Pseudorelativistic laser-semiconductor quantum plasma interactions
NASA Astrophysics Data System (ADS)
Wang, Yunliang; Eliasson, Bengt
2016-04-01
A model is presented for the nonlinear interaction between a large-amplitude laser and semiconductor plasma in the semirelativistic quantum regime. The collective behavior of the electrons in the conduction band of a narrow-gap semiconductor is modeled by a Klein-Gordon equation, which is nonlinearly coupled with the electromagnetic (EM) wave through the Maxwell equations. The parametric instabilities involving the stimulated Raman scattering and modulational instabilities are analyzed theoretically and the resulting dispersion relation relation is solved numerically to assess the quantum effects on the instability. The study of the quasi-steady-state solution of the system and direct numerical simulations demonstrate the possibility of the formation of localized EM solitary structures trapped in electrons density holes.
Competing interactions in semiconductor quantum dots
van den Berg, R.; Brandino, G. P.; El Araby, O.; Konik, R. M.; Gritsev, V.; Caux, J. -S.
2014-10-14
In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions at longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.
Competing interactions in semiconductor quantum dots
van den Berg, R.; Brandino, G. P.; El Araby, O.; Konik, R. M.; Gritsev, V.; Caux, J. -S.
2014-10-14
In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less
Parametric interactions in presence of different size colloids in semiconductor quantum plasmas
Vanshpal, R. Sharma, Uttam; Dubey, Swati
2015-07-31
Present work is an attempt to investigate the effect of different size colloids on parametric interaction in semiconductor quantum plasma. Inclusion of quantum effect is being done in this analysis through quantum correction term in classical hydrodynamic model of homogeneous semiconductor plasma. The effect is associated with purely quantum origin using quantum Bohm potential and quantum statistics. Colloidal size and quantum correction term modify the parametric dispersion characteristics of ion implanted semiconductor plasma medium. It is found that quantum effect on colloids is inversely proportional to their size. Moreover critical size of implanted colloids for the effective quantum correction is determined which is found to be equal to the lattice spacing of the crystal.
Interaction of graphene quantum dots with bulk semiconductor surfaces
NASA Astrophysics Data System (ADS)
Mohapatra, P. K.; Kushavah, Dushyant; Mohapatra, J.; Singh, B. P.
2015-05-01
Highly luminescent graphene quantum dots (GQDs) are synthesized through thermolysis of glucose. The average lateral size of the synthesized GQDs is found to be ˜5 nm. The occurrence of D and G band at 1345 and 1580 cm-1 in Raman spectrum confirms the presence of graphene layers. GQDs are mostly consisting of 3 to 4 graphene layers as confirmed from the AFM measurements. Photoluminescence (PL) measurement shows a distinct broadening of the spectrum when GQDs are on the semiconducting bulk surface compared to GQDs in water. The time resolved PL measurement shows a significant shortening in PL lifetime due to the substrate interaction on GQDs compared to the GQDs in solution phase.
Interaction of graphene quantum dots with bulk semiconductor surfaces
Mohapatra, P. K.; Singh, B. P.; Kushavah, Dushyant; Mohapatra, J.
2015-05-15
Highly luminescent graphene quantum dots (GQDs) are synthesized through thermolysis of glucose. The average lateral size of the synthesized GQDs is found to be ∼5 nm. The occurrence of D and G band at 1345 and 1580 cm{sup −1} in Raman spectrum confirms the presence of graphene layers. GQDs are mostly consisting of 3 to 4 graphene layers as confirmed from the AFM measurements. Photoluminescence (PL) measurement shows a distinct broadening of the spectrum when GQDs are on the semiconducting bulk surface compared to GQDs in water. The time resolved PL measurement shows a significant shortening in PL lifetime due to the substrate interaction on GQDs compared to the GQDs in solution phase.
Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.
2015-03-30
Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.
Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.
2015-03-30
Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biologicalmore » functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.« less
NASA Astrophysics Data System (ADS)
Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.
2015-03-01
Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.
Exciton-Phonon Interaction Effects in II-Vi Compound Semiconductor Quantum Wells
NASA Astrophysics Data System (ADS)
Pelekanos, Nikolaos Themelis
1992-01-01
In this thesis, we report on two specific examples of exciton-LO phonon Frohlich interaction effects, namely, hot carrier relaxation and temperature dependent exciton linewidth broadening. These phenomena are considered in the context of quasi-two dimensional excitons in strongly polar II-VI semiconductor quantum wells. Hot-exciton luminescence phenomena are investigated in a single quantum well of ZnTe/MnTe where tunneling through thin MnTe barrier layers suppresses the formation of thermalized luminescence. For near resonant photoexcitation, the secondary emission spectrum is modulated by distinct LO-phonon peaks, which, for sufficiently high order of scattering ( >=4), behave like hot luminescence (HPL) as opposed to resonant Raman scattering. This is confirmed by time-resolved spectroscopy as well as by steady-state characteristics such as linewidth broadening and lack of polarization memory. Several novel observations are made: (1) The LO-phonon intermediated energy relaxation involves Coulomb-correlated pairs, i.e. hot excitons, as opposed to independently-relaxing free electrons and holes. (2) The additional weak disorder originating from QW thickness fluctuations plays a major role in the details of the HPL spectra. The major contribution to the ground state exciton linewidth at room temperature originates from LO phonon -intermediated exciton scattering to higher exciton states. A measure of the effect is given by the parameter Gamma_{LO} which increases with the polarity of the material and is independent of dimensionality provided that the LO phonon energy is greater than the exciton binding energy. Measurements of Gamma_{LO} are performed in two quantum well systems: CdTe/MnTe and (Zn,Cd)Se/ZnSe. In the latter system, a strong reduction of Gamma _{LO} is observed as the quantum well width becomes comparable to the three-dimensional exciton Bohr radius. This is explained in terms of a model where quasi-2D confinement effects increase the exciton binding
NASA Astrophysics Data System (ADS)
Gabbay, Alon; Reno, John; Wendt, Joel R.; Gin, Aaron; Wanke, Michael C.; Sinclair, Michael B.; Shaner, Eric; Brener, Igal
2011-05-01
We report on the coupling and interaction between the fundamental resonances of planar metamaterials (split ring resonators) and intersubband transitions in GaAs/AlGaAs quantum wells structures in the mid-infrared. An incident field polarized parallel to the sample surface is converted by the metamaterial resonators into a field with a finite component polarized normal to the surface and interacts strongly with the large dipole moment associated with quantum well intersubband transitions.
NASA Technical Reports Server (NTRS)
Liu, Ansheng; Ning, Cun-Zheng
1999-01-01
Terahertz optical gain due to intersubband transitions in optically-pumped semiconductor quantum wells (QW's) is calculated nonperturbatively. We solve the pump- field-induced nonequilibrium distribution function for each subband of the QW system from a set of rate equations that include both intrasubband and intersubband relaxation processes. The gain arising from population inversion and stimulated Raman processes is calculated in a unified manner. We show that the coherent pump and signal wave interactions contribute significantly to the THz gain. Because of the optical Stark effect and pump-induced population redistribution, optical gain saturation at larger pump intensities is predicted.
Electron Spin Dynamics in Semiconductor Quantum Dots
Marie, X.; Belhadj, T.; Urbaszek, B.; Amand, T.; Krebs, O.; Lemaitre, A.; Voisin, P.
2011-07-15
An electron spin confined to a semiconductor quantum dot is not subject to the classical spin relaxation mechanisms known for free carriers but it strongly interacts with the nuclear spin system via the hyperfine interaction. We show in time resolved photoluminescence spectroscopy experiments on ensembles of self assembled InAs quantum dots in GaAs that this interaction leads to strong electron spin dephasing.
NASA Astrophysics Data System (ADS)
Chen, Yan-Ting; Cheng, Shun-Jen; Tang, Chi-Shung
2010-06-01
Spin properties of two interacting electrons in a quantum dot (QD) embedded in a nanowire with controlled aspect ratio and longitudinal magnetic fields are investigated by using a configuration-interaction (CI) method. The developed CI theory based on a three-dimensional parabolic model provides explicit formulations of the Coulomb matrix elements and allows for straightforward and efficient numerical implementation. Our studies reveal fruitful features of spin-singlet-triplet transitions of two electrons confined in a nanowire QD, as a consequence of the competing effects of geometry-controlled kinetic-energy quantization, Coulomb interaction, and spin-Zeeman energy. The developed theory is further employed to study various spin states of two quantum-confined electrons in the regime of “crossover” dimensionality, from quasi-two-dimensional (disklike) QDs to finite one-dimensional (rodlike) QDs.
Quantum ratchet in two-dimensional semiconductors with Rashba spin-orbit interaction
Ang, Yee Sin; Ma, Zhongshui; Zhang, Chao
2015-01-01
Ratchet is a device that produces direct current of particles when driven by an unbiased force. We demonstrate a simple scattering quantum ratchet based on an asymmetrical quantum tunneling effect in two-dimensional electron gas with Rashba spin-orbit interaction (R2DEG). We consider the tunneling of electrons across a square potential barrier sandwiched by interface scattering potentials of unequal strengths on its either sides. It is found that while the intra-spin tunneling probabilities remain unchanged, the inter-spin-subband tunneling probabilities of electrons crossing the barrier in one direction is unequal to that of the opposite direction. Hence, when the system is driven by an unbiased periodic force, a directional flow of electron current is generated. The scattering quantum ratchet in R2DEG is conceptually simple and is capable of converting a.c. driving force into a rectified current without the need of additional symmetry breaking mechanism or external magnetic field. PMID:25598490
Quantum ratchet in two-dimensional semiconductors with Rashba spin-orbit interaction.
Ang, Yee Sin; Ma, Zhongshui; Zhang, Chao
2015-01-01
Ratchet is a device that produces direct current of particles when driven by an unbiased force. We demonstrate a simple scattering quantum ratchet based on an asymmetrical quantum tunneling effect in two-dimensional electron gas with Rashba spin-orbit interaction (R2DEG). We consider the tunneling of electrons across a square potential barrier sandwiched by interface scattering potentials of unequal strengths on its either sides. It is found that while the intra-spin tunneling probabilities remain unchanged, the inter-spin-subband tunneling probabilities of electrons crossing the barrier in one direction is unequal to that of the opposite direction. Hence, when the system is driven by an unbiased periodic force, a directional flow of electron current is generated. The scattering quantum ratchet in R2DEG is conceptually simple and is capable of converting a.c. driving force into a rectified current without the need of additional symmetry breaking mechanism or external magnetic field. PMID:25598490
Godlewski, Szymon; Kolmer, Marek; Engelund, Mads; Kawai, Hiroyo; Zuzak, Rafal; Garcia-Lekue, Aran; Saeys, Mark; Echavarren, Antonio M; Joachim, Christian; Sanchez-Portal, Daniel; Szymonski, Marek
2016-02-01
Controlling the strength of the coupling between organic molecules and single atoms provides a powerful tool for tuning electronic properties of single-molecule devices. Here, using scanning tunneling microscopy and spectroscopy (STM/STS) supported by theoretical modeling, we study the interaction of a planar organic molecule (trinaphthylene) with a hydrogen-passivated Ge(001):H substrate and a single dangling bond quantum dot on that surface. The electronic structure of the molecule adsorbed on the hydrogen-passivated surface is similar to the gas phase structure and the measurements show that HOMO and LUMO states contribute to the STM filled and empty state images, respectively. Furthermore, we show that the electronic properties are not significantly affected when the molecule is attached to the single dangling bond, which is in contrast with the strong interaction of the molecule with a dangling bond dimer. Our results show that the dangling bond quantum dots could stabilize organic molecules on a hydrogenated semiconductor without affecting their originally designed gas phase electronic properties. Together with the ability to laterally manipulate the molecules on the surface, this will be advantageous in the construction of single-molecule devices, where the coupling and positioning of the molecules on the substrate could be tuned by a proper design of the surface quantum dot arrays, comprising both single and dimerized dangling bonds. PMID:26766161
Interactions between Redox Complexes and Semiconductor Quantum Dots Coupled via a Peptide Bridge
Medintz, Igor L.; Pons, Thomas; Trammell, Scott A.; Grimes, Amy F.; English, Doug S.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Mattoussi, Hedi
2009-01-01
Colloidal quantum dots (QDs) have a large fraction of their atoms arrayed on their surfaces and are capped with bifunctional ligands, which make their photoluminescence highly sensitive to potential charge transfer to, or from, the surrounding environment. In this report, we used peptides as bridges between CdSe-ZnS QDs and metal complexes to promote charge transfer between the metal complexes and QDs. We found that quenching of the QD emission is highly dependent on the relative position of the oxidation levels of QDs and metal complex used; it also traces the number of metal complexes brought in close proximity of the nanocrystal surface. In addition, partial bleaching of the absorption was measured for the QD-metal complex assemblies. These proximity driven interactions were further used to construct sensing assemblies to detect proteolytic enzyme activity. PMID:19049466
Cannelli, G.; Cantelli, R.; Giovine, E.; Trequattrini, F.; Cordero, F.
1998-12-31
The mobility of hydrogen and its isotopes in metals has been the object of investigation for several years, whereas the diffusion studies of H in doped semiconductors started more recently. Although the H diffusion coefficient in metals may be several orders of magnitudes higher than in semiconductors, the dynamics of H in metals and semiconductors presents many common features, like precipitation, trapping by heavier impurities and, as indicated by recent results, quantum tunneling at low temperature. In boron doped silicon, the relaxation rates {tau}{sup {minus}1}(T) of H and B obtained from anelastic relaxation were joined with those from infrared absorption: the remarkably wide range obtained (11 decades) clearly shows a deviation of {tau}{sup {minus}1}(T) from the classical dependence at low temperature. However, the results obtained and their analysis do not allow yet to draw conclusions on the mechanism governing the H(D) dynamics. Recently, the investigation of the dynamics of H(D) in GaAs doped with Zn revealed a dissipation peak at 20 K in the kHz range. This relaxation has the highest rate found for H in a semiconductor: more than 15 orders of magnitude higher than in all the other semiconductors measured so far. The analysis of the dissipation curves clearly indicates that the nature of the H reorientation is quantistic. In metals two regimes of the H mobility are observed: hopping with deviations from a classical Arrhenius motion, and a much faster tunneling within few close sites. In the latter regime the H dynamics does not consist of jumps but of transitions between the quantized energy levels of the tunnel systems. The types of interactions assisting the H transitions and the geometry of the tunnel systems are an open problem: although the two-level tunnel system (TLS) has been widely used to explain neutron diffusion, specific heat, and acoustic spectroscopy results in interstitial solutions (NbO{sub x}H{sub y}), recently this model has appeared
Semiconductor double quantum dot micromaser.
Liu, Y-Y; Stehlik, J; Eichler, C; Gullans, M J; Taylor, J M; Petta, J R
2015-01-16
The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few-emitter limit provide opportunities for understanding quantum coherent phenomena, from terahertz sources to quantum communication. Here we demonstrate a maser that is driven by single-electron tunneling events. Semiconductor double quantum dots (DQDs) serve as a gain medium and are placed inside a high-quality factor microwave cavity. We verify maser action by comparing the statistics of the emitted microwave field above and below the maser threshold. PMID:25593187
Optically controlled spins in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Economou, Sophia
2010-03-01
Spins in charged semiconductor quantum dots are currently generating much interest, both from a fundamental physics standpoint, as well as for their potential technological relevance. Being naturally a two-level quantum system, each of these spins can encode a bit of quantum information. Optically controlled spins in quantum dots possess several desirable properties: their spin coherence times are long, they allow for all-optical manipulation---which translates into fast logic gates---and their coupling to photons offers a straightforward route to exchange of quantum information between spatially separated sites. Designing the laser fields to achieve the unprecedented amount of control required for quantum information tasks is a challenging goal, towards which there has been recent progress. Special properties of hyperbolic secant optical pulses enabled the design of single qubit rotations, initially developed about the growth axis z [1], and later about an arbitrary direction [2]. Recently we demonstrated our theoretical proposal [1] in an ensemble of InAs/GaAs quantum dots by implementing ultrafast rotations about the z axis by an arbitrary angle [3], with the angle of rotation as a function of the optical detuning in excellent agreement with the theoretical prediction. We also developed two-qubit conditional control in a quantum dot `molecule' using the electron-hole exchange interaction [4]. In addition to its importance in quantum dot-based quantum computation, our two-qubit gate can also play an important role in photonic cluster state generation for measurement-based quantum computing [5]. [1] S. E. Economou, L. J. Sham, Y. Wu, D. S. Steel, Phys. Rev. 74, 205415 (2006) [2] S. E. Economou and T. L. Reinecke, Phys. Rev. Lett., 99, 217401 (2007) [3] A. Greilich, S. E. Economou et al, Nature Phys. 5, 262 (2009) [4] S. E. Economou and T. L. Reinecke, Phys. Rev. B, 78, 115306 (2008) [5] S. E. Economou, N. H. Lindner, and T. Rudolph, in preparation
The quantum hydrodynamic model for semiconductor devices
NASA Astrophysics Data System (ADS)
Gardner, Carl L.
1995-02-01
Quantum semiconductor devices are playing an increasingly important role in advanced microelectronic applications, including multiple-state logic and memory devices. To model quantum devices, the classical hydrodynamic model for semiconductor devices can be extended to include O(h(2)) quantum corrections. This proposal focused on theoretical and computational investigations of the flow of electrons in semiconductor devices based on the quantum hydrodynamic model. The development of efficient, robots numerical methods for the QHD model in one and two spatial dimensions we also emphasized.
Nonlinear optical interactions in semiconductors
NASA Astrophysics Data System (ADS)
Salour, M. M.
1985-12-01
The optical pumping technique in GaAs has led to the development of a novel and highly sensitive optical temperature sensor. Completed is the experiment on two photon optical pumping in ZnO. An external cavity semiconductor laser involving ZnO as a gain medium was demonstrated under two-photon excitation. This laser should have a major impact on the development of tunable blue-green radiation for submarine communication. Completed is a paper on heat buildup in semiconductor platelets. New lasers are used to explore elementary excitation in optical thin film layers of semiconductors. This has led to the first demonstration of the feasibility of room temperature operation of a tunable coherent source involving multiple quantum well material. Completed is the construction of a simple remote (non-contact) temperature sensor to directly measure heat buildup in semiconductor materials as a result of high power optical laser excitation. Finally, an experiment involving optical frequency mixing to probe electrodynamics in the GaAlAs multiple quantumwell and superlattice structures, utilizing two recently constructed tunabel laser systems,has been successful. Attempts were focused on observing a number of new optical effects including nonlinear absorption and transmission phenomena, enhanced spontaneous and stimulated light scattering processes, etc. The construction of an external cavity semiconductor HgCdTe has been successful.
Charge state hysteresis in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Yang, C. H.; Rossi, A.; Lai, N. S.; Leon, R.; Lim, W. H.; Dzurak, A. S.
2014-11-01
Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum dot tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which accounts for the observed hysteretic behaviour by extending the established description for transport in double dots coupled to two reservoirs. We demonstrate that this type of device operates like a single-electron memory latch.
Charge state hysteresis in semiconductor quantum dots
Yang, C. H.; Rossi, A. Lai, N. S.; Leon, R.; Lim, W. H.; Dzurak, A. S.
2014-11-03
Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum dot tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which accounts for the observed hysteretic behaviour by extending the established description for transport in double dots coupled to two reservoirs. We demonstrate that this type of device operates like a single-electron memory latch.
Pandya, Ankur; Shinde, Satyam; Jha, Prafulla K.
2015-05-15
In this paper the hot electron transport properties like carrier energy and momentum scattering rates and electron energy loss rates are calculated via interactions of electrons with polar acoustical phonons for Mn doped BN quantum well in BN nanosheets via piezoelectric scattering and deformation potential mechanisms at low temperatures with high electric field. Electron energy loss rate increases with the electric field. It is observed that at low temperatures and for low electric field the phonon absorption is taking place whereas, for sufficient large electric field, phonon emission takes place. Under the piezoelectric (polar acoustical phonon) scattering mechanism, the carrier scattering rate decreases with the reduction of electric field at low temperatures wherein, the scattering rate variation with electric field is limited by a specific temperature beyond which there is no any impact of electric field on such scattering.
Semiconductor quantum dot-sensitized solar cells
Tian, Jianjun; Cao, Guozhong
2013-01-01
Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future. PMID:24191178
Semiconductor-inspired superconducting quantum computing
NASA Astrophysics Data System (ADS)
Shim, Yun-Pil
Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit based quantum computing. Here we present an architecture for superconducting quantum computing based on selective design principles deduced from spin-based systems. We propose an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is especially suited to qubits based on variable super-semi junctions.
Electrical properties of semiconductor quantum dots
Kharlamov, V. F. Korostelev, D. A.; Bogoraz, I. G.; Milovidova, O. A.; Sergeyev, V. O.
2013-04-15
A method, which makes it possible to obtain semiconductor particles V Almost-Equal-To 10{sup -20} cm{sup 3} in volume (quantum dots) with a concentration of up to 10{sup 11} cm{sup -2} and electrical contacts to each of them, is suggested. High variability in the electrical properties of such particles from a metal oxide (CuO or NiO) after the chemisorption of gas molecules is found.
Quantum weak turbulence with applications to semiconductor lasers
NASA Astrophysics Data System (ADS)
Lvov, Yuri Victorovich
Based on a model Hamiltonian appropriate for the description of fermionic systems such as semiconductor lasers, we describe a natural asymptotic closure of the BBGKY hierarchy in complete analogy with that derived for classical weak turbulence. The main features of the interaction Hamiltonian are the inclusion of full Fermi statistics containing Pauli blocking and a simple, phenomenological, uniformly weak two particle interaction potential equivalent to the static screening approximation. The resulting asymytotic closure and quantum kinetic Boltzmann equation are derived in a self consistent manner without resorting to a priori statistical hypotheses or cumulant discard assumptions. We find a new class of solutions to the quantum kinetic equation which are analogous to the Kolmogorov spectra of hydrodynamics and classical weak turbulence. They involve finite fluxes of particles and energy across momentum space and are particularly relevant for describing the behavior of systems containing sources and sinks. We explore these solutions by using differential approximation to collision integral. We make a prima facie case that these finite flux solutions can be important in the context of semiconductor lasers. We show that semiconductor laser output efficiency can be improved by exciting these finite flux solutions. Numerical simulations of the semiconductor Maxwell Bloch equations support the claim.
NASA Astrophysics Data System (ADS)
Beveratos, Alexios; Abram, Izo; Gérard, Jean-Michel; Robert-Philip, Isabelle
2014-12-01
For the past fifteen years, single semiconductor quantum dots, often referred to as solid-state artificial atoms, have been at the forefront of various research direction lines for experimental quantum information science, in particular in the development of practical sources of quantum states of light. Here we review the research to date, on the tailoring of the emission properties from single quantum dots producing single photons, indistinguishable single photons and entangled photon pairs. Finally, the progress and future prospects for applications of single dots in quantum information processing is considered.
Guiding effect of quantum wells in semiconductor lasers
Aleshkin, V Ya; Dikareva, Natalia V; Dubinov, A A; Zvonkov, B N; Karzanova, Maria V; Kudryavtsev, K E; Nekorkin, S M; Yablonskii, A N
2013-05-31
The guiding effect of InGaAs quantum wells in GaAs- and InP-based semiconductor lasers has been studied theoretically and experimentally. The results demonstrate that such waveguides can be effectively used in laser structures with a large refractive index difference between the quantum well material and semiconductor matrix and a large number of quantum wells (e.g. in InP-based structures). (semiconductor lasers. physics and technology)
Beam excited acoustic instability in semiconductor quantum plasmas
Rasheed, A.; Siddique, M.; Huda, F.; Jamil, M.; Jung, Y.-D.
2014-06-15
The instability of hole-Acoustic waves due to electron beam in semiconductor quantum plasmas is examined using the quantum hydrodynamic model. The quantum effects are considered including Bohm potential, Fermi degenerate pressure, and exchange potential of the semiconductor quantum plasma species. Our model is applied to nano-sized GaAs semiconductor plasmas. The variation of the growth rate of the unstable mode is obtained over a wide range of system parameters. It is found that the thermal effects of semiconductor species have significance over the hole-Acoustic waves.
Quantum transport in nanoscale semiconductor devices
NASA Astrophysics Data System (ADS)
Jones, Gregory Millington
Because of technological advancement, transistor dimensions are approaching the length scale of the electron Fermi wavelength, on the order of only nanometers. In this regime, quantum mechanical phenomena will dominate electron transport. Using InAs single quantum wells, we have fabricated Y-shaped electron waveguides whose lengths are smaller than the elastic mean free path. Electron transport in these waveguides is ballistic, a quantum mechanical phenomenon. Coupled to the electron waveguide are two gates used to coherently steer the electron wave. We demonstrate for the first time that gating modifies the electron's wave function, by changing its geometrical resonance in the waveguide. Evidence of this alteration is the observation of anti-correlated, oscillatory transconductances. Our data provides direct evidence of wavefunction steering in a transistor structure and has applications in high-speed, low-power electronics. Quantum computing, if realized, will have a significant impact in computer security. The development of quantum computers has been hindered by challenges in producing the basic building block, the qubit. Qubit approaches using semiconductors promise upscalability and can take the form of a single electron transistor. We have designed, fabricated, and characterized single electron transistors in InAs, and separately in silicon, for the application of quantum computing. With the InAs single electron transistor, we have demonstrated one-electron quantum dots using a single-top-gate transistor configuration on a composite quantum well. Electrical transport data indicates a 15meV charging energy and a 20meV orbital energy spacing, which implies a quantum dot of 20nm in diameter. InAs is attractive due to its large electron Lande g-factor. With the silicon-based single electron transistor, we have demonstrated a structure that is similar to conventional silicon-based metal-oxide-semiconductor field effect transistors. The substrate is undoped and
Charge Transfer Dynamics from Photoexcited Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Zhu, Haiming; Yang, Ye; Wu, Kaifeng; Lian, Tianquan
2016-05-01
Understanding photoinduced charge transfer from nanomaterials is essential to the many applications of these materials. This review summarizes recent progress in understanding charge transfer from quantum dots (QDs), an ideal model system for investigating fundamental charge transfer properties of low-dimensional quantum-confined nanomaterials. We first discuss charge transfer from QDs to weakly coupled acceptors within the framework of Marcus nonadiabatic electron transfer (ET) theory, focusing on the dependence of ET rates on reorganization energy, electronic coupling, and driving force. Because of the strong electron-hole interaction, we show that ET from QDs should be described by the Auger-assisted ET model, which is significantly different from ET between molecules or from bulk semiconductor electrodes. For strongly quantum-confined QDs on semiconductor surfaces, the coupling can fall within the strong coupling limit, in which case the donor-acceptor interaction and ET properties can be described by the Newns-Anderson model of chemisorption. We also briefly discuss recent progress in controlling charge transfer properties in quantum-confined nanoheterostructures through wavefunction engineering and multiple exciton dissociation. Finally, we identify a few key areas for further research.
Charge Transfer Dynamics from Photoexcited Semiconductor Quantum Dots.
Zhu, Haiming; Yang, Ye; Wu, Kaifeng; Lian, Tianquan
2016-05-27
Understanding photoinduced charge transfer from nanomaterials is essential to the many applications of these materials. This review summarizes recent progress in understanding charge transfer from quantum dots (QDs), an ideal model system for investigating fundamental charge transfer properties of low-dimensional quantum-confined nanomaterials. We first discuss charge transfer from QDs to weakly coupled acceptors within the framework of Marcus nonadiabatic electron transfer (ET) theory, focusing on the dependence of ET rates on reorganization energy, electronic coupling, and driving force. Because of the strong electron-hole interaction, we show that ET from QDs should be described by the Auger-assisted ET model, which is significantly different from ET between molecules or from bulk semiconductor electrodes. For strongly quantum-confined QDs on semiconductor surfaces, the coupling can fall within the strong coupling limit, in which case the donor-acceptor interaction and ET properties can be described by the Newns-Anderson model of chemisorption. We also briefly discuss recent progress in controlling charge transfer properties in quantum-confined nanoheterostructures through wavefunction engineering and multiple exciton dissociation. Finally, we identify a few key areas for further research. PMID:27215815
Quantum weak turbulence with applications to semiconductor lasers
NASA Astrophysics Data System (ADS)
Lvov, Y. V.; Binder, R.; Newell, A. C.
1998-10-01
Based on a model Hamiltonian appropriate for the description of fermionic systems such as semiconductor lasers, we describe a natural asymptotic closure of the BBGKY hierarchy in complete analogy with that derived for classical weak turbulence. The main features of the interaction Hamiltonian are the inclusion of full Fermi statistics containing Pauli blocking and a simple, phenomenological, uniformly weak two-particle interaction potential equivalent to the static screening approximation. We find a new class of solutions to the quantum kinetic equation which are analogous to the Kolmogorov spectra of hydrodynamics and classical weak turbulence. They involve finite fluxes of particles and energy in momentum space and are particularly relevant for describing the behavior of systems containing sources and sinks. We make a prima facie case that these finite flux solutions can be important in the context of semiconductor lasers and show how they might be used to enhance laser performance.
Biosensing with Luminescent Semiconductor Quantum Dots
Sapsford, Kim E.; Pons, Thomas; Medintz, Igor L.; Mattoussi, Hedi
2006-01-01
Luminescent semiconductor nanocrystals or quantum dots (QDs) are a recently developed class of nanomaterial whose unique photophysical properties are helping to create a new generation of robust fluorescent biosensors. QD properties of interest for biosensing include high quantum yields, broad absorption spectra coupled to narrow size-tunable photoluminescent emissions and exceptional resistance to both photobleaching and chemical degradation. In this review, we examine the progress in adapting QDs for several predominantly in vitro biosensing applications including use in immunoassays, as generalized probes, in nucleic acid detection and fluorescence resonance energy transfer (FRET) - based sensing. We also describe several important considerations when working with QDs mainly centered on the choice of material(s) and appropriate strategies for attaching biomolecules to the QDs.
Electron states in semiconductor quantum dots
Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.
2014-11-28
In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications.
Quantum tunneling between bent semiconductor nanowires
Sousa, A. A.; Chaves, Andrey Farias, G. A.; Pereira, T. A. S.; Peeters, F. M.
2015-11-07
We theoretically investigate the electronic transport properties of two closely spaced L-shaped semiconductor quantum wires, for different configurations of the output channel widths as well as the distance between the wires. Within the effective-mass approximation, we solve the time-dependent Schrödinger equation using the split-operator technique that allows us to calculate the transmission probability, the total probability current, the conductance, and the wave function scattering between the energy subbands. We determine the maximum distance between the quantum wires below which a relevant non-zero transmission is still found. The transmission probability and the conductance show a strong dependence on the width of the output channel for small distances between the wires.
Semiconductor Quantum Dots for Biomedicial Applications
Shao, Lijia; Gao, Yanfang; Yan, Feng
2011-01-01
Semiconductor quantum dots (QDs) are nanometre-scale crystals, which have unique photophysical properties, such as size-dependent optical properties, high fluorescence quantum yields, and excellent stability against photobleaching. These properties enable QDs as the promising optical labels for the biological applications, such as multiplexed analysis of immunocomplexes or DNA hybridization processes, cell sorting and tracing, in vivo imaging and diagnostics in biomedicine. Meanwhile, QDs can be used as labels for the electrochemical detection of DNA or proteins. This article reviews the synthesis and toxicity of QDs and their optical and electrochemical bioanalytical applications. Especially the application of QDs in biomedicine such as delivering, cell targeting and imaging for cancer research, and in vivo photodynamic therapy (PDT) of cancer are briefly discussed. PMID:22247690
Semiconductor Lasers Containing Quantum Wells in Junctions
NASA Technical Reports Server (NTRS)
Yang, Rui Q.; Qiu, Yueming
2004-01-01
In a recent improvement upon In(x)Ga(1-x)As/InP semiconductor lasers of the bipolar cascade type, quantum wells are added to Esaki tunnel junctions, which are standard parts of such lasers. The energy depths and the geometric locations and thicknesses of the wells are tailored to exploit quantum tunneling such that, as described below, electrical resistances of junctions and concentrations of dopants can be reduced while laser performances can be improved. In(x)Ga(1-x)As/InP bipolar cascade lasers have been investigated as sources of near-infrared radiation (specifically, at wavelengths of about 980 and 1,550 nm) for photonic communication systems. The Esaki tunnel junctions in these lasers have been used to connect adjacent cascade stages and to enable transport of charge carriers between them. Typically, large concentrations of both n (electron-donor) and p (electron-acceptor) dopants have been necessary to impart low electrical resistances to Esaki tunnel junctions. Unfortunately, high doping contributes free-carrier absorption, thereby contributing to optical loss and thereby, further, degrading laser performance. In accordance with the present innovation, quantum wells are incorporated into the Esaki tunnel junctions so that the effective heights of barriers to quantum tunneling are reduced (see figure).
Biosynthesis of cadmium sulphide quantum semiconductor crystallites
NASA Astrophysics Data System (ADS)
Dameron, C. T.; Reese, R. N.; Mehra, R. K.; Kortan, A. R.; Carroll, P. J.; Steigerwald, M. L.; Brus, L. E.; Winge, D. R.
1989-04-01
NANOMETRE-SCALE semiconductor quantum crystallites exhibit size-dependent and discrete excited electronic states which occur at energies higher than the band gap of the corresponding bulk solid1-4. These crystallites are too small to have continuous energy bands, even though a bulk crystal structure is present. The onset of such quantum properties sets a fundamental limit to device miniaturization in microelectronics5. Structures with either one, two or all three dimensions on the nanometer scale are of particular interest in solid state physics6. We report here our discovery of the biosynthesis of quantum crystallites in yeasts Candida glabrata and Schizosaccharomyces pombe, cultured in the presence of cad-mium salts. Short chelating peptides of general structure (γ-Glu-Cys)n-Gly control the nucleation and growth of CdS crystallites to peptide-capped intracellular particles of diameter 20 Å. These quantum CdS crystallites are more monodisperse than CdS par-ticles synthesized chemically. X-ray data indicate that, at this small size, the CdS structure differs from that of bulk CdS and tends towards a six-coordinate rock-salt structure.
Optically Loaded Semiconductor Quantum Memory Register
NASA Astrophysics Data System (ADS)
Kim, Danny; Kiselev, Andrey A.; Ross, Richard S.; Rakher, Matthew T.; Jones, Cody; Ladd, Thaddeus D.
2016-02-01
We propose and analyze an optically loaded quantum memory that exploits capacitive coupling between self-assembled quantum-dot molecules and electrically gated quantum-dot molecules. The self-assembled dots are used for spin-photon entanglement, which is transferred to the gated dots for long-term storage or processing via a teleportation process heralded by single-photon detection. We illustrate a device architecture enabling this interaction and outline both its operation and fabrication. We provide self-consistent Poisson-Schrödinger simulations to establish the design viability, to refine the design, and to estimate the physical coupling parameters and their sensitivities to dot placement. The device we propose generates heralded copies of an entangled state between a photonic qubit and a solid-state qubit with a rapid reset time upon failure. The resulting fast rate of entanglement generation is of high utility for heralded quantum networking scenarios involving lossy optical channels.
Semiconductor quantum dot-inorganic nanotube hybrids.
Kreizman, Ronen; Schwartz, Osip; Deutsch, Zvicka; Itzhakov, Stella; Zak, Alla; Cohen, Sidney R; Tenne, Reshef; Oron, Dan
2012-03-28
A synthetic route for preparation of inorganic WS(2) nanotube (INT)-colloidal semiconductor quantum dot (QD) hybrid structures is developed, and transient carrier dynamics on these hybrids are studied via transient photoluminescence spectroscopy utilizing several different types of QDs. Measurements reveal efficient resonant energy transfer from the QDs to the INT upon photoexcitation, provided that the QD emission is at a higher energy than the INT direct gap. Charge transfer in the hybrid system, characterized using QDs with band gaps below the INT direct gap, is found to be absent. This is attributed to the presence of an organic barrier layer due to the relatively long-chain organic ligands of the QDs under study. This system, analogous to carbon nanotube-QD hybrids, holds potential for a variety of applications, including photovoltaics, luminescence tagging and optoelectronics. PMID:22354096
Spin Qubits with Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Tarucha, Seigo; Yamamoto, Michihisa; Oiwa, Akira; Choi, Byung-Soo; Tokura, Yasuhiro
This section describes recent progresses on the research of spin qubits realized in semiconductor quantum dot (QD) systems. After we argue the scheme of initialization and detection of individual spin states, we discuss the key idea of the universal gates constituted with QDs proposed by D. Loss and D. P. DiVincenzo. In order to achieve universal quantum gate operations, we need single qubit coherent manipulations and two qubit controlled-NOT or control-Z gates. For the first type of gate, instead of the standard rf magnetic field driven electron spin resonance (ESR), we proposed and implemented electric dipole induced spin resonance (EDSR), which has various advantages over ESR, including low dissipation, individual access to the spins and integrability. We describes recent progress in the fast Rabi oscillations. The second type of gate can be realized by the exchange coupling between nearby QDs. We also discuss the experiments combining single- and two-qubit operations. Finally, we argue the progress of the coupling of the spins in QDs with the "flying qubits", namely, photons of visible or microwave and itinerant electrons in the wave guides.
Colloidal crystal formation in a semiconductor quantum plasma
Zeba, I.; Uzma, Ch.; Jamil, M.; Salimullah, M.; Shukla, P. K.
2010-03-15
The static shielding and the far-field dynamical oscillatory wake potentials in an ion-implanted piezoelectric semiconductor with colloid ions as test particles have been investigated in detail. The dielectric response function of the semiconductor is contributed by the quantum effect of electrons through the Bohm potential and lattice electron-phonon coupling effects. It is found that the quantum effect causes tighter binding of the electrons reducing the quantum Debye shielding length and the effective length of the wake potential to several angstroms. Hence, a quasiquantum lattice of colloid ions can be formed in the semiconductor in the quantum scales giving rise to drastic modifications of the ion-implanted semiconductor properties.
Voltage-controlled quantum light from an atomically thin semiconductor
NASA Astrophysics Data System (ADS)
Chakraborty, Chitraleema; Kinnischtzke, Laura; Goodfellow, Kenneth M.; Beams, Ryan; Vamivakas, A. Nick
2015-06-01
Although semiconductor defects can often be detrimental to device performance, they are also responsible for the breadth of functionality exhibited by modern optoelectronic devices. Artificially engineered defects (so-called quantum dots) or naturally occurring defects in solids are currently being investigated for applications ranging from quantum information science and optoelectronics to high-resolution metrology. In parallel, the quantum confinement exhibited by atomically thin materials (semi-metals, semiconductors and insulators) has ushered in an era of flatland optoelectronics whose full potential is still being articulated. In this Letter we demonstrate the possibility of leveraging the atomically thin semiconductor tungsten diselenide (WSe2) as a host for quantum dot-like defects. We report that this previously unexplored solid-state quantum emitter in WSe2 generates single photons with emission properties that can be controlled via the application of external d.c. electric and magnetic fields. These new optically active quantum dots exhibit excited-state lifetimes on the order of 1 ns and remarkably large excitonic g-factors of 10. It is anticipated that WSe2 quantum dots will provide a novel platform for integrated solid-state quantum photonics and quantum information processing, as well as a rich condensed-matter physics playground with which to explore the coupling of quantum dots and atomically thin semiconductors.
NASA Astrophysics Data System (ADS)
Hackmann, J.; Glasenapp, Ph.; Greilich, A.; Bayer, M.; Anders, F. B.
2015-11-01
The real-time spin dynamics and the spin noise spectra are calculated for p and n -charged quantum dots within an anisotropic central spin model extended by additional nuclear electric quadrupolar interactions and augmented by experimental data. Using realistic estimates for the distribution of coupling constants including an anisotropy parameter, we show that the characteristic long time scale is of the same order for electron and hole spins strongly determined by the quadrupolar interactions even though the analytical form of the spin decay differs significantly consistent with our measurements. The low frequency part of the electron spin noise spectrum is approximately 1 /3 smaller than those for hole spins as a consequence of the spectral sum rule and the different spectral shapes. This is confirmed by our experimental spectra measured on both types of quantum dot ensembles in the low power limit of the probe laser.
Kolarczik, Mirco; Owschimikow, Nina; Korn, Julian; Lingnau, Benjamin; Kaptan, Yücel; Bimberg, Dieter; Schöll, Eckehard; Lüdge, Kathy; Woggon, Ulrike
2013-01-01
Coherence in light–matter interaction is a necessary ingredient if light is used to control the quantum state of a material system. Coherent effects are firmly associated with isolated systems kept at low temperature. The exceedingly fast dephasing in condensed matter environments, in particular at elevated temperatures, may well erase all coherent information in the material at timescales shorter than a laser excitation pulse. Here we show for an ensemble of semiconductor quantum dots that even in the presence of ultrafast dephasing, for suitably designed condensed matter systems quantum-coherent effects are robust enough to be observable at room temperature. Our conclusions are based on an analysis of the reshaping an ultrafast laser pulse undergoes on propagation through a semiconductor quantum dot amplifier. We show that this pulse modification contains the signature of coherent light–matter interaction and can be controlled by adjusting the population of the quantum dots via electrical injection. PMID:24336000
Exciton absorption of entangled photons in semiconductor quantum wells
NASA Astrophysics Data System (ADS)
Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team
2013-03-01
The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes
Quasibound states in semiconductor quantum well structures
NASA Astrophysics Data System (ADS)
Rihani, Samir; Page, Hideaki; Beere, Harvey E.
2010-02-01
We present a study on quasibound states in multiple quantum well structures using a finite element model (FEM). The FEM is implemented for solving the effective mass Schrödinger equation in arbitrary layered semiconductor nanostructures with an arbitrary applied potential. The model also includes nonparabolicity effects by using an energy dependent effective mass, where the resulting nonlinear eigenvalue problem was solved using an iterative approach. We focus on quasibound/continuum states above the barrier potential and show that such states can be determined using cyclic boundary conditions. This new method enables the determination of both bound and quasibound states simultaneously, making it more efficient than other methods where different boundary conditions have to be used in extracting the relevant states. Furthermore, the new method lifted the problem of quasibound state divergence commonly seen with many other methods of calculation. Hence enabling accurate determination of dipole matrix elements involving both bound and quasibound states. Such calculations are vital in the design of intersubband optoelectronic devices and reveal the interesting properties of quasibound states above the potential barriers.
Integrated superconducting detectors on semiconductors for quantum optics applications
NASA Astrophysics Data System (ADS)
Kaniber, M.; Flassig, F.; Reithmaier, G.; Gross, R.; Finley, J. J.
2016-05-01
Semiconductor quantum photonic circuits can be used to efficiently generate, manipulate, route and exploit nonclassical states of light for distributed photon-based quantum information technologies. In this article, we review our recent achievements on the growth, nanofabrication and integration of high-quality, superconducting niobium nitride thin films on optically active, semiconducting GaAs substrates and their patterning to realize highly efficient and ultra-fast superconducting detectors on semiconductor nanomaterials containing quantum dots. Our state-of-the-art detectors reach external detection quantum efficiencies up to 20 % for ~4 nm thin films and single-photon timing resolutions <72 ps. We discuss the integration of such detectors into quantum dot-loaded, semiconductor ridge waveguides, resulting in the on-chip, time-resolved detection of quantum dot luminescence. Furthermore, a prototype quantum optical circuit is demonstrated that enabled the on-chip generation of resonance fluorescence from an individual InGaAs quantum dot, with a linewidth <15 μeV displaced by 1 mm from the superconducting detector on the very same semiconductor chip. Thus, all key components required for prototype quantum photonic circuits with sources, optical components and detectors on the same chip are reported.
Quantum coherence in semiconductor nanostructures for improved lasers and detectors.
Chow, Weng Wah Dr.; Lyo, Sungkwun Kenneth; Cederberg, Jeffrey George; Modine, Normand Arthur; Biefeld, Robert Malcolm
2006-02-01
The potential for implementing quantum coherence in semiconductor self-assembled quantum dots has been investigated theoretically and experimentally. Theoretical modeling suggests that coherent dynamics should be possible in self-assembled quantum dots. Our experimental efforts have optimized InGaAs and InAs self-assembled quantum dots on GaAs for demonstrating coherent phenomena. Optical investigations have indicated the appropriate geometries for observing quantum coherence and the type of experiments for observing quantum coherence have been outlined. The optical investigation targeted electromagnetically induced transparency (EIT) in order to demonstrate an all optical delay line.
Electron Liquids in Semiconductor Quantum Structures
Aron Pinczuk
2009-05-25
The groups led by Stormer and Pinczuk have focused this project on goals that seek the elucidation of novel many-particle effects that emerge in two-dimensional electron systems (2DES) as the result from fundamental quantum interactions. This experimental research is conducted under extreme conditions of temperature and magnetic field. From the materials point of view, the ultra-high mobility systems in GaAs/AlGaAs quantum structures continue to be at the forefront of this research. The newcomer materials are based on graphene, a single atomic layer of graphite. The graphene research is attracting enormous attention from many communities involved in condensed matter research. The investigated many-particle phenomena include the integer and fractional quantum Hall effect, composite fermions, and Dirac fermions, and a diverse group of electron solid and liquid crystal phases. The Stormer group performed magneto-transport experiments and far-infrared spectroscopy, while the Pinczuk group explores manifestations of such phases in optical spectra.
Semiconductor Quantum Rods as Single Molecule FluorescentBiological Labels
Fu, Aihua; Gu, Weiwei; Boussert, Benjamine; Koski, Kristie; Gerion, Daniele; Manna, Liberato; Le Gros, Mark; Larabell, Carolyn; Alivisatos, A. Paul
2006-05-29
In recent years, semiconductor quantum dots have beenapplied with great advantage in a wide range of biological imagingapplications. The continuing developments in the synthesis of nanoscalematerials and specifically in the area of colloidal semiconductornanocrystals have created an opportunity to generate a next generation ofbiological labels with complementary or in some cases enhanced propertiescompared to colloidal quantum dots. In this paper, we report thedevelopment of rod shaped semiconductor nanocrystals (quantum rods) asnew fluorescent biological labels. We have engineered biocompatiblequantum rods by surface silanization and have applied them fornon-specific cell tracking as well as specific cellular targeting. Theproperties of quantum rods as demonstrated here are enhanced sensitivityand greater resistance for degradation as compared to quantum dots.Quantum rods have many potential applications as biological labels insituations where their properties offer advantages over quantumdots.
Charge transport in semiconductor nanocrystal quantum dots
NASA Astrophysics Data System (ADS)
Mentzel, Tamar Shoshana
In this thesis, we study charge transport in arrays of semiconductor nanocrystal quantum dots. Nanocrystals are synthesized in solution, and an organic ligand on the surface of the nanocrystal creates a potential barrier that confines charges in the nanocrystal. Optical absorption measurements reveal discrete electronic energy levels in the nanocrystals resulting from quantum confinement. When nanocrystals are deposited on a surface, they self-assemble into a close-packed array forming a nanocrystal solid. We report electrical transport measurements of a PbSe nanocrystal solid that serves as the channel of an inverted field-effect transistor. We measure the conductance as a function of temperature, source-drain bias and. gate voltage. The data indicates that holes are the majority carriers; the Fermi energy lies in impurity states in the bandgap of the nanocrystal; and charges hop between the highest occupied valence state in the nanocrystals (the 1S h states). At low source-drain voltages, the activation energy for hopping is given by the energy required to generate holes in the 1Sh state plus activation over barriers resulting from site disorder. The barriers from site disorder are eliminated with a sufficiently high source-drain bias. From the gate effect, we extract the Thomas-Fermi screening length and a density of states that is consistent with the estimated value. We consider variable-range hopping as an alternative model, and find no self-consistent evidence for it. Next, we employ charge sensing as an alternative to current measurements for studying transport in materials with localized sites. A narrow-channel MOSFET serves as a charge sensor because its conductance is sensitive to potential fluctuations in the nearby environment caused by the motion of charge. In particular, it is sensitive to the fluctuation of single electrons at the silicon-oxide interface within the MOSFET. We pattern a strip of amorphous germanium within 100 nm of the transistor. The
Quantum spin Hall effect in inverted type-II semiconductors.
Liu, Chaoxing; Hughes, Taylor L; Qi, Xiao-Liang; Wang, Kang; Zhang, Shou-Cheng
2008-06-13
The quantum spin Hall (QSH) state is a topologically nontrivial state of quantum matter which preserves time-reversal symmetry; it has an energy gap in the bulk, but topologically robust gapless states at the edge. Recently, this novel effect has been predicted and observed in HgTe quantum wells and in this Letter we predict a similar effect arising in Type-II semiconductor quantum wells made from InAs/GaSb/AlSb. The quantum well exhibits an "inverted" phase similar to HgTe/CdTe quantum wells, which is a QSH state when the Fermi level lies inside the gap. Due to the asymmetric structure of this quantum well, the effects of inversion symmetry breaking are essential. Remarkably, the topological quantum phase transition between the conventional insulating state and the quantum spin Hall state can be continuously tuned by the gate voltage, enabling quantitative investigation of this novel phase transition. PMID:18643529
Spin Quantum Kinetics in Relaxation and Transport of Semiconductors
NASA Astrophysics Data System (ADS)
Lee, Han-Chieh; Mou, Chung-Yu; Lyon, Stephen A.
2007-03-01
Generalized Kadanoff-Baym Equation (GKBE) with spin degree of freedom is firstly presented and its theoretical framework of applications, which aims to semiconductor quantum kinetics in femtosecond and nanometer scales, demonstrated. The GKBE was constructed by Green functions thermally averaging Pauli equation of motion with using Langreth theorem. As applied for relaxation, Kadanoff-Baym ansatz was made and carrier-carrier scattering (CCS) with random-phase approximation considered. The derivation can simulate an evolution of excited carriers spreading via CCS, buildup of magnetic field by Rashba effect and formation of spin relaxation, where energy non-conserving event and memory effect are figured out. For transport, retarded Green functions were retrieved from spin Dyson equation as an input for GKBE with the presence of electron-phonon (impurity) interaction. The part is useful for spin Hall effect in precisely estimating spin current and accumulation in nanostructures or ballistic regime.
Trion-based Optical Processes in Semiconductor Quantum Wells
NASA Astrophysics Data System (ADS)
Baldwin, Thomas Kendrick
In a semiconductor, negative charge is carried by conduction-band electrons and positive charge is carried by valence-band holes. While charge transport properties can be understood by considering the motion of these carriers individually, the optical properties are largely determined by their mutual interaction. The hydrogen-like bound state of an electron with a hole, or exciton, is the fundamental optical excitation in direct-gap materials such as gallium arsenide and cadmium telluride. In this dissertation, we consider charged excitons, or trions. A bound state of an exciton with a resident electron or hole, trions are a relatively pure manifestation of the three-body problem which can be studied experimentally. This is a subject of practical as well as academic interest: Since the trion is the elementary optical excitation of a resident free carrier, the related optical processes can open pathways for manipulating carrier spin and carrier transport. We present three experimental investigations of trion-based optical processes in semiconductor quantum wells. In the first, we demonstrate electromagnetically induced transparency via the electron spin coherence made possible by the trion transition. We explore the practical limits of this technique in high magnetic fields. In the second, we present a direct measurement of trion and exciton oscillator strength at high magnetic fields. These data reveal insights about the structure of the trion's three-body wavefunction relative to that of its next excited state, the triplet trion. In the last, we investigate the mechanism underlying exciton-correlated tunneling, an optically-controllable transport process in mixed-type quantum wells. Extensive experimental studies indicate that it is due to a local, indirect interaction between an exciton and a hole, forming one more example of a trion-mediated optical process. This dissertation includes previously published co-authored material.
Huang, Hao; Dorn, August; Nair, Gautham P; Bulović, Vladimir; Bawendi, Moungi G
2007-12-01
We demonstrate reversible quenching of the photoluminescence from single CdSe/ZnS colloidal quantum dots embedded in thin films of the molecular organic semiconductor N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD) in a layered device structure. Our analysis, based on current and charge carrier density, points toward field ionization as the dominant photoluminescence quenching mechanism. Blinking traces from individual quantum dots reveal that the photoluminescence amplitude decreases continuously as a function of increasing forward bias even at the single quantum dot level. In addition, we show that quantum dot photoluminescence is quenched by aluminum tris(8-hydroxyquinoline) (Alq3) in chloroform solutions as well as in thin solid films of Alq3 whereas TPD has little effect. This highlights the importance of chemical compatibility between semiconductor nanocrystals and surrounding organic semiconductors. Our study helps elucidate elementary interactions between quantum dots and organic semiconductors, knowledge needed for designing efficient quantum dot organic optoelectronic devices. PMID:18034504
A Quantum Dot with Spin-Orbit Interaction--Analytical Solution
ERIC Educational Resources Information Center
Basu, B.; Roy, B.
2009-01-01
The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.
Pseudospin anisotropy of trilayer semiconductor quantum Hall ferromagnets
NASA Astrophysics Data System (ADS)
Miravet, D.; Proetto, C. R.
2016-08-01
When two Landau levels are brought to a close coincidence between them and with the chemical potential in the integer quantum Hall regime, the two Landau levels can just cross or collapse while the external or pseudospin field that induces the alignment changes. In this work, all possible crossings are analyzed theoretically for the particular case of semiconductor trilayer systems, using a variational Hartree-Fock approximation. The model includes tunneling between neighboring layers, bias, intralayer, and interlayer Coulomb interaction among the electrons. We have found that the general pseudospin anisotropy classification scheme used in bilayers applies also to the trilayer situation, with the simple crossing corresponding to an easy-axis ferromagnetic anisotropy analogy, and the collapse case corresponding to an easy-plane ferromagnetic analogy. An isotropic case is also possible, with the levels just crossing or collapsing depending on the filling factor and the quantum numbers of the two nearby levels. While our results are valid for any integer filling factor ν (=1 ,2 ,3 ,... ), we have analyzed in detail the crossings at ν =3 and 4, and we have given clear predictions that will help in their experimental search. In particular, the present calculations suggest that by increasing the bias, the trilayer system at these two filling factors can be driven from an easy-plane anisotropy regime to an easy-axis regime, and then can be driven back to the easy-plane regime. This kind of reentrant behavior is a unique feature of the trilayers, compared with the bilayers.
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Kolokolov, Kanstantin I.; Ning, Cun-Zheng
2003-01-01
Linear absorption spectra arising from intersubband transitions in semiconductor quantum well heterostructures are analyzed using quantum kinetic theory by treating correlations to the first order within Hartree-Fock approximation. The resulting intersubband semiconductor Bloch equations take into account extrinsic dephasing contributions, carrier-longitudinal optical phonon interaction and carrier-interface roughness interaction which is considered with Ando s theory. As input for resonance lineshape calculation, a spurious-states-free 8-band kp Hamiltonian is used, in conjunction with the envelop function approximation, to compute self-consistently the energy subband structure of electrons in type II InAs/AlSb single quantum well structures. We demonstrate the interplay of nonparabolicity and many-body effects in the mid-infrared frequency range for such heterostructures.
Quantum statistical theory of semiconductor junctions in thermal equilibrium
NASA Technical Reports Server (NTRS)
Von Roos, O.
1977-01-01
Free carrier and electric field distributions of one-dimensional semiconductor junctions are evaluated using a quantum mechanical phase-space distribution and its corresponding Boltzmann equation. Attention is given to quantum and exchange corrections in cases of high doping concentrations when carrier densities become degenerate. Quantitative differences between degenerate and classical junction characteristics, e.g., maximum electric field and built-in voltage and carrier concentration within the transition region, are evaluated numerically.
Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures
Fischer, Arthur J.; Tsao, Jeffrey Y.; Wierer, Jr., Jonathan J.; Xiao, Xiaoyin; Wang, George T.
2016-03-01
Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.
Tuning exchange interactions in organometallic semiconductors
NASA Astrophysics Data System (ADS)
Rawat, Naveen; Manning, Lane W.; Hua, Kim-Ngan; Headrick, Randall L.; Cherian, Judy G.; Bishop, Michael M.; McGill, Stephen A.; Furis, Madalina I.
2015-09-01
Organic semiconductors are emerging as a leading area of research as they are expected to overcome limitations of inorganic semiconductor devices for certain applications where low cost manufacturing, device transparency in the visible range or mechanical flexibility are more important than fast switching times. Solution processing methods produce thin films with millimeter sized crystalline grains at very low cost manufacturing prices, ideally suited for optical spectroscopy investigations of long range many-body effects in organic systems. To this end, we synthesized an entire family of organosoluble 3-d transition metal Pc's and successfully employed a novel solution-based pen-writing deposition technique to fabricate long range ordered thin films of mixtures of metal-free (H2Pc) molecule and organometallic phthalocyanines (MPc's). Our previous studies on the parent MPc crystalline thin films identified different electronic states mediating exchange interactions in these materials. This understanding of spin-dependent exchange interaction between delocalized π-electrons with unpaired d spins enabled the further tuning of these interactions by mixing CoPc and H2Pc in different ratios ranging from 1:1 to 1000:1 H2Pc:MPc. The magnitude of the exchange is also tunable as a function of the average distance between unpaired spins in these materials. Furthermore, high magnetic field (B < 25T) MCD and magneto-photoluminescence show evidence of spin-polarized band-edge excitons in the same materials.
Semiconductor quantum dots in bioanalysis: crossing the valley of death.
Algar, W Russ; Susumu, Kimihiro; Delehanty, James B; Medintz, Igor L
2011-12-01
Colloidal semiconductor quantum dots (QDs) have evolved beyond scientific novelties and are transitioning into bona fide analytical tools. We describe the burgeoning role of QDs in many different fields of bioanalyses and highlight the advantages afforded by their unique physical and optical properties. PMID:21928771
Valley Polarization in Size-Tunable Monolayer Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Wei, Guohua; Czaplewski, David A.; Jung, Il Woong; Lenferink, Erik J.; Stanev, Teodor K.; Stern, Nathaniel P.
Controlling the size of semiconductor nanostructures allows manipulation of the optical and electrical properties of band carriers. We show that laterally-confined monolayer MoS2 quantum dots can be created through top-down nanopatterning of an atomically-thin two-dimensional semiconductor. Semiconductor-compatible nanofabrication processing allows for these low-dimensional materials to be integrated into complex systems that harness their controllable optical properties. Size-dependent exciton energy shifts and linewidths are observed, demonstrating the influence of quantum confinement. The patterned dots exhibit the same valley polarization characteristics as in a continuous MoS2 sheet, suggesting that monolayer semiconductor quantum dots could have potential for advancing quantum information applications. This work is supported by ISEN, the DOE-BES (DE-SC0012130), the NSF MRSEC program (DMR-1121262), and the Center for Nanoscale Materials, DOE-BES (DE-AC02-06CH11357). N.P.S. is an Alfred P. Sloan Research Fellow.
Magnetoexcitons in type-II semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Fuster, Gonzalo; Barticevic, Zdenka; Pacheco, Monica; Oliveira, Luiz E.
2004-03-01
We present a theoretical investigation of excitons in type-II semiconductor quantum dots (QD). In these systems the confinement of electrons inside the QD and the hole outside the QD produces a ring-like structure [1-2]. Recently, Ribeiro et al [3], in a magnetophotoluminescence study of type-II InP/GaAs self-assembled quantum dots, observed Aharonov-Bohm-type oscillations characteristic of the ring topology for neutral excitons. Using a simple model they have derived the groundstate hole energy as a function of the magnetic field, and obtained values for the ring parameters which are in good agreement with the measured values. However, some of the features observed experimentally, in the photoluminescence intensity, can not be well explained under that approach. In this work we present a more realistic model which considers the finite width of the ring and the electron-hole interaction included via a perturbative approach. The calculations are performed within the oneparticle formalism using the effective mass approximation. The confinement potential for electrons is modelled as the superposition of a quantum well potential along the axial direction, and a parabolic lateral confinement potential. The energies for the hole in the ring plane are calculated using the method of reference [4]. Theoretical calculations are in good agreement with the experimental results of reference [3] provided that excitonic effects are properly taken into account. References 1. A.O. Govorov et al., Physica E 13 , 297 (2002). 2. K. L. Janssens et al. Phys. Rev B64, 155324 (2001), and Phys. Rev. B66, 075314 (2002). 3. E. Ribeiro, G. Medeiros-Ribeiro, and W.Carvalho Jr., and A.O. Govorov, condmat/0304092 (2003). 4. Z. Barticevic, G. Fuster, and M. Pacheco,Phys. Rev. B 65, 193307 (2002).
Optical properties of charged semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Jha, Praket P.
The effect of n-type doping on the luminescence properties of II-VI quantum dots is studied. The addition of two shells of CdS on CdSe quantum dots prevents the creation of surface traps and makes the system stable under reducing environment. The injection of electrons into films of quantum dots leads to lower photoluminescence (PL) efficiency, with the extent of quenching dependent on both the number and the quantum states of the spectator charges in the nanocrystal. It is found that a 1Pe electron is an eightfold better PL quencher than the 1Se electron. Reduced threshold for stimulated emission is also observed in doped CdSe/CdS films. Time resolved photoluminescence measurements are used to extract the recombination rates of a charged exciton, called trion. It is observed that the negative trion has a radiative rate ˜2.2 +/- 0.4x faster than a neutral exciton, while its non-radiative recombination rate is slower than the biexciton non-radiative recombination rate by a factor of 7.5 +/- 1.7. The knowledge of the recombination rates of the trion enables us to calculate the quantum yield of a negative trion to be ˜10% for the nanocrystals investigated in our work. This is larger than the off state quantum yield from a single quantum dot photoluminescence trajectory and eliminates the formation of negative trion as the possible reason for the PL blinking of single quantum dots. Single quantum dot electrochemistry has also been achieved. It is shown that by varying the Fermi level of the system electrons can be reversibly injected into and extracted out of single CdSe/CdS and CdSe/ZnS nanoparticles to modulate the photoluminescence.
Energy transfer processes in semiconductor quantum dots: bacteriorhodopsin hybrid system
NASA Astrophysics Data System (ADS)
Rakovich, Aliaksandra; Sukhanova, Alyona; Bouchonville, Nicolas; Molinari, Michael; Troyon, Michel; Cohen, Jacques H. M.; Rakovich, Yury; Donegan, John F.; Nabiev, Igor
2009-05-01
The potential impact of nanoscience on energy transfer processes in biomolecules was investigated on the example of a complex between fluorescent semiconductor nanocrystals and photochromic membrane protein. The interactions between colloidal CdTe quantum dots (QDs) and bacteriorhodopsin (bR) protein were studied by a variety of spectroscopic techniques, including integrated and time-resolved fluorescence spectroscopies, zeta potential and size measurement, and fluorescence correlation spectroscopy. QDs' luminescence was found to be strongly modulated by bacteriorhodopsin, but in a controllable way. Decreasing emission lifetimes and blue shifts in QDs' emission at increasing protein concentrations suggest that quenching occurs via Förster resonance energy transfer. On the other hand, concave Stern-Volmer plots and sigmoidal photoluminescence quenching curves imply that the self-assembling of NCs and bR exists, and the number of nanocrystals (NCs) per bacteriorhodopsin contributing to energy transfer can be determined from the inflection points of sigmoidal curves. This number was found to be highly dependent not only on the spectral overlap between NC emission and bR absorption bands, but also on nanocrystal surface charge. These results demonstrate the potential of how inorganic nanoscale materials can be employed to improve the generic molecular functions of biomolecules. The observed interactions between CdTe nanocrystals and bacteriorhodopsin can provide the basis for the development of novel functional materials with unique photonic properties and applications in areas such as all-optical switching, photovoltaics and data storage.
Semiconductor quantum wells: old technology or new device functionalities
NASA Astrophysics Data System (ADS)
Kolbas, R. M.; Lo, Y. C.; Hsieh, K. Y.; Lee, J. H.; Reed, F. E.; Zhang, D.; Zhang, T.
2009-08-01
The introduction of semiconductor quantum wells in the 1970s created a revolution in optoelectronic devices. A large fraction of today's lasers and light emitting diodes are based on quantum wells. It has been more than 30 years but novel ideas and new device functions have recently been demonstrated using quantum well heterostructures. This paper provides a brief overview of the subject and then focuses on the physics of quantum wells that the lead author believes holds the key to new device functionalities. The data and figures contained within are not new. They have been assembled from 30 years of work. They are presented to convey the story of why quantum wells continue to fuel the engine that drives the semiconductor optoelectronic business. My apologies in advance to my students and co-workers that contributed so much that could not be covered in such a short manuscript. The explanations provided are based on the simplest models possible rather than the very sophisticated mathematical models that have evolved over many years. The intended readers are those involved with semiconductor optoelectronic devices and are interested in new device possibilities.
Generation of infrared entangled light in asymmetric semiconductor quantum wells
NASA Astrophysics Data System (ADS)
Lü, Xin-You; Wu, Jing; Zheng, Li-Li; Huang, Pei
2010-12-01
We proposed a scheme to achieve two-mode CV entanglement with the frequencies of entangled modes in the infrared range in an asymmetric semiconductor double-quantum-wells (DQW), where the required quantum coherence is obtained by inducing the corresponding intersubband transitions (ISBTs) with a classical field. By numerically simulating the dynamics of system, we show that the entanglement period can be prolonged via enhancing the intensity of classical field, and the generation of entanglement doesn't depend intensively on the initial condition of system in our scheme. Moreover, we also show that a bipartite entanglement amplifier can be realized in our scheme. The present research provides an efficient approach to achieve infrared entangled light in the semiconductor nanostructure, which may have significant impact on the progress of solid-state quantum information theory.
Probing dopants in wide semiconductor quantum point contacts.
Yakimenko, I I; Berggren, K-F
2016-03-16
Effects of randomly distributed impurities on conductance, spin polarization and electron localization in realistic gated semiconductor quantum point contacts (QPCs) have been simulated numerically. To this end density functional theory in the local spin-density approximation has been used. In the case when the donor layer is embedded far from the two-dimensional electron gas (2DEG) the electrostatic confinement potential exhibits the conventional parabolic form, and thus the usual ballistic transport phenomena take place both in the devices with split gates alone and with an additional metallic gate on the top. In the opposite case, i.e. when the randomly distributed donors are placed not far away from the 2DEG layer, there are drastic changes like the localization of electrons in the vicinity of confinement potential minima which give rise to fluctuations in conductance and resonances. The conductance as a function of the voltage applied to the top gate for asymmetrically charged split gates has been calculated. In this case resonances in conductance caused by randomly distributed donors are shifted and decrease in amplitude while the anomalies caused by interaction effects remain unmodified. It has been also shown that for a wide QPC the polarization can appear in the form of stripes. The importance of partial ionization of the random donors and the possibility of short range order among the ionized donors are emphasized. The motivation for this work is to critically evaluate the nature of impurities and how to guide the design of high-mobility devices. PMID:26885626
Quantum Hall effect in semiconductor systems with quantum dots and antidots
Beltukov, Ya. M.; Greshnov, A. A.
2015-04-15
The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T ∼ 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.
Electrostatic enhancement of light emitted by semiconductor quantum well
NASA Astrophysics Data System (ADS)
Krokhin, A.; Neogi, A.; Llopis, A.; Mahat, M.; Gumen, L.; Pereira, S.; Watson, I.
2015-10-01
Carrier dynamics in metal-semiconductor structures is driven by electrodynamic coupling of carriers to the evanescent field of surface plasmons. Useful modifications in electron and hole dynamics due to presence of metallic inclusions show promise for applications from light emitters to communications. However, this picture does not include contributions from electrostatics. We propose here an electrostatic mechanism for enhancement of light radiated from semiconductor emitter which is comparable in effect to plasmonic mechanism. Arising from Coulomb attraction of e-h pairs to their electrostatic images in metallic nanoparticles, this mechanism produces large carrier concentrations near the nanoparticle. A strong inhomogeneity in the carrier distribution and an increase in the internal quantum efficiency are predicted. In our experiments, this manifests as emission enhancement in InGaN quantum well (QW) radiating in the near-UV region. This fundamental mechanism provides a new perspective for improving the efficiency of broadband light emitters.
Low frequency hybrid instability in quantum magneto semiconductor plasmas
NASA Astrophysics Data System (ADS)
Rasheed, A.; Jamil, M.; Areeb, F.; Siddique, M.; Salimullah, M.
2016-05-01
The excitation of electrostatic, comparatively low frequency, lower-hybrid waves (LHWs) induced by electron beam in semiconductor plasma is examined using a quantum hydrodynamic model. Various quantum effects are taken into account including the recoil effect, Fermi degenerate pressure, and exchange-correlation potential. The effects of different parameters like the electron-to-hole number density ratio, scaled electron beam temperature and streaming speed, propagation angle and cyclotron frequency over the growth, and phase speed of LHWs are investigated. It is noticed that an increase in the electron number density and streaming speed enhance the instability. Similar effects are observed on decreasing the propagation angle with magnetic field.
Optimization of semiconductor quantum devices by evolutionary search.
Goldoni, G; Rossi, F
2000-07-15
A novel simulation strategy is proposed for searching for semiconductor quantum devices that are optimized with respect to required performances. Based on evolutionary programming, a technique that implements the paradigm of genetic algorithms in more-complex data structures than strings of bits, the proposed algorithm is able to deal with quantum devices with preset nontrivial constraints (e.g., transition energies, geometric requirements). Therefore our approach allows for automatic design, thus avoiding costly by-hand optimizations. We demonstrate the advantages of the proposed algorithm through a relevant and nontrivial application, the optimization of a second-harmonic-generation device working in resonance conditions. PMID:18064261
Quantum Spin Hall Effect in Inverted Type II Semiconductors
Liu, Chaoxing; Hughes, Taylor L.; Qi, Xiao-Liang; Wang, Kang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19
The quantum spin Hall (QSH) state is a topologically non-trivial state of quantum matter which preserves time-reversal symmetry; it has an energy gap in the bulk, but topologically robust gapless states at the edge. Recently, this novel effect has been predicted and observed in HgTe quantum wells. In this work we predict a similar effect arising in Type-II semiconductor quantum wells made from InAs/GaSb/AlSb. Because of a rare band alignment the quantum well band structure exhibits an 'inverted' phase similar to CdTe/HgTe quantum wells, which is a QSH state when the Fermi level lies inside the gap. Due to the asymmetric structure of this quantum well, the effects of inversion symmetry breaking and inter-layer charge transfer are essential. By standard self-consistent calculations, we show that the QSH state persists when these corrections are included, and a quantum phase transition between the normal insulator and the QSH phase can be electrically tuned by the gate voltage.
Quantum information processing with electronic and nuclear spins in semiconductors
NASA Astrophysics Data System (ADS)
Klimov, Paul Victor
Traditional electronic and communication devices operate by processing binary information encoded as bits. Such digital devices have led to the most advanced technologies that we encounter in our everyday lives and they influence virtually every aspect of our society. Nonetheless, there exists a much richer way to encode and process information. By encoding information in quantum mechanical states as qubits, phenomena such as coherence and entanglement can be harnessed to execute tasks that are intractable to digital devices. Under this paradigm, it should be possible to realize quantum computers, quantum communication networks and quantum sensors that outperform their classical counterparts. The electronic spin states of color-center defects in the semiconductor silicon carbide have recently emerged as promising qubit candidates. They have long-lived quantum coherence up to room temperature, they can be controlled with mature magnetic resonance techniques, and they have a built-in optical interface operating near the telecommunication bands. In this thesis I will present two of our contributions to this field. The first is the electric-field control of electron spin qubits. This development lays foundation for quantum electronics that operate via electrical gating, much like traditional electronics. The second is the universal control and entanglement of electron and nuclear spin qubits in an ensemble under ambient conditions. This development lays foundation for quantum devices that have a built-in redundancy and can operate in real-world conditions. Both developments represent important steps towards practical quantum devices in an electronic grade material.
Nonlinear intersubband optical absorption in a semiconductor quantum well
NASA Technical Reports Server (NTRS)
Ahn, D.; Chuang, S. L.
1987-01-01
The third-order nonlinear intersubband absorption in a semiconductor quantum well is studied theoretically using the density matrix formalism including intrasubband relaxation. It is shown that the peak absorption is reduced by half for an optical intensity 1 MW/sq cm for the well size L = 126.5 A with 3.0 x 10 to the 16th/cu cm electrons.
Spin dynamics of an individual Cr atom in a semiconductor quantum dot under optical excitation
NASA Astrophysics Data System (ADS)
Lafuente-Sampietro, A.; Utsumi, H.; Boukari, H.; Kuroda, S.; Besombes, L.
2016-08-01
We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Cr interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.
Peptide linkers for the assembly of semiconductor quantum dot bioconjugates
NASA Astrophysics Data System (ADS)
Boeneman, Kelly; Mei, Bing C.; Deschamps, Jeffrey R.; Delehanty, James B.; Mattoussi, Hedi; Medintz, Igor
2009-02-01
The use of semiconductor luminescent quantum dots for the labeling of biomolecules is rapidly expanding, however it still requires facile methods to attach functional globular proteins to biologically optimized quantum dots. Here we discuss the development of controlled variable length peptidyl linkers to attach biomolecules to poly(ethylene) glycol (PEG) coated quantum dots for both in vitro and in vivo applications. The peptides chosen, β-sheets and alpha helices are appended to polyhistidine sequences and this allows for control of the ratio of peptide bioconjugated to QD and the distance from QD to the biomolecule. Recombinant DNA engineering, bacterial peptide expression and Ni-NTA purification of histidine labeled peptides are utilized to create the linkers. Peptide length is confirmed by in vitro fluorescent resonance energy transfer (FRET).
Semiconductor-inspired design principles for superconducting quantum computing.
Shim, Yun-Pil; Tahan, Charles
2016-01-01
Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions. PMID:26983379
Semiconductor-inspired design principles for superconducting quantum computing
Shim, Yun-Pil; Tahan, Charles
2016-01-01
Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions. PMID:26983379
Semiconductor-inspired design principles for superconducting quantum computing
NASA Astrophysics Data System (ADS)
Shim, Yun-Pil; Tahan, Charles
2016-03-01
Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.
Quantum limit for nuclear spin polarization in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Hildmann, Julia; Kavousanaki, Eleftheria; Burkard, Guido; Ribeiro, Hugo
2014-05-01
A recent experiment [E. A. Chekhovich et al., Phys. Rev. Lett. 104, 066804 (2010), 10.1103/PhysRevLett.104.066804] has demonstrated that high nuclear spin polarization can be achieved in self-assembled quantum dots by exploiting an optically forbidden transition between a heavy hole and a trion state. However, a fully polarized state is not achieved as expected from a classical rate equation. Here, we theoretically investigate this problem with the help of a quantum master equation and we demonstrate that a fully polarized state cannot be achieved due to formation of a nuclear dark state. Moreover, we show that the maximal degree of polarization depends on structural properties of the quantum dot.
Quantum effects on compressional Alfven waves in compensated semiconductors
Amin, M. R.
2015-03-15
Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linear and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.
Molecular Spintronics: Wiring Spin Coherence between Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Ouyang, Min
2004-03-01
Semiconductor quantum dots (QDs) are attractive candidates for scalable solid state implementations of quantum information processing based on electron spin states, where a crucial requirement for practical devices is to have efficient and tunable spin coupling between them. We focus on recent femtosecond time-resolved Faraday rotation studies of self-assembled multilayer spintronic devices based on colloidal quantum dots bridged by conjugated molecules (M. Ouyang et al., Science 301, 1074 (2003)). The data reveal the instantaneous transfer of spin coherence through conjugated molecular bridges spanning quantum dots of different size over a broad range of temperature. The room temperature spin transfer efficiency exceeds 20%, which approximately doubles the value measured at T=4.5K. A molecular π-orbital mediated spin coherence transfer mechanism is proposed to provide a qualitative insight into the experimental observations, suggesting a correlation between the stereochemistry of molecules and the transfer process. The results show that conjugated molecules can be used not only as physical links for the assembly of functional networks, but also as efficient channels for shuttling quantum information. This class of structures may be useful as two-spin quantum devices operating at ambient temperatures and may offer promising opportunities for future versatile molecule-based spintronic technologies.
Phonon induced pure dephasing process of excitonic state in colloidal semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Huang, Tongyun; Han, Peng; Wang, Xinke; Feng, Shengfei; Sun, Wenfeng; Ye, Jiasheng; Zhang, Yan
2016-04-01
We present a theoretical study on the pure dephasing process of colloidal semiconductor quantum dots induced by lattice vibrations using continuum model calculations. By solving the time dependent Liouville-von Neumann equation, we present the ultrafast Rabi oscillations between excitonic state and virtual state via exciton-phonon interaction and obtain the pure dephasing time from the fast decayed envelope of the Rabi oscillations. The interaction between exciton and longitudinal optical phonon vibration is found to dominate the pure dephasing process and the dephasing time increases nonlinearly with the reduction of exciton-phonon coupling strength. We further find that the pure dephasing time of large quantum dots is more sensitive to temperature than small quantum dots.
Uniform Doping in Quantum-Dots-Based Dilute Magnetic Semiconductor.
Saha, Avijit; Shetty, Amitha; Pavan, A R; Chattopadhyay, Soma; Shibata, Tomohiro; Viswanatha, Ranjani
2016-07-01
Effective manipulation of magnetic spin within a semiconductor leading to a search for ferromagnets with semiconducting properties has evolved into an important field of dilute magnetic semiconductors (DMS). Although a lot of research is focused on understanding the still controversial origin of magnetism, efforts are also underway to develop new materials with higher magnetic temperatures for spintronics applications. However, so far, efforts toward quantum-dots(QDs)-based DMS materials are plagued with problems of phase separation, leading to nonuniform distribution of dopant ions. In this work, we have developed a strategy to synthesize highly crystalline, single-domain DMS system starting from a small magnetic core and allowing it to diffuse uniformly inside a thick CdS semiconductor matrix and achieve DMS QDs. X-ray absorption fine structure (XAFS) spectroscopy and energy-dispersive X-ray spectroscopy-scanning transmission electron microscopy (STEM-EDX) indicates the homogeneous distribution of magnetic impurities inside the semiconductor QDs leading to superior magnetic property. Further, the versatility of this technique was demonstrated by obtaining ultra large particles (∼60 nm) with uniform doping concentration as well as demonstrating the high quality magnetic response. PMID:27295453
Hot electron dynamics at semiconductor surfaces: Implications for quantum dot photovoltaics
NASA Astrophysics Data System (ADS)
Tisdale, William A., III
Finding a viable supply of clean, renewable energy is one of the most daunting challenges facing the world today. Solar cells have had limited impact in meeting this challenge because of their high cost and low power conversion efficiencies. Semiconductor nanocrystals, or quantum dots, are promising materials for use in novel solar cells because they can be processed with potentially inexpensive solution-based techniques and because they are predicted to have novel optoelectronic properties that could enable the realization of ultra-efficient solar power converters. However, there is a lack of fundamental understanding regarding the behavior of highly-excited, or "hot," charge carriers near quantum-dot and semiconductor interfaces, which is of paramount importance to the rational design of high-efficiency devices. The elucidation of these ultrafast hot electron dynamics is the central aim of this Dissertation. I present a theoretical framework for treating the electronic interactions between quantum dots and bulk semiconductor surfaces and propose a novel experimental technique, time-resolved surface second harmonic generation (TR-SHG), for probing these interactions. I then describe a series of experimental investigations into hot electron dynamics in specific quantum-dot/semiconductor systems. A two-photon photoelectron spectroscopy (2PPE) study of the technologically-relevant ZnO(1010) surface reveals ultrafast (sub-30fs) cooling of hot electrons in the bulk conduction band, which is due to strong electron-phonon coupling in this highly polar material. The presence of a continuum of defect states near the conduction band edge results in Fermi-level pinning and upward (n-type) band-bending at the (1010) surface and provides an alternate route for electronic relaxation. In monolayer films of colloidal PbSe quantum dots, chemical treatment with either hydrazine or 1,2-ethanedithiol results in strong and tunable electronic coupling between neighboring quantum dots
Quantum random number generator based on photonic emission in semiconductors.
Stipcević, M; Rogina, B Medved
2007-04-01
We report upon the realization of a novel fast nondeterministic random number generator whose randomness relies on the intrinsic randomness of the quantum physical processes of photonic emission in semiconductors and subsequent detection by the photoelectric effect. Timing information of detected photons is used to generate binary random digits-bits. The bit extraction method based on the restartable clock method theoretically eliminates both bias and autocorrelation while reaching efficiency of almost 0.5 bits per random event. A prototype has been built and statistically tested. PMID:17477690
Activation of molecular catalysts using semiconductor quantum dots
Meyer, Thomas J.; Sykora, Milan; Klimov, Victor I.
2011-10-04
Photocatalytic materials based on coupling of semiconductor nanocrystalline quantum dots (NQD) and molecular catalysts. These materials have capability to drive or catalyze non-spontaneous chemical reactions in the presence of visible radiation, ultraviolet radiation, or both. The NQD functions in these materials as a light absorber and charge generator. Following light absorption, the NQD activates a molecular catalyst adsorbed on the surface of the NQD via transfer of one or more charges (either electrons or electron-holes) from the NQD to the molecular catalyst. The activated molecular catalyst can then drive a chemical reaction. A photoelectrolytic device that includes such photocatalytic materials is also described.
Potential energy surface of excited semiconductors: Graphene quantum dot and BODIPY
NASA Astrophysics Data System (ADS)
Colherinhas, Guilherme; Fileti, Eudes Eterno; Chaban, Vitaly V.
2016-08-01
Binding energy (BE) is an important descriptor in chemistry, which determines thermodynamics and phase behavior of a given substance. BE between two molecules is not directly accessible from the experiment. It has to be reconstructed from cohesive energies, vaporization heats, etc. We report BE for the excited states of two semiconductor molecules - boron-dipyrromethene (BODIPY) and graphene quantum dot (GQD) - with water. We show, for the first time, that excitation increases BE twofold at an optimal separation (energy minimum position), whereas higher separations lead to higher differences. Interestingly, the effects of excitation are similar irrespective of the dominant binding interactions (van der Waals or electrostatic) in the complex. This new knowledge is important for simulations of the excited semiconductors by simplified interaction functions.
Polaron mass of charge carriers in semiconductor quantum wells
Maslov, A. Yu. Proshina, O. V.
2015-10-15
A theory of the interaction of charge carriers with optical phonons in a quantum well is developed with consideration for interface optical phonons. The dependence of the polaron effective mass on the quantum-well dimensions and dielectric characteristics of barriers is analyzed in detail. It is shown that, in narrow quantum wells, a quasi-two-dimensional polaron can be formed. In this case, however, the interaction parameters are defined by the charge-carrier effective mass in the quantum well and by the frequencies of interface optical phonons. If barriers are made of a nonpolar material, the polaron effective mass depends on the quantum-well width. As the quantum-well width is increased, a new mechanism of enhancement of the electron–phonon interaction develops. The mechanism is implemented, if the optical phonon energy is equal to the energy of one of the electronic transitions. This condition yields an unsteady dependence of the polaron effective mass on the quantum-well width.
Emission energy control of semiconductor quantum dots using phase change material
NASA Astrophysics Data System (ADS)
Kanazawa, Shohei; Sato, Yu; Yamamura, Ariyoshi; Saiki, Toshiharu
2015-03-01
Semiconductor quantum dots have paid much attention as it is a promising candidate for quantum, optical devices, such as quantum computer and quantum dot laser. We propose a local emission energy control method of semiconductor quantum dots using applying strain by volume expansion of phase change material. Phase change material can change its phase crystalline to amorphous, and the volume expand by its phase change. This method can control energy shift direction and amount by amorphous religion and depth. Using this method, we matched emission energy of two InAs/InP quantum dots. This achievement can connect to observing superradiance phenomenon and quantum dot coupling effect.
INTERACTING QUANTUM SPIN CHAINS
ZHELUDEV,A.
2001-09-09
A brief review of recent advances in neutron scattering studies of low-dimensional quantum magnets is followed by a particular example. The separation of single-particle and continuum states in the weakly-coupled S = l/2 chains system BaCu{sub 2}Si{sub 2}O{sub 7} is described in some detail.
Optical Control of Semiconductor Quantum Dot Spin Qubits with Microcavity Exciton-Polaritons
NASA Astrophysics Data System (ADS)
Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa
2015-03-01
Topological surface codes demand the least stringent threshold conditions and are most promising for implementing large quantum algorithms. Based on the resource requirements to reach fault tolerance, we develop a hardware platform for large scale quantum computation with semiconductor quantum dot (QD) electron spin qubits. The current proposals for implementation of two-qubit gates and quantum non demolition (QND) readout in a QuDOS (Quantum Dots with Optically Controlled Spins) architecture suffer from large error rates. In our scheme, the optical manipulation of the QD spin qubits is carried out using their Coulomb exchange interaction with optically excited, spin-polarized, laterally confined quantum well (LcQW) exciton-polaritons. The small mass of polaritons protects them from interaction with their solid-state environment (phonons) and enables strong coupling between spin qubits separated by a few microns. Furthermore, the excitation manifold of the QD is well separated from that of the LcQW polaritons, preventing a spin-flip event during readout. We will outline schemes for implementing fast, high-fidelity, single qubit gate, two-qubit geometric phase gate and single-shot QND measurement and analyze important decoherence mechanisms. The work being presented was carried out at Stanford University. Currently the author is at University of Sherbrooke, Canada.
Strong coupling among semiconductor quantum dots induced by a metal nanoparticle
2012-01-01
Based on cavity quantum electrodynamics (QED), we investigate the light-matter interaction between surface plasmon polaritons (SPP) in a metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in an SQD-MNP coupled system. We propose a quantum transformation method to strongly reveal the exciton energy shift and the modified decay rate of SQD as well as the coupling among SQDs. To obtain these parameters, a simple system composed of an SQD, an MNP, and a weak signal light is designed. Furthermore, we consider a model to demonstrate the coupling of two SQDs mediated by SPP field under two cases. It is shown that two SQDs can be entangled in the presence of MNP. A high concurrence can be achieved, which is the best evidence that the coupling among SQDs induced by SPP field in MNP. This scheme may have the potential applications in all-optical plasmon-enhanced nanoscale devices. PMID:22297024
Monte Carlo Simulation of Quantum Transport in Semiconductors Using Wigner Paths
NASA Astrophysics Data System (ADS)
Bertoni, A.; García-García, J.; Bordone, P.; Brunetti, R.; Jacoboni, C.
Charge transport in mesoscopic semiconductor systems must be analyzed in terms of a quantum theory since nowadays typical dimensions of the physical structures are comparable with the electron coherence length. Theoretical approaches based on fully quantum mechanical grounds have been developed in the last decade with the purpose of analyzing the quantum electron-phonon interaction in electron transport. The Wigner function (WF) formalism is particularly suitable for the analysis of mesoscopic structures owing to its phase-space formulation that allows a natural treatment of space dependent problems with given boundary conditions. The Hamiltonian describing the system is [1] {H}=-frac{hbar^2}{2m}nabla^2 +sum_qb... ...iqr} ) +V(r) +eE\\cdot r
Semiconductor quantum dot scintillation under gamma-ray irradiation
Letant, S E; Wang, T
2006-08-23
We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma-ray irradiation, and compare the energy resolution of the 59 keV line of Americium 241 obtained with our quantum dot-glass nanocomposite material to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon transport models. These results demonstrate the potential of quantum dots for room-temperature gamma-ray detection, which has applications in medical imaging, environmental monitoring, as well as security and defense. Present technology in gamma radiation detection suffers from flexibility and scalability issues. For example, bulk Germanium provides fine energy resolution (0.2% energy resolution at 1.33 MeV) but requires operation at liquid nitrogen temperature. On the other hand, Cadmium-Zinc-Telluride is a good room temperature detector ( 1% at 662 keV) but the size of the crystals that can be grown is limited to a few centimeters in each direction. Finally, the most commonly used scintillator, Sodium Iodide (NaI), can be grown as large crystals but suffers from a lack of energy resolution (7% energy resolution at 662 keV). Recent advancements in nanotechnology6-10 have provided the possibility of controlling materials synthesis at the molecular level. Both morphology and chemical composition can now be manipulated, leading to radically new material properties due to a combination of quantum confinement and surface to volume ratio effects. One of the main consequences of reducing the size of semiconductors down to nanometer dimensions is to increase the energy band gap, leading to visible luminescence, which suggests that these materials could be used as scintillators. The visible band gap of quantum dots would also ensure both efficient photon counting
Stimulated Brillouin scattering of laser radiation in a piezoelectric semiconductor: Quantum effect
Uzma, Ch.; Zeba, I.; Shah, H. A.; Salimullah, M.
2009-01-01
Using quantum-hydrodynamic model, the phenomenon of the stimulated Brillouin scattering of a laser radiation in an unmagnetized piezoelectric semiconductor has been examined in detail. It is noticed that the Bohm potential in the electron dynamics of the semiconductor plasma enhances drastically the growth rate of the stimulated Brillouin scattering at higher values of the electron number density of the semiconductor plasma and the wave number of the electron-acoustic wave in the semiconductor.
Dielectric confinement influenced screened Coulomb potential for a semiconductor quantum wire
NASA Astrophysics Data System (ADS)
Aharonyan, K. H.; Margaryan, N. B.
2016-01-01
A formalism of the Thomas-Fermi method has been applied for studying the screening effect due to quasi-one-dimensional electron gas in a semiconductor cylindrical quantum wire embedded in the barrier environment. With taking into account of strongly low dielectric properties of the barrier material, an applicability of the quantum wire effective interaction potential of the confined charge carriers has been revealed. Both screened quasi- one-dimensional interaction potential and effective screening length analytical expressions are derived in the first time. It is shown that in the long wavelength moderate limit dielectric confinement effect enhances strength of the screening potential depending on the both radius of the wire and effective screening length, whereas in the long wavelength strong limit the screening potential solely is determined by barrier environment dielectric properties.
Quantum control and process tomography of a semiconductor quantum dot hybrid qubit
NASA Astrophysics Data System (ADS)
Kim, Dohun; Shi, Zhan; Simmons, C. B.; Ward, D. R.; Prance, J. R.; Koh, Teck Seng; Gamble, John King; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, Mark A.
2014-07-01
The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).
Theory of quantum control of spin-photon dynamics and spin decoherence in semiconductors
NASA Astrophysics Data System (ADS)
Yao, Wang
Single electron spin in a semiconductor quantum dot (QD) and single photon wavepacket propagating in an optical waveguide are investigated as carriers of quantum bit (qubit) for information processing. Cavity quantum electrodynamics of the coupled system composed of charged QD, microcavity and waveguide provides a quantum interface for the interplay of stationary spin qubits and flying photon qubits via cavity assisted optical control. This interface forms the basis for a wide range of essential functions of a quantum network, including transferring, swapping, and entangling qubits at distributed quantum nodes as well as a deterministic source and an efficient detector of a single photon wavepacket with arbitrarily specified shape. The cavity assisted optical process also made possible ultrafast initialization and QND readout of the spin qubit in QD. In addition, the strong optical nonlinearity of dot-cavity-waveguide coupled system enables phase gate and entanglement operation for flying single photon qubits in waveguides. The coherence of the electron spin is the wellspring of these quantum applications being investigated. At low temperature and strong magnetic field, the dominant cause of electron spin decoherence is the coupling with the interacting lattice nuclear spins. We present a quantum solution to the coupled dynamics of the electron with the nuclear spin bath. The decoherence is treated in terms of quantum entanglement of the electron with the nuclear pair-flip excitations driven by the various nuclear interactions. A novel nuclear interaction, mediated by virtue spin-flips of the single electron, plays an important role in single spin free-induction decay (FID). The spin echo not only refocuses the dephasing by inhomogeneous broadening in ensemble dynamics but also eliminates the decoherence by electron-mediated nuclear interaction. Thus, the decoherence times for single spin FID and ensemble spin echo are significantly different. The quantum theory of
QCAD simulation and optimization of semiconductor double quantum dots
Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina; Muller, Richard Partain; Salinger, Andrew Gerhard; Young, Ralph Watson
2013-12-01
We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltages in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design
Optical pump-probe measurements of local nuclear spin coherence in semiconductor quantum wells.
Sanada, H; Kondo, Y; Matsuzaka, S; Morita, K; Hu, C Y; Ohno, Y; Ohno, H
2006-02-17
We demonstrate local manipulation and detection of nuclear spin coherence in semiconductor quantum wells by an optical pump-probe technique combined with pulse rf NMR. The Larmor precession of photoexcited electron spins is monitored by time-resolved Kerr rotation (TRKR) as a measure of nuclear magnetic field. Under the irradiation of resonant pulsed rf magnetic fields, Rabi oscillations of nuclear spins are traced by TRKR signals. The intrinsic coherence time evaluated by a spin-echo technique reveals the dependence on the orientation of the magnetic field with respect to the crystalline axis as expected by the nearest neighbor dipole-dipole interaction. PMID:16606048
Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells.
Sarkar, Susanta; Guo, Yan; Wang, Hailin
2006-04-01
We report the experimental realization of a tunable optical delay by exploiting unique incoherent nonlinear optical processes in semiconductors. The tunable optical delay takes advantage of the strong Coulomb interactions between excitons and free carriers and uses optical injection of free carriers to broaden and bleach an exciton absorption resonance. Fractional delay exceeding 200% has been obtained for an 8 ps optical pulse propagating near the heavy-hole excitonic transition in a GaAs quantum well structure. Tunable optical delay based on optical injection of free carriers avoids strong absorption of the pump beam and is also robust against variations in the frequency of the pump beam. PMID:19516421
Electron transport and dephasing in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Huibers, Andrew Gerrit A.
At low temperatures, electrons in semiconductors can be phase coherent over distances exceeding tens of microns and are sufficiently monochromatic that a variety of interesting quantum interference phenomena can be observed and manipulated. This work discusses electron transport measurements through cavities (quantum dots) formed by laterally confining electrons in the two-dimensional sub-band of a GaAs/AlGaAs heterojunction. Metal gates fabricated using e-beam lithography enable fine control of the cavity shape as well as the leads which connect the dot cavity to source and drain reservoirs. Quantum dots can be modeled by treating the devices as chaotic scatterers. Predictions of this theoretical description are found to be in good quantitative agreement with experimental measurements of full conductance distributions at different temperatures. Weak localization, the suppression of conductance due to phase-coherent backscattering at zero magnetic field, is used to measure dephasing times in the system. Mechanisms responsible for dephasing, including electron-electron scattering and Nyquist phase relaxation, are investigated by studying the loss of phase coherence as a function of temperature. Coupling of external microwave fields to the device is also studied to shed light on the unexpected saturation of dephasing that is observed below an electron temperature of 100 mK. The effect of external fields in the present experiment is explained in terms of Joule heating from an ac bias.
Multi-band Bloch equations and gain spectra of highly excited II-VI semiconductor quantum wells
Girndt, A.; Jahnke, F.; Knorr, A.; Koch, S.W.; Chow, W.W.
1997-04-21
Quasi-equilibrium excitation dependent optical probe spectra of II-VI semiconductor quantum wells at room temperature are investigated within the framework of multi-band semiconductor Bloch equations. The calculations include correlation effects beyond the Hartree-Fock level which describe dephasing, interband Coulomb correlations and band-gap renormalization in second Born approximation. In addition to the carrier-Coulomb interaction, the influence of carrier-phonon scattering and inhomogeneous broadening is considered. The explicit calculation of single particle properties like band structure and dipole matrix elements using k {center_dot} p theory makes it possible to investigate various II-VI material combinations. Numerical results are presented for CdZnSe/ZnSe and CdZnSe/MnZnSSe semiconductor quantum-well systems.
Peptide-mediated cellular delivery of semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Gemmill, Kelly Boeneman; Muttenthaler, Markus; Delehanty, James; Deschamps, Jeff; Susumu, Kimihiro; Stewart, Michael; Dawson, Philip; Huston, Alan; Medintz, Igor
2013-05-01
CdSe/ZnS semiconductor quantum dots (QDs) are ideal materials for biological sensing and cellular imaging applications due to their superior photophysical properties in comparison to fluorescent proteins or dyes and their ease of conjugation to biological materials. We have previously developed a number of in vitro FRET based biosensors in the laboratory for detection of proteases and biological and chemical agents. We would like to expand these biosensing capabilities into cellular systems, requiring development of QD cellular delivery techniques. Peptide mediated cellular delivery of QDs is ideal as peptides are small, easily conjugated to QDs, easily manipulated and synthesized, and can be designed with "handles" for further chemical conjugation with other cargo. Here we discuss four cell delivery peptides that facilitate QD uptake in live cells. Understanding these peptides will help us design better nanoparticle cellular delivery systems and advance our capabilities for in vivo biosensing.
Lissajous Rocking Ratchet: Realization in a Semiconductor Quantum Dot
NASA Astrophysics Data System (ADS)
Platonov, Sergey; Kästner, Bernd; Schumacher, Hans W.; Kohler, Sigmund; Ludwig, Stefan
2015-09-01
Breaking time-reversal symmetry (TRS) in the absence of a net bias can give rise to directed steady-state nonequilibrium transport phenomena such as ratchet effects. Here we present, theoretically and experimentally, the concept of a Lissajous rocking ratchet based on breaking TRS. Our system is a semiconductor quantum dot with periodically modulated dot-lead tunnel barriers. Broken TRS gives rise to single electron tunneling current. Its direction is fully controlled by exploring frequency and phase relations between the two barrier modulations. The concept of Lissajous ratchets can be realized in a large variety of different systems, including nanoelectrical, nanoelectromechanical, or superconducting circuits. It promises applications based on a detailed on-chip comparison of radio-frequency signals.
Development of segmented semiconductor arrays for quantum imaging
NASA Astrophysics Data System (ADS)
Mikulec, B.; Medipix2 Collaboration
2003-09-01
The field of pixel detectors has grown strongly in recent years through progress in CMOS technology, which permits many hundreds of transistors to be implemented in an area of 50-200 μm 2. Pulse processing electronics with noise of the order of 100 e - RMS permits to distinguish photons of a few kilo-electron-Volts from background noise. Techniques are under development, which should allow single chip systems (area ˜1 cm 2) to be extended to larger areas. This paper gives an introduction into the concept of quantum imaging using direct conversion in segmented semiconductor arrays. An overview of projects from this domain using strip, pad and in particular hybrid pixel detectors will be presented. One of these projects, the Medipix project, is described in more detail. The effect of different correction methods like threshold adjustment and flat field correction is illustrated and new measurement results and images are presented.
Injection locking of a semiconductor double-quantum-dot micromaser
NASA Astrophysics Data System (ADS)
Liu, Y.-Y.; Stehlik, J.; Gullans, M. J.; Taylor, J. M.; Petta, J. R.
2015-11-01
The semiconductor double-quantum-dot (DQD) micromaser generates photons through single-electron tunneling events. Charge noise couples to the DQD energy levels, resulting in a maser linewidth that is 100 times larger than the Schawlow-Townes prediction. We demonstrate linewidth narrowing by more than a factor of 10 using injection locking. The injection locking range is measured as a function of input power and is shown to be in excellent agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models.
Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications
NASA Astrophysics Data System (ADS)
Kairdolf, Brad A.; Smith, Andrew M.; Stokes, Todd H.; Wang, May D.; Young, Andrew N.; Nie, Shuming
2013-06-01
Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.
Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications
Kairdolf, Brad A.; Smith, Andrew M.; Stokes, Todd H.; Wang, May D.; Young, Andrew N.; Nie, Shuming
2013-01-01
Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future. PMID:23527547
Semiconductor quantum dots for bioimaging and biodiagnostic applications.
Kairdolf, Brad A; Smith, Andrew M; Stokes, Todd H; Wang, May D; Young, Andrew N; Nie, Shuming
2013-01-01
Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future. PMID:23527547
Few-body properties of interacting spins in III-V semiconductors
NASA Astrophysics Data System (ADS)
Woodworth, Ryan
We perform theoretical analyses of several novel device applications which make use of the distinctive electronic and optical properties of III-V semiconductors. Electron spins in semiconductor quantum dots are a promising candidate for the physical realization of a solid-state quantum computer. Whenever three or more spins interact simultaneously, the system's full Hamiltonian is found to include nonlinear interactions that significantly influence its dynamics in experimentally relevant parameter regimes. We consider the implications of these results for the proposed implementations of known quantum algorithms; in particular, we describe a method for circumventing the four-body effects in an encoded system (four spins per logical bit) by the appropriate tuning of material parameters. We calculate the spin coherence lifetime of a conduction electron in a semiconductor due to exchange scattering from neutral donors. The average lifetime is computed in two and in three dimensions using the Born approximation. We find that, for realistic values of the impurity concentrations, these lifetimes are comparable to those of spin decoherence mechanisms commonly ascribed to experimentally observed lifetimes. We also develop a numerical model for charge diffusion in a GaAs heterostructure laser. We construct and solve rate equations for conduction electrons coupled to a single optical cavity mode in a microdisk. Our results extend previous theoretical approaches to diffusion and are consistent with applicable experiments.
An impedance analysis of double-stream interaction in semiconductors
NASA Technical Reports Server (NTRS)
Chen, P. W.; Durney, C. H.
1972-01-01
The electromagnetic waves propagating through a drifting semiconductor plasma are studied from a macroscopic point of view in terms of double-stream interaction. The possible existing waves (helicon waves, longitudinal waves, ordinary waves, and pseudolongitudinal waves) which depend upon the orientation of the dc external magnetic field are derived. A powerful impedance concept is introduced to investigate the wave behavior of longitudinal (space charge) waves or pseudolongitudinal waves in a semiconductor plasma. The impedances due to one- and two-carrier stream interactions were calculated theoretically.
Nonequilibrium thermal effects on exciton time correlations in coupled semiconductor quantum dots
Castillo, J. C.; Rodríguez, F. J.; Quiroga, L.
2013-12-04
Theoretical guides to test 'macroscopic realism' in solid-state systems under quantum control are highly desirable. Here, we report on the evolution of a Leggett-Garg inequality (LGI), a combination of two-time correlations, in an out-of-equilibrium set up consisting of two interacting excitons confined in separate semiconductor quantum dots which are coupled to independent baths at different temperatures (T{sub 1} ≠ T{sub 2}). In a Markovian steady-state situation we found a rich variety of dynamical behaviors in different sectors of the average temperature (T{sub M} = (T{sub 1}+T{sub 2})/2) vs. coupling strength to the reservoirs (Γ) space parameter. For high T{sub M} and Γ values the LGI is not violated, as expected. However, by decreasing T{sub M} or Γ a sector of parameters appears where the LGI is violated at thermal equilibrium (T{sub 1} = T{sub 2}) and the violation starts decreasing when the system is moved out of the equilibrium. Surprisingly, at even lower T{sub M} values, for any Γ, there is an enhancement of the LGI violation by exposing the system to a temperature gradient, i.e. quantum correlations increase in a nonequilibrium thermal situation. Results on LGI violations in a steady-state regime are compared with other non-locality-dominated quantum correlation measurements, such as concurrence and quantum discord, between the two excitons under similar temperature gradients.
Coherent quantum depletion of an interacting atom condensate
Kira, M.
2015-01-01
Sufficiently strong interactions promote coherent quantum transitions in spite of thermalization and losses, which are the adversaries of delicate effects such as reversibility and correlations. In atomic Bose–Einstein condensates (BECs), strong atom–atom interactions can eject atoms from the BEC to the normal component, yielding quantum depletion instead of temperature depletion. A recent experiment has already been verified to overcome losses. Here I show that it also achieves coherent quantum-depletion dynamics in a BEC swept fast enough from weak to strong atom–atom interactions. The elementary coherent process first excites the normal component into a liquid state that evolves into a spherical shell state, where the atom occupation peaks at a finite momentum to shield 50% of the BEC atoms from annihilation. The identified coherent processes resemble ultrafast semiconductor excitations expanding the scope of BEC explorations to many-body non-equilibrium studies. PMID:25767044
Coherent quantum depletion of an interacting atom condensate.
Kira, M
2015-01-01
Sufficiently strong interactions promote coherent quantum transitions in spite of thermalization and losses, which are the adversaries of delicate effects such as reversibility and correlations. In atomic Bose-Einstein condensates (BECs), strong atom-atom interactions can eject atoms from the BEC to the normal component, yielding quantum depletion instead of temperature depletion. A recent experiment has already been verified to overcome losses. Here I show that it also achieves coherent quantum-depletion dynamics in a BEC swept fast enough from weak to strong atom-atom interactions. The elementary coherent process first excites the normal component into a liquid state that evolves into a spherical shell state, where the atom occupation peaks at a finite momentum to shield 50% of the BEC atoms from annihilation. The identified coherent processes resemble ultrafast semiconductor excitations expanding the scope of BEC explorations to many-body non-equilibrium studies. PMID:25767044
Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots
Herzog, Bastian Owschimikow, Nina; Kaptan, Yücel; Kolarczik, Mirco; Switaiski, Thomas; Woggon, Ulrike; Schulze, Jan-Hindrik; Rosales, Ricardo; Strittmatter, André; Bimberg, Dieter; Pohl, Udo W.
2015-11-16
Submonolayer quantum dots as active medium in opto-electronic devices promise to combine the high density of states of quantum wells with the fast recovery dynamics of self-assembled quantum dots. We investigate the gain and phase recovery dynamics of a semiconductor optical amplifier based on InAs submonolayer quantum dots in the regime of linear operation by one- and two-color heterodyne pump-probe spectroscopy. We find an as fast recovery dynamics as for quantum dot-in-a-well structures, reaching 2 ps at moderate injection currents. The effective quantum well embedding the submonolayer quantum dots acts as a fast and efficient carrier reservoir.
Chemla, D.S.
1993-06-30
This article reviews recent investigations of nonlinear optical processes in semiconductors. Section II discusses theory of coherent wave mixing in semiconductors, with emphasis on resonant excitation with only one exciton state. Section III reviews recent experimental investigations of amplitude and phase of coherent wave-mixing resonant with quasi-2d excitons in GaAs quantum wells.
Bouchard, A.M.
1994-07-27
This report discusses the following topics: Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices; solvable dynamical model of an electron in a one-dimensional aperiodic lattice subject to a uniform electric field; and quantum dynamical phenomena of electrons in aperiodic semiconductor superlattices.
Hybrid em wave - polar semiconductor interaction: A polaronic study
Paliwal, Ayushi Dubey, Swati; Ghosh, S.
2015-07-31
Present paper considers incidence of a most realistic hybrid pump wave on a weakly polar semiconductor having a very small coupling constant. Possibility of optical parametric interaction has been explored in the presence of an external transverse magnetic field. The effect of doping concentrations and transverse magnetostatic field on threshold characteristics of optical parametric interaction in polar semiconductor plasma has been studied, using hydrodynamic model of semiconductors, in the far infrared regime. Numerical estimations have been carried out by using data of weakly polar III-V GaAs semiconductor and influence of control parameters on electron-LO phonon interaction has been analyzed. A particular range of physical parameters is found to be suitable for minimum threshold. The choice of nonlinear medium and favorable range of operating parameters are crucial aspects in design and fabrication of parametric amplifiers and oscillators. The hybrid mode of the pump is found to be favorable for the onset of the said process and realization of a low cost amplifier.
Antiferromagnetic order in a semiconductor quantum well with spin-orbit coupling
NASA Astrophysics Data System (ADS)
Marinescu, D. C.
2015-05-01
An argument is made on the existence of a low-temperature itinerant antiferromagnetic (AF) spin alignment, rather than persistent helical (PH), in the ground state of a two dimensional electron gas in a semiconductor quantum well with linear spin-orbit Rashba-Dresselhaus interaction at equal coupling strengths, α. This result is obtained on account of the opposite-spin single-particle state degeneracy at k = 0 that makes the spin instability possible. A theory of the resulting magnetic phase is formulated within the Hartree-Fock approximation of the Coulomb interaction. In the AF state the direction of the fractional polarization is obtained to be aligned along the displacement vector of the single-particle states.
Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices
Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A.
2015-06-21
A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the “CVBs interaction” that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices.
Electronic Properties of Semiconductor Quantum-Ring Structures
NASA Astrophysics Data System (ADS)
Pacheco, Mónica; Fuster, Gonzalo; Barticevic, Zdenka
2002-03-01
Motivated by the interesting electronic properties exhibited by these nanorings when they are threaded by a magnetic field, we studied a new semiconductor structure formed by two coupled rings which are concentrically disposed. In order to calculate the two-ring electronic spectrum it is assumed that the in-plane electronic-potential of each ring is generated by a rotation, around the ring axis, of a one-dimensional parabolic potential centered to a distance ρ=ρo of the ring center. The potential of the two-rings system is then assumed as a superposition of a potential for each ring with their minimum at different radii and being truncated in the intersection point. In this way a potential barrier is formed in between the rings. We solve the in-plane problem by expanding the corresponding envelope function as a linear combination of solutions of isolated rings. We have made a detailed study about the influence of the characteristic confinement-parameters of each rings, and of the barrier strength, on the electronic energy spectrum of the system. A uniform magnetic field is applied along the common ring axis and we explore the effects on the Aharonov-Bohm-type oscillations in the energy levels caused by the particular geometry of two coupled quantum-rings.
Quantum band engineering of nitride semiconductors for infrared lasers
NASA Astrophysics Data System (ADS)
Malis, O.; Edmunds, C.; Li, D.; Shao, J.; Gardner, G.; Li, W.; Fay, P.; Manfra, M. J.
2014-02-01
The III-nitride semiconductors have been proposed as candidate materials for new quantum cascade lasers in the nearinfrared (1.5-3 μm), and far-infrared (30-60 μm), due to the large conduction-band offset between GaN and Alcontaining alloys (>1 eV), and the large longitudinal optical (LO) phonon energy (90 meV), respectively. The challenges of III-nitride intersubband devices are twofold: material and design related. Due to large electron effective mass, the nitride intersubband materials require the ability to fine-tune the atomic structure at an unprecedented sub-nanometer level. Moreover, the III-N materials exhibit built-in polarization fields that complicate the design of intersubband lasers. This paper presents recent results on c-plane nitride resonant-tunneling diodes that are important for the prospects of farinfrared nitride lasers. We also report near-infrared absorption and photocurrent measurements in nonpolar (m-plane) AlGaN/GaN superlattices.
Continuing progress toward controlled intracellular delivery of semiconductor quantum dots
Breger, Joyce; Delehanty, James B; Medintz, Igor L
2015-01-01
The biological applications of luminescent semiconductor quantum dots (QDs) continue to grow at a nearly unabated pace. This growth is driven, in part, by their unique photophysical and physicochemical properties which have allowed them to be used in many different roles in cellular biology including: as superior fluorophores for a wide variety of cellular labeling applications; as active platforms for assembly of nanoscale sensors; and, more recently, as a powerful tool to understand the mechanisms of nanoparticle mediated drug delivery. Given that controlled cellular delivery is at the intersection of all these applications, the latest progress in delivering QDs to cells is examined here. A brief discussion of relevant considerations including the importance of materials preparation and bioconjugation along with the continuing issue of endosomal sequestration is initially provided for context. Methods for the cellular delivery of QDs are then highlighted including those based on passive exposure, facilitated strategies that utilize peptides or polymers and fully active modalities such as electroporation and other mechanically based methods. Following on this, the exciting advent of QD cellular delivery using multiple or combined mechanisms is then previewed. Several recent methods reporting endosomal escape of QD materials in cells are also examined in detail with a focus on the mechanisms by which access to the cytosol is achieved. The ongoing debate over QD cytotoxicity is also discussed along with a perspective on how this field will continue to evolve in the future. PMID:25154379
NASA Technical Reports Server (NTRS)
Richardson, W. H.; Yamamoto, Y.
1991-01-01
The photon-number fluctuation of the external field from a semiconductor laser - which was reduced to below the standard quantum limit - is shown to be correlated with the measured junction-voltage noise. The spectral density of the sum of the photon-number fluctuation and junction-voltage fluctuation falls below the squeezed photon-number fluctuation. This confirms the theoretical predictions that this correlation, which originates in the dipole interaction between the internal field and electron-hole pairs, extends into the quantum regime.
Nonradiative resonance energy transfer between semiconductor quantum dots
Samosvat, D. M. Chikalova-Luzina, O. P.; Zegrya, G. G.
2015-07-15
A microscopic analysis of the mechanisms of nonradiative energy transfer in a system of two semiconductor QDs caused by Coulomb interaction of donor and acceptor electrons is performed. The energy transfer rate is calculated for QDs based on III–V compounds using the Kane model. Conditions are analyzed under which energy transfer from a donor to an acceptor is possible. The mixing in of the p states of the valence band to the s states of the conduction band is found to give rise to additional contributions to the matrix element of energy transfer. It is shown that these additional contributions play a considerable role in the energy transfer process at distances between QDs close to contact distances or much greater. The influence of the exchange interaction on the energy transfer mechanism is analyzed, and it is shown that this interaction should be taken into account for a quantitative description of the energy transfer when QDs are separated by a distance close to the contact distance.
Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors
NASA Astrophysics Data System (ADS)
Hung, Nguyen T.; Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro
2016-07-01
We theoretically investigate the interplay between the confinement length L and the thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An analytical formula for the power factor is derived based on the one-band model assuming nondegenerate semiconductors to describe quantum effects on the power factor of the low-dimensional semiconductors. The power factor is enhanced for one- and two-dimensional semiconductors when L is smaller than Λ of the semiconductors. In this case, the low-dimensional semiconductors having L smaller than their Λ will give a better thermoelectric performance compared to their bulk counterpart. On the other hand, when L is larger than Λ , bulk semiconductors may give a higher power factor compared to the lower dimensional ones.
Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors.
Hung, Nguyen T; Hasdeo, Eddwi H; Nugraha, Ahmad R T; Dresselhaus, Mildred S; Saito, Riichiro
2016-07-15
We theoretically investigate the interplay between the confinement length L and the thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An analytical formula for the power factor is derived based on the one-band model assuming nondegenerate semiconductors to describe quantum effects on the power factor of the low-dimensional semiconductors. The power factor is enhanced for one- and two-dimensional semiconductors when L is smaller than Λ of the semiconductors. In this case, the low-dimensional semiconductors having L smaller than their Λ will give a better thermoelectric performance compared to their bulk counterpart. On the other hand, when L is larger than Λ, bulk semiconductors may give a higher power factor compared to the lower dimensional ones. PMID:27472126
Diode-Laser Pumped Far-Infrared Local Oscillator Based on Semiconductor Quantum Wells
NASA Technical Reports Server (NTRS)
Kolokolov, K.; Li, J.; Ning, C. Z.; Larrabee, D. C.; Tang, J.; Khodaparast, G.; Kono, J.; Sasa, S.; Inoue, M.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
The contents include: 1) Tetrahertz Field: A Technology Gap; 2) Existing THZ Sources and Shortcomings; 3) Applications of A THZ Laser; 4) Previous Optical Pumped LW Generations; 5) Optically Pumped Sb based Intersubband Generation Whys; 6) InGaAs/InP/AlAsSb QWs; 7) Raman Enhanced Optical Gain; 8) Pump Intensity Dependence of THZ Gain; 9) Pump-Probe Interaction Induced Raman Shift; 10) THZ Laser Gain in InGaAs/InP/AlAsSb QWs; 11) Diode-Laser Pumped Difference Frequency Generation (InGaAs/InP/AlAsSb QWs); 12) 6.1 Angstrom Semiconductor Quantum Wells; 13) InAs/GaSb/AlSb Nanostructures; 14) InAs/AlSb Double QWs: DFG Scheme; 15) Sb-Based Triple QWs: Laser Scheme; and 16) Exciton State Pumped THZ Generation. This paper is presented in viewgraph form.
NASA Astrophysics Data System (ADS)
Kang, Chengxian; Wang, Zhiping; Yu, Benli
2016-03-01
We investigate the absorptive-dispersive properties of a weak probe field in a four-level asymmetrical double semiconductor quantum well. It is found that the enhanced refraction index without absorption can be easily controlled via adjusting properly the corresponding parameters of the system. Our scheme may provide some new possibilities for technological applications in dispersion compensation and solid-state quantum communication for quantum information processing.
Exciton Kinetics in Strained II-Vi Semiconductor Multiple Quantum Wells.
NASA Astrophysics Data System (ADS)
Hefetz, Yaron
1987-09-01
Two groups of wide gap II-VI semiconductor superlattices based on ZnSe/Zn(,1-x)Mn(,x)Se and CdTe/ZnTe were investigated using CW and time-resolved photoluminescence, excitation, reflectance, and photomodulated reflectance spectroscopy at various temperatures and under an external magnetic field. All these lattice mismatch strained layer structures were grown by MBE technique and exhibit strong excitonic photoluminescence at low temperatures. By studying the dynamics of the exciton recombination processes, the role of strain, quantum confinement and localization effects were revealed. In the CdTe/ZnTc system where the lattice mismatch is (DELTA)a/a (TURNEQ) 6% the inhomogeneously broadened ((TURN)40 mev) luminescence line is governed by excitonic localization in well width fluctuations. Exchange interactions of the carriers with the Mn('++) ions in the dilute magnetic semiconductor Zn(,1-x)Mn(,x)Se in thin film and the barrier of the MQW structures influence their optical behavior in an exernal magnetic field. "Giant" Zeeman splittings of up to (TURN)10 mev/Tesla were measured in samples with moderate Mn concentration (x = .23). Antiferromagnetic interaction reduces these splittings in samples with higher Mn concentrations. In observing the time evolution of the carrier in Zn(,1-x)Mn(,x)Se MQW we found that the capture time of these carriers into the well is on the order of 1 psec but the last stages of thermalization, exciton formations and localization is (TURN)70 ps. The fast capture of electrons and holes into the quantum wells bypass the energy transfer into the Mn internal transition that is responsible to the efficient "yellow" luminescence in ZnMnSe mixed crystals.
Determination of spin-orbit coefficients in semiconductor quantum wells
NASA Astrophysics Data System (ADS)
Faniel, S.; Matsuura, T.; Mineshige, S.; Sekine, Y.; Koga, T.
2011-03-01
We report the determination of the intrinsic spin-orbit interaction (SOI) parameters for In0.53Ga0.47As/In0.52Al0.48As quantum wells (QWs) from the analysis of the weak antilocalization effect. We show that the Dresselhaus SOI is mostly negligible in this system and that the intrinsic parameter for the Rashba effect, aSO≡α/
Tunable Quantum Dot Solids: Impact of Interparticle Interactions on Bulk Properties
Sinclair, Michael B.; Fan, Hongyou; Brener, Igal; Liu, Sheng; Luk, Ting S.; Li, Binsong
2015-09-01
QD-solids comprising self-assembled semiconductor nanocrystals such as CdSe are currently under investigation for use in a wide array of applications including light emitting diodes, solar cells, field effect transistors, photodetectors, and biosensors. The goal of this LDRD project was develop a fundamental understanding of the relationship between nanoparticle interactions and the different regimes of charge and energy transport in semiconductor quantum dot (QD) solids. Interparticle spacing was tuned through the application of hydrostatic pressure in a diamond anvil cell, and the impact on interparticle interactions was probed using x-ray scattering and a variety of static and transient optical spectroscopies. During the course of this LDRD, we discovered a new, previously unknown, route to synthesize semiconductor quantum wires using high pressure sintering of self-assembled quantum dot crystals. We believe that this new, pressure driven synthesis approach holds great potential as a new tool for nanomaterials synthesis and engineering.
NASA Astrophysics Data System (ADS)
Mathew, Reuble; Shi Yang, Hong Yi; Hall, Kimberley
2015-03-01
Optimal quantum control (OQC), which iteratively optimizes the control Hamiltonian to achieve a target quantum state, is a versatile approach for manipulating quantum systems. For optically-active transitions, OQC can be implemented using femtosecond pulse shaping which provides control over the amplitude and/or phase of the electric field. Optical pulse shaping has been employed to optimize physical processes such as nonlinear optical signals, photosynthesis, and has recently been applied to optimizing single-qubit gates in multiple semiconductor quantum dots. In this work, we examine the use of numerical pulse shape optimization for optimal quantum control of multiple qubits confined to quantum dots as a function of their electronic structure parameters. The numerically optimized pulse shapes were found to produce high fidelity quantum gates for a range of transition frequencies, dipole moments, and arbitrary initial and final states. This work enhances the potential for scalability by reducing the laser resources required to control multiple qubits.
Oktyabrsky, Serge; Yakimov, Michael; Tokranov, Vadim; Murat, Pavel
2016-03-30
Here, a picosecond-range timing of charged particles and photons is a long-standing challenge for many high-energy physics, biophysics, medical and security applications. We present a design, technological pathway and challenges, and some properties important for realization of an ultrafast high-efficient room-temperature semiconductor scintillator based on self-assembled InAs quantum dots (QD) embedded in a GaAs matrix. Low QD density (<; 1015 cm-3), fast (~5 ps) electron capture, luminescence peak redshifted by 0.2-0.3 eV from GaAs absorption edge with fast decay time (0.5-1 ns) along with the efficient energy transfer in the GaAs matrix (4.2 eV/pair) allows for fabrication of a semiconductormore » scintillator with the unsurpassed performance parameters. The major technological challenge is fabrication of a large volume (> 1 cm3 ) of epitaxial QD medium. This requires multiple film separation and bonding, likely using separate epitaxial films as waveguides for improved light coupling. Compared to traditional inorganic scintillators, the semiconductor-QD based scintillators could have about 5x higher light yield and 20x faster decay time, opening a way to gamma detectors with the energy resolution better than 1% and sustaining counting rates MHz. Picosecond-scale timing requires segmented low-capacitance photodiodes integrated with the scintillator. For photons, the proposed detector inherently provides the depth-of-interaction information.« less
Repeated interactions in open quantum systems
Bruneau, Laurent; Joye, Alain; Merkli, Marco
2014-07-15
Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.
Implications of mercury interactions with band-gap semiconductor oxides
Granite, E.J.; King, W.P.; Stanko, D.C.; Pennline, H.W.
2008-09-01
Titanium dioxide is a well-known photooxidation catalyst. It will oxidize mercury in the presence of ultraviolet light from the sun and oxygen and/or moisture to form mercuric oxide. Several companies manufacture self-cleaning windows. These windows have a transparent coating of titanium dioxide. The titanium dioxide is capable of destroying organic contaminants in air in the presence of ultraviolet light from the sun, thereby keeping the windows clean. The commercially available self-cleaning windows were used to sequester mercury from oxygen–nitrogen mixtures. Samples of the self-cleaning glass were placed into specially designed photo-reactors in order to study the removal of elemental mercury from oxygen–nitrogen mixtures resembling air. The possibility of removing mercury from ambient air with a self-cleaning glass apparatus is examined. The intensity of 365-nm ultraviolet light was similar to the natural intensity from sunlight in the Pittsburgh region. Passive removal of mercury from the air may represent an option in lieu of, or in addition to, point source clean-up at combustion facilities. There are several common band-gap semiconductor oxide photocatalysts. Sunlight (both the ultraviolet and visible light components) and band-gap semiconductor particles may have a small impact on the global cycle of mercury in the environment. The potential environmental consequences of mercury interactions with band-gap semiconductor oxides are discussed. Heterogeneous photooxidation might impact the global transport of elemental mercury emanating from flue gases.
Exciton-phonon interaction in crystals and quantum size structures
NASA Astrophysics Data System (ADS)
Yaremko, A. M.; Yukhymchuk, V. O.; Dzhagan, V. M.; Valakh, M. Ya; Baran, J.; Ratajczak, H.
2007-12-01
In this report, the problem of electron-phonon interaction (EPI) in bulk semiconductors and quantum dots (QDs) is considered. It is shown that the model of strong EPI developed for organic molecular crystals can be successfully applied to bulk and nano-sized semiconductors. The idea of the approach proposed is to describe theoretically the experimental Raman (IR) spectra, containing the phonon replicas, by varying the EPI constant. The main parameter of the theoretical expression (βS) is the ratio of EPI constant (χS) to the frequency of the corresponding phonon mode (ΩS). The theoretical results show that variation of the QD size can change the value of χS.
Terahertz quantum transport in semiconductor nanostructures with the UCSB free electron lasers
Allen, S.J.
1995-12-31
Quantum transport in semiconductor nanostructures takes on new dimensions in the presence of intense terahertz electric fields. Terahertz frequencies lift us into the regime where the scattering and relaxation is not so important and strong terahertz electric fields provided by the UCSB FEL`s explore non-linear dynamics far from the perturbative limit. New quantum transport channels that are assisted by the absorption or emission of a photon appear in current voltage characteristics. We will describe some of these experiments, the new phenomena they expose and the potential impact on future terahertz semiconductor electronics.
Semiconductor surface sublimation energies and atom-atom interactions
NASA Technical Reports Server (NTRS)
Krishnamurthy, Srinivasan; Berding, M. A.; Sher, A.; Chen, A.-B.
1990-01-01
The energy required to remove an atom from semiconductor surfaces is calculated using a Green's-function approach. Contrary to intuition, it is found that, in some cases, less energy is needed to remove an atom from the nearly full surface than from a nearly empty surface. The results are explained in terms of the relative energies of anion and cation dangling bonds, and the charge transfers between them. The deducted effective pair-interaction energies and their effects on surface morphology and growth perfection are discussed.
Emergence of the persistent spin helix in semiconductor quantum wells.
Koralek, J D; Weber, C P; Orenstein, J; Bernevig, B A; Zhang, Shou-Cheng; Mack, S; Awschalom, D D
2009-04-01
According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be achieved in a two-dimensional electron gas, despite the presence of spin-orbit coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix'. SU(2) is realized, in principle, when the strengths of two dominant spin-orbit interactions, the Rashba (strength parameterized by alpha) and linear Dresselhaus (beta(1)) interactions, are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term (beta(3)) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as alpha approaches beta(1). Here we report experimental observation of the emergence of the persistent spin helix in GaAs quantum wells by independently tuning alpha and beta(1). Using transient spin-grating spectroscopy, we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant spin-orbit terms, identifying beta(3) as the main SU(2)-violating term in our samples. The tunable suppression of spin relaxation demonstrated in this work is well suited for application to spintronics. PMID:19340077
Quantum filter of spin polarized states: Metal–dielectric–ferromagnetic/semiconductor device
Makarov, Vladimir I.; Khmelinskii, Igor
2014-02-01
Highlights: • Development of a new spintronics device. • Development of quantum spin polarized filters. • Development of theory of quantum spin polarized filter. - Abstract: Recently we proposed a model for the Quantum Spin-Polarized State Filter (QSPSF). The magnetic moments are transported selectively in this model, detached from the electric charge carriers. Thus, transfer of a spin-polarized state between two conductors was predicted in a system of two levels coupled by exchange interaction. The strength of the exchange interaction between the two conductive layers depends on the thickness of the dielectric layer separating them. External magnetic fields modulate spin-polarized state transfer, due to Zeeman level shift. Therefore, a linearly growing magnetic field generates a series of current peaks in a nearby coil. Thus, our spin-state filter should contain as least three nanolayers: (1) conductive or ferromagnetic; (2) dielectric; and (3) conductive or semiconductive. The spectrum of spin-polarized states generated by the filter device consists of a series of resonance peaks. In a simple case the number of lines equals S, the total spin angular momentum of discrete states in one of the coupled nanolayers. Presently we report spin-polarized state transport in metal–dielectric–ferromagnetic (MDF) and metal–dielectric–semiconductor (MDS) three-layer sandwich devices. The exchange-resonance spectra in such devices are quite specific, differing also from spectra observed earlier in other three-layer devices. The theoretical model is used to interpret the available experimental results. A detailed ab initio analysis of the magnetic-field dependence of the output magnetic moment averaged over the surface of the device was carried out. The model predicts the resonance structure of the signal, although at its present accuracy it cannot predict the positions of the spectral peaks.
Basset, J.; Stockklauser, A.; Jarausch, D.-D.; Frey, T.; Reichl, C.; Wegscheider, W.; Wallraff, A.; Ensslin, K.; Ihn, T.
2014-08-11
We evaluate the charge noise acting on a GaAs/GaAlAs based semiconductor double quantum dot dipole-coupled to the voltage oscillations of a superconducting transmission line resonator. The in-phase (I) and the quadrature (Q) components of the microwave tone transmitted through the resonator are sensitive to charging events in the surrounding environment of the double dot with an optimum sensitivity of 8.5×10{sup −5} e/√(Hz). A low frequency 1/f type noise spectrum combined with a white noise level of 6.6×10{sup −6} e{sup 2}/Hz above 1 Hz is extracted, consistent with previous results obtained with quantum point contact charge detectors on similar heterostructures. The slope of the 1/f noise allows to extract a lower bound for the double-dot charge qubit dephasing rate which we compare to the one extracted from a Jaynes-Cummings Hamiltonian approach. The two rates are found to be similar emphasizing that charge noise is the main source of dephasing in our system.
Wake potential with exchange-correlation effects in semiconductor quantum plasmas
Khan, Arroj A.; Jamil, M.; Hussain, A.
2015-09-15
Using the non-relativistic quantum hydrodynamic model, wake potential has been studied in a magnetized semiconductor quantum plasma in the presence of upper hybrid wave which is excited via externally injected electron beam. The quantum effect contains electron exchange and correlation potential, Fermi degenerate pressure, and Bohm potential. It is found that the contribution of quantum mechanical electron exchange and correlation potential significantly modifies the amplitude and the effective length of the oscillatory wake potential. In the electron-hole plasma systems, electron exchange-correlation effects tend to increase the magnitude of the wake potential and are much effective at the distances of the order of Debye-length. The application of the work in context of the semiconductor plasmas have also been analyzed graphically.
NASA Astrophysics Data System (ADS)
Duc Anh, Le; Nam Hai, Pham; Tanaka, Masaaki
2014-01-01
We demonstrated the control of ferromagnetism in a surface quantum well containing a 5 nm-thick n-type ferromagnetic semiconductor (FMS) (In,Fe)As layer sandwiched between two InAs layers, by manipulating the carrier wavefunction. The Curie temperature (TC) of the (In,Fe)As layer was effectively changed by up to 12 K (ΔTC/TC = 55%). Our calculation using the mean-field Zener theory reveals an unexpectedly large s-d exchange interaction in (In,Fe)As. Our results establish an effective way to control the ferromagnetism in quantum heterostructures of n-type FMSs, as well as require reconsideration on the current understanding of the s-d exchange interaction in narrow gap FMSs.
Duc Anh, Le; Nam Hai, Pham; Tanaka, Masaaki
2014-01-27
We demonstrated the control of ferromagnetism in a surface quantum well containing a 5 nm-thick n-type ferromagnetic semiconductor (FMS) (In,Fe)As layer sandwiched between two InAs layers, by manipulating the carrier wavefunction. The Curie temperature (T{sub C}) of the (In,Fe)As layer was effectively changed by up to 12 K (ΔT{sub C}/T{sub C} = 55%). Our calculation using the mean-field Zener theory reveals an unexpectedly large s-d exchange interaction in (In,Fe)As. Our results establish an effective way to control the ferromagnetism in quantum heterostructures of n-type FMSs, as well as require reconsideration on the current understanding of the s-d exchange interaction in narrow gap FMSs.
Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells
Koralek, Jake; Weber, Chris; Orenstein, Joe; Bernevig, Andrei; Zhang, Shoucheng; Mack, Shawn; Awschalom, David
2011-08-24
According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit (SO) coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be recovered in a two-dimensional electron gas (2DEG), despite the presence of SO coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix' (PSH). SU(2) is restored, in principle, when the strength of two dominant SO interactions, the Rashba ({alpha}) and linear Dresselhaus ({beta}{sub 1}), are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term ({beta}{sub 3}) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as {alpha} {yields} {beta}{sub 1}. Here we observe experimentally the emergence of the PSH in GaAs quantum wells (QW's) by independently tuning {alpha} and {beta}{sub 1}. Using transient spin-grating spectroscopy (TSG), we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant SO terms, identifying {beta}{sub 3} as the main SU(2) violating term in our samples. The tunable suppression of spin-relaxation demonstrated in this work is well-suited for application to spintronics.
Nonlocal biphoton generation in a Werner state from a single semiconductor quantum dot
NASA Astrophysics Data System (ADS)
Kumano, H.; Nakajima, H.; Kuroda, T.; Mano, T.; Sakoda, K.; Suemune, I.
2015-05-01
We demonstrate the generation of a Werner-like state from a single semiconductor quantum dot. The tomographic analysis with temporal gating brings us to a systematic understanding of the relation between the time evolution of quantum correlation and a set of parameters characterizing the exciton states, including fine-structure splitting and cross-dephasing time. The Werner state relates the Bell's parameter in the Clauser, Horne, Shimony, and Holt inequality with a fidelity, which facilitates the evaluation of nonlocality.
A semiclassical method in the theory of light scattering by semiconductor quantum dots
Lang, I. G.; Korovin, L. I. Pavlov, S. T.
2008-06-15
A semiclassical method is proposed for the theoretical description of elastic light scattering by arbitrary semiconductor quantum dots under conditions of size quantization. This method involves retarded potentials and allows one to dispense with boundary conditions for electric and magnetic fields. Exact results for the Umov-Poynting vector at large distances from quantum dots in the case of monochromatic and pulsed irradiation and formulas for differential scattering cross sections are obtained.
Enhanced refractive index without absorption in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Chen, Nan; Shui, Tao; Qian, Biqi; Wang, Zhiping; Yu, Benli
2015-07-01
We investigate the absorptive-dispersive properties of a weak probe field in a ladder-type quantum dot. It is found that the enhanced refraction index without absorption can be easily controlled via adjusting properly the corresponding parameters of the system. Our scheme may provide some new possibilities for technological applications in dispersion compensation and solid-state quantum communication for quantum information processing.
Quantum computing with quantum dots using the Heisenberg exchange interaction
NASA Astrophysics Data System (ADS)
Dewaele, Nick J.
One of the most promising systems for creating a working quantum computer is the triple quantum dots in a linear semiconductor. One of the biggest advantages is that we are able to perform Heisenberg exchange gates on the physical qubits. These exchanges are both fast and relatively low energy. Which means that they would be excellent for producing fast and accurate operations. In order to prevent leakage errors we use a 3 qubit DFS to encode a logical qubit. Here we determine the theoretical time dependent affects of applying the Heisenberg exchange gates in the DFS basis as well as the effect of applying multiple exchange gates at the same time. we also find that applying two heisenberg exchange gates at the same time is an effective way of implementing a leakage elimination operator.
Cai, W.; Zheng, T.F.; Lax, M.
1988-05-15
We study the transport of a quasi-two-dimensional electron-hole gas in a semiconductor quantum well. The screening in the presence of the electron-hole interaction is carefully considered. The method of nonequilibrium phonon wave packet, developed by us, is generalized to include the simultaneous presence of two-dimensional electrons and holes. The occurrence of negative absolute mobility for electrons is discussed. The mobility of minority electrons and majority holes are calculated by use of a drifted temperature model for both types of carriers. The mobilities of minority electrons (from negative to positive) as functions of lattice temperature and electric field are shown. Comparison is made with experiment.
Experimental researches on quantum transport in semiconductor two-dimensional electron systems
Kawaji, Shinji
2008-01-01
The author reviews contribution of Gakushuin University group to the progress of the quantum transport in semiconductor two-dimensional electron systems (2DES) for forty years from the birth of the 2DES in middle of the 1960s till the finding of temperature dependent collapse of the quantized Hall resistance in the beginning of this century. PMID:18941299
Electron-hole correlations in semiconductor quantum dots with tight-binding wave fuctions
NASA Technical Reports Server (NTRS)
Seungwon, L.; Jonsson, L.; Wilkins, J.; Bryant, G.; Klimeck, G.
2001-01-01
The electron-hole states of semiconductor quantum dots are investigated within the framework of empirical tight-binding descriptions for Si, as an example of an indirect-gap material, and InAs and CdSe as examples of typical III-V and II-VI direct-gap materials.
Ma, Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Gee
2013-03-15
The spin-dependent transport through a diluted magnetic semiconductor quantum dot (QD) which is coupled via magnetic tunnel junctions to two ferromagnetic leads is studied theoretically. A noncollinear system is considered, where the QD is magnetized at an arbitrary angle with respect to the leads' magnetization. The tunneling current is calculated in the coherent regime via the Keldysh nonequilibrium Green's function (NEGF) formalism, incorporating the electron-electron interaction in the QD. We provide the first analytical solution for the Green's function of the noncollinear DMS quantum dot system, solved via the equation of motion method under Hartree-Fock approximation. The transport characteristics (charge and spin currents, and tunnel magnetoresistance (TMR)) are evaluated for different voltage regimes. The interplay between spin-dependent tunneling and single-charge effects results in three distinct voltage regimes in the spin and charge current characteristics. The voltage range in which the QD is singly occupied corresponds to the maximum spin current and greatest sensitivity of the spin current to the QD magnetization orientation. The QD device also shows transport features suitable for sensor applications, i.e., a large charge current coupled with a high TMR ratio. - Highlights: Black-Right-Pointing-Pointer The spin polarized transport through a diluted magnetic quantum dot is studied. Black-Right-Pointing-Pointer The model is based on the Green's function and the equation of motion method. Black-Right-Pointing-Pointer The charge and spin currents and tunnel magnetoresistance (TMR) are investigated. Black-Right-Pointing-Pointer The system is suitable for current-induced spin-transfer torque application. Black-Right-Pointing-Pointer A large tunneling current and a high TMR are possible for sensor application.
NASA Astrophysics Data System (ADS)
Medintz, Igor L.; Pons, Thomas; Trammell, Scott A.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Mattoussi, Hedi
2009-02-01
Luminescent colloidal semiconductor quantum dots (QDs) have unique optical and photonic properties and are highly sensitive to charge transfer in their surrounding environment. In this study we used synthetic peptides as physical bridges between CdSe-ZnS core-shell QDs and some of the most common redox-active metal complexes to understand the charge transfer interactions between the metal complexes and QDs. We found that QD emission underwent quenching that was highly dependent on the choice of metal complex used. We also found that quenching traces the valence or number of metal complexes brought into close proximity of the nanocrystal surface. Monitoring of the QD absorption bleaching in the presence of the metal complex provided insight into the charge transfer mechanism. The data suggest that two distinct charge transfer mechanisms can take place. One directly to the QD core states for neutral capping ligands and a second to surface states for negatively charged capping ligands. A basic understanding of the proximity driven charge-transfer and quenching interactions allowed us to construct proteolytic enzyme sensing assemblies with the QD-peptide-metal complex conjugates.
Measurement of accumulation of semiconductor nanocrystal quantum dots by pimephales promelas.
Leigh, Kenton L; Bouldin, Jennifer L; Buchanan, Roger A
2012-01-01
As the production and use of nanomaterials increases, it is important to understand their environmental and biological fate. Because their unmatched chemical, physical, and optical properties make them useful in a wide variety of applications including biomedical imaging, photo-voltaics, and light emitting diodes, the use of semiconductor nanocrystals such as quantum dots (QDs) is increasing rapidly. Although QDs hold great potential in a wide variety of industrial and consumer applications, the environmental implications of these particles is largely unexplored. The nanocrystal core of many types of QDs contains the toxic metal cadmium (Cd), so possible release of Cd from the QD core is cause for concern. Because many types of QDs are miscible in water, QD interactions with aquatic organisms and their environment require more attention. In the present study we used fluorometry to measure time and dose dependent uptake, accumulation, and post-exposure clearance of accumulated QDs in the gut tract by the aquatic vertebrate Pimephales promelas. By using fluorometry, we were able to measure accumulated QD concentrations. To our knowledge, this is the first reported attempt to quantify accumulated QDs in an organism and is an important step in understanding the interactions among QDs in aquatic organisms and environments. PMID:22942867
Measurement of Accumulation of Semiconductor Nanocrystal Quantum Dots by Pimephales Promelas
Leigh, Kenton L.; Bouldin, Jennifer L.; Buchanan, Roger A.
2012-01-01
As the production and use of nanomaterials increases, it is important to understand their environmental and biological fate. Because their unmatched chemical, physical, and optical properties make them useful in a wide variety of applications including biomedical imaging, photo-voltaics, and light emitting diodes, the use of semiconductor nanocrystals such as quantum dots (QDs) is increasing rapidly. Although QDs hold great potential in a wide variety of industrial and consumer applications, the environmental implications of these particles is largely unexplored. The nanocrystal core of many types of QDs contains the toxic metal cadmium (Cd), so possible release of Cd from the QD core is cause for concern. Because many types of QDs are miscible in water, QD interactions with aquatic organisms and their environment require more attention. In the present study we used fluorometry to measure time and dose dependent uptake, accumulation, and post-exposure clearance of accumulated QDs in the gut tract by the aquatic vertebrate Pimephales promelas. By using fluorometry, we were able to measure accumulated QD concentrations. To our knowledge, this is the first reported attempt to quantify accumulated QDs in an organism and is an important step in understanding the interactions among QDs in aquatic organisms and environments. PMID:22942867
Toxicological studies of semiconductor quantum dots on immune cells.
Ricken, James Bryce; Rios, Lynette; Poschet, Jens Fredrich; Bachand, Marlene; Bachand, George David; Greene, Adrienne Celeste; Carroll-Portillo, Amanda
2008-11-01
Nanoengineered materials hold a vast promise of enabling revolutionary technologies, but also pose an emerging and potentially serious threat to human and environmental health. While there is increasing knowledge concerning the risks posed by engineered nanomaterials, significant inconsistencies exist within the current data based on the high degree of variability in the materials (e.g., synthesis method, coatings, etc) and biological test systems (e.g., cell lines, whole organism, etc). In this project, we evaluated the uptake and response of two immune cell lines (RAW macrophage and RBL mast cells) to nanocrystal quantum dots (Qdots) with different sizes and surface chemistries, and at different concentrations. The basic experimental design followed a 2 x 2 x 3 factorial model: two Qdot sizes (Qdot 520 and 620), two surface chemistries (amine 'NH{sub 2}' and carboxylic acid 'COOH'), and three concentrations (0, 1 nM, and 1 {micro}M). Based on this design, the following Qdots from Evident Technologies were used for all experiments: Qdot 520-COOH, Qdot 520-NH{sub 2}, Qdot 620-COOH, and Qdot 620-NH{sub 2}. Fluorescence and confocal imaging demonstrated that Qdot 620-COOH and Qdot 620-NH{sub 2} nanoparticles had a greater level of internalization and cell membrane association in RAW and RBL cells, respectively. From these data, a two-way interaction between Qdot size and concentration was observed in relation to the level of cellular uptake in RAW cells, and association with RBL cell membranes. Toxicity of both RBL and RAW cells was also significantly dependent on the interaction of Qdot size and concentration; the 1 {micro}M concentrations of the larger, Qdot 620 nanoparticles induced a greater toxic effect on both cell lines. The RBL data also demonstrate that Qdot exposure can induce significant toxicity independent of cellular uptake. A significant increase in TNF-{alpha} and decrease in IL-10 release was observed in RAW cells, and suggested that Qdot exposure
Design and synthesis of organic semiconductors with strong noncovalent interactions
NASA Astrophysics Data System (ADS)
Tucker, Neil Maxwell
2008-10-01
The development of organic molecules as active components of electronic and optoelectronic devices has seen unprecedented progress in the past decade. This attention is primarily due to the potential impact on large-area and low-cost fabrication of devices, integrated circuits, flexible displays, and in particular, organic field-effect transistors (OFETs). Organic semiconductors that pack face-to-face in the solid state are of particular interest since they are known to self-assemble into 1-D nanostructures due to strong pi-pi interactions. Engineering linear/planar molecules to pack face-to-face is challenging because the interacting forces between organic molecules are relatively weak. Three approaches were used to induce face-to-face packing in organic semiconductors: (1) several derivatives of hexaazatrinaphthylene, (HATNA), were designed which vary in their degree of hydrogen bonding, rigidity, and electron deficiency. Hydrogen bonded moieties induced strong interaction between cores that formed robust nanowires when subjected to nonpolar solvents. While no device data was measured for these materials, substituents location was found to have a profound effect on the electronic properties; (2) Inspired by S···S interactions found in tetrathiafulvalene (TTF) and electrostatic interactions found in 1,2,5-thiadiazole derivatives, a hybrid of these two molecules was developed (BT-TTF-1). Short intermolecular S···S, S···N, and S···C contacts define the solid state structure of BT-TTF-1 single crystals which pi-stack along the [100]. Theoretical insight into the nature of the interactions revealed that the close contacts are electrostatic in origin rather than the result of London dispersion forces. Thermal evaporation yields a network of poorly connected crystals which significantly limits the mobility. Solvent-cast single-crystal nanowire transistors showed mobilities as large as 0.36 cm2/Vs with excellent device characteristics underscoring the
NASA Astrophysics Data System (ADS)
Mondal, Navendu; Paul, Sneha; Samanta, Anunay
2016-07-01
In order to explore the potential of nanocomposites comprising semiconductor quantum dots (QDs) and metal nanoclusters (NCs) in photovoltaic and catalytic applications, the interaction between CdTe QDs and gold NCs, Au10 and Au25, stabilized by histidine, bovine serum albumin (BSA) and glutathione, is studied by an ultrafast transient absorption (TA) technique. Temporal and spectral studies of the transients reveal photoinduced 2-way electron transfer between the two constituents of the nanocomposites, where Au NCs, which generally act as electron donors when used as photosensitizers, perform the role of the efficient electron acceptor. Interestingly, it is found that the electron transfer dynamics in these composites is governed not by the distance of separation of the constituents but by the nature of the surface capping ligands. Despite a large separation between the QDs and NCs in a giant BSA-capped system, a higher electron transfer rate in this composite suggests that unlike other smaller capping agents, which act more like insulators, BSA allows much better electron conduction, as indicated previously.In order to explore the potential of nanocomposites comprising semiconductor quantum dots (QDs) and metal nanoclusters (NCs) in photovoltaic and catalytic applications, the interaction between CdTe QDs and gold NCs, Au10 and Au25, stabilized by histidine, bovine serum albumin (BSA) and glutathione, is studied by an ultrafast transient absorption (TA) technique. Temporal and spectral studies of the transients reveal photoinduced 2-way electron transfer between the two constituents of the nanocomposites, where Au NCs, which generally act as electron donors when used as photosensitizers, perform the role of the efficient electron acceptor. Interestingly, it is found that the electron transfer dynamics in these composites is governed not by the distance of separation of the constituents but by the nature of the surface capping ligands. Despite a large separation
High-Frequency EPR and ENDOR Spectroscopy on Semiconductor Quantum Dots
Baranov, Pavel G.; de Mello Donegá, Celso; Schmidt, Jan
2010-01-01
It is shown that high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy are excellent tools for the investigation of the electronic properties of semiconductor quantum dots (QDs). The great attractions of these techniques are that, in contrast to optical methods, they allow the identification of the dopants and provide information about the spatial distribution of the electronic wave function. This latter aspect is particularly attractive because it allows for a quantitative measurement of the effect of confinement on the shape and properties of the wave function. In this contribution EPR and ENDOR results are presented on doped ZnO QDs. Shallow donors (SDs), related to interstitial Li and Na and substitutional Al atoms, have been identified in this material by pulsed high-frequency EPR and ENDOR spectroscopy. The shallow character of the wave function of the donors is evidenced by the multitude of ENDOR transitions of the 67Zn nuclear spins and by the hyperfine interaction of the 7Li, 23Na and 27Al nuclear spins that are much smaller than for atomic lithium, sodium and aluminium. The EPR signal of an exchange-coupled pair consisting of a shallow donor and a deep Na-related acceptor has been identified in ZnO nanocrystals with radii smaller than 1.5 nm. From ENDOR experiments it is concluded that the deep Na-related acceptor is located at the interface of the ZnO core and the Zn(OH)2 capping layer, while the shallow donor is in the ZnO core. The spatial distribution of the electronic wave function of a shallow donor in ZnO semiconductor QDs has been determined in the regime of quantum confinement by using the nuclear spins as probes. Hyperfine interactions as monitored by ENDOR spectroscopy quantitatively reveal the transition from semiconductor to molecular properties upon reduction of the size of the nanoparticles. In addition, the effect of confinement on the g-factor of SDs in ZnO as well as in CdS QDs
Anisotropy of the electron g factor in quantum wells based on cubic semiconductors
Alekseev, P. S.
2013-09-15
A new mechanism for the spin splitting of electron levels in asymmetric quantum wells based on GaAs-type semiconductors relative to rotations of the magnetic field in the well plane is suggested. It is demonstrated that the anisotropy of the Zeeman splitting (linear in a magnetic field) arises in asymmetric quantum wells due to the interface spin-orbit terms in the electron Hamiltonian. In the case of symmetric quantum wells, it is shown that the anisotropy of the Zeeman splitting is a cubic function of the magnitude of the magnetic field, depends on the direction of the magnetic field in the interface plane as the fourth-order harmonic, and is governed by the spin-orbit term of the fourth order by the kinematic momentum in the electron Hamiltonian of a bulk semiconductor.
Observation of quantum oscillation of work function in ultrathin-metal/semiconductor junctions
Takhar, Kuldeep; Meer, Mudassar; Khachariya, Dolar; Ganguly, Swaroop; Saha, Dipankar
2015-09-15
Quantization in energy level due to confinement is generally observed for semiconductors. This property is used for various quantum devices, and it helps to improve the characteristics of conventional devices. Here, the authors have demonstrated the quantum size effects in ultrathin metal (Ni) layers sandwiched between two large band-gap materials. The metal work function is found to oscillate as a function of its thickness. The thermionic emission current bears the signature of the oscillating work function, which has a linear relationship with barrier heights. This methodology allows direct observation of quantum oscillations in metals at room temperature using a Schottky diode and electrical measurements using source-measure-units. The observed phenomena can provide additional mechanism to tune the barrier height of metal/semiconductor junctions, which are used for various electronic devices.
NASA Astrophysics Data System (ADS)
Gamouras, Angela; Mathew, Reuble; Hall, Kimberley C.
2012-07-01
Shaped ultrafast pulses designed for controlled-rotation (C-ROT) operations on exciton qubits in semiconductor quantum dots are demonstrated using a quantum control apparatus operating at ˜1 eV. Optimum pulse shapes employing amplitude and phase shaping protocols are implemented using the output of an optical parametric oscillator and a programmable pulse shaping system, and characterized using autocorrelation and multiphoton intrapulse interference phase scan techniques. We apply our pulse characterization results and density matrix simulations to assess the fundamental limits on the fidelity of the C-ROT operation, providing a benchmark for the evaluation of sources of noise in other quantum control experiments. Our results indicate the effectiveness of pulse shaping techniques for achieving high fidelity quantum operations in quantum dots with a gate time below 1 ps.
Advantages of an indirect semiconductor quantum well system for infrared detection
NASA Technical Reports Server (NTRS)
Yang, Chan-Lon; Somoano, Robert; Pan, Dee-Son
1989-01-01
The infrared intersubband absorption process in quantum well systems with anisotropic bulk effective masses, which usually occurs in indirect semiconductors was analyzed. It is found that the anisotropic effective mass can be utilized to provide allowed intersubband transitions at normal incidence to the quantum well growth direction. This transition is known to be forbidden for cases of isotropic effective mass. This property can be exploited for infrared sensor application of quantum well structures by allowing direct illumination of large surface areas without using special waveguide structures. The 10-micron intersubband absorption in quantum wells made of the silicon-based system Si/Si(1-x)Ge(x) was calculated. It is found that it is readily possible to achieve an absorption constant of the order of 10,000/cm in these Si quantum wells with current doping technology.
Transition metal doped semiconductor quantum dots: Optical and magnetic properties
NASA Astrophysics Data System (ADS)
Dahnovsky, Yuri; Proshchenko, Vitaly; Pimachev, Artem
We study optical and magnetic properties of CdSe and Cd-Mn-Se quantum dots (QD). We find that there are two luminescence lines, one is fast and another is slow (~1ms). With the increase of a QD diameter the slow luminescence disappears at some critical QD size, thus only one line (fast) remains. Using the SAC SI computational method we find that D = 3.2 nm and D = 2.7 nm if the Mn impurity is located inside a QD or on a QD surface, respectively. For two or four Mn atoms in the quantum dot, now absorption takes place because the transition is spin-allowed. The DFT calculations of the magnetic state reveal that it is an antiferromagnet. We also study other quantum dots such as Cd-Mn-Se, Zn-Mn-S, and Zn-Mn-Se, doped and undoped. We find the slow luminescence energies for low concentrations of Mn impurities for each QD type. The calculations indicate that two luminescence lines, fast and slow, should always take place. However for Pb-Mn-S quantum dots there are now Mn levels inside a HOMO-LUMO gap, i.e., the Mn-levels are located in a PbS conduction band. The presence of Mn dopants increases the band gap and also removes the exciton peak. This effect is different to the other quantum dots.
Controlling Light-Matter Interaction in Semiconductors with Hybrid Nano-Structures
NASA Astrophysics Data System (ADS)
Gehl, Michael R.
Nano-structures, such as photonic crystal cavities and metallic antennas, allow one to focus and store optical energy into very small volumes, greatly increasing light-matter interactions. These structures produce resonances which are typically characterized by how well they confine energy both temporally (quality factor -- Q) and spatially (mode volume -- V). In order to observe non-linear effects, modified spontaneous emission (e.g. Purcell enhancement), or quantum effects (e.g. vacuum Rabi splitting), one needs to maximize the ratio of Q/V while also maximizing the coupling between the resonance and the active medium. In this dissertation I will discuss several projects related by the goal of controlling light-matter interactions using such nano-structures. In the first portion of this dissertation I will discuss the deterministic placement of self-assembled InAs quantum dots, which would allow one to precisely position an optically-active material, for maximum interaction, inside of a photonic crystal cavity. Additionally, I will discuss the use of atomic layer deposition to tune and improve both the resonance wavelength and quality factor of silicon based photonic crystal cavities. Moving from dielectric materials to metals allows one to achieve mode-volumes well below the diffraction limit. The quality factor of these resonators is severely limited by Ohmic loss in the metal; however, the small mode-volume still allows for greatly enhanced light-matter interaction. In the second portion of this dissertation I will investigate the coupling between an array of metallic resonators (antennas) and a nearby semiconductor quantum well. Using time-resolved pump-probe measurements I study the properties of the coupled system and compare the results to a model which allows one to quantitatively compare various antenna geometries.
Excitons and charged excitons in semiconductor quantum wells
Riva, C.; Peeters, F. M.; Varga, K.
2000-05-15
A variational calculation of the ground-state energy of neutral excitons and of positively and negatively charged excitons (trions) confined in a single-quantum well is presented. We study the dependence of the correlation energy and of the binding energy on the well width and on the hole mass. The conditional probability distribution for positively and negatively charged excitons is obtained, providing information on the correlation and the charge distribution in the system. A comparison is made with available experimental data on trion binding energies in GaAs-, ZnSe-, and CdTe-based quantum well structures, which indicates that trions become localized with decreasing quantum well width. (c) 2000 The American Physical Society.
Exploring semiconductor quantum dots and wires by high resolution electron microscopy
Molina Rubio, Sergio I; Galindo, Pedro; Gonzalez, Luisa; Ripalda, JM; Varela del Arco, Maria; Pennycook, Stephen J
2010-01-01
We review in this communication our contribution to the structural characterisation of semiconductor quantum dots and wires by high resolution electron microscopy, both in phase-contrast and Z-contrast modes. We show how these techniques contribute to predict the preferential sites of nucleation of these nanostructures, and also determine the compositional distribution in 1D and 0D nanostructures. The results presented here were produced in the framework of the European Network of Excellence entitled 'Self-Assembled semiconductor Nanostructures for new Devices in photonics and Electronics (SANDiE)'.
Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.
Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A
2016-02-22
With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers. PMID:26907071
All quantum dot mode-locked semiconductor disk laser emitting at 655 nm
Bek, R. Kersteen, G.; Kahle, H.; Schwarzbäck, T.; Jetter, M.; Michler, P.
2014-08-25
We present a semiconductor disk laser mode-locked by a semiconductor saturable absorber mirror (SESAM) with emission in the red spectral range. Both the gain and the absorber structure are fabricated by metal-organic vapor-phase epitaxy in an anti-resonant design using quantum dots as active material. A v-shaped cavity is used to tightly focus onto the SESAM, producing pulses with a duration of about 1 ps at a repetition rate of 852 MHz.
NASA Astrophysics Data System (ADS)
Chen, R. S.; Wang, W. C.; Lu, M. L.; Chen, Y. F.; Lin, H. C.; Chen, K. H.; Chen, L. C.
2013-07-01
The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed.The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01635h
Biexciton induced refractive index changes in a semiconductor quantum dot
NASA Astrophysics Data System (ADS)
Shojaei, S.
2015-06-01
We present a detailed theoretical study of linear and third order nonlinear refractive index changes in a optically driven disk-like GaN quantum dot. In our numerical calculations, we consider the three level system containing biexciton, exciton, and ground states and use the compact density matrix formalism and iterative method to obtain refractive index changes. Variational method through effective mass approximation are employed to calculate the ground state energy of biexciton and exciton states. The evolution of refractive index changes around one, two and three photon resonance is investigated and discussed for different quantum dot sizes and light intensities. Size-dependent three-photon nonlinear refractive index change versus incident photon energy compared to that of two-photon is obtained and analyzed. As main result, we found that around resonance frequency at exciton-biexciton transition the quantum confinement has great influence on the linear change in refractive index so that for very large quantum dots, it decreases. Moreover, it was found that third order refractive index changes for three photon process is strongly dependent on QD size and light intensity. Our study reveals that considering our simple model leads to results which are in good agreement with other rare numerical results. Comparison with experimental results has been done.
Self-action effects in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Dneprovskii, V. S.; Kanev, A. R.; Kozlova, M. V.; Smirnov, A. M.
2014-05-01
Two-dimensional (2D) dynamic photonic crystal regime has been utilized to investigate self-diffraction effect and nonlinear optical properties of excitons in CdSe/ZnS colloidal quantum dots (QDs). Self-diffraction at 2D photonic crystal arises for three intersecting beams of Nd+3:YAG laser second harmonic in the case of one-photon resonant excitation of the exciton (electron - hole) transition QDs. The relaxation time of excited excitons has been measured by pump and probe technique at induced one-dimensional transient diffraction grating. Two-exponential decay with initial fast and slow parts was discovered. Self-action effect has been discovered in the case of stationary resonant excitation of excitons in CdSe/ZnS QDs by the beam of second harmonic of powerful 12-nanosecond laser pulses. The bleaching of exciton absorption and the creation of transparency channel (this effect provokes self-diffraction of the second harmonic beam) was explained by the dominating coexisting and competing processes of state filling in stationary excited quantum dots and Stark-shift of exciton spectral band. The peculiarities of the influence of these processes at the change of exciton absorption in quantum dots in the case of different detuning from exciton resonance (quantum dots with different size have been used) was analyzed.
Quantum theory of the electronic and optical properties of low-dimensional semiconductor systems
NASA Astrophysics Data System (ADS)
Lau, Wayne Heung
This thesis examines the electronic and optical properties of low-dimensional semiconductor systems. A theory is developed to study the electron-hole generation-recombination process of type-II semimetallic semiconductor heterojunctions based on a 3 x 3 k·p matrix Hamiltonian (three-band model) and an 8 x 8 k·p matrix Hamiltonian (eight-band model). A novel electron-hole generation and recombination process, which is called activationless generation-recombination process, is predicted. It is demonstrated that the current through the type-II semimetallic semiconductor heterojunctions is governed by the activationless electron-hole generation-recombination process at the heterointerfaces, and that the current-voltage characteristics are essentially linear. A qualitative agreement between theory and experiments is observed. The numerical results of the eight-band model are compared with those of the threeband model. Based on a lattice gas model, a theory is developed to study the influence of a random potential on the ionization equilibrium conditions for bound electron-hole pairs (excitons) in III--V semiconductor heterostructures. It is demonstrated that ionization equilibrium conditions for bound electron-hole pairs change drastically in the presence of strong disorder. It is predicted that strong disorder promotes dissociation of excitons in III--V semiconductor heterostructures. A theory of polariton (photon dressed by phonon) spontaneous emission in a III--V semiconductor doped with semiconductor quantum dots (QDs) or quantum wells (QWs) is developed. For the first time, superradiant and subradiant polariton spontaneous emission phenomena in a polariton-QD (QW) coupled system are predicted when the resonance energies of the two identical QDs (QWs) lie outside the polaritonic energy gap. It is also predicted that when the resonance energies of the two identical QDs (QWs) lie inside the polaritonic energy gap, spontaneous emission of polariton in the polariton
Mondal, Navendu; Paul, Sneha; Samanta, Anunay
2016-08-01
In order to explore the potential of nanocomposites comprising semiconductor quantum dots (QDs) and metal nanoclusters (NCs) in photovoltaic and catalytic applications, the interaction between CdTe QDs and gold NCs, Au10 and Au25, stabilized by histidine, bovine serum albumin (BSA) and glutathione, is studied by an ultrafast transient absorption (TA) technique. Temporal and spectral studies of the transients reveal photoinduced 2-way electron transfer between the two constituents of the nanocomposites, where Au NCs, which generally act as electron donors when used as photosensitizers, perform the role of the efficient electron acceptor. Interestingly, it is found that the electron transfer dynamics in these composites is governed not by the distance of separation of the constituents but by the nature of the surface capping ligands. Despite a large separation between the QDs and NCs in a giant BSA-capped system, a higher electron transfer rate in this composite suggests that unlike other smaller capping agents, which act more like insulators, BSA allows much better electron conduction, as indicated previously. PMID:27396603
Grasselli, Federico Goldoni, Guido
2015-01-21
We study the unitary propagation of a two-particle one-dimensional Schrödinger equation by means of the Split-Step Fourier method, to study the coherent evolution of a spatially indirect exciton (IX) in semiconductor heterostructures. The mutual Coulomb interaction of the electron-hole pair and the electrostatic potentials generated by external gates and acting on the two particles separately are taken into account exactly in the two-particle dynamics. As relevant examples, step/downhill and barrier/well potential profiles are considered. The space- and time-dependent evolutions during the scattering event as well as the asymptotic time behavior are analyzed. For typical parameters of GaAs-based devices, the transmission or reflection of the pair turns out to be a complex two-particle process, due to comparable and competing Coulomb, electrostatic, and kinetic energy scales. Depending on the intensity and anisotropy of the scattering potentials, the quantum evolution may result in excitation of the IX internal degrees of freedom, dissociation of the pair, or transmission in small periodic IX wavepackets due to dwelling of one particle in the barrier region. We discuss the occurrence of each process in the full parameter space of the scattering potentials and the relevance of our results for current excitronic technologies.
NASA Astrophysics Data System (ADS)
Grasselli, Federico; Bertoni, Andrea; Goldoni, Guido
2015-01-01
We study the unitary propagation of a two-particle one-dimensional Schrödinger equation by means of the Split-Step Fourier method, to study the coherent evolution of a spatially indirect exciton (IX) in semiconductor heterostructures. The mutual Coulomb interaction of the electron-hole pair and the electrostatic potentials generated by external gates and acting on the two particles separately are taken into account exactly in the two-particle dynamics. As relevant examples, step/downhill and barrier/well potential profiles are considered. The space- and time-dependent evolutions during the scattering event as well as the asymptotic time behavior are analyzed. For typical parameters of GaAs-based devices, the transmission or reflection of the pair turns out to be a complex two-particle process, due to comparable and competing Coulomb, electrostatic, and kinetic energy scales. Depending on the intensity and anisotropy of the scattering potentials, the quantum evolution may result in excitation of the IX internal degrees of freedom, dissociation of the pair, or transmission in small periodic IX wavepackets due to dwelling of one particle in the barrier region. We discuss the occurrence of each process in the full parameter space of the scattering potentials and the relevance of our results for current excitronic technologies.
Sun, Zhihu; Yang, Xiaoyu; Wang, Chao; Yao, Tao; Cai, Liang; Yan, Wensheng; Jiang, Yong; Hu, Fengchun; He, Jingfu; Pan, Zhiyun; Liu, Qinghua; Wei, Shiqiang
2014-10-28
Control over the magnetic interactions in dilute magnetic semiconductor quantum dots (DMSQDs) is a key issue to future development of nanometer-sized integrated "spintronic" devices. However, manipulating the magnetic coupling between impurity ions in DMSQDs remains a great challenge because of the intrinsic quantum confinement effects and self-purification of the quantum dots. Here, we propose a hybrid structure to achieve room-temperature ferromagnetic interactions in DMSQDs, via engineering the density and nature of the energy states at the Fermi level. This idea has been applied to Co-doped ZnO DMSQDs where the growth of a reduced graphene oxide shell around the Zn(0.98)Co(0.02)O core turns the magnetic interactions from paramagnetic to ferromagnetic at room temperature, due to the hybridization of 2p(z) orbitals of graphene and 3d obitals of Co(2+)-oxygen-vacancy complexes. This design may open up a kind of possibility for manipulating the magnetism of doped oxide nanostructures. PMID:25222885
Beard, Matthew C; Luther, Joseph M; Semonin, Octavi E; Nozik, Arthur J
2013-06-18
Improving the primary photoconversion process in a photovoltaiccell by utilizing the excess energy that is otherwise lost as heat can lead to an increase in the overall power conversion efficiency (PCE). Semiconductor nanocrystals (NCs) with at least one dimension small enough to produce quantum confinement effects provide new ways of controlling energy flow not achievable in thin film or bulk semiconductors. Researchers have developed various strategies to incorporate these novel structures into suitable solar conversion systems. Some of these methods could increase the PCE past the Shockley-Queisser (SQ) limit of ∼33%, making them viable "third generation photovoltaic" (TGPV) cell architectures. Surpassing the SQ limit for single junction solar cells presents both a scientific and a technological challenge, and the use of semiconductor NCs to enhance the primary photoconversion process offers a promising potential solution. The NCs are synthesized via solution phase chemical reactions producing stable colloidal solutions, where the reaction conditions can be modified to produce a variety of shapes, compositions, and structures. The confinement of the semiconductor NC in one dimension produces quantum films, wells, or discs. Two-dimensional confinement leads to quantum wires or rods (QRs), and quantum dots (QDs) are three-dimensionally confined NCs. The process of multiple exciton generation (MEG) converts a high-energy photon into multiple electron-hole pairs. Although many studies have demonstrated that MEG is enhanced in QDs compared with bulk semiconductors, these studies have either used ultrafast spectroscopy to measure the photon-to-exciton quantum yields (QYs) or theoretical calculations. Implementing MEG in a working solar cell has been an ongoing challenge. In this Account, we discuss the status of MEG research and strategies towards implementing MEG in working solar cells. Recently we showed an external quantum efficiency for photocurrent of greater
Nevedomskiy, V. N. Bert, N. A.; Chaldyshev, V. V.; Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R.
2015-12-15
A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix.
Quantum oscillations in Rashba semiconductor BiTeCl
NASA Astrophysics Data System (ADS)
Chen, F.; Zhao, D.; Xiang, Z. J.; Shang, C.; Luo, X. G.; Pan, B. Y.; Li, S. Y.; Wu, T.; Chen, X. H.
2014-11-01
Recently, a Dirac surface state (SS) was observed in Rashba semiconductor BiTeCl by angle-resolved photoemission spectroscopy (ARPES), which suggested strong inversion symmetry breaking therein, despite the absence of such symmetry breaking in existing first-principles calculations. To clarify the aforementioned conflict as well as understand the nature of such emergent phenomenon, we employ both high-field Shubnikov-de Haas (SdH) oscillation and Hall measurements to study BiTeCl single crystals. Both techniques yield consistent observation of a three-dimensional Fermi surface from a bulk state, while Dirac surface state contribution appears absent. Finally, we propose that various gating techniques could be used to explore the novel topological nature of this material.
Charge transport through a semiconductor quantum dot-ring nanostructure
NASA Astrophysics Data System (ADS)
Kurpas, Marcin; Kędzierska, Barbara; Janus-Zygmunt, Iwona; Gorczyca-Goraj, Anna; Wach, Elżbieta; Zipper, Elżbieta; Maśka, Maciej M.
2015-07-01
Transport properties of a gated nanostructure depend crucially on the coupling of its states to the states of electrodes. In the case of a single quantum dot the coupling, for a given quantum state, is constant or can be slightly modified by additional gating. In this paper we consider a concentric dot-ring nanostructure (DRN) and show that its transport properties can be drastically modified due to the unique geometry. We calculate the dc current through a DRN in the Coulomb blockade regime and show that it can efficiently work as a single-electron transistor (SET) or a current rectifier. In both cases the transport characteristics strongly depend on the details of the confinement potential. The calculations are carried out for low and high bias regime, the latter being especially interesting in the context of current rectification due to fast relaxation processes.
Pauli equation for semiconductor quantum dot photoluminescence kinetics investigation
NASA Astrophysics Data System (ADS)
Turkov, Vadim K.; Leonov, Mikhail Y.; Rukhlenko, Ivan D.; Fedorov, Anatoly V.
2012-11-01
We develop a theory of secondary emission from a single quantum dot, when the lowest-energy states of its electron-hole pairs are involved in the photoluminescence process. For the sake of definiteness, our model allows for two states contributing to the luminescence. We analyze the dependency of secondary emission intensity on the energy gap between the states, while considering that the gap is determined by the quantum dot's size. An analytical expression for the time-dependent signal of thermalized luminescence is obtained using an analytical solution to the kinetic Pauli equation. This expression yields the signal of stationary luminescence as the spectral width of the excitation pulse tends to zero.
NASA Astrophysics Data System (ADS)
Nichele, Fabrizio; Hennel, Szymon; Pietsch, Patrick; Wegscheider, Werner; Stano, Peter; Jacquod, Philippe; Ihn, Thomas; Ensslin, Klaus
2015-05-01
Storing, transmitting, and manipulating information using the electron spin resides at the heart of spintronics. Fundamental for future spintronics applications is the ability to control spin currents in solid state systems. Among the different platforms proposed so far, semiconductors with strong spin-orbit interaction are especially attractive as they promise fast and scalable spin control with all-electrical protocols. Here we demonstrate both the generation and measurement of pure spin currents in semiconductor nanostructures. Generation is purely electrical and mediated by the spin dynamics in materials with a strong spin-orbit field. Measurement is accomplished using a spin-to-charge conversion technique, based on the magnetic field symmetry of easily measurable electrical quantities. Calibrating the spin-to-charge conversion via the conductance of a quantum point contact, we quantitatively measure the mesoscopic spin Hall effect in a multiterminal GaAs dot. We report spin currents of 174 pA, corresponding to a spin Hall angle of 34%.
NASA Astrophysics Data System (ADS)
Ramsay, A. J.
2010-10-01
The spin of a carrier trapped in a self-assembled quantum dot has the potential to be a robust optically active qubit that is compatible with existing III-V semiconductor device technology. A key requirement for building a quantum processor is the ability to dynamically prepare, control and detect single quantum states. Here, experimental progress in the coherent optical control of single semiconductor quantum dots over the past decade is reviewed, alongside an introductory discussion of the basic principles of coherent control.
Formation of strain-induced quantum dots in gated semiconductor nanostructures
Thorbeck, Ted; Zimmerman, Neil M.
2015-08-15
A long-standing mystery in the field of semiconductor quantum dots (QDs) is: Why are there so many unintentional dots (also known as disorder dots) which are neither expected nor controllable. It is typically assumed that these unintentional dots are due to charged defects, however the frequency and predictability of the location of the unintentional QDs suggests there might be additional mechanisms causing the unintentional QDs besides charged defects. We show that the typical strains in a semiconductor nanostructure from metal gates are large enough to create strain-induced quantum dots. We simulate a commonly used QD device architecture, metal gates on bulk silicon, and show the formation of strain-induced QDs. The strain-induced QD can be eliminated by replacing the metal gates with poly-silicon gates. Thus strain can be as important as electrostatics to QD device operation operation.
Individual Cr atom in a semiconductor quantum dot: Optical addressability and spin-strain coupling
NASA Astrophysics Data System (ADS)
Lafuente-Sampietro, A.; Utsumi, H.; Boukari, H.; Kuroda, S.; Besombes, L.
2016-04-01
We demonstrate the optical addressability of the spin of an individual chromium atom (Cr) embedded in a semiconductor quantum dot. The emission of Cr-doped quantum dots and their evolution in magnetic field reveal a large magnetic anisotropy of the Cr spin induced by local strain. This results in the zero field splitting of the 0, ±1 , and ±2 Cr spin states and in a thermalization on the magnetic ground states 0 and ±1 . The observed strong spin to strain coupling of Cr is of particular interest for the development of hybrid spin-mechanical devices where coherent mechanical driving of an individual spin in an oscillator is needed. The magneto-optical properties of Cr-doped quantum dots are modeled by a spin Hamiltonian including the sensitivity of the Cr spin to the strain and the influence of the quantum dot symmetry on the carrier-Cr spin coupling.
Interacting quantum fields and the chronometric principle
Segal, I. E.
1976-01-01
A form of interaction in quantum field theory is described that is physically intrinsic rather than superimposed via a postulated nonlinearity on a hypothetical free field. It derives from the extension to general symmetries of the distinction basic for the chronometric cosmology between the physical (driving) and the observed energies, together with general precepts of quantum field theory applicable to nonunitary representations. The resulting interacting field is covariant, causal, involves real particle production, and is devoid of nontrivial ultraviolet divergences. Possible physical applications are discussed. PMID:16592353
Interaction picture density matrix quantum Monte Carlo
Malone, Fionn D. Lee, D. K. K.; Foulkes, W. M. C.; Blunt, N. S.; Shepherd, James J.; Spencer, J. S.
2015-07-28
The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible.
All-optical depletion of dark excitons from a semiconductor quantum dot
Schmidgall, E. R.; Schwartz, I.; Cogan, D.; Gershoni, D.; Gantz, L.; Heindel, T.; Reitzenstein, S.
2015-05-11
Semiconductor quantum dots are considered to be the leading venue for fabricating on-demand sources of single photons. However, the generation of long-lived dark excitons imposes significant limits on the efficiency of these sources. We demonstrate a technique that optically pumps the dark exciton population and converts it to a bright exciton population, using intermediate excited biexciton states. We show experimentally that our method considerably reduces the dark exciton population while doubling the triggered bright exciton emission, approaching thereby near-unit fidelity of quantum dot depletion.
Effect of charge imbalance parameter on LEKW in ion-implanted quantum semiconductor plasmas
Chaudhary, Sandhya; Yadav, Nishchhal; Ghosh, S.
2015-07-31
In this study we present an analytical investigation on the propagation characteristics of electro-kinetic wave modified through quantum correction term and charge imbalance parameter using quantum hydrodynamic model for an ion-implanted semiconductor plasma. The dispersion relation has been analyzed in two distinct velocity regimes. We found that as the number of negative charges resides on the colloids increases, their role become increasing effective. The present investigation is important for understanding of wave and instability phenomena and can be put to various interesting applications.
Decoherence-protected spin-photon quantum gates in a hybrid semiconductor-superconductor circuit
NASA Astrophysics Data System (ADS)
Wang, Li; Tu, Tao; Gong, Bo; Guo, Guang-Can
2015-12-01
High-fidelity gate operations are a crucial function for quantum information processing. This problem is particularly challenging for hybrid systems where coherence and control time scales greatly differ by orders of magnitude among different elements. Here we propose decoherence-protected gate operations in an important class of hybrid system in the context of a spin qubit in semiconductor quantum dots coupled to a superconductor resonator. Our scheme is able to generate complex photon states for various applications even in the presence of practical imperfections: limited available control of the spin-photon hybrid system and demanding spin decoherence in current state-of-the-art devices.
Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot.
Rukhlenko, Ivan D; Leonov, Mikhail Yu; Turkov, Vadim K; Litvin, Aleksandr P; Baimuratov, Anvar S; Baranov, Alexander V; Fedorov, Anatoly V
2012-12-01
Optical methods, which allow the determination of the dominant channels of energy and phase relaxation, are the most universal techniques for the investigation of semiconductor quantum dots. In this paper, we employ the kinetic Pauli equation to develop the first generalized model of the pulse-induced photoluminescence from the lowest-energy eigenstates of a semiconductor quantum dot. Without specifying the shape of the excitation pulse and by assuming that the energy and phase relaxation in the quantum dot may be characterized by a set of phenomenological rates, we derive an expression for the observable photoluminescence cross section, valid for an arbitrary number of the quantum dot's states decaying with the emission of secondary photons. Our treatment allows for thermal transitions occurring with both decrease and increase in energy between all the relevant eigenstates at room or higher temperature. We show that in the general case of N states coupled to each other through a bath, the photoluminescence kinetics from any of them is determined by the sum of N exponential functions, whose exponents are proportional to the respective decay rates. We illustrate the application of the developed model by considering the processes of resonant luminescence and thermalized luminescence from the quantum dot with two radiating eigenstates, and by assuming that the secondary emission is excited with either a Gaussian or exponential pulse. Analytic expressions describing the signals of secondary emission are analyzed, in order to elucidate experimental situations in which the relaxation constants may be reliably extracted from the photoluminescence spectra. PMID:23262711
NASA Astrophysics Data System (ADS)
Zhou, Ming; Chang, Shoude; Grover, Chander P.
2004-06-01
Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.
Optically pumped semiconductor quantum dot disk laser operating at 1180 nm.
Rautiainen, Jussi; Krestnikov, Igor; Butkus, Mantas; Rafailov, Edik U; Okhotnikov, Oleg G
2010-03-01
We demonstrate an optically pumped semiconductor disk laser using 39 layers of Stranski-Krastanov InGaAs quantum dots self-assembled during epitaxial growth on a monolithic GaAs/AlAs distributed Bragg reflector. The gain structure bonded to an intracavity diamond crystal heat spreader allows 1.75 W single-transverse-mode output (M(2)<1.2) with circular beam shape operating at 1180 nm in a disk laser geometry. PMID:20195322
Charged quantum dot micropillar system for deterministic light-matter interactions
NASA Astrophysics Data System (ADS)
Androvitsaneas, P.; Young, A. B.; Schneider, C.; Maier, S.; Kamp, M.; Höfling, S.; Knauer, S.; Harbord, E.; Hu, C. Y.; Rarity, J. G.; Oulton, R.
2016-06-01
Quantum dots (QDs) are semiconductor nanostructures in which a three-dimensional potential trap produces an electronic quantum confinement, thus mimicking the behavior of single atomic dipole-like transitions. However, unlike atoms, QDs can be incorporated into solid-state photonic devices such as cavities or waveguides that enhance the light-matter interaction. A near unit efficiency light-matter interaction is essential for deterministic, scalable quantum-information (QI) devices. In this limit, a single photon input into the device will undergo a large rotation of the polarization of the light field due to the strong interaction with the QD. In this paper we measure a macroscopic (˜6∘ ) phase shift of light as a result of the interaction with a negatively charged QD coupled to a low-quality-factor (Q ˜290 ) pillar microcavity. This unexpectedly large rotation angle demonstrates that this simple low-Q -factor design would enable near-deterministic light-matter interactions.
Quantum well states in Rashba semiconductor BiTeI
NASA Astrophysics Data System (ADS)
He, Yang; Zhu, Zhihuai; Hamidian, Mohammad; Chen, Pengcheng; Yam, Yau Chuen; Hoffman, Jennifer
BiTeI displays large Rashba-type spin splitting in both valence and conduction bands. In this work, we use scanning tunneling microscopy to reveal the bipolar nature of BiTeI, confirming the previously observed p-n junction electronic structure. We also discover two-dimensional quantum well states both below and above the semiconducting gap on the Te-terminated surface. This work sheds light on the origin of the giant Rashba splitting in the system. This effort is funded by the NSF Grant DMR-1410480.
Colloidal semiconductor quantum dots with tunable surface composition.
Wei, Helen Hsiu-Ying; Evans, Christopher M; Swartz, Brett D; Neukirch, Amanda J; Young, Jeremy; Prezhdo, Oleg V; Krauss, Todd D
2012-09-12
Colloidal CdS quantum dots (QDs) were synthesized with tunable surface composition. Surface stoichiometry was controlled by applying reactive secondary phosphine sulfide precursors in a layer-by-layer approach. The surface composition was observed to greatly affect photoluminescence properties. Band edge emission was quenched in sulfur terminated CdS QDs and fully recovered when QDs were cadmium terminated. Calculations suggest that electronic states inside the band gap arising from surface sulfur atoms could trap charges, thus inhibiting radiative recombination and facilitating nonradiative relaxation. PMID:22924603
Theory of electron g-tensor in bulk and quantum-well semiconductors
NASA Astrophysics Data System (ADS)
Lau, Wayne H.; Flatte', Michael E.
2004-03-01
We present quantitative calculations for the electron g-tensors in bulk and quantum-well semiconductors based on a generalized P.p envelope function theory solved in a fourteen-band restricted basis set. The dependences of g-tensor on structure, magnetic field, carrier density, temperature, and spin polarization have been explored and will be described. It is found that at temperatures of a few Kelvin and fields of a few Tesla, the g-tensors for bulk semiconductors develop quasi-steplike dependences on carrier density or magnetic field due to magnetic quantization, and this effect is even more pronounced in quantum-well semiconductors due to the additional electric quantization along the growth direction. The influence of quantum confinement on the electron g-tensors in QWs is studied by examining the dependence of electron g-tensors on well width. Excellent agreement between these calculated electron g-tensors and measurements [1-2] is found for GaAs/AlGaAs QWs. This work was supported by DARPA/ARO. [1] A. Malinowski and R. T. Harley, Phys. Rev. B 62, 2051 (2000);[2] Le Jeune et al., Semicond. Sci. Technol. 12, 380 (1997).
NASA Astrophysics Data System (ADS)
Schnedler, M.; Dunin-Borkowski, R. E.; Ebert, Ph.
2016-05-01
Photoexcited scanning tunneling spectroscopy is a promising technique for the determination of carrier concentrations, surface photovoltages, and potentials of semiconductors with atomic spatial resolution. However, extraction of the desired quantities requires computation of the electrostatic potential induced by the proximity of the tip and the tunnel current. This calculation is based on an accurate solution of the Poisson as well as the continuity equations for the tip-vacuum-semiconductor system. For this purpose, the carrier current densities are modeled by classical drift and diffusion equations. However, for small tip radii and highly doped materials, the drift and diffusion transport model significantly overestimates a semiconductor's carrier concentration near the surface, making the quantification of physical properties impossible. In this paper, we apply quantum correction to the drift and diffusion model, in order to account for the so-called quantum compressibility, i.e., reduced compressibility of the carrier gas due to the Pauli principle, in the region of the tip-induced band bending. We compare carrier concentrations, potentials, and tunnel currents derived with and without quantum correction for GaN (10 1 ¯0 ) and GaAs(110) surfaces to demonstrate its necessity.
Quantum centipedes: collective dynamics of interacting quantum walkers
NASA Astrophysics Data System (ADS)
Krapivsky, P. L.; Luck, J. M.; Mallick, K.
2016-08-01
We consider the quantum centipede made of N fermionic quantum walkers on the one-dimensional lattice interacting by means of the simplest of all hard-bound constraints: the distance between two consecutive fermions is either one or two lattice spacings. This composite quantum walker spreads ballistically, just as the simple quantum walk. However, because of the interactions between the internal degrees of freedom, the distribution of its center-of-mass velocity displays numerous ballistic fronts in the long-time limit, corresponding to singularities in the empirical velocity distribution. The spectrum of the centipede and the corresponding group velocities are analyzed by direct means for the first few values of N. Some analytical results are obtained for arbitrary N by exploiting an exact mapping of the problem onto a free-fermion system. We thus derive the maximal velocity describing the ballistic spreading of the two extremal fronts of the centipede wavefunction, including its non-trivial value in the large-N limit.
The interaction of quantum gravity with matter
NASA Astrophysics Data System (ADS)
Grigore, D. R.
2010-11-01
The interaction of (linearized) gravitation with matter is studied in the causal approach up to the second order of perturbation theory. We consider the generic case and prove that gravitation is universal in the sense that the existence of the interaction with gravitation does not put new constraints on the Lagrangian for lower spin fields. We use the formalism of quantum off-shell fields which makes our computation more straightforward and simple.
Profiling the local carrier concentration across a semiconductor quantum dot
Walrath, J. C.; Lin, Yen-Hsiang; Huang, S.; Goldman, R. S.
2015-05-11
We profile the local carrier concentration, n, across epitaxial InAs/GaAs quantum dots (QDs) consisting of 3D islands on top of a 2D alloy layer. We use scanning thermoelectric microscopy to measure a profile of the temperature gradient-induced voltage, which is converted to a profile of the local Seebeck coefficient, S. The S profile is then converted to a conduction band-edge profile and compared with Poisson-Schrodinger band-edge simulations. Our combined computational-experimental approach suggests a reduced carrier concentration in the QD center in comparison to that of the 2D alloy layer. The relative roles of free carrier trapping and/or dopant expulsion are discussed.
Barrier penetration effects on thermopower in semiconductor quantum wells
Vaidya, R. G.; Sankeshwar, N. S. Mulimani, B. G.
2014-01-15
Finite confinement effects, due to the penetration of the electron wavefunction into the barriers of a square well potential, on the low–temperature acoustic-phonon-limited thermopower (TP) of 2DEG are investigated. The 2DEG is considered to be scattered by acoustic phonons via screened deformation potential and piezoelectric couplings. Incorporating the barrier penetration effects, the dependences of diffusion TP and phonon drag TP on barrier height are studied. An expression for phonon drag TP is obtained. Numerical calculations of temperature dependences of mobility and TP for a 10 nm InN/In {sub x}Ga{sub 1−x}N quantum well for different values of x show that the magnitude and behavior of TP are altered. A decrease in the barrier height from 500 meV by a factor of 5, enhances the mobility by 34% and reduces the TP by 58% at 20 K. Results are compared with those of infinite barrier approximation.
Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices.
Trotta, Rinaldo; Wildmann, Johannes S; Zallo, Eugenio; Schmidt, Oliver G; Rastelli, Armando
2014-06-11
Entanglement resources are key ingredients of future quantum technologies. If they could be efficiently integrated into a semiconductor platform, a new generation of devices could be envisioned, whose quantum-mechanical functionalities are controlled via the mature semiconductor technology. Epitaxial quantum dots (QDs) embedded in diodes would embody such ideal quantum devices, but a fine-structure splitting (FSS) between the bright exciton states lowers dramatically the degree of entanglement of the sources and hampers severely their real exploitation in the foreseen applications. In this work, we overcome this hurdle using strain-tunable optoelectronic devices, where any QD can be tuned for the emission of photon pairs featuring the highest degree of entanglement ever reported for QDs, with concurrence as high as 0.75 ± 0.02. Furthermore, we study the evolution of Bell's parameters as a function of FSS and demonstrate for the first time that filtering-free violation of Bell's inequalities requires the FSS to be smaller than 1 μeV. This upper limit for the FSS also sets the tuning range of exciton energies (∼1 meV) over which our device operates as an energy-tunable source of highly entangled photons. A moderate temporal filtering further increases the concurrence and the tunability of exciton energies up to 0.82 and 2 meV, respectively, though at the expense of 60% reduction of count rate. PMID:24845369
Spin-Photon Entanglement in Semiconductor Quantum Dots: Towards Solid-State-Based Quantum Repeaters
NASA Astrophysics Data System (ADS)
De Greve, Kristiaan; Yamamoto, Yoshihisa
`In this chapter, we introduced and analyze techniques that allow truly secure secret key sharing over long distances, using public, open channels, where the laws of quantum mechanics ensure the security of the long distance key sharing - an idea generally referred to as the essence of a quantum repeater. We describe several proof-of-principle experiments where technology based on self-assembled quantum dots is used as the backbone of a future quantum repeater.'
Single Electron Charging and Quantum Effects in Semiconductor Nanostructures
NASA Astrophysics Data System (ADS)
Foxman, Ethan Bradley
1993-01-01
We present an experimental study of a small region (~0.3 times 0.3 mum^2) of two-dimensional electron gas in a GaAs/rm Al_{x}Ga_{1-x}As heterostructure. The small electron gas is coupled to electrical leads through tunnel barriers formed by negatively biased Schottky gates on the surface of the heterostructure. Electron transport is studied as a function of gate voltage, magnetic field, temperature, bias voltage and tunneling barrier height. We observe a rich interplay between single electron charging and quantum effects. The conductance of such systems was known to consist of a series of nearly periodic conductance peaks.^{1,2} We further investigate this behavior and show that our observations are consistent with a model that synthesizes classical single electron charging and a discrete tunneling density of states.^{3,4}. We investigate the nature and origin of this tunneling density of states. The spectrum of states is determined through current-voltage measurements and low-bias conductance measurements. The tunneling density of states is mapped as a function of gate voltage and magnetic field. In the latter case, we show that our observations can be understood through a self-consistent model of single electron charging in the quantum Hall regime.^5. Lastly, we report conductance measurements in the regime where the conductance across the tunnel barriers separating the small electron gas from its leads becomes of order e^2/h. We observe that in this regime single electron charging effects are quenched. This effect is shown to arise from an increased capacitance across one of the barriers and from the increased lifetime broadening of states in the small electron gas. ^6 (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.) ftn^1J. H. F. Scott -Thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A. Antoniadis, Phys. Rev. Lett. 62, 583 (1989). ^2U. Meirav, M. A. Kastner, and S. J. Wind
III-V semiconductor quantum well and superlattice detectors
NASA Astrophysics Data System (ADS)
Walther, Martin; Fuchs, Frank; Schneider, Harald; Fleissner, Joachim; Schmitz, J.; Pletschen, Wilfried; Braunstein, Juergen; Ziegler, Johann; Cabanski, Wolfgang A.; Koidl, Peter; Weimann, Guenter
1998-10-01
The paper reviews the development of IR detectors for the 8 - 12 micrometer wavelength range based on GaAs/AlGaAs quantum well structures and InAs/(GaIn)Sb short-period superlattices (SPSLs) at the Fraunhofer-Institute IAF. Photoconductive GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) are used for the fabrication of starring IR cameras for thermal imaging in the third atmospheric window. The long wavelength infrared (LWIR) camera, devleoped in cooperation with AEG Infrarot-Module (AIM), consists of a two-dimensional focal plane array (FPA) with 256 X 256 detector elements, flip- chip bonded to a read-out integrated circuit (ROIC). The technology for the fabrication of FPAs, electrical and optical properties of single detector elements in the two-dimensional arrangement and the properties of the LWIR camera system are reported. A noise equivalent temperature difference (NETD) below 10 mK has been measured at an operation temperature of T equals 65 K with an integration time of 20 ms. More than 99.8% of all pixels are working and no cluster defects are observed. InAs/(GaIn)Sb SPSLs with a broken gap type-II band alignment are well suited for the fabrication of IR detectors covering the 3 - 12 micrometer spectral range. Due to the lattice mismatch of the InAs/(GaIn)Sb SPSL with respect to GaSb, tight control of thickness and composition of the layers and a controlled formation of the chemical bonds across the interface in the SPSLs are used for strain compensation. Photodiodes with a cut-off wavelength (lambda) c equals 8 micrometer and a current responsivity R(lambda ) equals 2 A/W exhibit a dynamic impedance of R0A equals 1k(Omega) cm2 at T equals 77 K. This leads to a Johnson- noise limited detectivity in excess of D* equals 1 X 1012 cm(Hz)1/2/W for these type of detectors.
Control of the spin geometric phase in semiconductor quantum rings
Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku
2013-01-01
Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov–Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations. PMID:24067870
Injection locking of a semiconductor double-quantum-dot micromaser
NASA Astrophysics Data System (ADS)
Liu, Y.-Y.; Stehlik, J.; Gullans, M. J.; Taylor, J. M.; Petta, J. R.
Narrow linewidth lasers and masers are desirable for applications such as frequency standards and low-noise amplifiers. Recently we have demonstrated a double-quantum-dot (DQD) micromaser, which generates photons through single electron tunneling events. Charge noise couples to the DQD energy levels and results in a maser linewidth that is 100 times larger than the Schawlow-Townes prediction. We demonstrate linewidth narrowing by more than a factor of 10 using injection locking. The injection locking range is measured as a function of input power and shown to be in excellent agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models. Supported by the National Science Foundation and the Gordon and Betty Moore Foundation's EPiQS initiative through Grant No. GBMF4535.
Transport and photodetection in self-assembled semiconductor quantum dots.
Razeghi, M; Lim, H; Tsao, S; Szafraniec, J; Zhang, W; Mi, K; Movaghar, B
2005-02-01
A great step forward in science and technology was made when it was discovered that lattice mismatch can be used to grow highly ordered, artificial atom-like structures called self-assembled quantum dots. Several groups have in the meantime successfully demonstrated useful infrared photodetection devices which are based on this technology. The new physics is fascinating, and there is no doubt that many new applications will be found when we have developed a better understanding of the underlying physical processes, and in particular when we have learned how to integrate the exciting new developments made in nanoscopic addressing and molecular self-assembly methods with semiconducting dots. In this paper we examine the scientific and technical questions encountered in current state of the art infrared detector technology and suggest ways of overcoming these difficulties. Promoting simple physical pictures, we focus in particular on the problem of high temperature detector operation and discuss the origin of dark current, noise, and photoresponse. PMID:21727426
Chen, R S; Wang, W C; Lu, M L; Chen, Y F; Lin, H C; Chen, K H; Chen, L C
2013-08-01
The quantum efficiency and carrier lifetime that decide the photoconduction (PC) efficiencies in the metal oxide semiconductor nanowires (NWs) have been investigated. The experimental result surprisingly shows that the SnO2, TiO2, WO3, and ZnO NWs reveal extraordinary quantum efficiencies in common, which are over one to three orders of magnitude lower than the theoretical expectation. The surface depletion region (SDR)-controlled photoconductivity is proposed to explain the anomalous quantum efficiency and its power dependence. The inherent difference between the metal oxide nanostructures such as carrier lifetime, carrier concentration, and dielectric constant leading to the distinct PC performance and behavior are also discussed. PMID:23779084
Quantum size effects on CdTexS1 - x semiconductor-doped glass
NASA Astrophysics Data System (ADS)
Medeiros Neto, J. A.; Barbosa, L. C.; Cesar, C. L.; Alves, O. L.; Galembeck, F.
1991-11-01
We present experimental evidences of quantum confinement in borosilicate glasses with a new microcrystallite CdTexS1-x semiconductor. The microcrystallite sizes are controlled by the heat-treatment time and temperature. Transmission electron microscopy measurements show the microcrystallites average diameters near 55 Å for the sample treated for the longest time. We observe a red shift from 570 to 640 nm in the absorption and photoluminescence spectra as the size increases. These shifts agree with the expected quantum-confined energies, varying from 0.80 to 0.60 eV. The absorption spectra also show a second feature which can be assigned to the second quantum-confined transition.
Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping.
Rossi, Alessandro; Tanttu, Tuomo; Hudson, Fay E; Sun, Yuxin; Möttönen, Mikko; Dzurak, Andrew S
2015-01-01
As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a new class of quantum-based electronics. Among others, multi-layer-gated silicon metal-oxide-semiconductor (MOS) technology can be used to control single charge or spin confined in electrostatically-defined quantum dots (QD). These QD-based devices are an excellent platform for quantum computing applications and, recently, it has been demonstrated that they can also be used as single-electron pumps, which are accurate sources of quantized current for metrological purposes. Here, we discuss in detail the fabrication protocol for silicon MOS QDs which is relevant to both quantum computing and quantum metrology applications. Moreover, we describe characterization methods to test the integrity of the devices after fabrication. Finally, we give a brief description of the measurement set-up used for charge pumping experiments and show representative results of electric current quantization. PMID:26067215
Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping
Rossi, Alessandro; Tanttu, Tuomo; Hudson, Fay E.; Sun, Yuxin; Möttönen, Mikko; Dzurak, Andrew S.
2015-01-01
As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a new class of quantum-based electronics. Among others, multi-layer-gated silicon metal-oxide-semiconductor (MOS) technology can be used to control single charge or spin confined in electrostatically-defined quantum dots (QD). These QD-based devices are an excellent platform for quantum computing applications and, recently, it has been demonstrated that they can also be used as single-electron pumps, which are accurate sources of quantized current for metrological purposes. Here, we discuss in detail the fabrication protocol for silicon MOS QDs which is relevant to both quantum computing and quantum metrology applications. Moreover, we describe characterization methods to test the integrity of the devices after fabrication. Finally, we give a brief description of the measurement set-up used for charge pumping experiments and show representative results of electric current quantization. PMID:26067215
Accurate band gaps of semiconductors and insulators from Quantum Monte Carlo calculations
NASA Astrophysics Data System (ADS)
Nazarov, Roman; Hood, Randolph; Morales, Miguel
2015-03-01
Ab initio calculations are useful tools in developing materials with targeted band gaps for semiconductor industry. Unfortunately, the main workhorse of ab initio calculations - density functional theory (DFT) in local density approximation (LDA) or generalized gradient approximation (GGA) underestimates band gaps. Several approaches have been proposed starting from empirical corrections to more elaborate exchange-correlation functionals to deal with this problem. But none of these work well for the entire range of semiconductors and insulators. Deficiencies of DFT as a mean field method can be overcome using many-body techniques. Quantum Monte Carlo (QMC) methods can obtain a nearly exact numerical solutions of both total energies and spectral properties. Diffusion Monte Carlo (DMC), the most widely used QMC method, has been shown to provide gold standard results for different material properties, including spectroscopic constants of dimers and clusters, equation of state for solids, accurate descriptions of defects in metals and insulators. To test DMC's accuracy in a wider range of semiconductors and insulators we have computed band gaps of several semiconductors and insulators. We show that DMC can provide superior agreement with experiment compared with more traditional DFT approaches including high level exchange-correlation functionals (e.g. HSE).
Quantum Monte Carlo calculations for point defects in semiconductors
NASA Astrophysics Data System (ADS)
Hennig, Richard
2010-03-01
Point defects in silicon have been studied extensively for many years. Nevertheless the mechanism for self diffusion in Si is still debated. Direct experimental measurements of the selfdiffusion in silicon are complicated by the lack of suitable isotopes. Formation energies are either obtained from theory or indirectly through the analysis of dopant and metal diffusion experiments. Density functional calculations predict formation energies ranging from 3 to 5 eV depending on the approximations used for the exchange-correlation functional [1]. Analysis of dopant and metal diffusion experiments result in similar broad range of diffusion activation energies of 4.95 [2], 4.68 [3], 2.4 eV [4]. Assuming a migration energy barrier of 0.1-0.3 eV [5], the resulting experimental interstitial formation energies range from 2.1 - 4.9 eV. To answer the question of the formation energy of Si interstitials we resort to a many-body description of the wave functions using quantum Monte Carlo (QMC) techniques. Previous QMC calculations resulted in formation energies for the interstitials of around 5 eV [1,6]. We present a careful analysis of all the controlled and uncontrolled approximations that affect the defect formation energies in variational and diffusion Monte Carlo calculations. We find that more accurate trial wave functions for QMC using improved Jastrow expansions and most importantly a backflow transformation for the electron coordinates significantly improve the wave functions. Using zero-variance extrapolation, we predict interstitial formation energies in good agreement with hybrid DFT functionals [1] and recent GW calculations [7]. [4pt] [1] E. R. Batista, J. Heyd, R. G. Hennig, B. P. Uberuaga, R. L. Martin, G. E. Scuseria, C. J. Umrigar, and J. W. Wilkins. Phys. Rev. B 74, 121102(R) (2006).[0pt] [2] H. Bracht, E. E. Haller, and R. Clark-Phelps, Phys. Rev. Lett. 81, 393 (1998). [0pt] [3] A. Ural, P. B. Griffin, and J. D. Plummer, Phys. Rev. Lett. 83, 3454 (1999). [0pt
NASA Astrophysics Data System (ADS)
Kim, Jungho
2013-11-01
We theoretically investigate the phase recovery acceleration of quantum-dot (QD) semiconductor optical amplifiers (SOAs) by means of the optical pump injection to the quantum-well (QW) wetting layer (WL). We compare the ultrafast gain and phase recovery responses of QD SOAs in either the electrical or the optical pumping scheme by numerically solving 1088 coupled rate equations. The ultrafast gain recovery responses on the order of sub-picosecond are nearly the same for the two pumping schemes. The ultrafast phase recovery is not significantly accelerated by increasing the electrical current density, but greatly improved by increasing the optical pumping power to the QW WL. Because the phase recovery time of QD SOAs with the optical pumping scheme can be reduced down to several picoseconds, the complete phase recovery can be achieved when consecutive pulse signals with a repetition rate of 100 GHz is injected.
Hidden quantum mirage by negative refraction in semiconductor P-N junctions
NASA Astrophysics Data System (ADS)
Zhang, Shu-Hui; Zhu, Jia-Ji; Yang, Wen; Lin, Hai-Qing; Chang, Kai
2016-08-01
We predict a robust quantum interference phenomenon in a semiconductor P-N junction: with a local pump on one side of the junction, the response of a local probe on the other side behaves as if the disturbance emanates not from the pump but instead from its mirror image about the junction. This phenomenon follows from the matching of Fermi surfaces of the constituent materials, thus it is robust against the details of the junction (e.g., width, potential profile, and even disorder), in contrast to the widely studied anomalous focusing caused by negative refraction. The recently fabricated P-N junctions in 2D semiconductors provide ideal platforms to explore this phenomenon and its applications to dramatically enhance charge and spin transport as well as carrier-mediated long-range correlation.
Photoemission and Masing in a Cavity-Coupled Semiconductor Double Quantum Dot
NASA Astrophysics Data System (ADS)
Petta, Jason
2015-05-01
Semiconductor circuit QED devices are exciting platforms for studying the coupled dynamics of single charges, photons, and phonons. I will describe a newly discovered maser, which is driven by single electron tunneling events that result in gigahertz frequency photon emission. Semiconductor double quantum dots, sometimes referred to as electrically tunable ``artificial molecules,'' serve as the gain medium and are placed inside of a high quality factor microwave cavity. Maser action is verified by comparing the statistics of the emitted microwave field above and below the maser threshold. Furthermore, by driving the cavity with a seed tone, it is possible to injection lock the maser, greatly reducing the emission linewidth. The frequency range over which the maser can be injection locked closely follows predictions from Adler's equation. Research was performed in collaboration with Yinyu Liu, Jiri Stehlik, Christopher Eichler, Michael Gullans, and Jacob Taylor. We acknowledge support from the Sloan and Packard Foundations, ARO, DARPA, and the NSF.
NASA Astrophysics Data System (ADS)
Miranowicz, Adam; Ã-zdemir, Şahin K.; Bajer, Jiří; Yusa, Go; Imoto, Nobuyuki; Hirayama, Yoshiro; Nori, Franco
2015-08-01
We discuss methods of quantum state tomography for solid-state systems with a large nuclear spin I =3 /2 in nanometer-scale semiconductors devices based on a quantum well. Due to quadrupolar interactions, the Zeeman levels of these nuclear-spin devices become nonequidistant, forming a controllable four-level quantum system (known as quartit or ququart). The occupation of these levels can be selectively and coherently manipulated by multiphoton transitions using the techniques of nuclear magnetic resonance (NMR) [Yusa et al., Nature (London) 434, 1001 (2005), 10.1038/nature03456]. These methods are based on an unconventional approach to NMR, where the longitudinal magnetization Mz is directly measured. This is in contrast to the standard NMR experiments and tomographic methods, where the transverse magnetization Mx y is detected. The robustness against errors in the measured data is analyzed by using the condition number based on the spectral norm. We propose several methods with optimized sets of rotations yielding the highest robustness against errors, as described by the condition number equal to 1, assuming an ideal experimental detection. This robustness is only slightly deteriorated, as given by the condition number equal to 1.05, for a more realistic "noisy" Mz detection based on the standard cyclically ordered phase sequence (CYCLOPS) method.
Quantum confinement in semiconductor nanofilms: Optical spectra and multiple exciton generation
NASA Astrophysics Data System (ADS)
Khmelinskii, Igor; Makarov, Vladimir I.
2016-04-01
We report optical absorption and photoluminescence (PL) spectra of Si and SnO2 nanocrystalline films in the UV-vis-NIR range, featuring discrete bands resulting from transverse quantum confinement, observed in the optical spectra of nanofilms for the first time ever. The film thickness ranged from 3.9 to 12.2 nm, depending on the material. The results are interpreted within the particle-in-a-box model, with infinite walls. The calculated values of the effective electron mass are independent on the film thickness and equal to 0.17mo (Si) and 0.21mo (SnO2), with mo the mass of the free electron. The second calculated model parameter, the quantum number n of the HOMO (valence band), was also thickness-independent: 8.00 (Si) and 7.00 (SnO2). The transitions observed in absorption all start at the level n and correspond to Δn = 1, 2, 3, …. The photoluminescence bands exhibit large Stokes shifts, shifting to higher energies with increased excitation energy. In effect, nanolayers of Si, an indirect-gap semiconductor, behave as a direct-gap semiconductor, as regards the transverse-quantized level system. A prototype Si-SnO2 nanofilm photovoltaic cell demonstrated photoelectron quantum yields achieving 2.5, showing clear evidence of multiple exciton generation, for the first time ever in a working nanofilm device.
Noncovalent Interactions by Quantum Monte Carlo.
Dubecký, Matúš; Mitas, Lubos; Jurečka, Petr
2016-05-11
Quantum Monte Carlo (QMC) is a family of stochastic methods for solving quantum many-body problems such as the stationary Schrödinger equation. The review introduces basic notions of electronic structure QMC based on random walks in real space as well as its advances and adaptations to systems with noncovalent interactions. Specific issues such as fixed-node error cancellation, construction of trial wave functions, and efficiency considerations that allow for benchmark quality QMC energy differences are described in detail. Comprehensive overview of articles covers QMC applications to systems with noncovalent interactions over the last three decades. The current status of QMC with regard to efficiency, applicability, and usability by nonexperts together with further considerations about QMC developments, limitations, and unsolved challenges are discussed as well. PMID:27081724
Interaction picture density matrix quantum Monte Carlo.
Malone, Fionn D; Blunt, N S; Shepherd, James J; Lee, D K K; Spencer, J S; Foulkes, W M C
2015-07-28
The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible. PMID:26233116
Exchange Instabilities in Semiconductor Double-Quantum-Well Systems
NASA Astrophysics Data System (ADS)
Zheng, Lian; Ortalano, M. W.; Das Sarma, S.
1997-03-01
We study interaction-driven spontaneous spin and pseudospin (layer degree of freedom) polarization instabilities in double-layer electron systems in the Hartree-Fock approximation (HFA) and in self-consistent local density and local spin density approximations ( LDA and LSDA). Within the HFA, both spin and pseudospin instabilities are found at low electron densities. However, this spontaneous pseudospin polarization is an ``easy-plane'' magnetization rather than a bilayer to monolayer charge transfer transition. Correlation effects are treated in self-consistent LDA and LSDA calculations, which give qualitatively the same results as the HFA. Recent experimentsfootnote Y. Katayama, D.C. Tsui, H.C. Manoharan, and M. Shayegan, Surf. Sci. 305, 405 (1994); K. Katayama et al., Phys. Rev. B 52, 14817 (1995); X. Ying, S.R. Parihar, H.C. Manoharan, and M. Shayegan, ibid 52, 11611 (1995); N.K. Patel et al., ibid 53, 15433 (1996). involving charge transfers in double-layer systems under an external bias potential are quantitatively explained by the self-consistent LDA and LSDA calculations. preprint
Nonlinear quantum optics mediated by Rydberg interactions
NASA Astrophysics Data System (ADS)
Firstenberg, O.; Adams, C. S.; Hofferberth, S.
2016-08-01
By mapping the strong interaction between Rydberg excitations in ultra-cold atomic ensembles onto single photons via electromagnetically induced transparency, it is now possible to realize a medium which exhibits a strong optical nonlinearity at the level of individual photons. We review the theoretical concepts and the experimental state-of-the-art of this exciting new field, and discuss first applications in the field of all-optical quantum information processing.
Statistically interacting quantum gases in D dimensions
NASA Astrophysics Data System (ADS)
Potter, Geoffrey G.
Chapter 1. Exact and explicit results are derived for the thermodynamic properties (isochores, isotherms, isobars, response functions, speed of sound) of a quantum gas in dimensions D ≥ 1 and with fractional exclusion statistics 0 ≤ g ≤ 1 connecting bosons (g = 0) and fermions (g = 1). In D = 1 the results are equivalent to those of the Calogero-Sutherland model, a gas with long-range two-body interaction. Emphasis is given to the crossover between boson-like and fermion-like features, caused by aspects of the statistical interaction that mimic long-range attraction and short-range repulsion. A phase transition along the isobar occurs at a nonzero temperature in all dimensions. The T-dependence of the speed of sound is in simple relation to isochores and isobars. The effects of soft container walls are accounted for rigorously for the case of a pure power-law potential. Chapter 2. The exact thermodynamics (isochores, isotherms, isobars, response functions, speed of sound) is worked out for a statistically interacting quantum gas in D dimensions. The results in D = 1 are those of the thermodynamic Bethe ansatz for the Nonlinear Schrodinger model, a gas with repulsive two-body contact potential. In all dimensions the ideal boson and fermion gases are recovered in the weak-coupling and strong-coupling limits, respectively. For all nonzero couplings ideal fermion gas behavior emerges for D >> 1 and, in the limit D → infinity, a phase transition occurs at T > 0. Significant deviations from ideal quantum gas behavior are found for intermediate coupling and finite D . Chapter 3. Methodology previously developed in the framework of the coordinate Bethe ansatz applied to integrable quantum gas models is employed to calculate some ground-state properties and elementary excitations for quantum gas models in D = 1 dimensions with statistical interactions that are not equivalent to dynamical interactions. The focus in this comparative study is on modifications of the
NASA Astrophysics Data System (ADS)
Solenov, Dmitry; Economou, Sophia E.; Reinecke, T. L.
2013-01-01
Implementations for quantum computing require fast single- and multiqubit quantum gate operations. In the case of optically controlled quantum dot qubits, theoretical designs for long-range two- or multiqubit operations satisfying all the requirements in quantum computing are not yet available. We have developed a design for a fast, long-range two-qubit gate mediated by a photonic microcavity mode using excited states of the quantum-dot-cavity system that addresses these needs. This design does not require identical qubits, it is compatible with available optically induced single-qubit operations, and it advances opportunities for scalable architectures. We show that the gate fidelity can exceed 90% in experimentally accessible systems.
The doping of the polyimide alignment layer by semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Konshina, E. A.; Galin, I. F.; Gavrish, E. O.; Vakulin, D. A.
2013-08-01
We investigated the electro-optic properties of nematic liquid crystal cells oriented by polyimide (PI) layer doped with 3.5 nm semiconductor quantum dots (QDs) CdSe/ZnS at concentrations of 0.05 and 0.1 wt. %. It is shown that doping PI orienting layer by QDs reduces the permittivity and the phase delay, as well as increases the electrical resistance of the cells. Also we observed deceleration of liquid crystal (LC) optical response caused by the screening effect of the orienting layer.
Vitukhnovskii, A. G. Vaschenko, A. A.; Bychkovskii, D. N.; Dirin, D. N.; Tananaev, P. N.; Vakshtein, M. S.; Korzhonov, D. A.
2013-12-15
The results are reported of an experimental study of samples of organic light-emitting diodes (OLEDs) with luminescent layers fabricated on the basis of two types of CdSe/CdS/ZnS semiconductor quantum dots (QDs) with average CdSe core diameters of 3.2 and 4.1 nm and the same overall diameters of 6.5 nm. The dependences of the LED efficiency on the applied voltage are determined. Assumptions are made about ways of optimizing the design of high-efficiency LEDs.
Kondo effect in a semiconductor quantum dot coupled to ferromagnetic electrodes
NASA Astrophysics Data System (ADS)
Hamaya, K.; Kitabatake, M.; Shibata, K.; Jung, M.; Kawamura, M.; Hirakawa, K.; Machida, T.; Taniyama, T.; Ishida, S.; Arakawa, Y.
2007-12-01
Using a laterally fabricated quantum-dot (QD) spin-valve device, we experimentally study the Kondo effect in the electron transport through a semiconductor QD with an odd number of electrons (N). In a parallel magnetic configuration of the ferromagnetic electrodes, the Kondo resonance at N =3 splits clearly without external magnetic fields. With applying magnetic fields (B), the splitting is gradually reduced, and then the Kondo effect is almost restored at B =1.2T. This means that, in the Kondo regime, an inverse effective magnetic field of B ˜1.2T can be applied to the QD in the parallel magnetic configuration of the ferromagnetic electrodes.
Chae, Weon-Sik Choi, Eunjin; Ku Jung, Yun; Jung, Jin-Seung; Lee, Jin-Kyu
2014-04-14
We report time-resolved photoluminescence properties on semiconductor quantum dot (QD) superlattices (SLs) using PL lifetime imaging microscopy at a single particle level. PL lifetime imaging technique clearly reveals that different shaped QD SL microcrystals have different time-resolved PL characteristics. The faceted SL microcrystals consisted of well-organized QDs showed faster recombination rates than those of the spherical microparticles including randomly organized QDs, which can be explained by the different degree of energetic couplings among component QDs due to different packing fraction.
Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot-micelles.
Brinker, C. Jeffrey; Bunge, Scott D.; Gabaldon, John; Fan, Hongyou; Scullin, Chessa; Leve, Erik W.; Wilson, Michael C.; Tallant, David Robert; Boyle, Timothy J.
2005-04-01
We report a simple, rapid approach to synthesize water-soluble and biocompatible fluorescent quantum dot (QD) micelles by encapsulation of monodisperse, hydrophobic QDs within surfactant/lipid micelles. Analyses of UV-vis and photo luminescence spectra, along with transmission electron microscopy, indicate that the water-soluble semiconductor QD micelles are monodisperse and retain the optical properties of the original hydrophobic QDs. The QD micelles were shown to be biocompatible and exhibited little or no aggregation when taken up by cultured rat hippocampal neurons.
Precision, all-optical measurement of external quantum efficiency in semiconductors
NASA Astrophysics Data System (ADS)
Wang, Chengao; Li, Chia-Yeh; Hasselbeck, Michael P.; Imangholi, Babak; Sheik-Bahae, Mansoor
2011-05-01
External quantum efficiency of semiconductor photonic devices is directly measured by wavelength-dependent laser-induced temperature change (scanning laser calorimetry) with very high accuracy. Maximum efficiency is attained at an optimum photo-excitation level that can be determined with an independent measurement of power-dependent temperature or power-dependent photoluminescence. Time-resolved photoluminescence lifetime and power-dependent photoluminescence measurements are used to evaluate unprocessed heterostructures for critical performance parameters. The crucial importance of parasitic background absorption is discussed.
Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers
Mezzapesa, F. P. Brambilla, M.; Dabbicco, M.; Scamarcio, G.; Columbo, L. L.; Vitiello, M. S.
2014-01-27
To monitor the density of photo-generated charge carriers on a semiconductor surface, we demonstrate a detectorless imaging system based on the analysis of the optical feedback in terahertz quantum cascade lasers. Photo-excited free electron carriers are created in high resistivity n-type silicon wafers via low power (≅40 mW/cm{sup 2}) continuous wave pump laser in the near infrared spectral range. A spatial light modulator allows to directly reconfigure and control the photo-patterned intensity and the associated free-carrier density distribution. The experimental results are in good agreement with the numerical simulations.
Effect of quantum parameter – H on space-charge wave spectra in n-type semiconductor plasmas
Ghosh, S. Muley, Apurva
2015-07-31
The present paper deals with the propagation characteristics of very fundamental wave i.e. space – charge wave while propagating through quantum semiconductor plasma. We have used quantum hydrodynamic model to derive the most general dispersion relation in terms of quantum parameter – H. We have found that in presence of an external electrostatic field, the wave spectra (dispersion as well as gain characteristics) not only modified due to presence of quantum effect but also two novel modes of propagation are introduced due to this effect. Hence it may be concluded that to miniaturize the opto-electronic devices, one should use highly doped semiconductor medium at comparatively lower temperature so that the quantum effects predominate.
Colloquium: Nonlinear collective interactions in quantum plasmas with degenerate electron fluids
Shukla, P. K.; Eliasson, B.
2011-07-01
The current understanding of some important nonlinear collective processes in quantum plasmas with degenerate electrons is presented. After reviewing the basic properties of quantum plasmas, model equations (e.g., the quantum hydrodynamic and effective nonlinear Schroedinger-Poisson equations) are presented that describe collective nonlinear phenomena at nanoscales. The effects of the electron degeneracy arise due to Heisenberg's uncertainty principle and Pauli's exclusion principle for overlapping electron wave functions that result in tunneling of electrons and the electron degeneracy pressure. Since electrons are Fermions (spin-1/2 quantum particles), there also appears an electron spin current and a spin force acting on electrons due to the Bohr magnetization. The quantum effects produce new aspects of electrostatic (ES) and electromagnetic (EM) waves in a quantum plasma that are summarized in here. Furthermore, nonlinear features of ES ion waves and electron plasma oscillations are discussed, as well as the trapping of intense EM waves in quantum electron-density cavities. Specifically, simulation studies of the coupled nonlinear Schroedinger and Poisson equations reveal the formation and dynamics of localized ES structures at nanoscales in a quantum plasma. The effect of an external magnetic field on the plasma wave spectra and develop quantum magnetohydrodynamic equations are also discussed. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets), as well as in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, nanophotonics and nanoplasmonics, metallic nanostructures, thin metal films, semiconductor quantum wells, and quantum dots, etc.), and in the next generation of intense laser-solid density plasma interaction experiments relevant for fast ignition in inertial confinement fusion
Sheikhi, K; Granpayeh, N; Ahmadi, V; Pahlavan, S
2015-04-01
In this paper, we analyze and simulate the lossless propagation of lightwaves in the active metal-semiconductor-metal plasmonic waveguides (MSMPWs) at the wavelength range of 1540-1560 nm using a quantum dot (QD) active medium. The Maxwell's equations are solved in the waveguide, and the required gains for achieving lossless propagation are derived. On the other hand, the rate equations in quantum dot active regions are solved by using the Runge-Kutta method, and the achievable optical gain is derived. The analyses results show that the required optical gain for lossless propagation in MSMPWs is achievable using the QD active medium. Also, by adjusting the active medium parameters, the MSMPWs loss can be eliminated in a specific bandwidth, and the propagation length increases obviously. PMID:25967191
Huard; Cox; Saminadayar; Arnoult; Tatarenko
2000-01-01
The dependence of the optical absorption spectrum of a semiconductor quantum well on two-dimensional electron concentration n(e) is studied using CdTe samples. The trion peak (X-) seen at low n(e) evolves smoothly into the Fermi edge singularity at high n(e). The exciton peak (X) moves off to high energy, weakens, and disappears. The X,X- splitting is linear in n(e) and closely equal to the Fermi energy plus the trion binding energy. For Cd0.998Mn0.002Te quantum wells in a magnetic field, the X,X- splitting reflects unequal Fermi energies for M = +/-1/2 electrons. The data are explained by Hawrylak's theory of the many-body optical response including spin effects. PMID:11015866