with vibration-based cable tension estimation approaches. This study develops an automated cable tension monitoring system using MEMSIC's Imote2 smart sensors. An embedded data processing strategy is implemented on the Imote2-based wireless sensor network to calculate cable tensions using a vibration-based method, significantly reducing the wireless data transmission and associated power consumption. The autonomous operation of the monitoring system is achieved by AutoMonitor, a high-level coordinator application provided by the Illinois SHM Project Services Toolsuite. The monitoring system also features power harvesting enabled by solar panels attached to each sensor node and AutoMonitor for charging control. The proposed wireless system has been deployed on the Jindo Bridge, a cable-stayed bridge located in South Korea. Tension forces are autonomously monitored for 12 cables in the east, land side of the bridge, proving the validity and potential of the presented tension monitoring system for real-world applications.

  14. Correction coil cable

    DOEpatents

    Wang, S.T.

    1994-11-01

    A wire cable assembly adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies for the Superconducting Super Collider. The correction coil cables have wires collected in wire array with a center rib sandwiched therebetween to form a core assembly. The core assembly is surrounded by an assembly housing having an inner spiral wrap and a counter wound outer spiral wrap. An alternate embodiment of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable on a particle tube in a particle tube assembly. 7 figs.

  15. Bringing Cable into the Classroom.

    ERIC Educational Resources Information Center

    Blubaugh, Donelle

    1999-01-01

    Cable TV may be an educationally and fiscally sound way to inspire active learning. Creative TV applications help teachers address potentially disabling social and emotional factors. The Cable in the Classroom program offers over 80,000 eligible schools free cable connections, free basic monthly cable service, and copyright clearances for off-air…

  16. Infiniband Based Cable Comparison

    SciTech Connect

    Minich, Makia

    2007-07-01

    As Infiniband continues to be more broadly adopted in High Performance Computing (HPC) and datacenter applications, one major challenge still plagues implementation: cabling. With the transition to DDR (double data rate) from SDR (single datarate), currently available Infiniband implementations such as standard CX4/IB4x style copper cables severely constrain system design (10m maximum length for DDR copper cables, thermal management due to poor airflow, etc.). This paper will examine some of the options available and compare performance with the newly released Intel Connects Cables. In addition, we will take a glance at Intel's dual-core and quad-core systems to see if core counts have noticeable effect on expected IO patterns.

  17. The Discrete Hanging Cable

    ERIC Educational Resources Information Center

    Peters, James V.

    2004-01-01

    Using the methods of finite difference equations the discrete analogue of the parabolic and catenary cable are analysed. The fibonacci numbers and the golden ratio arise in the treatment of the catenary.

  18. Flat conductor cable survey

    NASA Technical Reports Server (NTRS)

    Swanson, C. R.; Walker, G. L.

    1973-01-01

    Design handbook contains data and illustrations concerned with commercial and Government flat-conductor-cable connecting and terminating hardware. Material was obtained from a NASA-sponsored industry-wide survey of approximately 150 companies and Government agencies.

  19. End moldings for cable dielectrics

    DOEpatents

    Roose, Lars D.

    2000-01-01

    End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. Disclosed is a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves.

  20. All on One Wire: Pros and Cons of Mega-Channel, Interactive Cable.

    ERIC Educational Resources Information Center

    Acker, Stephen R.

    Interactive cable television systems take advantage of the ability of coaxial cables to transmit information in two directions. QUBE in Columbus, Ohio, and Project Ida in Canada use cable's interactive ability to provide a variety of services. QUBE allows electronic "town meetings" and provides access to stock quotes, newspaper headlines,…

  1. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be...

  2. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable... or broken under load....

  3. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable... or broken under load....

  4. Computer-Aided Engineering Of Cabling

    NASA Technical Reports Server (NTRS)

    Billitti, Joseph W.

    1989-01-01

    Program generates data sheets, drawings, and other information on electrical connections. DFACS program, centered around single data base, has built-in menus providing easy input of, and access to, data for all personnel involved in system, subsystem, and cabling. Enables parallel design of circuit-data sheets and drawings of harnesses. Also recombines raw information to generate automatically various project documents and drawings, including index of circuit-data sheets, list of electrical-interface circuits, lists of assemblies and equipment, cabling trees, and drawings of cabling electrical interfaces and harnesses. Purpose of program to provide engineering community with centralized data base for putting in, and gaining access to, functional definition of system as specified in terms of details of pin connections of end circuits of subsystems and instruments and data on harnessing. Primary objective to provide instantaneous single point of interchange of information, thus avoiding

  5. 11. DETAIL VIEW OF NONSUBMERSIBLE TAINTER GATE, SHOWING CABLE ASSEMBLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF NON-SUBMERSIBLE TAINTER GATE, SHOWING CABLE ASSEMBLY ATTACHMENT, LOOKING EAST (DOWNSTREAM) - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  6. 58. VIEW OF CABLE INCLINE, LOCATED ON THE HILLSIDE BELOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. VIEW OF CABLE INCLINE, LOCATED ON THE HILLSIDE BELOW THE FOREBAY (NORTHWEST OF FOREBAY), Print No. 156, August 1903 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  7. Cable-Dispensing Cart

    NASA Technical Reports Server (NTRS)

    Bredberg, Alan S.

    2003-01-01

    A versatile cable-dispensing cart can support as many as a few dozen reels of cable, wire, and/or rope. The cart can be adjusted to accommodate reels of various diameters and widths, and can be expanded, contracted, or otherwise reconfigured by use of easily installable and removable parts that can be carried onboard. Among these parts are dispensing rods and a cable guide that enables dispensing of cables without affecting the direction of pull. Individual reels can be mounted on or removed from the cart without affecting the other reels: this feature facilitates the replacement or reuse of partially depleted reels, thereby helping to reduce waste. Multiple cables, wires, or ropes can be dispensed simultaneously. For maneuverability, the cart is mounted on three wheels. Once it has been positioned, the cart is supported by rubber mounts for stability and for prevention of sliding or rolling during dispensing operations. The stability and safety of the cart are enhanced by a low-center-of-gravity design. The cart can readily be disassembled into smaller units for storage or shipping, then reassembled in the desired configuration at a job site.

  8. 103. CABLES ENTERING CABLE TRAY SHED AT EAST OF LSB; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    103. CABLES ENTERING CABLE TRAY SHED AT EAST OF LSB; OXIDIZER APRON AND LAUNCH PAD IN BACKGROUND - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. 34. BARGE LOADING PIER, DETAIL SHOWING CABLE CAR TRACKS, CABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. BARGE LOADING PIER, DETAIL SHOWING CABLE CAR TRACKS, CABLE CARS AND WALKWAYS. LOOKING TOWARD THE EAST END FROM THE WEST END - Pennsylvania Railroad, Canton Coal Pier, Clinton Street at Keith Avenue (Canton area), Baltimore, Independent City, MD

  10. 14 CFR 23.689 - Cable systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Systems § 23.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley used must... in cable tension throughout the range of travel under operating conditions and temperature...

  11. 14 CFR 23.689 - Cable systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Systems § 23.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley used must... in cable tension throughout the range of travel under operating conditions and temperature...

  12. 14 CFR 23.689 - Cable systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Systems § 23.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley used must... in cable tension throughout the range of travel under operating conditions and temperature...

  13. 14 CFR 23.689 - Cable systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Systems § 23.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley used must... in cable tension throughout the range of travel under operating conditions and temperature...

  14. Improved Connector Shell for Cable Shields

    NASA Technical Reports Server (NTRS)

    Prisk, A. L.; Rotta, J. W., Jr.

    1983-01-01

    Cable connector shell improves electrostatic and electromagnetic shielding by electrically connecting cable braid around entire circumference. Connector cable braid is slipped over ferrule and sleeve is slipped over braid, clamping it tightly to shell. Connector shell completely shields cable conductors.

  15. Correction coil cable

    DOEpatents

    Wang, Sou-Tien

    1994-11-01

    A wire cable assembly (10, 310) adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies (532) for the superconducting super collider. The correction coil cables (10, 310) have wires (14, 314) collected in wire arrays (12, 312) with a center rib (16, 316) sandwiched therebetween to form a core assembly (18, 318 ). The core assembly (18, 318) is surrounded by an assembly housing (20, 320) having an inner spiral wrap (22, 322) and a counter wound outer spiral wrap (24, 324). An alternate embodiment (410) of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable (410) on a particle tube (733) in a particle tube assembly (732).

  16. Analysis of the Superconducting Cable Transposition in Low Resistance CICC Joint

    NASA Astrophysics Data System (ADS)

    Zhu, You-hua

    2000-08-01

    In an integrated structure low resistance CICC joint, current is conducted by outer cable strands coming into touch with the conductive Cu sole. So it is an important condition for satisfying joint performance that each strand of the cable inside the joint is able to come to the outermost by transposition. This paper presents analysis, calculation and figures for the strand transposition. According to the twist procedures of the superconducting cable, the author computed the actual pitch of each stage cable, consecutively computed the projection of each stage cable on the axis of the cable (z axis) and the corresponding twist angle as the z coordinate changes, which is then drawn by AutoCAD. From the results shown in the figures, the minimal cable length, which enables each strand to transpose almost equally to the outermost of the cable in such a length, can be determined as the optimal joint length.

  17. Coaxial cable cutter

    DOEpatents

    Hall, Leslie C.; Hedges, Robert S.

    1990-04-10

    A cutting device is provided which is useful in trimming the jackets from semi-rigid coaxial cables and wire having a cutting bit and support attached to movable jaws. A thumbpiece is provided to actuate the opening of the jaws for receiving the cable to be trimmed, and a spring member is provided to actuate the closing of the jaws when thumbpiece is released. The cutting device utilizes one moving part during the cutting operation by using a rolling cut action. The nature of the jaws allows the cutting device to work in space having clearances less than 0.160 inches.

  18. Space Flight Cable Model Development

    NASA Technical Reports Server (NTRS)

    Spak, Kaitlin

    2013-01-01

    This work concentrates the modeling efforts presented in last year's VSGC conference paper, "Model Development for Cable-Harnessed Beams." The focus is narrowed to modeling of space-flight cables only, as a reliable damped cable model is not yet readily available and is necessary to continue modeling cable-harnessed space structures. New experimental data is presented, eliminating the low-frequency noise that plagued the first year's efforts. The distributed transfer function method is applied to a single section of space flight cable for Euler-Bernoulli and shear beams. The work presented here will be developed into a damped cable model that can be incorporated into an interconnected beam-cable system. The overall goal of this work is to accurately predict natural frequencies and modal damping ratios for cabled space structures.

  19. Hypervelocity impact testing of cables

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Adkinson, A. B.; English, J. E.; Linebaugh, C. E.

    1973-01-01

    The physics and electrical results obtained from simulated micrometeoroid testing of certain Skylab cables are presented. The test procedure, electrical circuits, test equipment, and cable types utilized are also explained.

  20. High acceleration cable deployment system

    NASA Technical Reports Server (NTRS)

    Canning, T. N.; Barns, C. E.; Murphy, J. P.; Gin, B.; King, R. W. (Inventor)

    1981-01-01

    A deployment system that will safely pay one cable from a ballistic forebody when the forebody is separated from an afterbody (to which the cable is secured and when the separation is marked by high acceleration and velocity) is described.

  1. Pyrotechnic-actuated cable release

    NASA Technical Reports Server (NTRS)

    Hanson, R. W.

    1968-01-01

    Remote, unattended means has been designed and reduced to practice that retains and then releases an attached load by means of a restrained cable. The cable is released by an electrical impulse on signal.

  2. Sound cable crossing brings inexpensive electric power to Long Island

    SciTech Connect

    Grzan, J. ); Goyette, R. )

    1992-01-01

    This paper reports that while many electric-utility customers in New York State benefit from inexpensive hydroelectric power from Canada and upstate New York, lack of sufficient transmission connections have prevented this electricity from reaching Long Island. However, a newly constructed underground/underwater link capable of carrying 700-MW now transmits low-cost electricity to the island, saving money for customers. The self-contained fluid-filled cable used for the underwater portion of the project is the largest underwater cable in the world. The use of high-pressure, fluid-filled pipe-type cable on the land portion represents the largest application of paper-polypropylene-paper (PPP) insulated cable in the United States. State-of-the-art technologies were implemented in the use of temperature monitoring and leak detection systems, SF{sub 6} gas-insulated substation, and underwater cable laying and embedment techniques.

  3. Cabling design for phased arrays

    NASA Technical Reports Server (NTRS)

    Kruger, I. D.; Turkiewicz, L.

    1972-01-01

    The ribbon-cabling system used for the AEGIS phased array which provides minimum cable bulk, complete EMI shielding, rugged mechanical design, repeatable electrical characteristics, and ease of assembly and maintenance is described. The ribbon cables are 0.040-inch thick, and in widths up to 2 1/2 inches. Their terminations are molded connectors that can be grouped in a three-tier arrangement, with cable branching accomplished by a matrix-welding technique.

  4. Cables and connectors: A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A technological compilation on devices and techniques for various types of electrical cables and connections is presented. Data are reported under three sections: flat conductor cable technology, newly developed electrical connectors, and miscellaneous articles and information on cables and connector techniques.

  5. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  6. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  7. Thermal management of long-length HTS cable systems

    SciTech Connect

    Demko, Jonathan A; Hassenzahl, William V

    2011-01-01

    Projections of electric power production suggest a major shift to renewables, such as wind and solar, which will be in remote locations where massive quantities of power are available. One solution for transmitting this power over long distances to load centers is direct current (dc), high temperature superconducting (HTS) cables. Electric transmission via dc cables promises to be effective because of the low-loss, highcurrent- carrying capability of HTS wire at cryogenic temperatures. However, the thermal management system for the cable must be carefully designed to achieve reliable and energyefficient operation. Here we extend the analysis of a superconducting dc cable concept proposed by the Electric Power Research Institute (EPRI), which has one stream of liquid nitrogen flowing in a cryogenic enclosure that includes the power cable, and a separate return tube for the nitrogen. Refrigeration stations positioned every 10 to 20 km cool both nitrogen streams. Both go and return lines are contained in a single vacuum/cryogenic envelope. Other coolants, including gaseous helium and gaseous hydrogen, could provide potential advantages, though they bring some technical challenges to the operation of long-length HTS dc cable systems. A discussion of the heat produced in superconducting cables and a system to remove the heat are discussed. Also, an analysis of the use of various cryogenic fluids in long-distance HTS power cables is presented.

  8. Improved conventional testing of power plant cables. Final report

    SciTech Connect

    Anadakumaran, K.; Braun, J.M.; DiPaul, J.A. |

    1995-09-01

    The objective of the project is to develop improved condition monitoring techniques to assess the condition of power plant cables, particularly the unshielded cables found in older thermal plants. The cables of interest were insulated with PVC, butyl rubber, SBR (styrene butadiene rubber), EPR (ethylene propylene rubber), PE and XLPE (crosslinked polyethylene) as either single conductor, twisted pair, shielded and unshielded. The cables were thermally aged to embrittlement and characterized by physical, chemical and electrical tests. Physical characterization included, in addition to reference tensile elongation, tests performed on microscopic samples for quasi-nondestructive examination. Different tests proved particularly suited to different types of insulation. The dielectric characterization underlined the value of performing tests at other than power frequency and/or dc. Electric field calculations were carried out to develop a field testing strategy for unshielded cables and notably to investigate the feasibility of providing a suitable ground plane by testing conductor to grounded conductors(s). Two major electrical diagnostic test techniques were investigated in detail, low frequency insulation analysis to probe the bulk condition of insulations and partial discharge (PD) testing to detect cracks and defects. PD testing is well established but more challenging to perform with unshielded cables. Because of the attenuation properties of typical plant cables, a dual ended detector configuration is necessary. Two novel techniques were developed to provide dual ended detection without need for a second cable as the return path from the far end detector.

  9. Flat conductor cable applications

    NASA Technical Reports Server (NTRS)

    Angele, W.

    1972-01-01

    Some of the numerous applications of flat conductor cable (FCC) systems are briefly described. Both government and commercial uses were considered, with applications designated as either aerospace, military, or commercial. The number and variety of ways in which FCC is being applied and considered for future designs are illustrated.

  10. Superconducting Cable Termination

    DOEpatents

    Sinha, Uday K.; Tolbert, Jerry

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  11. Handbook for photovoltaic cabling

    SciTech Connect

    Klein, D. N.

    1980-08-01

    This volume, originally written as part of the Interim Performance Criteria Document Development Implementation Plan and Procedures for Photovoltaic Energy Systems, is an analysis of the several factors to be considered in selecting cabling for photovoltaic purposes. These factors, correspoonding to chapter titles, are electrical, structural, safety, durability/reliability, and installation. A glossary of terms used within the volume is included for reference.

  12. Urban Cable Systems.

    ERIC Educational Resources Information Center

    Mason, William F.; And Others

    Analysis of demographic, social, municipal and commercial characteristics of Washington, D.C., indicate that a sophisticated three-stage cable television (CATV) system could be economically viable. The first stage would provide one-way CATV service offering 30 video channels and local program origination at a monthly fee of $3.50. The second stage…

  13. Pediatrics and Cable Television.

    ERIC Educational Resources Information Center

    Wallerstein, Edward; And Others

    The Department of Community Medicine of the Mount Sinai School of Medicine (New York City), in cooperation with the TelePrompTer Corporation and with funding from the Health Services and Mental Health Administration of the Department of Health, Education, and Welfare, has developed a bidirectional television system using coaxial cable which links…

  14. 30 CFR 77.601 - Trailing cables or portable cables; temporary splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables or portable cables; temporary... OF UNDERGROUND COAL MINES Trailing Cables § 77.601 Trailing cables or portable cables; temporary splices. Temporary splices in trailing cables or portable cables shall be made in a workmanlike manner...

  15. 30 CFR 77.601 - Trailing cables or portable cables; temporary splices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cables or portable cables; temporary... OF UNDERGROUND COAL MINES Trailing Cables § 77.601 Trailing cables or portable cables; temporary splices. Temporary splices in trailing cables or portable cables shall be made in a workmanlike manner...

  16. 30 CFR 77.601 - Trailing cables or portable cables; temporary splices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trailing cables or portable cables; temporary... OF UNDERGROUND COAL MINES Trailing Cables § 77.601 Trailing cables or portable cables; temporary splices. Temporary splices in trailing cables or portable cables shall be made in a workmanlike manner...

  17. 30 CFR 77.601 - Trailing cables or portable cables; temporary splices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cables or portable cables; temporary... OF UNDERGROUND COAL MINES Trailing Cables § 77.601 Trailing cables or portable cables; temporary splices. Temporary splices in trailing cables or portable cables shall be made in a workmanlike manner...

  18. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Breaking trailing cable and power cable... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.607 Breaking trailing cable and power cable connections. Trailing cable and power cable connections...

  19. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be made... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Breaking trailing cable and power...

  20. Internal coaxial cable seal system

    DOEpatents

    Hall, David R.; Sneddon, Cameron; Dahlgren, Scott Steven; Briscoe, Michael A.

    2006-07-25

    The invention is a seal system for a coaxial cable and is placed within the coaxial cable and its constituent components. A series of seal stacks including load ring components and elastomeric rings are placed on load bearing members within the coaxial cable sealing the annular space between the coaxial cable and an electrical contact passing there through. The coaxial cable is disposed within drilling components to transmit electrical signals between drilling components within a drill string. The seal system can be used in a variety of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

  1. Disposable telemetry cable deployment system

    DOEpatents

    Holcomb, David Joseph

    2000-01-01

    A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

  2. Fiber Optic Cable Assemblies for Space Flight 2: Thermal and Radiation Effects

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    1998-01-01

    Goddard Space Flight Center is conducting a search for space flight worthy fiber optic cable assemblies that will benefit all projects at all of the NASA centers. This paper is number two in a series of papers being issued as a result of this task to define and qualify space grade fiber optic cable assemblies. Though to qualify and use a fiber optic cable in space requires treatment of the cable assembly as a system, it is very important to understand the design and behavior of its parts. This paper addresses that need, providing information on cable components shrinkage testing and radiation testing results from recent experiments at Goddard Space Flight Center.

  3. Development of Inspection Robots for Bridge Cables

    PubMed Central

    Kim, Se-Hoon; Lee, Jong-Jae

    2013-01-01

    This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented. PMID:24459453

  4. Rapid optimization of tension distribution for cable-driven parallel manipulators with redundant cables

    NASA Astrophysics Data System (ADS)

    Ouyang, Bo; Shang, Weiwei

    2016-03-01

    The solution of tension distributions is infinite for cable-driven parallel manipulators(CDPMs) with redundant cables. A rapid optimization method for determining the optimal tension distribution is presented. The new optimization method is primarily based on the geometry properties of a polyhedron and convex analysis. The computational efficiency of the optimization method is improved by the designed projection algorithm, and a fast algorithm is proposed to determine which two of the lines are intersected at the optimal point. Moreover, a method for avoiding the operating point on the lower tension limit is developed. Simulation experiments are implemented on a six degree-of-freedom(6-DOF) CDPM with eight cables, and the results indicate that the new method is one order of magnitude faster than the standard simplex method. The optimal distribution of tension distribution is thus rapidly established on real-time by the proposed method.

  5. High conductance surge cable

    DOEpatents

    Murray, Matthew M.; Wilfong, Dennis H.; Lomax, Ralph E.

    1998-01-01

    An electrical cable for connecting transient voltage surge suppressers to ectrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation.

  6. High conductance surge cable

    DOEpatents

    Murray, M.M.; Wilfong, D.H.; Lomax, R.E.

    1998-12-08

    An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.

  7. Method to improve superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    A method is disclosed of making a stranded superconductor cable having improved flexing and bending characteristics. In such method, a plurality of superconductor strands are helically wound around a cylindrical portion of a mandrel which tapers along a transitional portion to a flat end portion. The helically wound strands form a multistrand hollow cable which is partially flattened by pressure rollers as the cable travels along the transitional portion. The partially flattened cable is impacted with repeated hammer blows as the hollow cable travels along the flat end portion. The hammer blows flatten both the internal and the external surfaces of the strands. The cable is fully flattened and compacted by two sets of pressure rollers which engage the flat sides and the edges of the cable after it has traveled away from the flat end portion of the mandrel. The flattened internal surfaces slide easily over one another when the cable is flexed or bent so that there is very little possibility that the cable will be damaged by the necessary flexing and bending required to wind the cable into magnet coils.

  8. Cable coupling lightning transient qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of instrumentation cabling on the redesigned solid rocket motor was performed. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of instrumentation cable transients on cables within the system tunnel. The maximum short-circuit current induced onto a United Space Boosters, Inc., operational flight cable within the systems tunnel was 92 A, and the maximum induced open-circuit voltage was 316 V. These levels were extrapolated to the worst-case (200 kA) condition of NASA specification NSTS 07636 and were also scaled to full-scale redesigned solid rocket motor dimensions. Testing showed that voltage coupling to cables within the systems tunnel can be reduced 40 to 90 dB and that current coupling to cables within the systems tunnel can be reduced 30 to 70 dB with the use of braided metallic sock shields around cables that are external to the systems tunnel. Testing also showed that current and voltage levels induced onto cables within the systems tunnel are partially dependant on the cables' relative locations within the systems tunnel. Results of current injections to the systems tunnel indicate that the dominant coupling mode on cables within the systems tunnel is not from instrumentation cables but from coupling through the systems tunnel cover seam apertures. It is recommended that methods of improving the electrical bonding between individual sections of the systems tunnel covers be evaluated. Further testing to better characterize redesigned solid rocket motor cable coupling effects as an aid in developing methods to reduce coupling levels, particularly with respect to cable placement within the systems tunnel, is also recommended.

  9. Tapping the television cable.

    PubMed

    Clarke, M; Findlay, A; Canac, J F; Vergez, A

    1996-01-01

    Immediate access to patient data is essential to support good clinical decision making and support. However, away from the surgery, the doctor is currently unable to have any access to the clinical database. Solutions exist to support remote access, such as modems or radio data networks, but these are slow, with typical speeds in the 2-10 kbaud region. We propose a novel solution, to use the TV cable already installed in many homes. Using this technology, a suitably equipped computer (RF modern) is capable of connecting at speeds in excess of 500 kbaud and will run applications in exactly the same way as if connected to a surgery network: the cable TV becomes a LAN, but on a metropolitan scale. Brunel University, in collaboration with the Cable Corporation, has been piloting such a network. Issues include not only levels of service, but also security on the network and access, since the data are being effectively received in every home. However, close scrutiny of channel use can create closed networks reserved for specific users. The technology involves use of an RF modem to transmit data on a reverse channel (based at 16 MHz) on each subnet to a router at the head end of the cable network. This frequency translates the packet and retransmits it to all the subnets on a forward channel (based at 178 MHz). Each channel occupies the bandwidth normally allocated to one TV channel. Access is based on a modified CSMA/CD protocol, so treating the cable network as single multiple access network. The modem comes as a standard card installed in a PC and appears much as an ethernet card, but at reduced speed. With an NDIS driver it is quite able to support almost any network software, and has successfully demonstrated Novell and TCP/IP. We describe the HomeWorker network and the results from a pilot study being undertaken to determine the performance of the system and its impact on working practice. PMID:9375105

  10. Non-Intrusive Cable Tester

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor)

    1999-01-01

    A cable tester is described for low frequency testing of a cable for faults. The tester allows for testing a cable beyond a point where a signal conditioner is installed, minimizing the number of connections which have to be disconnected. A magnetic pickup coil is described for detecting a test signal injected into the cable. A narrow bandpass filter is described for increasing detection of the test signal. The bandpass filter reduces noise so that a high gain amplifier provided for detecting a test signal is not completely saturate by noise. To further increase the accuracy of the cable tester, processing gain is achieved by comparing the signal from the amplifier with at least one reference signal emulating the low frequency input signal injected into the cable. Different processing techniques are described evaluating a detected signal.

  11. MR damping system on Dongting Lake cable-stayed bridge

    NASA Astrophysics Data System (ADS)

    Chen, Z. Q.; Wang, X. Y.; Ko, J. M.; Ni, Y. Q.; Spencer, Billie F., Jr.; Yang, G.

    2003-08-01

    The Dongting Lake Bridge is a cable-stayed bridge crossing the Dongting Lake where it meets the Yangtze River in southern central China. After this bridge was completed in 1999, its cables were observed to be sensitive to rain-wind-induced vibration, especially under adverse weather conditions of both rain and wind. To investigate the possibility of using MR damping systems to reduce cable vibration, a joint project between the Central South University of China and the Hong Kong Polytechnic University was conducted. Based on the promising research results, the bridge authority decided to install MR damping systems on the longest 156 stay cables. The installation started in July 2001 and finished in June 2002, making it the world's first application of MR dampers on cable-stayed bridge to suppress the rain-wind-induced cable vibration. As a visible and permanent aspect of bridge, the MR damping system must be aesthetically pleasing, reliable, durable, easy to maintain, as well as effective in vibration mitigation. Substantial work was done to meet these requirements. This paper describes the implementation of MR damping systems for cable vibration reduction.

  12. HEAT TRANSFER EXPERIMENTS AND ANALYSIS OF A SIMULATED HTS CABLE

    SciTech Connect

    Demko, J. A.; Duckworth, R. C.; Gouge, M. J.; Knoll, D.

    2010-01-01

    Long-length high temperature superconducting (HIS) cable projects, over 1 km, are being designed that are cooled by flowing liquid nitrogen. The compact counter-flow cooling arrangement which has the supply and return stream in a single cryostat offers several advantages including smallest space requirement, least heat load, and reduced cost since a return cryostat is not required. One issue in long length HIS cable systems is the magnitude of the heat transfer radially through the cable. It is extremely difficult to instrument an HIS cable in service on the grid with the needed thermometry because of the issues associated with installing thermometers on high voltage components. A 5-meter long test system has been built that simulates a counter-flow cooled, HIS cable using a heated tube to simulate the cable. Measurements of the temperatures in the flow stream and on the tube wall can be made and compared to analysis. These data can be used to benchmark different HIS cable heat transfer and fluid flow analysis approaches.

  13. Superconducting flat tape cable magnet

    DOEpatents

    Takayasu, Makoto

    2015-08-11

    A method for winding a coil magnet with the stacked tape cables, and a coil so wound. The winding process is controlled and various shape coils can be wound by twisting about the longitudinal axis of the cable and bending following the easy bend direction during winding, so that sharp local bending can be obtained by adjusting the twist pitch. Stack-tape cable is twisted while being wound, instead of being twisted in a straight configuration and then wound. In certain embodiments, the straight length should be half of the cable twist-pitch or a multiple of it.

  14. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Breaking trailing cable and power cable....607 Breaking trailing cable and power cable connections. Trailing cable and power cable connections to junction boxes shall not be made or broken under load....

  15. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Breaking trailing cable and power cable....607 Breaking trailing cable and power cable connections. Trailing cable and power cable connections to junction boxes shall not be made or broken under load....

  16. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Breaking trailing cable and power cable....607 Breaking trailing cable and power cable connections. Trailing cable and power cable connections to junction boxes shall not be made or broken under load....

  17. 4. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM NORTH FACE OF LAUNCH OPERATIONS BUILDING. TOPS OF BUNKER PERISCOPE AND FLAGPOLE ON ROOF OF LAUNCH OPERATIONS BUILDING IN BACKGROUND - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. 5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM SOUTH FACE OF LAUNCH OPERATIONS BUILDING. MICROWAVE DISH IN FOREGROUND. METEOROLOGICAL TOWER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. The Future of Cable Communications in Libraries

    ERIC Educational Resources Information Center

    Kenney, Brigette L.

    1976-01-01

    Cable technology, the regulatory framework, and the cable industry's economic situation are examined. It is proposed that libraries engage in informational activities using the cable which are different from those presently undertaken. (Author)

  20. Put Your Cable Wiring to the Test.

    ERIC Educational Resources Information Center

    Day, C. William

    2001-01-01

    Discusses why schools and universities should use testing procedures in any wire bid specification for cable wiring and also know how experienced the installers are in testing and installing structured cabling systems. Key cabling terms are included. (GR)

  1. Cost-Effective Cable Insulation: Nanoclay Reinforced Ethylene-Propylene-Rubber for Low-Cost HVDC Cabling

    SciTech Connect

    2012-02-24

    GENI Project: GE is developing new, low-cost insulation for high-voltage direct current (HVDC) electricity transmission cables. The current material used to insulate HVDC transmission cables is very expensive and can account for as much as 1/3 of the total cost of a high-voltage transmission system. GE is embedding nanomaterials into specialty rubber to create its insulation. Not only are these materials less expensive than those used in conventional HVDC insulation, but also they will help suppress excess charge accumulation. The excess charge left behind on a cable poses a major challenge for high-voltage insulation—if it’s not kept to a low level, it could ultimately lead the insulation to fail. GE’s low-cost insulation is compatible with existing U.S. cable manufacturing processes, further enhancing its cost effectiveness.

  2. A Glossary of Cable Terms.

    ERIC Educational Resources Information Center

    Cable Television Information Center, Washington, DC.

    Prepared as part of the ongoing series of publications designed to assist local and state government policy makers with cable television planning and decision-making, this glossary updates the document originally published in 1972. It contains definitions of terms frequently encountered in matters concerning cable television. (DGC)

  3. Heart catheter cable and connector

    NASA Technical Reports Server (NTRS)

    Harrison, D. R.; Cota, F. L.; Sandler, H.

    1972-01-01

    Ultraminiature catheter cables that are stiff enough for intravenous insertion yet flexible at the tip, sterilizable, and economical are fabricated entirely from commercially available parts. Assembly includes air passageway for reference pressures and coaxial cable for transmission of signals from the tip of catheter.

  4. Cable Television and the University.

    ERIC Educational Resources Information Center

    Lyman, Richard

    Universities contain powerful blocs of resistance to new educational technology, perhaps especially to television. University attitudes and structures as well as faculty ignorance, apathy, and resistance affect the development of cable television. No one seems to speak with great confidence and precision about the educational potential of cable.…

  5. Rectangular configuration improves superconducting cable

    NASA Technical Reports Server (NTRS)

    Foss, M.; Laverick, C.; Lobell, G.

    1968-01-01

    Superconducting cable for a cryogenic electromagnet with improved mechanical and thermal properties consists of a rectangular cross-sectioned combination of superconductor and normal conductor. The conductor cable has superconductors embedded in a metallic coating with high electrical and mechanical conductivity at liquid helium temperatures.

  6. Field Demonstration of a 24-kV Superconducting Cable at Detroit Edison

    SciTech Connect

    Kelley, Nathan; Corsaro, Pietro

    2004-12-01

    Customer acceptance of high temperature superconducting (HTS) cable technology requires a substantial field demonstration illustrating both the system's technical capabilities and its suitability for installation and operation within the utility environment. In this project, the world's first underground installation of an HTS cable using existing ductwork, a 120 meter demonstration cable circuit was designed and installed between the 24 kV bus distribution bus and a 120 kV-24 kV transformer at Detroit Edison's Frisbie substation. The system incorporated cables, accessories, a refrigeration system, and control instrumentation. Although the system was never put in operation because of problems with leaks in the cryostat, the project significantly advanced the state-of-the-art in the design and implementation of Warm Dielectric cable systems in substation applications. Lessons learned in this project are already being incorporated in several ongoing demonstration projects.

  7. Photonic-powered cable assembly

    SciTech Connect

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  8. Photonic-powered cable assembly

    SciTech Connect

    Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

    2014-06-24

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  9. Acoustic emission monitoring of CFRP cables for cable-stayed bridges

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Lanza di Scalea, Francesco

    2001-08-01

    The advantages of fiber-reinforced polymer (FRP) composite include excellent corrosion resistance, high specific strength and stiffness, as well as outstanding fatigue behavior. The University of California San Diego's I- 5/Gilman Advanced Technology Bridge Project will help demonstrating the use of such materials in civil infrastructures. This paper presents an acoustic emission (AE) study performed during laboratory proof tests of carbon fiber-reinforced polymer stay-cables of possible use in the I-5/Gilman bridge. Three types of cables, both braided and single strand, were tested to failure at lengths ranging from 5500 mm to 5870 mm. AE allowed to monitor damage initiation and progression in the test pieces more accurately than the conventional load versus displacement curve. All of the cables exhibited acoustic activities revealing some degree of damage well before reaching final collapse, which is expected in FRP's. It was also shown that such cables are excellent acoustic waveguides exhibiting very low acoustic attenuation, which makes them an ideal application for an AE-based health monitoring approach.

  10. Seafloor geodetic reference station branched from submarine cable

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Asada, A.; Ura, T.; Asakawa, K.; Yokobiki, T.; Iwase, R.; Goto, T.; Sato, M.; Nagahashi, K.; Tanaka, T.

    2008-12-01

    We launched a project supported by the Japan Society for the Science Promotion as the Grants in Aid for Scientific Research. In this project, we are aiming at developing new-generation seafloor geodetic observation system that conquers difficulties inherent with the current system. Central idea of this project is to utilize techniques of underwater robot (Autonomous Underwater Vehicle) and submarine cable to make measurements in place of using the research vessels. Combination of underwater robot and submarine cable make it possible to provide permanent seafloor reference point, to conduct the observation with selecting favorable condition of sea and GPS satellite distributions, to make much more frequent observations and to enable flexible planning of observation in response to sudden geodetic events. Prototype of the on-board system which should be installed on an AUV was finished. Several trials had been done with the system in the sea. The results from them showed that the new on-board system will reach to the higher level in performance than the current system in the near future. And then we started to dedicate ourselves mainly to developing new seafloor transponder. The current seafloor transponder system is stand-alone one which runs on internal batteries. We expect five to ten years for the lifetime of the current seafloor transponder, even though it depends on how often we perform measurements with the transponder. Replacement of the seafloor transponder will be needed when we target seafloor crustal deformation that has long time cycle more than several decades. Continuity of seafloor geodetic observation will be stopped. New seafloor transponder which we have been developing is one which can be connected to a submarine cable by wet-mate connectors. Power is supplied through submarine cable and then the new seafloor transponder will be a permanent reference station for seafloor geodetic survey. Submarine cable can supply accurate GPS time (1pps) and clock

  11. Assessment of 69 kV Underground Cable Thermal Ratings using Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Stowers, Travis

    Underground transmission cables in power systems are less likely to experience electrical faults, however, resulting outage times are much greater in the event that a failure does occur. Unlike overhead lines, underground cables are not self-healing from flashover events. The faulted section must be located and repaired before the line can be put back into service. Since this will often require excavation of the underground duct bank, the procedure to repair the faulted section is both costly and time consuming. These added complications are the prime motivators for developing accurate and reliable ratings for underground cable circuits. This work will review the methods by which power ratings, or ampacity, for underground cables are determined and then evaluate those ratings by making comparison with measured data taken from an underground 69 kV cable, which is part of the Salt River Project (SRP) power subtransmission system. The process of acquiring, installing, and commissioning the temperature monitoring system is covered in detail as well. The collected data are also used to evaluate typical assumptions made when determining underground cable ratings such as cable hot-spot location and ambient temperatures. Analysis results show that the commonly made assumption that the deepest portion of an underground power cable installation will be the hot-spot location does not always hold true. It is shown that distributed cable temperature measurements can be used to locate the proper line segment to be used for cable ampacity calculations.

  12. Cable Damage Detection System and Algorithms Using Time Domain Reflectometry

    SciTech Connect

    Clark, G A; Robbins, C L; Wade, K A; Souza, P R

    2009-03-24

    This report describes the hardware system and the set of algorithms we have developed for detecting damage in cables for the Advanced Development and Process Technologies (ADAPT) Program. This program is part of the W80 Life Extension Program (LEP). The system could be generalized for application to other systems in the future. Critical cables can undergo various types of damage (e.g. short circuits, open circuits, punctures, compression) that manifest as changes in the dielectric/impedance properties of the cables. For our specific problem, only one end of the cable is accessible, and no exemplars of actual damage are available. This work addresses the detection of dielectric/impedance anomalies in transient time domain reflectometry (TDR) measurements on the cables. The approach is to interrogate the cable using time domain reflectometry (TDR) techniques, in which a known pulse is inserted into the cable, and reflections from the cable are measured. The key operating principle is that any important cable damage will manifest itself as an electrical impedance discontinuity that can be measured in the TDR response signal. Machine learning classification algorithms are effectively eliminated from consideration, because only a small number of cables is available for testing; so a sufficient sample size is not attainable. Nonetheless, a key requirement is to achieve very high probability of detection and very low probability of false alarm. The approach is to compare TDR signals from possibly damaged cables to signals or an empirical model derived from reference cables that are known to be undamaged. This requires that the TDR signals are reasonably repeatable from test to test on the same cable, and from cable to cable. Empirical studies show that the repeatability issue is the 'long pole in the tent' for damage detection, because it is has been difficult to achieve reasonable repeatability. This one factor dominated the project. The two-step model-based approach is

  13. Cable Bacteria in Freshwater Sediments

    PubMed Central

    Kristiansen, Michael; Frederiksen, Rasmus B.; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  14. Cable Bacteria in Freshwater Sediments.

    PubMed

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus B; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-09-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  15. Prospective barrier coatings for superconducting cables

    NASA Astrophysics Data System (ADS)

    Ipatov, Y.; Dolgosheev, P.; Sytnikov, V.

    1997-07-01

    Known and prospective types of chromium coatings, used in the production of superconducting `cable-in-conduit' conductors designed for the ITER and other projects, are considered. The influence of the technological conditions during the galvanic plating of hard, grey, black and combined chromium coatings in various electrolytes and the annealing conditions in air and in vacuum on the contact electrical resistance of copper and superconducting wire at room temperature and 4.2 K as well as on other physical properties, e.g. resistance to abrasion, elasticity and thickness of the coatings, is investigated. Black oxide - chromium coatings and combined chromium coatings, containing oxides of chromium and a number of other metals, ensure the possibility of a significant increase of contact resistance as well as its regulation in a broad range of values in comparison with hard chromium. The results of the present work and also an independent investigation of the cable containing the strand, manufactured in JSC `VNIIKP', allow us to propose the oxide - chromium coating as a barrier layer for multistrand superconducting cables.

  16. Robot cable-compliant devices

    NASA Technical Reports Server (NTRS)

    Kerley, James J., Jr. (Inventor)

    1990-01-01

    A cable compliant robotic joint includes two U configuration cross section brackets with their U cross sections lying in different planes, one of their brackets being connected to a robot arm and the other to a tool. Additional angle brackets are displaced from the other brackets at corners of the robotic joint. All the brackets are connected by cable segments which lie in one or more planes which are perpendicular to the direction of tool travel as it approaches a work object. The compliance of the joint is determined by the cable segment characteristics, such as their length, material, angle, stranding, pretwisting, and prestressing.

  17. Fully synthetic taped insulation cables

    DOEpatents

    Forsyth, E.B.; Muller, A.C.

    1983-07-15

    The present invention is a cable which, although constructed from inexpensive polyolefin tapes and using typical impregnating oils, furnishes high voltage capability up to 765 kV, and has such excellent dielectric characteristics and heat transfer properties that it is capable of operation at capacities equal to or higher than presently available cables at a given voltage. This is accomplished by using polyethylene, polybutene or polypropylene insulating tape which has been specially processed to attain properties which are not generally found in these materials, but are required for their use in impregnated electrical cables. Chief among these properties is compatibility with impregnating oil.

  18. Test and Evaluation of Public Service Uses of Cable Television: Reading, Pennsylvania.

    ERIC Educational Resources Information Center

    New York Univ., NY. Reading Consortium.

    The New York University-Reading Consortium proposed to evaluate the use of interactive cable television for the delivery of public services to the the elderly residents of Reading, Pennsylvania. The project represented the collaborative efforts of New York University, the City of reading, the Berks TV Cable Company, the Berks County Senior…

  19. Thermoelectric Outer Planets Spacecraft (TOPS) electronic packaging and cabling development summary report

    NASA Technical Reports Server (NTRS)

    Dawe, R. H.; Arnett, J. C.

    1974-01-01

    Electronic packaging and cabling activities performed in support of the Thermoelectric Outer Planets Spacecraft (TOPS) Advanced Systems Technology (AST) project are detailed. It describes new electronic compartment, electronic assembly, and module concepts, and a new high-density, planar interconnection technique called discrete multilayer (DML). Development and qualification of high density cabling techniques, using small gage wire and microminiature connectors, are also reported.

  20. Program for Space Shuttle Payload Cabling

    NASA Technical Reports Server (NTRS)

    Schultz, Roger D.; Saxon, C. Rogers

    1987-01-01

    EXCABL is expert-system computer program developed to route electrical cables in Space Shuttle Orbiter payload bay for each mission. Automates cable-routing process and provides data for cable-installation documents. Automation increased speed and accuracy of payload-integration process, and expert system codifies knowledge cabling experts have acquired. Written in ART.

  1. 14 CFR 27.1365 - Electric cables.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would...

  2. 14 CFR 27.1365 - Electric cables.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would...

  3. 14 CFR 27.1365 - Electric cables.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would...

  4. 14 CFR 27.1365 - Electric cables.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would...

  5. 14 CFR 27.1365 - Electric cables.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would...

  6. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cable systems. 25.689 Section 25.689 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.689 Cable systems. (a) Each cable, cable fitting,...

  7. Cable Modem Technology Implementation: Challenges and Prospects.

    ERIC Educational Resources Information Center

    Littman, Marlyn Kemper

    1998-01-01

    Describes cable modem technology (i.e., an external device that facilitates high-speed access to the Internet via the same network configuration employed for cable television). Examples of cable field trials carried out in collaboration with educational user communities are presented, and cable technical capabilities, advantages, and constraints…

  8. Cable Television: Citizen Participation in Planning.

    ERIC Educational Resources Information Center

    Yin, Robert K.

    The historical background of citizen participation in local affairs and its relevance at the onset of community concern about cable television are briefly discussed in this report. The participation of citizens, municipal officials, and cable operators in laying the groundwork for a cable system as well as the pros and cons of cable television as…

  9. Cable in Connecticut; a Citizen's Handbook.

    ERIC Educational Resources Information Center

    Cleland, Margaret

    This handbook for Connecticut cable television consumers addresses a variety of topics, including: (1) a definition of cable television services; (2) the public stake in cable television; (3) program variety; (4) pay cable service; (5) public satellites; (6) government regulation; (7) proposed regulation; (8) role of the Connecticut Public…

  10. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (a) This account shall include the original cost of underground cable installed in conduit and of... cable. This subsidiary record category shall include the original cost of optical fiber cable and other.... (2) Metallic cable. This subsidiary record category shall include the original cost of single...

  11. 105. VIEW NORTH FROM SLC3W CABLE TUNNEL INTO CABLE VAULT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    105. VIEW NORTH FROM SLC-3W CABLE TUNNEL INTO CABLE VAULT AND SLC-3E CABLE TUNNEL. NOTE WOODEN PLANKING ON FLOOR OF TUNNEL AND CABLE TRAYS LINING TUNNEL WALLS. STAIRS ON EAST WALL OF CABLE VAULT LEAD INTO LANDLINE INSTRUMENTATION ROOM. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. Flexible Ceramic-Insulated Cable

    NASA Technical Reports Server (NTRS)

    Bouquet, Frank L.

    1988-01-01

    Cable withstands heat, radiation, and oxidation. Ceramic beads electrically insulate copper conductor from sheath of copper tape. Also suitable for furnaces, nuclear reactors, and robots operating in hot, radioactive environments.

  13. Process of modifying a cable end

    DOEpatents

    Roose, L.D.

    1995-08-01

    End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. Disclosed are a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves. 5 figs.

  14. Process of modifying a cable end

    DOEpatents

    Roose, Lars D.

    1995-01-01

    End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. Disclosed are a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves.

  15. Planning and installation of the 138 kV South Padre Island submarine cable

    SciTech Connect

    Cooper, J.H. ); Polasek, M.J. )

    1993-10-01

    This paper describes the planning, design and installation phases of a 138 kV submarine cable project which was recently completed by Central Power and Light (CPL) to improve the service reliability of South Padre Island and the town of Port Isabel. The project presented unique installation problems due to the shallow water depths combined with the necessity to minimize the environmental impact to sea grasses during the cable installation. This project resulted in the longest 138 kV extruded dielectric submarine cable circuit in the US.

  16. Fully synthetic taped insulation cables

    DOEpatents

    Forsyth, Eric B.; Muller, Albert C.

    1984-01-01

    A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

  17. Fully synthetic taped insulation cables

    SciTech Connect

    Forsyth, E. B.; Muller, A. C.

    1984-12-11

    A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

  18. Nuclear instrumentation cable end seal

    DOEpatents

    Cannon, Collins P.; Brown, Donald P.

    1979-01-01

    An improved coaxial end seal for hermetically sealed nuclear instrumentation cable exhibiting an improved breakdown pulse noise characteristic under high voltage, high temperature conditions. A tubular insulator body has metallized interior and exterior surface portions which are braze sealed to a center conductor and an outer conductive sheath. The end surface of the insulator body which is directed toward the coaxial cable to which it is sealed has a recessed surface portion within which the braze seal material terminates.

  19. Effects of shields on cables

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Aircraft wiring subjected to rapidly changing electromagnetic fields was considered. The ways in which shielded cables reduce surge voltages were studied along with the ways in which common practice regarding the use of shields may be at variance with the use required for the control of lightning effects. Courses in which this apparent conflict of use may be resolved were suggested. Noise currents flowing on shields of cables related to the noise signals coupled onto signal conductors were also investigated.

  20. Development of flat conductor cable for commercial and residential wiring

    NASA Technical Reports Server (NTRS)

    Carden, J. R.

    1977-01-01

    The overall spectrum of the space technology spin-off development project: development of Flat Conductor Cable (FCC) for commercial and residential wiring, is presented. A discussion of the background, program milestones, industry participants, system outgrowth, hardware availability, cost estimates, and overall status of the program is presented for the 1970-to-present time period.

  1. The Glenview Model: Community Networking via Broadband Cable.

    ERIC Educational Resources Information Center

    Mundt, John P.

    This paper describes the installation of a data network in the community of Glenview, Illinois, which uses broadband cable equipment to connect schools, libraries, and governmental agencies to each other and to the Internet via a high speed Ethernet network. The history of the project is outlined followed by a discussion of the implementation of…

  2. Flat conductor cable design, manufacture, and installation

    NASA Technical Reports Server (NTRS)

    Angele, W.; Hankins, J. D.

    1973-01-01

    Pertinent information for hardware selection, design, manufacture, and quality control necessary for flat conductor cable interconnecting harness application is presented. Comparisons are made between round wire cable and flat conductor cable. The flat conductor cable interconnecting harness systems show major cost, weight, and space savings, plus increased system performance and reliability. The design application section includes electrical characteristics, harness design and development, and a full treatise on EMC considerations. Manufacturing and quality control sections pertain primarily to the developed conductor-contact connector system and special flat conductor cable to round wire cable transitions.

  3. Long-term operating characteristics of Japan's first in-grid HTS power cable

    NASA Astrophysics Data System (ADS)

    Nakano, Tetsutaro; Maruyama, Osamu; Honjo, Shoichi; Watanabe, Michihiko; Masuda, Takato; Hirose, Masayuki; Shimoda, Masahiro; Nakamura, Naoko; Yaguchi, Hiroharu; Machida, Akito

    2015-11-01

    Tokyo Electric Power Company, Sumitomo Electric Industries, Ltd and Mayekawa Mfg. Co., Ltd have jointly conducted the first in-grid demonstration test of a high-temperature superconducting (HTS) cable in Japan, from FY2007 to FY2013. The objective of this project is to evaluate the reliability, stability and other characteristics of the system. The cable structure used in this project is the type of three-in-one cable. As a coolant, sub-cooled liquid nitrogen flows through the gap between the corrugated cryostat and the three cable cores. This structure can realize compactness and reduce heat invasion compared with three single-core HTS cables housed in separate cryostats. The cooling system consists of six refrigerators, two circulation pumps and a reservoir tank. Each refrigerator has a cooling power of 1.0 kW at 77 K, 0.8 kW at 67 K. The number of operating refrigerators is controlled so that the coolant temperature at the cable inlet is kept to preset value. The HTS cable was connected to the live electricity grid from October 29, 2012 to December 25, 2013. In-grid operation continued for more than one year without any accidental interruption of operation or other operating issues. During this time, we studied the operating performance of the HTS cable in dependence on the sub-cooled LN2 temperature.

  4. Submarine Cables for Ocean/Climate Monitoring and Disaster Warning

    NASA Astrophysics Data System (ADS)

    Bueti, Cristina; Barnes, Chris; Meldrum, David

    2013-04-01

    A joint initiative between International Telecommunication Union (ITU), the World Meteorological Organization (WMO) and the Intergovernmental Oceanographic Commission (IOC) of UNESCO is examining novel uses for submarine telecommunication cables. The initiative addresses two main issues: the need for sustained climate-quality data from the sparsely observed deep oceans, and the desire to increase the reliability and integrity of the global tsunami warning networks. In the latter case, a significant proportion of the network suffers from failure and vandalism of the sea-surface telemetry buoys that relay the tsunami signals from the sea-bed sensor package: incorporating the sensors within a submarine cable repeater is an obvious way of increasing system reliability. At the present time, plans are well advanced to launch a pilot project with the active involvement of cable industry players.

  5. Charge-Dissipative Electrical Cables

    NASA Technical Reports Server (NTRS)

    Kolasinski, John R.; Wollack, Edward J.

    2004-01-01

    Electrical cables that dissipate spurious static electric charges, in addition to performing their main functions of conducting signals, have been developed. These cables are intended for use in trapped-ion or ionizing-radiation environments, in which electric charges tend to accumulate within, and on the surfaces of, dielectric layers of cables. If the charging rate exceeds the dissipation rate, charges can accumulate in excessive amounts, giving rise to high-current discharges that can damage electronic circuitry and/or systems connected to it. The basic idea of design and operation of charge-dissipative electrical cables is to drain spurious charges to ground by use of lossy (slightly electrically conductive) dielectric layers, possibly in conjunction with drain wires and/or drain shields (see figure). In typical cases, the drain wires and/or drain shields could be electrically grounded via the connector assemblies at the ends of the cables, in any of the conventional techniques for grounding signal conductors and signal shields. In some cases, signal shields could double as drain shields.

  6. Development of distributed strain and temperature sensing cables

    NASA Astrophysics Data System (ADS)

    Inaudi, Daniele; Glisic, Branko

    2005-05-01

    Distributed fiber optic sensing presents unique features that have no match in conventional sensing techniques. The ability to measure temperatures and strain at thousands of points along a single fiber is particularly interesting for the monitoring of large structures such as pipelines, flow lines, oil wells, dams and dikes. Sensing systems based on Brillouin and Raman scattering have been used for example to detect pipeline leakages, verify pipeline operational parameters, prevent failure of pipelines installed in landslide areas, optimize oil production from wells and detect hot-spots in high-power cables. The measurement instruments have been vastly improved in terms of spatial, temperature and strain resolution, distance range, measurement time, data processing and system cost. Analyzers for Brillouin and Raman scattering are now commercially available and offer reliable operation in field conditions. New application opportunities have however demonstrated that the design and production of sensing cables is a critical element for the success of any distributed sensing instrumentation project. Although standard telecommunication cables can be effectively used for sensing ordinary temperatures, monitoring high and low temperatures or distributed strain present unique challenges that require specific cable designs. This contribution presents three cable designs for high-temperature sensing, strain sensing and combined strain and temperature monitoring.

  7. Modeling of a 22.9 kV 50 MVA superconducting power cable based on PSCAD/EMTDC for application to the Icheon substation in Korea

    NASA Astrophysics Data System (ADS)

    Lee, S.; Yoon, J.; Lee, B.; Yang, B.

    2011-11-01

    Two projects for high temperature superconducting (HTS) power cable have been carried out in Korea since 2001. One of them is a HTS cable project in DAPAS (Development of Advanced Power system by Applied Superconductivity technologies) program funded by the Ministry of Education, Science and Technology. In this project, LS Cable Ltd. (LSC) and Korea Electrotechnology Research Institute (KERI) jointly developed a 22.9 kV, 50 MVA, 3 phase, 100 m HTS cable using first generation (1G) HTS wire in 2006. The HTS cable system has been tested in a power test center of Korea Electric Power Corporation (KEPCO). LSC and KEPCO have been developing a 22.9 kV, 50 MVA, 3 phase, 500 m HTS cable system using second generation (2G) HTS wire since 2008, based on the technology of the DAPAS project. This project is called as GENI (Green Superconducting Electric Power Network at the Icheon Substation) project. The target of GENI project is to install and operate the HTS cable system in the Icheon substation located in near Seoul. In order to analyze the Icheon substation power system employing the HTS cable, an analysis model of the HTS cable is necessary. This paper describes the development of an analysis model for the 22.9 kV, 50 MVA HTS cable that will be applied to the Icheon substation in Korea.

  8. Umbilical cable recovery load analysis

    NASA Astrophysics Data System (ADS)

    Yan, Shu-wang; Jia, Zhao-lin; Feng, Xiao-wei; Li, Shi-tao

    2013-06-01

    Umbilical cable is a kind of integrated subsea cable widely used in the exploration and exploitation of oil and gas field. The severe ocean environment makes great challenges to umbilical maintenance and repair work. Damaged umbilical is usually recovered for the regular operation of the offshore production system. Analysis on cables in essence is a two-point boundary problem. The tension load at the mudline must be known first, and then the recovery load and recovery angle on the vessel can be solved by use of catenary equation. The recovery analysis also involves umbilical-soil interaction and becomes more complicated. Calculation methods for recovery load of the exposed and buried umbilical are established and the relationship between the position of touch down point and the recovery load as well as the recovery angle and recovery load are analyzed. The analysis results provide a theoretical reference for offshore on-deck operation.

  9. Aerodynamics modeling of towed-cable dynamics

    SciTech Connect

    Kang, S.W.; Latorre, V.R.

    1991-01-17

    The dynamics of a cable/drogue system being towed by an orbiting aircraft has been investigated as a part of an LTWA project for the Naval Air Systems Command. We present here a status report on the tasks performed under Phase 1. We have accomplished the following tasks under Phase 1: A literature survey on the towed-cable motion problem has been conducted. While both static (steady-state) and dynamic (transient) analyses exist in the literature, no single, comprehensive analysis exists that directly addresses the present problem. However, the survey also reveals that, when judiciously applied, these past analyses can serve as useful building blocks for approaching the present problem. A numerical model that addresses several aspects of the towed-cable dynamic problem has been adapted from a Canadian underwater code for the present aerodynamic situation. This modified code, called TOWDYN, analyzes the effects of gravity, tension, aerodynamic drag, and wind. Preliminary results from this code demonstrate that the wind effects alone CAN generate the drogue oscillation behavior, i.e., the yo-yo'' phenomenon. This code also will serve as a benchmark code for checking the accuracy of a more general and complete R D'' model code. We have initiated efforts to develop a general R D model supercomputer code that also takes into account other physical factors, such as induced oscillations and bending stiffness. This general code will be able to evaluate the relative impacts of the various physical parameters, which may become important under certain conditions. This R D code will also enable development of a simpler operational code that can be used by the Naval Air personnel in the field.

  10. Chemical-Sensing Cables Detect Potential Threats

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Intelligent Optical Systems Inc. (IOS) completed Phase I and II Small Business Innovation Research (SBIR) contracts with NASA's Langley Research Center to develop moisture- and pH-sensitive sensors to detect corrosion or pre-corrosive conditions, warning of potentially dangerous conditions before significant structural damage occurs. This new type of sensor uses a specially manufactured optical fiber whose entire length is chemically sensitive, changing color in response to contact with its target, and demonstrated to detect potentially corrosive moisture incursions to within 2 cm. After completing the work with NASA, the company received a Defense Advanced Research Projects Agency (DARPA) Phase III SBIR to develop the sensors further for detecting chemical warfare agents, for which they proved just as successful. The company then worked with the U.S. Department of Defense (DoD) to fine tune the sensors for detecting potential threats, such as toxic industrial compounds and nerve agents. In addition to the work with government agencies, Intelligent Optical Systems has sold the chemically sensitive fiber optic cables to major automotive and aerospace companies, who are finding a variety of uses for the devices. Marketed under the brand name Distributed Intrinsic Chemical Agent Sensing and Transmission (DICAST), these unique continuous-cable fiber optic chemical sensors can serve in a variety of applications: Corrosive-condition monitoring, aiding experimentation with nontraditional power sources, as an economical means of detecting chemical release in large facilities, as an inexpensive "alarm" systems to alert the user to a change in the chemical environment anywhere along the cable, or in distance-resolved optical time domain reflectometry systems to provide detailed profiles of chemical concentration versus length.

  11. Online Cable Tester and Rerouter

    NASA Technical Reports Server (NTRS)

    Lewis, Mark; Medelius, Pedro

    2012-01-01

    Hardware and algorithms have been developed to transfer electrical power and data connectivity safely, efficiently, and automatically from an identified damaged/defective wire in a cable to an alternate wire path. The combination of online cable testing capabilities, along with intelligent signal rerouting algorithms, allows the user to overcome the inherent difficulty of maintaining system integrity and configuration control, while autonomously rerouting signals and functions without introducing new failure modes. The incorporation of this capability will increase the reliability of systems by ensuring system availability during operations.

  12. Equalization of data transmission cable

    NASA Technical Reports Server (NTRS)

    Zobrist, G. W.

    1975-01-01

    The paper describes an equalization approach utilizing a simple RLC network which can obtain a maximum slope of -12dB/octave for reshaping the frequency characteristics of a data transmission cable, so that data may be generated and detected at the receiver. An experimental procedure for determining equalizer design specifications using distortion analysis is presented. It was found that for lengths of 16 PEV-L cable of up to 5 miles and data transmission rates of up to 1 Mbs, the equalization scheme proposed here is sufficient for generation of the data with acceptable error rates.

  13. Debris protection cover assembly for cable connectors

    NASA Technical Reports Server (NTRS)

    Yovan, Roger D. (Inventor)

    1999-01-01

    A protective cover assembly for an end of a cable connector having a cable housing that encloses a plurality of connective pins or sockets and that satisfies all requirements for space applications. A connector body flange is formed at the extremity of a cable and is positioned so that it may register with a corresponding connector body flange on the end of a companion cable to which a connection is to be made, one cable end having cable lead pins and the companion cable end having lead sockets with which the pins register. A latch mechanism having a latch housing is received in the connector body flange and a crank connected to a manually rotatable cap actuates a spring-loaded latch element that is engageable with a connector body flange to secure or to release the cover assembly with the simple twisting motion of the cap, thereby simplifying the task of effecting coupling and decoupling of the cable ends.

  14. New sensitive seismic cable with imbedded geophones

    NASA Astrophysics Data System (ADS)

    Pakhomov, Alex; Pisano, Dan; Goldburt, Tim

    2005-10-01

    Seismic detection systems for homeland security applications are an important additional layer to perimeter and border protection and other security systems. General Sensing Systems has been developing low mass, low cost, highly sensitive geophones. These geophones are being incorporated within a seismic cable. This article reports on the concept of a seismic sensitive cable and seismic sensitive ribbon design. Unlike existing seismic cables with sensitivity distributed along their lengths, the GSS new cable and ribbon possesses high sensitivity distributed in several points along the cable/ribbon with spacing of about 8-12 to 100 meters between geophones. This cable/ribbon is highly suitable for design and installation in extended perimeter protection systems. It allows the use of a mechanical cable layer for high speed installation. We show that any installation mistakes in using the GSS seismic sensitive cable/ribbon have low impact on output seismic signal value and detection range of security systems.

  15. 30 CFR 18.45 - Cable reels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., hydraulically, or electrically driven reel upon which to wind the portable cable. (b) The enclosure for moving... of travel of a machine when receiving power through a portable (trailing) cable shall not exceed...

  16. 30 CFR 18.45 - Cable reels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., hydraulically, or electrically driven reel upon which to wind the portable cable. (b) The enclosure for moving... of travel of a machine when receiving power through a portable (trailing) cable shall not exceed...

  17. 30 CFR 18.45 - Cable reels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., hydraulically, or electrically driven reel upon which to wind the portable cable. (b) The enclosure for moving... of travel of a machine when receiving power through a portable (trailing) cable shall not exceed...

  18. Ames Lab 101: Reinventing the Power Cable

    ScienceCinema

    Russell, Alan

    2014-06-04

    Ames Laboratory researchers are working to develop new electrical power cables that are stronger and lighter than the cables currently used in the nation's power grid. Nano Tube animation by Iain Goodyear

  19. Ames Lab 101: Reinventing the Power Cable

    SciTech Connect

    Russell, Alan

    2013-09-27

    Ames Laboratory researchers are working to develop new electrical power cables that are stronger and lighter than the cables currently used in the nation's power grid. Nano Tube animation by Iain Goodyear

  20. Integrated Cable System Aging Management Guidance: Low-Voltage Cable

    SciTech Connect

    W.M.Denny

    2003-01-02

    The document provides insights into common aging issues and symptoms and includes pictures and descriptions of deterioration that is observable. The report provides a rapid review of the important information necessary to assess the aging of the low-voltage cable system used in nuclear power plants.

  1. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  2. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  3. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  4. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  5. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  6. Development of optimized PPP insulated pipe-cable systems in the commercial voltage range. Final report

    SciTech Connect

    Allam, E.M.; McKean, A.L.

    1992-05-01

    The primary objectives of this project included the development of an alternate domestic source of Paper-Polypropylene-Paper (PPP) laminate and the development of optimized designs for PPP-insulated pipe-type cable systems in the commercial voltage range. The development of a domestic source of PPP laminate was successfully completed. This laminate was utilized throughout the program for fabrication of full-size prototype cables submitted for laboratory qualification tests. Selected cables at rated voltages of 138, 230 and 345kV have been designed, fabricated and subjected to the series of qualification tests leading to full laboratory qualification. An optimized design of 2000 kcmil, 345kV cable insulated with 600 mils of domestic PPP laminate was fabricated and successfully passed all laboratory qualification tests. This cable design was subsequently installed at Waltz Mill to undergo the series of field tests leading to full commercial qualification.

  7. Development of optimized PPP insulated pipe-cable systems in the commercial voltage range

    SciTech Connect

    Allam, E.M.; McKean, A.L. )

    1992-05-01

    The primary objectives of this project included the development of an alternate domestic source of Paper-Polypropylene-Paper (PPP) laminate and the development of optimized designs for PPP-insulated pipe-type cable systems in the commercial voltage range. The development of a domestic source of PPP laminate was successfully completed. This laminate was utilized throughout the program for fabrication of full-size prototype cables submitted for laboratory qualification tests. Selected cables at rated voltages of 138, 230 and 345kV have been designed, fabricated and subjected to the series of qualification tests leading to full laboratory qualification. An optimized design of 2000 kcmil, 345kV cable insulated with 600 mils of domestic PPP laminate was fabricated and successfully passed all laboratory qualification tests. This cable design was subsequently installed at Waltz Mill to undergo the series of field tests leading to full commercial qualification.

  8. Hawaii Deep Water Cable Program: Executive Summary

    SciTech Connect

    1990-09-01

    The Hawaii Deep Water Cable Program has succeeded unequivocally in determining the feasibility of deploying a submarine power cable system between the islands of Hawaii and Oahu. Major accomplishments of the program include designing, fabricating and testing an appropriate power cable, developing an integrated system to control all aspects of the cable laying operation, and testing all deployment systems at sea in the most challenging sections of the route.

  9. NEMA wire and cable standards development programs

    NASA Technical Reports Server (NTRS)

    Baird, Robert W.

    1994-01-01

    The National Electrical Manufacturers Association (NEMA) is the nation's largest trade association for manufacturers of electrical equipment. Its member companies produce components, end-use equipment and systems for the generation, transmission, distribution, control and use of electricity. The wire and cable division is presented in 6 sections: building wire and cable, fabricated conductors, flexible cords, high performance wire and cable, magnet wire, and power and control cable. Participating companies are listed.

  10. Status and Progress of a Fault Current Limiting Hts Cable to BE Installed in the con EDISON Grid

    NASA Astrophysics Data System (ADS)

    Maguire, J.; Folts, D.; Yuan, J.; Henderson, N.; Lindsay, D.; Knoll, D.; Rey, C.; Duckworth, R.; Gouge, M.; Wolff, Z.; Kurtz, S.

    2010-04-01

    In the last decade, significant advances in the performance of second generation (2G) high temperature superconducting wire have made it suitable for commercially viable applications such as electric power cables and fault current limiters. Currently, the U.S. Department of Homeland Security is co-funding the design, development and demonstration of an inherently fault current limiting HTS cable under the Hydra project with American Superconductor and Consolidated Edison. The cable will be approximately 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The underground cable will be installed and energized in New York City. The project is led by American Superconductor teamed with Con Edison, Ultera (Southwire and nkt cables joint venture), and Air Liquide. This paper describes the general goals, design criteria, status and progress of the project. Fault current limiting has already been demonstrated in 3 m prototype cables, and test results on a 25 m three-phase cable will be presented. An overview of the concept of a fault current limiting cable and the system advantages of this unique type of cable will be described.

  11. 47 CFR 76.990 - Small cable operators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Small cable operators. 76.990 Section 76.990... CABLE TELEVISION SERVICE Cable Rate Regulation § 76.990 Small cable operators. (a) Effective February 8, 1996, a small cable operator is exempt from rate regulation on its cable programming services tier,...

  12. 47 CFR 76.990 - Small cable operators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Small cable operators. 76.990 Section 76.990... CABLE TELEVISION SERVICE Cable Rate Regulation § 76.990 Small cable operators. (a) Effective February 8, 1996, a small cable operator is exempt from rate regulation on its cable programming services tier,...

  13. What Do We Know about the Audience for Cable Television? A Uses and Gratifications Analysis of Cable Decliners, Basic Cable Subscribers, and Pay Cable Subscribers.

    ERIC Educational Resources Information Center

    Bradbury, David E., Jr.; Felsenthal, Norman A.

    How do cable television subscribers differ from those who choose not to subscribe to cable? A study employed the uses and gratification paradigm to construct a questionnaire that solicited data from 600 television households in the Dayton, Ohio market. The sample was stratified to assure that one-third of the households had cable available but…

  14. 47 CFR 32.2423 - Buried cable.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Buried cable. 32.2423 Section 32.2423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2423 Buried cable. (a) This account shall include the original cost of buried cable as well as the cost of other material...

  15. 47 CFR 32.2423 - Buried cable.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Buried cable. 32.2423 Section 32.2423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2423 Buried cable. (a) This account shall include the original cost of buried cable as well as the cost of other material...

  16. Relative stiffness of flat-conductor cable

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.

    1977-01-01

    Bending moment data were taken on ten different cable samples and normalized to express all stiffness factors in terms of cable 5.1 cm in width. Relative stiffness data and nominal physical characteristics are tabulated and presented in graphical form for designers who may be interested in finding torques exerted on critical components by short lengths of cable.

  17. Cable: Report to the President, 1974.

    ERIC Educational Resources Information Center

    Office of Telecommunications Policy, Washington, DC.

    A comprehensive, new national policy for cable communications is recommended by the Cabinet Committee on Cable Communications. The goal of the policy is to achieve the orderly integration of cable with other existing communications media so that information may flow freely, protected from both private and governmental barriers. The first two…

  18. Your Personal Genie in the Cable.

    ERIC Educational Resources Information Center

    Schlafly, Hubert J.

    The technology necessary for the use of cable television (TV) has been invented; it simply must be put to use. By the 1970's, cable TV should be commonplace in this country. Its rapid growth was caused in part by its appearance at a time of explosive expansion of related technologies like data theory and computer design. The coaxial cable system…

  19. Design and Evaluation of 275 kV-3 kA HTS Power Cable

    NASA Astrophysics Data System (ADS)

    Yagi, M.; Mukoyama, S.; Mitsuhashi, T.; Jun, T.; Liu, J.; Nakayama, R.; Hayakawa, N.; Wang, X.; Ishiyama, A.; Amemiya, N.; Hasegawa, T.; Saitoh, T.; Ohkuma, T.; Maruyama, O.

    A 275 kV 3 kA high temperature superconducting (HTS) cable has been developed in the Materials & Power Applications of Coated Conductors (M-PACC) project. The cable is expected to be put to practical use as the backbone power line in the future because the capacity of 1.5 GW is about the same as overhead transmission lines. The 30 m cable has been designed on the basis of design values that had been obtained by various voltage tests, AC loss measurement tests, short circuit tests, and other elementary tests. Cable insulation was determined by the design stresses and test conditions based on IEC, JEC (Japan electrical standards), and other HTS demonstrations. This cable was also designed to withstand the short circuit test of 63 kA for 0.6 seconds and to have low losses, including AC loss and dielectric loss of 0.8 W/m at 3kA, 275 kV. Based on the design, a 30 m cable was manufactured, and short samples during this manufacturing process were confirmed to have the designed characteristics. Furukawa Electric prepared a demonstration of the 30 m cable with two terminations and a cable joint. The long-term test under a current of 3 kA, and test voltage determined from 30 years of insulation degradation has been conducted since November 2012 at Shenyang in China.

  20. Conceptual design of 275 kV class high-Tc superconducting cable

    NASA Astrophysics Data System (ADS)

    Mukoyama, S.; Yagi, M.; Fujiwara, N.; Ichikawa, H.

    2010-11-01

    High-temperature superconducting (HTS) cables are expected to be next generation transmission line because of the compact, lightweight, large capacity, and low loss features. Especially, since the YBa 2Cu 3O x (YBCO) tape has a high critical current, high magnetic-field property, low AC loss, and low cost, using YBCO tapes for a HTS cable seems to be one of the most promising ways to make the HTS cable attractive. Therefore, YBCO HTS cables have been studied extensively in Japan, the United States, Korea, and many other countries. We now believe that 275 kV class HTS cables will be used for future large capacity lines based on the needs of Japanese transmission networks for bulk transmission power in overhead transmission lines or gas insulated transmission lines (GIL). We started to develop the 275 kV class HTS cable for the new energy and industrial technology development organization (NEDO) project at 2008, and we have studied the applicability and the environmental and economic advantages of the 275 kV cable. This paper will introduce advantages and a conceptual design of the 275 kV HTS cable.

  1. Internally cooled cabled superconductors. I

    NASA Astrophysics Data System (ADS)

    Hoenig, M. O.

    1980-07-01

    A state of the art review and survey of work performed at the Massachusetts Institute of Technology in the area of internally cooled cabled superconductors (ICCS) is presented. Topics examined include original concepts, hollow concept, and heat transfer using supercritical helium. Attention is given to the ICCS conductor and coil design as well as experiments with niobium-titanium.

  2. ALOHA Cabled Observatory: Early Results

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Lukas, R.; Duennebier, F. K.

    2011-12-01

    The ALOHA Cabled Observatory (ACO) was installed 6 June 2011, extending power, network communications and timing to a seafloor node and instruments at 4726 m water depth 100 km north of Oahu. The system was installed using ROV Jason operated from the R/V Kilo Moana. Station ALOHA is the field site of the Hawaii Ocean Time-series (HOT) program that has investigated temporal dynamics in biology, physics, and chemistry since 1988. HOT conducts near monthly ship-based sampling and makes continuous observations from moored instruments to document and study climate and ecosystem variability over semi-diurnal to decadal time scales. The cabled observatory system will provide the infrastructure for continuous, interactive ocean sampling enabling new measurements as well as a new mode of ocean observing that integrates ship and cabled observations. The ACO is a prototypical example of a deep observatory system that uses a retired first-generation fiber-optic telecommunications cable. Sensors provide live video, sound from local and distant sources, and measure currents, pressure, temperature, and salinity. Preliminary results will be presented and discussed.

  3. COUPLER FOR TOOL AND CABLE

    DOEpatents

    Cawley, W.E.; Frantz, C.E.

    1962-02-27

    A two-part device is designed for pulling a splitting tool through a fuel tube. The device can be readily disconnected by unthreading the parts by means of a movable head carrying a transverse key which fits into a slot in the threaded part attached to the cable. (AEC)

  4. Interactive Cable Television. Final Report.

    ERIC Educational Resources Information Center

    Active Learning Systems, Inc., Minneapolis, MN.

    This report describes an interactive video system developed by Active Learning Systems which utilizes a cable television (TV) network as its delivery system to transmit computer literacy lessons to high school and college students. The system consists of an IBM PC, Pioneer LDV 4000 videodisc player, and Whitney Supercircuit set up at the head end…

  5. Regulatory Developments in Cable Television.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    This report summarizes major rule making actions since 1972, current rules and regulations, and guidelines for citizen participation in FCC (Federal Communications Commission) processes related to cable television regulation. A large portion of the report pertains to current rules and regulations in the areas of certificate of compliance,…

  6. The creation of Sandia`s telecommunication cabling infrastructure

    SciTech Connect

    Adams, R.; Francis, T.

    1996-01-01

    Sandia National Laboratories in Albuquerque, New Mexico, has adopted strategic, standards-based telecommunication technologies to deliver high-speed communication services to its research and development community. The architecture to provide these services specifies a cabling system capable of carrying high-bandwidth signals to each desktop. While the facilities infrastructure of Sandia has been expanding and evolving over the past four decades to meet the needs of this premier research and development community, the communications infrastructure has remained essentially stagnant. The need to improve Sandia`s telecommunication cable infrastructure gave rise to the Intra-building Recabling Project (IRP). The IRP directed Sandia`s efforts to modernize and standardize the communications infrastructure throughout its New Mexico campus. This report focuses on the development and implementation of the project`s design considerations, concepts, and standards, as well as the adopted transmission media and supporting delivery subsystems.

  7. The GEOS-20 m Cable Boom Mechanism

    NASA Technical Reports Server (NTRS)

    Schmidt, G. K.; Suttner, K.

    1977-01-01

    The GEOS Cable Boom Mechanism which allows the controlled deployment of a 20 m long cable in a centrifugal force field is described. In launch configuration the flat cable is reeled on a 240 mm diameter drum. The electrical connection between the rotating drum and the stationary housing is accomplished via a flexlead positioned inside the drum. Active motion control of this drum is achieved by a self locking worm gear, driven by a stepper motor. The deployment length of the cable is monitored by an optical length indicator, sensing black bars engraved on the cable surface.

  8. GEOS-20 m cable boom mechanism

    NASA Technical Reports Server (NTRS)

    Schmidt, B. K.; Suttner, K.

    1977-01-01

    The GEOS cable boom mechanism allows the controlled deployment of a 20 m long cable in a centrifugal force field. In launch configuration the flat cable is reeled on a 240 mm diameter drum. The electrical connection between the rotating drum and the stationary housing is accomplished via a flexlead positioned inside the drum. Active motion control of this drum is achieved by a self locking worm gear, driven by a stepper motor. The deployment length of the cable is monitored by an optical length indicator, sensing black bars engraved on the cable surface.

  9. High ampacity, thin-wall, novel polymer cable. Final report

    SciTech Connect

    Jayaraj, K.

    1998-12-01

    Utilities are constantly faced with the challenge of providing higher ampacity cables that will fit into existing ducts in the cities. Therefore, a need exists to develop extruded cables that have a thinner insulation than conventional cables to provide the capability of installing higher ampacity cables into existing ducts. The goal of this project was to identify commercially available advanced polymers that are suitable for use in extruded distribution cables. The project consists of three tasks; this report describes the results of these tasks. In Task 1, a literature and vendor survey was conducted to identify candidate insulation materials. The mechanical and electrical properties of the candidates were measured in Task 2, yielding the following experimental results: all of the materials exhibited acceptable tensile strength values. LCP candidates, Vectra and HX6000, and Ultem exhibited very small elongation of less than 10%. Because of their high strength, cables with LCP insulation are too stiff to be bent or reeled at the required insulation thicknesses. This finding eliminated the LCP materials, Vectra and HX6000, from consideration. The dielectric constant of all of the materials was close to or below the benchmark of 3.5 at room temperature. However, the loss factors at 60 Hz of Ultem and PEEK exceeded the criterion of 0.001. Room temperature dielectric strengths of 20 mil thick specimens of Ultem and PEEK and 16 mil films of Aurum were 1600, 1100 and 1400 V/mil respectively. Based on these experimental results, Ultem, PEEK and Aurum, were selected for further evaluations. To reduce the costs and improve the ductility, Aurum and PEEK were blended with 50% and 30% Ultem respectively. The three neat materials and two blends were extruded onto single strand copper conductor at BICC. Three sets of extrusion trials were conducted to improve the quality of the extruded insulation. Although tremendous progress was achieved during the course of the project

  10. Self-healing cable apparatus and methods

    NASA Technical Reports Server (NTRS)

    Huston, Dryver (Inventor); Esser, Brian (Inventor)

    2007-01-01

    Self-healing cable apparatus and methods are disclosed. The cable has a central core surrounded by an adaptive cover that can extend over the entire length of the cable or just one or more portions of the cable. The adaptive cover includes a protective layer having an initial damage resistance, and a reactive layer. When the cable is subjected to a localized damaging force, the reactive layer responds by creating a corresponding localized self-healed region. The self-healed region provides the cable with enhanced damage resistance as compared to the cable's initial damage resistance. Embodiments of the invention utilize conventional epoxies or foaming materials in the reactive layer that are released to form the self-healed region when the damaging force reaches the reactive layer.

  11. Cable Effects Study. Tangents, Rabbit Holes, Dead Ends, and Valuable Results

    DOE PAGESBeta

    Ardelean, Emil V.; Babuška, Vít; Goodding, James C.; Coombs, Douglas M.; Robertson, Lawrence M.; Lane, Steven A.

    2014-08-04

    Lessons learned during a study on the effects that electrical power and signal wiring harness cables introduce on the dynamic response of precision spacecraft is presented, along with the most significant results. Our study was a three year effort to discover a set of practical approaches for updating well-defined dynamic models of harness-free structures where knowledge of the cable type, position, and tie-down method are known. Although cables are found on every satellite, the focus was on precision, low damping, and very flexible structures. Obstacles encountered, classified as tangents, rabbit holes, and dead ends, offer practical lessons for structural dynamicsmore » research. The paper traces the historical, experiential progression of the project, describing how the obstacles affected the project. Methods were developed to estimate cable properties. Problems were encountered because of the flexible, highly damped nature of cables. A beam was used as a test article to validate experimentally derived cable properties and to refine the assumptions regarding boundary conditions. Furthermore, a spacecraft bus-like panel with cables attached was designed, and finite element models were developed and validated through experiment. Various paths were investigated at each stage before a consistent test and analysis methodology was developed« less

  12. Cable Effects Study. Tangents, Rabbit Holes, Dead Ends, and Valuable Results

    SciTech Connect

    Ardelean, Emil V.; Babuška, Vít; Goodding, James C.; Coombs, Douglas M.; Robertson, Lawrence M.; Lane, Steven A.

    2014-08-04

    Lessons learned during a study on the effects that electrical power and signal wiring harness cables introduce on the dynamic response of precision spacecraft is presented, along with the most significant results. Our study was a three year effort to discover a set of practical approaches for updating well-defined dynamic models of harness-free structures where knowledge of the cable type, position, and tie-down method are known. Although cables are found on every satellite, the focus was on precision, low damping, and very flexible structures. Obstacles encountered, classified as tangents, rabbit holes, and dead ends, offer practical lessons for structural dynamics research. The paper traces the historical, experiential progression of the project, describing how the obstacles affected the project. Methods were developed to estimate cable properties. Problems were encountered because of the flexible, highly damped nature of cables. A beam was used as a test article to validate experimentally derived cable properties and to refine the assumptions regarding boundary conditions. Furthermore, a spacecraft bus-like panel with cables attached was designed, and finite element models were developed and validated through experiment. Various paths were investigated at each stage before a consistent test and analysis methodology was developed

  13. Structural integrity and damage assessment of high performance arresting cable systems using an embedded distributed fiber optic sensor (EDIFOS) system

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan; Prohaska, John; Bentley, Doug; Glasgow, Andy; Campbell, Richard

    2010-04-01

    Redondo Optics in collaboration with the Cortland Cable Company, TMT Laboratories, and Applied Fiber under a US Navy SBIR project is developing an embedded distributed fiber optic sensor (EDIFOSTM) system for the real-time, structural health monitoring, damage assessment, and lifetime prediction of next generation synthetic material arresting gear cables. The EDIFOSTM system represents a new, highly robust and reliable, technology that can be use for the structural damage assessment of critical cable infrastructures. The Navy is currently investigating the use of new, all-synthetic- material arresting cables. The arresting cable is one of the most stressed components in the entire arresting gear landing system. Synthetic rope materials offer higher performance in terms of the strength-to-weight characteristics, which improves the arresting gear engine's performance resulting in reduced wind-over-deck requirements, higher aircraft bring-back-weight capability, simplified operation, maintenance, supportability, and reduced life cycle costs. While employing synthetic cables offers many advantages for the Navy's future needs, the unknown failure modes of these cables remains a high technical risk. For these reasons, Redondo Optics is investigating the use of embedded fiber optic sensors within the synthetic arresting cables to provide real-time structural assessment of the cable state, and to inform the operator when a particular cable has suffered impact damage, is near failure, or is approaching the limit of its service lifetime. To date, ROI and its collaborators have developed a technique for embedding multiple sensor fibers within the strands of high performance synthetic material cables and use the embedded fiber sensors to monitor the structural integrity of the cable structures during tensile and compressive loads exceeding over 175,000-lbsf without any damage to the cable structure or the embedded fiber sensors.

  14. Semiannual report for the period October 1, 1979-March 31, 1980 of work on: (1) superconducting power transmission system development; (2) cable insulation development. Power Transmission Project Technical Note No. 106

    SciTech Connect

    Not Available

    1980-07-07

    Progress is reported in a program whose objective is to develop an underground superconducting power transmission system which is economical and technically attractive to the utility industry. The system would be capable of carrying very large blocks of electric power, and would supplant overhead lines in urban and suburban areas and regions of natural beauty. The program consisted initially of work in the laboratory to develop suitable materials, cryostats, and cable concepts. The materials work covers the development and testing of suitable superconductors and dielectric insulation. The laboratory work has now been extended to an outside test facility which represents an intermediate step between the laboratory scale and a full-scale system. The facility will allow cables several hundred feet long to be tested under realistic conditions. In addition, the refrigerator has been designed for optimum service for utility applications.

  15. Semiannual report for the period April 1-September 30, 1979 of work on: (1) Superconducting power transmission development; (2) Cable insulation development. Power Transmission Project Technical Note No. 99

    SciTech Connect

    Not Available

    1980-01-15

    The objective of the program is to develop an underground superconducting power transmission system which is economical and technically attractive to the utility industry. The system would be capable of carrying very large blocks of electric power, thus enabling it to supplant overhead lines in urban and suburban areas and regions of natural beauty. The program consisted initially of work in the laboratory to develop suitable materials, cryostats, and cable concepts. The materials work covers the development and testing of suitable superconductors and dielectric insulation. The laboratory work has now been extended to an outside test facility which represents an intermediate step between the laboratory scale and a full-scale system. The facility will allow cables several hundred feet long to be tested under realistic conditions. In addition, the refrigerator has been designed for optimum service for utility applications.

  16. Bidirectional fiber optic cable adapter

    NASA Astrophysics Data System (ADS)

    Linehan, M.; Gee, N. B.; Taylor, R.

    1983-02-01

    The technical objective of the BIFOCS program was to develop, build, and test a full-duplex single fiber, fiber optic link, operating in the 1.0 micron to 1.6 micron region, capable of transmitting 20 Mb/s data (10 to the -9th power BER) over a range of at least 10 km, with a goal of 15 km. The link MTBF goal was 5 X 10 to the 3rd power hours and operation over a temperature range of 0 to 50 C. The fiber optic cable consisted of sections not exceeding 2 km in length joined by commercially available dry fiber optic connectors. The system performed successfully at ambient temperature over 15 km of cable.

  17. Tubing and cable cutting tool

    NASA Technical Reports Server (NTRS)

    Mcsmith, D. D.; Richardson, J. I. (Inventor)

    1984-01-01

    A hand held hydraulic cutting tool was developed which is particularly useful in deactivating ejection seats in military aircraft rescue operations. The tool consists primarily of a hydraulic system composed of a fluid reservoir, a pumping piston, and an actuator piston. Mechanical cutting jaws are attached to the actuator piston rod. The hydraulic system is controlled by a pump handle. As the pump handle is operated the actuator piston rod is forced outward and thus the cutting jaws are forced together. The frame of the device is a flexible metal tubing which permits easy positioning of the tool cutting jaws in remote and normally inaccessible locations. Bifurcated cutting edges ensure removal of a section of the tubing or cable to thereby reduce the possibility of accidental reactivation of the tubing or cable being severed.

  18. Cable twisting due to atmospheric icing

    SciTech Connect

    McComber, P.; Druez, J.; Savadjiev, K.

    1995-12-31

    Samples of ice accretions collected on cables of overhead transmission lines have shown evidence of twisting of the cable during atmospheric icing. Previous work has attributed cable twisting to the torque created by the weight of an eccentric ice shape and by wind forces. However, testing of stranded cables and conductors has shown that such cables also twist when there is a change in tension in the cable span. This phenomenon is related to the interaction of the different strand layers under tension. When a cable is subjected to atmospheric icing, cable tension increases and this type of twisting should also be considered. In order to determine how the two types of twisting would compare on transmission lines, a numerical simulation was made using characteristics of a typical 35-mm stranded conductor. The twist angle was computed as a function of cable span, sag to span ratio and increasing ice loads. The simulation shows that for transmission lines, twisting due to varying tension will be significant. Since cable tension is influenced by wind speed and ambient temperature as well as ice load, this phenomenon, unless prevented, results in ice accretion more circular in shape and hence eventually in larger ice loads.

  19. New Life For The Cable Cars

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA-Arnes' major recommendations involved ways of extending cable life in the interests of safety and economy. Other recommendations included redesign of the cablegripping device, substitution of modern braking mechanisms, improvements in cable pulleys and other components, and new inspection and repair procedures. Ames followed up by designing and installing new equipment to lengthen cable life, which averages only about two months. These cables-four of them for four different car routes--are endless belts, like ski lift cables, running from the downtown car barn to the end of each line. When a cable is installed, the loop is closed by splicing the ends together in a 72-footlong splice. The splice is the weakest part of the cable and a source of problems. When the car operator applies his grip while over a splice, the resulting friction sometimes causes the splice to "unbraid" and fail; this means shutting down the line until the splice can be repaired. Even when unbraiding does not occur, gripping a splice shortens cable life by friction wear. Worn cables are a safety hazard and must be replaced, which is expensive at $1.60 a foot for 10,000 to 20,000 feet of cable.

  20. HVDC submarine power cables systems state of the art and future developments

    SciTech Connect

    Valenza, D.; Cipollini, G.

    1995-12-31

    The paper begins with an introduction on the reasons that lead to the use of HVDC submarine cable links. The main aspects for the choice of direct current are presented as well as the advantages deriving from the utilization of submarine cables. The second part is dedicated to a discussion on the various type of insulation that could be used in power cables and their possible application to HVDC submarine cables. In the following there is a description of the main characteristics and technical details of some particular project that at present time (1995) are in progress. Two projects are briefly presented: Spain-Morocco, a 26 km long interconnection for the transmission, in a first phase, of 700 MW from Spain to Morocco at 400 kV a.c. by means of three cables, plus one spare, of the fluid filled type. The cables are designed for a future change to d.c. 450 kV, allowing a transmission of 500 MW each (i.e., 2 GW total). One of the peculiarities of the link is the maximum water depth of 615 m (world record for submarine power cables at the time of installation). Italy-Greece, a 1km long interconnection for the transmission of 500 MW (bi-directional) by means of one paper insulated mass impregnated cable having 1,250 sq mm conductor size and insulated for a rated voltage of 400 kV. This link (the installation of which will be posterior to the Spain-Morocco) will attain the world record for the maximum water depth for submarine power cables: 1,000 m. The last part deals with the future developments expected in this field, in terms of conductor size and voltage, that means an increase in transmissible capacity.

  1. Design and development of 500 m long HTS cable system in the KEPCO power grid, Korea

    NASA Astrophysics Data System (ADS)

    Sohn, S. H.; Lim, J. H.; Yang, B. M.; Lee, S. K.; Jang, H. M.; Kim, Y. H.; Yang, H. S.; Kim, D. L.; Kim, H. R.; Yim, S. W.; Won, Y. J.; Hwang, S. D.

    2010-11-01

    In Korea, two long-term field demonstrations for high temperature superconducting (HTS) cable have been carried out for several years; Korea Electric Power Corporation (KEPCO) and LS Cable Ltd. (LSC) independently. Encouraged at the result of the projects performed in parallel, a new project targeting the real grid operation was launched in the fourth quarter of 2008 with the Korean government’s financial support. KEPCO and LSC are jointly collaborating in the selection of substation, determination of cable specification, design of cryogenic system, and the scheme of protection coordination. A three phase 500 m long HTS cable at a distribution level voltage of 22.9 kV is to be built at 154/22.9 kV Icheon substation located in near Seoul. A hybrid cryogenic system reflecting the contingency plan is being designed including cryocoolers. The HTS cable system will be installed in the second quarter of 2010, being commissioned by the fall of 2010. This paper describes the objectives of the project and design issues of the cable and cryogenic system in detail.

  2. Cabled ocean observatories in Sea of Oman and Arabian Sea

    NASA Astrophysics Data System (ADS)

    DiMarco, Steven F.; Wang, Zhankun; Jochens, Ann; Stoessel, Marion; Howard, Matthew K.; Belabbassi, Leila; Ingle, Stephanie; du Vall, Ken

    2012-07-01

    An ocean observatory—consisting of a real-time, cabled array in the Sea of Oman and an internally recording, autonomous mooring array recently upgraded to a cabled array in the northern Arabian Sea—celebrated more than 2500 days of continuous operation in July 2012. The observatory, which measures a range of properties, such as water current velocities, temperature, salinity, pressure, dissolved oxygen, and turbidity, is part of the Lighthouse Ocean Research Initiative (LORI) project [du Vall et al., 2011], which was designed as a pilot project and installed in 2005 in the region off Abu Bakara (Figures 1a and 1b). The initial goal of the project was to prove that an in situ, cabled ocean observatory can return high-quality scientific data on a real-time basis over longer time periods than conventional moored systems. That same year, an autonomous array was deployed off Ras al Hadd and on Murray Ridge in the Arabian Sea (Figure 1a).

  3. Initial tension loss in cerclage cables.

    PubMed

    Ménard, Jérémie; Émard, Maxime; Canet, Fanny; Brailovski, Vladimir; Petit, Yvan; Laflamme, George Y

    2013-10-01

    Cerclage cables, frequently used in the management of fractures and osteotomies, are associated with a high failure rate and significant loosening during surgery. This study compared the capacity to maintain tension of different types of orthopaedic cable systems. Multifilament Cobalt-Chrome (CoCr) cables with four different crimp/clamp devices (DePuy, Stryker, Zimmer and Smith&Nephew) and one non-metallic Nylon (Ny) cable from Kinamed were instrumented with a load cell to measure tension during insertion. Significant tension loss was observed with crimping for all cables (P<0.05). Removing the tensioner led to an additional unexpected tension loss (CoCr-DePuy: 18%, CoCr-Stryker: 29%, CoCr-Smith&Nephew: 33%, Ny: 46%, and CoCr-Zimmer: 52%). The simple CoCr (DePuy) cable system outperformed the more sophisticated locking devices due to its significantly better ability to prevent tension loss. PMID:23618753

  4. Cable aging phenomena under accelerated aging conditions

    SciTech Connect

    Behera, A.K.; Beck, C.E.; Alsammarae, A.

    1996-06-01

    A test program was conducted to determine the impact of accelerated (temperature and radiation) aging on the insulation of power cables. The intent was to develop a more realistic model for cable degradation mechanisms, and a more realistic technique for determining a cable`s qualified life. Samples of new cables and samples of cables obtained from an operating plant were subjected to a series of tests. The test showed that the order of imposing the harsh conditions, the presence of oxygen, and the use of a compressive measurement technique each had a significant impact on the results. This paper discusses the test methodology and test samples, the order of imposing artificial aging, and the results. Also presented are issues planned to be addressed in future testing.

  5. 30 CFR 75.603 - Temporary splice of trailing cable.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Temporary splice of trailing cable. 75.603... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.603 Temporary splice of trailing cable. One temporary splice may be made in any trailing cable. Such trailing cable...

  6. 30 CFR 75.816 - Guarding of cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Guarding of cables. 75.816 Section 75.816... Longwalls § 75.816 Guarding of cables. (a) High-voltage cables must be guarded at the following locations: (1) Where persons regularly work or travel over or under the cables. (2) Where the cables leave...

  7. 30 CFR 75.603 - Temporary splice of trailing cable.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Temporary splice of trailing cable. 75.603... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.603 Temporary splice of trailing cable. One temporary splice may be made in any trailing cable. Such trailing cable...

  8. 30 CFR 75.816 - Guarding of cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Guarding of cables. 75.816 Section 75.816... Longwalls § 75.816 Guarding of cables. (a) High-voltage cables must be guarded at the following locations: (1) Where persons regularly work or travel over or under the cables. (2) Where the cables leave...

  9. 47 CFR 76.956 - Cable operator response.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Cable operator response. 76.956 Section 76.956... CABLE TELEVISION SERVICE Cable Rate Regulation § 76.956 Cable operator response. (a) Unless otherwise directed by the local franchising authority, a cable operator must file with the local franchise...

  10. 30 CFR 75.603 - Temporary splice of trailing cable.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Temporary splice of trailing cable. 75.603... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.603 Temporary splice of trailing cable. One temporary splice may be made in any trailing cable. Such trailing cable...

  11. 30 CFR 75.816 - Guarding of cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Guarding of cables. 75.816 Section 75.816... Longwalls § 75.816 Guarding of cables. (a) High-voltage cables must be guarded at the following locations: (1) Where persons regularly work or travel over or under the cables. (2) Where the cables leave...

  12. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... cables shall be adequate for the intended current and voltage. Splices made in such cables shall...

  13. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... cables shall be adequate for the intended current and voltage. Splices made in such cables shall...

  14. 30 CFR 75.816 - Guarding of cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Guarding of cables. 75.816 Section 75.816... Longwalls § 75.816 Guarding of cables. (a) High-voltage cables must be guarded at the following locations: (1) Where persons regularly work or travel over or under the cables. (2) Where the cables leave...

  15. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... cables shall be adequate for the intended current and voltage. Splices made in such cables shall...

  16. 30 CFR 75.603 - Temporary splice of trailing cable.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Temporary splice of trailing cable. 75.603... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.603 Temporary splice of trailing cable. One temporary splice may be made in any trailing cable. Such trailing cable...

  17. 30 CFR 18.40 - Cable clamps and grips.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Requirements § 18.40 Cable clamps and grips. Insulated clamps shall be provided for all portable (trailing) cables to prevent strain on the cable terminals of a machine. Also insulated clamps shall be provided to... mounted component. Cable grips anchored to the cable may be used in lieu of insulated strain...

  18. 30 CFR 18.40 - Cable clamps and grips.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Requirements § 18.40 Cable clamps and grips. Insulated clamps shall be provided for all portable (trailing) cables to prevent strain on the cable terminals of a machine. Also insulated clamps shall be provided to... mounted component. Cable grips anchored to the cable may be used in lieu of insulated strain...

  19. 30 CFR 18.40 - Cable clamps and grips.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Requirements § 18.40 Cable clamps and grips. Insulated clamps shall be provided for all portable (trailing) cables to prevent strain on the cable terminals of a machine. Also insulated clamps shall be provided to... mounted component. Cable grips anchored to the cable may be used in lieu of insulated strain...

  20. 30 CFR 18.40 - Cable clamps and grips.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Requirements § 18.40 Cable clamps and grips. Insulated clamps shall be provided for all portable (trailing) cables to prevent strain on the cable terminals of a machine. Also insulated clamps shall be provided to... mounted component. Cable grips anchored to the cable may be used in lieu of insulated strain...

  1. Cable effects study : tangents, rat holes, dead ends, and valuable results.

    SciTech Connect

    Lane, Steven A.; Robertson, Lawrence M. III; Griffee, J. Cody; Ardelean, Emil V.; Gooding, James C.; Coombs, Douglas M.; Babuska, Vit

    2010-03-01

    An overview of the study of the effects that electrical power and signal cables introduce on the dynamic response of precision structures is presented, along with a summary of lessons learned and most significant results. This was a three-year effort conducted at the Air Force Research Laboratory, Space Vehicles Directorate to discover a set of practical approaches for updating well defined dynamical models of cableless structures where knowledge of the cable type, position, and tie-down method are known. While cables can be found on many different types of structures, the focus of this effort was on precision, low-damping, and low-first modal frequency structures. Various obstacles, classified as tangents, rat holes, and dead ends, were encountered along the way. Rather than following a strictly technical flow, the paper presents the historical, experiential progression of the project. First, methods were developed to estimate cable properties. Problems were encountered because of the flexible, highly damped nature of cables. A simple beam was used as a test article to validate experimentally derived cable properties and to refine the assumptions regarding boundary conditions. A spacecraft bus-like panel with cables attached was designed, and finite element models were developed and validated through experiment. Various paths were investigated at each stage before a consistent test and analysis methodology was developed. These twists and turns are described.

  2. System for stabilizing cable phase delay utilizing a coaxial cable under pressure

    NASA Technical Reports Server (NTRS)

    Clements, P. A. (Inventor)

    1974-01-01

    Stabilizing the phase delay of signals passing through a pressurizable coaxial cable is disclosed. Signals from an appropriate source at a selected frequency, e.g., 100 MHz, are sent through the controlled cable from a first cable end to a second cable end which, electrically, is open or heavily mismatched at 100 MHz, thereby reflecting 100 MHz signals back to the first cable end. Thereat, the phase difference between the reflected-back signals and the signals from the source is detected by a phase detector. The output of the latter is used to control the flow of gas to or from the cable, thereby controlling the cable pressure, which in turn affects the cable phase delay.

  3. Cable force monitoring system of cable stayed bridges using accelerometers inside mobile smart phone

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Yu, Yan; Hu, Weitong; Jiao, Dong; Han, Ruicong; Mao, Xingquan; Li, Mingchu; Ou, Jinping

    2015-03-01

    Cable force is one of the most important parameters in structural health monitoring system integrated on cable stayed bridges for safety evaluation. In this paper, one kind of cable force monitoring system scheme was proposed. Accelerometers inside mobile smart phones were utilized for the acceleration monitoring of cable vibration. Firstly, comparative tests were conducted in the lab. The test results showed that the accelerometers inside smartphones can detect the cable vibration, and then the cable force can be obtained. Furthermore, there is good agreement between the monitoring results of different kinds of accelerometers. Finally, the proposed cable force monitoring system was applied on one cable strayed bridge structure, the monitoring result verified the feasibility of the monitoring system.

  4. 76 FR 77533 - Mandatory Electronic Filing for Cable Special Relief Petitions and Cable Show Cause Petitions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ...This document announces the implementation of electronic filing of Cable Special Relief (CSR) Petitions and Cable Show Cause (CSC) Petitions using the FCC Electronic Comment Filing System (ECFS). A description of procedures for filing is also...

  5. Long-life cable development. Cable-processing survey. Final report

    SciTech Connect

    Mangaraj, D.; Preston, J.R.

    1985-09-01

    A survey of cable manufacturers in North America, Europe, and Japan identified state-of-the-art techniques for processing extruded dielectric cables. The review highlights optimal approaches to such process operations as materials handling, extrusion, and vulcanization.

  6. Modified Spot Welder Solders Flat Cables

    NASA Technical Reports Server (NTRS)

    Haehner, Carl L.

    1992-01-01

    Soldering device, essentially modified spot welder, melts high-melting-temperature solders without damaging plastic insulation on flat electrical cables. Solder preform rests on exposed conductor of cable, under connector pin. Electrodes press pin/preform/conductor sandwich together and supply pulse of current to melt preform, bonding pin to conductor. Anvil acts as support and heat sink. Device used to solder flexible ribbon cables to subminiature pin connectors.

  7. POTS to broadband ... cable modems.

    PubMed

    Kabachinski, Jeff

    2003-01-01

    There have been 3 columns talking about broadband communications and now at the very end when it's time to compare using a telco or cableco, I'm asking does it really matter? So what if I can actually get the whole 30 Mbps with a cable network when the website I'm connecting to is running on an ISDN line at 128 Kbps? Broadband offers a lot more bandwidth than the connections many Internet servers have today. Except for the biggest websites, many servers connect to the Internet with a switched 56-Kbps, ISDN, or fractional T1 line. Even with the big websites, my home network only runs a 10 Mbps Ethernet connection to my cable modem. Maybe it doesn't matter that the cable lines are shared or that I can only get 8 Mbps from an ADSL line. Maybe the ISP that I use has a T1 line connection to the Internet so my new ADSL modem has a fatter pipe than my provider! (See table 1). It all makes me wonder what's in store for us in the future. PC technology has increased exponentially in the last 10 years with super fast processor speeds, hard disks of hundreds of gigabytes, and amazing video and audio. Internet connection speeds have failed to keep the same pace. Instead of hundreds of times better or faster--modem speeds are barely 10 times faster. Broadband connections offer some additional speed but still not comparable growth as broadband connections are still in their infancy. Rather than trying to make use of existing communication paths, maybe we need a massive infrastructure makeover of something new. How about national wireless access points so we can connect anywhere, anytime? To use the latest and fastest wireless technology you will simply need to buy another $9.95 WLAN card or download the latest super slick WLAN compression/encryption software. Perhaps it is time for a massive infra-restructuring. Consider the past massive infrastructure efforts. The telcos needed to put in their wiring infrastructure starting in the 1870s before telephones were useful to the

  8. 7. Cable Creek Bridge after completion. Zion National Park negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Cable Creek Bridge after completion. Zion National Park negative number 1485, classification series 002, 12. - Floor of the Valley Road, Cable Creek Bridge, Spanning Cable Creek on Floor of Valley, Springdale, Washington County, UT

  9. ALA Statement on Cable Telecommunications Act of 1982.

    ERIC Educational Resources Information Center

    Cooke, Eileen D.

    1982-01-01

    Presents views of the American Library Association on the Cable Telecommunications Act of 1982, providing a brief overview of library involvement in cable television and endorsing amendments suggested by the National Federation of Local Cable Programmers. (EJS)

  10. 338. Caltrans, Photographer December 5, 1935 "NORTH CABLE SADDLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    338. Caltrans, Photographer December 5, 1935 "NORTH CABLE - SADDLE W7"; DETAIL VIEW OF NORTH CABLE SADDLE W7 DURING CABLE PLACEMENT. 6-1626 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  11. A Test of HTS Power Cable in a Sweeping Magnetic Field

    SciTech Connect

    Piekarz, H.; Hays, S.; Blowers, J.; Shiltsev, V.; /Fermilab

    2011-11-29

    Short sample HTS power cable composed of multiple 344C-2G strands and designed to energize a fast-cycling dipole magnet was exposed to a sweeping magnetic field in the (2-20) T/s ramping rate. The B-field orientation toward the HTS strands wide surface was varied from 0{sup 0} to 10{sup 0}, in steps of 1{sup 0}. The test arrangement allowed measurement of the combined hysteresis and eddy current power losses. For the validity of these measurements, the power losses of a short sample cable composed of multiple LTS wire strands were also performed to compare with the known data. The test arrangement of the power cable is described, and the test results are compared with the projections for the eddy and hysteresis power losses using the fine details of the test cable structures.

  12. Evaluation of Cable Harness Post-Installation Testing. Part B

    NASA Technical Reports Server (NTRS)

    King, M. S.; Iannello, C. J.

    2011-01-01

    The Cable Harness Post-Installation Testing Report was written in response to an action issued by the Ares Project Control Board (PCB). The action for the Ares I Avionics & Software Chief Engineer and the Avionics Integration and Vehicle Systems Test Work Breakdown Structure (WBS) Manager in the Vehicle Integration Office was to develop a set of guidelines for electrical cable harnesses. Research showed that post-installation tests have been done since the Apollo era. For Ares I-X, the requirement for post-installation testing was removed to make it consistent with the avionics processes used on the Atlas V expendable launch vehicle. Further research for the report involved surveying government and private sector launch vehicle developers, military and commercial aircraft, spacecraft developers, and harness vendors. Responses indicated crewed launch vehicles and military aircraft perform post-installation tests. Key findings in the report were as follows: Test requirements identify damage, human-rated vehicles should be tested despite the identification of statistically few failures, data does not support the claim that post-installation testing damages the harness insulation system, and proper planning can reduce overhead associated with testing. The primary recommendation of the report is for the Ares projects to retain the practice of post-fabrication and post-installation cable harness testing.

  13. A New Multiconstraint Method for Determining the Optimal Cable Stresses in Cable-Stayed Bridges

    PubMed Central

    Asgari, B.; Osman, S. A.; Adnan, A.

    2014-01-01

    Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM). The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method. PMID:25050400

  14. An efficient optical fiber cable installation system using self-controlling cable pullers

    NASA Astrophysics Data System (ADS)

    Watanabe, Takanobu; Mitsuke, Hitoshi; Enami, Makoto

    1986-11-01

    In this paper, an efficient cable installation system using self-controlling cable pullers is discussed. This system is based on a computer simulation carried out to identify the cable installation system most cost efficient for conduits. These simulation results indicate that a distributed cable pulling system with a pulling force of 200 kgf can reduce cable line construction (installation and jointing) costs below that of one-end cable pulling systems. Up until now, an optical fiber cable puller with a pulling force of 200 kgf has been employed in NTT's distributed cable pulling system. Now, a self-controlling puller is being developed to improve this present puller operation. This newly developed puller can control its own pulling force and speed as well as automatically adjust the clearance between its two rubber caterpillars which arises from differences in rope or cable diameters. Its additional features of smaller size and lighter weight make it possible to set up the puller in manholes more easily. Consequently, the distributed cable pulling system employing newly developed self-controlling pullers at present appears to be the most efficient system for installing optical fiber cables in conduits.

  15. 21 CFR 890.1175 - Electrode cable.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrode cable. 890.1175 Section 890.1175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1175 Electrode cable....

  16. 21 CFR 890.1175 - Electrode cable.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrode cable. 890.1175 Section 890.1175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1175 Electrode cable....

  17. 21 CFR 890.1175 - Electrode cable.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrode cable. 890.1175 Section 890.1175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1175 Electrode cable....

  18. 21 CFR 890.1175 - Electrode cable.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrode cable. 890.1175 Section 890.1175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1175 Electrode cable....

  19. Experimental prediction of performance by superconducting cables

    NASA Technical Reports Server (NTRS)

    Brooks, J. M.; Purcell, J. R.

    1969-01-01

    Broken superconductor method of short sample testing makes possible the prediction of the performance of well cooled, stabilized, superconducting cable coils. It yields a field-versus-current curve for a short sample of cable. Plots are given for the superconductor and copper currents at various magnetic field strengths.

  20. 21 CFR 890.1175 - Electrode cable.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrode cable. 890.1175 Section 890.1175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1175 Electrode cable....

  1. STS-98 cable and connector inspection

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A KSC solid rocket booster worker inspects the reusable cables and connectors located inside the external tank attachment ring on the STS-98 left-hand solid rocket booster. Inspection and X- ray analysis of the ordnance-related cable connectors is required as part of an evaluation of their flight readiness before Space Shuttle Atlantis can rollout to Launch Pad 39A.

  2. Nylon cable band reactions in ovariohysterectomized bitches.

    PubMed

    Werner, R E; Straughan, A J; Vezin, D

    1992-01-01

    Nylon cable bands used as ligatures caused postsurgical complications in 5 ovariohysterectomized bitches. Clinical signs included fever, stiffness, strangury, draining fistulae, vaginal discharge, and tenesmus. Most signs first appeared several years after surgery, and all signs were resolved after removal of the bands. On the basis of our experience, we suggest that nylon cable bands not be used for ovariohysterectomy ligations. PMID:1537693

  3. Electrically-Conductive Polyaramid Cable And Fabric

    NASA Technical Reports Server (NTRS)

    Orban, Ralph F.

    1988-01-01

    Tows coated with metal provide strength and conductance. Cable suitable for use underwater made of electrically conductive tows of metal-coated polyaramid filaments surrounded by electrically insulating jacket. Conductive tows used to make conductive fabrics. Tension borne by metal-coated filaments, so upon release, entire cable springs back to nearly original length without damage.

  4. Cable in the Classroom: Free and Easy.

    ERIC Educational Resources Information Center

    Glantz, Shelley

    1998-01-01

    Cable in the Classroom (CIC) is a nonprofit service of the cable television industry, offering commercial-free programming with extended copyright clearance for educational use. This article discusses participating networks and program availability; using video in the classroom; curriculum guides and support materials; and other services offered…

  5. Local Government Uses of Cable Television.

    ERIC Educational Resources Information Center

    Cable Television Information Center, Washington, DC.

    The local government cable access channel is essentially a television station completely controlled by the local government. It differs from a local broadcast television station by being able to reach only those places which are connected to the cable system, having much less programming distribution costs, and having the capacity to deliver…

  6. Crossed Wires; Cable Television in New Jersey.

    ERIC Educational Resources Information Center

    Center for Analysis of Public Issues, Princeton, NJ.

    Cable television (CATV) in New Jersey has been almost nonexistent: Because of the state's proximity to the major cities of New York and Philadelphia, there has been a scarcity of New Jersey-oriented news and public affairs programing. Cable television access, it is suggested, could fill this information gap in New Jersey if the state government…

  7. 14 CFR 23.689 - Cable systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cable systems. 23.689 Section 23.689 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.689 Cable systems. (a) Each...

  8. 30 CFR 18.45 - Cable reels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Cable reels. 18.45 Section 18.45 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.45 Cable reels. (a) A...

  9. 30 CFR 18.45 - Cable reels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Cable reels. 18.45 Section 18.45 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.45 Cable reels. (a) A...

  10. Arc tracking of cables for space applications

    NASA Technical Reports Server (NTRS)

    Koenig, D.; Frontzek, F. R.; Hanson, J.; Reher, H. J.; Judd, M. D.; Bryant, D.

    1995-01-01

    The main objective of this study is to develop a new test method that is suitable for the assessment of the resistance of aerospace cables to arc tracking for different specific environmental and network conditions of spacecrafts. This paper reports the purpose, test conditions, test specimen, test procedure, and test acceptance criteria of seven different (200-250 mm long) cables.

  11. 47 CFR 32.2423 - Buried cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2423 Buried cable. (a... other associated material used in constructing a physical path for the transmission of... single or paired conductor cable, wire and other associated material used in constructing a physical...

  12. Cable Television: Its Urban Context and Programming.

    ERIC Educational Resources Information Center

    Warthman, Forrest

    Cable television's future in urban settings is discussed in the context of alternative media capable of serving similar markets with similar programing. In addition to cable television, other transmission networks such as the telephone network, radio and television broadcasting, microwave networks, domestic satellites, and recording media are…

  13. The Status of Cable Communications in Libraries.

    ERIC Educational Resources Information Center

    Kenney, Brigitte L.

    Librarians are and will be using cable television technologies to enhance and extend their services. While questions remain in regard to the technology itself, the health and viability of the industry, and government policy, librarians are seeing cable communications as an opportunity to gain credibility and visibility, and also as an extension of…

  14. Cable Television: A Guide to Federal Regulations.

    ERIC Educational Resources Information Center

    Rivkin, Steven R.

    The federal laws and regulations that presently apply to cable television are comprehensively discussed in this lengthy report. The report has been designed as a guide and reference book for state and local officials, cable operators, and citizen groups. It presents a complete discussion of the 1972 Federal Communications Commission's (FCC) Report…

  15. Joystick With Cable Springs Offers Better Feel

    NASA Technical Reports Server (NTRS)

    Kerley, James; Ecklund, Wayne

    1992-01-01

    Improved joystick allows motion in 6 degrees of freedom, biased toward central position and orientation by 16 segments of cable serving as springs. Improvement in feel and control results from nonlinear compliance of cable-spring assembly. Nonlinear variations accommodate natural reactions of hand and brain. Operator functions as part of feedback control loop. More comfortable, increases ability to exert control and reduces fatigue.

  16. An ACLU Guide to Cable Television.

    ERIC Educational Resources Information Center

    Powledge, Fred

    Proceeding from the hypothesis that cable television (CATV) is one of the most significant developments in modern America, this booklet examines the medium itself and then devotes special attention to the capacity of CATV to serve the First Amendment interest in diversity of expression. The opening section deals with the size and growth of cable,…

  17. Optical cable fault locating using Brillouin optical time domain reflectometer and cable localized heating method

    NASA Astrophysics Data System (ADS)

    Lu, Y. G.; Zhang, X. P.; Dong, Y. M.; Wang, F.; Liu, Y. H.

    2007-07-01

    A novel optical cable fault location method, which is based on Brillouin optical time domain reflectometer (BOTDR) and cable localized heating, is proposed and demonstrated. In the method, a BOTDR apparatus is used to measure the optical loss and strain distribution along the fiber in an optical cable, and a heating device is used to heat the cable at its certain local site. Actual experimental results make it clear that the proposed method works effectively without complicated calculation. By means of the new method, we have successfully located the optical cable fault in the 60 km optical fiber composite power cable from Shanghai to Shengshi, Zhejiang. A fault location accuracy of 1 meter was achieved. The fault location uncertainty of the new optical cable fault location method is at least one order of magnitude smaller than that of the traditional OTDR method.

  18. Underwater splice for submarine coaxial cable

    SciTech Connect

    Inouye, A.T.; Roe, T. Jr.; Tausing, W.R.; Wilson, J.V.

    1984-10-30

    The invention is a device for splicing submarine coaxial cable underwater on the seafloor with a simple push-on operation to restore and maintain electrical and mechanical strength integrity; the splice device is mateable directly with the severed ends of a coaxial cable to be repaired. Splicing assemblies comprise a dielectric pressure compensating fluid filled guide cavity, a gelled castor oil cap and wiping seals for exclusion of seawater, electrical contacts, a cable strength restoration mechanism, and a pressure compensation system for controlled extrusion of and depletion loss prevention of dielectric seal fluid during cable splicing. A splice is made underwater by directly inserting prepared ends of coaxial cable, having no connector attachments, into splicing assemblies.

  19. Electrohydrodynamic pumping in cable pipes. Final report

    SciTech Connect

    Crowley, J.M.; Chato, J.C.

    1983-02-01

    Many oil-insulated electric power cables are limited by heat buildup caused in part by the low thermal conductivity of the oil. Circulation of the oil is known to reduce the cable temperature, but can lead to excessive pressure buildup on long cables when using conventional pumping methods. An alternate pumping method using distributed electric fields to avoid this pressure buildup is described. Electrohydrodynamic (EHD) pumping was studied both theoretically and experimentally for possible application in underground cable cooling. Theoretical studies included both analytical and finite-element analysis of the flow patterns driven by travelling electric fields. Experimentally, flow rates in a cable-pipe model were measured under a wide variety of operating conditions. Theory and experiment are in agreement for velocities below 10 cm/s, but higher velocities could not be reached in the experiment, due to increased electroconvection and, possibly, turbulence.

  20. Trace cable, locate faults with one instrument

    SciTech Connect

    Arias, A. )

    1994-12-01

    One of the problems with cable-tracing instruments that use radio-frequency (RF) signals is that they tend to radiate to nontarget conductors belonging to other utilities, such as telecommunications, gas, and cable TV. False readings generated by these RF units put repair crews at risk of locating the wrong lines, marking them, digging them up and so damaging another company's facilities. Crews at Florida Power Light Co (FP L) now are using a microprocessor-controlled transmitter that energizes the target cable at about 7776 Hz. This tracing frequency energizes only the secondary cable, even when nontarget conductors are nearby. An above-ground receiver detects this signal and guides the operator along the cable path. The instrument, known as the SFL-2000, is sold by AVO International, Blue Bell, Pa. 3 figs.

  1. Field expedient repair of fiber optic cables

    NASA Astrophysics Data System (ADS)

    Woods, J. G.

    1982-05-01

    This Interim Report describes the design of a field expedient fiber optics cable splicing system. The field splice kit will include a manually operated splicing machine which has all of the tools for making the cable repair mounted on a single platform, transportable in a hand-carried or back-packed case. The splice consists of glass four-rod alignment guides pre-mounted in a splice housing. Means are provided for fiber and cable retention in the housing to effect a rugged cable repair. The procedure for making the cable repair is outlined and described with the aid of a series of photographs of a wooden model of the splicing machine. The manipulations required to make the splice are designed to be simple and performable under adverse field conditions.

  2. Vertical cable surveys deliver additional seismic data

    SciTech Connect

    1995-12-01

    Texaco and a Norwegian seismic firm have patented a new system for deploying hydrophones on vertical cables for offshore surveys. The system was used in Texaco North Sea UK Ltd.`s Strathspey field during the summer. The new technique was introduced in the article, ``Peaceful use for war technology,`` published in Texaco UK`s Agenda monthly news magazine, October 1995. That article is summarized here. Using technology developed by the US Navy for antisubmarine warfare, the vertical-cable survey relies on hydrophones attached at regular intervals vertically along cables secured to the ocean floor and held taut by a buoy. The shooting vessel fires the airguns in a pattern over a large area on the surface, over and around the cables. The cables are then moved to a new location and the process is repeated, up to six times in the Strathspey application described here.

  3. Counter-balanced, multiple cable construction crane

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr. (Inventor); Yang, Li-Farn (Inventor)

    1993-01-01

    The invention is a counter-balanced, multiple cable construction crane. The apparatus for hoisting payloads comprises a crane having a lifting means, the lifting means comprising an end effector means and three suspension means or cables. One end of each cable attaches to a different winding means located on the lifting means, and the other end of each cable attaches to a different point on the end effector, such that the three cables have a theoretical point of convergence with this point corresponding to the center of mass of the payload. Three controls command rotation of the winding means to a predetermined position. Accordingly, the crane provides precise and autonomous positioning of the payload without human guidance. The crane further comprises a counter-balancing means. Two controls position the counter-balancing means to offset the overturning moment which arises during the lifting of heavy payloads.

  4. An Internal Coaxil Cable Seal System

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2004-12-23

    The invention is a seal system for a coaxial cable more specifically an internal seal system placed within the coaxial cable and its constituent components. A series of seal stacks including flexible rigid rings and elastomeric rings are placed on load bearing members within the coaxial cable. The current invention is adapted to seal the annular space between the coaxial cable and an electrical contact passing there through. The coaxial cable is disposed within drilling components to transmit electrical signals between drilling components within a drill string. During oil and gas exploration, a drill string can see a range of pressures and temperatures thus resulting in multiple combinations of temperature and pressure and increasing the difficulty of creating a robust seal for all combinations. The seal system can be used in a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

  5. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    SciTech Connect

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.

    2013-09-11

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is to use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods for

  6. Magnetic flux leakage-based steel cable NDE and damage visualization on a cable climbing robot

    NASA Astrophysics Data System (ADS)

    Kim, Ju-Won; Lee, Changgil; Park, Seunghee; Lee, Jong Jae

    2012-04-01

    The steel cables in long span bridges such as cable-stayed bridges and suspension bridges are critical members which suspend the load of main girders and bridge floor slabs. Damage of cable members can occur in the form of crosssectional loss caused by fatigue, wear, and fracture, which can lead to structural failure due to concentrated stress in the cable. Therefore, nondestructive examination of steel cables is necessary so that the cross-sectional loss can be detected. Thus, an automated cable monitoring system using a suitable NDE technique and a cable climbing robot is proposed. In this study, an MFL (Magnetic Flux Leakage- based inspection system was applied to monitor the condition of cables. This inspection system measures magnetic flux to detect the local faults (LF) of steel cable. To verify the feasibility of the proposed damage detection technique, an 8-channel MFL sensor head prototype was designed and fabricated. A steel cable bunch specimen with several types of damage was fabricated and scanned by the MFL sensor head to measure the magnetic flux density of the specimen. To interpret the condition of the steel cable, magnetic flux signals were used to determine the locations of the flaws and the level of damage. Measured signals from the damaged specimen were compared with thresholds set for objective decision making. In addition, the measured magnetic flux signal was visualized into a 3D MFL map for convenient cable monitoring. Finally, the results were compared with information on actual inflicted damages to confirm the accuracy and effectiveness of the proposed cable monitoring method.

  7. Power plant practices to ensure cable operability

    SciTech Connect

    Toman, G.J. ); Gradin, L.P. )

    1992-07-01

    This report describes the design, installation, qualification, maintenance, and testing of nuclear power plant cables with regard to continued operability. The report was initiated after questions arose concerning inadvertent abuse of cables during installation at two nuclear power plants. The extent of the damage was not clear and there was a concern as to whether cables, if damaged, would be able to function under accident conditions. This report reviews and discusses installation practices in the industry. The report also discusses currently available troubleshooting and in-situ testing techniques and provides cautions for some cases which may lead to further cable damage. Improved troubleshooting techniques currently under development are also discussed. These techniques may reduce the difficulty of testing while being able to identify cable flaws more definitively. The report finds, in general, that nuclear power plant cables have been relatively trouble-free; however, there is a need for further research and development of troubleshooting techniques which will make cable condition testing easier and more reliable. Also, recommendations for good'' installation practices are needed.

  8. Tool for cutting insulation from electrical cables

    DOEpatents

    Harless, Charles E.; Taylor, Ward G.

    1978-01-01

    This invention is an efficient hand tool for precisely slitting the sheath of insulation on an electrical cable--e.g., a cable two inches in diameter--in a manner facilitating subsequent peeling or stripping of the insulation. The tool includes a rigid frame which is slidably fitted on an end section of the cable. The frame carries a rigidly affixed handle and an opposed, elongated blade-and-handle assembly. The blade-and-handle assembly is pivotally supported by a bracket which is slidably mounted on the frame for movement toward and away from the cable, thus providing an adjustment for the depth of cut. The blade-and-handle assembly is mountable to the bracket in two pivotable positions. With the assembly mounted in the first position, the tool is turned about the cable to slit the insulation circumferentially. With the assembly mounted in the second position, the tool is drawn along the cable to slit the insulation axially. When cut both circumferentially and axially, the insulation can easily be peeled from the cable.

  9. Time constants of flat superconducting cables

    SciTech Connect

    Takacs, S.; Yamamoto, J.

    1997-06-01

    The frequency dependence of coupling losses is calculated for flat superconducting cables, including the electromagnetic coupling between different current loops on the cable. It is shown that there are two characteristic time constants for both parallel and transverse coupling losses. The values of these time constants {tau}{sub 0} and {tau}{sub 1} are calculated by introducing effective inductances for the current loops. In both cases, {tau}{sub 1} is considerably smaller than {tau}{sub 0}. As the most important methods of determining {tau}{sub 0} from AC losses - namely, the limiting slope of loss/cycle at zero frequency and the position of the maximum loss/cycle vs. frequency - estimate {tau}{sub 0} and {tau}{sub 1}, respectively, the results are important for practical measurements and evaluation of time constants from AC losses. At larger frequencies, the losses are more likely to those in normal conductors (skin effect). The calculation schemes can be applied to cables with closely wound strands (like the cable-in-conduit conductors), too. However, several other effects should be considered being different and/or more important with respect to other cable types (demagnetization factor of strands and cables, larger regions near the cable edges, smaller number of strands and subcables, etc.).

  10. Self-healing cable for extreme environments

    NASA Technical Reports Server (NTRS)

    Huston, Dryver R. (Inventor); Tolmie, Bernard R. (Inventor)

    2009-01-01

    Self-healing cable apparatus and methods disclosed. The self-healing cable has a central core surrounded by an adaptive cover that can extend over the entire length of the self-healing cable or just one or more portions of the self-healing cable. The adaptive cover includes an axially and/or radially compressible-expandable (C/E) foam layer that maintains its properties over a wide range of environmental conditions. A tape layer surrounds the C/E layer and is applied so that it surrounds and axially and/or radially compresses the C/E layer. When the self-healing cable is subjected to a damaging force that causes a breach in the outer jacket and the tape layer, the corresponding localized axially and/or radially compressed portion of the C/E foam layer expands into the breach to form a corresponding localized self-healed region. The self-healing cable is manufacturable with present-day commercial self-healing cable manufacturing tools.

  11. Triad mode resonant interactions in suspended cables

    NASA Astrophysics Data System (ADS)

    Guo, TieDing; Kang, HouJun; Wang, LianHua; Zhao, YueYu

    2016-03-01

    A triad mode resonance, or three-wave resonance, is typical of dynamical systems with quadratic nonlinearities. Suspended cables are found to be rich in triad mode resonant dynamics. In this paper, modulation equations for cable's triad resonance are formulated by the multiple scale method. Dynamic conservative quantities, i.e., mode energy and Manley-Rowe relations, are then constructed. Equilibrium/dynamic solutions of the modulation equations are obtained, and full investigations into their stability and bifurcation characteristics are presented. Various bifurcation behaviors are detected in cable's triad resonant responses, such as saddle-node, Hopf, pitchfork and period-doubling bifurcations. Nonlinear behaviors, like jump and saturation phenomena, are also found in cable's responses. Based upon the bifurcation analysis, two interesting properties associated with activation of cable's triad resonance are also proposed, i.e., energy barrier and directional dependence. The first gives the critical amplitude of high-frequency mode to activate cable's triad resonance, and the second characterizes the degree of difficulty for activating cable's triad resonance in two opposite directions, i.e., with positive or negative internal detuning parameter.

  12. Bending behavior of lapped plastic ehv cables

    SciTech Connect

    Morgan, G H; Muller, A C

    1980-01-01

    One of the factors delaying the development of lapped polymeric cables has been their reputed poor bending characteristics. Complementary programs were begun at BNL several years ago to mathematically model the bending of synthetic tape cables and to develop novel plastic tapes designed to have moduli more favorable to bending. A series of bend tests was recently completed to evaluate the bending performance of several tapes developed for use in experimental superconducting cables. The program is discussed and the results of the bend tests are summarized.

  13. P-Cable: New High-Resolution 3D Seismic Acquisition Technology

    NASA Astrophysics Data System (ADS)

    Planke, Sverre; Berndt, Christian; Mienert, Jürgen; Bünz, Stefan; Eriksen, Frode N.; Eriksen, Ola K.

    2010-05-01

    We have developed a new cost-efficient technology for acquisition of high-resolution 3D seismic data: the P-Cable system. This technology is very well suited for deep water exploration, site surveys, and studies of shallow gas and fluid migration associated with gas hydrates or leaking reservoirs. It delivers unparalleled 3D seismic images of subsurface sediment architectures. The P-Cable system consists of a seismic cable towed perpendicular to a vessel's steaming direction. This configuration allows us to image an up to 150 m wide swath of the sub-surface for each sail line. Conventional 3D seismic technology relies on several very long streamers (up to 10 km long streamers are common), large sources, and costly operations. In contrast, the P-Cable system is light-weight and fast to deploy from small vessels. Only a small source is required as the system is made for relatively shallow imaging, typically above the first water-bottom multiple. The P-Cable system is particularly useful for acquisition of small 3D cubes, 10-50 km2, in focus areas, rather than extensive mapping of large regions. The rapid deployment and recovery of the system makes it possible to acquire several small cubes (10 to 30 km2) with high-resolution (50-250 Hz) seismic data in during one cruise. The first development of the P-Cable system was a cooperative project achieved by Volcanic Basin Petroleum Research (VBPR), University of Tromsø, National Oceanography Centre, Southampton, and industry partners. Field trials using a 12-streamer system were conducted on sites with active fluid-leakage systems on the Norwegian-Barents-Svalbard margin, the Gulf of Cadiz, and the Mediterranean. The second phase of the development introduced digital streamers. The new P-Cable2 system also includes integrated tow and cross cables for power and data transmission and improved doors to spread the larger cross cable. This digital system has been successfully used during six cruises by the University of Troms

  14. 30 CFR 75.602 - Trailing cable junctions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Trailing cable junctions. 75.602 Section 75.602... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.602 Trailing cable junctions. When two or more trailing cables junction to the same distribution center, means shall be provided...

  15. 30 CFR 75.602 - Trailing cable junctions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cable junctions. 75.602 Section 75.602... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.602 Trailing cable junctions. When two or more trailing cables junction to the same distribution center, means shall be provided...

  16. 30 CFR 75.602 - Trailing cable junctions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cable junctions. 75.602 Section 75.602... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.602 Trailing cable junctions. When two or more trailing cables junction to the same distribution center, means shall be provided...

  17. 30 CFR 75.602 - Trailing cable junctions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trailing cable junctions. 75.602 Section 75.602... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.602 Trailing cable junctions. When two or more trailing cables junction to the same distribution center, means shall be provided...

  18. 30 CFR 75.602 - Trailing cable junctions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cable junctions. 75.602 Section 75.602... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.602 Trailing cable junctions. When two or more trailing cables junction to the same distribution center, means shall be provided...

  19. 30 CFR 75.828 - Trailing cable pulling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cable pulling. 75.828 Section 75.828... Longwalls § 75.828 Trailing cable pulling. The trailing cable must be de-energized prior to being pulled by any equipment other than the continuous mining machine. The cable manufacturer's recommended...

  20. 46 CFR 111.60-4 - Minimum cable conductor size.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Minimum cable conductor size. 111.60-4 Section 111.60-4...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-4 Minimum cable conductor size. Each cable conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must...

  1. 46 CFR 111.60-4 - Minimum cable conductor size.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Minimum cable conductor size. 111.60-4 Section 111.60-4...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-4 Minimum cable conductor size. Each cable conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must...

  2. 30 CFR 77.602 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permanent splicing of trailing cables. 77.602... COAL MINES Trailing Cables § 77.602 Permanent splicing of trailing cables. When permanent splices in trailing cables are made, they shall be: (a) Mechanically strong with adequate electrical conductivity;...

  3. 30 CFR 75.600 - Trailing cables; flame resistance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables; flame resistance. 75.600... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.600 Trailing cables; flame resistance. Trailing cables used in coal mines shall meet the requirements established...

  4. 30 CFR 57.12039 - Protection of surplus trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protection of surplus trailing cables. 57.12039... Electricity Surface and Underground § 57.12039 Protection of surplus trailing cables. Surplus trailing cables to shovels, cranes and similar equipment shall be— (a) Stored in cable boats; (b) Stored on...

  5. 30 CFR 75.600 - Trailing cables; flame resistance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trailing cables; flame resistance. 75.600... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.600 Trailing cables; flame resistance. Trailing cables used in coal mines shall meet the requirements established...

  6. 30 CFR 77.606 - Energized trailing cables; handling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Energized trailing cables; handling. 77.606... COAL MINES Trailing Cables § 77.606 Energized trailing cables; handling. Energized medium- and high-voltage trailing cables shall be handled only by persons wearing protective rubber gloves (see §...

  7. 30 CFR 77.604 - Protection of trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of trailing cables. 77.604 Section 77.604 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... MINES Trailing Cables § 77.604 Protection of trailing cables. Trailing cables shall be...

  8. 30 CFR 75.827 - Guarding of trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Guarding of trailing cables. 75.827 Section 75...-Voltage Longwalls § 75.827 Guarding of trailing cables. (a) Guarding. (1) The high-voltage cable must be guarded in the following locations: (i) From the power center cable coupler for a distance of 10 feet...

  9. 101. CABLE DISTRIBUTION UNITS, SOUTHEAST SIDE OF LANDLINE INSTRUMENTATION ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. CABLE DISTRIBUTION UNITS, SOUTHEAST SIDE OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770). NOTE CABLES ENTER CABLE DISTRIBUTION UNITS FROM OVERHEAD CABLE TRAYS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. 30 CFR 77.604 - Protection of trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protection of trailing cables. 77.604 Section 77.604 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... MINES Trailing Cables § 77.604 Protection of trailing cables. Trailing cables shall be...

  11. 30 CFR 75.604 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Permanent splicing of trailing cables. 75.604... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.604 Permanent splicing of trailing cables. When permanent splices in trailing cables are made, they shall be:...

  12. 30 CFR 77.606 - Energized trailing cables; handling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Energized trailing cables; handling. 77.606... COAL MINES Trailing Cables § 77.606 Energized trailing cables; handling. Energized medium- and high-voltage trailing cables shall be handled only by persons wearing protective rubber gloves (see §...

  13. 30 CFR 75.604 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Permanent splicing of trailing cables. 75.604... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.604 Permanent splicing of trailing cables. When permanent splices in trailing cables are made, they shall be:...

  14. 30 CFR 75.827 - Guarding of trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Guarding of trailing cables. 75.827 Section 75...-Voltage Longwalls § 75.827 Guarding of trailing cables. (a) Guarding. (1) The high-voltage cable must be guarded in the following locations: (i) From the power center cable coupler for a distance of 10 feet...

  15. 30 CFR 75.826 - High-voltage trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables. 75.826 Section 75...-Voltage Longwalls § 75.826 High-voltage trailing cables. High-voltage trailing cables must: (a) Meet existing trailing cable requirements and the approval requirements of the high-voltage continuous...

  16. 30 CFR 77.602 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Permanent splicing of trailing cables. 77.602... COAL MINES Trailing Cables § 77.602 Permanent splicing of trailing cables. When permanent splices in trailing cables are made, they shall be: (a) Mechanically strong with adequate electrical conductivity;...

  17. 49 CFR 229.89 - Jumpers; cable connections.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Jumpers; cable connections. 229.89 Section 229.89....89 Jumpers; cable connections. (a) Jumpers and cable connections between locomotives shall be so...) Cable and jumper connections between locomotive may not have any of the following conditions: (1)...

  18. 30 CFR 75.826 - High-voltage trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage trailing cables. 75.826 Section 75...-Voltage Longwalls § 75.826 High-voltage trailing cables. High-voltage trailing cables must: (a) Meet existing trailing cable requirements and the approval requirements of the high-voltage continuous...

  19. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Handling energized power cables. 57.12014... Electricity Surface and Underground § 57.12014 Handling energized power cables. Power cables energized to..., insulated from such equipment, are used. When such energized cables are moved manually, insulated...

  20. 30 CFR 75.828 - Trailing cable pulling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cable pulling. 75.828 Section 75.828... Longwalls § 75.828 Trailing cable pulling. The trailing cable must be de-energized prior to being pulled by any equipment other than the continuous mining machine. The cable manufacturer's recommended...

  1. 30 CFR 75.600 - Trailing cables; flame resistance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cables; flame resistance. 75.600... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.600 Trailing cables; flame resistance. Trailing cables used in coal mines shall meet the requirements established...

  2. 30 CFR 75.828 - Trailing cable pulling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trailing cable pulling. 75.828 Section 75.828... Longwalls § 75.828 Trailing cable pulling. The trailing cable must be de-energized prior to being pulled by any equipment other than the continuous mining machine. The cable manufacturer's recommended...

  3. 47 CFR 76.614 - Cable television system regular monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Cable television system regular monitoring. 76... SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.614 Cable television system regular monitoring. Cable television operators transmitting carriers in the frequency bands...

  4. 30 CFR 75.826 - High-voltage trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage trailing cables. 75.826 Section 75...-Voltage Longwalls § 75.826 High-voltage trailing cables. High-voltage trailing cables must: (a) Meet existing trailing cable requirements and the approval requirements of the high-voltage continuous...

  5. 30 CFR 77.602 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Permanent splicing of trailing cables. 77.602... COAL MINES Trailing Cables § 77.602 Permanent splicing of trailing cables. When permanent splices in trailing cables are made, they shall be: (a) Mechanically strong with adequate electrical conductivity;...

  6. 30 CFR 75.827 - Guarding of trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Guarding of trailing cables. 75.827 Section 75...-Voltage Longwalls § 75.827 Guarding of trailing cables. (a) Guarding. (1) The high-voltage cable must be guarded in the following locations: (i) From the power center cable coupler for a distance of 10 feet...

  7. 30 CFR 77.505 - Cable fittings; suitability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Cable fittings; suitability. 77.505 Section 77... Electrical Equipment-General § 77.505 Cable fittings; suitability. Cables shall enter metal frames of motors... cables, pass through metal frames, the holes shall be substantially bushed with insulated bushings....

  8. 30 CFR 77.606 - Energized trailing cables; handling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Energized trailing cables; handling. 77.606... COAL MINES Trailing Cables § 77.606 Energized trailing cables; handling. Energized medium- and high-voltage trailing cables shall be handled only by persons wearing protective rubber gloves (see §...

  9. 47 CFR 76.614 - Cable television system regular monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Cable television system regular monitoring. 76... SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.614 Cable television system regular monitoring. Cable television operators transmitting carriers in the frequency bands...

  10. 30 CFR 75.604 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permanent splicing of trailing cables. 75.604... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.604 Permanent splicing of trailing cables. When permanent splices in trailing cables are made, they shall be:...

  11. 30 CFR 77.604 - Protection of trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protection of trailing cables. 77.604 Section 77.604 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... MINES Trailing Cables § 77.604 Protection of trailing cables. Trailing cables shall be...

  12. 30 CFR 57.12039 - Protection of surplus trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protection of surplus trailing cables. 57.12039... Electricity Surface and Underground § 57.12039 Protection of surplus trailing cables. Surplus trailing cables to shovels, cranes and similar equipment shall be— (a) Stored in cable boats; (b) Stored on...

  13. 49 CFR 229.89 - Jumpers; cable connections.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Jumpers; cable connections. 229.89 Section 229.89....89 Jumpers; cable connections. (a) Jumpers and cable connections between locomotives shall be so...) Cable and jumper connections between locomotive may not have any of the following conditions: (1)...

  14. 30 CFR 75.600 - Trailing cables; flame resistance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cables; flame resistance. 75.600... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.600 Trailing cables; flame resistance. Trailing cables used in coal mines shall meet the requirements established...

  15. 30 CFR 75.604 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Permanent splicing of trailing cables. 75.604... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.604 Permanent splicing of trailing cables. When permanent splices in trailing cables are made, they shall be:...

  16. 30 CFR 75.826 - High-voltage trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage trailing cables. 75.826 Section 75...-Voltage Longwalls § 75.826 High-voltage trailing cables. High-voltage trailing cables must: (a) Meet existing trailing cable requirements and the approval requirements of the high-voltage continuous...

  17. 30 CFR 57.12039 - Protection of surplus trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Protection of surplus trailing cables. 57.12039... Electricity Surface and Underground § 57.12039 Protection of surplus trailing cables. Surplus trailing cables to shovels, cranes and similar equipment shall be— (a) Stored in cable boats; (b) Stored on...

  18. 30 CFR 77.602 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Permanent splicing of trailing cables. 77.602... COAL MINES Trailing Cables § 77.602 Permanent splicing of trailing cables. When permanent splices in trailing cables are made, they shall be: (a) Mechanically strong with adequate electrical conductivity;...

  19. 30 CFR 77.604 - Protection of trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Protection of trailing cables. 77.604 Section 77.604 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... MINES Trailing Cables § 77.604 Protection of trailing cables. Trailing cables shall be...

  20. 30 CFR 57.12038 - Attachment of trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Attachment of trailing cables. 57.12038 Section... Electricity Surface and Underground § 57.12038 Attachment of trailing cables. Trailing cables shall be attached to machines in a suitable manner to protect the cable from damage and to prevent strain on...

  1. 30 CFR 75.606 - Protection of trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Protection of trailing cables. 75.606 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.606 Protection of trailing cables. Trailing cables shall be adequately protected to prevent damage by mobile equipment....

  2. 30 CFR 75.600-1 - Approved cables; flame resistance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Approved cables; flame resistance. 75.600-1... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.600-1 Approved cables; flame resistance. Cables shall be accepted or approved by MSHA as flame resistant....

  3. 49 CFR 229.89 - Jumpers; cable connections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Jumpers; cable connections. 229.89 Section 229.89....89 Jumpers; cable connections. (a) Jumpers and cable connections between locomotives shall be so...) Cable and jumper connections between locomotive may not have any of the following conditions: (1)...

  4. 30 CFR 75.827 - Guarding of trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Guarding of trailing cables. 75.827 Section 75...-Voltage Longwalls § 75.827 Guarding of trailing cables. (a) Guarding. (1) The high-voltage cable must be guarded in the following locations: (i) From the power center cable coupler for a distance of 10 feet...

  5. 46 CFR 111.60-4 - Minimum cable conductor size.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Minimum cable conductor size. 111.60-4 Section 111.60-4...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-4 Minimum cable conductor size. Each cable conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must...

  6. 30 CFR 77.606 - Energized trailing cables; handling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Energized trailing cables; handling. 77.606... COAL MINES Trailing Cables § 77.606 Energized trailing cables; handling. Energized medium- and high-voltage trailing cables shall be handled only by persons wearing protective rubber gloves (see §...

  7. 30 CFR 75.828 - Trailing cable pulling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cable pulling. 75.828 Section 75.828... Longwalls § 75.828 Trailing cable pulling. The trailing cable must be de-energized prior to being pulled by any equipment other than the continuous mining machine. The cable manufacturer's recommended...

  8. 47 CFR 76.1205 - CableCARD support.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false CableCARD support. 76.1205 Section 76.1205... CABLE TELEVISION SERVICE Competitive Availability of Navigation Devices § 76.1205 CableCARD support. (a... of § 76.1204(a)(1) must: (1) Provide the means to allow subscribers to self-install the CableCARD...

  9. 47 CFR 76.1205 - CableCARD support.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false CableCARD support. 76.1205 Section 76.1205... CABLE TELEVISION SERVICE Competitive Availability of Navigation Devices § 76.1205 CableCARD support. (a... of § 76.1204(a)(1) must: (1) Provide the means to allow subscribers to self-install the CableCARD...

  10. 47 CFR 76.1205 - CableCARD support.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false CableCARD support. 76.1205 Section 76.1205... CABLE TELEVISION SERVICE Competitive Availability of Navigation Devices § 76.1205 CableCARD support. (a... of § 76.1204(a)(1) must: (1) Provide the means to allow subscribers to self-install the CableCARD...

  11. 47 CFR 76.1205 - CableCARD support.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false CableCARD support. 76.1205 Section 76.1205... CABLE TELEVISION SERVICE Competitive Availability of Navigation Devices § 76.1205 CableCARD support. (a... of § 76.1204(a)(1) must: (1) Provide the means to allow subscribers to self-install the CableCARD...

  12. Cable Television 1980: Status and Prospect for Higher Education.

    ERIC Educational Resources Information Center

    Baus, F., Ed.

    Baseline information for the would-be cable television educational programer is provided by two papers, one an overview of the state of the cable television industry, and the other a report on a marketing study conducted to determine consumer attitudes toward cable TV as an educational medium. In "The Promise and Reality of Cable Television,"…

  13. New-type cable accessories for power distribution

    SciTech Connect

    Sanjo, K.; Kawano, K.; Shiraoka, K.; Yasuda, N.; Yatsuka, K.

    1982-12-01

    This paper describes new types of cable accessories for improving the reliability of power distribution cable systems. The practical development of a 25kV-class cable termination, and a waterproof sleeve for cable joints based on heat-shrinkable components made of irradiated polyolefine is discussed. Furthermore, the theoretical and practical data are given.

  14. 47 CFR 76.990 - Small cable operators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Small cable operators. 76.990 Section 76.990 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Rate Regulation § 76.990 Small cable operators. (a) Effective February...

  15. 47 CFR 76.990 - Small cable operators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Small cable operators. 76.990 Section 76.990 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Rate Regulation § 76.990 Small cable operators. (a) Effective February...

  16. 47 CFR 76.990 - Small cable operators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Small cable operators. 76.990 Section 76.990 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Rate Regulation § 76.990 Small cable operators. (a) Effective February...

  17. The management of large cabling campaigns during the Long Shutdown 1 of LHC

    NASA Astrophysics Data System (ADS)

    Meroli, S.; Machado, S.; Formenti, F.; Frans, M.; Guillaume, J. C.; Ricci, D.

    2014-03-01

    The Large Hadron Collider at CERN entered into its first 18 month-long shutdown period in February 2013. During this period the entire CERN accelerator complex will undergo major consolidation and upgrade works, preparing the machines for LHC operation at nominal energy (7 TeV/beam). One of the most challenging activities concerns the cabling infrastructure (copper and optical fibre cables) serving the CERN data acquisition, networking and control systems. About 1000 kilometres of cables, distributed in different machine areas, will be installed, representing an investment of about 15 MCHF. This implies an extraordinary challenge in terms of project management, including resource and activity planning, work execution and quality control. The preparation phase of this project started well before its implementation, by defining technical solutions and setting financial plans for staff recruitment and material supply. Enhanced task coordination was further implemented by deploying selected competences to form a central support team.

  18. Condition Monitoring of Cables Task 3 Report: Condition Monitoring Techniques for Electric Cables

    SciTech Connect

    Villaran, M.; Lofaro, R.; na

    2009-11-30

    For more than 20 years the NRC has sponsored research studying electric cable aging degradation, condition monitoring, and environmental qualification testing practices for electric cables used in nuclear power plants. This report summarizes several of the most effective and commonly used condition monitoring techniques available to detect damage and measure the extent of degradation in electric cable insulation. The technical basis for each technique is summarized, along with its application, trendability of test data, ease of performing the technique, advantages and limitations, and the usefulness of the test results to characterize and assess the condition of electric cables.

  19. Stranded superconducting cable of improved design

    NASA Technical Reports Server (NTRS)

    Brooks, J.; Laverick, C.; Lobell, G. M.; Purcell, J.

    1970-01-01

    High-current cable developed in liquid helium cooled magnets uses aluminum wire interspersed with the superconductor strands. The aluminum maintains higher electrical conductivity, is light in weight, and has low thermal capacity.

  20. ESP cable insulation: Selection for performance

    SciTech Connect

    Schultz, R.E.; MacKenzie, B.T.; Marefai, K.

    1985-01-01

    Electrical cable for submersible pumping systems must be of high quality and reliability. Because of this, careful selection must be made of materials which will optimize performance in a wet electrically stressed environment. Polypropylene is the insulation used in lower temperature cables which is a major part of this cable market. Over the past eight years a major engineering effort has been placed on the evaluation of polypropylene resins and their wet electrical properties. Test methods were selected which distinguish between resins based on long term electrical stability. Properties of most extrusion grade resins available together with some experimental resins will be reviewed. Dielectric breakdown, insulation resistance, dielectric constant and power factor all versus time will be presented. The data will demonstrate the need for long term evaluations prior to the selection of a polypropylene insulation for ESP cable applications.

  1. Thermomagnetic Mechanism for Self-Cooling Cables

    NASA Astrophysics Data System (ADS)

    de'Medici, Luca

    2016-02-01

    A solid-state mechanism for cooling high-current cables is proposed based on the Ettingshausen effect, i.e., the transverse-thermoelectric cooling generated in magnetic fields. The intense current running in the cable generates a strong magnetic field around it that can be exploited by a small current running in a coating layer made out of a strong "thermomagnetic" material to induce a temperature difference between the cable core and the environment. Both analytical calculations and realistic numerical simulations for the steady state of bismuth coatings in typical magnetic fields are presented. The latter yield temperature drops ≃60 K and >100 K for a single- and double-layer coating, respectively. These encouraging results should stimulate the search for better thermomagnetic materials in view of applications such as self-cooled superconducting cables working at room temperature.

  2. 47 CFR 32.2421 - Aerial cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cost of optical fiber cable and other associated material used in constructing a physical path for the... constructing a physical path for the transmission of telecommunications signals. (b) The cost of permits...

  3. 47 CFR 32.2421 - Aerial cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cost of optical fiber cable and other associated material used in constructing a physical path for the... constructing a physical path for the transmission of telecommunications signals. (b) The cost of permits...

  4. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... associated material used in constructing a physical path for the transmission of telecommunications signals... paired conductor cable, wire and other associated material used in constructing a physical path for...

  5. 47 CFR 32.2421 - Aerial cable.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cost of optical fiber cable and other associated material used in constructing a physical path for the... constructing a physical path for the transmission of telecommunications signals. (b) The cost of permits...

  6. 47 CFR 32.2421 - Aerial cable.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cost of optical fiber cable and other associated material used in constructing a physical path for the... constructing a physical path for the transmission of telecommunications signals. (b) The cost of permits...

  7. 47 CFR 32.2421 - Aerial cable.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cost of optical fiber cable and other associated material used in constructing a physical path for the... constructing a physical path for the transmission of telecommunications signals. (b) The cost of permits...

  8. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... associated material used in constructing a physical path for the transmission of telecommunications signals... paired conductor cable, wire and other associated material used in constructing a physical path for...

  9. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... associated material used in constructing a physical path for the transmission of telecommunications signals... paired conductor cable, wire and other associated material used in constructing a physical path for...

  10. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... associated material used in constructing a physical path for the transmission of telecommunications signals... paired conductor cable, wire and other associated material used in constructing a physical path for...

  11. Armored instrumentation cable for geothermal well logging

    SciTech Connect

    Dennis, B.R.; Johnson, J.; Todd, B.

    1981-01-01

    Multiconductor armored well-logging cable is used extensively by the oil and natural gas industry to lower various instruments used to measure the geological and geophysical parameters into deep wellbores. Advanced technology in oil-well drilling makes it possible to achieve borehole depths of 9 km (30,000 ft). The higher temperatures in these deeper boreholes demand advancements in the design and manufacturing of wireline cable and in the electrical insulating and armoring materials used as integral components. If geothermal energy is proved an abundant economic resource, drilling temperatures approaching and exceeding 300/sup 0/C will become commonplace. The adaptation of teflons as electrical insulating material permitted use of armored cable in geothermal wellbores where temperatures are slightly in excess of 200/sup 0/C, and where the concentrations of corrosive minerals and gases are high. Teflon materials presently used in wireline cables, however, are not capable of continuous operation at the anticipated higher temperatures.

  12. The manufacture of flat conductor cable

    NASA Technical Reports Server (NTRS)

    Angele, W.

    1974-01-01

    The major techniques are described for fabricating flat conductor cable (FCC). Various types of FCC, including unshielded, shielded, power, and signal, in both existing and conceptual constructions, are covered.

  13. Fast Pulses in a Coaxial Cable.

    ERIC Educational Resources Information Center

    Gray, Levi

    1985-01-01

    Describes an experiment designed to introduce physics majors to the triggered oscilloscope. The experiment uses an inexpensive, easily constructed generator which sends pulses down a long coaxial cable, thus providing useful waveforms. (DH)

  14. Rigid cable support for blind installations

    NASA Technical Reports Server (NTRS)

    Abbott, J. R.

    1977-01-01

    Mechanical support structure, originally designed for use with electrical cables, can support hydraulic, pneumatic, and cryogenic lines where bends are required, assemblies are inaccessible, and conduits are impractical. Support is also light in weight and offers means of damping vibration.

  15. Ecology: Electrical Cable Bacteria Save Marine Life.

    PubMed

    Nielsen, Lars Peter

    2016-01-11

    Animals at the bottom of the sea survive oxygen depletion surprisingly often, and a new study identifies cable bacteria in the sediment as the saviors. The bacterial electrical activity creates an iron 'carpet', trapping toxic hydrogen sulfide. PMID:26766230

  16. 65. CALIFORNIA STREET CABLE RAILWAY WINDING MACHINERY: Photocopy of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. CALIFORNIA STREET CABLE RAILWAY - WINDING MACHINERY: Photocopy of February 1955 photograph showing the winding machinery of the California Street Cable Railroad. The two suspended sheaves on the right of the photograph bore down on the cable as it left the winders, supplying tension to the cable and eliminating the need for a long tension run. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  17. Fiber Optic Cables in a Harsh Ocean Environment

    NASA Astrophysics Data System (ADS)

    Glavas, Xenophon G.

    1987-02-01

    Fiber optic cables have found widespread use in the ocean, but to fulfill its mission the cable must survive deployment and operation scenarios. Preservation of the manufactured strength and the optical transmission capacity of the optical fiber over its application lifetime are the primary system objectives. Other secondary objectives defined by system requirements include: fiber count, flexibility, weight, strength, lifetime, manufacturability, diameter, specific gravity, torsion stiffness, temperature influence, pressure effects, abrasion, cyclic flexure resistance, to name a few. This paper will discuss fiber optic cables, causes of failures, and their materials for use in the ocean for three general classes: a. Low cost, disposable cables. This requires the replacement rather than the repair of subject cables. Several applications fall into this category namely torpedo guidance, rapidly dispensible acoustic systems, and sonobuoy links. Life expectancy is months. b. Moderate cost, replaceable cables. This class of cables also requires the replacement of the cable; however, the system lifetime requires the cable be manufactured with the best materials for ocean service so once it is deployed, survival is ensured for many months or even years. Once the cable has failed, there will be no attempt to repair or recover the product, only replace it. Again, this type of cable would see an environment that spans the ocean depths. c. High cost, repairable cables. This class of cables constitutes the family of cables that generally require many years of service, extremely high cable bandwidth (high fiber count), span the major ocean depths and service continents or nations for their communications needs. The starting point for any cable design is defining the requirements the cable must meet. A systems approach is used to derive and impose on the design those requirements that influence cable function, life, cost and transmission capacity. A system analyses defines the

  18. Cable-Stayed Cantilever Structures As An Expat Of Unique Application In The Construction Of A Building Located In Seismic Area - An Author's Project Of Multifunctional Building In Lisbon, Portugal

    NASA Astrophysics Data System (ADS)

    Grębowski, K.; Werdon, M.

    2015-12-01

    The article presents numerical simulations for the modelling of seismic impact on the structure of unique cantilever cablestayed structure with the application of two methods. The Response Spectrum method, in which a spectrum of the structure's responses to an earthquake's impact is generated, and the Accelerogram method, in which we generate dynamic load in the form of a diagram of the connection between acceleration and time for the actual readings during a real earthquake. Both methods have been presented for the El Centro earthquake spectrum. This unique application of a cantilever cablestayed structure in public buildings will allow to assess the safety of this kind of load-bearing system in areas of increased risk of seismic activity. Cantilever cablestayed structures have so far never been designed or analyzed on seismically active areas. Based on numerical simulation we determined the effect of stiffness of load-bearing lines on the increase of stresses and displacements at cable stays joint with the end of the cantilever part of a building.

  19. System for effecting underwater coupling of optical fiber cables characterized by a novel V-probe cable capture mechanism

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Christopher F.; Barron, Thomas D.; Nugent, David M.

    1995-03-01

    A submarine trails one fiber optic cable and an undersea vehicle is controlled by this first cable. A missile/torpedo trails a second cable that is to be coupled to the first cable. The second cable has a segment suspended vertically underwater between a buoyant pod and a sea anchor type buoy. The undersea vehicle, or Autonomous Undersea Vehicle, (AUV) hunts for the pod by conventional homing means. A forked cable pickup device in the nose of the AUV captures the suspended cable segment directing it into a slot so a male socket in the underside of the pod mates with a female socket in the slot.

  20. A Cable-Shaped Lithium Sulfur Battery.

    PubMed

    Fang, Xin; Weng, Wei; Ren, Jing; Peng, Huisheng

    2016-01-20

    A carbon nanostructured hybrid fiber is developed by integrating mesoporous carbon and graphene oxide into aligned carbon nanotubes. This hybrid fiber is used as a 1D cathode to fabricate a new cable-shaped lithium-sulfur battery. The fiber cathode exhibits a decent specific capacity and lifespan, which makes the cable-shaped lithium-sulfur battery rank far ahead of other fiber-shaped batteries. PMID:26585740

  1. Analysis of Surveyor 3 television cable

    NASA Technical Reports Server (NTRS)

    Gross, F. C.; Park, J. J.

    1972-01-01

    A sample of cable described as four inches of TV cable, fabric wrapped, which had been exposed to the atmosphere for an unknown period of time, was subjected to extensive chemical analyses for the various components. The fabric was tested using attenuated total reflectance, chloroform extract, aqueous extraction, pyrolysis infrared, and reflectance spectroscopy. The wire insulation was tested using pyrolysis infrared, pyrolysis gas chromatography, differential thermal analysis, attenuated total reflectance subsurface, and tensile tests. Corrosion was also observed in parts of certain wires.

  2. Noise performance of magneto-inductive cables

    SciTech Connect

    Wiltshire, M. C. K. Syms, R. R. A.

    2014-07-21

    Magneto-inductive (MI) waveguides are metamaterial structures based on periodic arrangements of inductively coupled resonant magnetic elements. They are of interest for power transfer, communications and sensing, and can be realised in a flexible cable format. Signal-to-noise ratio is extremely important in applications involving signals. Here, we present the first experimental measurements of the noise performance of metamaterial cables. We focus on an application involving radiofrequency signal transmission in internal magnetic resonance imaging (MRI), where the subdivision of the metamaterial cable provides intrinsic patient safety. We consider MI cables suitable for use at 300 MHz during {sup 1}H MRI at 7 T, and find noise figures of 2.3–2.8 dB/m, together with losses of 3.0–3.9 dB/m, in good agreement with model calculations. These values are high compared to conventional cables, but become acceptable when (as here) the environment precludes the use of continuous conductors. To understand this behaviour, we present arguments for the fundamental performance limitations of these cables.

  3. Coaxial Cables for Martian Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Harvey, Wayne L.; Valas, Sam; Tsai, Michael C.

    2011-01-01

    Work was conducted to validate the use of the rover external flexible coaxial cabling for space under the extreme environments to be encountered during the Mars Science Laboratory (MSL) mission. The antennas must survive all ground operations plus the nominal 670-Martian-day mission that includes summer and winter seasons of the Mars environment. Successful development of processes established coaxial cable hardware fatigue limits, which were well beyond the expected in-flight exposures. In keeping with traditional qualification philosophy, this was accomplished by subjecting flight-representative coaxial cables to temperature cycling of the same depth as expected in-flight, but for three times the expected number of in-flight thermal cycles. Insertion loss and return loss tests were performed on the coaxial cables during the thermal chamber breaks. A vector network analyzer was calibrated and operated over the operational frequency range 7.145 to 8.450 GHz. Even though some of the exposed cables function only at UHF frequencies (approximately 400 MHz), the testing was more sensitive, and extending the test range down to 400 MHz would have cost frequency resolution. The Gore flexible coaxial cables, which were the subject of these tests, proved to be robust and displayed no sign of degradation due to the 3X exposure to the punishing Mars surface operations cycles.

  4. Terrain-based routing of distribution cables

    SciTech Connect

    West, N.A.; Dwolatzky, B.; Meyer, A.S.

    1997-01-01

    Specifying the actual layout of all overhead lines and underground cables is one of the key tasks to be carried out in the design of electrical distribution networks. Voltage drop and other network calculations can be performed only after the length of each cable segment is determined. Although automatic cable routers are currently available, they are mainly for formally planned urban areas. These routers are not always appropriate for use in designing rural distribution networks, because they fail to account for some of the special circumstances found in rural areas. A more practical approach bases automatic cable routing on the terrain of a given area rather than on the layout of roads. The automatic Distribution Network Router (DNR) finds the least-cost path (not merely the shortest one) connecting two nodes. This article briefly discusses methods currently used to determine cable routes for distribution networks, the unsuitability of these methods for routing cables in rural and informal urban areas, the proposed approach that relies on dividing the terrain into cost regions, and the benefits gained in its application. Emphasis is on the practical application of the new approach.

  5. Solid state safety jumper cables

    DOEpatents

    Kronberg, J.W.

    1993-02-23

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating positive'' terminals, and one has a lower voltage than the reference voltage, indicating negative'' terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  6. Solid state safety jumper cables

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating "positive" terminals, and one has a lower voltage than the reference voltage, indicating "negative" terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  7. New Technologies for Repairing Aging Cables in Nuclear Power Plants: M3LW-14OR0404015 Cable Rejuvenation Report

    SciTech Connect

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.; Roberts, John A.

    2014-09-08

    The goal of this project is to conceptually demonstrate techniques to repair cables that have degraded through subjection to long-term thermal and radiation exposure in nuclear power plants. In fiscal year 2014 (FY14) we focused on commercially available ethylene-propylene rubber (EPR) as the relevant test material, isolated a high surface area form of the EPR material to facilitate chemical treatment screening and charaterization, and measured chemical changes in the material due to aging and treatment using Fourier Transfrom Infrared (FTIR) spectroscopy.

  8. Parallel wire cable static load testing

    NASA Astrophysics Data System (ADS)

    Velasco Gil, Isabella C.

    This report is the result of two evaluations for the analysis of parallel wire cables. The purpose of the first assessment was to evaluate the stiffness and strength of parallel wire cables. For the methodology, three test setups were executed utilizing single wires, seven wire parallel cables, and 100 wire parallel cables as specimens. The parallel wire cables were connected with molted zinc to their sockets. The cables were manufactured by Wilolamb Construction. The results indicate that the single, seven, and 100 wire specimens had similar performance in yield stress, yield strain, modulus, and ultimate strain. However, the amount of strain decreased as the number of wires increased. Because the mechanical properties of the multi wires specimens had not significant difference, it is suggested that the zinc sockets had insignificant impact on their performance. Comparing these results to a previous test executed for parallel wire cables, there were significant differences on the ultimate capacity. It is assumed that the fabrication method of the cables were different. The second evaluation had two purposes. First, it was intended to compare the results of the single wire test from OSU to the single wire test results from Sherry Laboratories. From the analysis, it was found that the ultimate and yield loads were similar between both laboratories procedures, but their strength capacity and ultimate strain were different. It was observed that the Sherry Lab used a different method to compute the mechanical properties of the wire and that the measurement of the elongation was different to the procedures from OSU. Second, the secondary analysis was to evaluate if there is any significant difference between wires sanded at the mid-length of the specimen and wires that were not sanded. From this analysis it was observed that there was no difference between the sanded and non-sanded wires, which indicated that cross-section reduction should not be necessary for the

  9. Proceedings: Cable Broadcasting in the Community. April 30-May 2, 1972.

    ERIC Educational Resources Information Center

    Guelph Univ. (Ontario). Office of Continuing Education.

    The proceedings contain transcripts of speeches, panel discussions, and plenary sessions dealing with various aspects of cable broadcasting. The speeches include: Community Television--Future Potential, John deMercado; Reaction to Dr. deMercado's speech, Diane Abbey Livingston; The Guelph Communications Project, William Foss; An Outline for the…

  10. Cable Television and Video Recorders. Preliminary Empirical Findings for the Debate on Complementation or Substitution.

    ERIC Educational Resources Information Center

    Schulz, Rudiger

    This paper addresses the question of whether video recorders and cable television, which are both primarily entertainment media, are in functional competition with one another. Some initial answers are provided based on the results of an extensive two-year research project conducted in the Federal Republic of Germany. This study found that: (1)…

  11. 47 CFR 76.640 - Support for unidirectional digital cable products on digital cable systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Cable Network Interface Standard” (incorporated by reference, see § 76.602), provided however that with...: Program and System Information Protocol for Terrestrial Broadcast and Cable (Revision B)” (incorporated by... ATSC A/65B: “ATSC Standard: Program and System Information Protocol for Terrestrial Broadcast and...

  12. Load determination for long cable bolt support using computer aided bolt load estimation (CABLE) program

    SciTech Connect

    Bawden, W.F.; Moosavi, M.; Hyett, A.J.

    1996-12-01

    In this paper a numerical formulation is presented for determination of the axial load along a cable bolt for a prescribed distribution of rock mass displacement. Results using the program CABLE indicate that during excavation, the load distribution that develops along an untensioned fully grouted cable bolt depends on three main factors: (i) the properties of the cable itself, (ii) the shear force that develops due to bond at the cable-grout interface (i.e. bond stiffness), and (iii) the distribution of rock mass displacement along the cable bolt length. in general, the effect of low modulus rock and mining induced stress decreases in reducing bond strength as determined from short embedment length tests, is reflected in the development of axial loads significantly less than the ultimate tensile capacity even for long cable bolts. However, the load distribution is also dependent on the deformation distribution in the reinforced rock mass. Higher cable bolt loads will be developed for a rock mass that behaves as a discontinuum, with deformation concentrated on a few fractures, than for one which behaves as a continuum, either due to a total lack of fractures or a very high fracture density. This result suggests that the stiffness of a fully grouted cable bolt is not simply a characteristic of the bolt and grout used, but also of the deformation behavior of the ground. In other words, the same combination of bolt and grout will be stiffer if the rock behaves as a discontinuum than if it behaves as a continuum. This paper also explains the laboratory test program used to determine the constitutive behavior of the Garford bulb and Nutcase cables bolts. Details of the test setup as well as the obtained results are summarized and discussed.

  13. Evaluation of a glass insulated cable system

    NASA Astrophysics Data System (ADS)

    1982-04-01

    A cable system for underground power transmission at 230 to 345 kV was developed. This cable has the copper conductor bundles encased in glass tubes. Gas passes through the interior of the glass tubes to cool the conductors. Pressurized water cools the outside of glass tube clusters. The whole assembly is encased in a 10 in. OD coated steel pipe. This evaluation program was undertaken to determine the loss and breakdown characteristics of the borosilicate glass used for the cable tubes, to optimize methods for sealing tubing lengths, and to evaluate methods for fabricating and installing the cable tubing. The testing procedures are described. The results showed that the glass has good high-temperature electrical properties with especially high dc resistivity, but that the tubing seals were unacceptable electrically. It was concluded that the system as presently envisioned is not suitable as an underground cable because of the poor electrical performance of glass seals. The glass may have other applications such as entrance bushings to high-temperature test chambers.

  14. Cable TV and public power belong together

    SciTech Connect

    Reinemer, V.

    1981-09-01

    Municipal cable television (TV) with its potential for community service in towns served by public power must compete with the large profits corporations now seen in cable franchises as a result of satellite transmission and other new technology. Conway, Arkansas' municipal system is able to deliver a broad-based service including energy, water and sanitation, security, and television at attractive bulk rates to certain customers. The system will eventually expand to provide banking and medical-diagnostic services. Public utilities have an advantage because of their experience in running an electric system and their possession of rights of way. They see cable television as a way to signal load control and read meters. Conway has a 16-member program committee of elected officials to counter First Amendment challenges. Two neighboring towns in Iowa are exploring a joint action approach to cable TV, while larger cities without public power are interested in local TV ownership and control and others explore cooperative and other strategies. A directory lists 33 current municipally owned cable TV systems. 7 references. (DCK)

  15. Cable insulation development (1): Superconducting power transmission system development (2): Annual report for the period 1 October 1985-30 September 1986

    SciTech Connect

    Not Available

    1987-02-09

    Progress is reported for two projects, the development of a superconducting power transmission system and an ambient temperature high stress power cable. The objective of the superconducting power transmission cable program is to develop a system which is economical and technically attractive to the utility industry. Laboratory work in this project has extended to an outside test facility which represents an intermediate step between the laboratory scale and a full-scale system. Ambient temperature high stress cable development has involved development of a fully synthetic polyethylene or polypropylene dielectric tape for use as electrical insulation. 12 figs., 5 tabs.

  16. High temperature solder device for flat cables

    NASA Technical Reports Server (NTRS)

    Haehner, Carl L. (Inventor)

    1992-01-01

    A high temperature solder device for flat cables includes a microwelder, an anvil which acts as a heat sink and supports a flexible flat ribbon cable that is to be connected to a multiple pin connector. The microwelder is made from a modified commercially available resistance welding machine such as the Split Tip Electrode microwelder by Weltek, which consists of two separate electrode halves with a removable dielectric spacer in between. The microwelder is not used to weld the items together, but to provide a controlled compressive force on, and energy pulse to, a solder preform placed between a pin of the connector and a conductor of the flexible flat ribbon cable. When the microwelder is operated, an electric pulse will flow down one electrode, through the solder preform and back up the other electrode. This pulse of electrical energy will cause the solder preform to heat up and melt, joining the pin and conductor.

  17. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  18. Reusable Hot-Wire Cable Cutter

    NASA Technical Reports Server (NTRS)

    Pauken, Michael T.; Steinkraus, Joel M.

    2010-01-01

    During the early development stage of balloon deployment systems for missions, nichrome wire cable cutters were often used in place of pyro-actuated cutters. Typically, a nichrome wire is wrapped around a bundle of polymer cables with a low melting point and connected to a relay-actuated electric circuit. The heat from the nichrome reduces the strength of the cable bundle, which quickly breaks under a mechanical load and can thus be used as a release mechanism for a deployment system. However, the use of hand-made heated nichrome wire for cutters is not very reliable. Often, the wrapped nichrome wire does not cut through the cable because it either pulls away from its power source or does not stay in contact with the cable being cut. Because nichrome is not readily soldered to copper wire, unreliable mechanical crimps are often made to connect the nichrome to an electric circuit. A self-contained device that is reusable and reliable was developed to sever cables for device release or deployment. The nichrome wire in this new device is housed within an enclosure to prevent it from being damaged by handling. The electric power leads are internally connected within the unit to the nichrome wire using a screw terminal connection. A bayonet plug, a quick and secure method of connecting the cutter to the power source, is used to connect the cutter to the power leads similar to those used in pyro-cutter devices. A small ceramic tube [0.25-in. wide 0.5-in. long (.6.4-mm wide 13-mm long)] houses a spiraled nichrome wire that is heated when a cable release action is required. The wire is formed into a spiral coil by wrapping it around a mandrel. It is then laid inside the ceramic tube so that it fits closely to the inner surface of the tube. The ceramic tube provides some thermal and electrical insulation so that most of the heat generated by the wire is directed toward the cable bundle in the center of the spiral. The ceramic tube is cemented into an aluminum block, which

  19. Distance and Cable Length Measurement System

    PubMed Central

    Hernández, Sergio Elias; Acosta, Leopoldo; Toledo, Jonay

    2009-01-01

    A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement. PMID:22303169

  20. Lightning vulnerability of fiber-optic cables.

    SciTech Connect

    Martinez, Leonard E.; Caldwell, Michele

    2008-06-01

    One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a lightning strike representing an extreme but very important case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative lightning conditions at the Sandia Lightning Simulator (SLS). Simulated lightning currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC high voltage and simulated lightning tests performed at the Sandia Lightning Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative lightning conditions.

  1. Relative stiffness of flat conductor cables

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.

    1976-01-01

    The measurement of the bending moment required to obtain a given deflection in short lengths of flat conductor cable (FCC) is presented in this report. Experimental data were taken on 10 different samples of FCC and normalized to express all bending moments (relative stiffness factor) in terms of a cable 5.1 cm (2.0 in.) in width. Data are presented in tabular and graphical form for the covenience of designers who may be interested in finding torques exerted on critical components by short lengths of FCC.

  2. Flat conductor cable for electrical packaging

    NASA Technical Reports Server (NTRS)

    Angele, W.

    1972-01-01

    Flat conductor cable (FCC) is relatively new, highly promising means for electrical packaging and system integration. FCC offers numerous desirable traits (weight, volume and cost savings, flexibility, high reliability, predictable and repeatable electrical characteristics) which make it extremely attractive as a packaging medium. FCC, today, finds wide application in everything from integration of lunar equipment to the packaging of electronics in nuclear submarines. Described are cable construction and means of termination, applicable specifications and standards, and total FCC systems. A list of additional sources of data is also included for more intensive study.

  3. Manufacturing experience for the LHC inner triplet quadrupole cables

    SciTech Connect

    Scanlan, R.M.; Higley, H.C.; Bossert, R.; Kerby, J.; Gosh, A.K.; Boivin, M.; Roy, T.

    2001-06-12

    The design for the U.S. LHC Inner Triplet Quadrupole magnet requires a 37 strand (inner layer) and a 46 strand (outer layer) cable. This represents the largest number of strands attempted to date for a production quantity of Rutherford-type cable. The cable parameters were optimized during the production of a series of short prototype magnets produced at FNAL. These optimization studies focused on critical current degradation, dimensional control, coil winding, and interstrand resistance. After the R&D phase was complete, the technology was transferred to NEEW and a new cabling machine was installed to produce these cables. At present, about 60 unit lengths, out of 90 required for the entire production series of magnets, have been completed for each type of cable. The manufacturing experience with these challenging cables will be reported. Finally, the implications for even larger cables, with more strands, will be discussed.

  4. 20. TURNTABLE WITH CABLE CAR BAY & TAYLOR: View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. TURNTABLE WITH CABLE CAR - BAY & TAYLOR: View to northwest of the Bay and Taylor turntable. The gripman and conductor are turning the car around. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  5. 106. INTERIOR OF CABLE TRAY TUNNEL, FROM LANDLINE INSTRUMENTATION ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    106. INTERIOR OF CABLE TRAY TUNNEL, FROM LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770), TOWARDS CABLE TRAY SHED - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. TRAM HOUSE INTERIOR, LOOKING SOUTHEAST. NOTE TRACTION CABLE BULL WHEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TRAM HOUSE INTERIOR, LOOKING SOUTHEAST. NOTE TRACTION CABLE BULL WHEEL AND DEPARTING BUCKET "12," STILL ON RAIL AND JUST PRIOR TO ENGAGING TRACTION CABLE. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  7. 337. Caltrans, Photographer October 10, 1935 "NORTH CABLE CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    337. Caltrans, Photographer October 10, 1935 "NORTH CABLE - CENTER ANCHORAGE"; VIEW OF NORTH CABLE CENTER ANCHORAGE. 6-1410 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  8. 1. OBLIQUE VIEW OF HOIST, SHOWING CABLE DRUM, WOODEN BRAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OBLIQUE VIEW OF HOIST, SHOWING CABLE DRUM, WOODEN BRAKE SHOES AND BRAKE HANDLE, LOOKING NORTH - Buffalo Coal Mine, Vulcan Cable Hoist, Wishbone Hill, Southeast end, near Moose Creek, Sutton, Matanuska-Susitna Borough, AK

  9. 2. OBLIQUE VIEW OF HOIST, SHOWING CABLE DRUM, WOODEN BRAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OBLIQUE VIEW OF HOIST, SHOWING CABLE DRUM, WOODEN BRAKE SHOES, BRAKE HANDLE, AND REDUCTION GEARS, LOOKING SOUTHWEST - Buffalo Coal Mine, Vulcan Cable Hoist, Wishbone Hill, Southeast end, near Moose Creek, Sutton, Matanuska-Susitna Borough, AK

  10. 3. AERIAL VIEW SHOWING THE ENTIRE BRIDGE FROM EAST CABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. AERIAL VIEW SHOWING THE ENTIRE BRIDGE FROM EAST CABLE ANCHORAGE (EXTREME LEFT) TO WEST CABLE ANCHORAGE (UPPER RIGHT CORNER). March 1987. - Verde River Sheep Bridge, Spanning Verde River (Tonto National Forest), Cave Creek, Maricopa County, AZ

  11. Electrical cable connector-clamp has smooth exterior surface

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Electrical cable connector-clamp fitted with a collet has a smooth exterior surface that can be easily gripped. The collet clamps a portion of the cable and provides for connecting it to a standard electrical connector.

  12. Burning Characteristics and Flammability of PVC Cables in Groups

    NASA Technical Reports Server (NTRS)

    Mikado, T.; Akita, K.

    1988-01-01

    Because burning cables represent a danger of increasing secondary damage it is of utmost importance for disaster prevention to correctly evaluate the combustion characteristics of cable. However, in many cases cable is laid out in bundles complicating the combustion characteristics. A situation has developed where group cable characteristics are not completely understood. A new method is developed for testing the combustion of high polymer type cable and earlier reports gave comparative combustion measurement results. It was learned that there is considerable difference between the combustion characteristics of the grouped cables and those of single cables. This study is supplemental research concerning the special behavior of group PVC cables, throwing some light on their combustion characteristics.

  13. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., insulated from such equipment, are used. When such energized cables are moved manually, insulated hooks... physically attached to the equipment by suitable mechanical devices, and the cable is insulated from...

  14. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., insulated from such equipment, are used. When such energized cables are moved manually, insulated hooks... physically attached to the equipment by suitable mechanical devices, and the cable is insulated from...

  15. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., insulated from such equipment, are used. When such energized cables are moved manually, insulated hooks... physically attached to the equipment by suitable mechanical devices, and the cable is insulated from...

  16. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., insulated from such equipment, are used. When such energized cables are moved manually, insulated hooks... physically attached to the equipment by suitable mechanical devices, and the cable is insulated from...

  17. 7. SHOWING METHOD OF SLEDDING WIND CABLE DOWN YAKI TRAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SHOWING METHOD OF SLEDDING WIND CABLE DOWN YAKI TRAIL TO THE BRIDGE, WEIGHT OF CABLE AND DRUM APPROXIMATELY 2200 POUNDS - Kaibab Trail Suspension Bridge, Spanning Colorado River, Grand Canyon, Coconino County, AZ

  18. Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells

    SciTech Connect

    Pastouret, Alan; Gooijer, Frans; Overton, Bob; Jonker, Jan; Curley, Jim; Constantine, Walter; Waterman, Kendall Miller

    2015-11-13

    High Temperature insulated wire and optical fiber cable is a key enabling technology for the Geothermal Technologies Program (GTP). Without insulated electrical wires and optical fiber, downhole temperature and pressure sensors, flow meters and gauges cannot communicate with the surface. Unfortunately, there are currently no insulated electrical wire or fiber cable constructions capable of surviving for extended periods of deployment in a geothermal well (240-325°C) or supercritical (374°C) reservoir. This has severely hindered engineered reservoir creation, management and utilization, as hot zones and cool water intrusions cannot be understood over time. The lack of a insulated electrical wire and fiber cable solution is a fundamental limitation to the viability of this energy source. The High Temperature Downhole Tools target specification is development of tools and sensors for logging and monitoring wellbore conditions at depths of up to 10,000 meters and temperatures up to 374oC. It well recognized in the industry that no current electronic or fiber cable can be successfully deployed in a well and function successfully for more a few days at temperatures over 240oC. The goal of this project was to raise this performance level significantly. Prysmian Group’s objective in this project was to develop a complete, multi-purpose cable solution for long-term deployment in geothermal wells/reservoirs that can be used with the widest variety of sensors. In particular, the overall project objective was to produce a manufacturable cable design that can perform without serious degradation: • At temperatures up to 374°C; • At pressures up to 220 bar; • In a hydrogen-rich environment; and • For the life of the well (> 5 years). This cable incorporates: • Specialty optical fibers, with specific glass chemistry and high temperature and pressure protective coatings for data communication and distributed temperature and pressure sensing, and • High

  19. Cable attachment for a radioactive brachytherapy source capsule

    DOEpatents

    Gross, Ian G; Pierce, Larry A

    2006-07-18

    In cancer brachytherapy treatment, a small californium-252 neutron source capsule is attached to a guide cable using a modified crimping technique. The guide cable has a solid cylindrical end, and the attachment employs circumferential grooves micromachined in the solid cable end. The attachment was designed and tested, and hardware fabricated for use inside a radioactive hot cell. A welding step typically required in other cable attachments is avoided.

  20. Smaller but Fully Functional Backshell for Cable Connector

    NASA Technical Reports Server (NTRS)

    Stephenson, Gregory

    2009-01-01

    An improved design for the backshell of a connector for a shielded, multiplewire cable reduces the size of the backshell, relative to traditional designs of backshells of otherwise identical cable connectors. Notwithstanding the reduction in size, the design provides all the functionality typically demanded of such a backshell, including (1) termination of the cable shield (that is, grounding of the shield to the backshell), (2) strain relief for the cable, and (3) protection against electromagnetic interference (EMI).

  1. Repair Of Fiber Optic Cable In The Field

    NASA Astrophysics Data System (ADS)

    Hodge, Malcolm H.; Larkin, Joseph F.; Woods, John G.; Loscoe, Claire E.

    1983-03-01

    A fiber optic cable splicing system is being developed for the U.S. Army Communications-Electronic Command (CECOM). The manually operated splicing machine and cable splice housing are designed to be used to repair communications cable under field conditions. The repair procedure is described, with the aid of photographs of the first working models of the splices and splice housing. Further work is being done to reduce costs and to simplify the operations involved in cable repair.

  2. SSC 40 mm cable results and 50 mm design discussions

    SciTech Connect

    Christopherson, D.; Capone, D.; Hannaford, R.; Remsbottom, R.; Jayakumar, R.; Snitchler, G. ); Scanlan, R.; Royet, J. )

    1990-09-01

    A summary of the cable produced for the 1990 40 mm Dipole Program is presented. The cable design parameters for the 50 mm Dipole Program are discussed, as well as portions of the SSC specification draft. Considerations leading to the final cable configuration and the results of preliminary trials are included. The first iteration of a strand mapping program to automate cable strand maps is introduced. 7 refs., 2 figs., 1 tab.

  3. 21. DETAIL VIEW SHOWING TWO TYPES OF MAIN SUSPENSION CABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. DETAIL VIEW SHOWING TWO TYPES OF MAIN SUSPENSION CABLE SPLICES. ONE SPLICE (REAR) WAS MADE ON THE SITE BY LAPPING AND CLAMPING THE ENDS OF TWO CABLES; THE OTHER SPLICE (FRONT) WAS MADE WITH A TRACK CABLE COUPLING, UNDOUBTEDLY WHEN THE CABLE WAS ORIGINALLY INSTALLED IN A MINE TRAMWAY. March 1987 - Verde River Sheep Bridge, Spanning Verde River (Tonto National Forest), Cave Creek, Maricopa County, AZ

  4. 5. CABLE STRAND ALARM: Photocopy of December 1966 photograph showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. CABLE STRAND ALARM: Photocopy of December 1966 photograph showing cable strand alarm located at Beach and Hyde Streets. A strand in the cable (see CA-12-7) forces the fork forward, alerting the powerhouse to the strand by means of an electrical warning device. This strand alarm operates in essentially the same manner as those first used in the 1880s. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  5. Screening of flexible cables by nonlinear resistance measurements

    NASA Astrophysics Data System (ADS)

    Stupian, G. W.

    1994-01-01

    Two traces in flexible cables used in the Milstar agile beam antenna system failed during acceptance testing. The cables, essentially printed circuit boards fabricated on flexible substrates, are composed of copper-foil conductors sandwiched between insulating Kapton layers. The cables carry current pulses used in the steering circuitry for the antenna beam. Upon sectioning and inspection of the suspect cables, substantial thinning of the copper foil conductors at feedthrough connections was noted. Other cables examined also exhibited thinning of metallization. Cables with degraded metallization develop anomalously high electrical resistances or can fail 'open'. The difficulties encountered with these cables resulted from poor workmanship, and the cable manufacturer subsequently lost certification from the Defense Electronics Supply Center. However, a large number of the cables had already been installed in satellites, and the reliability of the cables is critically important to mission success. A considerable effort was, therefore, mounted by the contractors, with the support of Aerospace, to assess the extent of the problem and determine whether a suitable screening procedure could be developed so that only selective, rather than total, replacement of the cables installed on the first Milstar satellite, DFS 1, might be necessary. In the course of this investigation, a screening test based on nonlinearities in cable resistance was developed. This test was originally intended to be applied to the cables in flight hardware. In fact, the application of this test to cables still in stores uncovered additional defective cables and led to a decision to replace all flexible cables with those from another manufacturer.

  6. Apparatus producing constant cable tension for intermittent demand

    DOEpatents

    Lauritzen, T.

    1984-05-23

    This invention relates to apparatus for producing constant tension in cable or the like when it is unreeled and reeled from a drum or spool under conditions of intermittent demand. The invention is particularly applicable to the handling of superconductive cable, but the invention is also applicable to the unreeling and reeling of other strands, such as electrical cable, wire, cord, other cables, fish line, wrapping paper and numerous other materials.

  7. Environmental Impact of a Submarine Cable: Case Study of the Acoustic Thermometry of Ocean Climate (ATOC)/ Pioneer Seamount Cable

    NASA Astrophysics Data System (ADS)

    Kogan, I.; Paull, C. K.; Kuhnz, L.; von Thun, S.; Burton, E.; Greene, H. G.; Barry, J. P.

    2003-12-01

    To better understand the potential impacts of the presence of cables on the seabed, a topic of interest for which little data is published or publicly available, a study of the environmental impacts of the ATOC/Pioneer Seamount cable was conducted. The 95 km long, submarine, coaxial cable extends between Pioneer Seamount and the Pillar Point Air Force Station in Half Moon Bay, California. Approximately two thirds of the cable lies within the Monterey Bay National Marine Sanctuary. The cable is permitted to NOAA- Oceanic and Atmospheric Research for transmitting data from a hydrophone array on Pioneer Seamount to shore. The cable was installed unburied on the seafloor in 1995. The cable path crosses the continental shelf, descends to a maximum depth of 1,933 m, and climbs back upslope to 998 m depth near the crest of Pioneer Seamount. A total of 42 hours of video and 152 push cores were collected in 10 stations along cable and control transects using the ROVs Ventana and Tiburon equipped with cable-tracking tools. The condition of the cable, its effect on the seafloor, and distribution of benthic megafauna and infauna were determined. Video data indicated the nature of interaction between the cable and the seafloor. Rocky nearshore areas, where wave energies are greatest, showed the clearest evidence of impact. Here, evidence of abrasion included frayed and unraveling portions of the cable's armor and vertical grooves in the rock apparently cut by the cable. The greatest incision and armor damage occurred on ledges between spans in irregular rock outcrop areas. Unlike the nearshore rocky region, neither the rocks nor the cable appeared damaged along outcrops on Pioneer Seamount. Multiple loops of slack cable added during a 1997 cable repair operation were found lying flat on the seafloor. Several sharp kinks in the cable were seen at 240 m water depths in an area subjected to intense trawling activity. Most of the cable has become buried with time in sediment

  8. 46 CFR 111.81-3 - Cables entering boxes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cables entering boxes. 111.81-3 Section 111.81-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Outlet Boxes and Junction Boxes § 111.81-3 Cables entering boxes. Each cable...

  9. 46 CFR 111.81-3 - Cables entering boxes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Cables entering boxes. 111.81-3 Section 111.81-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Outlet Boxes and Junction Boxes § 111.81-3 Cables entering boxes. Each cable...

  10. 46 CFR 111.81-3 - Cables entering boxes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Cables entering boxes. 111.81-3 Section 111.81-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Outlet Boxes and Junction Boxes § 111.81-3 Cables entering boxes. Each cable...

  11. 46 CFR 111.81-3 - Cables entering boxes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Cables entering boxes. 111.81-3 Section 111.81-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Outlet Boxes and Junction Boxes § 111.81-3 Cables entering boxes. Each cable...

  12. 46 CFR 111.81-3 - Cables entering boxes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Cables entering boxes. 111.81-3 Section 111.81-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Outlet Boxes and Junction Boxes § 111.81-3 Cables entering boxes. Each cable...

  13. Effect of Cable on Public Television: Two Studies.

    ERIC Educational Resources Information Center

    Agostino, Donald E.; Avery, Robert K.

    Summaries are provided for two complementary studies assessing the effects of cable on public television in the areas of viewing patterns and viewer financial support. "The Cable Subscriber's Viewing of Public Television" consisted of an analysis of some 2,500 Arbitron television diaries from cable and noncable homes in 13 selected markets. The…

  14. 47 CFR 76.403 - Cable television system reports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... information on a Physical System Identification Number (“PSID”) basis. These forms shall be completed and... 47 Telecommunication 4 2014-10-01 2014-10-01 false Cable television system reports. 76.403 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Forms and Reports § 76.403 Cable television system reports....

  15. DETAIL VIEW OF TRAM SUSPENSION CABLE OILING CAR. NOTE CIRCULAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF TRAM SUSPENSION CABLE OILING CAR. NOTE CIRCULAR TRACTION CABLE CLAMP IN CENTER AND OIL FEED TO CABLE BETWEEN TWO RIGHT-HAND WHEELS. OIL REDUCED FRICTION AND RUST. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  16. 46 CFR 113.10-3 - Cable runs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs...

  17. 46 CFR 113.10-3 - Cable runs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs...

  18. 46 CFR 113.10-3 - Cable runs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs...

  19. 46 CFR 113.10-3 - Cable runs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs...

  20. 46 CFR 113.10-3 - Cable runs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Cable runs. 113.10-3 Section 113.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Fire and Smoke Detecting and Alarm Systems § 113.10-3 Cable runs. Cable runs...

  1. 30 CFR 18.40 - Cable clamps and grips.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design...) cables to prevent strain on the cable terminals of a machine. Also insulated clamps shall be provided to prevent strain on both ends of each cable or cord leading from a machine to a detached or...

  2. 47 CFR 32.6422 - Underground cable expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Underground cable expense. 32.6422 Section 32.6422 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM... Underground cable expense. (a) This account shall include expenses associated with underground cable....

  3. 30 CFR 57.4057 - Underground trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground trailing cables. 57.4057 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control § 57.4057 Underground trailing cables. Underground trailing cables shall be accepted...

  4. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground high-voltage cables. 75.804 Section... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in...

  5. 47 CFR 76.614 - Cable television system regular monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Cable television system regular monitoring. 76.614 Section 76.614 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.614 Cable...

  6. 14 CFR 23.1365 - Electric cables and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Electric cables and equipment. 23.1365... Electrical Systems and Equipment § 23.1365 Electric cables and equipment. (a) Each electric connecting cable must be of adequate capacity. (b) Any equipment that is associated with any electrical...

  7. 47 CFR 15.213 - Cable locating equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Cable locating equipment. 15.213 Section 15.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.213 Cable locating equipment. An intentional radiator used as cable locating equipment, as defined in §...

  8. 47 CFR 15.213 - Cable locating equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Cable locating equipment. 15.213 Section 15.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.213 Cable locating equipment. An intentional radiator used as cable locating equipment, as defined in §...

  9. 47 CFR 15.213 - Cable locating equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Cable locating equipment. 15.213 Section 15.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.213 Cable locating equipment. An intentional radiator used as cable locating equipment, as defined in §...

  10. 47 CFR 15.213 - Cable locating equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Cable locating equipment. 15.213 Section 15.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.213 Cable locating equipment. An intentional radiator used as cable locating equipment, as defined in §...

  11. 47 CFR 15.213 - Cable locating equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Cable locating equipment. 15.213 Section 15.213 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators § 15.213 Cable locating equipment. An intentional radiator used as cable locating equipment, as defined in §...

  12. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2012-10-01 2012-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-21 Cable insulation tests. All cable...

  13. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2011-10-01 2011-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-21 Cable insulation tests. All cable...

  14. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2013-10-01 2013-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-21 Cable insulation tests. All cable...

  15. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2010-10-01 2010-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-21 Cable insulation tests. All cable...

  16. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2014-10-01 2014-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-21 Cable insulation tests. All cable...

  17. 30 CFR 75.817 - Cable handling and support systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Cable handling and support systems. 75.817... High-Voltage Longwalls § 75.817 Cable handling and support systems. Longwall mining equipment must be provided with cable-handling and support systems that are constructed, installed and maintained to...

  18. 30 CFR 75.817 - Cable handling and support systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Cable handling and support systems. 75.817... High-Voltage Longwalls § 75.817 Cable handling and support systems. Longwall mining equipment must be provided with cable-handling and support systems that are constructed, installed and maintained to...

  19. 47 CFR 32.6422 - Underground cable expense.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Underground cable expense. 32.6422 Section 32.6422 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM... Underground cable expense. (a) This account shall include expenses associated with underground cable....

  20. 46 CFR 111.60-19 - Cable splices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... with section 25.11 of IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2012-10-01 2012-10-01 false Cable splices. 111.60-19 Section 111.60-19 Shipping... REQUIREMENTS Wiring Materials and Methods § 111.60-19 Cable splices. (a) A cable must not be spliced in...