Science.gov

Sample records for interaction based composable

  1. Ecological interaction and phylogeny, studying functionality on composed networks

    NASA Astrophysics Data System (ADS)

    Cruz, Claudia P. T.; Fonseca, Carlos Roberto; Corso, Gilberto

    2012-02-01

    We study a class of composed networks that are formed by two tree networks, TP and TA, whose end points touch each other through a bipartite network BPA. We explore this network using a functional approach. We are interested in how much the topology, or the structure, of TX (X=A or P) determines the links of BPA. This composed structure is a useful model in evolutionary biology, where TP and TA are the phylogenetic trees of plants and animals that interact in an ecological community. We make use of ecological networks of dispersion of fruits, which are formed by frugivorous animals and plants with fruits; the animals, usually birds, eat fruits and disperse their seeds. We analyse how the phylogeny of TX determines or is correlated with BPA using a Monte Carlo approach. We use the phylogenetic distance among elements that interact with a given species to construct an index κ that quantifies the influence of TX over BPA. The algorithm is based on the assumption that interaction matrices that follows a phylogeny of TX have a total phylogenetic distance smaller than the average distance of an ensemble of Monte Carlo realisations. We find that the effect of phylogeny of animal species is more pronounced in the ecological matrix than plant phylogeny.

  2. Modeling and Composing Scenario-Based Requirements with Aspects

    NASA Technical Reports Server (NTRS)

    Araujo, Joao; Whittle, Jon; Ki, Dae-Kyoo

    2004-01-01

    There has been significant recent interest, within the Aspect-Oriented Software Development (AOSD) community, in representing crosscutting concerns at various stages of the software lifecycle. However, most of these efforts have concentrated on the design and implementation phases. We focus in this paper on representing aspects during use case modeling. In particular, we focus on scenario-based requirements and show how to compose aspectual and non-aspectual scenarios so that they can be simulated as a whole. Non-aspectual scenarios are modeled as UML sequence diagram. Aspectual scenarios are modeled as Interaction Pattern Specifications (IPS). In order to simulate them, the scenarios are transformed into a set of executable state machines using an existing state machine synthesis algorithm. Previous work composed aspectual and non-aspectual scenarios at the sequence diagram level. In this paper, the composition is done at the state machine level.

  3. Ccaffeine framework : composing and debugging applications interactively and running them statically.

    SciTech Connect

    Armstrong, Robert C.; Allan, Benjamin A.

    2005-02-01

    Ccaffeine is a Common Component Architecture (CCA) framework devoted to high-performance computing. In this note we give an overview of the system features of Ccaffeine and CCA that support component-based HPC application development. Object-oriented, single-threaded and lightweight, Ccaffeine is designed to get completely out of the way of the running application after it has been composed from components. Ccaffeine is one of the few frameworks, CCA or otherwise, that can compose and run applications on a parallel machine interactively and then automatically generate a static, possibly self-tuning, executable for production runs. Users can experiment with and debug applications interactively, improving their productivity. When the application is ready, a script is automatically generated, parsed and turned into a static executable for production runs. Within this static executable, dynamic replacement of components can be performed by self-tuning applications.

  4. Real-time rendering method and performance evaluation of composable 3D lenses for interactive VR.

    PubMed

    Borst, Christoph W; Tiesel, Jan-Phillip; Best, Christopher M

    2010-01-01

    We present and evaluate a new approach for real-time rendering of composable 3D lenses for polygonal scenes. Such lenses, usually called "volumetric lenses," are an extension of 2D Magic Lenses to 3D volumes in which effects are applied to scene elements. Although the composition of 2D lenses is well known, 3D composition was long considered infeasible due to both geometric and semantic complexity. Nonetheless, for a scene with multiple interactive 3D lenses, the problem of intersecting lenses must be considered. Intersecting 3D lenses in meaningful ways supports new interfaces such as hierarchical 3D windows, 3D lenses for managing and composing visualization options, or interactive shader development by direct manipulation of lenses providing component effects. Our 3D volumetric lens approach differs from other approaches and is one of the first to address efficient composition of multiple lenses. It is well-suited to head-tracked VR environments because it requires no view-dependent generation of major data structures, allowing caching and reuse of full or partial results. A Composite Shader Factory module composes shader programs for rendering composite visual styles and geometry of intersection regions. Geometry is handled by Boolean combinations of region tests in fragment shaders, which allows both convex and nonconvex CSG volumes for lens shape. Efficiency is further addressed by a Region Analyzer module and by broad-phase culling. Finally, we consider the handling of order effects for composed 3D lenses. PMID:20224135

  5. Apolipophorin III interaction with model membranes composed of phosphatidylcholine and sphingomyelin using differential scanning calorimetry.

    PubMed

    Chiu, Michael H; Wan, Chung-Ping Leon; Weers, Paul M M; Prenner, Elmar J

    2009-10-01

    Apolipophorin III (apoLp-III) from Locusta migratoria was employed as a model apolipoprotein to gain insight into binding interactions with lipid vesicles. Differential scanning calorimetry (DSC) was used to measure the binding interaction of apoLp-III with liposomes composed of mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and sphingomyelin (SM). Association of apoLp-III with multilamellar liposomes occurred over a temperature range around the liquid crystalline phase transition (L(alpha)). Qualitative and quantitative data were obtained from changes in the lipid phase transition upon addition of apoLp-III. Eleven ratios of DMPC and SM were tested from pure DMPC to pure SM. Broadness of the phase transition (T(1/2)), melting temperature of the phase transition (T(m)) and enthalpy were used to determine the relative binding affinity to the liposomes. Multilamellar vesicles composed of 40% DMPC and 60% SM showed the greatest interaction with apoLp-III, indicated by large T(1/2) values. Pure DMPC showed the weakest interaction and liposomes with lower percentage of DMPC retained domains of pure DMPC, even upon apoLp-III binding indicating demixing of liposome lipids. Addition of apoLp-III to rehydrated liposomes was compared to codissolved trials, in which lipids were rehydrated in the presence of protein, forcing the protein to interact with the lipid system. Similar trends between the codissolved and non-codissolved trials were observed, indicating a similar binding affinity except for pure DMPC. These results suggested that surface defects due to non-ideal packing that occur at the phase transition temperature of the lipid mixtures are responsible for apolipoprotein-lipid interaction in DMPC/SM liposomes. PMID:19647717

  6. Study of the effect of dipole interactions on hyperthermia heating the cluster composed of superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Fu, R.; Yan, Y. Y.; Roberts, C.

    2015-12-01

    In the present work, we investigate the effect of dipole interactions on hyperthermia heating the cluster composed of multi superparamagnetic nanoparticles via time-quantified Monte Carlo simulation. The dynamic hysteresis loop area of non-interacting particles calculated by a modified Rosensweig's model is shown to be proportional to the field frequency. The inverse of the total number of Monte Carlo steps per field cycle is considered as a computational frequency in our modelling. By comparing the two proportionality constants gained from the simulation and from the Rosensweig's model, respectively, the time scale of one Monte Carlo step is estimated. The shape of the cluster is characterised by treating it as an equivalent ellipsoid. When the morphology of cluster is highly anisotropic such in a chain and cylinder, dipole interactions align the moments of the particles to the morphology anisotropy axis of the cluster. The strength of such alignment depends on the magnitude of morphology anisotropy of the cluster. The alignment helps improve heating capability of the chain and cylinder clusters at the most angles between the field direction and morphology anisotropy axis. However, when the field direction is away from the axis too much, the high energy barrier will hamper the cluster to maintain the magnetization, leading to a reduced heating efficiency. Once the cluster loses its morphology anisotropy (i.e. cube), the influence of dipole interactions on hysteresis losses is reduced to the minimum; the probability to obtain an improved heating becomes very low no matter with the type of particle arrangement.

  7. Stabilization of polyion complex nanoparticles composed of poly(amino acid) using hydrophobic interactions.

    PubMed

    Akagi, Takami; Watanabe, Kazuki; Kim, Hyungjin; Akashi, Mitsuru

    2010-02-16

    We report the design and preparation of polyion complex (PIC) nanoparticles composed of anionic hydrophobically modified and cationic poly(amino acid) and the effect of hydrophobic interactions on the stability of these PIC nanoparticles under physiological conditions. We selected poly(gamma-glutamic acid) (gamma-PGA) as the biodegradable anionic polymer and poly(epsilon-lysine) (epsilon-PL) as the cationic polymer. Amphiphilic graft copolymers consisting of gamma-PGA and L-phenylalanine (L-Phe) as the hydrophobic side chain were synthesized by grafting L-Phe to gamma-PGA. The PIC nanoparticles were prepared by mixing gamma-PGA-graft-L-Phe (gamma-PGA-Phe) with epsilon-PL in phosphate buffered saline (PBS). The formation and stability of the PIC nanoparticles were investigated by dynamic light scattering (DLS) measurements. Monomodal anionic PIC nanoparticles were obtained using nonstoichiometric mixing ratios. When unmodified gamma-PGA was mixed with epsilon-PL in PBS, the formation of PIC nanoparticles was observed. However, within a few hours after the preparation, the PIC nanoparticles dissolved in the PBS. In contrast, gamma-PGA-Phe/epsilon-PL nanoparticles showed high stability for a prolonged period of time in PBS and over a wide range of pH values. The stability and size of the PIC nanoparticles depended on the gamma-PGA-Phe/epsilon-PL mixing ratio and the hydrophobicity of the gamma-PGA. The improved stability of the PIC nanoparticles was attributed to the formation of hydrophobic domains in the core of the nanoparticles. The fabrication of PIC nanoparticles using hydrophobic interactions was very useful for the stabilization of the nanoparticles. These results will provide a novel concept in the design of carrier systems composed of PIC. It is expected that the gamma-PGA-Phe/epsilon-PL nanoparticles will have great potential as multifunctional carriers for pharmaceutical and biomedical applications, such as drug and vaccine delivery systems. PMID:20017513

  8. Interaction of liposomes composed of phospholipids, GM1 ganglioside and cholesterol with human keratinocytes in culture.

    PubMed

    Pitto, M; Palestini, P; Ferraretto, A; Marazzi, M; Donati, V; Falcone, L; Masserini, M

    1999-04-01

    We studied the possibility of supplementing human keratinocytes with exogenous lipids (phospholipids, sphingolipids and cholesterol) and evaluated their influence on cell proliferation, using cells cultured in vitro. Experiments carried out with liposomes composed of cholesterol/GM1 ganglioside and different phospholipids (5:1.5:10, M/M/M), showed that liposomes associated with cells more efficiently when they contained soya lecithin. The treatment with liposomes made of the ternary mixture did not modify the rate of cell proliferation, as assessed by the incorporation of [3H]-thymidine. In contrast, the proliferation rate strongly decreased (65% with respect to the control) using the same liposomes without GM1. Experiments carried out with GM1 alone showed a strong stimulation of the proliferation rate (144% with respect to the control). Fluorescence dequenching experiments, carried out with the probe octadecyl rhodamine B chloride, showed that fusion was the main mechanism of liposome-cell interaction. Metabolic studies established that exogenously administered GM1--either embedded in liposomes or as a pure glycolipid dispersion--led to the production of several products, including ceramide. Altogether, these results show that different, opposing effects can be exerted on cell proliferation by the administration of lipids, separately or in mixtures, to human keratinocytes, and indicate the importance of a correct formulation for supplementing human keratinocytes with exogenous lipids. PMID:10335921

  9. Interaction of melittin with mixed phospholipid membranes composed of dimyristoylphosphatidylcholine and dimyristoylphosphatidylserine studied by deuterium NMR

    SciTech Connect

    Dempsey, C.; Bitbol, M.; Watts, A. )

    1989-08-08

    The interaction of bee venom melittin with mixed phospholipid bilayers composed of dimyristoylphosphatidylcholine deuterated in the {alpha}- and {beta}-methylenes of the choline head group (DMPC-d{sub 4}) and dimyristoylphosphatidylserine deuterated in the {alpha}-methylene and {beta}-CH positions of the serine head group (DMPS-d{sub 3}) was studied in ternary mixtures by using deuterium NMR spectroscopy. The changes in the deuterium quadrupole splittings of the head-group deuteriomethylenes of DMPC-d{sub 4} induced by DMPS in binary mixtures were systematically reversed by increasing concentrations of melittin, so that at a melittin concentration of 4 mol % relative to total lipid the deuterium NMR spectrum from DMPC-d{sub 4} in the ternary mixture was similar to the spectrum from pure DMPC-d{sub 4} bilayers. The absence of deuterium NMR signals arising from melittin-bound DMPS in ternary mixtures containing DMPS-d{sub 3} indicates that the reversal by melittin of the effects of DMPS on the quadrupole splittings of DMPC-d{sub 4} results from the response of the choline head group to the net surface charge rather than from phase separation of melittin-DMPS complexes. The similarity in the effects of the two cationic but otherwise dissimilar peptides indicates that the DMPS head group responds to the surface charge resulting from the presence in the bilayer of charged amphiphiles, in a manner analogous to the response of the choline head group of phosphatidylcholine to the bilayer surface charge. The presence of DMPS greatly stabilized DMPC bilayers with respect to melittin-induced micellization, indicating that the latter effect of melittin may not be important for the hemolytic activity of the peptide.

  10. IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners

    PubMed Central

    Fukuchi, Satoshi; Amemiya, Takayuki; Sakamoto, Shigetaka; Nobe, Yukiko; Hosoda, Kazuo; Kado, Yumiko; Murakami, Seiko D.; Koike, Ryotaro; Hiroaki, Hidekazu; Ota, Motonori

    2014-01-01

    IDEAL (Intrinsically Disordered proteins with Extensive Annotations and Literature, http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/) is a collection of intrinsically disordered proteins (IDPs) that cannot adopt stable globular structures under physiological conditions. Since its previous publication in 2012, the number of entries in IDEAL has almost tripled (120 to 340). In addition to the increase in quantity, the quality of IDEAL has been significantly improved. The new IDEAL incorporates the interactions of IDPs and their binding partners more explicitly, and illustrates the protein–protein interaction (PPI) networks and the structures of protein complexes. Redundant experimental data are arranged based on the clustering of Protein Data Bank entries, and similar sequences with the same binding mode are grouped. As a result, the new IDEAL presents more concise and informative experimental data. Nuclear magnetic resonance (NMR) disorder is annotated in a systematic manner, by identifying the regions with large deviations among the NMR models. The ordered/disordered and new domain predictions by DICHOT are available, as well as the domain assignments by HMMER. Some examples of the PPI networks and the highly deviated regions derived from NMR models will be described, together with other advances. These enhancements will facilitate deeper understanding of IDPs, in terms of their flexibility, plasticity and promiscuity. PMID:24178034

  11. Nature Utilizes Unusual High London Dispersion Interactions for Compact Membranes Composed of Molecular Ladders.

    PubMed

    Wagner, J Philipp; Schreiner, Peter R

    2014-03-11

    London dispersion interactions play a key role in nature, in particular, in membranes that constitute natural barriers. Here we demonstrate that the spatial alignment of "molecular ladders" ([n]ladderanes), i.e., highly unusual and strained all-trans-fused cyclobutane moieties, leads to much larger attractive dispersion interactions as compared to alkyl chains of the same length. This provides a rationale for the occurrence of peculiar ladderane fatty acids in the dense cell walls of anammox bacteria. Despite the energetic penalty paid for the assembly of such strained polycycles, the advantage lies in significantly higher, dispersion-dominated interaction energies as compared to straight-chain hydrocarbon moieties commonly found in fatty acids. We discern the dispersion contributions to the total interaction energies using a variety of computational methods including modern dispersion-corrected density functional theory and high level ab initio approaches. Utilizing larger assemblies, we also show that the intermolecular interactions behave additively. PMID:26580198

  12. Towards Composing Data Aware Systems Biology Workflows on Cloud Platforms: A MeDICi-based Approach

    SciTech Connect

    Gorton, Ian; Liu, Yan; Yin, Jian; Kulkarni, Anand V.; Wynne, Adam S.

    2011-09-08

    Cloud computing is being increasingly adopted for deploying systems biology scientific workflows. Scientists developing these workflows use a wide variety of fragmented and competing data sets and computational tools of all scales to support their research. To this end, the synergy of client side workflow tools with cloud platforms is a promising approach to share and reuse data and workflows. In such systems, the location of data and computation is essential consideration in terms of quality of service for composing a scientific workflow across remote cloud platforms. In this paper, we describe a cloud-based workflow for genome annotation processing that is underpinned by MeDICi - a middleware designed for data intensive scientific applications. The workflow implementation incorporates an execution layer for exploiting data locality that routes the workflow requests to the processing steps that are colocated with the data. We demonstrate our approach by composing two workflowswith the MeDICi pipelines.

  13. Interaction of aerosol particles composed of protein and salts with water vapor: hygroscopic growth and microstructural rearrangement

    NASA Astrophysics Data System (ADS)

    Mikhailov, E.; Vlasenko, S.; Niessner, R.; Pöschl, U.

    2003-09-01

    The interaction of aerosol particles in the 100-200 nm size range composed of the protein bovine serum albumin (BSA) and the inorganic salts sodium chloride and ammonium nitrate with water vapor at ambient temperature and pressure (25°C, 1 atm) has been investigated by hygroscopicity tandem differential mobility analyzer (H-TDMA) experiments complemented by transmission electron microscopy (TEM) and Köhler theory calculations. BSA was chosen as a well-defined model substance for proteins and other macromolecular compounds, which constitute a large fraction of the water-soluble organic component of air particulate matter. Pure BSA particles exhibited deliquescence and efflorescence transitions at ~35% relative humidity (RH) and a hygroscopic diameter increase by up to ~10% at 95% RH in good agreement with model calculations based on a simple parameterisation of the osmotic coefficient. Pure NaCl particles were converted from near-cubic to near-spherical or polyhedral shape upon interaction with water vapor at relative humidities below the deliquescence threshold (partial surface dissolution and recrystallisation), and the diameters of pure NH4NO3 particles decreased by up to 10% due to chemical decomposition and evaporation. Mixed NaCl-BSA and NH4NO3-BSA particles interacting with water vapor exhibited mobility equivalent diameter reductions of up to 20%, depending on particle generation, conditioning, size, and chemical composition (BSA dry mass fraction 10-90%). These observations can be explained by formation of porous agglomerates (envelope void fractions up to 50%) due to ion-protein interactions and electric charge effects on the one hand, and by compaction of the agglomerate structure due to capillary condensation effects on the other. The size of NH4NO3-BSA particles was apparently also influenced by volatilisation of NH4NO3, but not as much as for pure salt particles, i.e. the protein inhibited the decomposition of NH4NO3 or the evaporation of the

  14. 17 CFR 41.15 - Exclusion from definition of narrow-based security index for indexes composed of debt securities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... narrow-based security index for indexes composed of debt securities. 41.15 Section 41.15 Commodity and... Indexes § 41.15 Exclusion from definition of narrow-based security index for indexes composed of debt securities. (a) An index is not a narrow-based security index if: (1)(i) Each of the securities of an...

  15. 17 CFR 41.15 - Exclusion from definition of narrow-based security index for indexes composed of debt securities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... narrow-based security index for indexes composed of debt securities. 41.15 Section 41.15 Commodity and... Indexes § 41.15 Exclusion from definition of narrow-based security index for indexes composed of debt securities. (a) An index is not a narrow-based security index if: (1)(i) Each of the securities of an...

  16. 17 CFR 41.15 - Exclusion from definition of narrow-based security index for indexes composed of debt securities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... narrow-based security index for indexes composed of debt securities. 41.15 Section 41.15 Commodity and... Indexes § 41.15 Exclusion from definition of narrow-based security index for indexes composed of debt securities. (a) An index is not a narrow-based security index if: (1)(i) Each of the securities of an...

  17. Possible Way To Describe Breit's Interaction in Solids Composed From Heavy Elements

    SciTech Connect

    Kutepov, A L

    2009-02-24

    The report describes a theoretical procedure which could help evaluate the effect of quantum electrodynamic corrections on the electronic structure of crystals consisting of heavy elements. The procedure uses the effective Breit interaction as correction to traditional Coulomb interaction between electrons in non-relativistic theory. A number of other simplifying assumptions were made since even such a simplified consideration of quantum electrodynamic effects in crystals is a great challenge. These are as follows: (1) Exchange and correlation effects from the nonrelativistic interaction (the Coulomb term) between electrons are described within Density Functional Theory (DFT). (2) The Breit correction is on at the phase which involves the calculation of matrix elements between basis functions which define the single-electron spectrum of a crystal. In order to calculate the contribution from the Breit correction, the total wave function of electrons in the crystal is approximated by one Slater determinant consisting of the single-electron DFT-orbitals. (3) Only local matrix elements (i.e., the part of the two-electron integral for which both coordinate arguments belong to one and the same muffin-tin sphere) are considered.

  18. Cyclic Triradicals Composed of Iminonitroxide-Gold(I) with Intramolecular Ferromagnetic Interactions.

    PubMed

    Suzuki, Shuich; Wada, Tomoyuki; Tanimoto, Ryu; Kozaki, Masatoshi; Shiomi, Daisuke; Sugisaki, Kenji; Sato, Kazunobu; Takui, Takeji; Miyake, Yota; Hosokoshi, Yuko; Okada, Keiji

    2016-08-26

    A triangular gold(iminonitroxide-2-ide) trimer complex (5) was prepared and investigated to determine its magnetic properties. The results showed that the metalloid triradical is highly stable, even in solution under aerated conditions. The intramolecular exchange interaction of 5 was found to be positive (Jintra /kB ≈+29 K), thus showing that 5 is in a quartet ground state. In addition, a silver sandwich complex (5-Ag(+) -5) was prepared and its electronic and magnetic properties were also clarified. PMID:27490798

  19. Carrier behavior in special multilayer device composed of different transition metal oxide-based intermediate connectors

    SciTech Connect

    Deng, Yan-Hong; Chen, Xiang-Yu E-mail: xychen@suda.edu.cn; Ou, Qing-Dong; Wang, Qian-Kun; Jiang, Xiao-Cheng; Zhang, Dan-Dan; Li, Yan-Qing E-mail: xychen@suda.edu.cn

    2014-06-02

    The impact of illumination on the connection part of the tandem organic light-emitting diodes was studied by using a special organic multilayer sample consisted of two organic active layers coupled with different transition metal oxide (TMO)-based intermediate connectors (ICs). Through measuring the current density-voltage characteristic, interfacial electronic structures, and capacitance-voltage characteristic, we observe an unsymmetrical phenomenon in current density-voltage and capacitance-voltage curves of Mg:Alq{sub 3}/MoO{sub 3} and MoO{sub 3} composed devices, which was induced by the charge spouting zone near the ICs region and the recombination state in the MoO{sub 3} layer. Moreover, Mg:Alq{sub 3}/MoO{sub 3} composed device displays a photovoltaic effect and the V{sub oc} shifts to forward bias under illumination. Our results demonstrate that the TMO-based IC structure coupled with photovoltaic effect can be a good approach for the study of photodetector, light sensor, and so on.

  20. Carrier behavior in special multilayer device composed of different transition metal oxide-based intermediate connectors

    NASA Astrophysics Data System (ADS)

    Deng, Yan-Hong; Chen, Xiang-Yu; Ou, Qing-Dong; Wang, Qian-Kun; Jiang, Xiao-Cheng; Zhang, Dan-Dan; Li, Yan-Qing

    2014-06-01

    The impact of illumination on the connection part of the tandem organic light-emitting diodes was studied by using a special organic multilayer sample consisted of two organic active layers coupled with different transition metal oxide (TMO)-based intermediate connectors (ICs). Through measuring the current density-voltage characteristic, interfacial electronic structures, and capacitance-voltage characteristic, we observe an unsymmetrical phenomenon in current density-voltage and capacitance-voltage curves of Mg:Alq3/MoO3 and MoO3 composed devices, which was induced by the charge spouting zone near the ICs region and the recombination state in the MoO3 layer. Moreover, Mg:Alq3/MoO3 composed device displays a photovoltaic effect and the Voc shifts to forward bias under illumination. Our results demonstrate that the TMO-based IC structure coupled with photovoltaic effect can be a good approach for the study of photodetector, light sensor, and so on.

  1. Filters based on spoof surface plasmon polaritons composed of planar Mach–Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Xiao, Binggang; Chen, Jing; Kong, Sheng

    2016-08-01

    Filter characteristics of a planar Mach-Zehnder interferometer (MZI) structure composed of periodically thin corrugated metal films were studied here. From theoretical simulation, spoof surface plasmon polaritons can propagate along the periodically thin corrugated metal films in microwave frequency, which can be excited by a coplanar waveguide. When the two arms of the MZI have the same length with the angle between them being 60°, the MZI structure has a very wide bandwidth with 8.6 GHz. By changing the length of one of the interference arms, a novel low-pass filter based on the planar MZI structure with two notched frequencies was proposed. The proposed planar structure can find potential applications in developing surface wave devices in integrated microwave circuits and systems.

  2. Recorder Composer

    ERIC Educational Resources Information Center

    Stephenson, Kimberly

    2012-01-01

    The best moments happen when students begin to realize how much power they have and use that power to create. Composing as they master different instrumental stages helps students make composition and performance a natural step in learning. A step-by-step process (rhythm notation, add pitches, copy to a five-line staff, check work, and play) keeps…

  3. CrusDe: A plug-in based simulation framework for composable CRUStal DEformation simulations

    NASA Astrophysics Data System (ADS)

    Grapenthin, R.

    2008-12-01

    Within geoscience, Green's method is an established mathematical tool to analyze the dynamics of the Earth's crust in response to the application of a mass force, e.g. a surface load. Different abstractions from the Earth's interior as well as the particular effects caused by such a force are expressed by means of a Green's function, G, which is a particular solution to an inhomogeneous differential equation with boundary conditions. Surface loads, L, are defined by real data or as analytical expressions. The response of the crust to a surface load is gained by a 2D-convolution (**) of the Green's function with this load. The crustal response can be thought of as an instantaneous displacement which is followed by a gradual transition towards the final relaxed state of displacement. A relaxation function, R, describing such a transition depends on the rheological model for the ductile layer of the crust. The 1D-convolution (*) of the relaxation function with a load history, H, allows to include the temporal evolution of the surface load into a model. The product of the two convolution results expresses the displacement (rate) of the crust, U, at a certain time t: Ut = (R * H)t · (G ** L) Rather than implementing a variety of specific models, approaching crustal deformation problems from the general formulation in equation~1 opens the opportunity to consider reuse of model building blocks within a more flexible simulation framework. Model elements (Green's function, load function, etc.), operators, pre- and postprocessing, and even input and output routines could be part of a framework that enables a user to freely compose software components to resemble equation~1. The simulation framework CrusDe implements equation~1 in the proposed way. CrusDe's architecture defines interfaces for generic communication between the simulation core and the model elements. Thus, exchangeability of the particular model element implementations is possible. In the presented plug

  4. Small-Town Perspectives, Big-Time Motivation: Composing and Producing Place-Based Podcasts

    ERIC Educational Resources Information Center

    Goodson, Lori Atkins; Skillen, Matt

    2010-01-01

    Student motivation is difficult to measure, manage, initiate, and control. Teachers control many aspects of classroom environments, including student interaction and cooperation, by the rules and procedures they establish and maintain. But, there is often little classroom teachers can do to predict what will motivate students to move beyond the…

  5. Composing a Research Life

    ERIC Educational Resources Information Center

    Cochran-Smith, Marilyn

    2012-01-01

    In this article about her early career development and the experiences that shaped her life as a scholar and researcher, the author describes the work lives of university-based teacher educators and what it means to compose a research life in this field. This article draws on the author's 30 years as a university-based teacher educator. In it, she…

  6. CRUSDE: A plug-in based simulation framework for composable CRUstal DEformation studies using Green's functions

    NASA Astrophysics Data System (ADS)

    Grapenthin, R.

    2014-01-01

    CRUSDE is a plug-in based simulation framework written in C/C++ for Linux platforms (installation information, download and test cases: http://www.grapenthin.org/crusde). It utilizes Green's functions for simulations of the Earth's response to changes in surface loads. Such changes could involve, for example, melting glaciers, oscillating snow loads, or lava flow emplacement. The focus in the simulation could be the response of the Earth's crust in terms of stress changes, changes in strain rates, or simply uplift or subsidence and the respective horizontal displacements of the crust (over time). Rather than implementing a variety of specific models, CRUSDE approaches crustal deformation problems from a general formulation in which model elements (Green's function, load function, relaxation function, load history), operators, pre- and postprocessors, as well as input and output routines are independent, exchangeable, and reusable on the basis of a plug-in approach (shared libraries loaded at runtime). We derive the general formulation CRUSDE is based on, describe its architecture and use, and demonstrate its capabilities in a test case. With CRUSDE users can: (1) dynamically select software components to participate in a simulation (through XML experiment definitions), (2) extend the framework independently with new software components and reuse existing ones, and (3) exchange software components and experiment definitions with other users. CRUSDE's plug-in mechanism aims for straightforward extendability allowing modelers to add new Earth models/response functions. Current Green's function implementations include surface displacements due to the elastic response, final relaxed response, and pure thick plate response for a flat Earth. These can be combined to express exponential decay from elastic to final relaxed response, displacement rates due to one or multiple disks, irregular loads, or a combination of these. Each load can have its own load history and

  7. Rheological characterization of cataplasm bases composed of cross-linked partially neutralized polyacrylate hydrogel.

    PubMed

    Wang, Jian; Zhang, Hongqin; An, Dianyun; Yu, Jian; Li, Wei; Shen, Teng; Wang, Jianxin

    2014-10-01

    Viscoelasticity is a useful parameter for characterizing the intrinsic properties of the cross-linked polyacrylate hydrogel used in cataplasm bases. The aim of this study was to investigate the effects of various formulation parameters on the rheological characteristics of polyacrylate hydrogel. The hydrogel layers were formed using a partially neutralized polyacrylate (Viscomate(™)), which contained acrylic acid and sodium acrylate in different copolymerization ratios, as the cross-linked gel framework. Dihydroxyaluminum aminoacetate (DAAA), which produces aluminum ions, was used as the cross-linking agent. Rheological analyses were performed using a "stress amplitude sweep" and a "frequency sweep". The results showed that greater amounts of acrylic acid in the structure of Viscomate as well as higher concentrations of DAAA and Viscomate led to an increase in the elastic modulus (G'). However, greater amounts of acrylic acid in the structure of Viscomate and higher concentrations of DAAA had an opposite on the viscous modulus (G″); this might be owing to higher steric hindrance. The results of this study can serve as guidelines for the optimization of formulations for cataplasms. PMID:24865937

  8. Hot-isostatic pressing of silicon carbide based multiphase composed materials

    SciTech Connect

    Jiang, D.L.; She, J.H.

    1995-10-01

    Silicon carbide (SiC) based ceramic composites with improved fracture toughness and increased flexure strength have been developed by incorporating some other non-oxide and oxide particles or some whiskers and fibers. Hot-Isostatic Pressing (HIP) has been identified as an important technology for strengthening carbide by surface modification. In this paper, Hot-pressed SiC-TiC with different densities and HIP-SiC/SiC(w) composites were post HIPped under a N{sub 2}-pressure of 200 MPa at 1,850 C for 1 h. The results showed that the open pores were closed and physical and mechanical properties such as density, flexure strength and toughness were obviously improved. For the SiC-TiC composites, the final density can be reached above 985 theoretical density, flexure strength and fracture toughness were increased by 100% and 30--50%, respectively. For the SiC/5vol%-SiC(w) composites, the final flexure strength and fracture toughness were increased from 595 MPa and 6.7 MPa {center_dot} m{sup 1/2} to 920 MPa and 8.5 MPa {center_dot} m{sup 1/2} separately. A possible reaction-HIP densification mechanism for SiC ceramics with open pores is proposed.

  9. Composing and Arranging Careers

    ERIC Educational Resources Information Center

    Schwartz, Elliott; And Others

    1977-01-01

    With the inspiration, the originality, the skill and craftsmanship, the business acumen, the patience, and the luck, it's possible to become a classical composer, pop/rock/country composer, jingle composer, or educational composer. Describes these careers. (Editor/RK)

  10. Silicon on-chip wavelength-selective switch composed of Mach–Zehnder-interferometer-based switches and microring resonators

    NASA Astrophysics Data System (ADS)

    Miura, Kengo; Shoji, Yuya; Mizumoto, Tetsuya

    2016-06-01

    We fabricated a wavelength-selective switch composed of microring resonators as wavelength filters and Mach–Zehnder-interferometer-based thermo-optic switches as routing switches. Nonblocking wavelength-selective switching operations for several channels were successfully demonstrated. A wavelength-selective transmittance change of 9.7 dB was obtained at a wavelength channel of 1548 nm, which is one of four wavelength channels in a wavelength range between 1535 and 1570 nm. An electric power of 17.9 mW was applied for switching the thermo-optic switch from a cross state to a bar state. The change in transmittance in other wavelength channels is <1.7 dB.

  11. Thermophysical properties of gases, liquids, and solids composed of particles interacting with a short-range attractive potential.

    PubMed

    Hess, S; Kröger, M

    2001-07-01

    A short-range polynomial interaction potential is introduced which has both a repulsive core and an attractive part. It is cut off smoothly such that its first and second derivatives vanish at the cutoff distance. The potential therefore enables efficient simulation studies of a model material that exhibits similarities to a full (but computationally expensive) classical Lennard-Jones system. Thermophysical properties of the model are calculated by (nonequilibrium) molecular dynamics computer simulations and compared with analytical results. Among the quantities studied is the pressure as a function of the density for various temperatures. Equations of state for the fluid and the solid are tested. The coexistence of gaseous, (metastable) liquid, and fcc solid phases is found for a range of temperatures. Bulk and shear moduli are computed. The response of the system to a shear deformation with a constant shear rate is analyzed. The liquid shows viscoelastic behavior that can be described with a Maxwell model. The solid behaves as an elastic medium up to a finite deformation and then undergoes a transition to plastic flow, which is stick-slip-like at small shear rates and continuous at higher ones. PMID:11461234

  12. Polarization beam splitters, converters and analyzers based on a metasurface composed of regularly arranged silicon nanospheres with controllable coupling strength.

    PubMed

    Xiang, Jin; Li, Jinxiang; Li, Hui; Zhang, Chengyun; Dai, Qiaofeng; Tie, Shaolong; Lan, Sheng

    2016-05-30

    A metasurface composed of regularly arranged silicon (Si) nanospheres (NSs) with coupling was investigated both theoretically and numerically based on the Mie theory, the simple Lorentz line shape model and the finite-difference time-domain technique. By deliberately controlling the coupling strength between Si NSs through the design of the lattice constants of a rectangular lattice, polarization beam splitters, converters and analyzers with good performance can be successfully constructed. A square lattice as well as a large incidence angle was employed to build the polarization beam splitters and converters. At an incidence angle of 80°, the polarization beam splitters can completely reflect the s-polarized light and transmit the p-polarized light in a wavelength region of 510-620 nm. For a circularly polarized light incident on the polarization converters, one can get s-polarized light in the reflection direction and p-polarized light in the transmission direction. For the polarization beam analyzers, a rectangular lattice with deliberately chosen lattice constants was employed and the transmissivity of a linearly polarized light can be continuously adjusted from 0 to ~0.90 by simply rotating the metasurface. We revealed that the broadening of either the electric dipole resonance or the magnetic dipole resonance or both of them, which is induced by the asymmetric coupling of Si NSs, is responsible for the modification in the transmissivity spectrum of the metasurface. Our findings provide a guideline for designing photonic devices based on the metasurfaces composed of Si NSs with controllable coupling strength. PMID:27410070

  13. My Career: Composer

    ERIC Educational Resources Information Center

    Morganelli, Patrick

    2013-01-01

    In this article, the author talks about his career as a composer and offers some advice for aspiring composers. The author works as a composer in the movie industry, creating music that supports a film's story. Other composers work on television shows, and some do both television and film. The composer uses music to tell the audience what kind of…

  14. 17 CFR 240.3a55-4 - Exclusion from definition of narrow-based security index for indexes composed of debt securities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... narrow-based security index for indexes composed of debt securities. 240.3a55-4 Section 240.3a55-4... Miscellaneous Exemptions § 240.3a55-4 Exclusion from definition of narrow-based security index for indexes composed of debt securities. (a) An index is not a narrow-based security index if: (1)(i) Each of...

  15. 17 CFR 240.3a55-4 - Exclusion from definition of narrow-based security index for indexes composed of debt securities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... narrow-based security index for indexes composed of debt securities. 240.3a55-4 Section 240.3a55-4... Miscellaneous Exemptions § 240.3a55-4 Exclusion from definition of narrow-based security index for indexes composed of debt securities. (a) An index is not a narrow-based security index if: (1)(i) Each of...

  16. 17 CFR 240.3a55-4 - Exclusion from definition of narrow-based security index for indexes composed of debt securities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... narrow-based security index for indexes composed of debt securities. 240.3a55-4 Section 240.3a55-4... Miscellaneous Exemptions § 240.3a55-4 Exclusion from definition of narrow-based security index for indexes composed of debt securities. (a) An index is not a narrow-based security index if: (1)(i) Each of...

  17. 17 CFR 240.3a55-4 - Exclusion from definition of narrow-based security index for indexes composed of debt securities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... narrow-based security index for indexes composed of debt securities. 240.3a55-4 Section 240.3a55-4... Miscellaneous Exemptions § 240.3a55-4 Exclusion from definition of narrow-based security index for indexes composed of debt securities. (a) An index is not a narrow-based security index if: (1)(i) Each of...

  18. 17 CFR 240.3a55-4 - Exclusion from definition of narrow-based security index for indexes composed of debt securities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... narrow-based security index for indexes composed of debt securities. 240.3a55-4 Section 240.3a55-4... Miscellaneous Exemptions § 240.3a55-4 Exclusion from definition of narrow-based security index for indexes composed of debt securities. (a) An index is not a narrow-based security index if: (1)(i) Each of...

  19. How Accurate Are the Minnesota Density Functionals for Noncovalent Interactions, Isomerization Energies, Thermochemistry, and Barrier Heights Involving Molecules Composed of Main-Group Elements?

    PubMed

    Mardirossian, Narbe; Head-Gordon, Martin

    2016-09-13

    The 14 Minnesota density functionals published between the years 2005 and early 2016 are benchmarked on a comprehensive database of 4986 data points (84 data sets) involving molecules composed of main-group elements. The database includes noncovalent interactions, isomerization energies, thermochemistry, and barrier heights, as well as equilibrium bond lengths and equilibrium binding energies of noncovalent dimers. Additionally, the sensitivity of the Minnesota density functionals to the choice of basis set and integration grid is explored for both noncovalent interactions and thermochemistry. Overall, the main strength of the hybrid Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., M06-2X), barrier heights (e.g., M08-HX, M08-SO, MN15), and systems heavily characterized by self-interaction error (e.g., M06-2X, M08-HX, M08-SO, MN15), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-2X is recommended from the 10 hybrid Minnesota functionals). Similarly, the main strength of the local Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., MN15-L), barrier heights (e.g., MN12-L), and systems heavily characterized by self-interaction error (e.g., MN12-L and MN15-L), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-L is clearly the best from the four local Minnesota functionals). As an overall guide, M06-2X and MN15 are perhaps the most broadly useful hybrid Minnesota functionals, while M06-L and MN15-L are perhaps the most broadly useful local Minnesota functionals, although each has different strengths and weaknesses. PMID:27537680

  20. Fusion protein-based biofilm fabrication composed of recombinant azurin-myoglobin for dual-level biomemory application

    NASA Astrophysics Data System (ADS)

    Lee, Taek; Chung, Yong-Ho; Yoon, Jinho; Min, Junhong; Choi, Jeong-Woo

    2014-11-01

    In the present study, a fusion protein-based biofilm composed of a recombinant azurin-myoglobin (Azu-Myo) has been developed and confirmed its original electrochemical property for dual-level biomemory device application. For this purpose, the azurin was modified with cysteine residues for direct immobilization and conjugation. Then, the recombinant azurin was conjugated with the myoglobin via a sulfo-SMCC bifunctional linker using the chemical ligation method (CLM). The SDS-PAGE and UV-vis spectroscopy were performed to examine the fusion protein conjugates. The prepared Azu-Myo fusion protein was self-assembled onto Au substrate for the biofilm fabrication. Then, the atomic force microscopy (AFM) was used to confirm the immobilization and the surface-enhanced Raman spectroscopy (SERS) was carried out to the surface analysis. Also, the cyclic voltammetry (CV) was carried out to observe an electrochemical property of fabricated biofilm. As a result, the two pair of redox potential values was obtained for dual-level biomemory device application. Then, the dual-level biomemory function was verified by the multi-potential chronoamperometry (MPCA). The results indicate a new fabrication method and material combination for advances in bioelectronic device development.

  1. Ionic polymer-metal composite actuators based on triple-layered polyelectrolytes composed of individually functionalized layers.

    PubMed

    Lee, Jang-Woo; Yoo, Young-Tai; Lee, Jae Yeol

    2014-01-22

    Ionic polymer-metal composite (IPMC) actuators based on two types of triple-layered Nafion composite membranes were prepared via consecutive solution recasting and electroless plating methods. The triple-layered membranes are composed of a Nafion layer containing an amphiphilic organic molecule (10-camphorsulfonic acid; CSA) in the middle section (for fast and large ion conduction) and two Nafion/modified inorganic composite layers in the outer sections (for large accumulation/retention of mobile ions). For construction of the two types of IPMCs, sulfonated montmorillonite (MMT) and polypyrrole (PPy)-coated alumina fillers were incorporated into the outer layers. Both the triple-layered IPMCs exhibited 42% higher tip displacements at the maximum deflections with a negligible back-relaxation, 50-74% higher blocking forces, and more rapid responses under 3 V dc, compared with conventional single-layered Nafion-IPMCs. Improvements in cyclic displacement under a rectangular voltage input of 3 V at 1 Hz were also made in the triple-layered configurations. Compared with single-layered IPMCs consisting of the identical compositions with the respective outer composite layers, the bending rates and energy efficiencies of both the triple-layered IPMCs were significantly higher, although the blocking forces were a bit lower. These remarkable improvements were attributed to higher capacitances and Young's moduli as well as a more efficient transport of mobile ions and water through the middle layer (Nafion/CSA) and a larger accumulation/retention of the mobile species in the outer functionalized inorganic composite layers. Especially, the triple-layered IPMC with the PPy-modified alumina registered the best actuation performance among all the samples, including a viable actuation even at a low voltage of 1.5 V due to involving efficient redox reactions of PPy with the aid of hygroscopic alumina. PMID:24383744

  2. SPR-based PCF D-type sensor based on a metamaterial composed of planar metals for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Santos, D. F.; Guerreiro, A.; Baptista, J. M.

    2016-05-01

    This paper presents a numerically investigation of the performance analysis of a conventional photonic crystal fiber (PCF) with a planar metamaterials structure for refractive index sensing, based on surface plasmon resonance (SPR), using the finite element method (FEM). We study the concentration metamaterials conformed by the aluminium oxide (Al2O3) and silver (Ag) and compared its performance with a single metal (Ag), assessing their impacts in the effective refractive index. Furthermore, we also use different types of mechanics to describe the effects of varying the structural parameters sensor on the evanescent field and the sensor performance.

  3. Light absorption and plasmon - exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes

    NASA Astrophysics Data System (ADS)

    Shapiro, B. I.; Tyshkunova, E. S.; Kondorskiy, A. D.; Lebedev, V. S.

    2015-12-01

    Optical properties of hybrid rod-like nanoparticles, consisting of a gold core, an intermediate passive organic layer (spacer) and outer layer of ordered molecular cyanine dye aggregates, are experimentally and theoretically investigated. It is shown that these dyes can form not only ordered J-aggregates but also H-aggregates (differing by the packing angle of dye molecules in an aggregate and having other spectral characteristics) in the outer shell of the hybrid nanostructure. Absorption spectra of synthesised three-layer nanorods are recorded, and their sizes are determined. The optical properties of the composite nanostructures under study are found to differ significantly, depending on the type of the molecular aggregate formed in the outer shell. The experimental data are quantitatively explained based on computer simulation using the finite-difference time-domain (FDTD) method, and characteristic features of the plasmon - exciton interaction in the systems under study are revealed.

  4. Unskilled Writers as Composers.

    ERIC Educational Resources Information Center

    Perl, Sondra

    1979-01-01

    Composition is not a straightforward, linear process; it involves a creative search for meaning that becomes clear only as the writer engages in the composing process. This suggests that teaching not dwell on the correctness of the finished product. (Author/SJL)

  5. Decomposing Composing Conventions.

    ERIC Educational Resources Information Center

    Beers, Terry

    Recent research has invited critiques of the authoritative descriptions of composing found in many rhetoric textbooks. The concept of "convention" may be especially useful in rethinking the teleological basis of these textbook descriptions. Conventions found in composition textbooks need to be unmasked as arbitrary concepts which serve to…

  6. Performance and mechanism on a high durable silica alumina based cementitious material composed of coal refuse and coal combustion byproducts

    NASA Astrophysics Data System (ADS)

    Yao, Yuan

    Coal refuse and combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. Recycling is one practical solution to utilize this huge amount of solid waste through activation as substitute for ordinary Portland cement. The central goal of this dissertation is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to ordinary Portland cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economy benefit for construction and building materials. The results show that thermal activation temperature ranging from 20°C to 950°C significantly increases the workability and pozzolanic property of the coal refuse. The optimal activation condition is between 700°C to 800°C within a period of 30 to 60 minutes. Microanalysis illustrates that the improved pozzolanic reactivity contributes to the generated amorphous materials from parts of inert aluminosilicate minerals by destroying the crystallize structure during the thermal activation. In the coal refuse, kaolinite begins to transfer into metakaol in at 550°C, the chlorite minerals disappear at 750°C, and muscovite 2M1 gradually dehydroxylates to muscovite HT. Furthermore, this research examines the environmental

  7. Process of timbral composing

    NASA Astrophysics Data System (ADS)

    Withrow, Sam

    In this paper, I discuss the techniques and processes of timbral organization I developed while writing my chamber work, Afterimage. I compare my techniques with illustrative examples by other composers to place my work in historical context. I examine three elements of my composition process. The first is the process of indexing and cataloging basic sonic materials. The second consists of the techniques and mechanics of manipulating and assembling these collections into larger scale phrases, textures, and overall form in a musical work. The third element is the more elusive, and often extra-musical, source of inspiration and motivation. The evocative power of tone color is both immediately evident yet difficult to explain. What is timbre? This question cannot be answered solely in scientific terms; subjective factors affect our perception of it.

  8. The composing process in technical communication

    NASA Technical Reports Server (NTRS)

    Masse, R. E.

    1981-01-01

    The theory and application of the composing process in technical communications is addressed. The composing process of engineers, some implications for composing research for the teaching and research of technical communication, and an interpretation of the processes as creative experience are also discussed. Two areas of technical communications summarized concern: the rhetorical features of technical communications, and the theoretical background for a process-based view, a problem-solving approach to technical writing.

  9. Structure-property relationships of energetic nitrogen-rich salts composed of triaminoguanidinium or ammonium cation and tetrazole-based anions.

    PubMed

    Shao, Yuling; Zhu, Weihua; Xiao, Heming

    2013-03-01

    Density functional theory and volume-based thermodynamics calculations have been performed to study the crystal densities, heats of formation (HOFs), energetic properties, and thermodynamics of formation for a series of ionic salts composed of triaminoguanidinium or ammonium cations and tetrazole-based anions. Substitution with --NF₂, --CH₂NF₂, --CF₂NF₂, or --C(NO₂)₂NF₂ groups increased the densities of the salts. The densities of the tetrazole-based salts are affected not only by different substituents but also by different cations. The --CN or --N₃ groups are effective substituents for increasing the HOFs of the salts. The triaminoguanidinium cation is more effective than the ammonium cation for increasing the HOF of the tetrazole-based salts. Substitution with --NO₂, --NF₂, or --C(NO₂)₂NF₂ groups enhances the explosive properties of the salts. The thermodynamics of formation of the salts reveal that all of the tetrazole-based salts with the triaminoguanidinium or ammonium cation could be synthesized using the proposed reactions. Our calculated methods provide a straightforward and inexpensive route for screening a large number of potentially energetic ionic salts. PMID:23353034

  10. Results-Based Interaction Design

    ERIC Educational Resources Information Center

    Weiss, Meredith

    2008-01-01

    Interaction design is a user-centered approach to development in which users and their goals are the driving force behind a project's design. Interaction design principles are fundamental to the design and implementation of effective websites, but they are not sufficient. This article argues that, to reach its full potential, a website should also…

  11. Probing charge transfer in a novel class of luminescent perovskite-based heterostructures composed of quantum dots bound to RE-activated CaTiO3 phosphors

    NASA Astrophysics Data System (ADS)

    Lewis, Crystal S.; Liu, Haiqing; Han, Jinkyu; Wang, Lei; Yue, Shiyu; Brennan, Nicholas A.; Wong, Stanislaus S.

    2016-01-01

    We report on the synthesis and structural characterization of novel semiconducting heterostructures composed of cadmium selenide (CdSe) quantum dots (QDs) attached onto the surfaces of novel high-surface area, porous rare-earth-ion doped alkaline earth titanate micron-scale spherical motifs, i.e. both Eu-doped and Pr-doped CaTiO3, composed of constituent, component nanoparticles. These unique metal oxide perovskite building blocks were created by a multi-pronged synthetic strategy involving molten salt and hydrothermal protocols. Subsequently, optical characterization of these heterostructures indicated a clear behavioral dependence of charge transfer in these systems upon a number of parameters such as the nature of the dopant, the reaction temperature, and particle size. Specifically, 2.7 nm diameter ligand-functionalized CdSe QDs were anchored onto sub-micron sized CaTiO3-based spherical assemblies, prepared by molten salt protocols. We found that both the Pr- and Eu-doped CaTiO3 displayed pronounced PL emissions, with maximum intensities observed using optimized lanthanide concentrations of 0.2 mol% and 6 mol%, respectively. Analogous experiments were performed on Eu-doped BaTiO3 and SrTiO3 motifs, but CaTiO3 still performed as the most effective host material amongst the three perovskite systems tested. Moreover, the ligand-capped CdSe QD-doped CaTiO3 heterostructures exhibited effective charge transfer between the two individual constituent nanoscale components, an assertion corroborated by the corresponding quenching of their measured PL signals.We report on the synthesis and structural characterization of novel semiconducting heterostructures composed of cadmium selenide (CdSe) quantum dots (QDs) attached onto the surfaces of novel high-surface area, porous rare-earth-ion doped alkaline earth titanate micron-scale spherical motifs, i.e. both Eu-doped and Pr-doped CaTiO3, composed of constituent, component nanoparticles. These unique metal oxide perovskite

  12. Probing charge transfer in a novel class of luminescent perovskite-based heterostructures composed of quantum dots bound to RE-activated CaTiO3 phosphors

    DOE PAGESBeta

    Crystal S. Lewis; Wong, Stanislaus S.; Liu, Haiqing; Han, Jinkyu; Wang, Lei; Yue, Shiyu; Brennan, Nicholas A.

    2016-01-04

    We report on the synthesis and structural characterization of novel semiconducting heterostructures composed of cadmium selenide (CdSe) quantum dots (QDs) attached onto the surfaces of novel high-surface area, porous rare-earth-ion doped alkaline earth titanate micron-scale spherical motifs, i.e. both Eu-doped and Pr-doped CaTiO3, composed of constituent, component nanoparticles. These unique metal oxide perovskite building blocks were created by a multi-pronged synthetic strategy involving molten salt and hydrothermal protocols. Subsequently, optical characterization of these heterostructures indicated a clear behavioral dependence of charge transfer in these systems upon a number of parameters such as the nature of the dopant, the reaction temperature,more » and particle size. Specifically, 2.7 nm diameter ligand-functionalized CdSe QDs were anchored onto sub-micron sized CaTiO3-based spherical assemblies, prepared by molten salt protocols. We found that both the Pr- and Eu-doped CaTiO3 displayed pronounced PL emissions, with maximum intensities observed using optimized lanthanide concentrations of 0.2 mol% and 6 mol%, respectively. Analogous experiments were performed on Eu-doped BaTiO3 and SrTiO3 motifs, but CaTiO3 still performed as the most effective host material amongst the three perovskite systems tested. Furthermore, the ligand-capped CdSe QD-doped CaTiO3 heterostructures exhibited effective charge transfer between the two individual constituent nanoscale components, an assertion corroborated by the corresponding quenching of their measured PL signals.« less

  13. Probing charge transfer in a novel class of luminescent perovskite-based heterostructures composed of quantum dots bound to RE-activated CaTiO3 phosphors.

    PubMed

    Lewis, Crystal S; Liu, Haiqing; Han, Jinkyu; Wang, Lei; Yue, Shiyu; Brennan, Nicholas A; Wong, Stanislaus S

    2016-01-28

    We report on the synthesis and structural characterization of novel semiconducting heterostructures composed of cadmium selenide (CdSe) quantum dots (QDs) attached onto the surfaces of novel high-surface area, porous rare-earth-ion doped alkaline earth titanate micron-scale spherical motifs, i.e. both Eu-doped and Pr-doped CaTiO3, composed of constituent, component nanoparticles. These unique metal oxide perovskite building blocks were created by a multi-pronged synthetic strategy involving molten salt and hydrothermal protocols. Subsequently, optical characterization of these heterostructures indicated a clear behavioral dependence of charge transfer in these systems upon a number of parameters such as the nature of the dopant, the reaction temperature, and particle size. Specifically, 2.7 nm diameter ligand-functionalized CdSe QDs were anchored onto sub-micron sized CaTiO3-based spherical assemblies, prepared by molten salt protocols. We found that both the Pr- and Eu-doped CaTiO3 displayed pronounced PL emissions, with maximum intensities observed using optimized lanthanide concentrations of 0.2 mol% and 6 mol%, respectively. Analogous experiments were performed on Eu-doped BaTiO3 and SrTiO3 motifs, but CaTiO3 still performed as the most effective host material amongst the three perovskite systems tested. Moreover, the ligand-capped CdSe QD-doped CaTiO3 heterostructures exhibited effective charge transfer between the two individual constituent nanoscale components, an assertion corroborated by the corresponding quenching of their measured PL signals. PMID:26725486

  14. Teaching Composing with an Identity as a Teacher-Composer

    ERIC Educational Resources Information Center

    Francis, Jennie

    2012-01-01

    I enjoy composing and feel able to write songs that I like and which feel significant to me. This has not always been the case and the change had nothing to do with my school education or my degree. Composing at secondary school did not move beyond Bach and Handel pastiche. I did not take any composing courses during my degree. What did influence…

  15. Variance-based interaction index measuring heteroscedasticity

    NASA Astrophysics Data System (ADS)

    Ito, Keiichi; Couckuyt, Ivo; Poles, Silvia; Dhaene, Tom

    2016-06-01

    This work is motivated by the need to deal with models with high-dimensional input spaces of real variables. One way to tackle high-dimensional problems is to identify interaction or non-interaction among input parameters. We propose a new variance-based sensitivity interaction index that can detect and quantify interactions among the input variables of mathematical functions and computer simulations. The computation is very similar to first-order sensitivity indices by Sobol'. The proposed interaction index can quantify the relative importance of input variables in interaction. Furthermore, detection of non-interaction for screening can be done with as low as 4 n + 2 function evaluations, where n is the number of input variables. Using the interaction indices based on heteroscedasticity, the original function may be decomposed into a set of lower dimensional functions which may then be analyzed separately.

  16. Build Less Code, Deliver More Science: An Experience Report on Composing Scientific Environments using Component-based and Commodity Software Platforms

    SciTech Connect

    Gorton, Ian; Liu, Yan; Lansing, Carina S.; Elsethagen, Todd O.; Kleese van Dam, Kerstin

    2013-07-17

    Modern scientific software is daunting in its diversity and complexity. From massively parallel simulations running on the world’s largest supercomputers, to visualizations and user support environments that manage ever growing complex data collections, the challenges for software engineers are plentiful. While high performance simulators are necessarily specialized codes to maximize performance on specific supercomputer architectures, we argue the vast majority of supporting infrastructure, data management and analysis tools can leverage commodity open source and component-based technologies. This approach can significantly drive down the effort and costs of building complex, collaborative scientific user environments, as well as increase their reliability and extensibility. In this paper we describe our experiences in creating an initial user environment for scientists involved in modeling the detailed effects of climate change on the environment of selected geographical regions. Our approach composes the user environment using the Velo scientific knowledge management platform and the MeDICi Integration Framework for scientific workflows. These established platforms leverage component-based technologies and extend commodity open source platforms with abstractions and capabilities that make them amenable for broad use in science. Using this approach we were able to deliver an operational user environment capable of running thousands of simulations in a 7 month period, and achieve significant software reuse.

  17. Design and optimization of a SiC thermal emitter/absorber composed of periodic microstructures based on a non-linear method

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Jie; Zhao, Zhen-Guo; Zhao, Yi; Zhou, Hai-Jing; Fu, Ce-Ji

    2015-09-01

    Spectral and directional control of thermal emission based on excitation of confined electromagnetic resonant modes paves a viable way for the design and construction of microscale thermal emitters/absorbers. In this paper, we present numerical simulation results of the thermal radiative properties of a silicon carbide (SiC) thermal emitter/absorber composed of periodic microstructures. We illustrate different electromagnetic resonant modes which can be excited with the structure, such as surface phonon polaritons, magnetic polaritons and photonic crystal modes, and the process of radiation spectrum optimization based on a non-linear optimization algorithm. We show that the spectral and directional control of thermal emission/absorption can be efficiently achieved by adjusting the geometrical parameters of the structure. Moreover, the optimized spectrum is insensitive to 3% dimension modification. Project supported by the National Natural Science Foundation of China (Grant No. 51076002), the National Basis Research Program of China (Grant No. 2013CA328900), and the Key Project of Complicated Electromagnetic Environment Laboratory of CAEP, China (Grant No. 2015E0-01-1).

  18. Composing the Curriculum: Teacher Identity

    ERIC Educational Resources Information Center

    Lewis, Rebecca

    2012-01-01

    What is composing and how is it valued? What does a good education in composing look like; what constraints hinder it and is it possible to overcome such constraints? Can composing be a personal, creative and valuable activity for the school student? What role does the teacher play in all of this? These are questions that I discuss in this…

  19. Design and Realization of a Three Degrees of Freedom Displacement Measurement System Composed of Hall Sensors Based on Magnetic Field Fitting by an Elliptic Function.

    PubMed

    Zhao, Bo; Wang, Lei; Tan, Jiu-Bin

    2015-01-01

    This paper presents the design and realization of a three degrees of freedom (DOFs) displacement measurement system composed of Hall sensors, which is built for the XYθz displacement measurement of the short stroke stage of the reticle stage of lithography. The measurement system consists of three pairs of permanent magnets mounted on the same plane on the short stroke stage along the Y, Y, X directions, and three single axis Hall sensors correspondingly mounted on the frame of the reticle stage. The emphasis is placed on the decoupling and magnetic field fitting of the three DOFs measurement system. The model of the measurement system is illustrated, and the XY positions and θZ rotation of the short stroke stage can be obtained by decoupling the sensor outputs. A magnetic field fitting by an elliptic function-based compensation method is proposed. The practical field intensity of a permanent magnet at a certain plane height can be substituted for the output voltage of a Hall sensors, which can be expressed by the elliptic function through experimental data as the crucial issue to calculate the three DOFs displacement. Experimental results of the Hall sensor displacement measurement system are presented to validate the proposed three DOFs measurement system. PMID:26370993

  20. Design and Realization of a Three Degrees of Freedom Displacement Measurement System Composed of Hall Sensors Based on Magnetic Field Fitting by an Elliptic Function

    PubMed Central

    Zhao, Bo; Wang, Lei; Tan, Jiu-Bin

    2015-01-01

    This paper presents the design and realization of a three degrees of freedom (DOFs) displacement measurement system composed of Hall sensors, which is built for the XYθz displacement measurement of the short stroke stage of the reticle stage of lithography. The measurement system consists of three pairs of permanent magnets mounted on the same plane on the short stroke stage along the Y, Y, X directions, and three single axis Hall sensors correspondingly mounted on the frame of the reticle stage. The emphasis is placed on the decoupling and magnetic field fitting of the three DOFs measurement system. The model of the measurement system is illustrated, and the XY positions and θZ rotation of the short stroke stage can be obtained by decoupling the sensor outputs. A magnetic field fitting by an elliptic function-based compensation method is proposed. The practical field intensity of a permanent magnet at a certain plane height can be substituted for the output voltage of a Hall sensors, which can be expressed by the elliptic function through experimental data as the crucial issue to calculate the three DOFs displacement. Experimental results of the Hall sensor displacement measurement system are presented to validate the proposed three DOFs measurement system. PMID:26370993

  1. How Composers Compose: In Search of the Questions

    ERIC Educational Resources Information Center

    Andrews, Bernard W.

    2004-01-01

    The Genesis Project is a multi-phase research project designed for the purpose of developing an in-depth understanding of the nature of musical creativity by investigating how composers compose. In this first phase of the project, an understanding of the four dimensions of musical creativity: (1) the "person", (2) the compositional "process", (3)…

  2. Effect of alkyl chain length on the interfacial strength of surgical sealants composed of hydrophobically-modified Alaska-pollock-derived gelatins and poly(ethylene)glycol-based four-armed crosslinker.

    PubMed

    Mizuta, Ryo; Ito, Temmei; Taguchi, Tetsushi

    2016-10-01

    Surgical sealants are widely used clinically. Fibrin sealant is a commonly used sealant, but is ineffective under wet conditions during surgery. In this study, we developed surgical sealants composed of hydrophobically modified Alaska-pollock-derived gelatins (hm-ApGltns) with different alkyl chain lengths from C3 to C18 and a poly(ethylene)glycol-based 4-armed crosslinker (4S-PEG). The burst strength of the hm-ApGltns-based sealant was evaluated using a fresh porcine blood vessel and was found to increase with increasing alkyl chain length from 167±22 to 299±43mmHg when the substitution ratio of amino groups of ApGltn was around 10mol%. The maximum burst strength was observed when stearoyl-group modified ApGltn (Ste-ApGltn)/4S-PEG-based sealant was used, displaying 3-fold higher burst strength than the original ApGltn (Org-ApGltn)/4S-PEG sealant, and 10-fold higher than the commercial fibrin sealant. Ste-ApGltn/4S-PEG-based sealant was biodegraded in rat subcutaneous tissue within 8 weeks without severe inflammation. By molecular interaction analysis using surface plasmon resonance, the binding constant of Ste-ApGltn to fibronectin was found to be 9-fold higher than that of Org-ApGltn. Therefore, the developed sealant, in particular the Ste-ApGltn/4S-PEG-based sealant, has potential applications in the field of cardiovascular surgery as well as thoracic surgery. PMID:27341135

  3. Adding Interactivity to Web Based Distance Learning.

    ERIC Educational Resources Information Center

    Cafolla, Ralph; Knee, Richard

    Web Based Distance Learning (WBDL) is a form of distance learning based on providing instruction mainly on the World Wide Web. This paradigm has limitations, especially the lack of interactivity inherent in the Web. The purpose of this paper is to discuss some of the technologies the authors have used in their courses at Florida Atlantic…

  4. High Temperature Oxidation of Nickel-based Cermet Coatings Composed of Al2O3 and TiO2 Nanosized Particles

    NASA Astrophysics Data System (ADS)

    Farrokhzad, M. A.; Khan, T. I.

    2014-09-01

    New technological challenges in oil production require materials that can resist high temperature oxidation. In-Situ Combustion (ISC) oil production technique is a new method that uses injection of air and ignition techniques to reduce the viscosity of bitumen in a reservoir and as a result crude bitumen can be produced and extracted from the reservoir. During the in-situ combustion process, production pipes and other mechanical components can be exposed to air-like gaseous environments at extreme temperatures as high as 700 °C. To protect or reduce the surface degradation of pipes and mechanical components used in in-situ combustion, the use of nickel-based ceramic-metallic (cermet) coating produced by co-electrodeposition of nanosized Al2O3 and TiO2 have been suggested and earlier research on these coatings have shown promising oxidation resistance against atmospheric oxygen and combustion gases at elevated temperatures. Co-electrodeposition of nickel-based cermet coatings is a low-cost method that has the benefit of allowing both internal and external surfaces of pipes and components to be coated during a single electroplating process. Research has shown that the volume fraction of dispersed nanosized Al2O3 and TiO2 particles in the nickel matrix which affects the oxidation resistance of the coating can be controlled by the concentration of these particles in the electrolyte solution, as well as the applied current density during electrodeposition. This paper investigates the high temperature oxidation behaviour of novel nanostructured cermet coatings composed of two types of dispersed nanosized ceramic particles (Al2O3 and TiO2) in a nickel matrix and produced by coelectrodeposition technique as a function of the concentration of these particles in the electrolyte solution and applied current density. For this purpose, high temperature oxidation tests were conducted in dry air for 96 hours at 700 °C to obtain mass changes (per unit of area) at specific time

  5. Tropes of the Composing Process.

    ERIC Educational Resources Information Center

    Arrington, Phillip K.

    1986-01-01

    Offers a montage of the most important revisions of the four master tropes--metaphor, metonymy, synecdoche, and irony--for the composing process itself. Discusses the capacity of tropes to prefigure ideological stances toward language and writing. (EL)

  6. Is the Higgs boson composed of neutrinos?

    DOE PAGESBeta

    Krog, Jens; Hill, Christopher T.

    2015-11-09

    We show that conventional Higgs compositeness conditions can be achieved by the running of large Higgs-Yukawa couplings involving right-handed neutrinos that become active at ~1013–1014 GeV. Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark matter sector, we can obtain a Higgs boson composed of neutrinos. Furthermore, this is a “next-to-minimal” dynamical electroweak symmetry breaking scheme.

  7. Is the Higgs boson composed of neutrinos?

    SciTech Connect

    Krog, Jens; Hill, Christopher T.

    2015-11-09

    We show that conventional Higgs compositeness conditions can be achieved by the running of large Higgs-Yukawa couplings involving right-handed neutrinos that become active at ~1013–1014 GeV. Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark matter sector, we can obtain a Higgs boson composed of neutrinos. Furthermore, this is a “next-to-minimal” dynamical electroweak symmetry breaking scheme.

  8. Nucleon interaction data bases for background estimates

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.

    1989-01-01

    Nucleon interaction data bases available in the open literature are examined for potential use in a recently developed nucleon transport code. Particular attention is given to secondary particle penetration and the multiple charged ion products. A brief description of the transport algorithm is given.

  9. A determinant based full configuration interaction program

    NASA Astrophysics Data System (ADS)

    Knowles, Peter J.; Handy, Nicholas C.

    1989-04-01

    The program FCI solves the Full Configuration Interaction (Full CI) problem of quantum chemistry, in which the electronic Schrödinger equation is solved exactly within a given one particle basis set. The Slater determinant based algorithm leads to highly efficient implementation on a vector computer, and has enabled Full CI calculations of dimension more than 10 7 to be performed.

  10. Versatile Supramolecular Gene Vector Based on Host-Guest Interaction.

    PubMed

    Liu, Jia; Hennink, Wim E; van Steenbergen, Mies J; Zhuo, Renxi; Jiang, Xulin

    2016-04-20

    It is a great challenge to arrange multiple functional components into one gene vector system to overcome the extra- and intracellular obstacles for gene therapy. In this study, we developed a supramolecular approach for constructing a versatile gene delivery system composed of adamantyl-terminated functional polymers and a β-cyclodextrin based polymer. Adamantyl-functionalized low molecular weight PEIs (PEI-Ad) and PEG (Ad-PEG) as well as poly(β-cyclodextrin) (PCD) were synthesized by one-step chemical reactions. The supramolecular inclusion complex formed from PCD to assemble LMW PEI-Ad4 via host-guest interactions can condense plasmid DNA to form nanopolyplexes by electrostatic interactions. The supramolecular polyplexes can be further PEGylated with Ad-PEG to form inclusion complexes, which showed increased salt and serum stability. In vitro experiments revealed that these supramolecular assembly polyplexes had good cytocompatibility and showed high transfection activity close to that of the commercial ExGen 500 at high dose of DNA. Also, the supramolecular vector system exhibited about 60% silencing efficiency as a siRNA vector. Thus, a versatile effective supramolecular gene vector based on host-guest complexes was fabricated with good cytocompatbility and transfection activity. PMID:27019340

  11. Guidelines for Coaching Student Composers.

    ERIC Educational Resources Information Center

    Wilson, Dana

    2001-01-01

    Focuses on teaching students how to compose music. Addresses issues, such as how to get the students started and types of questions to ask students about their compositions. Discusses the musical elements involved in composition, such as melody, harmony, rhythm and meter, timbre, texture, and formal design. (CMK)

  12. Light Based Cellular Interactions: hypotheses and perspectives

    NASA Astrophysics Data System (ADS)

    Laager, Frederic

    2015-08-01

    This work investigates the theoretical possibility of interactions between cells via light. We first take a brief look at the previous research done in the past to have a better understanding of the field and the origins of the concept of cellular interactions. Then we identify the different elements essential for interactions between two parties. We then compare the required elements with the known and studied elements and characteristics which are well defined in biology, chemistry and physics. This way we are able to set up four postulates required for cell interactions: I. A signal is present and subject to secondary modulation by the emitter cells. II. There is a plastic information medium that reacts directly to the metabolic state of the emitter and therefore carries information about the emitter. III. An optical signal can be perceived by cells on a molecular level by a multitude of different receptors. IV. The information can in theory be processed by cells and metabolic changes in reaction to the signals can be observed. We demonstrate that all required elements have been observed. Most of them have important and well-known roles in cells. Therefore we suggest that our hypothetical model is a good explanation for light based cellular interactions.

  13. Interactive analysis of geodata based intelligence

    NASA Astrophysics Data System (ADS)

    Wagner, Boris; Eck, Ralf; Unmüessig, Gabriel; Peinsipp-Byma, Elisabeth

    2016-05-01

    When a spatiotemporal events happens, multi-source intelligence data is gathered to understand the problem, and strategies for solving the problem are investigated. The difficulties arising from handling spatial and temporal intelligence data represent the main problem. The map might be the bridge to visualize the data and to get the most understand model for all stakeholders. For the analysis of geodata based intelligence data, a software was developed as a working environment that combines geodata with optimized ergonomics. The interaction with the common operational picture (COP) is so essentially facilitated. The composition of the COP is based on geodata services, which are normalized by international standards of the Open Geospatial Consortium (OGC). The basic geodata are combined with intelligence data from images (IMINT) and humans (HUMINT), stored in a NATO Coalition Shared Data Server (CSD). These intelligence data can be combined with further information sources, i.e., live sensors. As a result a COP is generated and an interaction suitable for the specific workspace is added. This allows the users to work interactively with the COP, i.e., searching with an on board CSD client for suitable intelligence data and integrate them into the COP. Furthermore, users can enrich the scenario with findings out of the data of interactive live sensors and add data from other sources. This allows intelligence services to contribute effectively to the process by what military and disaster management are organized.

  14. Band gaps in the low-frequency range based on the two-dimensional phononic crystal plates composed of rubber matrix with periodic steel stubs

    NASA Astrophysics Data System (ADS)

    Yu, Kunpeng; Chen, Tianning; Wang, Xiaopeng

    2013-05-01

    In this paper, the numerical investigation of elastic wave propagation in two-dimensional phononic crystals composed of an array of steel stepped resonators on a thin rubber slab is presented. For the first time the rubber material is used as the matrix of the PCs. With the finite-element method, the dispersion relations of this novel PCs structure and some factors of the band structure are studied. Results show that, with the rubber material as matrix, the PC structures exhibit extremely low-frequency band gaps, in the frequency range of hundreds of Hz or even tens of Hz; the geometrical parameters and the material parameters can modulate the band gaps to different extents. Furthermore, to understand the low-frequency band gaps caused by this new structure, some resonance eigenmodes of the structure are calculated. Results show that the vibration of the unit cell of the structure can be seen as several mass-spring systems, in which the vibration of the steel stepped resonator decides the lower boundary of the first band gap and the vibration of the rubber that is not in contact with the resonator decides the upper boundary.

  15. Multicolor well-composed pictures

    NASA Astrophysics Data System (ADS)

    Latecki, Longin J.

    1995-01-01

    As was noted early in the history of computer vision, using the same adjacency relation for the entire digital picture leads to so-called `paradoxes' related to the Jordan Curve Theorem. The most popular idea to avoid these paradoxes in binary images was using different adjacency relations for the foreground and the background: 8-adjacency for black points and 4-adjacency for white points, or vice versa. This idea cannot be extended in a straightforward way to multicolor pictures. In this paper a solution is presented which guarantees avoidance of the connectivity paradoxes related to the Jordan Curve Theorem for all multicolor pictures. Only one connectedness relation is used for the entire digital picture, i.e., for every component of every color. The idea is not to allow a certain `critical configuration' which can be detected locally to occur in digital pictures; such pictures are called `well-composed.' Well-composed pictures have very nice topological properties. For example, the Jordan Curve Theorem holds and the Euler characteristic is locally computable. This implies that properties of algorithms used in computer vision can be stated and proved in a clear way, and that the algorithms themselves become simpler and faster. Moreover, if a digitization process is guaranteed to preserve topology, then the obtained digital pictures must be well-composed.

  16. Prospects for composability of models and simulations

    NASA Astrophysics Data System (ADS)

    Davis, Paul K.; Anderson, Robert B.

    2004-08-01

    This paper is the summary of a recent RAND study done at the request of the U.S. Defense Modeling and Simulation Office (DMSO). Commissioned in recognition that the last decade's efforts by DoD to achieve model "composability" have had only limited success (e.g., HLA-mediated exercises), and that fundamental problems remain, the study surveyed the underlying problems that make composability difficult. It then went on to recommend a series of improvement measures for DMSO and other DoD offices to consider. One strong recommendation was that DoD back away from an earlier tendency toward overselling composability, moving instead to a more particularized approach in which composability is sought within domains where it makes most sense substantively. Another recommendation was that DoD needs to recognize the shortcomings of standard software-engineering paradigms when dealing with "models" rather than pure software. Beyond this, the study had concrete recommendations dealing with science and technology, the base of human capital, management, and infrastructure. Many recommendations involved the need to align more closely with cutting edge technology and emerging standards in the private sector.

  17. Organists and organ music composers.

    PubMed

    Foerch, Christian; Hennerici, Michael G

    2015-01-01

    Clinical case reports of patients with exceptional musical talent and education provide clues as to how the brain processes musical ability and aptitude. In this chapter, selected examples from famous and unknown organ players/composers are presented to demonstrate the complexity of modified musical performances as well as the capacities of the brain to preserve artistic abilities: both authors are active organists and academic neurologists with strong clinical experience, practice, and knowledge about the challenges to play such an outstanding instrument and share their interest to explore potentially instrument-related phenomena of brain modulation in specific transient or permanent impairments. We concentrate on the sites of lesions, suggested pathophysiology, separate positive (e.g., seizures, visual or auditory hallucinations, or synesthesia [an involuntary perception produced by stimulation of another sense]) and negative phenomena (e.g., amusia, aphasia, neglect, or sensory-motor deficits) and particularly address aspects of recent concepts of temporary and permanent network disorders. PMID:25684298

  18. Simple and rapid CD4 testing based on large-field imaging system composed of microcavity array and two-dimensional photosensor.

    PubMed

    Saeki, Tatsuya; Sugamura, Yuriko; Hosokawa, Masahito; Yoshino, Tomoko; Lim, Tae-Kyu; Harada, Manabu; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2015-05-15

    This study presents a novel method for CD4 testing based on one-shot large-field imaging. The large-field imaging system was fabricated by a microcavity array and a two-dimensional (2D) photosensor within the desk-top-sized instrument. The microcavity array was employed to separate leukocytes from whole blood based on differences in the size of leukocytes and other blood cells. The large-field imaging system with lower side irradiation enabled acquisition of cell signatures with high signal-to-noise ratio, because the metallic substrate of the microcavity array obstructed excessive excitation light. In this setting, dual-color imaging of CD4(+) and CD8(+) T cells was achieved within the entire image area (64 mm(2)) in 2s. The practical performance of the large-field imaging system was demonstrated by determining the CD4/CD8 ratio in a few microliter of control whole blood as small as those obtained by a finger prick. The CD4/CD8 ratios measured using the large-field imaging system correlated well with those measured by microscopic analysis. These results indicate that our proposed system provides a simple and rapid CD4 testing for the application of HIV/AIDS treatment. PMID:25192872

  19. Data Driven, Force Based Interaction for Quadrotors

    NASA Astrophysics Data System (ADS)

    McKinnon, Christopher D.

    Quadrotors are small and agile, and are becoming more capable for their compact size. They are expected perform a wide variety of tasks including inspection, physical interaction, and formation flight. In all of these tasks, the quadrotors can come into close proximity with infrastructure or other quadrotors, and may experience significant external forces and torques. Reacting properly in each case is essential to completing the task safely and effectively. In this thesis, we develop an algorithm, based on the Unscented Kalman Filter, to estimate such forces and torques without making assumptions about the source of the forces and torques. We then show in experiment how the proposed estimation algorithm can be used in conjunction with controls and machine learning to choose the appropriate actions in a wide variety of tasks including detecting downwash, tracking the wind induced by a fan, and detecting proximity to the wall.

  20. Interactive physically-based sound simulation

    NASA Astrophysics Data System (ADS)

    Raghuvanshi, Nikunj

    The realization of interactive, immersive virtual worlds requires the ability to present a realistic audio experience that convincingly compliments their visual rendering. Physical simulation is a natural way to achieve such realism, enabling deeply immersive virtual worlds. However, physically-based sound simulation is very computationally expensive owing to the high-frequency, transient oscillations underlying audible sounds. The increasing computational power of desktop computers has served to reduce the gap between required and available computation, and it has become possible to bridge this gap further by using a combination of algorithmic improvements that exploit the physical, as well as perceptual properties of audible sounds. My thesis is a step in this direction. My dissertation concentrates on developing real-time techniques for both sub-problems of sound simulation: synthesis and propagation. Sound synthesis is concerned with generating the sounds produced by objects due to elastic surface vibrations upon interaction with the environment, such as collisions. I present novel techniques that exploit human auditory perception to simulate scenes with hundreds of sounding objects undergoing impact and rolling in real time. Sound propagation is the complementary problem of modeling the high-order scattering and diffraction of sound in an environment as it travels from source to listener. I discuss my work on a novel numerical acoustic simulator (ARD) that is hundred times faster and consumes ten times less memory than a high-accuracy finite-difference technique, allowing acoustic simulations on previously-intractable spaces, such as a cathedral, on a desktop computer. Lastly, I present my work on interactive sound propagation that leverages my ARD simulator to render the acoustics of arbitrary static scenes for multiple moving sources and listener in real time, while accounting for scene-dependent effects such as low-pass filtering and smooth attenuation

  1. EVA: An Interactive Web-Based Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Arenas, Adolfo Guzman

    2002-01-01

    In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is described. The environment is composed of knowledge, collaboration, consulting and experimentation spaces as a collection of agents and conventional software components working over the knowledge domains. All user…

  2. Learning through Interaction: Improving Practice with Design-Based Research

    ERIC Educational Resources Information Center

    Voigt, Christian; Swatman, Paula M. C.

    2006-01-01

    This article presents the first stage of a design-based research project to introduce case-based learning using existing interactive technologies in a major Australian university. The paper initially outlines the relationship between case-based learning, student interaction and the study of interactions--and includes a review of research into…

  3. CABINS: Case-based interactive scheduler

    NASA Technical Reports Server (NTRS)

    Miyashita, Kazuo; Sycara, Katia

    1992-01-01

    In this paper we discuss the need for interactive factory schedule repair and improvement, and we identify case-based reasoning (CBR) as an appropriate methodology. Case-based reasoning is the problem solving paradigm that relies on a memory for past problem solving experiences (cases) to guide current problem solving. Cases similar to the current case are retrieved from the case memory, and similarities and differences of the current case to past cases are identified. Then a best case is selected, and its repair plan is adapted to fit the current problem description. If a repair solution fails, an explanation for the failure is stored along with the case in memory, so that the user can avoid repeating similar failures in the future. So far we have identified a number of repair strategies and tactics for factory scheduling and have implemented a part of our approach in a prototype system, called CABINS. As a future work, we are going to scale up CABINS to evaluate its usefulness in a real manufacturing environment.

  4. Theory, fabrication and applications of metamaterials composed of cylinders

    NASA Astrophysics Data System (ADS)

    Strickland, Diana

    In this work we design a new type of hyperlens composed of nanowires, and numerically demonstrate its ability to resolve closely spaced and otherwise indistinguishable features of an imaged object in the far field. Conversely, we demonstrate the ability of a concentrator to focus incident radiation into an area much smaller than a wave length. To overcome limitations in fabricating materials such as the nanowire composites used in the applications above as well as other materials composed of cylindrical structures, we propose the newly patented method, #US2015/0017466A1, that features initial masked patterning and partial self-assembly, resulting in a relatively simple, inexpensive process with a flexible flow and many constituent material options, capable of forming composites with diverse functionalities. Although modeling the effective properties of cylinder-based media has been the focus of considerable research in the field of Metamaterials, surprisingly enough, no complete and fully dynamic model of such cylinders' response to incident radiation existed. Based on Mie scattering theory, we derive the complete dynamic polarizability tensor for circular, azimuthally symmetric cylinders excited by an arbitrary field distribution, and provide compact expressions for all of its elements. Interestingly, magnetoelectric effects are shown to arise at oblique incidence, even in the case of centrosymmetric achiral thin cylinders, associated with a weak form of spatial dispersion. We expect the polarizabilities to find applications in antenna design, in metamaterial design, and to improve the physical understanding of the wave interaction and spatial dispersion in artificial materials composed of elongated inclusions such as wire media.

  5. Dual-responsive colloidal microcapsules based on host-guest interaction on solid templates.

    PubMed

    Li, Guangyu; Dong, Zhirui; Zhu, Yuting; Tong, Weijun; Gao, Changyou

    2016-08-01

    Colloidal microcapsules (MCs) have received considerable attention in the fields of microencapsulation, drug delivery as well as microreactors due to their unique nanoparticles-composed structure. In this study, dual-responsive colloidal MCs based on host-guest interaction were successfully fabricated via a layer-by-layer assembly method on sacrificial solid templates. Ferrocene-modified polyethylenimine (PEI-Fc) and cyclodextrin-modified polystyrene nanoparticles (PS-CD NPs) were used as building blocks for assembly. The colloidal MCs could be disassembled into nano-components upon addition of competitive adamantane (Ad) molecules or in the solution with a pH lower than 4. PMID:27175830

  6. Nurturing the Careers of Australia's Future Composers

    ERIC Educational Resources Information Center

    Watson, Amanda; Forrest, David

    2008-01-01

    In 1994, the Australian Society for Music Education (ASME) initiated two related projects supporting and acknowledging composition in schools and offering the opportunity for secondary school-aged students to work with prominent Australian composers. These were the Young Composers' Project and the Composer-in-Residence Project. Both projects were…

  7. Composers and Children: A Future Creative Force?

    ERIC Educational Resources Information Center

    Colgrass, Michael

    2004-01-01

    In this article, a professional composer shares his experiences writing music for a middle school band. Michael Colgrass was commissioned, along with fourteen other composers, by the American Composers Forum BandQuest project to write a short piece for eighth-grade band. They were asked to pay a couple of visits to a nearby school to work with…

  8. Problem Solving: Physics Modeling-Based Interactive Engagement

    ERIC Educational Resources Information Center

    Ornek, Funda

    2009-01-01

    The purpose of this study was to investigate how modeling-based instruction combined with an interactive-engagement teaching approach promotes students' problem solving abilities. I focused on students in a calculus-based introductory physics course, based on the matter and interactions curriculum of Chabay & Sherwood (2002) at a large state…

  9. Transparent conductors composed of nanomaterials.

    PubMed

    Layani, Michael; Kamyshny, Alexander; Magdassi, Shlomo

    2014-06-01

    This is a review on recent developments in the field of transparent conductive coatings (TCCs) for ITO replacement. The review describes the basic properties of conductive nanomaterials suitable for fabrication of such TCCs (metallic nanoparticles and nanowires, carbon nanotubes and graphene sheets), various methods of patterning the metal nanoparticles with formation of conductive transparent metallic grids, honeycomb structures and 2D arrays of interconnected rings as well as fabrication of TCCs based on graphene and carbon nanotubes. Applications of TCCs in electronic and optoelectronic devices, such as solar cells, electroluminescent and electrochromic devices, touch screens and displays, and transparent EMI shielders, are discussed. PMID:24777332

  10. A feature-based approach to modeling protein-protein interaction hot spots.

    PubMed

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-05-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to pi-related interactions, especially pi . . . pi interactions. PMID:19273533

  11. Physically-based interactive Schlieren flow visualization

    SciTech Connect

    Mccormick, Patrick S; Brownlee, Carson S; Pegoraro, Vincent; Shankar, Siddharth; Hansen, Charles D

    2009-01-01

    Understanding fluid flow is a difficult problem and of increasing importance as computational fluid dynamics produces an abundance of simulation data. Experimental flow analysis has employed techniques such as shadowgraph and schlieren imaging for centuries which allow empirical observation of inhomogeneous flows. Shadowgraphs provide an intuitive way of looking at small changes in flow dynamics through caustic effects while schlieren cutoffs introduce an intensity gradation for observing large scale directional changes in the flow. The combination of these shading effects provides an informative global analysis of overall fluid flow. Computational solutions for these methods have proven too complex until recently due to the fundamental physical interaction of light refracting through the flow field. In this paper, we introduce a novel method to simulate the refraction of light to generate synthetic shadowgraphs and schlieren images of time-varying scalar fields derived from computational fluid dynamics (CFD) data. Our method computes physically accurate schlieren and shadowgraph images at interactive rates by utilizing a combination of GPGPU programming, acceleration methods, and data-dependent probabilistic schlieren cutoffs. Results comparing this method to previous schlieren approximations are presented.

  12. The Composing Processes of Unskilled College Writers.

    ERIC Educational Resources Information Center

    Perl, Sondra

    The findings from a study of five students undertaken to determine how unskilled college writers compose, whether their writing processes can be analyzed in a systematic manner, and what an increased understanding of those processes suggests about the nature of composing and about the manner in which writing is taught are presented in this paper.…

  13. A Virtual Composer in Every Classroom

    ERIC Educational Resources Information Center

    Hoffman, Adria R.; Carter, Bruce A.

    2013-01-01

    Previous generations applauded grant-funded programs that brought living composers into the lives of K-12 music students. The current economic climate, however, limits opportunities similar to those enjoyed in the past. We designed a virtual composer-in-residence experience that uses technology to overcome the barriers of funding limitations and…

  14. America's Women Composers: Up from the Footnotes.

    ERIC Educational Resources Information Center

    Pool, Jeannie G.

    1979-01-01

    This article presents an overview on women composers in the United States from the eighteenth century to the present. It also lists women's musical organizations, selected references on women in music, and available recordings of works by American women composers. (SJL)

  15. Constraint-based interactive assembly planning

    SciTech Connect

    Jones, R.E.; Wilson, R.H.; Calton, T.L.

    1997-03-01

    The constraints on assembly plans vary depending on the product, assembly facility, assembly volume, and many other factors. This paper describes the principles and implementation of a framework that supports a wide variety of user-specified constraints for interactive assembly planning. Constraints from many sources can be expressed on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. All constraints are implemented as filters that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner`s algorithms. Replanning is fast enough to enable a natural plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to several complex assemblies. 12 refs., 2 figs., 3 tabs.

  16. Isoniazid interaction with phosphatidylcholine-based membranes

    NASA Astrophysics Data System (ADS)

    Marques, Amanda Vicente; Marengo Trindade, Paulo; Marques, Sheylla; Brum, Tainá; Harte, Etienne; Rodrigues, Marieli Oliveira; D'Oca, Marcelo Gonçalves Montes; da Silva, Pedro Almeida; Pohlmann, Adriana R.; Alves, Isabel Dantas; de Lima, Vânia Rodrigues

    2013-11-01

    Interaction between the anti-tuberculosis drug isoniazid (INH) and phosphatidylcholine membranes was investigated in terms of: (i) drug affinity to a lipid bilayer and (ii) drug-induced changes in the dynamic properties of liposomes, such as membrane hydration state, polar head and non-polar acyl chain order and lipid phase transition behavior. These parameters were studied by plasmon waveguide resonance spectroscopy (PWR), UV-visible, horizontal attenuated total reflectance-Fourier transform infrared (HATR-FTIR), nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC) techniques. PWR measurements showed an INH membrane dissociation constant value of 0.031 μM to phosphatidylcholine bilayers. INH induced higher membrane perturbation in the plane which is perpendicular to the membrane plane. The INH saturation concentration in phosphatidylcholine liposomes was 170 μM. At this concentration, HATR-FTIR and NMR findings showed that INH may interact with the lipid polar head, increasing the number of hydrogen bonds in the phosphate region and enhancing the choline motional freedom. DSC measurements showed that, at 115 μM, INH was responsible for a decrease in lipid phase transition temperature of approximately 2 °C and had no influence in the lipid enthalpy variation (ΔH). However, at 170 μM, INH induced the reduction of the ΔH by approximately 52%, suggesting that the drug may increase the distance among lipid molecules and enhance the freedom of the lipid acyl chains methylene groups. This paper provides information on the effects of INH on membrane dynamics which is important to understand liposome targeting of the drug and for the development of anti-TB pharmacologic systems that not only are less susceptible to resistance but also have low toxicity.

  17. Internet-based Interactive Construction Management Learning System.

    ERIC Educational Resources Information Center

    Sawhney, Anil; Mund, Andre; Koczenasz, Jeremy

    2001-01-01

    Describes a way to incorporate practical content into the construction engineering and management curricula: the Internet-based Interactive Construction Management Learning System, which uses interactive and adaptive learning environments to train students in the areas of construction methods, equipment and processes using multimedia, databases,…

  18. Web-based Interactive Simulator for Rotating Machinery.

    ERIC Educational Resources Information Center

    Sirohi, Vijayalaxmi

    1999-01-01

    Baroma (Balance of Rotating Machinery), the Web-based educational engineering interactive software for teaching/learning combines didactical and software ergonomical approaches. The software in tutorial form simulates a problem using Visual Interactive Simulation in graphic display, and animation is brought about through graphical user interface…

  19. Narrative-Based Interactive Learning Environments from Modelling Reasoning

    ERIC Educational Resources Information Center

    Yearwood, John; Stranieri, Andrew

    2007-01-01

    Narrative and story telling has a long history of use in structuring, organising and communicating human experience. This paper describes a narrative based interactive intelligent learning environment which aims to elucidate practical reasoning using interactive emergent narratives that can be used in training novices in decision making. Its…

  20. A Usability Study of Interactive Web-Based Modules

    ERIC Educational Resources Information Center

    Girard, Tulay; Pinar, Musa

    2011-01-01

    This research advances the understanding of the usability of marketing case study modules in the area of interactive web-based technologies through the assignment of seven interactive case modules in a Principles of Marketing course. The case modules were provided for marketing students by the publisher, McGraw Hill Irwin, of the "Marketing"…

  1. Films Composed Of Diamond And Diamondlike Carbon

    NASA Technical Reports Server (NTRS)

    Shing, Yuh-Han

    1995-01-01

    Proposed films composed of diamond and diamondlike carbon useful as wear-resistant and self-lubricating protective and tribological coats at extreme temperatures and in corrosive and oxidizing environments. Films have wide variety of industrial applications.

  2. Interactive Internet Based Pendulum for Learning Mechatronics

    NASA Astrophysics Data System (ADS)

    Sethson, Magnus R.

    2003-01-01

    This paper describes an Internet based remote experimental setup of a double lined pendulum mechanism for students experiments at the M. Sc. Level. Some of the first year experience using this web-based setup in classes is referred. In most of the courses given at the division of mechanical engineering systems at Linkoeping Institute of Technology we provide experimental setups to enhance the teaching Of M.Sc. students. Many of these experimental setups involve mechatronical systems. Disciplines like fluid power, electronics, and mechanics and also software technologies are used in each experiment. As our campus has recently been split into two different cities some new concepts for distance learning have been studied. The one described here tries to implement remotely controlled mechatronic setups for teaching basic programming of real-time operating systems and analysis of the dynamics of mechanical systems. The students control the regulators for the pendulum through a web interface and get measurement results and a movie back through their email. The present setup uses a double linked pendulum that is controlled by a DC-motor and monitored through both camera and angular position sensors. All software needed is hosted on a double-processor PC running the RedHat 7.1. distribution complemented with real-time scheduling using DIAPM-RTAI 1.7. The Internet site is presented to the students using PHP, Apache and MySQL. All of the used software originates from the open source domain. The experience from integrating these technologies and security issues is discussed together with the web-camera interface. One of the important experiences from this project so far is the need for a good visual feedback. This is both in terms of video speed but also in resolution. It has been noticed that when the students makes misstates and wants to search the failure they want clear, large images with high resolution to support their personal believes in the cause of the failure. Even

  3. Gallium based low-interaction anions

    DOEpatents

    King, Wayne A.; Kubas, Gregory J.

    2000-01-01

    The present invention provides: a composition of the formula M.sup.+x (Ga(Y).sub.4.sup.-).sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; a composition of the formula (R).sub.x Q.sup.+ Ga(Y).sub.4.sup.- where Q is selected from the group consisting of carbon, nitrogen, sulfur, phosphorus and oxygen, each R is a ligand selected from the group consisting of alkyl, aryl, and hydrogen, x is an integer selected from the group consisting of 3 and 4 depending upon Q, and each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; an ionic polymerization catalyst composition including an active cationic portion and a gallium based weakly coordinating anion; and bridged anion species of the formula M.sup.+x.sub.y [X(Ga(Y.sub.3).sub.z ].sup.-y.sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, magnesium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, X is a bridging group between two gallium atoms, y is an integer selected from the group consisting 1 and 2, z is an integer of at least 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide.

  4. Composable Analytic Systems for next-generation intelligence analysis

    NASA Astrophysics Data System (ADS)

    DiBona, Phil; Llinas, James; Barry, Kevin

    2015-05-01

    Lockheed Martin Advanced Technology Laboratories (LM ATL) is collaborating with Professor James Llinas, Ph.D., of the Center for Multisource Information Fusion at the University at Buffalo (State of NY), researching concepts for a mixed-initiative associate system for intelligence analysts to facilitate reduced analysis and decision times while proactively discovering and presenting relevant information based on the analyst's needs, current tasks and cognitive state. Today's exploitation and analysis systems have largely been designed for a specific sensor, data type, and operational context, leading to difficulty in directly supporting the analyst's evolving tasking and work product development preferences across complex Operational Environments. Our interactions with analysts illuminate the need to impact the information fusion, exploitation, and analysis capabilities in a variety of ways, including understanding data options, algorithm composition, hypothesis validation, and work product development. Composable Analytic Systems, an analyst-driven system that increases flexibility and capability to effectively utilize Multi-INT fusion and analytics tailored to the analyst's mission needs, holds promise to addresses the current and future intelligence analysis needs, as US forces engage threats in contested and denied environments.

  5. Interacting with Visual Poems through AR-Based Digital Artwork

    ERIC Educational Resources Information Center

    Lin, Hao-Chiang Koong; Hsieh, Min-Chai; Liu, Eric Zhi-Feng; Chuang, Tsung-Yen

    2012-01-01

    In this study, an AR-based digital artwork called "Mind Log" was designed and evaluated. The augmented reality technique was employed to create digital artwork that would present interactive poems. A digital poem was generated via the interplay between a video film and a text-based poem. This artwork was created following a rigorous design flow,…

  6. Ortholog-based protein-protein interaction prediction and its application to inter-species interactions

    PubMed Central

    Lee, Sheng-An; Chan, Cheng-hsiung; Tsai, Chi-Hung; Lai, Jin-Mei; Wang, Feng-Sheng; Kao, Cheng-Yan; Huang, Chi-Ying F

    2008-01-01

    Background The rapid growth of protein-protein interaction (PPI) data has led to the emergence of PPI network analysis. Despite advances in high-throughput techniques, the interactomes of several model organisms are still far from complete. Therefore, it is desirable to expand these interactomes with ortholog-based and other methods. Results Orthologous pairs of 18 eukaryotic species were expanded and merged with experimental PPI datasets. The contributions of interologs from each species were evaluated. The expanded orthologous pairs enable the inference of interologs for various species. For example, more than 32,000 human interactions can be predicted. The same dataset has also been applied to the prediction of host-pathogen interactions. PPIs between P. falciparum calmodulin and several H. sapiens proteins are predicted, and these interactions may contribute to the maintenance of host cell Ca2+ concentration. Using comparisons with Bayesian and structure-based approaches, interactions between putative HSP40 homologs of P. falciparum and the H. sapiens TNF receptor associated factor family are revealed, suggesting a role for these interactions in the interference of the human immune response to P. falciparum. Conclusion The PPI datasets are available from POINT and POINeT . Further development of methods to predict host-pathogen interactions should incorporate multiple approaches in order to improve sensitivity, and should facilitate the identification of targets for drug discovery and design. PMID:19091010

  7. User Interaction Design for a Home-Based Telecare System

    NASA Astrophysics Data System (ADS)

    Raptis, Spyros; Tsiakoulis, Pirros; Chalamandaris, Aimilios; Karabetsos, Sotiris

    This paper presents the design of the user-interaction component of a home-based telecare system for congestive heart failure patients. It provides a short overview of the overall system and offers details on the different interaction types supported by the system. Interacting with the user occurs either as part of a scheduled procedure or as a consequence of identifying or predicting a potentially hazardous deterioration of the patients' health state. The overall logic of the interaction is structured around event-scenario associations, where a scenario consists of concrete actions to be performed, some of which may involve the patient. A key objective in this type of interaction that it is very simple, intuitive and short, involving common everyday objects and familiar media such as speech.

  8. The implementation of distributed interactive simulator based on HLA

    NASA Astrophysics Data System (ADS)

    Zhang, Limin; Teng, Jianfu; Feng, Tao

    2004-03-01

    HLA (High Level Architecture) is a new architecture of distributed interactive simulation developed from DIS. We put forward a technical scheme of a distributed interactive simulator based on HLA, and bring forward a concept about distributed oriented-object simulator's engine, as well as an in-depth study on its architecture. This provides a new theoretical and practical approach in order to turn simulator's architecture into HLA.

  9. Music and emotion—a composer's perspective

    PubMed Central

    Douek, Joel

    2013-01-01

    This article takes an experiential and anecdotal look at the daily lives and work of film composers as creators of music. It endeavors to work backwards from what practitioners of the art and craft of music do instinctively or unconsciously, and try to shine a light on it as a conscious process. It examines the role of the film composer in his task to convey an often complex set of emotions, and communicate with an immediacy and universality that often sit outside of common language. Through the experiences of the author, as well as interviews with composer colleagues, this explores both concrete and abstract ways in which music can bring meaning and magic to words and images, and as an underscore to our daily lives. PMID:24348344

  10. Rectenna composed of a circular microstrip antenna

    SciTech Connect

    Itoh, K.; Ohgane, T.; Ogawa, Y.

    1986-01-01

    One of the big problems in the SPS system is reradiation of the harmonic waves generated by the rectifying diode. The authors proposed the use of a circular microstrip antenna (CMSA), since the CMSA has no higher resonance-harmonic of integer multiple of the dominant resonance frequency. However, characteristics of a large rectenna array of CMSA's have not been clarified. This paper is concerned with the absorption efficiency of the rectenna composed of the CMSA. The efficiency is estimated explicitly using an infinite array model. The results show that the absorption efficiency of the infinite rectenna array composed of the CMSA is 100%. Also, this paper considers the effect of the losses of the composed of the CMSA is 100%. Also, this paper considers the effect of the losses of the CMSA. 4 references, 4 figures.

  11. Composing Songs for Teaching Science to College Students

    ERIC Educational Resources Information Center

    Yee Pinn Tsin, Isabel

    2015-01-01

    Recent studies have shown that songs may enhance learning as they function as mnemonic devices to increase memorability. In this research, songs based on the more difficult subtopics in Chemistry were composed, encompassing many formulas, equations and facts to be remembered. This technique of song composition can be used in any subject, any point…

  12. A symmetry model for genetic coding via a wallpaper group composed of the traditional four bases and an imaginary base E: Towards category theory-like systematization of molecular/genetic biology

    PubMed Central

    2014-01-01

    Background Previously, we suggested prototypal models that describe some clinical states based on group postulates. Here, we demonstrate a group/category theory-like model for molecular/genetic biology as an alternative application of our previous model. Specifically, we focus on deoxyribonucleic acid (DNA) base sequences. Results We construct a wallpaper pattern based on a five-letter cruciform motif with letters C, A, T, G, and E. Whereas the first four letters represent the standard DNA bases, the fifth is introduced for ease in formulating group operations that reproduce insertions and deletions of DNA base sequences. A basic group Z5 = {r, u, d, l, n} of operations is defined for the wallpaper pattern, with which a sequence of points can be generated corresponding to changes of a base in a DNA sequence by following the orbit of a point of the pattern under operations in group Z5. Other manipulations of DNA sequence can be treated using a vector-like notation ‘Dj’ corresponding to a DNA sequence but based on the five-letter base set; also, ‘Dj’s are expressed graphically. Insertions and deletions of a series of letters ‘E’ are admitted to assist in describing DNA recombination. Likewise, a vector-like notation Rj can be constructed for sequences of ribonucleic acid (RNA). The wallpaper group B = {Z5×∞, ●} (an ∞-fold Cartesian product of Z5) acts on Dj (or Rj) yielding changes to Dj (or Rj) denoted by ‘Dj◦B(j→k) = Dk’ (or ‘Rj◦B(j→k) = Rk’). Based on the operations of this group, two types of groups—a modulo 5 linear group and a rotational group over the Gaussian plane, acting on the five bases—are linked as parts of the wallpaper group for broader applications. As a result, changes, insertions/deletions and DNA (RNA) recombination (partial/total conversion) are described. As an exploratory study, a notation for the canonical “central dogma” via a category theory-like way is presented for future

  13. Improving usability for video analysis using gaze-based interaction

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Peinsipp-Byma, Elisabeth; Klaus, Edmund

    2012-06-01

    In this contribution, we propose the use of eye tracking technology to support video analysts. To reduce workload, we implemented two new interaction techniques as a substitute for mouse pointing: gaze-based selection of a video of interest from a set of video streams, and gaze-based selection of moving targets in videos. First results show that the multi-modal interaction technique gaze + key press allows the selection of fast moving objects in a more effective way. Moreover, we discuss further application possibilities like gaze behavior analysis to measure the analyst's fatigue, or analysis of the gaze behavior of expert analysts to instruct novices.

  14. Solar cells composed of semiconductive materials

    SciTech Connect

    Hezel, R.

    1981-03-03

    A solar cell is composed of a semiconductive material having an active zone in which charge carriers are produced by photons which strike and penetrate into the solar cell. The cell is comprised of a semiconductive body having an electrically insulating laminate with metal contacts therein positioned on the semiconductor body in the active zone thereof. The insulating laminate is composed of a double layer of insulating material, with the layer in direct contact with the semiconductive surface being composed of SiO2 which is either natural or is produced at temperatures below 800/sup 0/ C. And the layer superimposed above the SiO2 layer being composed of a different insulating material, such as plasma-produced Si3N4. In certain embodiments of the invention, a whole-area pn-junction is provided parallel to the semiconductive surface. The solar cells of the invention exhibit a higher degree of efficiency due to a higher fixed interface charged density, and low surface recombination velocity, an increased UV sensitivity, improved surface protection and passivation and improved anti-reflection characteristics relative to prior art solar cell devices.

  15. Take a Change with Aleatory Composing.

    ERIC Educational Resources Information Center

    Stambaugh, Laura

    2003-01-01

    Discusses how teachers can incorporate musical composition into their classrooms by teaching students about aleatory, or chance, music. Provides a definition of aleatory music and provides various composing techniques, focusing on aleatory music. Includes lesson plans using aleatory music, such as the "Mozart Model" for grades 4-12. (CMK)

  16. The Composer in the Liberal Arts College

    ERIC Educational Resources Information Center

    Schwartz, Elliott

    2011-01-01

    This essay explores the role of music composition within the curriculum of a typical small liberal arts college and the faculty composer's role(s) in facilitating the study of composition. The relationship between composition and campus performance is discussed, particularly in light of the increased emphasis on performance in formerly all-male…

  17. Composing for Digital Publication: Rhetoric, Design, Code

    ERIC Educational Resources Information Center

    Eyman, Douglas; Ball, Cheryl E.

    2014-01-01

    The authors discuss the state of digital publication with the claim that, at this historical moment, nearly all composition is digital composition. But, as a field, composition studies has not yet made that shift completely explicit in the discussions of composing processes and writing pedagogies. A deeper engagement with this very rapid shift in…

  18. Mathematical Approaches to the Composing Process.

    ERIC Educational Resources Information Center

    Hall, Dennis R.

    Rhetoric and mathematics have much in common that can help explain the composing process. Common elements of rhetoric and mathematics important to the teaching of writing are (1) relationships between syntax and semantics, (2) practices of representation, and (3) focus on problem solving. Recent emphasis on "repair processes" in mathematics is…

  19. The Composer's Blueprint: A Teacher's Guide.

    ERIC Educational Resources Information Center

    Trzcinski, Louis C.; Nelhybel, Vaclav

    This teacher's guide is designed to accompany two 15-minute color television programs dealing with the creative process involved in conceiving a composition. The programs are appropriate for junior high school string students and instrumental students in string methods courses at teacher training institutions. In the program, the composer explains…

  20. Assessing Bacterial Interactions Using Carbohydrate-Based Microarrays

    PubMed Central

    Flannery, Andrea; Gerlach, Jared Q.; Joshi, Lokesh; Kilcoyne, Michelle

    2015-01-01

    Carbohydrates play a crucial role in host-microorganism interactions and many host glycoconjugates are receptors or co-receptors for microbial binding. Host glycosylation varies with species and location in the body, and this contributes to species specificity and tropism of commensal and pathogenic bacteria. Additionally, bacterial glycosylation is often the first bacterial molecular species encountered and responded to by the host system. Accordingly, characterising and identifying the exact structures involved in these critical interactions is an important priority in deciphering microbial pathogenesis. Carbohydrate-based microarray platforms have been an underused tool for screening bacterial interactions with specific carbohydrate structures, but they are growing in popularity in recent years. In this review, we discuss carbohydrate-based microarrays that have been profiled with whole bacteria, recombinantly expressed adhesins or serum antibodies. Three main types of carbohydrate-based microarray platform are considered; (i) conventional carbohydrate or glycan microarrays; (ii) whole mucin microarrays; and (iii) microarrays constructed from bacterial polysaccharides or their components. Determining the nature of the interactions between bacteria and host can help clarify the molecular mechanisms of carbohydrate-mediated interactions in microbial pathogenesis, infectious disease and host immune response and may lead to new strategies to boost therapeutic treatments. PMID:27600247

  1. A Context-Aware Interactive Health Care System Based on Ontology and Fuzzy Inference.

    PubMed

    Chiang, Tzu-Chiang; Liang, Wen-Hua

    2015-09-01

    In the present society, most families are double-income families, and as the long-term care is seriously short of manpower, it contributes to the rapid development of tele-homecare equipment, and the smart home care system gradually emerges, which assists the elderly or patients with chronic diseases in daily life. This study aims at interaction between persons under care and the system in various living spaces, as based on motion-sensing interaction, and the context-aware smart home care system is proposed. The system stores the required contexts in knowledge ontology, including the physiological information and environmental information of the person under care, as the database of decision. The motion-sensing device enables the person under care to interact with the system through gestures. By the inference mechanism of fuzzy theory, the system can offer advice and rapidly execute service, thus, implementing the EHA. In addition, the system is integrated with the functions of smart phone, tablet PC, and PC, in order that users can implement remote operation and share information regarding the person under care. The health care system constructed in this study enables the decision making system to probe into the health risk of each person under care; then, from the view of preventive medicine, and through a composing system and simulation experimentation, tracks the physiological trend of the person under care, and provides early warning service, thus, promoting smart home care. PMID:26265236

  2. Wandering: A Web-Based Platform for the Creation of Location-Based Interactive Learning Objects

    ERIC Educational Resources Information Center

    Barak, Miri; Ziv, Shani

    2013-01-01

    Wandering is an innovative web-based platform that was designed to facilitate outdoor, authentic, and interactive learning via the creation of location-based interactive learning objects (LILOs). Wandering was integrated as part of a novel environmental education program among middle school students. This paper describes the Wandering platform's…

  3. Interactive smart battery storage for a PV and wind hybrid energy management control based on conservative power theory

    NASA Astrophysics Data System (ADS)

    Godoy Simões, Marcelo; Davi Curi Busarello, Tiago; Saad Bubshait, Abdullah; Harirchi, Farnaz; Antenor Pomilio, José; Blaabjerg, Frede

    2016-04-01

    This paper presents interactive smart battery-based storage (BBS) for wind generator (WG) and photovoltaic (PV) systems. The BBS is composed of an asymmetric cascaded H-bridge multilevel inverter (ACMI) with staircase modulation. The structure is parallel to the WG and PV systems, allowing the ACMI to have a reduction in power losses compared to the usual solution for storage connected at the DC-link of the converter for WG or PV systems. Moreover, the BBS is embedded with a decision algorithm running real-time energy costs, plus a battery state-of-charge manager and power quality capabilities, making the described system in this paper very interactive, smart and multifunctional. The paper describes how BBS interacts with the WG and PV and how its performance is improved. Experimental results are presented showing the efficacy of this BBS for renewable energy applications.

  4. Harmonizing Technology with Interaction in Blended Problem-Based Learning

    ERIC Educational Resources Information Center

    Donnelly, Roisin

    2010-01-01

    This paper discusses the harmonizing role of technology and interaction in a qualitative study on blended problem-based learning within the context of academic development in higher education. Within this setting, and as both designers and tutors in blended PBL, it is important to seek best practices for how to combine instructional strategies in…

  5. Developing Computer-Based Interactive Video Simulations on Questioning Strategies.

    ERIC Educational Resources Information Center

    Rogers, Randall; Rieff, Judith

    1989-01-01

    This article presents a rationale for development and implementation of computer based interactive videotape (CBIV) in preservice teacher education; identifies advantages of CBIV simulations over other practice exercises; describes economical production procedures; discusses implications and importance of these simulations; and makes…

  6. Web-Based Interactive Writing Environment: Development and Evaluation

    ERIC Educational Resources Information Center

    Yang, Jie Chi; Ko, Hwa Wei; Chung, I. Ling

    2005-01-01

    This study reports the development and evaluation of a web-based interactive writing environment designed for elementary school students. The environment includes three writing themes, "story pass on", "story chameleon" and "thousand ideas", to encourage reading comprehension, creativity and problem-solving skills of students. Three assessment…

  7. A Microcomputer-Based Interactive Presentation Development System.

    ERIC Educational Resources Information Center

    Moreau, Dennis R.; Dominick, Wayne D.

    1988-01-01

    Reviews research and development projects sponsored by the National Aeronautics and Space Administration (NASA) that address microcomputer-based support for instructional activities at the University of Southwestern Louisiana. Highlights include a graphics project, local area networks, and the Interactive Presentation Development System, which is…

  8. Interactive Video-Based Industrial Training in Basic Electronics.

    ERIC Educational Resources Information Center

    Mirkin, Barry

    The Wisconsin Foundation for Vocational, Technical, and Adult Education is currently involved in the development, implementation, and distribution of a sophisticated interactive computer and video learning system. Designed to offer trainees an open entry and open exit opportunity to pace themselves through a comprehensive competency-based,…

  9. Computer-Based Interaction Analysis with DEGREE Revisited

    ERIC Educational Resources Information Center

    Barros, B.; Verdejo, M. F.

    2016-01-01

    We review our research with "DEGREE" and analyse how our work has impacted the collaborative learning community since 2000. Our research is framed within the context of computer-based interaction analysis and the development of computer-supported collaborative learning (CSCL) tools. We identify some aspects of our work which have been…

  10. Systematic Detection of Epistatic Interactions Based on Allele Pair Frequencies

    PubMed Central

    Ackermann, Marit; Beyer, Andreas

    2012-01-01

    Epistatic genetic interactions are key for understanding the genetic contribution to complex traits. Epistasis is always defined with respect to some trait such as growth rate or fitness. Whereas most existing epistasis screens explicitly test for a trait, it is also possible to implicitly test for fitness traits by searching for the over- or under-representation of allele pairs in a given population. Such analysis of imbalanced allele pair frequencies of distant loci has not been exploited yet on a genome-wide scale, mostly due to statistical difficulties such as the multiple testing problem. We propose a new approach called Imbalanced Allele Pair frequencies (ImAP) for inferring epistatic interactions that is exclusively based on DNA sequence information. Our approach is based on genome-wide SNP data sampled from a population with known family structure. We make use of genotype information of parent-child trios and inspect 3×3 contingency tables for detecting pairs of alleles from different genomic positions that are over- or under-represented in the population. We also developed a simulation setup which mimics the pedigree structure by simultaneously assuming independence of the markers. When applied to mouse SNP data, our method detected 168 imbalanced allele pairs, which is substantially more than in simulations assuming no interactions. We could validate a significant number of the interactions with external data, and we found that interacting loci are enriched for genes involved in developmental processes. PMID:22346757

  11. NERIES: Seismic Data Gateways and User Composed Datasets Metadata Management

    NASA Astrophysics Data System (ADS)

    Spinuso, Alessandro; Trani, Luca; Kamb, Linus; Frobert, Laurent

    2010-05-01

    One of the NERIES EC project main objectives is to establish and improve the networking of seismic waveform data exchange and access among four main data centers in Europe: INGV, GFZ, ORFEUS and IPGP. Besides the implementation of the data backbone, several investigations and developments have been conducted in order to offer to the users the data available from this network, either programmatically or interactively. One of the challenges is to understand how to enable users` activities such as discovering, aggregating, describing and sharing datasets to obtain a decrease in the replication of similar data queries towards the network, exempting the data centers to guess and create useful pre-packed products. We`ve started to transfer this task more and more towards the users community, where the users` composed data products could be extensively re-used. The main link to the data is represented by a centralized webservice (SeismoLink) acting like a single access point to the whole data network. Users can download either waveform data or seismic station inventories directly from their own software routines by connecting to this webservice, which routes the request to the data centers. The provenance of the data is maintained and transferred to the users in the form of URIs, that identify the dataset and implicitly refer to the data provider. SeismoLink, combined with other webservices (eg EMSC-QuakeML earthquakes catalog service), is used from a community gateway such as the NERIES web portal (http://www.seismicportal.eu). Here the user interacts with a map based portlet which allows the dynamic composition of a data product, binding seismic event`s parameters with a set of seismic stations. The requested data is collected by the back-end processes of the portal, preserved and offered to the user in a personal data cart, where metadata can be generated interactively on-demand. The metadata, expressed in RDF, can also be remotely ingested. They offer rating

  12. Traffic and Driving Simulator Based on Architecture of Interactive Motion.

    PubMed

    Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza

    2015-01-01

    This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination. PMID:26491711

  13. Traffic and Driving Simulator Based on Architecture of Interactive Motion

    PubMed Central

    Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza

    2015-01-01

    This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination. PMID:26491711

  14. WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.

    PubMed

    Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh

    2015-04-01

    We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments. PMID:26357093

  15. Composing simulations using persistent software components

    SciTech Connect

    Holland, J.V.; Michelsen, R.E.; Powell, D.R.; Upton, S.C.; Thompson, D.R.

    1999-03-01

    The traditional process for developing large-scale simulations is cumbersome, time consuming, costly, and in some cases, inadequate. The topics of software components and component-based software engineering are being explored by software professionals in academic and industrial settings. A component is a well-delineated, relatively independent, and replaceable part of a software system that performs a specific function. Many researchers have addressed the potential to derive a component-based approach to simulations in general, and a few have focused on military simulations in particular. In a component-based approach, functional or logical blocks of the simulation entities are represented as coherent collections of components satisfying explicitly defined interface requirements. A simulation is a top-level aggregate comprised of a collection of components that interact with each other in the context of a simulated environment. A component may represent a simulation artifact, an agent, or any entity that can generated events affecting itself, other simulated entities, or the state of the system. The component-based approach promotes code reuse, contributes to reducing time spent validating or verifying models, and promises to reduce the cost of development while still delivering tailored simulations specific to analysis questions. The Integrated Virtual Environment for Simulation (IVES) is a composition-centered framework to achieve this potential. IVES is a Java implementation of simulation composition concepts developed at Los Alamos National Laboratory for use in several application domains. In this paper, its use in the military domain is demonstrated via the simulation of dismounted infantry in an urban environment.

  16. Web-based Interactive Landform Simulation Model - Grand Canyon

    NASA Astrophysics Data System (ADS)

    Luo, W.; Pelletier, J. D.; Duffin, K.; Ormand, C. J.; Hung, W.; Iverson, E. A.; Shernoff, D.; Zhai, X.; Chowdary, A.

    2013-12-01

    Earth science educators need interactive tools to engage and enable students to better understand how Earth systems work over geologic time scales. The evolution of landforms is ripe for interactive, inquiry-based learning exercises because landforms exist all around us. The Web-based Interactive Landform Simulation Model - Grand Canyon (WILSIM-GC, http://serc.carleton.edu/landform/) is a continuation and upgrade of the simple cellular automata (CA) rule-based model (WILSIM-CA, http://www.niu.edu/landform/) that can be accessed from anywhere with an Internet connection. Major improvements in WILSIM-GC include adopting a physically based model and the latest Java technology. The physically based model is incorporated to illustrate the fluvial processes involved in land-sculpting pertaining to the development and evolution of one of the most famous landforms on Earth: the Grand Canyon. It is hoped that this focus on a famous and specific landscape will attract greater student interest and provide opportunities for students to learn not only how different processes interact to form the landform we observe today, but also how models and data are used together to enhance our understanding of the processes involved. The latest development in Java technology (such as Java OpenGL for access to ubiquitous fast graphics hardware, Trusted Applet for file input and output, and multithreaded ability to take advantage of modern multi-core CPUs) are incorporated into building WILSIM-GC and active, standards-aligned curricula materials guided by educational psychology theory on science learning will be developed to accompany the model. This project is funded NSF-TUES program.

  17. An Opinion Interactive Model Based on Individual Persuasiveness

    PubMed Central

    Zhou, Xin; Chen, Bin; Liu, Liang; Ma, Liang; Qiu, Xiaogang

    2015-01-01

    In order to study the formation process of group opinion in real life, we put forward a new opinion interactive model based on Deffuant model and its improved models in this paper because current models of opinion dynamics lack considering individual persuasiveness. Our model has following advantages: firstly persuasiveness is added to individual's attributes reflecting the importance of persuasiveness, which means that all the individuals are different from others; secondly probability is introduced in the course of interaction which simulates the uncertainty of interaction. In Monte Carlo simulation experiments, sensitivity analysis including the influence of randomness, initial persuasiveness distribution, and number of individuals is studied at first; what comes next is that the range of common opinion based on the initial persuasiveness distribution can be predicted. Simulation experiment results show that when the initial values of agents are fixed, no matter how many times independently replicated experiments, the common opinion will converge at a certain point; however the number of iterations will not always be the same; the range of common opinion can be predicted when initial distribution of opinion and persuasiveness are given. As a result, this model can reflect and interpret some phenomena of opinion interaction in realistic society. PMID:26508911

  18. Towards accurate porosity descriptors based on guest-host interactions.

    PubMed

    Paik, Dooam; Haranczyk, Maciej; Kim, Jihan

    2016-05-01

    For nanoporous materials at the characterization level, geometry-based approaches have become the methods of choice to provide information, often encoded in numerical descriptors, about the pores and the channels of a porous material. Examples of most common descriptors of the latter are pore limiting diameters, accessible surface area and accessible volume. The geometry-based methods exploit hard-sphere approximation for atoms, which (1) reduces costly computations of the interatomic interactions between the probe guest molecule and the porous material framework atoms, (2) effectively exploit applied mathematics methods such as Voronoi decomposition to represent and characterize porosity. In this work, we revisit and quantify the shortcoming of the geometry-based approaches. To do so, we have developed a series of algorithms to calculate pore descriptors such as void fraction, accessible surface area, pore limiting diameters (largest included sphere, and largest free sphere) based on a classical force field model of interactions between the guest and the framework atoms. Our resulting energy-based methods are tested on diverse sets of metal-organic frameworks and zeolite structures and comparisons against results obtained from geometric-based method indicate deviations in the cases for structures with small pore sizes. The method provides both high accuracy and performance making it suitable when screening a large database of materials. PMID:27054971

  19. Using Agent Based Modeling (ABM) to Develop Cultural Interaction Simulations

    NASA Technical Reports Server (NTRS)

    Drucker, Nick; Jones, Phillip N.

    2012-01-01

    Today, most cultural training is based on or built around "cultural engagements" or discrete interactions between the individual learner and one or more cultural "others". Often, success in the engagement is the end or the objective. In reality, these interactions usually involve secondary and tertiary effects with potentially wide ranging consequences. The concern is that learning culture within a strict engagement context might lead to "checklist" cultural thinking that will not empower learners to understand the full consequence of their actions. We propose the use of agent based modeling (ABM) to collect, store, and, simulating the effects of social networks, promulgate engagement effects over time, distance, and consequence. The ABM development allows for rapid modification to re-create any number of population types, extending the applicability of the model to any requirement for social modeling.

  20. Quadrupole Beam-Based Alignment in the RHIC Interaction Regions

    SciTech Connect

    T. Satogata, J. Ziegler

    2011-03-01

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements.

  1. Sheet music by mind: Towards a brain-computer interface for composing.

    PubMed

    Pinegger, Andreas; Wriessnegger, Selina C; Muller-Putz, Gernot R

    2015-08-01

    Providing brain-computer interface (BCI) users engaging applications should be one of the main targets in BCI research. A painting application, a web browser and other applications can already be controlled via BCI. Another engaging application would be a music composer for self-expression. In this work, we describe Brain Composing: A BCI controlled music composing software. We tested and evaluated the implemented brain composing system with five volunteers. Using a tap water-based electrode biosignal amplifier further improved the usability of the system. Three participants reached accuracies above 77% and were able to copy-compose a given melody. Results of questionnaires support that our brain composing system is an attractive and easy way to compose music via a BCI. PMID:26736446

  2. A Multi-Phase Based Fluid-Structure-Microfluidic interaction sensor for Aerodynamic Shear Stress

    NASA Astrophysics Data System (ADS)

    Hughes, Christopher; Dutta, Diganta; Bashirzadeh, Yashar; Ahmed, Kareem; Qian, Shizhi

    2014-11-01

    A novel innovative microfluidic shear stress sensor is developed for measuring shear stress through multi-phase fluid-structure-microfluidic interaction. The device is composed of a microfluidic cavity filled with an electrolyte liquid. Inside the cavity, two electrodes make electrochemical velocimetry measurements of the induced convection. The cavity is sealed with a flexible superhydrophobic membrane. The membrane will dynamically stretch and flex as a result of direct shear cross-flow interaction with the seal structure, forming instability wave modes and inducing fluid motion within the microfluidic cavity. The shear stress on the membrane is measured by sensing the induced convection generated by membrane deflections. The advantages of the sensor over current MEMS based shear stress sensor technology are: a simplified design with no moving parts, optimum relationship between size and sensitivity, no gaps such as those created by micromachining sensors in MEMS processes. We present the findings of a feasibility study of the proposed sensor including wind-tunnel tests, microPIV measurements, electrochemical velocimetry, and simulation data results. The study investigates the sensor in the supersonic and subsonic flow regimes. Supported by a NASA SBIR phase 1 contract.

  3. Interactive classification: A technique for acquiring and maintaining knowledge bases

    SciTech Connect

    Finin, T.W.

    1986-10-01

    The practical application of knowledge-based systems, such as in expert systems, often requires the maintenance of large amounts of declarative knowledge. As a knowledge base (KB) grows in size and complexity, it becomes more difficult to maintain and extend. Even someone who is familiar with the knowledge domain, how it is represented in the KB, and the actual contents of the current KB may have severe difficulties in updating it. Even if the difficulties can be tolerated, there is a very real danger that inconsistencies and errors may be introduced into the KB through the modification. This paper describes an approach to this problem based on a tool called an interactive classifier. An interactive classifier uses the contents of the existing KB and knowledge about its representation to help the maintainer describe new KB objects. The interactive classifier will identify the appropriate taxonomic location for the newly described object and add it to the KB. The new object is allowed to be a generalization of existing KB objects, enabling the system to learn more about existing objects.

  4. Defect Interaction in Iron and Iron-based Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Haixuan; Stocks, G. Malcolm; Stoller, Roger

    2014-03-01

    Magnetism has a profound influence on the defect properties in iron and iron-based alloys. For instance, it has been shown from first principles calculations that the helium interstitial occupies the tetrahedral site instead of octahedral site in contrast to all previous work that neglected the magnetic effects. In this study, we explore the effects of magnetism on the defect interaction, primarily interstitial-type defects, in bcc iron and Fe-Cr systems. The magnetic moment change during the interaction of two 1/2 <111>interstitial loops in bcc iron was calculated using the ab initio locally self-consistent multiple-scattering (LSMS) method and a significant fluctuation was observed. Adding Cr significantly modifies the magnetic structure of the defects and defect interactions. In addition, the effects of magnetism on the defect energetics are evaluated. This study provides useful insights on whether magnetism can be used as a effective means to manipulate the defect evolution in iron-based structural alloys. This material is based upon work supported as part of the Center for Defect Physics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  5. [Interaction of Ag+ ions with ribonucleotides of canonical bases].

    PubMed

    Sorokin, V A; Valeev, V A; Gladchenko, G O; Sysa, I V; Degtiar, M V; Volchok, I V; Blagoĭ, Iu P

    1999-01-01

    The interaction of Ag+ ions with ribonucleotides of canonical bases in aqueous solution was studied by differential UV spectroscopy. Atoms coordinating silver ions (N7, O6 of guanosine 5'-monophosphate, N3, O2 of cytidine 5'-monophosphate, N7, N1, N3 of adenosine 5'-monophosphate and N3 of uridine 5'-monophosphate) and the binding constants characterizing the formation of appropriate complexes were determined. The differences in the relative affinity of Ag+ ions for the atoms of nucleotide bases correlate with the potential on them. PMID:10418671

  6. Direct interaction of microtubule- and actin-based transport motors

    NASA Technical Reports Server (NTRS)

    Huang, J. D.; Brady, S. T.; Richards, B. W.; Stenolen, D.; Resau, J. H.; Copeland, N. G.; Jenkins, N. A.

    1999-01-01

    The microtubule network is thought to be used for long-range transport of cellular components in animal cells whereas the actin network is proposed to be used for short-range transport, although the mechanism(s) by which this transport is coordinated is poorly understood. For example, in sea urchins long-range Ca2+-regulated transport of exocytotic vesicles requires a microtubule-based motor, whereas an actin-based motor is used for short-range transport. In neurons, microtubule-based kinesin motor proteins are used for long-range vesicular transport but microtubules do not extend into the neuronal termini, where actin filaments form the cytoskeletal framework, and kinesins are rapidly degraded upon their arrival in neuronal termini, indicating that vesicles may have to be transferred from microtubules to actin tracks to reach their final destination. Here we show that an actin-based vesicle-transport motor, MyoVA, can interact directly with a microtubule-based transport motor, KhcU. As would be expected if these complexes were functional, they also contain kinesin light chains and the localization of MyoVA and KhcU overlaps in the cell. These results indicate that cellular transport is, in part, coordinated through the direct interaction of different motor molecules.

  7. Alexia without agraphia in a composer.

    PubMed

    Judd, T; Gardner, H; Geschwind, N

    1983-06-01

    A 77-year-old composer had a left occipital lobe haemorrhagic infarct giving a severe reading disturbance with well-preserved writing and without appreciable aphasia. He continued to read music and to compose. His text- and music-reading performance under different conditions suggests that this unusual dissociation was primarily due to four factors. (1) He was unusually talented musically and inferred a great deal about the music he was reading. (2) The symbols of staff music notation are more visually distinctive than the symbols of phonetic language writing systems. (3) In staff music notation, pitch is represented ordinally, and other symbols are also distinguishable by their relative positions and sizes. (4) Music notation can be usefully read by interpreting it acoustically, kinaesthetically or in terms of formal musical concepts; in contrast to written language, it need not be interpreted referentially or in terms of auditory-verbal images. His disorder fits the classic visual-verbal disconnection account of alexia without agraphia and the contemporary view that music involves a family of related but distinct skills probably involving many brain areas in both hemispheres, although different cortical areas make characteristic contributions to different musical behaviours. PMID:6850277

  8. Gene Composer: database software for protein construct design, codon engineering, and gene synthesis

    PubMed Central

    Lorimer, Don; Raymond, Amy; Walchli, John; Mixon, Mark; Barrow, Adrienne; Wallace, Ellen; Grice, Rena; Burgin, Alex; Stewart, Lance

    2009-01-01

    Background To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. Results An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. Conclusion We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene assembly procedure with mis

  9. Quantification of Aromaticity Based on Interaction Coordinates: A New Proposal.

    PubMed

    Pandey, Sarvesh Kumar; Manogaran, Dhivya; Manogaran, Sadasivam; Schaefer, Henry F

    2016-05-12

    Attempts to establish degrees of aromaticity in molecules are legion. In the present study, we begin with a fictitious fragment arising from only those atoms contributing to the aromatic ring and having a force field projected from the original system. For example, in benzene, we adopt a fictitious C6 fragment with a force field projected from the full benzene force field. When one bond or angle is stretched and kept fixed, followed by a partial optimization for all other internal coordinates, structures change from their respective equilibria. These changes are the responses of all other internal coordinates for constraining the bond or angle by unit displacements and relaxing the forces on all other internal coordinates. The "interaction coordinate" derived from the redundant internal coordinate compliance constants measures how a bond (its electron density) responds for constrained optimization when another bond or angle is stretched by a specified unit (its electron density is perturbed by a finite amount). The sum of interaction coordinates (responses) of all bonded neighbors for all internal coordinates of the fictitious fragment is a measure of the strength of the σ and π electron interactions leading to aromatic stability. This sum, based on interaction coordinates, appears to be successful as an aromaticity index for a range of chemical systems. Since the concept involves analyzing a fragment rather than the whole molecule, this idea is more general and is likely to lead to new insights. PMID:27074522

  10. Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family.

    PubMed

    Uhart, Marina; Flores, Gabriel; Bustos, Diego M

    2016-01-01

    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems. PMID:27195976

  11. Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family

    PubMed Central

    Uhart, Marina; Flores, Gabriel; Bustos, Diego M.

    2016-01-01

    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems. PMID:27195976

  12. Predicting protein-protein interactions based only on sequences information.

    PubMed

    Shen, Juwen; Zhang, Jian; Luo, Xiaomin; Zhu, Weiliang; Yu, Kunqian; Chen, Kaixian; Li, Yixue; Jiang, Hualiang

    2007-03-13

    Protein-protein interactions (PPIs) are central to most biological processes. Although efforts have been devoted to the development of methodology for predicting PPIs and protein interaction networks, the application of most existing methods is limited because they need information about protein homology or the interaction marks of the protein partners. In the present work, we propose a method for PPI prediction using only the information of protein sequences. This method was developed based on a learning algorithm-support vector machine combined with a kernel function and a conjoint triad feature for describing amino acids. More than 16,000 diverse PPI pairs were used to construct the universal model. The prediction ability of our approach is better than that of other sequence-based PPI prediction methods because it is able to predict PPI networks. Different types of PPI networks have been effectively mapped with our method, suggesting that, even with only sequence information, this method could be applied to the exploration of networks for any newly discovered protein with unknown biological relativity. In addition, such supplementary experimental information can enhance the prediction ability of the method. PMID:17360525

  13. [Mental disease in two classical music composers].

    PubMed

    Rempelakos, L; Poulakou-Rebelakou, E; Ploumpidis, D

    2012-01-01

    A study οn two neglected classical music composers suffering a not syphilitic mental disease, is attempted here, syphilis of the central nervous system being frequent in that time. A brief overview on the psychiatric ailments of many great composers reveals suicide attempts and more or less severe depression following external events. The issue of a possible relationship between mental disease and (musical) creativity can be discussed, as mood swings and a certain tendency to melancholia are frequent features of a talented brain (a fact that can also be detected in their works). The first case presented here is Hans Rott from Austria, the beloved student of Anton Bruckner, who was considered to be at least equal to his famous classmate Gustav Mahler. The great expectations of his teacher and his friends suddenly came to an end, when he suffered a crisis of schizophrenia and was hospitalized in an insane asylum in Lower Austria. The tragic psychiatric adventure of the young musician lasted almost four years. He was diagnosed as a case of "hallucinatory insanity" and "persecution mania" by the medical staff, before dying of tuberculosis, aged only 26, and having completed only one symphony and several smaller works. His name came again on surface only a century after his death, when in 1989 his Symphony in E Major was discovered and premiered with great success, permitting to its creator a posthumous recognition, among Bruckner and Mahler. The second case of mental illness is that of the Armenian Komitas Vardapet. He was an orphan who grew up in theological schools and became a monk and later a priest, though he spent some years in Berlin in order to develop his musical skills. He is considered to be an authority of Armenian ecclesiastic music, introducing polyphony in the Armenian Church's music and collecting numerous traditional songs from all parts of Armenia. In 1915, during the Armenian genocide he was deported, tortured but finally saved, due to interventions

  14. Gesture Interaction Browser-Based 3D Molecular Viewer.

    PubMed

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela

    2016-01-01

    The paper presents an open source system that allows the user to interact with a 3D molecular viewer using associated hand gestures for rotating, scaling and panning the rendered model. The novelty of this approach is that the entire application is browser-based and doesn't require installation of third party plug-ins or additional software components in order to visualize the supported chemical file formats. This kind of solution is suitable for instruction of users in less IT oriented environments, like medicine or chemistry. For rendering various molecular geometries our team used GLmol (a molecular viewer written in JavaScript). The interaction with the 3D models is made with Leap Motion controller that allows real-time tracking of the user's hand gestures. The first results confirmed that the resulting application leads to a better way of understanding various types of translational bioinformatics related problems in both biomedical research and education. PMID:27350455

  15. Interactive cell segmentation based on phase contrast optics.

    PubMed

    Su, Hang; Su, Zhou; Zheng, Shibao; Yang, Hua; Wei, Sha

    2014-01-01

    Cell segmentation in phase contrast microscopy images lays a crucial foundation for numerous subsequent computer-aided cell image analysis, but it encounters many unsolved challenges due to image qualities and artifacts caused by phase contrast optics. Addressing the unsolved challenges, the authors propose an interactive cell segmentation scheme over phase retardation features. After partitioning the images into phase homogeneous atoms, human annotations are propagated to unlabeled atoms over an affinity graph that is learned based on discrimination analysis. Then, an active query strategy is proposed for which the most informative unlabeled atom is selected for annotation, which is also propagated to the other unlabeled atoms. Cell segmentation converges to quality results after several rounds of interactions involving both the user's intentions and characteristics of image features. Experimental results demonstrate that cells with different optical properties are well segmented via the proposed approach. PMID:24211879

  16. Bases for interactions between saflufenacil and glyphosate in plants.

    PubMed

    Ashigh, Jamshid; Hall, J Christopher

    2010-06-23

    Buckwheat (Fagropyrum esculentum Moench.), cabbage (Brassica oleracea L), and conventional and glyphosate-resistant varieties of canola (Brassica napus L.) were used to study the bases of saflufenacil and glyphosate interactions. Compared to the addition of Merge (surfactant), the addition of both Transorb (i.e., commercial product, Transorb formulation with glyphosate) and Merge increased the cuticular absorption of [(14)C] saflufenacil in cabbage plants with thick epicuticular wax layers. However, in all cases, the addition of glyphosate reduced the translocation of [(14)C]saflufenacil in glyphosate-susceptible plants, while translocation was not affected in glyphosate-resistant canola. Moreover, the phytotoxicity of saflufenacil reduced the activity of glyphosate, possibly by reducing its translocation in all plant species studied. Increased absorption of saflufenacil by the addition of Transorb (i.e., Transorb formulation with glyphosate) plus Merge appears to increase its contact activity, thus the interaction of saflufenacil and glyphosate involves two separate processes, absorption and translocation. PMID:20481603

  17. Interactive Reference Point Procedure Based on the Conic Scalarizing Function

    PubMed Central

    2014-01-01

    In multiobjective optimization methods, multiple conflicting objectives are typically converted into a single objective optimization problem with the help of scalarizing functions. The conic scalarizing function is a general characterization of Benson proper efficient solutions of non-convex multiobjective problems in terms of saddle points of scalar Lagrangian functions. This approach preserves convexity. The conic scalarizing function, as a part of a posteriori or a priori methods, has successfully been applied to several real-life problems. In this paper, we propose a conic scalarizing function based interactive reference point procedure where the decision maker actively takes part in the solution process and directs the search according to her or his preferences. An algorithmic framework for the interactive solution of multiple objective optimization problems is presented and is utilized for solving some illustrative examples. PMID:24723795

  18. ANNIE - INTERACTIVE PROCESSING OF DATA BASES FOR HYDROLOGIC MODELS.

    USGS Publications Warehouse

    Lumb, Alan M.; Kittle, John L.

    1985-01-01

    ANNIE is a data storage and retrieval system that was developed to reduce the time and effort required to calibrate, verify, and apply watershed models that continuously simulate water quantity and quality. Watershed models have three categories of input: parameters to describe segments of a drainage area, linkage of the segments, and time-series data. Additional goals for ANNIE include the development of software that is easily implemented on minicomputers and some microcomputers and software that has no special requirements for interactive display terminals. Another goal is for the user interaction to be based on the experience of the user so that ANNIE is helpful to the inexperienced user and yet efficient and brief for the experienced user. Finally, the code should be designed so that additional hydrologic models can easily be added to ANNIE.

  19. Aerosol cloud interaction: a multiplatform-scenario-based methodology

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; Lopes, Fabío. J. S.; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas

    2015-10-01

    Suspended atmospheric particles i.e. aerosol particles go through many chemical and physical processes and those interactions and transformations may cause particle change in size, structure and composition regulated by mechanisms, which are also present in clouds. These interactions play a great role in the radiation transfer in the atmosphere and are not completely understood as competing effects might occur which are known as indirect aerosol effects. Performing measurements and experiments in remote sensing to improve the knowledge of these processes are also a challenge. In face of that we propose a multi-platform approach based lidar, sun photometry and satellite observations which should be characterized under a scenario perspective in which given the cloud height, geometric and optical geometries in a diurnal/nocturnal basis will make possible to apply different analytical tools in each a set of product that specify the aerosol present in the vicinity of clouds, their optical and physical properties. These scenarios are meant to aid in tagging the expected products and help in creating a robust database to systematically study the aerosol-cloud interaction.In total we will present 6 scenarios: 3 under daylight conditions, 3 under at nighttime. Each scenario and their counterpart should be able to provide the cloud base/top height, aerosol backscattering profile and cloud optical/geometric thickness. In each instance we should count on a 5 wavelength Raman lidar system measurement, a collocated sun photometer and CALIPSO/MODIS observation from AQUA/TERRA platforms. To further improve the aerosol cloud interaction the Raman lidar system should have a water vapor channel or moreover a liquid water channel. In our study we will present a two-day case study to show the methodology feasibility and its potential application.

  20. The Development of an Interactive Web-Based Astronomy Course

    NASA Astrophysics Data System (ADS)

    Duric, N.; Heald, G.

    2002-05-01

    An interactive web-based astronomy laboratory course, targeted at incoming non-science majors, has been developed at the University of New Mexico. The aim of this course is to provide students with exposure to the research methods used by professional astronomers and, in the process, to teach the students fundamental concepts about astronomy. A tremendous demand for astronomy labs combined with limited observatory resources led to the challenge of opening a large number of daytime sections that would provide the students with a realistic research experience. The challenge was addressed by developing a set of highly interactive laboratory exercises that simulate the experience at the telescope and at the researcher's desk. Students acquire data from a variety of telescopes and instruments by accessing web-based archives. The data are reduced and analyzed using relatively simple web tools developed with Javascript code and Java applets. The lab course can be accessed at www.unm.edu/ astro1/101lab. A demonstration of the laboratory exercises will be presented. Assessment results, based on the University of Wisconsin's Student Assessment of Learning Gains (SALG) and the use of pre and post-tests will also be presented. A future goal of this project is to integrate the use of remotely controlled telescopes into the course. The ultimate goal is to develop a space science curriculum for use in regional institutions that include Dine College, University of New Mexico and NM Highlands University.

  1. Interactive agent based modeling of public health decision-making.

    PubMed

    Parks, Amanda L; Walker, Brett; Pettey, Warren; Benuzillo, Jose; Gesteland, Per; Grant, Juliana; Koopman, James; Drews, Frank; Samore, Matthew

    2009-01-01

    Agent-based models have yielded important insights regarding the transmission dynamics of communicable diseases. To better understand how these models can be used to study decision making of public health officials, we developed a computer program that linked an agent-based model of pertussis with an agent-based model of public health management. The program, which we call the Public Health Interactive Model & simulation (PHIMs) encompassed the reporting of cases to public health, case investigation, and public health response. The user directly interacted with the model in the role of the public health decision-maker. In this paper we describe the design of our model, and present the results of a pilot study to assess its usability and potential for future development. Affinity for specific tools was demonstrated. Participants ranked the program high in usability and considered it useful for training. Our ultimate goal is to achieve better public health decisions and outcomes through use of public health decision support tools. PMID:20351907

  2. Interactions of selected policy-stakeholder groups implementing middle school science standards-based systemic reform

    NASA Astrophysics Data System (ADS)

    Boydston, Theodore Lewis, III

    1999-12-01

    This research is an interpretive inquiry into the views and interactions of stakeholders in a district office of a large school system responsible for implementing science systemic reform. Three major sources of data were used in this research: surveys, stakeholder interviews, and autobiographical reflection on experiences as part of the reform initiative. This is an emergent research that is evident in the shift in the focus of research questions and their supporting assumptions during the research. The literature review describes standards-based reform, arguments about reform, and the major dimensions of reform research. The results of the survey of stakeholders revealed that the views among the stakeholder groups followed the system hierarchy and could be separated into two large groups; staff responsible for implementing the reform initiative and the other stakeholder groups. Each of these groups was composed of identifiable subgroups. The interviews with stakeholders revealed how their different attitudes, values, and beliefs frame the context of stakeholder interactions. An over reliance on an authoritarian view of decision-making leaves many stakeholders feeling disempowered and critical of others. This atmosphere promotes blaming, which inhibits collegial interaction. Work experiences in the district office revealed how stakeholders' unaddressed assumptions, attitudes, and beliefs promote fragmentation and competition rather than cooperation. Hidden assumptions about management by control and mandate, competition, and teaching and learning appear to restrain the interactions of stakeholders. Support of the National Science Education Standards was identified as a unifying view among the stakeholders, yet the professional development program focused on content and pedagogical knowledge without addressing stakeholder concerns and beliefs about the intended constructivist framework of the program. Stakeholders' attitudes about the issue of equity demonstrated

  3. Multi-Point Combinatorial Optimization Method with Distance Based Interaction

    NASA Astrophysics Data System (ADS)

    Yasuda, Keiichiro; Jinnai, Hiroyuki; Ishigame, Atsushi

    This paper proposes a multi-point combinatorial optimization method based on Proximate Optimality Principle (POP), which method has several advantages for solving large-scale combinatorial optimization problems. The proposed algorithm uses not only the distance between search points but also the interaction among search points in order to utilize POP in several types of combinatorial optimization problems. The proposed algorithm is applied to several typical combinatorial optimization problems, a knapsack problem, a traveling salesman problem, and a flow shop scheduling problem, in order to verify the performance of the proposed algorithm. The simulation results indicate that the proposed method has higher optimality than the conventional combinatorial optimization methods.

  4. Tunable Stable Levitation Based on Casimir Interaction between Nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Xianglei; Zhang, Zhuomin M.

    2016-03-01

    Quantum levitation enabled by repulsive Casimir force has been desirable due to the potential exciting applications in passive-suspension devices and frictionless bearings. In this paper, dynamically tunable stable levitation is theoretically demonstrated based on the configuration of dissimilar gratings separated by an intervening fluid using exact scattering theory. The levitation position is insensitive to temperature variations and can be actively tuned by adjusting the lateral displacement between the two gratings. This work investigates the possibility of applying quantum Casimir interactions into macroscopic mechanical devices working in a noncontact and low-friction environment for controlling the position or transducing lateral movement into vertical displacement at the nanoscale.

  5. Graphlet-based edge clustering reveals pathogen-interacting proteins

    PubMed Central

    Solava, R. W.; Michaels, R. P.; Milenković, T.

    2012-01-01

    Motivation: Prediction of protein function from protein interaction networks has received attention in the post-genomic era. A popular strategy has been to cluster the network into functionally coherent groups of proteins and assign the entire cluster with a function based on functions of its annotated members. Traditionally, network research has focused on clustering of nodes. However, clustering of edges may be preferred: nodes belong to multiple functional groups, but clustering of nodes typically cannot capture the group overlap, while clustering of edges can. Clustering of adjacent edges that share many neighbors was proposed recently, outperforming different node clustering methods. However, since some biological processes can have characteristic ‘signatures’ throughout the network, not just locally, it may be of interest to consider edges that are not necessarily adjacent. Results: We design a sensitive measure of the ‘topological similarity’ of edges that can deal with edges that are not necessarily adjacent. We cluster edges that are similar according to our measure in different baker's yeast protein interaction networks, outperforming existing node and edge clustering approaches. We apply our approach to the human network to predict new pathogen-interacting proteins. This is important, since these proteins represent drug target candidates. Availability: Software executables are freely available upon request. Contact: tmilenko@nd.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:22962470

  6. A prototype system based on visual interactive SDM called VGC

    NASA Astrophysics Data System (ADS)

    Jia, Zelu; Liu, Yaolin; Liu, Yanfang

    2009-10-01

    In many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. Spatial data mining recently emerges from a number of real applications, such as real-estate marketing, urban planning, weather forecasting, medical image analysis, road traffic accident analysis, etc. It demands for efficient solutions for many new, expensive, and complicated problems. For spatial data mining of large data sets to be effective, it is also important to include humans in the data exploration process and combine their flexibility, creativity, and general knowledge with the enormous storage capacity and computational power of today's computers. Visual spatial data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the information and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper a visual interactive spatial data mining prototype system (visual geo-classify) based on VC++6.0 and MapObject2.0 are designed and developed, the basic algorithms of the spatial data mining is used decision tree and Bayesian networks, and data classify are used training and learning and the integration of the two to realize. The result indicates it's a practical and extensible visual interactive spatial data mining tool.

  7. Teaching Vectors Through an Interactive Game Based Laboratory

    NASA Astrophysics Data System (ADS)

    O'Brien, James; Sirokman, Gergely

    2014-03-01

    In recent years, science and particularly physics education has been furthered by the use of project based interactive learning [1]. There is a tremendous amount of evidence [2] that use of these techniques in a college learning environment leads to a deeper appreciation and understanding of fundamental concepts. Since vectors are the basis for any advancement in physics and engineering courses the cornerstone of any physics regimen is a concrete and comprehensive introduction to vectors. Here, we introduce a new turn based vector game that we have developed to help supplement traditional vector learning practices, which allows students to be creative, work together as a team, and accomplish a goal through the understanding of basic vector concepts.

  8. Interactive Webmap-Based Science Planning for BepiColombo

    NASA Astrophysics Data System (ADS)

    McAuliffe, J.; Martinez, S.; Ortiz de Landaluce, I.; de la Fuente, S.

    2015-10-01

    For BepiColombo, ESA's Mission to Mercury, we will build a web-based, map-based interface to the Science Planning System. This interface will allow the mission's science teams to visually define targets for observations and interactively specify what operations will make up the given observation. This will be a radical departure from previous ESA mission planning methods. Such an interface will rely heavily on GIS technologies. This interface will provide footprint coverage of all existing archived data for Mercury, including a set of built-in basemaps. This will allow the science teams to analyse their planned observations and operational constraints with relevant contextual information from their own instrument, other BepiColombo instruments or from previous missions. The interface will allow users to import and export data in commonly used GIS formats, such that it can be visualised together with the latest planning information (e.g. import custom basemaps) or analysed in other GIS software. The interface will work with an object-oriented concept of an observation that will be a key characteristic of the overall BepiColombo scienceplanning concept. Observation templates or classes will be tracked right through the planning-executionprocessing- archiving cycle to the final archived science products. By using an interface that synthesises all relevant available information, the science teams will have a better understanding of the operational environment; it will enhance their ability to plan efficiently minimising or removing manual planning. Interactive 3D visualisation of the planned, scheduled and executed observations, simulation of the viewing conditions and interactive modification of the observation parameters are also being considered.

  9. Quantification of cardiorespiratory interactions based on joint symbolic dynamics.

    PubMed

    Kabir, Muammar M; Saint, David A; Nalivaiko, Eugene; Abbott, Derek; Voss, Andreas; Baumert, Mathias

    2011-10-01

    Cardiac and respiratory rhythms are highly nonlinear and nonstationary. As a result traditional time-domain techniques are often inadequate to characterize their complex dynamics. In this article, we introduce a novel technique to investigate the interactions between R-R intervals and respiratory phases based on their joint symbolic dynamics. To evaluate the technique, electrocardiograms (ECG) and respiratory signals were recorded in 13 healthy subjects in different body postures during spontaneous and controlled breathing. Herein, the R-R time series were extracted from ECG and respiratory phases were obtained from abdomen impedance belts using the Hilbert transform. Both time series were transformed into ternary symbol vectors based on the changes between two successive R-R intervals or respiratory phases. Subsequently, words of different symbol lengths were formed and the correspondence between the two series of words was determined to quantify the interaction between cardiac and respiratory cycles. To validate our results, respiratory sinus arrhythmia (RSA) was further studied using the phase-averaged characterization of the RSA pattern. The percentage of similarity of the sequence of symbols, between the respective words of the two series determined by joint symbolic dynamics, was significantly reduced in the upright position compared to the supine position (26.4 ± 4.7 vs. 20.5 ± 5.4%, p < 0.01). Similarly, RSA was also reduced during upright posture, but the difference was less significant (0.11 ± 0.02 vs. 0.08 ± 0.01 s, p < 0.05). In conclusion, joint symbolic dynamics provides a new efficient technique for the analysis of cardiorespiratory interaction that is highly sensitive to the effects of orthostatic challenge. PMID:21618043

  10. Agent Based Modeling of Human Gut Microbiome Interactions and Perturbations

    PubMed Central

    Shashkova, Tatiana; Popenko, Anna; Tyakht, Alexander; Peskov, Kirill; Kosinsky, Yuri; Bogolubsky, Lev; Raigorodskii, Andrei; Ischenko, Dmitry; Alexeev, Dmitry; Govorun, Vadim

    2016-01-01

    Background Intestinal microbiota plays an important role in the human health. It is involved in the digestion and protects the host against external pathogens. Examination of the intestinal microbiome interactions is required for understanding of the community influence on host health. Studies of the microbiome can provide insight on methods of improving health, including specific clinical procedures for individual microbial community composition modification and microbiota correction by colonizing with new bacterial species or dietary changes. Methodology/Principal Findings In this work we report an agent-based model of interactions between two bacterial species and between species and the gut. The model is based on reactions describing bacterial fermentation of polysaccharides to acetate and propionate and fermentation of acetate to butyrate. Antibiotic treatment was chosen as disturbance factor and used to investigate stability of the system. System recovery after antibiotic treatment was analyzed as dependence on quantity of feedback interactions inside the community, therapy duration and amount of antibiotics. Bacterial species are known to mutate and acquire resistance to the antibiotics. The ability to mutate was considered to be a stochastic process, under this suggestion ratio of sensitive to resistant bacteria was calculated during antibiotic therapy and recovery. Conclusion/Significance The model confirms a hypothesis of feedbacks mechanisms necessity for providing functionality and stability of the system after disturbance. High fraction of bacterial community was shown to mutate during antibiotic treatment, though sensitive strains could become dominating after recovery. The recovery of sensitive strains is explained by fitness cost of the resistance. The model demonstrates not only quantitative dynamics of bacterial species, but also gives an ability to observe the emergent spatial structure and its alteration, depending on various feedback mechanisms

  11. A Realization of Motion Acquisition System Based on Interaction Mode Control

    NASA Astrophysics Data System (ADS)

    Katsura, Seiichiro; Ohishi, Kiyoshi

    Recently, skill preservation of an expert has been a serious problem of the medical or production fields. This paper proposes a motion acquisition and reproduction of human motion by bilateral motion control. The proposed skill preservation system is composed of two modes; acquisition mode and reproduction mode. In the acquisition mode, the control system is based on bilateral control. Since a touching motion is subject to the “law of action and reaction”, it is possible to decompose the force information into action force and reaction force by using the bilateral control. Furthermore, human motion is acquired in decoupled modal space by using the quarry matrix. The decoupled modes correspond to “moving”, “yawing”, “grasping” tasks, and so on. Thus the skilled motion by a human is easily obtained and analyzed in the modal space. In the reproduction mode, the acquired human motion is reproduced in the modal space by the interaction mode control. The proposed skill preservation system is applied for grasping motion by three fingers. As a result, both grasping force and moving position are well reproduced automatically. The experimental results show viability of the proposed method.

  12. The Use of a Web-Based Classroom Interaction System in Introductory Physics Classes

    NASA Astrophysics Data System (ADS)

    Corpuz, Edgar D.; Corpuz, Ma. Aileen A.; Rosalez, Rolando

    2010-10-01

    A web-based interaction system was used in algebra-based and calculus-based physics classes to enhance students' classroom interaction. The interactive teaching approach primarily incorporated elements of Mazur's Peer Instruction and Interactive Lecture Demonstration. In our implementation, students used personal digital assistants (PDAs) to interact with their instructor during lecture and classroom demonstration. In this paper, we document the perceptions and attitudes of algebra-based and calculus-based physics students towards the interactive teaching approach and likewise present data on how this approach affected students' performance on the Force Concept Inventory (FCI).

  13. Joint Composable Object Model and LVC Methodology

    NASA Technical Reports Server (NTRS)

    Rheinsmith, Richard; Wallace, Jeffrey; Bizub, Warren; Ceranowicz, Andy; Cutts, Dannie; Powell, Edward T.; Gustavson, Paul; Lutz, Robert; McCloud, Terrell

    2010-01-01

    Within the Department of Defense, multiple architectures are created to serve and fulfill one or several specific service or mission related LVC training goals. Multiple Object Models exist across and within those architectures and it is there that those disparate object models are a major source of interoperability problems when developing and constructing the training scenarios. The two most commonly used architectures are; HLA and TENA, with DIS and CTIA following close behind in terms of the number of users. Although these multiple architectures can share and exchange data the underlying meta-models for runtime data exchange are quite different, requiring gateways/translators to bridge between the different object model representations; while the Department of Defense's use of gateways are generally effective in performing these functions, as the LVC environment increases so too does the cost and complexity of these gateways. Coupled with the wide range of different object models across the various user communities we increase the propensity for run time errors, increased programmer stop gap measures during coordinated exercises, or failure of the system as a whole due to unknown or unforeseen incompatibilities. The Joint Composable Object Model (JCOM) project was established under an M&S Steering Committee (MSSC)-sponsored effort with oversight and control placed under the Joint Forces Command J7 Advanced Concepts Program Directorate. The purpose of this paper is to address the initial and the current progress that has been made in the following areas; the Conceptual Model Development Format, the Common Object Model, the Architecture Neutral Data Exchange Model (ANDEM), and the association methodology to allow the re-use of multiple architecture object models and the development of the prototype persistent reusable library.

  14. Liquid Crystalline Networks Composed of Pentagonal, Square, and Triangular Cylinders

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Zeng, Xiangbing; Baumeister, Ute; Ungar, Goran; Tschierske, Carsten

    2005-01-01

    T-shaped molecules are designed in such a way that they self-organize into nanoscale liquid crystalline honeycombs based on polygons with any chosen number of sides. One of the phases reported here is a periodic organization of identical pentagonal cylinders; the other one is a structure composed of square-shaped and triangular cylinders in the ratio 2:1. These two different packing motifs represent duals of the same topological class. The generalization of the concept applied here allows the prediction of a whole range of unusual complex liquid crystalline phases.

  15. Molecular model of biaxial ordering in nematic liquid crystals composed of flat molecules with four mesogenic groups

    NASA Astrophysics Data System (ADS)

    Gorkunov, M. V.; Osipov, M. A.; Kocot, A.; Vij, J. K.

    2010-06-01

    Relative stability of uniaxial and biaxial nematic phases is analyzed in a model nematic liquid crystal composed of flat molecules of C2h symmetry with four mesogenic groups rigidly linked to the same center. The generalized effective quadrupole mean-field potential is proposed and its constants are evaluated numerically for the pair intermolecular potential based on Gay-Berne interaction between mesogenic groups. The dependencies of the constants on molecular shape parameters are systematically analyzed. Order parameters of the uniaxial and biaxial nematic phases are evaluated by direct minimization of the free energy at different temperatures. The corresponding phase diagrams are obtained enabling one to study the effects of molecular model parameters on the stability regions of uniaxial and biaxial phases. The results are used to clarify the nature of experimentally observed biaxial ordering in nematic liquid crystals composed of tetrapode molecules with the same symmetry.

  16. Molecular model of biaxial ordering in nematic liquid crystals composed of flat molecules with four mesogenic groups.

    PubMed

    Gorkunov, M V; Osipov, M A; Kocot, A; Vij, J K

    2010-06-01

    Relative stability of uniaxial and biaxial nematic phases is analyzed in a model nematic liquid crystal composed of flat molecules of C2h symmetry with four mesogenic groups rigidly linked to the same center. The generalized effective quadrupole mean-field potential is proposed and its constants are evaluated numerically for the pair intermolecular potential based on Gay-Berne interaction between mesogenic groups. The dependencies of the constants on molecular shape parameters are systematically analyzed. Order parameters of the uniaxial and biaxial nematic phases are evaluated by direct minimization of the free energy at different temperatures. The corresponding phase diagrams are obtained enabling one to study the effects of molecular model parameters on the stability regions of uniaxial and biaxial phases. The results are used to clarify the nature of experimentally observed biaxial ordering in nematic liquid crystals composed of tetrapode molecules with the same symmetry. PMID:20866427

  17. "Planetary Orbit" Systems Composed of Cycloparaphenylenes.

    PubMed

    Bachrach, Steven M; Zayat, Zeina-Christina

    2016-06-01

    Cycloparaphenylenes (CPP) can serve as both guest and host in a complex. Geometric analysis indicates that optimal binding occurs when the CPP nanohoops differ by five phenyl rings. Employing C-PCM(THF)/ωB97X-D/6-31G(d) computations, we find that the strongest binding does occur when the host and guest differ by five phenyl rings. The guest CPP is modestly inclined relative to the plane of the host CPP except when the host and guest differ by four phenyl rings, when the inclination angle becomes >40°. The distortion/interaction model shows that interaction dominates and is best when the host and guest differ by five phenyl rings. The computed (1)H NMR shifts of the guest CPP are shifted by about 1 ppm upfield relative to their position when unbound. This distinct chemical shift should aid in experimental detection of these CPP planetary orbit complexes. PMID:27163409

  18. Interactive Web-based tutorials for teaching digital electronics

    NASA Astrophysics Data System (ADS)

    Bailey, Donald G.

    2000-10-01

    With a wide range of student abilities in a class, it is difficult to effectively teach and stimulate all students. A series of web based tutorials was designed to help weaker students and stretch the stronger students. The tutorials consist of a series of HTML web pages with embedded Java applets. This combination is particularly powerful for providing interactive demonstrations because any textual content may be easily provided within the web page. The applet is able to be a compete working program that dynamically illustrates the concept, or provides a working environment for the student to experiment and work through their solution. The applet is dynamic, and responds to the student through both mouse clicks and keyboard entry. These allow the student to adjust parameters, make selections, and affect the way the program is run or information is displayed. Such interaction allows each applet to provide a mini demonstration or experiment to help the student understand a particular concept or technique. The approach taken is illustrated with a tutorial that dynamically shows the relationships between a truth table, Karnaugh amp, logic circuit and Boolean algebra representations of a logic function, and dramatically illustrates the effect of minimization on the resultant circuit. Use of the tutorial has resulted in significant benefits, particularly with weaker students.

  19. Interaction of purine bases and nucleosides with serum albumin

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Michnik, A.

    1997-06-01

    The proton NMR spectra of alkyl derivatives of adenine and adenosine have been studied. High-resolution (400 MHz) proton spectra were recorded at 300 K at increasing concentrations of serum albumin. The dependence of the chemical shifts and the line width of the individual spectral lines on the protein concentration provides some detailed information about the nature of the complexes between the purine derivatives and albumin. Comparison of data for the methylated and non-methylated purine bases and nucleosides indicates the formation of non-specific complexes with serum albumin. However, the presence of the ethyl group in 8-ethyl-9 N-methyladenine means that in the adenine derivative-serum albumin complex the ethyl chain preserves its dominant role in binding. An advantage of our model is that the π-π interaction between the adenine ring and the amino acids of the protein can be replaced by hydrophobic interaction in the case of complexation of the ethyl adenine derivative.

  20. Ultrasonic power measurement system based on acousto-optic interaction

    NASA Astrophysics Data System (ADS)

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  1. Graphics processing unit-based alignment of protein interaction networks.

    PubMed

    Xie, Jiang; Zhou, Zhonghua; Ma, Jin; Xiang, Chaojuan; Nie, Qing; Zhang, Wu

    2015-08-01

    Network alignment is an important bridge to understanding human protein-protein interactions (PPIs) and functions through model organisms. However, the underlying subgraph isomorphism problem complicates and increases the time required to align protein interaction networks (PINs). Parallel computing technology is an effective solution to the challenge of aligning large-scale networks via sequential computing. In this study, the typical Hungarian-Greedy Algorithm (HGA) is used as an example for PIN alignment. The authors propose a HGA with 2-nearest neighbours (HGA-2N) and implement its graphics processing unit (GPU) acceleration. Numerical experiments demonstrate that HGA-2N can find alignments that are close to those found by HGA while dramatically reducing computing time. The GPU implementation of HGA-2N optimises the parallel pattern, computing mode and storage mode and it improves the computing time ratio between the CPU and GPU compared with HGA when large-scale networks are considered. By using HGA-2N in GPUs, conserved PPIs can be observed, and potential PPIs can be predicted. Among the predictions based on 25 common Gene Ontology terms, 42.8% can be found in the Human Protein Reference Database. Furthermore, a new method of reconstructing phylogenetic trees is introduced, which shows the same relationships among five herpes viruses that are obtained using other methods. PMID:26243827

  2. Ultrasonic power measurement system based on acousto-optic interaction.

    PubMed

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method. PMID:27250458

  3. Evolving effective behaviours to interact with tag-based populations

    NASA Astrophysics Data System (ADS)

    Yucel, Osman; Crawford, Chad; Sen, Sandip

    2015-07-01

    Tags and other characteristics, externally perceptible features that are consistent among groups of animals or humans, can be used by others to determine appropriate response strategies in societies. This usage of tags can be extended to artificial environments, where agents can significantly reduce cognitive effort spent on appropriate strategy choice and behaviour selection by reusing strategies for interacting with new partners based on their tags. Strategy selection mechanisms developed based on this idea have successfully evolved stable cooperation in games such as the Prisoner's Dilemma game but relies upon payoff sharing and matching methods that limit the applicability of the tag framework. Our goal is to develop a general classification and behaviour selection approach based on the tag framework. We propose and evaluate alternative tag matching and adaptation schemes for a new, incoming individual to select appropriate behaviour against any population member of an existing, stable society. Our proposed approach allows agents to evolve both the optimal tag for the environment as well as appropriate strategies for existing agent groups. We show that these mechanisms will allow for robust selection of optimal strategies by agents entering a stable society and analyse the various environments where this approach is effective.

  4. Interactive brain shift compensation using GPU based programming

    NASA Astrophysics Data System (ADS)

    van der Steen, Sander; Noordmans, Herke Jan; Verdaasdonk, Rudolf

    2009-02-01

    Processing large images files or real-time video streams requires intense computational power. Driven by the gaming industry, the processing power of graphic process units (GPUs) has increased significantly. With the pixel shader model 4.0 the GPU can be used for image processing 10x faster than the CPU. Dedicated software was developed to deform 3D MR and CT image sets for real-time brain shift correction during navigated neurosurgery using landmarks or cortical surface traces defined by the navigation pointer. Feedback was given using orthogonal slices and an interactively raytraced 3D brain image. GPU based programming enables real-time processing of high definition image datasets and various applications can be developed in medicine, optics and image sciences.

  5. Nucleation of polyaniline nano-/macrotubes from anilinium composed micelles.

    PubMed

    Wang, Ruijuan; Wang, Chensen; Liu, Kong; Bei, Fengli; Lu, Lude; Han, Qiaofeng; Wu, Xiaodong

    2014-03-01

    A mechanistic study on the nucleation of polyaniline nanotubes (PANI-NT) through template-free method is explored by in situ solution-state (1)H NMR experiments via a careful analysis of the spectral evolution of the major species in the course of the reaction. Before polymerization, aniline and salicylic acid have assembled into loosely packed micelles due to electrostatic interactions and the proton exchange reaction between aniline and anilinium. A three-stage polymerization with a formation, accumulation of aniline dimers, as well as a generation of phenazine-like oligomers is observed, which can be attributed to the monomer transformation from neutral aniline molecules to anilinium cations and the significantly lowered pH in the reaction. Strong π-π stacking interactions from the phenazine-like oligomers facilitate the intermolecular aggregation which initiates the formation of PANI-NT. At first, such aggregates, locating at the outermost layer of anilinium composed micelles, shield in situ formed protons from releasing into the aqueous bulk but into the micelle instead. Due to the continuously increased charge in the micelle, a sphere-to-rod structural transition occurs which leads the oligomer aggregates to be sheathed at the exterior of the rod. Further consumption of anilinium in the micelle leaves the internal cavity while the fusion between the micelles elongates the length of the tubes. Our work demonstrates that (i) loosely packed anilinium composed micelles, highly mobile monomers within the micelle, and efficient blockage of the proton-releasing to the aqueous bulk are three key factors for the generation of tubular structures; and (ii) dynamic NMR line shape analysis provides a new perspective for resolving the formation profile of nanostructured polymers. PMID:24568544

  6. Interactive model evaluation tool based on IPython notebook

    NASA Astrophysics Data System (ADS)

    Balemans, Sophie; Van Hoey, Stijn; Nopens, Ingmar; Seuntjes, Piet

    2015-04-01

    In hydrological modelling, some kind of parameter optimization is mostly performed. This can be the selection of a single best parameter set, a split in behavioural and non-behavioural parameter sets based on a selected threshold or a posterior parameter distribution derived with a formal Bayesian approach. The selection of the criterion to measure the goodness of fit (likelihood or any objective function) is an essential step in all of these methodologies and will affect the final selected parameter subset. Moreover, the discriminative power of the objective function is also dependent from the time period used. In practice, the optimization process is an iterative procedure. As such, in the course of the modelling process, an increasing amount of simulations is performed. However, the information carried by these simulation outputs is not always fully exploited. In this respect, we developed and present an interactive environment that enables the user to intuitively evaluate the model performance. The aim is to explore the parameter space graphically and to visualize the impact of the selected objective function on model behaviour. First, a set of model simulation results is loaded along with the corresponding parameter sets and a data set of the same variable as the model outcome (mostly discharge). The ranges of the loaded parameter sets define the parameter space. A selection of the two parameters visualised can be made by the user. Furthermore, an objective function and a time period of interest need to be selected. Based on this information, a two-dimensional parameter response surface is created, which actually just shows a scatter plot of the parameter combinations and assigns a color scale corresponding with the goodness of fit of each parameter combination. Finally, a slider is available to change the color mapping of the points. Actually, the slider provides a threshold to exclude non behaviour parameter sets and the color scale is only attributed to the

  7. Using Interactive Simulations in Assessment: The Use of Computer-Based Interactive Simulations in the Assessment of Statistical Concepts

    ERIC Educational Resources Information Center

    Neumann, David L.

    2010-01-01

    Interactive computer-based simulations have been applied in several contexts to teach statistical concepts in university level courses. In this report, the use of interactive simulations as part of summative assessment in a statistics course is described. Students accessed the simulations via the web and completed questions relating to the…

  8. Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO2 Separation from CH4 and N2

    PubMed Central

    Otvagina, Ksenia V.; Mochalova, Alla E.; Sazanova, Tatyana S.; Petukhov, Anton N.; Moskvichev, Alexandr A.; Vorotyntsev, Andrey V.; Afonso, Carlos A. M.; Vorotyntsev, Ilya V.

    2016-01-01

    CO2 separation was found to be facilitated by transport membranes based on novel chitosan (CS)–poly(styrene) (PS) and chitosan (CS)–poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF4], [bmim][PF6], and [bmim][Tf2N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75–104 MPa for CS-PAN and 69–75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO2 permeability 400 Barrers belongs to CS-b-PS/[bmim][BF4]. The highest selectivity α (CO2/N2) = 15.5 was achieved for CS-b-PAN/[bmim][BF4]. The operational temperature of the membranes is under 220 °C. PMID:27294964

  9. Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO₂ Separation from CH₄ and N₂.

    PubMed

    Otvagina, Ksenia V; Mochalova, Alla E; Sazanova, Tatyana S; Petukhov, Anton N; Moskvichev, Alexandr A; Vorotyntsev, Andrey V; Afonso, Carlos A M; Vorotyntsev, Ilya V

    2016-01-01

    CO₂ separation was found to be facilitated by transport membranes based on novel chitosan (CS)-poly(styrene) (PS) and chitosan (CS)-poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF₄], [bmim][PF₆], and [bmim][Tf₂N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75-104 MPa for CS-PAN and 69-75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO₂ permeability 400 Barrers belongs to CS-b-PS/[bmim][BF₄]. The highest selectivity α (CO₂/N₂) = 15.5 was achieved for CS-b-PAN/[bmim][BF₄]. The operational temperature of the membranes is under 220 °C. PMID:27294964

  10. Interactive Multimedia and Model-based Learning in Biology.

    ERIC Educational Resources Information Center

    Buckley, Barbara C.

    2000-01-01

    Documents a case of model-building in biology through microanalysis of one student's interaction with "Science for Living: The Circulatory System (SFL)", an interactive multimedia resource prototype for research. Describes the student's learning goals, gains, and activities with particular attention to interactions with representations, then…

  11. Sequoias, Mavericks, Open Doors...Composing Joan Tower

    ERIC Educational Resources Information Center

    Allsup, Randall Everett

    2011-01-01

    This essay interview with Joan Tower is a meditation on the importance of composing, understood as a process larger than the making of new sound combinations or musical scores, suggesting that the compositional act is self-educative and self-forming. Tower's musical life, one of teaching and learning, one of composing and self-composing, is an…

  12. Photon-Electron Interactions in Graphene-Based Heterojunctions

    NASA Astrophysics Data System (ADS)

    Liu, Fangze

    Graphene, a single layer of carbon atoms arranged in honeycomb lattice, has been one of the most attractive materials for fundamental and applied research in the past decade. Its unique electronic, optical, thermal, chemical and mechanical properties have lead to the discovery of new physics and many promising applications. In particular, research on photon-electron interaction in graphene-based heterojunctions has revealed a new route to design photoactive devices. In this thesis, I present our work on the synthesis of graphene by chemical vapor deposition (CVD) and the study of graphene-based optoelectronic devices. In addition to the conventional synthesis of graphene on copper (Cu) foils, we also present the CVD synthesis of graphene on a new substrate: palladium (Pd). Especially, we performed detailed study of the nucleation, evolution and morphology of graphene growth on Pd substrate. It helps us to understand the growth reaction mechanism and achieve controllable synthesis of graphene from single layer to multiple layers with different morphologies. We then studied the broadband and ultrasensitive photocurrent and photovoltage response of graphene/silicon (Si) Schottky diodes. For the same architecture, we identified a new photoconductive mode with ultra high photoconductive gain, namely "quantum carrier reinvestment (QCR)". A gain exceeding 107 A/W was demonstrated. The underlying physics of photon-electron interactions in these junctions were studied by a combination of optical characterization tools including Raman spectroscopy, UV-Vis spectroscopy and scanning optical microscopy. The results obtained have been discussed in the framework of the unique electronic band structure, density states, and mobility of graphene, along with the manner in witch photoexcited carrier behave under various externally tuned parameters. We also systematically studied the optimization of performance of graphene/Si and thin transparent graphite/Si junction solar cells and

  13. Writing (ONLINE) Space: Composing Webware in Perl.

    ERIC Educational Resources Information Center

    Hartley, Cecilia; Schendel, Ellen; Neal, Michael R.

    1999-01-01

    Points to scholarship that helped the authors think about the ideologies behind Writing Spaces, a Web-based site for computer-mediated communication that they constructed using Perl scripts. Argues that writing teachers can and should shape online spaces to facilitate their individual pedagogies rather than allowing commercial software to limit…

  14. Composing user models through logic analysis.

    PubMed

    Bergeron, B P; Shiffman, R N; Rouse, R L; Greenes, R A

    1991-01-01

    The evaluation of tutorial strategies, interface designs, and courseware content is an area of active research in the medical education community. Many of the evaluation techniques that have been developed (e.g., program instrumentation), commonly produce data that are difficult to decipher or to interpret effectively. We have explored the use of decision tables to automatically simplify and categorize data for the composition of user models--descriptions of student's learning styles and preferences. An approach to user modeling that is based on decision tables has numerous advantages compared with traditional manual techniques or methods that rely on rule-based expert systems or neural networks. Decision tables provide a mechanism whereby overwhelming quantities of data can be condensed into an easily interpreted and manipulated form. Compared with conventional rule-based expert systems, decision tables are more amenable to modification. Unlike classification systems based on neural networks, the entries in decision tables are readily available for inspection and manipulation. Decision tables, descriptions of observations of behavior, also provide automatic checks for ambiguity in the tracking data. PMID:1807690

  15. Ocean interactions with the base of Amery Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Hellmer, Hartmut H.; Jacobs, Stanley S.

    1992-12-01

    Using a two-dimensional ocean thermohaline circulation model, we varied the cavity shape beneath Amery Ice Shelf in an attempt to reproduce the 150-m-thick marine ice layer observed at the "G1" ice core site. Most simulations caused melting rates which decrease the ice thickness by as much as 400 m between grounding line and G1, but produce only minor accumulation at the ice core site and closer to the ice front. Changes in the seafloor and ice topographies revealed a high sensitivity of the basal mass balance to water column thickness near the grounding line, to submarine sills, and to discontinuities in ice thickness. Model results showed temperature/salinity gradients similar to observations from beneath other ice shelves where ice is melting into seawater. Modeled outflow characteristics at the ice front are in general agreement with oceanographic data from Prydz Bay. A freshwater flux across the grounding line, derived from melting beneath the grounded ice sheet, would have to be anomalously large to produce the basal marine ice layer and account for the Ice Shelf Water outflow. We concur with Morgan's inference that the G1 core may have been taken in a basal crevasse filled with marine ice. This ice is formed from water cooled by ocean/ice shelf interactions along the interior ice shelf base.

  16. Optimization Model for Web Based Multimodal Interactive Simulations

    PubMed Central

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-01-01

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update. In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach. PMID:26085713

  17. Sensing Landscape History with an Interactive Location Based Service

    PubMed Central

    van Lammeren, Ron; Goossen, Martin; Roncken, Paul

    2009-01-01

    This paper introduces the STEAD approach for interpreting data acquired by a “human sensor”, who uses an informal interactive location-based service (iLBS) to sense cultural-historic facts and anecdotes of, and in the landscape. This user-generated data is collected outdoors and in situ. The approach consists of four related facets (who, what, where, when). Three of the four facets are discussed and illustrated by user generated data collected during a Dutch survey in 2008. These data represent the personal cultural-historic knowledge and anecdotes of 150 people using a customized iLBS for experiencing the cultural history of a landscape. The “who” facet shows three dominant mentality groups (cosmopolitans, modern materialists and post modern hedonists) that generated user content. The “what” facet focuses on three subject types of pictures and four picture framing classes. Pictures of the place type showed to be dominant and foreground framing class was slightly favourite. The “where” facet is explored via density, distribution, and distance of the pictures made. The illustrations of the facets indirectly show the role of the “human sensor” with respect to the domain of interest. The STEAD approach needs further development of the when-facet and of the relations between the four facets. Finally the results of the approach may support data archives of iLBS applications. PMID:22399994

  18. Quadrupole beam-based alignment in the RHIC interaction regions

    SciTech Connect

    Ziegler, J.; Satogata, T.

    2011-03-28

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements. BBA data has been collected over the past two runs for all three of the active experimental IRs at RHIC, updating results from the 2005 run which were taken with incorrectly installed offsets. The technique was successfully applied to expose a systematic misuse of the BPM survey offsets in the control system. This is likely to benefit polarized proton operations as polarization transmission through acceleration ramps depends on RMS orbit control in the arcs, but a quantitative understanding of its impact is still under active investigation. Data taking is ongoing as are refinements to the BBA technique aimed at reducing systematic errors and properly accounting for dispersive effects. Further development may focus on non-triplet BPMs such as those located near snakes, or arc quadrupoles that do not have individually shunted power supplies (a prerequisite for the current method) and as such, will require a modified procedure.

  19. Optical immunoassay systems based upon evanescent wave interactions

    NASA Astrophysics Data System (ADS)

    Christensen, Douglas A.; Herron, James N.

    1996-04-01

    Immunoassays based upon evanescent wave interactions are finding increased biosensing application. In these devices, the evanescent tail associated with total internal reflection of an incident beam at the substrate/solution interface provides sensitivity for surface-bound protein over bulk molecules, allowing homogeneous assays and real-time measurement of binding dynamics. Among such systems are surface plasmon resonance sensors and a resonant mirror device. Several research groups are also developing fluorescent fiberoptic or planar waveguide sensors for biomedical applications. We describe a second-generation planar waveguide fluoroimmunoassay system being developed in our laboratory which uses a molded polystyrene sensor. The 633-nm beam from a laser diode is focused into the 500 micrometer- thick planar waveguide by an integral lens. Antibodies to the desired analyte (hCG) are immobilized on the waveguide surface and fluorescence from bound analyte/tracer antibodies in a sandwich format is imaged onto the detector. The geometry of the waveguide allows several zones to be detected, providing the capability for on-sensor calibration. This sensor has shown picomolar sensitivity for the detection of hCG.

  20. Evaluating Types of Students' Interactions in a Wiki-Based Collaborative Learning Project

    ERIC Educational Resources Information Center

    Prokofieva, Maria

    2013-01-01

    Wiki technology has been promoted as a collaborative software platform. This study investigates interactions that occur in a wiki-based collaborative learning project. The study draws on interaction literature and investigates the types of interactions with which students are engaged in wiki-based group projects, clusters that reflect online…

  1. Interaction of cellulose-based cationic polyelectrolytes with mucin.

    PubMed

    Mazoniene, Edita; Joceviciute, Simona; Kazlauske, Jurgita; Niemeyer, Bernd; Liesiene, Jolanta

    2011-03-01

    Mucoadhesivity of water-soluble polymers is an important factor, when testing their suitability for controlled drug delivery systems. For this purpose, the interaction of new cationic cellulose polyelectrolytes with lyophilized mucin was investigated by means of turbidimetric titration, microscopy and measurement of zeta potential and particle size changes in the system. Results show that the cellulose derivatives interact with mucin. This interaction became stronger if cellulose macromolecules contained positively charged groups and an electrostatic interaction with the negatively charged mucin particles occurred. Under certain conditions flocculation of mucin particles by the cellulose polyelectrolyte was observed. PMID:21134731

  2. Movement-Based Interaction Applied to Physical Rehabilitation Therapies

    PubMed Central

    Ruiz Penichet, Victor Manuel; Lozano Pérez, María Dolores

    2014-01-01

    Background Health care environments are continuously improving conditions, especially regarding the use of current technology. In the field of rehabilitation, the use of video games and related technology has helped to develop new rehabilitation procedures. Patients are able to work on their disabilities through new processes that are more motivating and entertaining. However, these patients are required to leave their home environment to complete their rehabilitation programs. Objective The focus of our research interests is on finding a solution to eliminate the need for patients to interrupt their daily routines to attend rehabilitation therapy. We have developed an innovative system that allows patients with a balance disorder to perform a specific rehabilitation exercise at home. Additionally, the system features an assistive tool to complement the work of physiotherapists. Medical staff are thus provided with a system that avoids the need for them to be present during the exercise in specific cases in which patients are under suitable supervision. Methods A movement-based interaction device was used to achieve a reliable system for monitoring rehabilitation exercises performed at home. The system accurately utilizes parameters previously defined by the specialist for correct performance of the exercise. Accordingly, the system gives instructions and corrects the patient’s actions. The data generated during the session are collected for assessment by the specialist to adapt the difficulty of the exercise to the patient’s progress. Results The evaluation of the system was conducted by two experts in balance disorder rehabilitation. They were required to verify the effectiveness of the system, and they also facilitated the simulation of real patient behavior. They used the system freely for a period of time and provided interesting and optimistic feedback. First, they evaluated the system as a tool for real-life rehabilitation therapy. Second, their

  3. Design and realization of a contact-less interaction system based on infrared reflection photoelectric detection array

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Lei, Bing; Feng, Ying

    2015-10-01

    Due to the good performance of high sensitivity, quick response and low cost, infrared reflection detection technology is widely used in various fields. In this work, we present a novel contact-less interaction system which is based on infrared reflection detection technology. The system is mainly composed of a Micro Controller Unit (MCU), upper computer and photoelectric detection module. The MCU is utilized to control the photoelectric detection module and to make sure that the sensing unit is lighted one by one in a given order. When the interactive object appears upon the infrared reflection photoelectric detection array, its position information will be ensured and sent to the upper computer through MCU. In this system, every sensing unit is lighted for 1ms, and the detection array includes 8×8 units. It means that the photoelectric detection array will scan 15.6 times per-second. The experimental research results indicate that the factors affecting the detection range including the working current of transmitting diode, modulation frequency, and the reflectivity of the interactive object. When the working current is 10mA, and the modulation frequency is 80 KHz, the system has a detection range of 20 cm. Moreover, efficient modulation and demodulation of optical signal is quite necessary to remove the influence of surrounding light.

  4. Interactive Video and Group Learning: Two Action Enquiry Based Evaluations.

    ERIC Educational Resources Information Center

    Cloke, Chris; And Others

    1996-01-01

    Two evaluations of video programs that involved groups of learners interacting with LaserVision software are presented. One concerns counselling skills for student teachers. The other is a geography simulation program. Program structure, group interaction, and the role of the instructor are discussed. Learners in both studies found the visual…

  5. Interactive Language Simulation Systems: Technology for a National Language Base.

    ERIC Educational Resources Information Center

    Rowe, A. Allen

    1985-01-01

    Discusses the efforts of the Defense Language Institute Foreign Language Center to make interactive video an integral part of foreign language instruction. Interactive video is seen as a method which could profoundly alter the old classroom model of language instruction. (Author/SED)

  6. Natural Interaction Based Online Military Boxing Learning System

    ERIC Educational Resources Information Center

    Yang, Chenglei; Wang, Lu; Sun, Bing; Yin, Xu; Wang, Xiaoting; Liu, Li; Lu, Lin

    2013-01-01

    Military boxing, a kind of Chinese martial arts, is widespread and health beneficial. In this paper, the authors introduce a military boxing learning system realized by 3D motion capture, Web3D and 3D interactive technologies. The interactions with the system are natural and intuitive. Users can observe and learn the details of each action of the…

  7. Apparatus and method for determining microscale interactions based on compressive sensors such as crystal structures

    SciTech Connect

    McAdams, Harley; AlQuraishi, Mohammed

    2015-04-21

    Techniques for determining values for a metric of microscale interactions include determining a mesoscale metric for a plurality of mesoscale interaction types, wherein a value of the mesoscale metric for each mesoscale interaction type is based on a corresponding function of values of the microscale metric for the plurality of the microscale interaction types. A plurality of observations that indicate the values of the mesoscale metric are determined for the plurality of mesoscale interaction types. Values of the microscale metric are determined for the plurality of microscale interaction types based on the plurality of observations and the corresponding functions and compressed sensing.

  8. In Interactive, Web-Based Approach to Metadata Authoring

    NASA Technical Reports Server (NTRS)

    Pollack, Janine; Wharton, Stephen W. (Technical Monitor)

    2001-01-01

    NASA's Global Change Master Directory (GCMD) serves a growing number of users by assisting the scientific community in the discovery of and linkage to Earth science data sets and related services. The GCMD holds over 8000 data set descriptions in Directory Interchange Format (DIF) and 200 data service descriptions in Service Entry Resource Format (SERF), encompassing the disciplines of geology, hydrology, oceanography, meteorology, and ecology. Data descriptions also contain geographic coverage information, thus allowing researchers to discover data pertaining to a particular geographic location, as well as subject of interest. The GCMD strives to be the preeminent data locator for world-wide directory level metadata. In this vein, scientists and data providers must have access to intuitive and efficient metadata authoring tools. Existing GCMD tools are not currently attracting. widespread usage. With usage being the prime indicator of utility, it has become apparent that current tools must be improved. As a result, the GCMD has released a new suite of web-based authoring tools that enable a user to create new data and service entries, as well as modify existing data entries. With these tools, a more interactive approach to metadata authoring is taken, as they feature a visual "checklist" of data/service fields that automatically update when a field is completed. In this way, the user can quickly gauge which of the required and optional fields have not been populated. With the release of these tools, the Earth science community will be further assisted in efficiently creating quality data and services metadata. Keywords: metadata, Earth science, metadata authoring tools

  9. Interactive, Computer-Based Training Program for Radiological Workers

    SciTech Connect

    Trinoskey, P.A.; Camacho, P.I.; Wells, L.

    2000-01-18

    Lawrence Livermore National Laboratory (LLNL) is redesigning its Computer-Based Training (CBT) program for radiological workers. The redesign represents a major effort to produce a single, highly interactive and flexible CBT program that will meet the training needs of a wide range of radiological workers--from researchers and x-ray operators to individuals working in tritium, uranium, plutonium, and accelerator facilities. The new CBT program addresses the broad diversity of backgrounds found at a national laboratory. When a training audience is homogeneous in terms of education level and type of work performed, it is difficult to duplicate the effectiveness of a flexible, technically competent instructor who can tailor a course to the express needs and concerns of a course's participants. Unfortunately, such homogeneity is rare. At LLNL, they have a diverse workforce engaged in a wide range of radiological activities, from the fairly common to the quite exotic. As a result, the Laboratory must offer a wide variety of radiological worker courses. These include a general contamination-control course in addition to radioactive-material-handling courses for both low-level laboratory (i.e., bench-top) activities as well as high-level work in tritium, uranium, and plutonium facilities. They also offer training courses for employees who work with radiation-generating devices--x-ray, accelerator, and E-beam operators, for instance. However, even with the number and variety of courses the Laboratory offers, they are constrained by the diversity of backgrounds (i.e., knowledge and experience) of those to be trained. Moreover, time constraints often preclude in-depth coverage of site- and/or task-specific details. In response to this situation, several years ago LLNL began moving toward computer-based training for radiological workers. Today, that CBT effort includes a general radiological safety course developed by the Department of Energy's Hanford facility and a

  10. Interaction Junk: User Interaction-Based Evaluation of Visual Analytic Systems

    SciTech Connect

    Endert, Alexander; North, Chris

    2012-10-14

    With the growing need for visualization to aid users in understanding large, complex datasets, the ability for users to interact and explore these datasets is critical. As visual analytic systems have advanced to leverage powerful computational models and data analytics capabilities, the modes by which users engage and interact with the information are limited. Often, users are taxed with directly manipulating parameters of these models through traditional GUIs (e.g., using sliders to directly manipulate the value of a parameter). However, the purpose of user interaction in visual analytic systems is to enable visual data exploration – where users can focus on their task, as opposed to the tool or system. As a result, users can engage freely in data exploration and decision-making, for the purpose of gaining insight. In this position paper, we discuss how evaluating visual analytic systems can be approached through user interaction analysis, where the goal is to minimize the cognitive translation between the visual metaphor and the mode of interaction (i.e., reducing the “Interactionjunk”). We motivate this concept through a discussion of traditional GUIs used in visual analytics for direct manipulation of model parameters, and the importance of designing interactions the support visual data exploration.

  11. The in Silico Insight into Carbon Nanotube and Nucleic Acid Bases Interaction

    PubMed Central

    Karimi, Ali Asghar; Ghalandari, Behafarid; Tabatabaie, Seyed Saleh; Farhadi, Mohammad

    2016-01-01

    Background To explore practical applications of carbon nanotubes (CNTs) in biomedical fields the properties of their interaction with biomolecules must be revealed. Recent years, the interaction of CNTs with biomolecules is a subject of research interest for practical applications so that previous research explored that CNTs have complementary structure properties with single strand DNA (ssDNA). Objectives Hence, the quantum mechanics (QM) method based on ab initio was used for this purpose. Therefore values of binding energy, charge distribution, electronic energy and other physical properties of interaction were studied for interaction of nucleic acid bases and SCNT. Materials and Methods In this study, the interaction between nucleic acid bases and a (4, 4) single-walled carbon nanotube (SCNT) were investigated through calculations within quantum mechanics (QM) method at theoretical level of Hartree-Fock (HF) method using 6-31G basis set. Hence, the physical properties such as electronic energy, total dipole moment, charge distributions and binding energy of nucleic acid bases interaction with SCNT were investigated based on HF method. Results It has been found that the guanine base adsorption is bound stronger to the outer surface of nanotube in comparison to the other bases, consistent with the recent theoretical studies. In the other words, the results explored that guanine interaction with SCNT has optimum level of electronic energy so that their interaction is stable. Also, the calculations illustrated that SCNT interact to nucleic acid bases by noncovalent interaction because of charge distribution an electrostatic area is created in place of interaction. Conclusions Consequently, small diameter SCNT interaction with nucleic acid bases is noncovalent. Also, the results revealed that small diameter SCNT interaction especially SCNT (4, 4) with nucleic acid bases can be useful in practical application area of biomedical fields such detection and drug delivery.

  12. Interactive Multimedia-Based E-Learning: A Study of Effectiveness

    ERIC Educational Resources Information Center

    Zhang, Dongsong

    2005-01-01

    The author conducted two experiments to assess effectiveness of interactive e-learning. Students in a fully interactive multimedia-based e-learning environment achieved better performance and higher levels of satisfaction than those in a traditional classroom and those in a less interactive e-learning environment.

  13. Faculty Choice and Student Perception of Web-Based Technologies for Interaction in Online Economics Courses

    ERIC Educational Resources Information Center

    Morris, Olivia

    2012-01-01

    This research investigated faculty choice of web-based technologies for interaction in online economics courses and students' perception of those technologies. The literature review of online interaction has established the importance of learner-learner, learner-instructor and learner-content interaction in distance learning. However, some…

  14. Social Network Extraction and Analysis Based on Multimodal Dyadic Interaction

    PubMed Central

    Escalera, Sergio; Baró, Xavier; Vitrià, Jordi; Radeva, Petia; Raducanu, Bogdan

    2012-01-01

    Social interactions are a very important component in people’s lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Times’ Blogging Heads opinion blog. The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The links’ weights are a measure of the “influence” a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network. PMID:22438733

  15. Novel interactive virtual showcase based on 3D multitouch technology

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Liu, Yue; Lu, You; Wang, Yongtian

    2009-11-01

    A new interactive virtual showcase is proposed in this paper. With the help of virtual reality technology, the user of the proposed system can watch the virtual objects floating in the air from all four sides and interact with the virtual objects by touching the four surfaces of the virtual showcase. Unlike traditional multitouch system, this system cannot only realize multi-touch on a plane to implement 2D translation, 2D scaling, and 2D rotation of the objects; it can also realize the 3D interaction of the virtual objects by recognizing and analyzing the multi-touch that can be simultaneously captured from the four planes. Experimental results show the potential of the proposed system to be applied in the exhibition of historical relics and other precious goods.

  16. Molecular microenvironments: Solvent interactions with nucleic acid bases and ions

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Pohorille, A.

    1986-01-01

    The possibility of reconstructing plausible sequences of events in prebiotic molecular evolution is limited by the lack of fossil remains. However, with hindsight, one goal of molecular evolution was obvious: the development of molecular systems that became constituents of living systems. By understanding the interactions among molecules that are likely to have been present in the prebiotic environment, and that could have served as components in protobiotic molecular systems, plausible evolutionary sequences can be suggested. When stable aggregations of molecules form, a net decrease in free energy is observed in the system. Such changes occur when solvent molecules interact among themselves, as well as when they interact with organic species. A significant decrease in free energy, in systems of solvent and organic molecules, is due to entropy changes in the solvent. Entropy-driven interactioins played a major role in the organization of prebiotic systems, and understanding the energetics of them is essential to understanding molecular evolution.

  17. A Qualitative Examination of Two Year-Olds Interaction with Tablet Based Interactive Technology

    ERIC Educational Resources Information Center

    Geist, Eugene A.

    2012-01-01

    The purpose of this study was to observe children naturally interacting with these touch screen devices. Little direct instruction was given to the children on the use of the devices however an adult did assist when needed. The device was introduced to the children as would be any other educational material such as play-dough, new items in the…

  18. Hierarchical spatial heterogeneity in liquid crystals composed of graphene oxides.

    PubMed

    Shundo, Atsuomi; Hori, Koichiro; Penaloza, David P; Matsumoto, Yuji; Okumura, Yasushi; Kikuchi, Hirotsugu; Lee, Kyung Eun; Kim, Sang Ouk; Tanaka, Keiji

    2016-08-10

    Graphene oxide (GO) is a class of two-dimensional materials with a thickness of about 1 nm and a broad distribution of lateral dimension commonly approaching several micrometers. A dispersion of GOs in water often forms a liquid crystal, which is expected to be a promising precursor for the fabrication of carbon-based materials with well-ordered structures. To accelerate the application of GO-based liquid crystals, their structures and physical properties at various sizes must be well understood. To that end, we examined the local rheological properties of GO-based liquid crystals in the nematic phase using a particle tracking technique, where local properties can be accessed by observing the thermal motion of embedded probe particles. Particle diffusion was spatially heterogeneous, and depended on the size of the particles. Such a size-dependent heterogeneity can be associated with a hierarchical local environment, which is time-dependent for this system. The anisotropic particle diffusion originated from particles trapped in between the GO layers and in isotropic-like regions. The aggregation states of the GO dispersion composed of nematic and isotropic-like regions were observed using confocal laser scanning microscopy. PMID:27464002

  19. Teaching Composing in Secondary School: A Case Study Analysis

    ERIC Educational Resources Information Center

    Bolden, Benjamin

    2009-01-01

    This article reports a case study of an experienced teacher of composing working with secondary school students in a large urban centre in Ontario, Canada. Results suggest authentic assignments connect student composing to the "real world", and so have meaning and life beyond the music classroom. Teachers can facilitate the development of…

  20. 16 CFR 301.20 - Fur products composed of pieces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Fur products composed of pieces. 301.20 Section 301.20 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.20 Fur products composed...

  1. 16 CFR 301.20 - Fur products composed of pieces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Fur products composed of pieces. 301.20 Section 301.20 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.20 Fur products composed of pieces. (a) Where fur products, or fur mats...

  2. 16 CFR 301.20 - Fur products composed of pieces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Fur products composed of pieces. 301.20 Section 301.20 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.20 Fur products composed of pieces. (a) Where fur products, or fur mats...

  3. 16 CFR 301.20 - Fur products composed of pieces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Fur products composed of pieces. 301.20 Section 301.20 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.20 Fur products composed...

  4. 16 CFR 301.20 - Fur products composed of pieces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Fur products composed of pieces. 301.20 Section 301.20 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.20 Fur products composed...

  5. Syllabus for a Women Studies Course on Women Composers.

    ERIC Educational Resources Information Center

    Hayes, Deborah

    An upper division college-level course dealing with women composers for both music majors and nonmusic majors is outlined. The course provides an historical and analytical survey of western music through works composed by women, with emphasis on the 19th and 20th centuries. Students listen to music, participate in class discussions, and listen to…

  6. Coding the Composing Process: A Guide for Teachers and Researchers.

    ERIC Educational Resources Information Center

    Perl, Sondra

    Designed for teachers and researchers interested in the study of the composing process, this guide introduces a method of analysis that can be applied to data from a range of different cases. Specifically, the guide offers a simple, direct coding scheme for describing the movements occurring during composing that involves four procedures: teaching…

  7. Composing in Public: The Ambient Audiences of a Writing Lab

    ERIC Educational Resources Information Center

    Hall, Matthew

    2015-01-01

    Although scholars have investigated the ways youths individually enact composing practices and the impact of audience on these practices, this study examines the impact of an audience physically present while composing in a shared, public space--an ambient audience. Blurring the line between traditional notions of audience and collaborator through…

  8. The Links between Handwriting and Composing for Y6 Children

    ERIC Educational Resources Information Center

    Medwell, Jane; Strand, Steve; Wray, David

    2009-01-01

    Although handwriting is often considered a matter of presentation, a substantial body of international research suggests that the role of handwriting in children's composing has been neglected. Automaticity in handwriting is now seen as of key importance in composing but this proposition is relatively untested in the UK and the assumption has been…

  9. How Composers Approach Teaching Composition: Strategies for Music Teachers

    ERIC Educational Resources Information Center

    Randles, Clint; Sullivan, Mark

    2013-01-01

    Composition pedagogy is explored from the perspective of a composer and a music teacher educator in this article. The primary goal is to help practicing music teachers develop strategies that will encourage students to create original music. The authors provide reflection about the process of helping students compose on the basis of personal…

  10. Collaborative Composing in High School String Chamber Music Ensembles

    ERIC Educational Resources Information Center

    Hopkins, Michael T.

    2015-01-01

    The purpose of this study was to examine collaborative composing in high school string chamber music ensembles. Research questions included the following: (a) How do high school string instrumentalists in chamber music ensembles use verbal and musical forms of communication to collaboratively compose a piece of music? (b) How do selected variables…

  11. Hypermedia Composing: Questions Arising from Writing in Three Dimensions.

    ERIC Educational Resources Information Center

    Garthwait, Abigail

    2001-01-01

    Observes four sixth graders composing nonfiction projects for an integrated unit on Canadian studies, using hypermedia. Ponders issues raised when students compose in hypermedia including evaluating nontraditional projects, developing a sense of audience, conventions of the medium, use of visuals to convey information, engaged students, and…

  12. Using Interactive Science Notebooks for Inquiry-Based Science

    ERIC Educational Resources Information Center

    Chesbro, Robert

    2006-01-01

    The interactive science notebook (ISN) is a perfect opportunity for science educators to encapsulate and promote the most cutting-edge constructivist teaching strategies while simultaneously addressing standards, differentiation of instruction, literacy development, and maintenance of an organized notebook as laboratory and field scientists do.…

  13. Web-Based Interactive Visualization in an Information Retrieval Course.

    ERIC Educational Resources Information Center

    Brusilovsky, Peter

    Interactive visualization is a powerful educational tool. It has been used to enhance the teaching of various subjects from computer science to chemistry to engineering. In computer science education, this powerful tool is used almost exclusively in programming and data structure courses. This paper suggests that visualization could be very…

  14. Classroom Interaction Based on Teacher Ethnicity and Experience.

    ERIC Educational Resources Information Center

    Cook, Runett H.

    A study was conducted to investigate classroom interaction between black and white teachers working with black students in New York City. The purpose was to compare black and white teachers' attitudes as they taught minority students. Also compared were conceptions of students, parents, and administrators on what constitutes a "good teacher." The…

  15. The composing process of technical writers: A preliminary study

    NASA Technical Reports Server (NTRS)

    Mair, D.; Roundy, N.

    1981-01-01

    The assumption that technical writers compose as do other writers is tested. The literature on the composing process, not limited to the pure or applied sciences, was reviewed, yielding three areas of general agreement. The composing process (1) consists of several stages, (2) is reflexive, and (3) may be mastered by means of strategies. Data on the ways technical writers compose were collected, and findings were related to the three areas of agreement. Questionnaires and interviews surveying 70 writers were used. The disciplines represented by these writers included civil, chemical, agricultural, geological, mechanical, electrical, and petroleum engineering, chemistry, hydrology, geology, and biology. Those providing consulting services, or performing research. No technical editors or professional writers were surveyed, only technicians, engineers, and researchers whose jobs involved composing reports. Three pedagogical implications are included.

  16. An Interactive Concert Program Based on Infrared Watermark and Audio Synthesis

    NASA Astrophysics Data System (ADS)

    Wang, Hsi-Chun; Lee, Wen-Pin Hope; Liang, Feng-Ju

    The objective of this research is to propose a video/audio system which allows the user to listen the typical music notes in the concert program under infrared detection. The system synthesizes audio with different pitches and tempi in accordance with the encoded data in a 2-D barcode embedded in the infrared watermark. The digital halftoning technique has been used to fabricate the infrared watermark composed of halftone dots by both amplitude modulation (AM) and frequency modulation (FM). The results show that this interactive system successfully recognizes the barcode and synthesizes audio under infrared detection of a concert program which is also valid for human observation of the contents. This interactive video/audio system has greatly expanded the capability of the printout paper to audio display and also has many potential value-added applications.

  17. Interaction force microscopy based on quartz tuning fork force sensor

    NASA Astrophysics Data System (ADS)

    Qin, Yexian

    The ability to sense small changes in the interaction force between a scanning probe microscope (SPM) tip and a substrate requires cantilevers with a sharp mechanical resonance. A typical commercially available cantilever in air is characterized by a resonance with a Q factor of 100 ˜ 300. The low Q factor can be attributed to imperfections in the cantilever itself as well as damping effects of the surrounding air. To substantially increase the Q factor, novel concepts are required. For this reason, we have performed a systematic study of quartz tuning fork resonators for possible use with SPMs. We find that tuning fork resonators operating in air are characterized by Q factors in the order of 104, thereby greatly improving the SPM's ability to measure small shifts in the interaction force. By carefully attaching commercially available SPM tips to the tuning fork, it is possible to obtain SPM images using non-contact imaging techniques and analyze the tip-sample interactions. The assembly of uniform molecular monolayers on atomically flat substrates for molecular electronics applications has received widespread attention during the past ten years. Scanning probe techniques are often used to assess substrate topography, molecular ordering and electronic properties, yet little is known about the fundamental tip-molecule interaction. To address this issue we have built an Interaction Force Microscope using a quartz tuning fork to probe tip-molecular monolayer interactions using scanning probe microscopy. The high quality factor and stable resonant frequency of a quartz tuning fork allows accurate measurement of small shifts in the resonant frequency as the tip interacts with the substrate. To permit an accurate measure of surface interaction forces, the electrical and piezomechanical properties of a tuning fork have been calibrated using a fiber optical interferometer. In prior work [1], we have studied molecular layers formed from either 4-Trifluoro

  18. Interactive Learning with Java Applets: Using Interactive, Web-Based Java Applets to Present Science in a Concrete, Meaningful Manner

    ERIC Educational Resources Information Center

    Corder, Greg

    2005-01-01

    Science teachers face challenges that affect the quality of instruction. Tight budgets, limited resources, school schedules, and other obstacles limit students' opportunities to experience science that is visual and interactive. Incorporating web-based Java applets into science instruction offers a practical solution to these challenges. The…

  19. Electronic Structure, NMR, Spin-Spin Coupling, and Noncovalent Interactions in Aromatic Amino Acid Based Ionic Liquids.

    PubMed

    Rao, Soniya S; Gejji, Shridhar P

    2016-07-21

    Noncovalent interactions accompanying phenylalanine (Phe), tryptophan (Trp), and tyrosine (Tyr) amino acids based ionic liquids (AAILs) composed of 1-methyl-3-butyl-imidazole and its methyl-substituted derivative as cations have been analyzed employing the dispersion corrected density functional theory. It has been shown that cation-anion binding in these bioionic ILs is primarily facilitated through hydrogen bonding in addition to lp---π and CH---π interactions those arising from aromatic moieties which can be probed through (1)H and (13)C NMR spectra calculated from the gauge independent atomic orbital method. Characteristic NMR spin-spin coupling constants across hydrogen bonds of ion pair structures viz., Fermi contact, spin-orbit and spin-dipole terms show strong dependence on mutual orientation of cation with the amino acid anion. The spin-spin coupling mechanism transmits spin polarization via electric field effect originating from lp---π interactions whereas the electron delocalization from lone pair on the carbonyl oxygen to antibonding C-H orbital is facilitated by hydrogen bonding. It has been demonstrated that indirect spin-spin coupling constants across the hydrogen bonds correlate linearly with hydrogen bond distances. The binding energies and dissected nucleus independent chemical shifts (NICS) document mutual reduction of aromaticity of hydrogen bonded ion pairs consequent to localization of π-character. Moreover the nature and type of such noncovalent interactions governing the in-plane and out-of-plane NICS components provide a measure of diatropic and paratropic currents for the aromatic rings of varying size in AAILs. Besides the direction of frequency shifts of characteristic C═O and NH stretching vibrations in the calculated vibrational spectra has been rationalized. PMID:27336283

  20. Illuminating Spatial and Temporal Organization of Protein Interaction Networks by Mass Spectrometry-Based Proteomics

    PubMed Central

    Yang, Jiwen; Wagner, Sebastian A.; Beli, Petra

    2015-01-01

    Protein–protein interactions are at the core of all cellular functions and dynamic alterations in protein interactions regulate cellular signaling. In the last decade, mass spectrometry (MS)-based proteomics has delivered unprecedented insights into human protein interaction networks. Affinity purification-MS (AP-MS) has been extensively employed for focused and high-throughput studies of steady state protein–protein interactions. Future challenges remain in mapping transient protein interactions after cellular perturbations as well as in resolving the spatial organization of protein interaction networks. AP-MS can be combined with quantitative proteomics approaches to determine the relative abundance of purified proteins in different conditions, thereby enabling the identification of transient protein interactions. In addition to affinity purification, methods based on protein co-fractionation have been combined with quantitative MS to map transient protein interactions during cellular signaling. More recently, approaches based on proximity tagging that preserve the spatial dimension of protein interaction networks have been introduced. Here, we provide an overview of MS-based methods for analyzing protein–protein interactions with a focus on approaches that aim to dissect the temporal and spatial aspects of protein interaction networks. PMID:26648978

  1. Determination of Base Binding Strength and Base Stacking Interaction of DNA Duplex Using Atomic Force Microscope

    PubMed Central

    Zhang, Tian-biao; Zhang, Chang-lin; Dong, Zai-li; Guan, Yi-fu

    2015-01-01

    As one of the most crucial properties of DNA, the structural stability and the mechanical strength are attracting a great attention. Here, we take advantage of high force resolution and high special resolution of Atom Force Microscope and investigate the mechanical force of DNA duplexes. To evaluate the base pair hydrogen bond strength and base stacking force in DNA strands, we designed two modes (unzipping and stretching) for the measurement rupture forces. Employing k-means clustering algorithm, the ruptured force are clustered and the mean values are estimated. We assessed the influence of experimental parameters and performed the force evaluation for DNA duplexes of pure dG/dC and dA/dT base pairs. The base binding strength of single dG/dC and single dA/dT were estimated to be 20.0 ± 0.2 pN and 14.0 ± 0.3 pN, respectively, and the base stacking interaction was estimated to be 2.0 ± 0.1 pN. Our results provide valuable information about the quantitative evaluation of the mechanical properties of the DNA duplexes. PMID:25772017

  2. Java-based Interactive Illustrations for Studio Physics

    NASA Astrophysics Data System (ADS)

    Malak, Michael; Wilson, Jack

    1997-04-01

    We have written a series of interactive demonstrations and simulations for introductory Electricity and Magnetism. These programs are written in the Java (TM) language and are delivered via the World-Wide Web to students either in the classroom or at home. The combination of such interactive illustrations with the Web's hypermedia capability is of significant value in the creation of network-distributable useful courseware. We are using these applets at Rensselaer and are evaluating their effectiveness as components of the instruction of Studio Physics II (Introduction to Electricity and Magnetism). Two of the applets allow the student to explore two-dimensional electric and magnetic fields by drawing field lines and equipotentials, evaluating divergence and curl, and calculating loop and surface integrals for Maxwell's laws. Another applet illustrates Snell's law of refraction, and another is an optical bench with movable lenses and a movable object.

  3. Glucose-Nucleobase Pseudo Base Pairs: Biomolecular Interactions within DNA.

    PubMed

    Vengut-Climent, Empar; Gómez-Pinto, Irene; Lucas, Ricardo; Peñalver, Pablo; Aviñó, Anna; Fonseca Guerra, Célia; Bickelhaupt, F Matthias; Eritja, Ramón; González, Carlos; Morales, Juan C

    2016-07-18

    Noncovalent forces rule the interactions between biomolecules. Inspired by a biomolecular interaction found in aminoglycoside-RNA recognition, glucose-nucleobase pairs have been examined. Deoxyoligonucleotides with a 6-deoxyglucose insertion are able to hybridize with their complementary strand, thus exhibiting a preference for purine nucleobases. Although the resulting double helices are less stable than natural ones, they present only minor local distortions. 6-Deoxyglucose stays fully integrated in the double helix and its OH groups form two hydrogen bonds with the opposing guanine. This 6-deoxyglucose-guanine pair closely resembles a purine-pyrimidine geometry. Quantum chemical calculations indicate that glucose-purine pairs are as stable as a natural T-A pair. PMID:27328804

  4. Non-Native Speaker Interaction Management Strategies in a Network-Based Virtual Environment

    ERIC Educational Resources Information Center

    Peterson, Mark

    2008-01-01

    This article investigates the dyad-based communication of two groups of non-native speakers (NNSs) of English involved in real time interaction in a type of text-based computer-mediated communication (CMC) tool known as a MOO. The object of this semester long study was to examine the ways in which the subjects managed their L2 interaction during…

  5. Enhancing Learning Outcomes with an Interactive Knowledge-Based Learning Environment Providing Narrative Feedback

    ERIC Educational Resources Information Center

    Stranieri, Andrew; Yearwood, John

    2008-01-01

    This paper describes a narrative-based interactive learning environment which aims to elucidate reasoning using interactive scenarios that may be used in training novices in decision-making. Its design is based on an approach to generating narrative from knowledge that has been modelled in specific decision/reasoning domains. The approach uses a…

  6. The Reality of Web-Based Interaction in an Egyptian Distance Education Course

    ERIC Educational Resources Information Center

    Sadik, Alaa

    2006-01-01

    This paper reports the results of a study conducted to evaluate the reality of interaction in a web-based distance education course. The learners were Egyptian first-grade secondary school students (15-16 years old) and the learning subject is mathematics. To investigate students' interactions via the Web, a Web-based learning environment was…

  7. Approaches to Interactive Video Anchors in Problem-Based Science Learning

    ERIC Educational Resources Information Center

    Kumar, David Devraj

    2010-01-01

    This paper is an invited adaptation of the IEEE Education Society Distinguished Lecture Approaches to Interactive Video Anchors in Problem-Based Science Learning. Interactive video anchors have a cognitive theory base, and they help to enlarge the context of learning with information-rich real-world situations. Carefully selected movie clips and…

  8. Model-based description of environment interaction for mobile robots

    NASA Astrophysics Data System (ADS)

    Borghi, Giuseppe; Ferrari, Carlo; Pagello, Enrico; Vianello, Marco

    1999-01-01

    We consider a mobile robot that attempts to accomplish a task by reaching a given goal, and interacts with its environment through a finite set of actions and observations. The interaction between robot and environment is modeled by Partially Observable Markov Decision Processes (POMDP). The robot takes its decisions in presence of uncertainty about the current state, by maximizing its reward gained during interactions with the environment. It is able to self-locate into the environment by collecting actions and perception histories during the navigation. To make the state estimation more reliable, we introduce an additional information in the model without adding new states and without discretizing the considered measures. Thus, we associate to the state transition probabilities also a continuous metric given through the mean and the variance of some significant sensor measurements suitable to be kept under continuous form, such as odometric measurements, showing that also such unreliable data can supply a great deal of information to the robot. The overall control system of the robot is structured as a two-levels layered architecture, where the low level implements several collision avoidance algorithms, while the upper level takes care of the navigation problem. In this paper, we concentrate on how to use POMDP models at the upper level.

  9. Prediction of Protein-Protein Interaction Sites Based on Naive Bayes Classifier

    PubMed Central

    Geng, Haijiang; Lu, Tao; Lin, Xiao; Liu, Yu; Yan, Fangrong

    2015-01-01

    Protein functions through interactions with other proteins and biomolecules and these interactions occur on the so-called interface residues of the protein sequences. Identifying interface residues makes us better understand the biological mechanism of protein interaction. Meanwhile, information about the interface residues contributes to the understanding of metabolic, signal transduction networks and indicates directions in drug designing. In recent years, researchers have focused on developing new computational methods for predicting protein interface residues. Here we creatively used a 181-dimension protein sequence feature vector as input to the Naive Bayes Classifier- (NBC-) based method to predict interaction sites in protein-protein complexes interaction. The prediction of interaction sites in protein interactions is regarded as an amino acid residue binary classification problem by applying NBC with protein sequence features. Independent test results suggested that Naive Bayes Classifier-based method with the protein sequence features as input vectors performed well. PMID:26697220

  10. Avidity-based extracellular interaction screening (AVEXIS) for the scalable detection of low-affinity extracellular receptor-ligand interactions.

    PubMed

    Kerr, Jason S; Wright, Gavin J

    2012-01-01

    Extracellular protein:protein interactions between secreted or membrane-tethered proteins are critical for both initiating intercellular communication and ensuring cohesion within multicellular organisms. Proteins predicted to form extracellular interactions are encoded by approximately a quarter of human genes, but despite their importance and abundance, the majority of these proteins have no documented binding partner. Primarily, this is due to their biochemical intractability: membrane-embedded proteins are difficult to solubilise in their native conformation and contain structurally-important posttranslational modifications. Also, the interaction affinities between receptor proteins are often characterised by extremely low interaction strengths (half-lives < 1 second) precluding their detection with many commonly-used high throughput methods. Here, we describe an assay, AVEXIS (AVidity-based EXtracellular Interaction Screen) that overcomes these technical challenges enabling the detection of very weak protein interactions (t(1/2) ≤ 0.1 sec) with a low false positive rate. The assay is usually implemented in a high throughput format to enable the systematic screening of many thousands of interactions in a convenient microtitre plate format (Fig. 1). It relies on the production of soluble recombinant protein libraries that contain the ectodomain fragments of cell surface receptors or secreted proteins within which to screen for interactions; therefore, this approach is suitable for type I, type II, GPI-linked cell surface receptors and secreted proteins but not for multipass membrane proteins such as ion channels or transporters. The recombinant protein libraries are produced using a convenient and high-level mammalian expression system, to ensure that important posttranslational modifications such as glycosylation and disulphide bonds are added. Expressed recombinant proteins are secreted into the medium and produced in two forms: a biotinylated bait which can