Sample records for interaction chromatography stationary

  1. Modelling of Hydrophilic Interaction Liquid Chromatography Stationary Phases Using Chemometric Approaches

    PubMed Central

    Ortiz-Villanueva, Elena; Tauler, Romà

    2017-01-01

    Metabolomics is a powerful and widely used approach that aims to screen endogenous small molecules (metabolites) of different families present in biological samples. The large variety of compounds to be determined and their wide diversity of physical and chemical properties have promoted the development of different types of hydrophilic interaction liquid chromatography (HILIC) stationary phases. However, the selection of the most suitable HILIC stationary phase is not straightforward. In this work, four different HILIC stationary phases have been compared to evaluate their potential application for the analysis of a complex mixture of metabolites, a situation similar to that found in non-targeted metabolomics studies. The obtained chromatographic data were analyzed by different chemometric methods to explore the behavior of the considered stationary phases. ANOVA-simultaneous component analysis (ASCA), principal component analysis (PCA) and partial least squares regression (PLS) were used to explore the experimental factors affecting the stationary phase performance, the main similarities and differences among chromatographic conditions used (stationary phase and pH) and the molecular descriptors most useful to understand the behavior of each stationary phase. PMID:29064436

  2. Hierarchical CaCO3 chromatography: a stationary phase based on biominerals.

    PubMed

    Sato, Kosuke; Oaki, Yuya; Takahashi, Daisuke; Toshima, Kazunobu; Imai, Hiroaki

    2015-03-23

    In biomineralization, acidic macromolecules play important roles for the growth control of crystals through a specific interaction. Inspired by this interaction, we report on an application of the hierarchical structures in CaCO3 biominerals to a stationary phase of chromatography. The separation and purification of acidic small organic molecules are achieved by thin-layer chromatography and flash chromatography using the powder of biominerals as the stationary phase. The unit nanocrystals and their oriented assembly, the hierarchical structure, are suitable for the adsorption site of the target organic molecules and the flow path of the elution solvents, respectively. The separation mode is ascribed to the specific adsorption of the acidic molecules on the crystal face and the coordination of the functional groups to the calcium ions. The results imply that a new family of stationary phase of chromatography can be developed by the fine tuning of hierarchical structures in CaCO3 materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Silica, hybrid silica, hydride silica and non-silica stationary phases for liquid chromatography.

    PubMed

    Borges, Endler M

    2015-04-01

    Free silanols on the surface of silica are the "villains", which are responsible for detrimental interactions of those compounds and the stationary phase (i.e., bad peak shape, low efficiency) as well as low thermal and chemical stability. For these reasons, we began this review describing new silica and hybrid silica stationary phases, which have reduced and/or shielded silanols. At present, in liquid chromatography for the majority of analyses, reversed-phase liquid chromatography is the separation mode of choice. However, the needs for increased selectivity and increased retention of hydrophilic bases have substantially increased the interest in hydrophilic interaction chromatography (HILIC). Therefore, stationary phases and this mode of separation are discussed. Then, non-silica stationary phases (i.e., zirconium oxide, titanium oxide, alumina and porous graphitized carbon), which afford increased thermal and chemical stability and also selectivity different from those obtained with silica and hybrid silica, are discussed. In addition, the use of these materials in HILIC is also reviewed. © Crown copyright 2014.

  4. Preparation, characterization and application of a reversed phase liquid chromatography/hydrophilic interaction chromatography mixed-mode C18-DTT stationary phase.

    PubMed

    Wang, Qing; Long, Yao; Yao, Lin; Xu, Li; Shi, Zhi-Guo; Xu, Lanying

    2016-01-01

    A mixed-mode chromatographic stationary phase, C18-DTT (dithiothreitol) silica (SiO2) was prepared through "thiol-ene" click chemistry. The obtained material was characterized by fourier transform infrared spectroscope, nitrogen adsorption analysis and contact angle analysis. Chromatographic performance of the C18-DTT was systemically evaluated by studying the effect of acetonitrile content, pH, buffer concentration of the mobile phase and column temperature. It was demonstrated that the novel stationary phase possessed reversed phase liquid chromatography (RPLC)/hydrophilic interaction liquid chromatography (HILIC) mixed-mode property. The stop-flow test revealed that C18-DTT exhibited excellent compatibility with 100% aqueous mobile phase. Additionally, the stability and column-to-column reproducibility of the C18-DTT material were satisfactory, with relative standard deviations of retention factor of the tested analytes (verapamil, fenbufen, guanine, tetrandrine and nicotinic acid) in the range of 1.82-3.72% and 0.85-1.93%, respectively. Finally, the application of C18-DTT column was demonstrated in the separation of non-steroidal anti-inflammatory drugs, aromatic carboxylic acids, alkaloids, nucleo-analytes and polycyclic aromatic hydrocarbons. It had great resolving power in the analysis of various compounds in HILIC and RPLC chromatographic conditions and was a promising RPLC/HILIC mixed-mode stationary phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Self-assembled cyclodextrin-modified gold nanoparticles on silica beads as stationary phase for chiral liquid chromatography and hydrophilic interaction chromatography.

    PubMed

    Li, Yuanyuan; Wei, Manman; Chen, Tong; Zhu, Nan; Ma, Yulong

    2016-11-01

    A facile strategy based on self-assembly of Au nanoparticles (AuNPs) (60±10nm in size) on the surfaces of amino-functionalized porous silica spheres under mild conditions was proposed. The resulting material possessed a core-shell structure in which AuNPs were the shell and silica spheres were the core. Then, thiolated-β-cyclodextrin (SH-β-CD) was covalently attached onto the AuNPs as chiral selector for the enantioseparation. The resultant packing material was evaluated by high-performance liquid chromatography (HPLC). The separations of nine pairs of enantiomers were achieved by using the new chiral stationary phase (CSP) in the reversed-phase liquid chromatography (RPLC) mode, respectively. The results showed the new CSP have more sufficient interaction with the analytes due to the existence of AuNPs on silica surfaces, resulting in faster mass transfer rate, compared with β-CD modified silica column. The result shed light on potential usage of chemical modified NPs as chiral selector for enantioseparation based on HPLC. In addition, the new phase was also used in hydrophilic interaction liquid chromatography (HILIC) to separate polar compounds and highly hydrophilic compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Study of surface-bonded dicationic ionic liquids as stationary phases for hydrophilic interaction chromatography.

    PubMed

    Qiao, Lizhen; Li, Hua; Shan, Yuanhong; Wang, Shuangyuan; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2014-02-21

    In the present study, several geminal dicationic ionic liquids based on 1,4-bis(3-allylimidazolium)butane and 1,8-bis(3-allylimidazolium)octane in combination with different anions bromide and bis(trifluoromethanesulphonyl)imide were prepared and then bonded to the surface of 3-mercaptopropyl modified silica materials through the "thiol-ene" click chemistry as stationary phases for hydrophilic interaction chromatography (HILIC). Compared with their monocationic analogues, the dicationic ionic liquids stationary phases presented effective retention and good selectivity for typical hydrophilic compounds under HILIC mode with the column efficiency as high as 130,000 plates/m. Moreover, the influence of different alkyl chain spacer between dications and combined anions on the retention behavior and selectivity of the dicationic ionic liquids stationary phases under HILIC mode was displayed. The results indicated that the longer linkage chain would decrease the hydrophilicity and retention on the dicationic ionic liquid stationary phase, and while differently combined anions had no difference due to the exchangeability under the common HILIC mobile phase with buffer salt. Finally, the retention mechanism was investigated by evaluating the effect of chromatographic factors on retention, including the water content in the mobile phase, the mobile phase pH and buffer salt concentration. The results showed that the dicationic ionic liquids stationary phases presented a mixed-mode retention behavior with HILIC mechanism and anion exchange. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Synthesis and evaluation of a maltose-bonded silica gel stationary phase for hydrophilic interaction chromatography and its application in Ginkgo Biloba extract separation in two-dimensional systems.

    PubMed

    Sheng, Qianying; Yang, Kaiya; Ke, Yanxiong; Liang, Xinmiao; Lan, Minbo

    2016-09-01

    Maltose covalently bonded to silica was prepared by using carbonyl diimidazole as a cross-linker and employed as a stationary phase for hydrophilic interaction liquid chromatography. The column efficiency and the effect of water content, buffer concentration, and pH value influenced on retention were investigated. The separation or enrichment selectivity was also studied with nucleosides, saccharides, amino acids, peptides, and glycopeptides. The results indicated that the stationary phase processed good separation efficiency and separation selectivity in hydrophilic interaction liquid chromatography mode. Moreover, a two-dimensional hydrophilic interaction liquid chromatography× reversed-phase liquid chromatography method with high orthogonality was developed to analyze the Ginkgo Biloba extract fractions. The development of this two-dimensional chromatographic system would be an effective tool for the separation of complex samples of different polarities and contents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ionic liquid stationary phases for gas chromatography.

    PubMed

    Poole, Colin F; Poole, Salwa K

    2011-04-01

    This article provides a summary of the development of ionic liquids as stationary phases for gas chromatography beginning with early work on packed columns that established details of the retention mechanism and established working methods to characterize selectivity differences compared with molecular stationary phases through the modern development of multi-centered cation and cross-linked ionic liquids for high-temperature applications in capillary gas chromatography. Since there are many reviews on ionic liquids dealing with all aspects of their chemical and physical properties, the emphasis in this article is placed on the role of gas chromatography played in the design of ionic liquids of low melting point, high thermal stability, high viscosity, and variable selectivity for separations. Ionic liquids provide unprecedented opportunities for extending the selectivity range and temperature-operating range of columns for gas chromatography, an area of separation science that has otherwise been almost stagnant for over a decade. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. New stationary phase for hydrophilic interaction chromatography to separate chito-oligosaccharides with degree of polymerization 2-6.

    PubMed

    Zhai, Xingchen; Zhao, Haitian; Zhang, Min; Yang, Xin; Sun, Jingming; She, Yongxin; Dong, Aijun; Zhang, Hua; Yao, Lei; Wang, Jing

    2018-04-01

    A new 3‑aminophenylboronic acid-functionalized stationary phase based on silica for hydrophilic interaction liquid chromatography (HILIC) was developed and showed great HILIC characteristics on separation for chito‑oligosaccharides. The material was synthesized by grafting 3‑aminophenylboronic acid group to silica, and it was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), elemental analysis and thermal gravimetric analysis (TGA). Nucleobases and nucleosides were used to evaluate the retention property and to investigate retention mechanism by the models designed for description of partitioning and surface adsorption through adjusting ratio of water in the mobile phase. Parameters affecting chromatography behavior such as ionic strength, buffer pH and column temperature were also investigated. Results have indicated that the retention mechanism was a combination of partitioning and surface adsorption, and the hydrogen bond seemed to be the main force for the retention behavior. Finally, the new 3‑aminophenylboronic acid-functionalized based on silica stationary phase was applied to separate chito-oligosaccharide samples with optimized mobile phase conditions and showed acceptable chromatograms. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Preparation of a novel dual-function strong cation exchange/hydrophobic interaction chromatography stationary phase for protein separation.

    PubMed

    Zhao, Kailou; Yang, Li; Wang, Xuejiao; Bai, Quan; Yang, Fan; Wang, Fei

    2012-08-30

    We have explored a novel dual-function stationary phase which combines both strong cation exchange (SCX) and hydrophobic interaction chromatography (HIC) characteristics. The novel dual-function stationary phase is based on porous and spherical silica gel functionalized with ligand containing sulfonic and benzyl groups capable of electrostatic and hydrophobic interaction functionalities, which displays HIC character in a high salt concentration, and IEC character in a low salt concentration in mobile phase employed. As a result, it can be employed to separate proteins with SCX and HIC modes, respectively. The resolution and selectivity of the dual-function stationary phase were evaluated under both HIC and SCX modes with standard proteins and can be comparable to that of conventional IEC and HIC columns. More than 96% of mass and bioactivity recoveries of proteins can be achieved in both HIC and SCX modes, respectively. The results indicated that the novel dual-function column could replace two individual SCX and HIC columns for protein separation. Mixed retention mechanism of proteins on this dual-function column based on stoichiometric displacement theory (SDT) in LC was investigated to find the optimal balance of the magnitude of electrostatic and hydrophobic interactions between protein and the ligand on the silica surface in order to obtain high resolution and selectivity for protein separation. In addition, the effects of the hydrophobicity of the ligand of the dual-function packings and pH of the mobile phase used on protein separation were also investigated in detail. The results show that the ligand with suitable hydrophobicity to match the electrostatic interaction is very important to prepare the dual-function stationary phase, and a better resolution and selectivity can be obtained at pH 6.5 in SCX mode. Therefore, the dual-function column can replace two individual SCX and HIC columns for protein separation and be used to set up two-dimensional liquid

  11. Recent development of ionic liquid stationary phases for liquid chromatography.

    PubMed

    Shi, Xianzhe; Qiao, Lizhen; Xu, Guowang

    2015-11-13

    Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, π-π, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A polyacrylamide-based silica stationary phase for the separation of carbohydrates using alcohols as the weak eluent in hydrophilic interaction liquid chromatography.

    PubMed

    Cai, Jianfeng; Cheng, Lingping; Zhao, Jianchao; Fu, Qing; Jin, Yu; Ke, Yanxiong; Liang, Xinmiao

    2017-11-17

    A hydrophilic interaction liquid chromatography (HILIC) stationary phase was prepared by a two-step synthesis method, immobilizing polyacrylamide on silica sphere particles. The stationary phase (named PA, 5μm dia) was evaluated using a mixture of carbohydrates in HILIC mode and the column efficiency reached 121,000Nm -1 . The retention behavior of carbohydrates on PA stationary phase was investigated with three different organic solvents (acetonitrile, ethanol and methanol) employed as the weak eluent. The strongest hydrophilicity of PA stationary phase was observed in both acetonitrile and methanol as the weak eluent, when compared with another two amide stationary phases. Attributing to its high hydrophilicity, three oligosaccharides (xylooligosaccharide, fructooligosaccharide and chitooligosaccharides) presented good retention on PA stationary phase using alcohols/water as mobile phase. Finally, PA stationary phase was successfully applied for the purification of galactooligosaccharides and saponins of Paris polyphylla. It is feasible to use safer and cheaper alcohols to replace acetonitrile as the weak eluent for green analysis and purification of polar compounds on PA stationary phase. Copyright © 2017. Published by Elsevier B.V.

  13. Evaluation of an amide-based stationary phase for supercritical fluid chromatography

    PubMed Central

    Borges-Muñoz, Amaris C.; Colón, Luis A.

    2017-01-01

    A relatively new stationary phase containing a polar group embedded in a hydrophobic backbone (i.e., ACE® C18-amide) was evaluated for use in supercritical fluid chromatography. The amide-based column was compared with columns packed with bare silica, C18 silica, and a terminal-amide silica phase. The system was held at supercritical pressure and temperature with a mobile phase composition of CO2 and methanol as cosolvent. The linear solvation energy relationship model was used to evaluate the behavior of these stationary phases, relating the retention factor of selected probes to specific chromatographic interactions. A five-component test mixture, consisting of a group of drug-like molecules was separated isocratically. The results show that the C18-amide stationary phase provided a combination of interactions contributing to the retention of the probe compounds. The hydrophobic interactions are favorable; however, the electron donating ability of the embedded amide group shows a large positive interaction. Under the chromatographic conditions used, the C18-amide column was able to provide baseline resolution of all the drug-like probe compounds in a text mixture, while the other columns tested did not. PMID:27396487

  14. Novel stationary phases based on asphaltenes for gas chromatography.

    PubMed

    Boczkaj, Grzegorz; Momotko, Malwina; Chruszczyk, Dorota; Przyjazny, Andrzej; Kamiński, Marian

    2016-07-01

    We present the results of investigations on the possibility of the application of the asphaltene fraction isolated from the oxidized residue from vacuum distillation of crude oil as a stationary phase for gas chromatography. The results of the investigation revealed that the asphaltene stationary phases can find use for the separation of a wide range of volatile organic compounds. The experimental values of Rohrschneider/McReynolds constants characterize the asphaltenes as stationary phases of medium polarity and selectivity similar to commercially available phases based on alkyl phthalates. Isolation of asphaltenes from the material obtained under controlled process conditions allows the production of a stationary phase having reproducible sorption properties and chromatographic columns having the same selectivity. Unique selectivity and high thermal stability make asphaltenes attractive as a material for stationary phases for gas chromatography. A low production cost from a readily available raw material (oxidized petroleum bitumens) is an important economic factor in case of application of the asphaltene stationary phases for preparative and process separations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A novel octadecylsilane functionalized graphene oxide/silica composite stationary phase for high performance liquid chromatography.

    PubMed

    Liang, Xiaojing; Wang, Shuai; Liu, Shujuan; Liu, Xia; Jiang, Shengxiang

    2012-08-01

    An octadecylsilane functionalized graphene oxide/silica stationary phase was fabricated by assembling graphene oxide onto the silica particles through an amide bond and subsequent immobilization of octadecylsilane. The chromatographic properties of the stationary phase were investigated by reversed-phase chromatography with alkylbenzenes, polycyclic aromatic hydrocarbons, amines, and phenolic compounds as the analytes. All the compounds achieved good separation on the column. The comparison between a C18 commercial column and the new stationary phase indicated that the existence of π-electron system of graphene oxide allows π-π interaction between analyte and octadecylsilane functionalized graphene oxide/silica stationary phase except for hydrophobic interaction, while only hydrophobic interaction presented between analyte and C18 commercial column. This suggests that some analytes can be better separated on the octadecylsilane functionalized graphene oxide/silica column. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Freeze drying for gas chromatography stationary phase deposition

    DOEpatents

    Sylwester, Alan P [Livermore, CA

    2007-01-02

    The present disclosure relates to methods for deposition of gas chromatography (GC) stationary phases into chromatography columns, for example gas chromatography columns. A chromatographic medium is dissolved or suspended in a solvent to form a composition. The composition may be inserted into a chromatographic column. Alternatively, portions of the chromatographic column may be exposed or filled with the composition. The composition is permitted to solidify, and at least a portion of the solvent is removed by vacuum sublimation.

  17. Selectivity optimization in green chromatography by gradient stationary phase optimized selectivity liquid chromatography.

    PubMed

    Chen, Kai; Lynen, Frédéric; De Beer, Maarten; Hitzel, Laure; Ferguson, Paul; Hanna-Brown, Melissa; Sandra, Pat

    2010-11-12

    Stationary phase optimized selectivity liquid chromatography (SOSLC) is a promising technique to optimize the selectivity of a given separation by using a combination of different stationary phases. Previous work has shown that SOSLC offers excellent possibilities for method development, especially after the recent modification towards linear gradient SOSLC. The present work is aimed at developing and extending the SOSLC approach towards selectivity optimization and method development for green chromatography. Contrary to current LC practices, a green mobile phase (water/ethanol/formic acid) is hereby preselected and the composition of the stationary phase is optimized under a given gradient profile to obtain baseline resolution of all target solutes in the shortest possible analysis time. With the algorithm adapted to the high viscosity property of ethanol, the principle is illustrated with a fast, full baseline resolution for a randomly selected mixture composed of sulphonamides, xanthine alkaloids and steroids. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Polar silica-based stationary phases. Part II- Neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography.

    PubMed

    Rathnasekara, Renuka; El Rassi, Ziad

    2017-07-28

    Two neutral polyhydroxylated silica bonded stationary phases, namely maltose-silica (MALT-silica) and sorbitol-silica (SOR-silica), have been introduced and chromatographically characterized in hydrophilic interaction liquid chromatography (HILIC) for a wide range of polar compounds. The bonding of the maltose and sorbitol to the silica surface was brought about by first converting bare silica to an epoxy-activated silica surface via reaction with γ-glycidoxypropyltrimethoxysilane (GPTMS) followed by attaching maltose and sorbitol to the epoxy surface in the presence of the Lewis acid catalyst BF 3 .ethereate. Both silica based columns offered the expected retention characteristics usually encountered for neutral polar surface. The retention mechanism is majorly based on solute' differential partitioning between an organic rich hydro-organic mobile phase (e.g., ACN rich mobile phase) and an adsorbed water layer on the surface of the stationary phase although additional hydrogen bonding was also responsible in some cases for solute retention. The MALT-silica column proved to be more hydrophilic and offered higher retention, separation efficiency and resolution than the SOR-silica column among the tested polar solutes such as derivatized mono- and oligosaccharides, weak phenolic acids, cyclic nucleotide monophosphate and nucleotide-5'-monophosphates, and weak bases, e.g., nucleobases and nucleosides. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Optimization of o-phtaldialdehyde/2-mercaptoethanol postcolumn reaction for the hydrophilic interaction liquid chromatography determination of memantine utilizing a silica hydride stationary phase.

    PubMed

    Douša, Michal; Pivoňková, Veronika; Sýkora, David

    2016-08-01

    A rapid procedure for the determination of memantine based on hydrophilic interaction chromatography with fluorescence detection was developed. Fluorescence detection after postcolumn derivatization with o-phtaldialdehyde/2-mercaptoethanol was performed at excitation and emission wavelengths of 345 and 450 nm, respectively. The postcolumn reaction conditions such as reaction temperature, derivatization reagent flow rate, and reagents concentration were studied due to steric hindrance of amino group of memantine. The derivatization reaction was applied for the hydrophilic interaction liquid chromatography method which was based on Cogent Silica-C stationary phase with a mobile phase consisting of a mixture of 10 mmol/L citric acid and 10 mmol/L o-phosphoric acid (pH 6.0) with acetonitrile using an isocratic composition of 2:8 v/v. The benefit of the reported approach consists in a simple sample pretreatment and a quick and sensitive hydrophilic interaction chromatography method. The developed method was validated in terms of linearity, accuracy, precision, and selectivity according to the International Conference on Harmonisation guidelines. The developed method was successfully applied for the analysis of commercial memantine tablets. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Recent progress of chiral stationary phases for separation of enantiomers in gas chromatography.

    PubMed

    Xie, Sheng-Ming; Yuan, Li-Ming

    2017-01-01

    Chromatography techniques based on chiral stationary phases are widely used for the separation of enantiomers. In particular, gas chromatography has developed rapidly in recent years due to its merits such as fast analysis speed, lower consumption of stationary phases and analytes, higher column efficiency, making it a better choice for chiral separation in diverse industries. This article summarizes recent progress of novel chiral stationary phases based on cyclofructan derivatives and chiral porous materials including chiral metal-organic frameworks, chiral porous organic frameworks, chiral inorganic mesoporous materials, and chiral porous organic cages in gas chromatography, covering original research papers published since 2010. The chiral recognition properties and mechanisms of separation toward enantiomers are also introduced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography.

    PubMed

    Qiao, Lizhen; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2015-05-29

    Two tricationic ionic liquids were prepared and then bonded onto the surface of supporting silica materials through "thiol-ene" click chemistry as new stationary phases for high-performance liquid chromatography. The obtained columns of tricationic ionic liquids were evaluated respectively in the reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode, and possess ideal column efficiency of 80,000 plates/m in the RPLC mode with naphthalene as the test solute. The tricationic ionic liquid stationary phases exhibit good hydrophobic and shape selectivity to hydrophobic compounds, and RPLC retention behavior with multiple interactions. In the HILIC mode, the retention and selectivity were evaluated through the efficient separation of nucleosides and bases as well as flavonoids, and the typical HILIC retention behavior was demonstrated by investigating retention changes of hydrophilic solutes with water volume fraction in mobile phase. The results show that the tricationic ionic liquid columns possess great prospect for applications in analysis of hydrophobic and hydrophilic samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Preparation of a silica stationary phase co-functionalized with Wulff-type phenylboronate and C12 for mixed-mode liquid chromatography.

    PubMed

    Li, Hengye; Zhang, Xuemeng; Zhang, Lin; Wang, Xiaojin; Kong, Fenying; Fan, Dahe; Li, Lei; Wang, Wei

    2017-04-15

    A silica stationary phase was designed and synthesized through the co-functionalization of silica with Wulff-type phenylboronate and C12 for mixed-mode liquid chromatography applications. The as-synthesized stationary phase was characterized by elemental analysis and Fourier Transform-InfraRed Spectroscopy (FT-IR). Retention mechanisms, including boronate affinity (BA), reversed-phase (RP) and anion-exchange (AE), were involved. Retention mechanism switching was easily realized by adjustment of the mobile phase constitution. Cis-diol compounds could be selectively captured under neutral conditions in BA mode and off-line separated in RP mode. Neutral, basic, acidic and amphiprotic compounds were chromatographed on the column in RP chromatography, while inorganic anions were chromatographed in AE chromatography to characterize the mixed-mode nature of the prepared stationary phase. In addition, the RP performance was compared with an octadecyl silica column in terms of column efficiency (N/m), asymmetry factor (A f ), retention factor (k) and resolution (Rs). The prepared stationary phase offered multiple interactions with analytes in addition to hydrophobic interactions under RP elution conditions. Based on the mixed-mode properties, off-line 2D-LC, for selective capture and separation of urinary nucleosides, was successfully realized on a single column, demonstrating its powerful application potential for complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Multi-mode application of graphene quantum dots bonded silica stationary phase for high performance liquid chromatography.

    PubMed

    Wu, Qi; Sun, Yaming; Zhang, Xiaoli; Zhang, Xia; Dong, Shuqing; Qiu, Hongdeng; Wang, Litao; Zhao, Liang

    2017-04-07

    Graphene quantum dots (GQDs), which possess hydrophobic, hydrophilic, π-π stacking and hydrogen bonding properties, have great prospect in HPLC. In this study, a novel GQDs bonded silica stationary phase was prepared and applied in multiple separation modes including normal phase, reversed phase and hydrophilic chromatography mode. Alkaloids, nucleosides and nucleobases were chosen as test compounds to evaluate the separation performance of this column in hydrophilic chromatographic mode. The tested polar compounds achieved baseline separation and the resolutions reached 2.32, 4.62, 7.79, 1.68 for thymidine, uridine, adenosine, cytidine and guanosine. This new column showed satisfactory chromatographic performance for anilines, phenols and polycyclic aromatic hydrocarbons in normal and reversed phase mode. Five anilines were completely separated within 10min under the condition of mobile phase containing only 10% methanol. The effect of water content, buffer concentration and pH on chromatographic separation was further investigated, founding that this new stationary phase showed a complex retention mechanism of partitioning, adsorption and electrostatic interaction in hydrophilic chromatography mode, and the multiple retention interactions such as π-π stacking and π-π electron-donor-acceptor interaction played an important role during the separation process. This GQDs bonded column, which allows us to adjust appropriate chromatography mode according to the properties of analytes, has possibility in actual application after further research. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Preparation and evaluation of a hydrophilic interaction and cation-exchange chromatography stationary phase modified with 2-methacryloyloxyethyl phosphorylcholine.

    PubMed

    Xiong, Caifeng; Yuan, Jie; Wang, Zhiying; Wang, Siyao; Yuan, Chenchen; Wang, Lili

    2018-04-20

    In this work, 2-methacryloyloxyethyl phosphorylcholine (MPC) was used as a ligand to prepare a novel mixed-mode chromatography (MMC) stationary phase by the thiol-ene click reaction onto silica (MPC-silica). It was found that this MPC-silica showed the retention characteristics of hydrophilic interaction chromatography (HILIC) and weak cation exchange chromatography (WCX) under suitable mobile phase conditions. In detail, acidic and basic hydrophilic compounds and puerarin from pueraria were separated quickly with HILIC mode. Meanwhile, six standard proteins were allowed to reach baseline separation in WCX mode, and protein separation from egg white was also achieved with this mode. In addition, reduced/denatured lysozyme could be refolded with the MPC-silica column. In the meantime, the MPC-silica has been applied for refolding with simultaneous purification of recombinant human Delta-like1-RGD (rhDll1-RGD) expressed in Escherichia coli. The results show that the mass recovery and purity of rhDll1-RGD could reach 63.4% and 97% by one step, respectively. Furthermore, the reporter assay results demonstrated that refolded with simultaneously purified rhDll1-RGD could efficiently activate the signalling pathway in a dose-dependent manner. In general, this MPC-silica has good resolution and selectivity in the separation of polar compounds and protein samples in different high-performance liquid chromatography (HPLC) modes, and it successfully achieved refolding with simultaneous purification of denatured protein. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Poly(1-allylimidazole)-grafted silica, a new specific stationary phase for reversed-phase and anion-exchange liquid chromatography.

    PubMed

    Sun, Min; Qiu, Hongdeng; Wang, Licheng; Liu, Xia; Jiang, Shengxiang

    2009-05-01

    A new specific stationary phase based on poly(1-allylimidazole)-grafted silica has been synthesized and characterized, by infrared spectra, elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. The results of test showed that poly(1-allylimidazole) can effectively mask the residual silanol groups and reduce the adverse effect of residual silanol. Using this stationary phase, phenol compounds, aniline compounds, and polycyclic aromatic hydrocarbons were successfully separated with symmetric peak shapes in the reversed-phase chromatography. Inorganic anions (IO(3)(-), BrO(3)(-), Br(-), NO(3)(-), I(-), SCN(-)) were also separated completely in the anion-exchange chromatography using sodium chloride solution as the mobile phase. The effects of pH and the concentration of eluent on the separation of inorganic anions were studied. The separation mechanism appears to involve the mixed interactions of hydrogen bonding, hydrophobic, pi-pi, electrostatic, and anion-exchange interactions.

  6. Versatile ligands for high-performance liquid chromatography: An overview of ionic liquid-functionalized stationary phases.

    PubMed

    Zhang, Mingliang; Mallik, Abul K; Takafuji, Makoto; Ihara, Hirotaka; Qiu, Hongdeng

    2015-08-05

    Ionic liquids (ILs), a class of unique substances composed purely by cation and anions, are renowned for their fascinating physical and chemical properties, such as negligible volatility, high dissolution power, high thermal stability, tunable structure and miscibility. They are enjoying ever-growing applications in a great diversity of disciplines. IL-modified silica, transforming the merits of ILs into chromatographic advantages, has endowed the development of high-performance liquid chromatography (HPLC) stationary phase with considerable vitality. In the last decade, IL-functionalized silica stationary phases have evolved into a series of branches to accommodate to different HPLC modes. An up-to-date overview of IL-immobilized stationary phases is presented in this review, and divided into five parts according to application mode, i.e., ion-exchange, normal-phase, reversed-phase, hydrophilic interaction and chiral recognition. Specific attention is channeled to synthetic strategies, chromatographic behavior and separation performance of IL-functionalized silica stationary phases. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Gas-liquid chromatography with a volatile "stationary" liquid phase.

    PubMed

    Wells, P S; Zhou, S; Parcher, J F

    2002-05-01

    A unique type of gas-liquid chromatography is described in which both mobile and "stationary" phases are composed of synthetic mixtures of helium and carbon dioxide. At temperatures below the critical point of the binary mixture and pressures above the vapor pressure of pure liquid carbon dioxide, helium and carbon dioxide can form two immiscible phases over extended composition ranges. A binary vapor phase enriched in helium can act as the mobile phase for chromatographic separations, whereas a CO2-rich liquid in equilibrium with the vapor phase, but condensed on the column wall, can act as a pseudostationary phase. Several examples of chromatographic separations obtained in "empty" capillary columns with no ordinary stationary liquid phase illustrate the range of conditions that produce such separations. In addition, several experiments are reported that confirm the proposed two-phase hypothesis. The possible consequences of the observed chromatographic phenomenon in the field of supercritical fluid chromatography with helium headspace carbon dioxide are discussed.

  8. Simulated molecular-scale interaction of supercritical fluid mobile and stationary phases.

    PubMed

    Siders, Paul D

    2017-12-08

    In supercritical fluid chromatography, molecules from the mobile phase adsorb on the stationary phase. Stationary-phase alkylsilane-terminated silica surfaces might adsorb molecules at the silica, among the silanes, on a silane layer, or in pore space between surfaces. Mobile phases of carbon dioxide, pure and modified with methanol, and stationary phases were simulated at the molecular scale. Classical atomistic force fields were used in Gibbs-ensemble hybrid Monte Carlo calculations. Excess adsorption of pure carbon dioxide mobile phase peaked at fluid densities of 0.002-0.003Å -3 . Mobile phase adsorption from 7% methanol in carbon dioxide peaked at lower fluid density. Methanol was preferentially adsorbed from the mixed fluid. Surface silanes prevented direct interaction of fluid-phase molecules with silica. Some adsorbed molecules mixed with tails of bonded silanes; some formed layers above the silanes. Much adsorption occurred by filling the space between surfaces in the stationary-phase model. The distribution in the stationary phase of methanol molecules from a modified fluid phase varied with pressure. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. [Evaluation of chromatographic performance of polymerized ionic liquid stationary phase for capillary gas chromatography].

    PubMed

    Chen, Xiaoyan; Lu, Kai; Qi, Meiling; Fu, Ruonong

    2009-11-01

    The selectivity and thermal stability of ionic liquids as the stationary phases for capillary gas chromatography (CGC) have attracted much attention of researchers in recent years. In this study, 1-vinyl-3-benzyl imidazolium-bis(trifluoromethane-sulphonyl)imidate (VBIm-NTf2) was synthesized and polymerized (PVBIm-NTf2) in a CGC column. In comparison with VBIm-NTf2, PVBIm-NTf2 exhibits much better thermal stability and chromatographic selectivity, and achieves satisfactory resolution for Grob test mixture, alcohols mixture, esters mixture and aromatics mixture with narrow and symmetric peak shapes. The satisfactory resolution and selectivity of the polymerized column still remain after conditioned at 250 degrees C for 6 h. Additionally, the Abraham solvation parameters of PVBIm-NTf2 were determined and the interactions between the stationary phase and solutes were elucidated. The present work demonstrates that the polymerization is an effective way to improve the selectivity and thermal stability of common ionic liquids as CGC stationary phases.

  10. Separations of corticosteroids using electrochemically modulated liquid chromatography: Selectivity enhancements at a porous graphitic carbon stationary phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, E.Y.; Porter, M.D.

    Electrochemically modulated liquid chromatography has been applied to the separation of a mixture of structurally similar corticosteroids (i.e., prednisone, prednisolone, cortisone, and hydrocortisone) using a porous graphitic carbon stationary phase. Changes in the voltage applied to the column markedly affected the efficiency as well as the elution order of the separation, with the mixture fully resolved at large negative values of applied potential. Mechanistic aspects in terms of the influence of changes in the applied voltage on the extent of the interactions between these analytes and the stationary phase are briefly discussed. 19 refs., 2 figs.

  11. A unified classification of stationary phases for packed column supercritical fluid chromatography.

    PubMed

    West, C; Lesellier, E

    2008-05-16

    The use of supercritical fluids as chromatographic mobile phases allows to obtain rapid separations with high efficiency on packed columns, which could favour the replacement of numerous HPLC methods by supercritical fluid chromatography (SFC) ones. Moreover, despite some unexpected chromatographic behaviours, general retention rules are now well understood, and mainly depend on the nature of the stationary phase. The use of polar stationary phases improves the retention of polar compounds, when C18-bonded silica favours the retention of hydrocarbonaceous compounds. In this sense, reversed-phase and normal-phase chromatography can be achieved in SFC, as in HPLC. However, these two domains are clearly separated in HPLC due to the opposite polarity of the mobile phases used for each method. In SFC, the same mobile phase can be used with both polar and non-polar stationary phases. Consequently, the need for a novel classification of stationary phases in SFC appears, allowing a unification of the classical reversed- and normal-phase domains. In this objective, the paper presents the development of a five-dimensional classification based on retention data for 94-111 solutes, using 28 commercially available columns representative of three major types of stationary phases. This classification diagram is based on a linear solvation energy relationship, on the use of solvation vectors and the calculation of similarity factors between the different chromatographic systems. This classification will be of great help in the choice of the well-suited stationary phase, either in regards of a particular separation or to improve the coupling of columns with complementary properties.

  12. Gradient stationary phase optimized selectivity liquid chromatography with conventional columns.

    PubMed

    Chen, Kai; Lynen, Frédéric; Szucs, Roman; Hanna-Brown, Melissa; Sandra, Pat

    2013-05-21

    Stationary phase optimized selectivity liquid chromatography (SOSLC) is a promising technique to optimize the selectivity of a given separation. By combination of different stationary phases, SOSLC offers excellent possibilities for method development under both isocratic and gradient conditions. The so far available commercial SOSLC protocol utilizes dedicated column cartridges and corresponding cartridge holders to build up the combined column of different stationary phases. The present work is aimed at developing and extending the gradient SOSLC approach towards coupling conventional columns. Generic tubing was used to connect short commercially available LC columns. Fast and base-line separation of a mixture of 12 compounds containing phenones, benzoic acids and hydroxybenzoates under both isocratic and linear gradient conditions was selected to demonstrate the potential of SOSLC. The influence of the connecting tubing on the deviation of predictions is also discussed.

  13. Gas chromatography on wall-coated open-tubular columns with ionic liquid stationary phases.

    PubMed

    Poole, Colin F; Lenca, Nicole

    2014-08-29

    Ionic liquids have moved from novel to practical stationary phases for gas chromatography with an increasing portfolio of applications. Ionic liquids complement conventional stationary phases because of a combination of thermophysical and solvation properties that only exist for ionic solvents. Their high thermal stability and low vapor pressure makes them suitable as polar stationary phases for separations requiring high temperatures. Ionic liquids are good solvents and can be used to expand the chemical space for separations. They are the only stationary phases with significant hydrogen-bond acidity in common use; they extend the hydrogen-bond basicity of conventional stationary phases; they are as dipolar/polarizable as the most polar conventional stationary phases; and some ionic liquids are significantly less cohesive than conventional polar stationary phases. Problems in column coating techniques and related low column performance, column activity, and stationary phase reactivity require further exploration as the reasons for these features are poorly understood at present. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Experimental comparison of chiral metal-organic framework used as stationary phase in chromatography.

    PubMed

    Xie, Sheng-Ming; Zhang, Mei; Fei, Zhi-Xin; Yuan, Li-Ming

    2014-10-10

    Chiral metal-organic frameworks (MOFs) are a new class of multifunctional material, which possess diverse structures and unusual properties such as high surface area, uniform and permanent cavities, as well as good chemical and thermal stability. Their chiral functionality makes them attractive as novel enantioselective adsorbents and stationary phases in separation science. In this paper, the experimental comparison of a chiral MOF [In₃O(obb)₃(HCO₂)(H₂O)] solvent used as a stationary phase was investigated in gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). The potential relationship between the structure and components of chiral MOFs with their chiral recognition ability and selectivity are presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins.

    PubMed

    Periat, Aurélie; Krull, Ira S; Guillarme, Davy

    2015-02-01

    This review summarizes the recent advances in the analysis of amino acids, peptides, and proteins using hydrophilic interaction chromatography. Various reports demonstrate the successful analysis of amino acids under such conditions. However, a baseline resolution of the 20 natural amino acids has not yet been published and for this reason, there is often a need to use mass spectrometry for detection to further improve selectivity. Hydrophilic interaction chromatography is also recognized as a powerful technique for peptide analysis, and there are a lot of papers showing its applicability for proteomic applications (peptide mapping). It is expected that its use for peptide mapping will continue to grow in the future, particularly because this analytical strategy can be combined with reversed-phase liquid chromatography, in a two-dimensional setup, to reach very high resolving power. Finally, the interest in hydrophilic interaction chromatography for intact proteins analysis is less evident due to possible solubility issues and a lack of suitable hydrophilic interaction chromatography stationary phases. To date, it has been successfully employed only for the characterization of membrane proteins, histones, and the separation of glycosylated isoforms of an intact glycoprotein. From our point of view, the number of hydrophilic interaction chromatography columns compatible with intact proteins (higher upper temperature limit, large pore size, etc.) is still too limited. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Separation techniques: Chromatography

    PubMed Central

    Coskun, Ozlem

    2016-01-01

    Chromatography is an important biophysical technique that enables the separation, identification, and purification of the components of a mixture for qualitative and quantitative analysis. Proteins can be purified based on characteristics such as size and shape, total charge, hydrophobic groups present on the surface, and binding capacity with the stationary phase. Four separation techniques based on molecular characteristics and interaction type use mechanisms of ion exchange, surface adsorption, partition, and size exclusion. Other chromatography techniques are based on the stationary bed, including column, thin layer, and paper chromatography. Column chromatography is one of the most common methods of protein purification. PMID:28058406

  17. Recent development in liquid chromatography stationary phases for separation of Traditional Chinese Medicine components.

    PubMed

    Jin, Hongli; Liu, Yanfang; Guo, Zhimou; Wang, Jixia; Zhang, Xiuli; Wang, Chaoran; Liang, Xinmiao

    2016-10-25

    Traditional Chinese Medicine (TCM) is an ancient medical practice which has been used to prevent and cure diseases for thousands of years. TCMs are frequently multi-component systems with mainly unidentified constituents. The study of the chemical compositions of TCMs remains a hotspot of research. Different strategies have been developed to manage the significant complexity of TCMs, in an attempt to determine their constituents. Reversed-phase liquid chromatography (RPLC) is still the method of choice for the separation of TCMs, but has many problems related to limited selectivity. Recently, enormous efforts have been concentrated on the development of efficient liquid chromatography (LC) methods for TCMs, based on selective stationary phases. This can improve the resolution and peak capacity considerably. In addition, high-efficiency stationary phases have been applied in the analysis of TCMs since the invention of ultra high-performance liquid chromatography (UHPLC). This review describes the advances in LC methods in TCM research from 2010 to date, and focuses on novel stationary phases. Their potential in the separation of TCMs using relevant applications is also demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Use of ionic liquids as stationary phases in hyphenated gas chromatography techniques.

    PubMed

    Ragonese, Carla; Sciarrone, Danilo; Tranchida, Peter Quinto; Dugo, Paola; Mondello, Luigi

    2012-09-14

    In the past decades a consistent number of ionic liquids have been specifically synthesized and evaluated as stationary phase in gas chromatography. Ionic liquid, also defined as "molten salts", are a class of organic non-molecular solvents liquid at room temperature (RTILs) that satisfy most of the requirements of a GC stationary phase, among which a high viscosity, the possibility to tune the selectivity (by changing the cation-anion combination) and a high thermal stability. The choice of the proper stationary phase plays a key role in the improvement/optimization of a GC method, and although the use of IL as stationary phases is still not well-established, the general interest in their applications has greatly increased, thanks to their particular properties. The present contribution provides an overview on recent evaluations and applications of IL stationary phases, focusing in particular on the use of these novel tools in hyphenated GC-based techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Separation performance of cucurbit[7]uril in ionic liquid-based sol-gel coating as stationary phase for capillary gas chromatography.

    PubMed

    Wang, Xiaogang; Qi, Meiling; Fu, Ruonong

    2014-12-05

    Here we report the separation performance of a new stationary phase of cucurbit[7]uril (CB7) incorporated into an ionic liquid-based sol-gel coating (CB7-SG) for capillary gas chromatography (GC). The CB7-SG stationary phase showed an average polarity of 455, suggesting its polar nature. Abraham system constants revealed that its major interactions with analytes include H-bond basicity (a), dipole-dipole (s) and dispersive (l) interactions. The CB7-SG stationary phase achieved baseline separation for a wide range of analytes with symmetrical peak shapes and showed advantages over the conventional polar stationary phase that failed to resolve some critical analytes. Also, it exhibited different retention behaviors from the conventional stationary phase in terms of retention times and elution order. Most interestingly, in contrast to the conventional polar phase, the CB7-SG stationary phase exhibited longer retentions for analytes of lower polarity but relatively comparable retentions for polar analytes such as alcohols and phenols. The high resolving ability and unique retention behaviors of the CB7-SG stationary phase may stem from the comprehensive interactions of the aforementioned interactions and shape selectivity. Moreover, the CB7-SG column showed good peak shapes for analytes prone to peak tailing, good thermal stability up to 280°C and separation repeatability with RSD values in the range of 0.01-0.11% for intra-day, 0.04-0.41% for inter-day and 2.5-6.0% for column-to-column, respectively. As demonstrated, the proposed coating method can simultaneously address the solubility problem with CBs for the intended purpose and achieve outstanding GC separation performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Synthesis and Purification of Iodoaziridines Involving Quantitative Selection of the Optimal Stationary Phase for Chromatography

    PubMed Central

    Boultwood, Tom; Affron, Dominic P.; Bull, James A.

    2014-01-01

    The highly diastereoselective preparation of cis-N-Ts-iodoaziridines through reaction of diiodomethyllithium with N-Ts aldimines is described. Diiodomethyllithium is prepared by the deprotonation of diiodomethane with LiHMDS, in a THF/diethyl ether mixture, at -78 °Cin the dark. These conditions are essential for the stability of the LiCHI2 reagent generated. The subsequent dropwise addition of N-Ts aldimines to the preformed diiodomethyllithium solution affords an amino-diiodide intermediate, which is not isolated. Rapid warming of the reaction mixture to 0 °C promotes cyclization to afford iodoaziridines with exclusive cis-diastereoselectivity. The addition and cyclization stages of the reaction are mediated in one reaction flask by careful temperature control. Due to the sensitivity of the iodoaziridines to purification, assessment of suitable methods of purification is required. A protocol to assess the stability of sensitive compounds to stationary phases for column chromatography is described. This method is suitable to apply to new iodoaziridines, or other potentially sensitive novel compounds. Consequently this method may find application in range of synthetic projects. The procedure involves firstly the assessment of the reaction yield, prior to purification, by 1H NMR spectroscopy with comparison to an internal standard. Portions of impure product mixture are then exposed to slurries of various stationary phases appropriate for chromatography, in a solvent system suitable as the eluent in flash chromatography. After stirring for 30 min to mimic chromatography, followed by filtering, the samples are analyzed by 1H NMR spectroscopy. Calculated yields for each stationary phase are then compared to that initially obtained from the crude reaction mixture. The results obtained provide a quantitative assessment of the stability of the compound to the different stationary phases; hence the optimal can be selected. The choice of basic alumina, modified to

  1. Description and Evaluation of Chiral Interactive Sites on Bonded Cyclodextrin Stationary Phases for Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Beesley, Thomas E.

    Development of chiral separations has been essential to the drug discovery and development process. The solubility requirements for a number of methods and/or the mobile phase requirements for application of certain detection systems have opened up many opportunities for cyclodextrin-based CSPs for liquid chromatography. Even though a few chiral stationary phases cover a wide area of enantioselectivity, they do not meet the entire needs of the industry. Cyclodextrin phases offer some unique mechanisms and opportunities to resolve chiral separation problems especially in the aqueous reversed-phase and non-aqueous polar organic modes. This chapter addresses the need to understand the chiral stationary phase structure, the mechanisms at work, and the role mobile phase composition plays in driving those mechanisms to produce enantioselectivity. In addition, the development of certain derivatives has played an essential part in expanding that basic role for certain chiral separations. What these derivatives contribute in concert with the basic structure is a critical part of the understanding to the effective use of these phases. During this study it was determined that the role of steric hindrance has been vastly underestimated, both to the extent that it has occurred and to its effectiveness for obtaining enantioselectivity. References to the entire 20-year history of the cyclodextrin phase development and application literature up to this current date have been reviewed and incorporated.

  2. Highly stabilized, polymer-lipid membranes prepared on silica microparticles as stationary phases for capillary chromatography

    PubMed Central

    Gallagher, Elyssia S.; Adem, Seid M.; Baker, Christopher A.; Ratnayaka, Saliya N.; Jones, Ian W.; Hall, Henry K.; Saavedra, S. Scott; Aspinwall, Craig A.

    2015-01-01

    The ability to rapidly screen complex libraries of pharmacological modulators is paramount to modern drug discovery efforts. This task is particularly challenging for agents that interact with lipid bilayers or membrane proteins due to the limited chemical, physical, and temporal stability of conventional lipid-based chromatographic stationary phases. Here, we describe the preparation and characterization of a novel stationary phase material composed of highly stable, polymeric-phospholipid bilayers self-assembled onto silica microparticles. Polymer lipid membranes were prepared by photochemical or redox initiated polymerization of 1,2-bis[10-(2′,4′-hexadieoyloxy)decanoyl]-sn-glycero-2-phosphocholine (bis-SorbPC), a synthetic, polymerizable lipid. The resulting polymerized bis-SorbPC (poly(bis-SorbPC)) stationary phases exhibited enhanced stability compared to particles coated with 1,2-dioleoyl-sn-glycero-phosphocholine (unpolymerized) phospholipid bilayers when exposed to chemical (50mM triton X-100 or 50% acetonitrile) and physical (15 min sonication) insults after 30 days of storage. Further, poly(bis-SorbPC)-coated particles survived slurry packing into fused silica capillaries, compared to unpolymerized lipid membranes, where the lipid bilayer was destroyed during packing. Frontal chromatographic analyses of the lipophilic small molecules acetylsalicylic acid, benzoic acid, and salicylic acid showed > 44% increase in retention times (P < 0.0001) for all analytes on poly(bis-SorbPC)-functionalized stationary phase compared to bare silica microspheres, suggesting a lipophilic retention mechanism. Phospholipid membrane-functionalized stationary phases that withstand the chemical and physical rigors of capillary LC conditions can substantially increase the efficacy of lipid membrane affinity chromatography, and represents a key advance towards the development of robust membrane protein-functionalized chromatographic stationary phases. PMID:25670414

  3. Validation of stationary phases in (111)In-pentetreotide planar chromatography.

    PubMed

    Moreno-Ortega, E; Mena-Bares, L M; Maza-Muret, F R; Hidalgo-Ramos, F J; Vallejo-Casas, J A

    2013-01-01

    Since Pall-German stopped manufacturing ITLC-SG, it has become necessary to validate alternative stationary phases. To validate different stationary phases versus ITLC-SG Pall-Gelman in the determination of the radiochemical purity (RCP) of (111)In-pentetreotide ((111)In-Octreoscan) by planar chromatography. We conducted a case-control study, which included 66 (111)In-pentetreotide preparations. We determined the RCP by planar chromatography, using a freshly prepared solution of 0,1M sodium citrate (pH 5) and the following stationary phases: ITLC-SG (Pall-Gelman) (reference method), iTLC-SG (Varian), HPTLC silica gel 60 (Merck), Whatman 1, Whatman 3MM and Whatman 17. For each of the methods, we calculated: PRQ, relative front values (RF) of the radiopharmaceutical and free (111)In, chromatographic development time, resolution between peaks. We compared the results obtained with the reference method. The statistical analysis was performed using the SPSS program. The p value was calculated for the study of statistical significance. The highest resolution is obtained with HPTLC silica gel 60 (Merck). However, the chromatographic development time is too long (mean=33.62minutes). Greater resolution is obtained with iTLC-SG (Varian) than with the reference method, with lower chromatographic development time (mean=3.61minutes). Very low resolutions are obtained with Whatman paper, essentially with Whatman 1 and 3MM. Therefore, we do not recommend their use. Although iTLC-SG (Varian) and HPTLC silica gel 60 (Merck) are suitable alternatives to ITLC-SG (Pall-Gelman) in determining the RCP of (111)In-pentetreotide, iTLC-SG (Varian) is the method of choice due to its lower chromatographic development time. Copyright © 2012 Elsevier España, S.L. and SEMNIM. All rights reserved.

  4. Enantioselective potential of polysaccharide-based chiral stationary phases in supercritical fluid chromatography.

    PubMed

    Kucerova, Gabriela; Kalikova, Kveta; Tesarova, Eva

    2017-06-01

    The enantioselective potential of two polysaccharide-based chiral stationary phases for analysis of chiral structurally diverse biologically active compounds was evaluated in supercritical fluid chromatography using a set of 52 analytes. The chiral selectors immobilized on 2.5 μm silica particles were tris-(3,5-dimethylphenylcarmabate) derivatives of cellulose or amylose. The influence of the polysaccharide backbone, different organic modifiers, and different mobile phase additives on retention and enantioseparation was monitored. Conditions for fast baseline enantioseparation were found for the majority of the compounds. The success rate of baseline and partial enantioseparation with cellulose-based chiral stationary phase was 51.9% and 15.4%, respectively. Using amylose-based chiral stationary phase we obtained 76.9% of baseline enantioseparations and 9.6% of partial enantioseparations of the tested compounds. The best results on cellulose-based chiral stationary phase were achieved particularly with propane-2-ol and a mixture of isopropylamine and trifluoroacetic acid as organic modifier and additive to CO 2 , respectively. Methanol and basic additive isopropylamine were preferred on amylose-based chiral stationary phase. The complementary enantioselectivity of the cellulose- and amylose-based chiral stationary phases allows separation of the majority of the tested structurally different compounds. Separation systems were found to be directly applicable for analyses of biologically active compounds of interest. © 2017 Wiley Periodicals, Inc.

  5. Investigation of the retention/pH profile of zwitterionic fluoroquinolones in reversed-phase and ion-interaction high performance liquid chromatography.

    PubMed

    Pistos, C; Tsantili-Kakoulidou, A; Koupparis, M

    2005-09-15

    The retention/pH profiles of three fluoroquinolones, ofloxacin, norfloxacin and ciprofloxacin, was investigated by means of reversed-phase high performance liquid chromatography (RP-HPLC) and reversed-phase ion-interaction chromatography (RP-IIC), using an octadecylsilane stationary phase and acetonitrile as organic modifier. Sodium hexanesulphonate and tetrabutylammonium hydroxide were used as sources of counter ions in ion-interaction chromatography. The retention/pH profiles under in RP-HPLC were compared to the corresponding lipophilicity/pH profiles. Despite the rather hydrophilic nature of the three fluoroquinolones positive retention factors were obtained while there was a shift of the retention maximum towards more acidic pH values. This behavior was attributed mainly to non-hydrophobic silanophilic interactions with the silanized silica gel material of the stationary phase. In ion-interaction chromatography the effect of counter ions over a broad pH range was found to be ruled rather by the ion pair formation in the mobile phase which led to a drastic decrease in retention as a consequence of the disruption of the zwitterionic structure and thereupon the deliberation of a net charge in the molecules. At pH values at which zwitterionic structure was not favored both the ion-exchange and ion pair formation mechanisms were assumed to contribute to the retention.

  6. Green hydrophilic interaction chromatography using ethanol-water-carbon dioxide mixtures.

    PubMed

    Pereira, Alberto dos Santos; Girón, Ana Jiménez; Admasu, Engdawork; Sandra, Pat

    2010-03-01

    In hydrophilic interaction chromatography (HILIC), best results are obtained with high concentrations of acetonitrile. In the framework of green chromatography, different concentrations of carbon dioxide were added to the mobile phases acetonitrile-water and ethanol-water and the impact on retention and separation in HILIC using bare silica as stationary phase was explored. The features of HILIC using enhanced-fluidity mobile phases are illustrated with the analysis of the nucleobases and a mixture containing the nucleobases and cortisol, flurbiprofen, theophylline and caffeine. For both organic constituents, the elution window is widened in function of the carbon dioxide concentration and selectivity changes. At high concentrations of carbon dioxide in ethanol, separations were similar to those obtained with acetonitrile without carbon dioxide addition.

  7. Evaluation and application of a mixed-mode chromatographic stationary phase in two-dimensional liquid chromatography for the separation of traditional Chinese medicine.

    PubMed

    Wei, Zhishen; Fu, Qing; Cai, Jianfeng; Huan, Liyun; Zhao, Jianchao; Shi, Hui; Jin, Yu; Liang, Xinmiao

    2016-06-01

    In this study, two mixed-mode chromatography stationary phases (C8SAX and C8SCX) were evaluated and used to establish a two-dimensional liquid chromatography system for the separation of traditional Chinese medicine. The chromatographic properties of the mixed-mode columns were systematically evaluated by comparing with other three columns of C8, strong anion exchanger, and strong cation exchanger. The result showed that C8SAX and C8SCX had a mixed-mode retention mechanism including electrostatic interaction and hydrophobic interaction. Especially, they were suitable for separating acidic and/or basic compounds and their separation selectivities could be easily adjusted by changing pH value. Then, several off-line 2D-LC systems based on the C8SAX in the first dimension and C8SAX, C8SCX, or C8 columns in the second dimension were developed to analyze a traditional Chinese medicine-Uncaria rhynchophylla. The two-dimensional liquid chromatography system of C8SAX (pH 3.0) × C8SAX (pH 6.0) exhibited the most effective peak distribution. Finally, fractions of U. rhynchophylla prepared from the first dimension were successfully separated on the C8SAX column with a gradient pH. Thus, the mixed-mode stationary phase could provide a platform to separate the traditional Chinese medicine in practical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.

    PubMed

    Pino, Verónica; Afonso, Ana M

    2012-02-10

    Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Application of the zeta potential for stationary phase characterization in ion chromatography.

    PubMed

    Buszewski, Bogusław; Jaćkowska, Magdalena; Bocian, Szymon; Dziubakiewicz, Ewelina

    2013-01-01

    Two series of homemade stationary bonded phases for ion chromatography were investigated according to their zeta potential. One set of dendrimer anion exchanger was synthesized on the polymer support whereas the second material was prepared on the silica gel. The zeta potential data in water environment as well as buffered water solution were obtained. The influence of the length of anion-exchanger chains, the type of the support of the modified surface, and charge distribution on these data was investigated. Additionally, the zeta potential was correlated with retention factor of inorganic ions to describe their influence on the retention mechanism in ion chromatography. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electrochemically modulated liquid chromatography using a boron-doped diamond particle stationary phase

    PubMed Central

    Muna, Grace W.; Swope, Vernon M.; Swain, Greg M.; Porter, Marc D.

    2011-01-01

    This paper reports on preliminary tests of the performance of boron-doped diamond powder (BDDP) as a stationary phase in electrochemically modulated liquid chromatography (EMLC). EMLC manipulates retention through changes in the potential applied (Eappl) to a conductive packing. Porous graphitic carbon (PGC) has routinely been utilized as a material in EMLC separations. Herein the utility of BDDP as a stationary phase in EMLC was investigated and its stability, both compositionally and microstructurally, relative to PGC was compared. The results show that BDDP is stable over a wide range of Eappl values (i.e., −1.2 to +1.2 V vs. Ag/AgCl, sat’d NaCl). The data also reveal that electrostatics play a key role in the adsorption of the aromatic sulfonates on the BDDP stationary phase, and that these analytes are more weakly retained in comparison to the PGC support. The potential for this methodology to provide a means to advance the understanding of molecular adsorption and retention mechanisms on carbonaceous materials is briefly discussed. PMID:18922535

  11. Liquid Crystals in Chromatography

    NASA Astrophysics Data System (ADS)

    Witkiewicz, Zygfryd

    The following sections are included: * INTRODUCTION * LIQUID CRYSTALS SUITABLE FOR GAS CHROMATOGRAPHY * Monomeric Liquid Crystal Stationary Phases * Polymeric Liquid Crystal Stationary Phases * Polymeric Liquid Crystal Stationary Phases * Conventional Analytical Columns * Capillary Columns * FACTORS AFFECTING THE CHROMATOGRAPHIC SEPARATIONS ON LIQUID CRYSTAL STATIONARY PHASES * Kind of Mesophase of the Liquid Crystal * Molecular Structure of the Liquid Crystals and of the Chromatographed Substances * Substrate on which the Liquid Crystal is Deposited * ANALYTICAL APPLICATIONS OF LIQUID CRYSTAL STATIONARY PHASES IN GAS CHROMATOGRAPHY * Separation of Isomers of Benzene and Naphthalene Derivatives * Separation of Alkane and Alkene Isomers * Separation of Mixtures of Benzene and Aliphatic Hydrocarbon Derivatives Containing Heteroatoms * Separation of Polynuclear Hydrocarbons * INVESTIGATION OF THE PROPERTIES OF LIQUID CRYSTALS BY GAS CHROMATOGRAPHY * APPLICATION OF LIQUID CRYSTALS IN LIQUID CHROMATOGRAPHY * Column Chromatography * Thin-Layer Chromatography * APPLICATION OF LIQUID CRYSTAL STATIONARY PHASES IN SUPERCRITICAL FLUID CHROMATOGRAPHY * FINAL REMARKS * References

  12. Development of the first sphingomyelin biomimetic stationary phase for immobilized artificial membrane (IAM) chromatography.

    PubMed

    Verzele, Dieter; Lynen, Frédéric; De Vrieze, Mike; Wright, Adrian G; Hanna-Brown, Melissa; Sandra, Pat

    2012-01-28

    A prototype sphingomyelin stationary phase for Immobilized Artificial Membrane (IAM) chromatography was synthesized by an ultra-short, solid-phase inspired methodology, in which an oxidative release monitoring strategy played a vital role. Evaluated in a proof-of-concept model for blood-brain barrier passage, partial least squares regression demonstrated its potential as an in vitro prediction tool.

  13. Nano-particle modified stationary phases for high-performance liquid chromatography.

    PubMed

    Nesterenko, Ekaterina P; Nesterenko, Pavel N; Connolly, Damian; He, Xiaoyun; Floris, Patrick; Duffy, Emer; Paull, Brett

    2013-08-07

    This review covers the latest developments and applications of nano-materials in stationary phase development for various modes of high-performance liquid chromatography. Specific attention is placed upon the development of new composite phases, including the synthetic and immobilisation strategies used, to produce either encapsulated nano-particles, or surface attached nano-particles, layers, coatings and other structures. The resultant chromatographic applications, where applicable, are discussed with comment upon enhanced selectivity and/or efficiency of the nano-particle modified phases, where such effects have been identified. In the main this review covers developments over the past five years and is structured according to the nature of the nano-particles themselves, including carbonaceous, metallic, inorganic, and organopolymer based materials.

  14. Stationary-phase optimized selectivity liquid chromatography: development of a linear gradient prediction algorithm.

    PubMed

    De Beer, Maarten; Lynen, Fréderic; Chen, Kai; Ferguson, Paul; Hanna-Brown, Melissa; Sandra, Pat

    2010-03-01

    Stationary-phase optimized selectivity liquid chromatography (SOS-LC) is a tool in reversed-phase LC (RP-LC) to optimize the selectivity for a given separation by combining stationary phases in a multisegment column. The presently (commercially) available SOS-LC optimization procedure and algorithm are only applicable to isocratic analyses. Step gradient SOS-LC has been developed, but this is still not very elegant for the analysis of complex mixtures composed of components covering a broad hydrophobicity range. A linear gradient prediction algorithm has been developed allowing one to apply SOS-LC as a generic RP-LC optimization method. The algorithm allows operation in isocratic, stepwise, and linear gradient run modes. The features of SOS-LC in the linear gradient mode are demonstrated by means of a mixture of 13 steroids, whereby baseline separation is predicted and experimentally demonstrated.

  15. Surface radical chain-transfer reaction in deep eutectic solvents for preparation of silica-grafted stationary phases in hydrophilic interaction chromatography.

    PubMed

    Yang, Beibei; Cai, Tianpei; Li, Zhan; Guan, Ming; Qiu, Hongdeng

    2017-12-01

    In this paper, deep eutectic solvents (DESs) were firstly used as new and green solvents for the preparation of polymer-grafted silica stationary phases. 1-Vinylimidazole and acrylic acid were homopolymerized and copolymerized on silica via surface radical chain-transfer reaction in the DESs. Three stationary phases including poly(1-vinylimidazole)-, poly(acrylic acid)-, poly(1-vinylimidazole-co-acrylic acid)-grafted silica were obtained and characterized by elemental analysis and Fourier transform infrared spectroscopy. Their hydrophilic interaction chromatographic properties were investigated for separation of nucleosides, nucleobases, saccharides and amino acids. The retention changes of nucleosides and nucleobases on these columns were investigated under different chromatographic conditions including acetonitrile content, salt concentration, pH of mobile phase and column temperature. The repeatability of these columns was also investigated. The results demonstrate that DESs can be used as new media for the synthesis of silica-based stationary phases by homopolymerization and copolymerization on the surface of porous silica particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Affinity monolith chromatography: A review of general principles and applications.

    PubMed

    Li, Zhao; Rodriguez, Elliott; Azaria, Shiden; Pekarek, Allegra; Hage, David S

    2017-11-01

    Affinity monolith chromatography, or AMC, is a liquid chromatographic method in which the support is a monolith and the stationary phase is a biological-binding agent or related mimic. AMC has become popular for the isolation of biochemicals, for the measurement of various analytes, and for studying biological interactions. This review will examine the principles and applications of AMC. The materials that have been used to prepare AMC columns will be discussed, which have included various organic polymers, silica, agarose, and cryogels. Immobilization schemes that have been used in AMC will also be considered. Various binding agents and applications that have been reported for AMC will then be described. These applications will include the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, dye-ligand affinity chromatography, and immobilized metal-ion affinity chromatography. The use of AMC with chiral stationary phases and as a tool to characterize biological interactions will also be examined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A 2H nuclear magnetic resonance study of the state of water in neat silica and zwitterionic stationary phases and its influence on the chromatographic retention characteristics in hydrophilic interaction high-performance liquid chromatography.

    PubMed

    Wikberg, Erika; Sparrman, Tobias; Viklund, Camilla; Jonsson, Tobias; Irgum, Knut

    2011-09-23

    2H NMR has been used as a tool for probing the state of water in hydrophilic stationary phases for liquid chromatography at temperatures between -80 and +4 °C. The fraction of water that remained unfrozen in four different neat silicas with nominal pore sizes between 60 and 300 Å, and in silicas with polymeric sulfobetaine zwitterionic functionalities prepared in different ways, could be determined by measurements of the line widths and temperature-corrected integrals of the 2H signals. The phase transitions detected during thawing made it possible to estimate the amount of non-freezable water in each phase. A distinct difference was seen between the neat and modified silicas tested. For the neat silicas, the relationship between the freezing point depression and their pore size followed the expected Gibbs-Thomson relationship. The polymeric stationary phases were found to contain considerably higher amounts of non-freezable water compared to the neat silica, which is attributed to the structural effect that the sulfobetaine polymers have on the water layer close to the stationary phase surface. The sulfobetaine stationary phases were used alongside the 100 Å silica to separate a number of polar compounds in hydrophilic interaction (HILIC) mode, and the retention characteristics could be explained in terms of the surface water structure, as well as by the porous properties of the stationary phases. This provides solid evidence supporting a partitioning mechanism, or at least of the existence of an immobilized layer of water into which partitioning could be occurring. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Dynamics of relaxation to a stationary state for interacting molecular motors

    NASA Astrophysics Data System (ADS)

    Gomes, Luiza V. F.; Kolomeisky, Anatoly B.

    2018-01-01

    Motor proteins are active enzymatic molecules that drive a variety of biological processes, including transfer of genetic information, cellular transport, cell motility and muscle contraction. It is known that these biological molecular motors usually perform their cellular tasks by acting collectively, and there are interactions between individual motors that specify the overall collective behavior. One of the fundamental issues related to the collective dynamics of motor proteins is the question if they function at stationary-state conditions. To investigate this problem, we analyze a relaxation to the stationary state for the system of interacting molecular motors. Our approach utilizes a recently developed theoretical framework, which views the collective dynamics of motor proteins as a totally asymmetric simple exclusion process of interacting particles, where interactions are taken into account via a thermodynamically consistent approach. The dynamics of relaxation to the stationary state is analyzed using a domain-wall method that relies on a mean-field description, which takes into account some correlations. It is found that the system quickly relaxes for repulsive interactions, while attractive interactions always slow down reaching the stationary state. It is also predicted that for some range of parameters the fastest relaxation might be achieved for a weak repulsive interaction. Our theoretical predictions are tested with Monte Carlo computer simulations. The implications of our findings for biological systems are briefly discussed.

  19. Preparation and retention mechanism study of graphene and graphene oxide bonded silica microspheres as stationary phases for high performance liquid chromatography.

    PubMed

    Zhang, Xiaoqiong; Chen, Sha; Han, Qiang; Ding, Mingyu

    2013-09-13

    Graphene oxide (GO) bonded stationary phase for high performance liquid chromatography (HPLC) was fabricated by coating GO sheets onto aminosilica microspheres via covalent coupling. Graphene (G) functionalized HPLC stationary phase was then prepared through hydrazine reduction of GO bonded silica (GO@SiO2) composite, which was the first example of using graphene as stationary-phase component for HPLC. Effective separations of the tested neutral and polar compounds on both GO@SiO2 and graphene bonded silica (G@SiO2) columns were achieved under the optimal experimental conditions. Compared with commercial C18 column, the different chromatographic performances of GO and graphene bonded columns were ascribed to their unique retention mechanisms. The polyaromatic scaffold of GO and graphene gives π-π stacking property and hydrophobic effect, and other retention mechanisms, such as π-π electron-donor-acceptor (EDA) interaction for the separation of nitroaromatic compounds and hydrogen bonding for hydroxyl and amino compounds, may also be taken into consideration. Experimental results indicated that the mixed-mode retention mechanism can facilitate the separation of analytes with similar hydrophobicity, which is a unique property compared with C18 column. Additionally, G@SiO2 showed higher affinity to aromatic analytes in contrast with GO@SiO2 and its retention mechanism was not consistent with the typical reversed phase behavior. The separation of aromatic compounds on G@SiO2 column relies primarily on the π-π stacking interaction and then the hydrophobicity, while the two interactions have equal shares on GO@SiO2 column. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Quantitation of anticonvulsant drugs in serum by gas-chromatography on the stationary phase SP-2510.

    PubMed

    Godolphin, W; Thoma, J

    1978-03-01

    A new column packing, SP-2510 DA (Supelco, Inc., Bellefonte, Pa. 16823), is an excellent stationary phase for the determination of a wide variety of anticonvulsant drugs by gas--liquid chromatography without derivatization. However, when uncomplicated extraction procedures are used, serum cholesterol interferes with the determination of primidone. By the simple expedient of adding a short "pre-column" containing another phase (SP-2250 DA) the problem is overcome.

  1. [Systematic evaluation of retention behavior of carbohydrates in hydrophilic interaction liquid chromatography].

    PubMed

    Fu, Qing; Wang, Jun; Liang, Tu; Xu, Xiaoyong; Jin, Yu

    2013-11-01

    A systematic evaluation of retention behavior of carbohydrates in hydrophilic interaction liquid chromatography (HILIC) was performed. The influences of mobile phase, stationary phase and buffer salt on the retention of carbohydrates were investigated. According to the results, the retention time of carbohydrates decreased as the proportion of acetonitrile in mobile phase decreased. Increased time of carbohydrates was observed as the concentration of buffer salt in mobile phase increased. The retention behavior of carbohydrates was also affected by organic solvent and HILIC stationary phase. Furthermore, an appropriate retention equation was used in HILIC mode. The retention equation lnk = a + blnC(B) + cC(B) could quantitatively describe the retention factors of carbohydrates of plant origin with good accuracy: the relative error of the predicted time to actual time was less than 0.3%. The evaluation results could provide guidance for carbohydrates to optimize the experimental conditions in HILIC method development especially for carbohydrate separation

  2. Nanomaterials as stationary phases and supports in liquid chromatography.

    PubMed

    Beeram, Sandya R; Rodriguez, Elliott; Doddavenkatanna, Suresh; Li, Zhao; Pekarek, Allegra; Peev, Darin; Goerl, Kathryn; Trovato, Gianfranco; Hofmann, Tino; Hage, David S

    2017-10-01

    The development of various nanomaterials over the last few decades has led to many applications for these materials in liquid chromatography (LC). This review will look at the types of nanomaterials that have been incorporated into LC systems and the applications that have been explored for such systems. A number of carbon-based nanomaterials and inorganic nanomaterials have been considered for use in LC, ranging from carbon nanotubes, fullerenes and nanodiamonds to metal nanoparticles and nanostructures based on silica, alumina, zirconia and titanium dioxide. Many ways have been described for incorporating these nanomaterials into LC systems. These methods have included covalent immobilization, adsorption, entrapment, and the synthesis or direct development of nanomaterials as part of a chromatographic support. Nanomaterials have been used in many types of LC. These applications have included the reversed-phase, normal-phase, ion-exchange, and affinity modes of LC, as well as related methods such as chiral separations, ion-pair chromatography and hydrophilic interaction liquid chromatography. Both small and large analytes (e.g., dyes, drugs, amino acids, peptides and proteins) have been used to evaluate possible applications for these nanomaterial-based methods. The use of nanomaterials in columns, capillaries and planar chromatography has been considered as part of these efforts. Potential advantages of nanomaterials in these applications have included their good chemical and physical stabilities, the variety of interactions many nanomaterials can have with analytes, and their unique retention properties in some separation formats. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases.

    PubMed

    Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline

    2016-10-07

    Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Preparation and characterization of a new microwave immobilized poly(2-phenylpropyl)methylsiloxane stationary phase for reversed phase high-performance liquid chromatography.

    PubMed

    Begnini, Fernanda R; Jardim, Isabel C S F

    2013-07-05

    A new reversed phase high-performance liquid chromatography (RP-HPLC) stationary phase was prepared and its chromatographic and physical-chemical properties were evaluated. The new stationary phase was prepared with a silica support and poly(2-phenylpropyl)methylsiloxane (PPPMS), a phenyl type polysiloxane copolymer. Since this is a new copolymer and there is little information in the literature, it was submitted to physical-chemical characterization by infrared spectroscopy and thermogravimetry. The chromatographic phase was prepared through sorption and microwave immobilization of the copolymer onto a silica support. The chromatographic performance was evaluated by employing test procedures suggested by Engelhardt and Jungheim, Tanaka and co-workers, Neue, and Szabó and Csató. These test mixtures provide information about the hydrophobic selectivity, silanophilic activity, ion-exchange capacity, shape selectivity and interaction with polar analytes of the new Si-PPPMS reversed phase. Stability tests were developed using accelerated aging tests under both basic and acidic conditions to provide information about the lifetime of the packed columns. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Separation of multiphosphorylated peptide isomers by hydrophilic interaction chromatography on an aminopropyl phase.

    PubMed

    Singer, David; Kuhlmann, Julia; Muschket, Matthias; Hoffmann, Ralf

    2010-08-01

    The separation of isomeric phosphorylated peptides is challenging and often impossible for multiphosphorylated isomers using chromatographic and capillary electrophoretic methods. In this study we investigated the separation of a set of single-, double-, and triple-phosphorylated peptides (corresponding to the human tau protein) by ion-pair reversed-phase chromatography (IP-RPC) and hydrophilic interaction chromatography (HILIC). In HILIC both hydroxyl and aminopropyl stationary phases were tested with aqueous acetonitrile in order to assess their separation efficiency. The hydroxyl phase separated the phosphopeptides very well from the unphosphorylated analogue, while on the aminopropyl phase even isomeric phosphopeptides attained baseline separation. Thus, up to seven phosphorylated versions of a given tau domain were separated. Furthermore, the low concentration of an acidic ammonium formate buffer allowed an online analysis with electrospray ionization tandem mass spectrometry (ESI-MS/MS) to be conducted, enabling peptide sequencing and identification of phosphorylation sites.

  6. Carboxylate modified porous graphitic carbon: a new class of hydrophilic interaction liquid chromatography phases.

    PubMed

    Wahab, M Farooq; Ibrahim, Mohammed E A; Lucy, Charles A

    2013-06-18

    Stationary phases for hydrophilic interaction liquid chromatography (HILIC) are predominantly based on silica and polymer supports. We present porous graphitic carbon particles with covalently attached carboxylic acid groups (carboxylate-PGC) as a new HILIC stationary phase. PGC particles were modified by adsorbing the diazonium salt of 4-aminobenzoic acid onto the PGC, followed by reduction of the adsorbed salt with sodium borohydride. The newly developed carboxylate-PGC phase exhibits different selectivity than that of 35 HPLC columns, including bare silica, zwitterionic, amine, reversed, and unmodified PGC phases. Carboxylate-PGC is stable from pH 2.0 to 12.6, yielding reproducible retention even at pH 12.6. Characterization of the new phase is presented by X-ray photoelectron spectroscopy, thermogravimetry, zeta potentials, and elemental analysis. The chromatographic performance of carboxylate-PGC as a HILIC phase is illustrated by separations of carboxylic acids, nucleotides, phenols, and amino acids.

  7. Hydrophilic interaction liquid chromatography in the speciation analysis of selenium.

    PubMed

    Sentkowska, Aleksandra; Pyrzynska, Krystyna

    2018-02-01

    The hydrophilic interaction liquid chromatography (HILIC) coupled to mass spectrometry was employed to study retention behavior of selected selenium compounds using two different HILIC stationary phases: silica and zwitterionic. Two organic solvents - acetonitrile and methanol - were compared as a component of mobile phase. Separation parameters such as a content of organic modifier, the eluent pH and inorganic buffer concentration were investigated. Based on all observations, methanol seems to be beneficial for the separation of studied compounds. The optimal HILIC separation method involved silica column and eluent composed of 85% MeOH and CH 3 COONH 4 (8 mM, pH 7) was compared to RP method in terms of time of the single run, the separation efficiency and limit of detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Assessment of intra-particle diffusion in hydrophilic interaction liquid chromatography and reversed-phase liquid chromatography under conditions of identical packing structure.

    PubMed

    Song, Huiying; Desmet, Gert; Cabooter, Deirdre

    2017-11-10

    A recently developed stripping protocol to completely remove the stationary phase of reversed-phase liquid chromatography (RPLC) columns and turn them into hydrophilic interaction liquid chromatography (HILIC) columns with identical packing characteristics is used to study the underlying mechanisms of intra-particle diffusion in RPLC and HILIC. The protocol is applied to a column with a large geometrical volume (250×4.6mm, 5μm) to avoid extra-column effects and for compounds with a broad range in retention factors (k" from ∼0.6 to 8). Three types of behavior for the intra-particle diffusion (D part /D m ) in RPLC versus HILIC can be distinguished: for nearly unretained compounds (k"<0.6), intra-particle diffusion in HILIC is larger than in RPLC; for compounds with intermediate retention behavior (k"∼0.9-1.2), intra-particle diffusion in HILIC and RPLC are similar; and for well retained compounds (k">1.8), intra-particle diffusion in RPLC is larger than in HILIC. To explain these observations, diffusion in the stationary phase (γ s D s ) and in the stagnant mobile phase in the mesopore zone (γ mp D m ) are deduced from experimentally determined values of the intra-particle diffusion, using models derived from the Effective Medium Theory. It is demonstrated that the larger intra-particle diffusion obtained for slightly retained compounds under HILIC conditions is caused by the higher mesopore diffusion in HILIC (γ mp =0.474 for HILIC versus 0.435 for RPLC), while the larger intra-particle diffusion obtained for strongly retained compounds under RPLC conditions can be related to the much higher stationary phase diffusion in RPLC (γ s D s /D m =0.200 for RPLC versus 0.113 for HILIC). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Advances in immobilized artificial membrane (IAM) chromatography for novel drug discovery.

    PubMed

    Tsopelas, Fotios; Vallianatou, Theodosia; Tsantili-Kakoulidou, Anna

    2016-01-01

    The development of immobilized artificial membrane (IAM) chromatography has unfolded new perspectives for the use of chromatographic techniques in drug discovery, combining simulation of the environment of cell membranes with rapid measurements. The present review describes the characteristics of phosphatidylcholine-based stationary phases and analyses the molecular factors governing IAM retention in comparison to n-octanol-water and liposomes partitioning systems as well as to reversed phase chromatography. Other biomimetic stationary phases are also briefly discussed. The potential of IAM chromatography to model permeability through the main physiological barriers and drug membrane interactions is outlined. Further applications to calculate complex pharmacokinetic properties, related to tissue binding, and to screen drug candidates for phospholipidosis, as well as to estimate cell accumulation/retention are surveyed. The ambivalent nature of IAM chromatography, as a border case between passive diffusion and binding, defines its multiple potential applications. However, despite its successful performance in many permeability and drug-membrane interactions studies, IAM chromatography is still used as a supportive and not a stand-alone technique. Further studies looking at IAM chromatography in different biological processes are still required if this technique is to have a more focused and consistent application in drug discovery.

  10. Polarity-based fractionation in proteomics: hydrophilic interaction vs reversed-phase liquid chromatography.

    PubMed

    Jafari, M; Mirzaie, M; Khodabandeh, M; Rezadoost, H; Ghassempour, A; Aboul-Enein, H Y

    2016-07-01

    During recent decades, hydrophilic interaction liquid chromatography (HILIC) ahs been introduced to fractionate or purify especially polar solutes such as peptides and proteins while reversed-phase liquid chromatography (RPLC) is also a common strategy. RPLC is also a common dimension in multidimensional chromatography. In this study, the potential of HILIC vs RPLC chromatography was compared for proteome mapping of human peripheral blood mononuclear cell extract. In HILIC a silica-based stationary phase and for RPLC a C18 column were applied. Then separated proteins were eluted to an ion trap mass spectrometry system. Our results showed that the HILIC leads to more proteins being identified in comparison to RPLC. Among the total 181 identified proteins, 56 and 38 proteins were fractionated specifically by HILIC and RPLC, respectively. In order to demonstrate this, the physicochemical properties of identified proteins such as polarity and hydrophobicity were considered. This analysis indicated that polarity may play a major role in the HILIC separation of proteins vs RPLC. Using gene ontology enrichment analysis, it was also observed that differences in physicochemical properties conform to the cellular compartment and biological features. Finally, this study highlighted the potential of HILIC and the great orthogonality of RPLC in gel-free proteomic studies. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Tubing modifications for countercurrent chromatography (CCC): Stationary phase retention and separation efficiency.

    PubMed

    Englert, Michael; Vetter, Walter

    2015-07-16

    Countercurrent chromatography (CCC) is a separation technique in which two immiscible liquid phases are used for the preparative purification of synthetic and natural products. In CCC the number of repetitive mixing and de-mixing processes, the retention of the stationary phase and the mass transfer between the liquid phases are significant parameters that influence the resolution and separation efficiency. Limited mass transfer is the main reason for peak broadening and a low number of theoretical plates along with impaired peak resolution in CCC. Hence, technical improvements with regard to column design and tubing modifications is an important aspect to enhance mixing and mass transfer. In this study we constructed a crimping tool which allowed us to make reproducible, semi-automated modifications of conventional round-shaped tubing. Six crimped tubing modifications were prepared, mounted onto multilayer coils which were subsequently installed in the CCC system. The stationary phase retention of the tubing modifications were compared to the conventional system with unmodified tubing in a hydrophobic, an intermediate and a hydrophilic two-phase solvent system. Generally, the tubing modifications provided higher capabilities to retain the stationary phase depending on the solvent system and flow rates. In the intermediate solvent system the separation efficiency was evaluated with a mixture of six alkyl p-hydroxybenzoates. The peak resolution could be increased up to 50% with one of the tubing modifications compared to the unmodified tubing. Using the most convincing tubing modification at fixed values for the stationary phase retention, a reasonable comparison to the unmodified tubing was achieved. The peak width could be reduced up to 49% and a strong positive impact at increased flow rates regarding peak resolution and theoretical plate number was observed compared to unmodified tubing. It could be concluded that the tubing modification enhanced the interphase

  12. Cellulose tris-(3,5-dimethylphenylcarbamate)-based chiral stationary phase for the enantioseparation of drugs in supercritical fluid chromatography: comparison with HPLC.

    PubMed

    Kalíková, Květa; Martínková, Monika; Schmid, Martin G; Tesařová, Eva

    2018-03-01

    A cellulose tris-(3,5-dimethylphenylcarbamate)-based chiral stationary phase was studied as a tool for the enantioselective separation of 21 selected analytes with different pharmaceutical and physicochemical properties. The enantioseparations were performed using supercritical fluid chromatography. The effect of the mobile phase composition was studied. Four different additives (diethylamine, triethylamine, isopropylamine, and trifluoroacetic acid) and isopropylamine combined with trifluoroacetic acid were tested and their influence on enantioseparation was compared. The influence of two different mobile phase co-solvents (methanol and propan-2-ol) combined with all the additives was also evaluated. The best mobile phase compositions for the separation of the majority of enantiomers were CO 2 /methanol/isopropylamine 80:20:0.1 v/v/v or CO 2 /propan-2-ol/isopropylamine/trifluoroacetic acid 80:20:0.05:0.05 v/v/v/v. The best results were obtained from the group of basic β-blockers. A high-performance liquid chromatography separation system composed of the same stationary phase and mobile phase of similar properties prepared as a mixture of hexane/propan-2-ol/additive 80:20:0.1 v/v/v was considered for comparison. Supercritical fluid chromatography was found to yield better results, i.e. better enantioresolution for shorter analysis times than high-performance liquid chromatography. However, examples of enantiomers better resolved under the optimized conditions in high-performance liquid chromatography were also found. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Properties of water as a novel stationary phase in capillary gas chromatography.

    PubMed

    Gallant, Jonathan A; Thurbide, Kevin B

    2014-09-12

    A novel method of separation that uses water as a stationary phase in capillary gas chromatography (GC) is presented. Through applying a water phase to the interior walls of a stainless steel capillary, good separations were obtained for a large variety of analytes in this format. It was found that carrier gas humidification and backpressure were key factors in promoting stable operation over time at various temperatures. For example, with these measures in place, the retention time of an acetone test analyte was found to reduce by only 44s after 100min of operation at a column temperature of 100°C. In terms of efficiency, under optimum conditions the method produced about 20,000 plates for an acetone test analyte on a 250μm i.d.×30m column. Overall, retention on the stationary phase generally increased with analyte water solubility and polarity, but was relatively little correlated with analyte volatility. Conversely, non-polar analytes were essentially unretained in the system. These features were applied to the direct analysis of different polar analytes in both aqueous and organic samples. Results suggest that this approach could provide an interesting alternative tool in capillary GC separations. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. [Separation and purification of the components in Trachelospermum jasminoides by two dimensional hydrophilic interaction liquid chromatography- reversed-phase liquid chromatography].

    PubMed

    Jia, Youmei; Cai, Jianfeng; Xin, Huaxia; Feng, Jiatao; Fu, Yanhui; Fu, Qing; Jin, Yu

    2017-06-08

    A preparative two dimensional hydrophilic interaction liquid chromatography/reversed-phase liquid chromatography (Pre-2D-HILIC/RPLC) method was established to separate and purify the components in Trachelospermum jasminoides . The pigments and strongly polar components were removed from the crude extract after the active carbon decolorization and solid phase extraction processes. A Click XIon column (250 mm×20 mm, 10 μm) was selected as stationary phase and water-acetonitrile as mobile phases in the first dimensional HILIC. Finally, 15 fractions were collected under UV-triggered mode. In the second dimensional RPLC, a C18 column (250 mm×20 mm, 5 μm) was selected and water-acetonitrile was used as mobile phases. As a result, 14 compounds with high purity were obtained, which were further identified by mass spectrometry (MS) and nuclear magnetic resonance (NMR). Finally, 11 lignan compounds and three flavonoid compounds were obtained. The method has a good orthogonality, and can improve the resolution and the peak capacity. It is significant for the separation of complex components from Trachelospermum jasminoides .

  15. Evaluation of ionic liquid stationary phases for one dimensional gas chromatography-mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota.

    PubMed

    Gu, Qun; David, Frank; Lynen, Frédéric; Vanormelingen, Pieter; Vyverman, Wim; Rumpel, Klaus; Xu, Guowang; Sandra, Pat

    2011-05-20

    Ionic liquid stationary phases were tested for one dimensional gas chromatography-mass spectrometry (GC-MS) and comprehensive two dimensional gas chromatography (GC×GC) of fatty acid methyl esters from algae. In comparison with polyethylene glycol and cyanopropyl substituted polar stationary phases, ionic liquid stationary phases SLB-IL 82 and SLB-IL 100 showed comparable resolution, but lower column bleeding with MS detection, resulting in better sensitivity. The selectivity and polarity of the ionic liquid phases are similar to a highly polar biscyanopropyl-silicone phase (e.g. HP-88). In GC×GC, using an apolar polydimethyl siloxane×polar ionic liquid column combination, an excellent group-type separation of fatty acids with different carbon numbers and number of unsaturations was obtained, providing information that is complementary to GC-MS identification. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Temperature-responsive chromatography for the separation of biomolecules.

    PubMed

    Kanazawa, Hideko; Okano, Teruo

    2011-12-09

    Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Recent applications of hydrophilic interaction liquid chromatography in pharmaceutical analysis.

    PubMed

    Zhang, Qian; Yang, Feng-Qing; Ge, Liya; Hu, Yuan-Jia; Xia, Zhi-Ning

    2017-01-01

    Hydrophilic interaction liquid chromatography, an alternative liquid chromatography mode, is of particular interest in separating hydrophilic and polar ionic compounds. Compared with traditional liquid chromatography techniques, hydrophilic interaction liquid chromatography offers specific advantages mainly including: (1) relatively green and water-soluble mobile phase composition, which enhances the solubility of hydrophilic and polar ionic compounds; (2) no need for ion-pairing reagents and high content of organic solvent, which benefits mass spectrometry detection; (3) high orthogonality to reverse-phase liquid chromatography, well adapted to two-dimensional liquid chromatography for complicated samples. Therefore, hydrophilic interaction liquid chromatography has been rapidly developed in many areas over the past decades. This review summarizes the recent progress (from 2012 to July 2016) of hydrophilic interaction liquid chromatography in pharmaceutical analysis, with the focus on detecting chemical drugs in various matrices, charactering active compounds of natural products and assessing biotherapeutics through typical structure unit. Moreover, the retention mechanism and behavior of analytes in hydrophilic interaction liquid chromatography as well as some novel hydrophilic interaction liquid chromatography columns used for pharmaceutical analysis are also described. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Preparation of hydrophilic polymer-grafted polystyrene beads for hydrophilic interaction chromatography via surface-initiated atom transfer radical polymerization.

    PubMed

    Dai, Xiaojun; He, Yuan; Wei, Yinmao; Gong, Bolin

    2011-11-01

    A one-step procedure based on surface-initiated atom transfer radical polymerization (SI-ATRP) to hydrophilize monodisperse poly(chloromethylstyrene-co-divinylbenzene) beads has been presented in this work, using 2-hydroxyl-3-[4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl]propyl 2-methylacrylate (HTMA) as a monomer. The chain length of the grafted poly(HTMA) was controlled via varying the ratio of HTMA to initiator on the surface of the beads. When using the grafted beads as a stationary phase in hydrophilic interaction chromatography (HILIC), good resolution for nucleobases/nucleosides was obtained with acetonitrile aqueous solution as an eluent; while for phenolic acids and glycosides, they could be eluted and separated in the presence of TFA. The retention time of the solutes increased with the amount of the grafted HTMA. The retention mechanisms of solutes were investigated by the effects of mobile phase composition and buffer pH on the retention of solutes. The results illustrated that the retention behaviors of the tested solutes were dominated by hydrogen bonding interaction and electrostatic interaction. From the chemical structure of the ligands, the modified beads could not only be used as a stationary phase in HILIC, but also act as a useful building block to develop new stationary phases for other chromatographic modes such as affinity media. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Preparation of hydrophilic interaction/ion-exchange mixed-mode chromatographic stationary phase with adjustable selectivity by controlling different ratios of the co-monomers.

    PubMed

    Bo, Chunmiao; Wang, Xiaomeng; Wang, Chaozhan; Wei, Yinmao

    2017-03-03

    Development of mixed-mode chromatography (MMC) stationary phase with adjustable selectivity is beneficial to meet the needs of complex samples. In this work, surface-initiated atom transfer radical polymerization (SI-ATRP) using the mixture of two functional monomers was proposed as a new preparation strategy for MMC stationary phase with adjustable selectivity. The mixture of sodium 4-styrenesulfonate (NASS) and dimethylaminoethyl methacrylate (DMAEMA) underwent SI-ATRP to bond poly(NASS-co-DMAEMA) on the surface of silica to prepare hydrophilic interaction/ion-exchange mixed-mode stationary phase. Various analytes (neutral, acidic, basic analytes and strong polar nucleosides) were employed to investigate the retention behaviors. The influences of water content and pH of the mobile phase on the retention validated the mixed-mode retention mechanisms of HILIC and ion-exchange. The charge and polarity of stationary phase as well as the separation selectivity were conveniently manipulated by the ratio of NASS to DMAEMA monomer, and the use of DMAEMA in the mixture additionally endowed the column with the temperature-responsive characteristics. Moreover, the application of the developed column was demonstrated by the successful separation of nucleosides, β-agonists and safflower injection. In a word, the proposed strategy can be potentially applied in the controllable preparation of MMC stationary phase with adjustable selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Deconvoluting the effects of buffer salt concentration in hydrophilic interaction chromatography on a zwitterionic stationary phase.

    PubMed

    West, Caroline; Auroux, Emeline

    2016-08-26

    Quantitative structure-retention relationships (QSRRs) furnish a detailed and reliable description of the role and extent of different molecular interactions that can be established between the analytes and the chromatographic system. Among QSRRs, the solvation parameter model using Abraham descriptors has gained acceptance as a general tool to explore the factors affecting retention in chromatographic systems. We have previously shown how a modified version of the solvation parameter model, with two extra terms to take account of interactions occurring with ionic and ionizable species (with positive and/or negative charges), could be applied to the characterization of hydrophilic interaction chromatographic (HILIC) systems. In the present study, we will show how this methodology can be used to evaluate the effects of increasing buffer salt concentration on retention and separation in a HILIC system. A commercial stationary phase possessing a sulfobetaine zwitterionic bonded ligand (Nucleodur HILIC) was used with a mobile phase composed of 80% acetonitrile and 20% pwwH4 ammonium acetate buffer, with aqueous buffer concentrations varying from 10 to 100mM, resulting in overall concentrations ranging from 2 to 20mM in the mobile phase. Retention factors were measured for a selection of 76 probe analytes. The chosen compounds are small molecules presenting a wide diversity of molecular structures and are relevant to biomedical and pharmaceutical applications. The QSRR models obtained allow for a rationalization of the interactions contributing to retention and separation in the HILIC system considered and shed some light on the effect of varying buffer salt concentration, namely the progressive transition from ion-exchange and electrostatic-repulsion mechanisms to hydrophilic partitioning. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A 3-D open-framework material with intrinsic chiral topology used as a stationary phase in gas chromatography.

    PubMed

    Xie, Sheng-Ming; Zhang, Xin-Huan; Zhang, Ze-Jun; Zhang, Mei; Jia, Jia; Yuan, Li-Ming

    2013-04-01

    Compared with liquid chromatography and capillary electrophoresis, the diversity of gas chromatography chiral stationary phases is rather limited. Here, we report the fabrication of Co(D-Cam)1/2(bdc)1/2(tmdpy) (D-Cam = D-camphoric acid; bdc = 1,4-benzenedicarboxylate; tmdpy = 4,4'-trimethylenedipyridine)-coated open tubular columns for high-resolution gas chromatographic separation of compounds. The Co(D-Cam)1/2(bdc)1/2(tmdpy) compound possesses a 3-D framework containing enantiopure building blocks embedded in intrinsically chiral topological nets. In this study, two fused-silica open tubular columns with different inner diameters and lengths, including column A (30 m × 530 μm i.d.) and column B (2 m × 75 μm i.d.), were prepared by a dynamic coating method using Co-(D-Cam)1/2(bdc)1/2(tmdpy) as the stationary phase. The chromatographic properties of the two columns were investigated using n-dodecane as the test compound at 120 °C. The number of theoretical plates (plates/m) of the two metal-organic framework columns was 1,450 and 3,100, respectively. The separation properties were evaluated using racemates, isomers, alkanes, alcohols, and Grob's test mixture. The limit of detection and limit of quantification were found to be 0.125 and 0.417 ng for citronellal enantiomers, respectively. Repeatability (n = 6) showed lower than 0.25 % relative standard deviation (RSD) for retention times and lower than 2.2 % RSD for corrected peak areas. The experimental results showed that the stationary phase has excellent selectivity and also possesses good recognition ability toward these organic compounds, especially chiral compounds.

  2. Highly hydrophilic and nonionic poly(2-vinyloxazoline)-grafted silica: a novel organic phase for high-selectivity hydrophilic interaction chromatography.

    PubMed

    Mallik, Abul K; Cheah, Wee Keat; Shingo, Kaori; Ejzaki, Aika; Takafuji, Makoto; Ihara, Hirotaka

    2014-07-01

    A new hydrophilic and nonionic poly(2-vinyloxazoline)-grafted silica (Sil-VOX(n)) phase was synthesized and applied for the separation of nucleosides and nucleobases in hydrophilic interaction chromatography (HILIC). Polymerization and immobilization onto silica were confirmed by using characterization techniques including (1)H NMR spectroscopy, elemental analysis, and diffuse reflectance infrared Fourier transform spectroscopy. The hydrophilicity or wettability of Sil-VOX(n) was observed by measuring the contact angle (59.9°). The chromatographic results were compared with those obtained with a conventional HILIC silica column. The Sil-VOX(n) phase showed much better separation of polar test analytes than the silica column, and the elution order was different. Differences in selectivity between these two columns indicate that the stationary phase cannot function merely as an inert support for a water layer into which the solutes are partitioned from the bulk mobile phase. To elucidate the interaction mechanism, the separation of dihydroxybenzene isomers was performed on both columns in normal-phase liquid chromatography. Sil-VOX(n) was very sensitive to the dipole moments of the positional isomers of polycyclic aromatic compounds in normal-phase liquid chromatography. The interaction mechanism for Sil-VOX(n) in HILIC separation is also described.

  3. Extracting stationary segments from non-stationary synthetic and cardiac signals

    NASA Astrophysics Data System (ADS)

    Rodríguez, María. G.; Ledezma, Carlos A.; Perpiñán, Gilberto; Wong, Sara; Altuve, Miguel

    2015-01-01

    Physiological signals are commonly the result of complex interactions between systems and organs, these interactions lead to signals that exhibit a non-stationary behaviour. For cardiac signals, non-stationary heart rate variability (HRV) may produce misinterpretations. A previous work proposed to divide a non-stationary signal into stationary segments by looking for changes in the signal's properties related to changes in the mean of the signal. In this paper, we extract stationary segments from non-stationary synthetic and cardiac signals. For synthetic signals with different signal-to-noise ratio levels, we detect the beginning and end of the stationary segments and the result is compared to the known values of the occurrence of these events. For cardiac signals, RR interval (cardiac cycle length) time series, obtained from electrocardiographic records during stress tests for two populations (diabetic patients with cardiovascular autonomic neuropathy and control subjects), were divided into stationary segments. Results on synthetic signals reveal that the non-stationary sequence is divided into more stationary segments than needed. Additionally, due to HRV reduction and exercise intolerance reported on diabetic cardiovascular autonomic neuropathy patients, non-stationary RR interval sequences from these subjects can be divided into longer stationary segments compared to the control group.

  4. Penetrable silica microspheres for immobilization of bovine serum albumin and their application to the study of the interaction between imatinib mesylate and protein by frontal affinity chromatography.

    PubMed

    Ma, Liyun; Li, Jing; Zhao, Juan; Liao, Han; Xu, Li; Shi, Zhi-guo

    2016-01-01

    In the current study, novel featured silica, named penetrable silica, simultaneously containing macropores and mesopores, was immobilized with bovine serum albumin (BSA) via Schiff base method. The obtained BSA-SiO2 was employed as the high-performance liquid chromatographic (HPLC) stationary phase. Firstly, D- and L-tryptophan were used as probes to investigate the chiral separation ability of the BSA-SiO2 stationary phase. An excellent enantioseparation factor was obtained up to 4.3 with acceptable stability within at least 1 month. Next, the BSA-SiO2 stationary phase was applied to study the interaction between imatinib mesylate (IM) and BSA by frontal affinity chromatography. A single type of binding site was found for IM with the immobilized BSA, and the hydrogen-bonding and van der Waals interactions were expected to be contributing interactions based on the thermodynamic studies, and this was a spontaneous process. Compared to the traditional silica for HPLC stationary phase, the proposed penetrable silica microsphere possessed a larger capacity to bond more BSA, minimizing column overloading effects and enhancing enantioseparation ability. In addition, the lower running column back pressure and fast mass transfer were meaningful for the column stability and lifetime. It was a good substrate to immobilize biomolecules for fast chiral resolution and screening drug-protein interactions.

  5. Preparative isolation of flavonoid glycosides from Sphaerophysa salsula using hydrophilic interaction solid-phase extraction coupled with two-dimensional preparative liquid chromatography.

    PubMed

    Jiao, Lijin; Tao, Yanduo; Wang, Weidong; Shao, Yun; Mei, Lijuan; Wang, Qilan; Dang, Jun

    2017-10-01

    An offline preparative two-dimensional reversed-phase liquid chromatography/hydrophilic interaction liquid chromatography coupled with hydrophilic interaction solid-phase extraction method was developed for the preparative isolation of flavonoid glycosides from a crude sample of Sphaerophysa salsula. First, the non-flavonoids were removed using an XAmide solid-phase extraction cartridge. Based on the separation results of three different chromatographic stationary phases, the first-dimensional preparation was performed on an XAqua C18 prep column, and 15 fractions were obtained from the 5.2 g target sample. Then, three representative fractions were selected for additional purification on an XAmide preparative column to further isolate the flavonoid glycosides. In all, eight flavonoid glycosides were isolated in purities over 97%. The results demonstrated that the two-dimensional liquid chromatography method used in this study was effective for the preparative separation of flavonoid glycosides from Sphaerophysa salsula. Additionally, this method showed great potential for the separation of flavonoid glycosides from other plant materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    PubMed

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Retention behavior of isomeric polycyclic aromatic sulfur heterocycles in gas chromatography on stationary phases of different selectivity

    PubMed Central

    Wilson, Walter B.; Sander, Lane C.; Oña-Ruales, Jorge O.; Mössner, Stephanie G.; Sidisky, Leonard M.; Lee, Milton L.; Wise, Stephen A.

    2017-01-01

    Retention indices for 48 polycyclic aromatic sulfur heterocycles (PASHs) were determined using gas chromatography with three different stationary phases: a 50% phenyl phase, a 50% liquid crystalline dimethylpolysiloxane (LC-DMPS) phase, and an ionic liquid (IL) phase. Correlations between the retention behavior on the three stationary phases and PASH geometry (L/B and T, i.e., length-to-breadth ratio and thickness, respectively) were investigated for the following four isomer sets: (1) 4 three-ring molecular mass (MM) 184 Da PASHs, (2) 13 four-ring MM 234 Da PASHs, (3) 10 five-ring MM 258 Da PASHs, and (4) 20 five-ring MM 284 Da PASHs. Correlation coefficients for retention on the 50% LC-DMPS vs L/B ranged from r = 0.50 (MM 284 Da) to r = 0.77 (MM 234 Da). Correlation coefficients for retention on the IL phase vs L/B ranged from r = 0.31 (MM 234 Da) to r = 0.54 (MM 284 Da). Correlation coefficients for retention on the 50% phenyl vs L/B ranged from r = 0.14 (MM 258 Da) to r = 0.59 (MM 284 Da). Several correlation trends are discussed in detail for the retention behavior of PASH on the three stationary phases. PMID:28089272

  8. Retention behavior of isomeric polycyclic aromatic sulfur heterocycles in gas chromatography on stationary phases of different selectivity.

    PubMed

    Wilson, Walter B; Sander, Lane C; Oña-Ruales, Jorge O; Mössner, Stephanie G; Sidisky, Leonard M; Lee, Milton L; Wise, Stephen A

    2017-02-17

    Retention indices for 48 polycyclic aromatic sulfur heterocycles (PASHs) were determined using gas chromatography with three different stationary phases: a 50% phenyl phase, a 50% liquid crystalline dimethylpolysiloxane (LC-DMPS) phase, and an ionic liquid (IL) phase. Correlations between the retention behavior on the three stationary phases and PASH geometry (L/B and T, i.e., length-to-breadth ratio and thickness, respectively) were investigated for the following four isomer sets: (1) 4 three-ring molecular mass (MM) 184Da PASHs, (2) 13 four-ring MM 234Da PASHs, (3) 10 five-ring MM 258Da PASHs, and (4) 20 five-ring MM 284Da PASHs. Correlation coefficients for retention on the 50% LC-DMPS vs L/B ranged from r=0.50 (MM 284Da) to r=0.77 (MM 234Da). Correlation coefficients for retention on the IL phase vs L/B ranged from r=0.31 (MM 234Da) to r=0.54 (MM 284Da). Correlation coefficients for retention on the 50% phenyl vs L/B ranged from r=0.14 (MM 258Da) to r=0.59 (MM 284Da). Several correlation trends are discussed in detail for the retention behavior of PASH on the three stationary phases. Published by Elsevier B.V.

  9. Grain-grain interaction in stationary dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampe, Martin; Joyce, Glenn

    We present a particle-in-cell simulation study of the steady-state interaction between two stationary dust grains in uniform stationary plasma. Both the electrostatic force and the shadowing force on the grains are calculated explicitly. The electrostatic force is always repulsive. For two grains of the same size, the electrostatic force is very nearly equal to the shielded electric field due to a single isolated grain, acting on the charge of the other grain. For two grains of unequal size, the electrostatic force on the smaller grain is smaller than the isolated-grain field, and the force on the larger grain is largermore » than the isolated-grain field. In all cases, the attractive shadowing force exceeds the repulsive electrostatic force when the grain separation d is greater than an equilibrium separation d{sub 0}. d{sub 0} is found to be between 6λ{sub D} and 9λ{sub D} in all cases. The binding energy is estimated to be between 19 eV and 900 eV for various cases.« less

  10. Polymer separations by liquid interaction chromatography: principles - prospects - limitations.

    PubMed

    Radke, Wolfgang

    2014-03-28

    Most heterogeneities of polymers with respect to different structural features cannot be resolved by only size exclusion chromatography (SEC), the most frequently applied mode of polymer chromatography. Instead, methods of interaction chromatography became increasingly important. However, despite the increasing applications the principles and potential of polymer interaction chromatography are still often unknown to a large number of polymer scientists. The present review will explain the principles of the different modes of polymer chromatography. Based on selected examples it will be shown which separation techniques can be successfully applied for separations with respect to the different structural features of polymers. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Chiral stationary phase optimized selectivity liquid chromatography: A strategy for the separation of chiral isomers.

    PubMed

    Hegade, Ravindra Suryakant; De Beer, Maarten; Lynen, Frederic

    2017-09-15

    Chiral Stationary-Phase Optimized Selectivity Liquid Chromatography (SOSLC) is proposed as a tool to optimally separate mixtures of enantiomers on a set of commercially available coupled chiral columns. This approach allows for the prediction of the separation profiles on any possible combination of the chiral stationary phases based on a limited number of preliminary analyses, followed by automated selection of the optimal column combination. Both the isocratic and gradient SOSLC approach were implemented for prediction of the retention times for a mixture of 4 chiral pairs on all possible combinations of the 5 commercial chiral columns. Predictions in isocratic and gradient mode were performed with a commercially available and with an in-house developed Microsoft visual basic algorithm, respectively. Optimal predictions in the isocratic mode required the coupling of 4 columns whereby relative deviations between the predicted and experimental retention times ranged between 2 and 7%. Gradient predictions led to the coupling of 3 chiral columns allowing baseline separation of all solutes, whereby differences between predictions and experiments ranged between 0 and 12%. The methodology is a novel tool allowing optimizing the separation of mixtures of optical isomers. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Regenerated silica gel as stationary phase on vacuum column chromatography to purify temulawak's extracts

    NASA Astrophysics Data System (ADS)

    Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat, Suzery, Meiny

    2015-12-01

    Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak's extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gels were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r2=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak's extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.

  13. Determination of volatile compounds in cider apple juices using a covalently bonded ionic liquid coating as the stationary phase in gas chromatography.

    PubMed

    Pello-Palma, Jairo; González-Álvarez, Jaime; Gutiérrez-Álvarez, María Dolores; Dapena de la Fuente, Enrique; Mangas-Alonso, Juan José; Méndez-Sánchez, Daniel; Gotor-Fernández, Vicente; Arias-Abrodo, Pilar

    2017-04-01

    A chromatographic method for the separation of volatile compounds in Asturian cider apple juices has been developed. For this separation purpose, a monocationic imidazolium-based ionic liquid bearing a reactive terminal iodine atom was synthesized by a quaternization-anion exchange chemical sequence. Next, the gas chromatography (GC) stationary phase was prepared by covalently linking the imidazolium monolith to the reactive silanol groups of the inner capillary wall at 70 °C. This coated GC column exhibited good thermal stability (290 °C), as well as good efficiency (2000 plates/m) in the separation of volatile compounds from Asturian apple cider juices, and was characterized using the Abraham solvation parameter model. The intra-day and inter-day precision of the chromatographic method was evaluated, obtaining relative standard deviations from 3.7 to 12.9% and from 7.4 to 18.0%, respectively. Furthermore, recoveries from 82.5 to 122% were achieved. Graphical Abstract Covalent bonding of an ionic liquid to inner column wall led to a great improvement of the separation efficiencies of stationary phases in gas chromatography.

  14. Poly(butylene terephthalate) based novel achiral stationary phase investigated under supercritical fluid chromatography conditions.

    PubMed

    Nagai, Kanji; Shibata, Tohru; Shinkura, Satoshi; Ohnishi, Atsushi

    2018-05-11

    Poly(butylene terephthalate) based novel stationary phase (SP), composed of planar aromatic phenyl group together with ester group monomer units, was designed for supercritical fluid chromatography (SFC) use. As expected from its structure, this phase shows planarity recognition of isomeric aromatics and closely similar compounds. Interestingly, for most analytes, the retention behavior of this SP is significantly distinct from that of the 2-ethylpyridine based SPs which is among the most well-known SFC dedicated phases. Although the poly(butylene terephthalate) is coated on silica gel, the performance of the column did not change by using extended range modifiers such as THF, dichloromethane or ethyl acetate and column robustness was confirmed by cycle durability testing. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. In situ synthesis of metal-organic frameworks in a porous polymer monolith as the stationary phase for capillary liquid chromatography.

    PubMed

    Yang, Shengchao; Ye, Fanggui; Zhang, Cong; Shen, Shufen; Zhao, Shulin

    2015-04-21

    In this study, HKUST-1 was synthesized in situ on the porous polymer monolith as the stationary phase for capillary liquid chromatography (cLC). The unique carboxyl functionalized poly(methacrylic acid-co-ethylene dimethacrylate) (poly(MAA-co-EDMA)) monolith was used as a support to directly grow HKUST-1 by a controlled layer-by-layer self-assembly strategy. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectroscopy of the resulting HKUST-1-poly(MAA-co-EDMA) monoliths indicated that HKUST-1 was successfully grafted onto the pore surface of the poly(MAA-co-EDMA) monolith. The column performance of HKUST-1-poly(MAA-co-EDMA) monoliths for the separation of various small molecules, such as benzenediols, xylenes, ethylbenzenes, and styrenes, was evaluated. The chromatographic performance was found to improve with increasing HKUST-1 density, and the column efficiencies and resolutions of HKUST-1-poly(MAA-co-EDMA) monoliths were 18 320-19 890 plates m(-1) and 1.62-6.42, respectively, for benzenediols. The HKUST-1-poly(MAA-co-EDMA) monolith displayed enhanced resolution for the separation of positional isomers when compared to the traditional C18 and HKUST-1 incorporated polymer monoliths. Hydrophobic, π-π, and hydrogen bonding interactions within the HKUST-1-poly(MAA-co-EDMA) monolith were observed in the separation of small molecules. The results showed that the HKUST-1-poly(MAA-co-EDMA) monoliths are promising stationary phases for cLC.

  16. Regenerated silica gel as stationary phase on vacuum column chromatography to purify temulawak’s extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat,

    Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak’s extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gelsmore » were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r{sup 2}=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak’s extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.« less

  17. Effects of supercritical fluid chromatography conditions on enantioselectivity and performance of polyproline-derived chiral stationary phases.

    PubMed

    Novell, Arnau; Méndez, Alberto; Minguillón, Cristina

    2015-07-17

    The chromatographic behaviour and performance of four polyproline-derived chiral stationary phases (CSPs) were tested using supercritical fluid chromatography (SFC). A series of structurally related racemic compounds, whose enantioseparation was proved to be sensitive to the type of mobile phase used in NP-HPLC, were chosen to be tested in the SFC conditions. Good enantioselection ability was shown by the CSPs for the analytes tested in the new conditions. Resolution, efficiency and analysis time, were considerably improved with respect to NP-HPLC when CO2/alcohol mobile phases were used. Monolithic columns clearly show enhanced chromatographic parameters and improved performance respect to their bead-based counterparts. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Using the liquid nature of the stationary phase in countercurrent chromatography. IV. The cocurrent CCC method.

    PubMed

    Berthod, Alain; Hassoun, Mahmoud

    2006-05-26

    The retention volumes of solutes in countercurrent chromatography (CCC) are directly proportional to their distribution coefficients, K(D) in the biphasic liquid system used as mobile and stationary phase in the CCC column. The cocurrent CCC method consists in putting the liquid "stationary" phase in slow motion in the same direction as the mobile phase. A mixture of five steroid compounds of widely differing polarities was used as a test mixture to evaluate the capabilities of the method with the biphasic liquid system made of water/methanol/ethyl acetate/heptane 6/5/6/5 (v/v) and a 53 mL CCC column of the coil planet centrifuge type. It is shown that the chromatographic resolution obtained in cocurrent CCC is very good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. Pushing the method at its limits, it is demonstrated that the five steroids can still be (partly) separated when the flow rate of the two liquid phases is the same (2 mL/min). This is due to the higher volume of upper phase (72% of the column volume) contained inside the CCC column producing a lower linear speed compared to the aqueous lower phase linear speed. The capabilities of the cocurrent CCC method compare well with those of the gradient elution method in HPLC. Continuous detection is a problem due to the fact that two immiscible liquid phases elute from the column. It was partly solved using an evaporative light scattering detector.

  19. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  20. Triticonazole enantiomers: Separation by supercritical fluid chromatography and the effect of the chromatographic conditions.

    PubMed

    He, Jianfeng; Fan, Jun; Yan, Yilun; Chen, Xiaodong; Wang, Tai; Zhang, Yaomou; Zhang, Weiguang

    2016-11-01

    Enantiomeric pairs of triticonazole have been successfully separated by supercritical fluid chromatography coupled with a tris(3,5-dimethylphenylcarbamoyl) cellulose-coated chiral stationary phase in this work. The effects of co-solvent, dissolution solvent, flow rate, backpressure, and column temperature have been studied in detail with respect to retention, selectivity, and resolution of triticonazole. As indicated, the co-solvents mostly affected the retention factors and resolution, due to the different molecular structure and polarity. In addition, the dissolution solvents, namely, chloromethanes and alcohols, have been also important for enantioseparation because of the different interaction with stationary phase. Higher flow rate and backpressure led to faster elution of the triticonazole molecules, and the change of column temperature showed slight effect on the resolution of triticonazole racemate. Moreover, a comparative separation experiment between supercritical fluid chromatography and high performance liquid chromatography revealed that chiral supercritical fluid chromatography gave the 3.5 times value of R s /t R2 than high performance liquid chromatography, which demonstrated that supercritical fluid chromatography had much higher separation efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Size-exclusion chromatography system for macromolecular interaction analysis

    DOEpatents

    Stevens, Fred J.

    1988-01-01

    A low pressure, microcomputer controlled system employing high performance liquid chromatography (HPLC) allows for precise analysis of the interaction of two reversibly associating macromolecules such as proteins. Since a macromolecular complex migrates faster than its components during size-exclusion chromatography, the difference between the elution profile of a mixture of two macromolecules and the summation of the elution profiles of the two components provides a quantifiable indication of the degree of molecular interaction. This delta profile is used to qualitatively reveal the presence or absence of significant interaction or to rank the relative degree of interaction in comparing samples and, in combination with a computer simulation, is further used to quantify the magnitude of the interaction in an arrangement wherein a microcomputer is coupled to analytical instrumentation in a novel manner.

  2. Profiling of polar metabolites in biological extracts using diamond hydride-based aqueous normal phase chromatography.

    PubMed

    Callahan, Damien L; De Souza, David; Bacic, Antony; Roessner, Ute

    2009-07-01

    Highly polar metabolites, such as sugars and most amino acids are not retained by conventional RP LC columns. Without sufficient retention low concentration compounds are not detected due ion suppression and structural isomers are not resolved. In contrast, hydrophilic interaction chromatography (HILIC) and aqueous normal phase chromatography (ANP) retain compounds based on their hydrophilicity and therefore provides a means of separating highly polar compounds. Here, an ANP method based on the diamond hydride stationary phase is presented for profiling biological small molecules by LC. A rapid separation system based upon a fast gradient that delivers reproducible chromatography is presented. Approximately 1000 compounds were reproducibly detected in human urine samples and clear differences between these samples were identified. This chromatography was also applied to xylem fluid from soyabean (Glycine max) plants to which 400 compounds were detected. This method greatly increases the metabolite coverage over RP-only metabolite profiling in biological samples. We show that both forms of chromatography are necessary for untargeted comprehensive metabolite profiling and that the diamond hydride stationary phase provides a good option for polar metabolite analysis.

  3. Overview of online two-dimensional liquid chromatography based on cell membrane chromatography for screening target components from traditional Chinese medicines.

    PubMed

    Muhammad, Saqib; Han, Shengli; Xie, Xiaoyu; Wang, Sicen; Aziz, Muhammad Majid

    2017-01-01

    Cell membrane chromatography is a simple, specific, and time-saving technique for studying drug-receptor interactions, screening of active components from complex mixtures, and quality control of traditional Chinese medicines. However, the short column life, low sensitivity, low column efficiency (so cannot resolve satisfactorily mixture of compounds), low peak capacity, and inefficient in structure identification were bottleneck in its application. Combinations of cell membrane chromatography with multidimensional chromatography such as two-dimensional liquid chromatography and high sensitivity detectors like mass have significantly reduced many of the above-mentioned shortcomings. This paper provides an overview of the current advances in online two-dimensional-based cell membrane chromatography for screening target components from traditional Chinese medicines with particular emphasis on the instrumentation, preparation of cell membrane stationary phase, advantages, and disadvantages compared to alternative approaches. The last section of the review summarizes the applications of the online two-dimensional high-performance liquid chromatography based cell membrane chromatography reported since its emergence to date (2010-June 2016). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Development and evaluation of a hydrophilic interaction liquid chromatography-MS/MS method to quantify 19 nucleobases and nucleosides in rat plasma.

    PubMed

    Du, Yan; Li, Yin-Jie; Hu, Xun-Xiu; Deng, Xu; Qian, Zeng-Ting; Li, Zheng; Guo, Meng-Zhe; Tang, Dao-Quan

    2017-04-01

    As essential endogenous compounds, nucleobases and nucleosides fulfill various functions in living organisms. This study presents the development and validation of a new hydrophilic interaction liquid chromatography tandem mass spectrometry method for simultaneous quantification of 19 nucleobases and nucleosides in rat plasma. For the sample preparation, 15 kinds of protein precipitants were evaluated according to the chromatographic profile and ion response of analytes. The optimization of chromatographic separation was respectively performed using reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography mode; each separation mode included two test columns with different stationary phases. The chromatographic profile and parameters such as half-width (W 1/2 ), capacity factor (K') and tailing factor (f t ) were used to evaluate the separation efficiencies. Furthermore, the adopted composition of two mobile phase systems and the concentrations of the additives in the optimum buffer system were also investigated. The developed method was fully validated and successfully applied quantitatively to determine 19 nucleobases and nucleosides in plasma from normal and diabetic nephropathy (DN) rats. Significant differences between normal and DN rats were found in plasma levels of cytosine, xanthine, thymidine, adenosine, guanosine, inosine and 8-hydroxy-2'-deoxyguanosine. This information may provide a useful reference for the discovery of potential biomarkers of DN. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Application of hydrophobic interaction displacement chromatography for an industrial protein purification.

    PubMed

    Sunasara, Khurram M; Xia, Fang; Gronke, Robert S; Cramer, Steven M

    2003-05-05

    Recently it has been established that low molecular weight displacers can be successfully employed for the purification of proteins in hydrophobic interaction chromatography (HIC) systems. This work investigates the utility of this technique for the purification of an industrial protein mixture. The study involved the separation of a mixture of three protein forms, that differed in the C-terminus, from their aggregate impurities while maintaining the same relative ratio of the three protein forms as in the feed. A batch high-throughput screening (HTS) technique was employed in concert with fluorescence spectroscopy for displacer screening in these HIC systems. This methodology was demonstrated to be an effective tool for identifying lead displacer candidates for a particular protein/stationary-phase system. In addition, these results indicate that surfactants can be employed at concentrations above their CMCs as effective displacers. Displacement of the recombinant proteins with PEG-3400 and the surfactant Big Chap was shown to increase the productivity as compared to the existing step-gradient elution process. Copyright 2003 Wiley Periodicals, Inc.

  6. Stationary phase deposition based on onium salts

    DOEpatents

    Wheeler, David R [Albuquerque, NM; Lewis, Patrick R [Albuquerque, NM; Dirk, Shawn M [Albuquerque, NM; Trudell, Daniel E [Albuquerque, NM

    2008-01-01

    Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.

  7. [High-performance liquid-liquid chromatography in beverage analysis].

    PubMed

    Bricout, J; Koziet, Y; de Carpentrie, B

    1978-01-01

    Liquid liquid chromatography was performed with columns packed with stationary phases chemically bonded to silica microparticules. These columns show a high efficiency and are used very easily. Flavouring compounds like aromatic aldehydes which have a low volatility were analyzed in brandy using a polar phase alkylnitrile. Sapid substances like amarogentin in Gentiana lutea or glyryrrhizin in Glycyrrhiza glabra were determined by reversed phase chromatography. Finally ionizable substances like synthetic dyes can be analyzed by paired ion chromatography witha non polar stationary phase.

  8. [Separation of purines, pyrimidines, pterins and flavonoids on magnolol-bonded silica gel stationary phase by high performance liquid chromatography].

    PubMed

    Chen, Hong; Li, Laishen; Zhang, Yang; Zhou, Rendan

    2012-10-01

    A new magnolol-bonded silica gel stationary phase (MSP) was used to separate the basic drugs including four purines, eight pyrimidines, four pterins and five flavonoids as polar representative samples by high performance liquid chromatography (HPLC). To clarify the separation mechanism, a commercial ODS column was also tested under the same chromatographic conditions. The high selectivities and fast baseline separations of the above drugs were achieved by using simple mobile phases on MSP. Although there is no end-caped treatment, the peak shapes of basic drugs containing nitrogen such as purines, pyrimidines and pterins were rather symmetrical on MSP, which indicated the the magnolol as ligand with multi-sites could shield the side effect of residual silanol groups on the surface of silica gel. Although somewhat different in the separation resolution, it was found that the elution orders of some drugs were generally similar on both MSP and ODS. The hydrophobic interaction should play a significant role in the separations of the above basic drugs, which was attributed to their reversed-phase property in the nature. However, MSP could provide the additional sites for many polar solutes, which was a rational explanation for the high selectivity of MSP. For example, in the separation of purines, pyrimidines and pterins on MSP, hydrogen-bonding and dipole-dipole interactions played leading roles besides hydrophobic interaction. Some solute molecules (such as mercaptopurine, vitexicarpin) and MSP can form the strong pi-pi stacking in the separation process. All enhanced the retention and improved the separation selectivity of MSP, which facilitated the separation of the basic drugs.

  9. Spiral Countercurrent Chromatography

    PubMed Central

    Ito, Yoichiro; Knight, Martha; Finn, Thomas M.

    2013-01-01

    For many years, high-speed countercurrent chromatography conducted in open tubing coils has been widely used for the separation of natural and synthetic compounds. In this method, the retention of the stationary phase is solely provided by the Archimedean screw effect by rotating the coiled column in the centrifugal force field. However, the system fails to retain enough of the stationary phase for polar solvent systems such as the aqueous–aqueous polymer phase systems. To address this problem, the geometry of the coiled channel was modified to a spiral configuration so that the system could utilize the radially acting centrifugal force. This successfully improved the retention of the stationary phase. Two different types of spiral columns were fabricated: the spiral disk assembly, made by stacking multiple plastic disks with single or four interwoven spiral channels connected in series, and the spiral tube assembly, made by inserting the tetrafluoroethylene tubing into a spiral frame (spiral tube support). The capabilities of these column assemblies were successfully demonstrated by separations of peptides and proteins with polar two-phase solvent systems whose stationary phases had not been well retained in the earlier multilayer coil separation column for high-speed countercurrent chromatography. PMID:23833207

  10. Preparation and evaluation of a silica-based 1-alkyl-3-(propyl-3-sulfonate) imidazolium zwitterionic stationary phase for high-performance liquid chromatography.

    PubMed

    Qiu, Hongdeng; Jiang, Qiong; Wei, Zheng; Wang, Xusheng; Liu, Xia; Jiang, Shengxiang

    2007-09-07

    A new zwitterionic stationary phase based on silica bonded with 1-alkyl-3-(propyl-3-sulfonate) imidazolium was synthesized and characterized in this paper. The materials have been confirmed and evaluated by elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. Potassium and calcium were separated simultaneously with several common inorganic anions including an iodate, chloride, bromide, nitrate and iodide on the phase. The effects of the concentration, organic solvent and pH of the eluent on the separation of anions were studied. Operated in the anion-exchange mode, this new stationary phase shows considerable promise for the separation of anions. Bases, vitamins and three imidazolium ionic liquids with different alkyl chains are also separated successfully on this column. The stationary phase has multiple retention mechanisms, such as anion-exchange, electrostatic attraction and repulsion interactions, and hydrophobic interaction between the zwitterionic stationary phase and specimens.

  11. Preparation and characterization of six calixarene bonded stationary phases for high performance liquid chromatography.

    PubMed

    Ding, Chenghua; Qu, Kang; Li, Yongbo; Hu, Kai; Liu, Hongxia; Ye, Baoxian; Wu, Yangjie; Zhang, Shusheng

    2007-11-02

    Six calixarene bonded silica gel stationary phases were prepared and characterized by elemental analysis, infrared spectroscopy and thermal analysis. Their chromatographic performance was investigated by using PAHs, aromatic positional isomers and E- and Z-ethyl 3-(4-acetylphenyl) acrylate isomers as probes. Separation mechanism based on the different interactions between calixarenes and analytes were discussed. The chromatographic behaviors of those analytes on the calixarene columns were influenced by the supramolecular interaction including pi-pi interaction, space steric hindrance and hydrogen bonding interaction between calixarenes and analytes. Notably, the presence of polar groups (-OH, -NO(2) and -NH(2)) in the aromatic isomers could improve their separation selectivity on calixarene phase columns. The results from quantum chemistry calculation using DFT-B3LYP/STO-3G* base group were consistent with the retention behaviors of PHAs on calix[4]arene column.

  12. Dielectric Interactions and the Prediction of Retention Times of Pesticides in Supercritical Fluid Chromatography with CO2

    NASA Astrophysics Data System (ADS)

    Alvarez, Guillermo A.; Baumanna, Wolfram

    2005-02-01

    A thermodynamic model for the partition of a solute (pesticide) between two immiscible phases, such as the stationary and mobile phases of supercritical fluid chromatography with CO2, is developed from first principles. A key ingredient of the model is the result of the calculation made by Liptay of the energy of interaction of a polar molecule with a dielectric continuum, which represents the solvent. The strength of the interaction between the solute and the solvent, which may be considered a measure of the solvent power, is characterized by a function g = (ɛ - 1)/(2ɛ +1), where ɛ is the dielectric constant of the medium, which is a function of the temperature T and the pressure P. Since the interactions between the nonpolar supercritical CO2 solvent and the slightly polar pesticide molecules are considered to be extremely weak, a regular solution model is appropriate from the thermodynamic point of view. At constant temperature, the model predicts a linear dependence of the logarithm of the capacity factor (lnk) of the chromatographic experiment on the function g = g(P), as the pressure is varied, with a slope which depends on the dipole moment of the solute, dispersion interactions and the size of the solute cavity in the solvent. At constant pressure, once the term containing the g (solvent interaction) factor is subtracted from lnk, a plot of the resulting term against the inverse of temperature yields the enthalpy change of transfer of the solute from the mobile (supercritical CO2) phase to the stationary (adsorbent) phase. The increase in temperature with the consequent large volume expansion of the supercritical fluid lowers its solvent strength and hence the capacity factor of the column (or solute retention time) increases. These pressure and temperature effects, predicted by the model, agree excellently with the experimental retention times of seven pesticides. Beyond a temperature of about 393 K, where the liquid solvent densities approach those of

  13. Crosslinked structurally-tuned polymeric ionic liquids as stationary phases for the analysis of hydrocarbons in kerosene and diesel fuels by comprehensive two-dimensional gas chromatography.

    PubMed

    Zhang, Cheng; Park, Rodney A; Anderson, Jared L

    2016-04-01

    Structurally-tuned ionic liquids (ILs) have been previously applied as the second dimension column in comprehensive two-dimensional gas chromatography (GC×GC) and have demonstrated high selectivity in the separation of individual aliphatic hydrocarbons from other aliphatic hydrocarbons. However, the maximum operating temperatures of these stationary phases limit the separation of analytes with high boiling points. In order to address this issue, a series of polymeric ionic liquid (PIL)-based stationary phases were prepared in this study using imidazolium-based IL monomers via in-column free radical polymerization. The IL monomers were functionalized with long alkyl chain substituents to provide the needed selectivity for the separation of aliphatic hydrocarbons. Columns were prepared with different film thicknesses to identify the best performing stationary phase for the separation of kerosene. The bis[(trifluoromethyl)sulfonyl]imide ([NTf2](-))-based PIL stationary phase with larger film thickness (0.28μm) exhibited higher selectivity for aliphatic hydrocarbons and showed a maximum allowable operating temperature of 300°C. PIL-based stationary phases containing varied amount of IL-based crosslinker were prepared to study the effect of the crosslinker on the selectivity and thermal stability of the resulting stationary phase. The optimal resolution of aliphatic hydrocarbons was achieved when 50% (w/w) of crosslinker was incorporated into the PIL-based stationary phase. The resulting stationary phase exhibited good selectivity for different groups of aliphatic hydrocarbons even after being conditioned at 325°C. Finally, the crosslinked PIL-based stationary phase was compared with SUPELCOWAX 10 and DB-17 columns for the separation of aliphatic hydrocarbons in diesel fuel. Better resolution of aliphatic hydrocarbons was obtained when employing the crosslinked PIL-based stationary phase as the second dimension column. Copyright © 2016 Elsevier B.V. All rights

  14. [Preparation and evaluation of stationary phase of high performance liquid chromatography for the separation of basic solutes].

    PubMed

    Wang, P; Wang, J; Cong, R; Dong, B

    1997-05-01

    A bonded phase for high performance liquid chromatography (HPLC) has been prepared by the new reaction between silica and silicon ether. The ether was synthesized from alkylchlorosilane and pentane-2,4-dione in the presence of imidazole under inert conditions by using anhydrous tetrahydrofuran as solvent. The bonded phase thus obtained was characterized by elemental analysis, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and HPLC evaluation. The carbon content was 9.4% and the surface coverage almost attained 3.0micromol/m2 without end-capping. The silanol absorption peaks of the product cannot be observed from the DRIFT spectrum, which revealed that the silanization reaction proceeded thoroughly. The basic solutes, such as aniline, o-toluidine, p-toluidine, N,N-dimethylaniline and pyridine were used as the probe solutes to examine their interaction with the residual silanols on the surface of the products. No buffer or salt was used in the mobile phase for these experiments. In comparison with an acidic solute, such as, phenol, basic aniline eluted in front of phenol, and the ratio of asymmetry of aniline peak to that of the phenol peak was 1.1. Furthermore the relative k' value of p-toluidine to that of o-toluidine was also 1.1. All the results showed that the stationary phase has better quality and reproducibility and can be used for the separation of basic solutes efficiently.

  15. Green chromatography separation of analytes of greatly differing properties using a polyethylene glycol stationary phase and a low-toxic water-based mobile phase.

    PubMed

    Šatínský, Dalibor; Brabcová, Ivana; Maroušková, Alena; Chocholouš, Petr; Solich, Petr

    2013-07-01

    A simple, rapid, and environmentally friendly HPLC method was developed and validated for the separation of four compounds (4-aminophenol, caffeine, paracetamol, and propyphenazone) with different chemical properties. A "green" mobile phase, employing water as the major eluent, was proposed and applied to the separation of analytes with different polarity on polyethylene glycol (PEG) stationary phase. The chromatography separation of all compounds and internal standard benzoic acid was performed using isocratic elution with a low-toxicity mobile phase consisting of 0.04% (v/v) triethylamine and water. HPLC separation was carried out using a PEG reversed-phase stationary phase Supelco Discovery HS PEG column (15 × 4 mm; particle size 3 μm) at a temperature of 30 °C and flow rate at 1.0 mL min(-1). The UV detector was set at 210 nm. In this study, a PEG stationary phase was shown to be suitable for the efficient isocratic separation of compounds that differ widely in hydrophobicity and acid-base properties, particularly 4-aminophenol (log P, 0.30), caffeine (log P, -0.25), and propyphenazone (log P, 2.27). A polar PEG stationary phase provided specific selectivity which allowed traditional chromatographic problems related to the separation of analytes with different polarities to be solved. The retention properties of the group of structurally similar substances (aromatic amines, phenolic compounds, and xanthine derivatives) were tested with different mobile phases. The proposed green chromatography method was successfully applied to the analysis of active substances and one degradation impurity (4-aminophenol) in commercial preparation. Under the optimum chromatographic conditions, standard calibration was carried out with good linearity correlation coefficients for all compounds in the range (0.99914-0.99997, n = 6) between the peak areas and concentration of compounds. Recovery of the sample preparation was in the range 100 ± 5% for all compounds

  16. Rapid purification of diastereoisomers from Piper kadsura using supercritical fluid chromatography with chiral stationary phases.

    PubMed

    Xin, Huaxia; Dai, Zhuoshun; Cai, Jianfeng; Ke, Yanxiong; Shi, Hui; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2017-08-04

    Supercritical fluid chromatography (SFC) with chiral stationary phases (CSPs) is an advanced solution for the separation of achiral compounds in Piper kadsura. Analogues and stereoisomers are abundant in natural products, but there are obstacles in separation using conventional method. In this paper, four lignan diastereoisomers, (-)-Galbelgin, (-)-Ganschisandrin, Galgravin and (-)-Veraguensin, from Piper kadsura were separated and purified by chiral SFC. Purification strategy was designed, considering of the compound enrichment, sample purity and purification throughput. Two-step achiral purification method on chiral preparative columns with stacked automated injections was developed. Unconventional mobile phase modifier dichloromethane (DCM) was applied to improve the sample solubility. Four diastereoisomers was prepared at the respective weight of 103.1mg, 10.0mg, 152.3mg and 178.6mg from 710mg extract with the purity of greater than 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Synthesis of monodisperse silica microspheres and modification with diazoresin for mixed-mode ultra high performance liquid chromatography separations.

    PubMed

    Cong, Hailin; Yu, Bing; Tian, Chao; Zhang, Shuai; Yuan, Hua

    2017-11-01

    Monodisperse silica particles with average diameters of 1.9-2.9 μm were synthesized by a modified Stöber method, in which tetraethyl orthosilicate was continuously supplied to the reaction mixture containing KCl electrolyte, water, ethanol, and ammonia. The obtained silica particles were modified by self-assembly with positively charged photosensitive diazoresin on the surface. After treatment with ultraviolet light, the ionic bonding between silica and diazoresin was converted into covalent bonding through a unique photochemistry reaction of diazoresin. Depending on the chemical structure of diazoresin and mobile phase composition, the diazoresin-modified silica stationary phase showed different separation mechanisms, including reversed phase and hydrophilic interactions. Therefore, a variety of baseline separation of benzene analogues and organic acids was achieved by using the diazoresin-modified silica particles as packing materials in ultra high performance liquid chromatography. According to the π-π interactional difference between carbon rings of fullerenes and benzene rings of diazoresin, C 60 and C 70 were also well separated by ultra-high performance liquid chromatography. Because it has a small size, the ∼2.5 μm monodisperse diazoresin-modified silica stationary phase shows ultra-high efficiency compared with the commercial C 18 -silica high-performance liquid chromatography stationary phase with average diameters of ∼5 μm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Supercritical fluid chromatography versus high performance liquid chromatography for enantiomeric and diastereoisomeric separations on coated polysaccharides-based stationary phases: Application to dihydropyridone derivatives.

    PubMed

    Hoguet, Vanessa; Charton, Julie; Hecquet, Paul-Emile; Lakhmi, Chahinaze; Lipka, Emmanuelle

    2018-05-11

    For analytical applications, SFC has always remained in the shadow of LC. Analytical enantioseparation of eight dihydropyridone derivatives, was run in both High Performance Liquid Chromatography and Supercritical Fluid Chromatography. Four polysaccharide based chiral stationary phases namely amylose and cellulose tris(3, 5-dimethylphenylcarbamate), amylose tris((S)-α-phenylethylcarbamate) and cellulose tris(4-methylbenzoate) with four mobile phases consisted of either n-hexane/ethanol or propan-2-ol (80:20 v:v) or carbon dioxide/ethanol or propan-2-ol (80:20 v:v) mixtures were investigated under same operatory conditions (temperature and flow-rate). The elution strength, enantioselectivity and resolution were compared in the two methodologies. For these compounds, for most of the conditions, HPLC afforded shorter retention times and a higher resolution than SFC. HPLC appears particularly suitable for the separation of the compounds bearing two chiral centers. For instance compound 7 was baseline resolved on OD-H CSP under n-Hex/EtOH 80/20, with resolution values equal to 2.98, 1.55, 4.52, between the four stereoisomers in less than 17 min, whereas in SFC, this latter is not fully separated in 23 min under similar eluting conditions. After analytical screenings, the best conditions were transposed to semi-preparative scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography.

    PubMed

    Zhang, Kai; Cai, Song-Liang; Yan, Yi-Lun; He, Zi-Hao; Lin, Hui-Mei; Huang, Xiao-Ling; Zheng, Sheng-Run; Fan, Jun; Zhang, Wei-Guang

    2017-10-13

    Covalent organic frameworks (COFs), as an emerging class of crystalline porous organic polymers, have great potential for applications in chromatographic separation owning to their fascinating crystalline structures and outstanding properties. However, development of COF materials as novel stationary phases in high performance liquid chromatography (HPLC) is just in its infancy. Herein, we report the design and construction of a new hydrazone-linked chiral COF, termed BtaMth COF, from a chiral hydrazide building block (Mth) and present a one-pot synthetic method for the fabrication of BtaMth@SiO 2 composite for HPLC separation of isomers. The as-synthesized BtaMth chiral COF displays good crystallinity, high porosity, as well as excellent chemical stability. Meanwhile, the fabricated HPLC column by using BtaMth@SiO 2 composite as the new stationary phase exhibits high resolution performances for the separation of positional isomers including nitrotoluene and nitrochlorobenzene, as well as cis-trans isomers including beta-cypermethrin and metconazole. Additionally, some effects such as the composition of the mobile phase and column temperature for HPLC separations on the BtaMth@SiO 2 packed column also have been studied in detail. The successful applications indicate the great potentials of hydrazone-linked chiral COF-silica composite as novel stationary phase for the efficient HPLC separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Retention behavior of alkyl-substituted polycyclic aromatic sulfur heterocycle isomers in gas chromatography on stationary phases of different selectivity.

    PubMed

    Wilson, Walter B; Sander, Lane C; Oña-Ruales, Jorge O; Mössner, Stephanie G; Sidisky, Leonard M; Lee, Milton L; Wise, Stephen A

    2017-02-10

    Retention indices for 10 sets of alkyl-substituted polycyclic aromatic sulfur heterocycles (PASHs) isomers (total of 80 PASHs) were determined using gas chromatography with three different stationary phases: a 50% phenyl phase, a 50% liquid crystalline dimethylpolysiloxane (LC-DMPS) phase, and an ionic liquid (IL) phase. Correlations between the retention behavior on the three stationary phases and PASH geometry [length-to-breadth (L/B) and thickness (T)] were investigated for the following PASHs: 4 methyl-substituted dibenzothiophenes (DBTs), 3 ethyl-substituted DBTs, 15 dimethyl-substituted DBTs, 8 trimethyl-substituted DBTs, 15 methyl-substituted naphthothiophenes, 30 methyl-substituted benzonaphthothiophenes, and 5 methyl-substituted tetrapheno[1,12-bcd]thiophene. Correlation coefficients for retention on the 50% phenyl phase vs L/B ranged from r=-0.28 (MeBbN23Ts) to r=0.92 (EtDBTs). Correlation coefficients for retention on the IL phase vs L/B ranged from r=0.13 (MeN12Ts) to r=0.83 (EtDBTs). Correlation coefficients for retention on the 50% LC-DMPS phase vs L/B ranged from r=0.22 (MeDBTs) to r=0.84 (TriMeDBTs). Published by Elsevier B.V.

  1. Effect of additives on eremomycin sorbent selectivity in separation of salbutamol enantiomers using supercritical fluid chromatography

    NASA Astrophysics Data System (ADS)

    Pokrovskiy, O. I.; Kayda, A. S.; Usovich, O. I.; Parenago, O. O.; Lunin, V. V.

    2017-11-01

    A regime is found in which chiral stationary phase based on macrocyclic glycopeptide eremomycin allows separation of salbutamol sulfate enantiomers in supercritical fluid chromatography. Enantioseparation occurs only when two dynamic modifiers are used simultaneously: isopropylamin + trifluoroacetic acid or isopropylamin + ammonium acetate. Amine molar concentration in mobile phase has to be higher than acid molar concentration, otherwise enantiomers coelute. We suppose that with amine excess a mechanism of enantiorecognition is realized which involves ionic sorbent-sorbate interactions. Such mechanism is well-known for glycopeptide chiral selectors in liquid chromatography, but for supercritical fluid chromatography it is reported for the first time.

  2. Preparation of stationary phases for reversed-phase high-performance liquid chromatography using thermal treatments at high temperature.

    PubMed

    Vigna, Camila R M; Bottoli, Carla B G; Collins, Kenneth E; Collins, Carol H

    2007-07-13

    Batches of poly(methyloctylsiloxane) (PMOS)-loaded silica were prepared by deposition from a solution of PMOS into the pores of HPLC silica. Portions of PMOS-loaded silica were subjected to a thermal treatment at 100 degrees C for 24h (condition 1) in a tube furnace under a nitrogen atmosphere. After that, the material was heated for 4h at higher temperatures (150-400 degrees C) (condition 2). Heating at higher temperatures produces polymer bilayers. Non-immobilized and thermally treated stationary phases were characterized by percent carbon, (29)Si cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy and reversed-phase chromatographic performance. The results show that thermal treatment between 150 and 300 degrees C accelerates the immobilization process, possibly due to some bond breaking of the polysiloxane, with formation of strong linkages to the surface of the support, resulting in more complete coverage of the silica. The chromatographic results show an improvement of efficiency with the increase of the temperature of condition 2 up to 300 degrees C and an increase in the resolution of the components, mainly for the phase heated at 300 degrees C. Such results demonstrate that a two-step thermal treatment (100 degrees C then 150-300 degrees C) produces stationary phases with good properties for use in reversed-phase high-performance liquid chromatography.

  3. Bidentate urea-based chiral selectors for enantioselective high performance liquid chromatography: synthesis and evaluation of "Crab-like" stationary phases.

    PubMed

    Kotoni, Dorina; Villani, Claudio; Bell, David S; Capitani, Donatella; Campiglia, Pietro; Gasparrini, Francesco

    2013-07-05

    A rational approach for the design and preparation of two new "Crab-like" totally synthetic, brush-type chiral stationary phases is presented. Enantiopure diamines, namely 1,2-diaminocyclohexane and 1,2-diphenyl-1,2-ethylene-diamine were treated with 3-(triethoxysilyl)propyl isocyanate, to yield reactive ureido selectors that were eventually attached to unmodified silica particles through a stable, bidentate tether, through a facile two-step one-pot procedure. A full chemical characterization of the new materials has been obtained through solid-state NMR (both (29)Si and (13)C CPMAS) spectroscopy. Columns packed with the two Crab-like chiral stationary phases allow for different mechanisms of separation: normal phase liquid chromatography, reversed phase liquid chromatography and polar organic mode and show a high stability at basic pH values. In particular, the Crab-like column containing the 1,2-diphenyl-1,2-ethylene-diamine selector proved a promising candidate for the resolution of a wide range of racemates (including benzodiazepines, N-derivatized amino acids, and free carboxylic acids) both in normal phase and polar organic mode. An Hmin of 9.57 at a μsf of 0.80mm/s (corresponding to 0.8mL/min) was obtained through van Deemter analysis, based on toluene, for the Crab-like column with the 1,2-diphenyl-1,2-ethylene-diamine selector (250mm×4.6mm I.D.), with a calculated reduced height equivalent to a theoretical plate (h) of only 1.91. Finally, comparative studies were performed with a polymeric commercially available P-CAP-DP column in order to evaluate enantioselectivity and resolution of the Crab-like columns. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Evaluation of innovative stationary phase ligand chemistries and analytical conditions for the analysis of basic drugs by supercritical fluid chromatography.

    PubMed

    Desfontaine, Vincent; Veuthey, Jean-Luc; Guillarme, Davy

    2016-03-18

    Similar to reversed phase liquid chromatography, basic compounds can be highly challenging to analyze by supercritical fluid chromatography (SFC), as they tend to exhibit poor peak shape, especially those with high pKa values. In this study, three new stationary phase ligand chemistries available in sub -2 μm particle sizes, namely 2-picolylamine (2-PIC), 1-aminoanthracene (1-AA) and diethylamine (DEA), were tested in SFC conditions for the analysis of basic drugs. Due to the basic properties of these ligands, it is expected that the repulsive forces may improve peak shape of basic substances, similarly to the widely used 2-ethypyridine (2-EP) phase. However, among the 38 tested basic drugs, less of 10% displayed Gaussian peaks (asymmetry between 0.8 and 1.4) using pure CO2/methanol on these phases. The addition of 10mM ammonium formate as mobile phase additive, drastically improved peak shapes and increased this proportion to 67% on 2-PIC. Introducing the additive in the injection solvent rather than in the organic modifier, gave acceptable results for 2-PIC only, with 31% of Gaussian peaks with an average asymmetry of 1.89 for the 38 selected basic drugs. These columns were also compared to hybrid silica (BEH), DIOL and 2-EP stationary phases, commonly employed in SFC. These phases commonly exhibit alternative retention and selectivity. In the end, the two most interesting ligands used as complementary columns were 2-PIC and BEH, as they provided suitable peak shapes for the basic drugs and almost orthogonal selectivities. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Analysis of Biological Interactions by Affinity Chromatography: Clinical and Pharmaceutical Applications

    PubMed Central

    Hage, David S.

    2017-01-01

    BACKGROUND The interactions between biochemical and chemical agents in the body are important in many clinical processes. Affinity chromatography and high-performance affinity chromatography (HPAC), in which a column contains an immobilized biologically-related binding agent, are two methods that can be used to study these interactions. CONTENT This review looks at various approaches that can be used in affinity chromatography and HPAC to characterize the strength or rate of a biological interaction, the number and types of sites that are involved in this process, and the interactions between multiple solutes for the same binding agent. A number of applications for these methods are examined, with an emphasis on recent developments and high-performance affinity methods. These applications include the use of these techniques for fundamental studies of biological interactions, high-throughput screening of drugs, work with modified proteins, tools for personalized medicine, and studies of drug-drug competition for a common binding agent. SUMMARY The wide range of formats and detection methods that can be used with affinity chromatography and HPAC for examining biological interactions makes these tools attractive for various clinical and pharmaceutical applications. Future directions in the development of small-scale columns and the coupling of these methods with other techniques, such as mass spectrometry or other separation methods, should continue to increase the flexibility and ease with which these approaches can be used in work involving clinical or pharmaceutical samples. PMID:28396561

  6. Nanoparticle Analysis by Online Comprehensive Two-Dimensional Liquid Chromatography combining Hydrodynamic Chromatography and Size-Exclusion Chromatography with Intermediate Sample Transformation

    PubMed Central

    2017-01-01

    Polymeric nanoparticles have become indispensable in modern society with a wide array of applications ranging from waterborne coatings to drug-carrier-delivery systems. While a large range of techniques exist to determine a multitude of properties of these particles, relating physicochemical properties of the particle to the chemical structure of the intrinsic polymers is still challenging. A novel, highly orthogonal separation system based on comprehensive two-dimensional liquid chromatography (LC × LC) has been developed. The system combines hydrodynamic chromatography (HDC) in the first-dimension to separate the particles based on their size, with ultrahigh-performance size-exclusion chromatography (SEC) in the second dimension to separate the constituting polymer molecules according to their hydrodynamic radius for each of 80 to 100 separated fractions. A chip-based mixer is incorporated to transform the sample by dissolving the separated nanoparticles from the first-dimension online in tetrahydrofuran. The polymer bands are then focused using stationary-phase-assisted modulation to enhance sensitivity, and the water from the first-dimension eluent is largely eliminated to allow interaction-free SEC. Using the developed system, the combined two-dimensional distribution of the particle-size and the molecular-size of a mixture of various polystyrene (PS) and polyacrylate (PACR) nanoparticles has been obtained within 60 min. PMID:28745485

  7. Supercritical fluid chromatography

    NASA Astrophysics Data System (ADS)

    Vigdergauz, M. S.; Lobachev, A. L.; Lobacheva, I. V.; Platonov, I. A.

    1992-03-01

    The characteristic features of supercritical fluid chromatography (SCFC) are examined and there is a brief historical note concerning the development of the method. Information concerning the use of supercritical fluid chromatography in the analysis of objects of different nature is presented in the form of a table. The roles of the mobile and stationary phases in the separation process and the characteristic features of the apparatus and of the use of the method in physicochemical research are discussed. The bibliography includes 364 references.

  8. Enabling Microliquid Chromatography by Microbead Packing of Microchannels

    NASA Technical Reports Server (NTRS)

    Balvin, Manuel; Zheng, Yun

    2013-01-01

    The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life. In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200- proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads. Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid

  9. Enabling Microliquid Chromatography by Microbead Packing of Microchannels

    NASA Technical Reports Server (NTRS)

    Balvin, Manuel; Zheng, Yun

    2014-01-01

    The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life. In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200- proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads. Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid

  10. Purification of Bacteriophages Using Anion-Exchange Chromatography.

    PubMed

    Vandenheuvel, Dieter; Rombouts, Sofie; Adriaenssens, Evelien M

    2018-01-01

    In bacteriophage research and therapy, most applications ask for highly purified phage suspensions. The standard technique for this is ultracentrifugation using cesium chloride gradients. This technique is cumbersome, elaborate and expensive. Moreover, it is unsuitable for the purification of large quantities of phage suspensions.The protocol described here, uses anion-exchange chromatography to bind phages to a stationary phase. This is done using an FLPC system, combined with Convective Interaction Media (CIM ® ) monoliths. Afterward, the column is washed to remove impurities from the CIM ® disk. By using a buffer solution with a high ionic strength, the phages are subsequently eluted from the column and collected. In this way phages can be efficiently purified and concentrated.This protocol can be used to determine the optimal buffers, stationary phase chemistry and elution conditions, as well as the maximal capacity and recovery of the columns.

  11. Mixed Stationary Liquid Phases for Gas-Liquid Chromatography.

    ERIC Educational Resources Information Center

    Koury, Albert M.; Parcher, Jon F.

    1979-01-01

    Describes a laboratory technique for use in an undergraduate instrumental analysis course that, using the interpretation of window diagrams, prepares a mixed liquid phase column for gas-liquid chromatography. A detailed procedure is provided. (BT)

  12. Rapid measurement of protein osmotic second virial coefficients by self-interaction chromatography.

    PubMed Central

    Tessier, Peter M; Lenhoff, Abraham M; Sandler, Stanley I

    2002-01-01

    Weak protein interactions are often characterized in terms of the osmotic second virial coefficient (B(22)), which has been shown to correlate with protein phase behavior, such as crystallization. Traditional methods for measuring B(22), such as static light scattering, are too expensive in terms of both time and protein to allow extensive exploration of the effects of solution conditions on B(22). In this work we have measured protein interactions using self-interaction chromatography, in which protein is immobilized on chromatographic particles and the retention of the same protein is measured in isocratic elution. The relative retention of the protein reflects the average protein interactions, which we have related to the second virial coefficient via statistical mechanics. We obtain quantitative agreement between virial coefficients measured by self-interaction chromatography and traditional characterization methods for both lysozyme and chymotrypsinogen over a wide range of pH and ionic strengths, yet self-interaction chromatography requires at least an order of magnitude less time and protein than other methods. The method thus holds significant promise for the characterization of protein interactions requiring only commonly available laboratory equipment, little specialized expertise, and relatively small investments of both time and protein. PMID:11867474

  13. Selectivity differences of water-soluble vitamins separated on hydrophilic interaction stationary phases.

    PubMed

    Yang, Yuanzhong; Boysen, Reinhard I; Hearn, Milton T W

    2013-06-01

    In this study, the retention behavior and selectivity differences of water-soluble vitamins were evaluated with three types of polar stationary phases (i.e. an underivatized silica phase, an amide phase, and an amino phase) operated in the hydrophilic interaction chromatographic mode with ESI mass spectrometric detection. The effects of mobile phase composition, including buffer pH and concentration, on the retention and selectivity of the vitamins were investigated. In all stationary phases, the neutral or weakly charged vitamins exhibited very weak retention under each of the pH conditions, while the acidic and more basic vitamins showed diverse retention behaviors. With the underivatized silica phase, increasing the salt concentration of the mobile phase resulted in enhanced retention of the acidic vitamins, but decreased retention of the basic vitamins. These observations thus signify the involvement of secondary mechanisms, such as electrostatic interaction in the retention of these analytes. Under optimized conditions, a baseline separation of all vitamins was achieved with excellent peak efficiency. In addition, the effects of water content in the sample on retention and peak efficiency were examined, with sample stacking effects observed when the injected sample contained a high amount of water. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Silica-Based, Hyper-Crosslinked Acid Stable Stationary Phases for High Performance Liquid Chromatography

    PubMed Central

    Zhang, Yu; Luo, Hao; Carr, Peter W.

    2011-01-01

    A new family of Hyper-Crosslinked (HC) phases has been recently introduced for use under very aggressive acid conditions including those encountered in ultra-fast, high temperature Two-Dimensional Liquid Chromatography (2DLC). This type of stationary phase showed significantly enhanced acid and thermal stability compared to the most acid stable, commercial RPLC phases. In addition, the use of “orthogonal” chemistry to make surface-confined polymer networks ensures good reproducibility and high efficiency. One of the most interesting features of the HC phases is the ability to derivatize the surface aromatic groups with various functional groups. This led to the development of a family of hyper-crosslinked phases possessing a wide variety of chromatographic selectivities by attaching hydrophobic (e.g. –C8), ionizable (e.g. -COOH, -SO3H), aromatic (e.g. –toluene) or polar (e.g. -OH) species to the aromatic polymer network. HC reversed phases with various degrees of hydrophobicity and mixed-mode HC phases with added strong and weak cation exchange sites have been synthesized, characterized and applied. These silica-based acid-stable HC phases, with their attractive chromatographic properties, should be very useful in the separations of bases or biological analytes in acidic media, especially at elevated temperatures. This work reviews the prior research on HC phases and introduces a novel HC phase made by alternative chemistry. PMID:21906745

  15. Temperature gradient interaction chromatography of polymers: A molecular statistical model.

    PubMed

    Radke, Wolfgang; Lee, Sekyung; Chang, Taihyun

    2010-11-01

    A new model describing the retention in temperature gradient interaction chromatography of polymers is developed. The model predicts that polymers might elute in temperature gradient interaction chromatography in either an increasing or decreasing order or even nearly independent of molar mass, depending on the rate of the temperature increase relative to the flow rate. This is in contrast to solvent gradient elution, where polymers elute either in order of increasing molar mass or molar mass independent. The predictions of the newly developed model were verified with the literature data as well as new experimental data. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Aniline-modified porous graphitic carbon for hydrophilic interaction and attenuated reverse phase liquid chromatography.

    PubMed

    Iverson, Chad D; Lucy, Charles A

    2014-12-19

    Most stationary phases for hydrophilic interaction liquid chromatography (HILIC) and reversed phase liquid chromatography (RPLC) are based on silica. Porous graphitic carbon (PGC) is an attractive alternative to silica-based phases due to its chemical and thermal stability, and unique selectivity. However, native PGC is strongly hydrophobic and in some instances excessively retentive. PGC particles with covalently attached aniline groups (Dimethylaniline-PGC and Aniline-PGC) were synthesized to alter the surface polarity of PGC. First, the diazonium salt of N,N-dimethyl-p-phenylenediamine or 4-nitroaniline was adsorbed onto the PGC surface. The adsorbed salt was reduced with sodium borohydride and (Aniline-PGC only) the nitro group was further reduced with iron powder to the aniline. X-ray photoelectron spectroscopy confirmed the surface functionalities and that these moieties were introduced to the surface at concentrations of 0.9 and 2.1molecules/nm(2), respectively. These modified PGC phases (especially Aniline-PGC) were evaluated as HILIC and reversed phases. The Dimethylaniline-PGC phase displayed only weak HILIC retention of phenolic solutes. In contrast, the Aniline-PGC phase displayed up to nearly a 7-fold increase in HILIC retention vs. an aniline-silica phase and selectivity that differed from 10 other HILIC phases. Introduction of aniline groups to the PGC surface reduced the RPLC retentivity of PGC up to more than 5-fold and improved the separation efficiency up to 6-fold. The chromatographic performance of Aniline-PGC is demonstrated by separations of nucleotides, nucleosides, carboxylic acids, basic pharmaceuticals, and other compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Enantioseparation of novel chiral sulfoxides on chlorinated polysaccharide stationary phases in supercritical fluid chromatography.

    PubMed

    West, Caroline; Konjaria, Mari-Luiza; Shashviashvili, Natia; Lemasson, Elise; Bonnet, Pascal; Kakava, Rusudan; Volonterio, Alessandro; Chankvetadze, Bezhan

    2017-05-26

    Asymmetric sulfoxides is a particular case of chirality that may be found in natural as well as synthetic products. Twenty-four original molecules containing a sulfur atom as a centre of chirality were analyzed in supercritical fluid chromatography on seven polysaccharide-based chiral stationary phases (CSP) with carbon dioxide - methanol mobile phases. While all the tested CSP provided enantioseparation for a large part of the racemates, chlorinated cellulosic phases proved to be both highly retentive and highly enantioselective towards these species. Favourable structural features were determined by careful comparison of the enantioseparation of the probe molecules. Molecular modelling studies indicate that U-shaped (folded) conformations were most favorable to achieve high enantioresolution on these CSP, while linear (extended) conformations were not so clearly discriminated. For a subset of these species adopting different conformations, a broad range of mobile phase compositions, ranging from 20 to 100% methanol in carbon dioxide, were investigated. While retention decreased continuously in this range, enantioseparation varied in a non-monotonous fashion. Abrupt changes in the tendency curves of retention and selectivity were observed when methanol proportion reaches about 60%, suggesting that a change in the conformation of the analytes and/or chiral selector is occurring at this point. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Systematic evaluation of matrix effects in hydrophilic interaction chromatography versus reversed phase liquid chromatography coupled to mass spectrometry.

    PubMed

    Periat, Aurélie; Kohler, Isabelle; Thomas, Aurélien; Nicoli, Raul; Boccard, Julien; Veuthey, Jean-Luc; Schappler, Julie; Guillarme, Davy

    2016-03-25

    Reversed phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) is the gold standard technique in bioanalysis. However, hydrophilic interaction chromatography (HILIC) could represent a viable alternative to RPLC for the analysis of polar and/or ionizable compounds, as it often provides higher MS sensitivity and alternative selectivity. Nevertheless, this technique can be also prone to matrix effects (ME). ME are one of the major issues in quantitative LC-MS bioanalysis. To ensure acceptable method performance (i.e., trueness and precision), a careful evaluation and minimization of ME is required. In the present study, the incidence of ME in HILIC-MS/MS and RPLC-MS/MS was compared for plasma and urine samples using two representative sets of 38 pharmaceutical compounds and 40 doping agents, respectively. The optimal generic chromatographic conditions in terms of selectivity with respect to interfering compounds were established in both chromatographic modes by testing three different stationary phases in each mode with different mobile phase pH. A second step involved the assessment of ME in RPLC and HILIC under the best generic conditions, using the post-extraction addition method. Biological samples were prepared using two different sample pre-treatments, i.e., a non-selective sample clean-up procedure (protein precipitation and simple dilution for plasma and urine samples, respectively) and a selective sample preparation, i.e., solid phase extraction for both matrices. The non-selective pretreatments led to significantly less ME in RPLC vs. HILIC conditions regardless of the matrix. On the contrary, HILIC appeared as a valuable alternative to RPLC for plasma and urine samples treated by a selective sample preparation. Indeed, in the case of selective sample preparation, the compounds influenced by ME were different in HILIC and RPLC, and lower and similar ME occurrence was generally observed in RPLC vs. HILIC for urine and plasma samples

  19. Nanoengineered analytical immobilized metal affinity chromatography stationary phase by atom transfer radical polymerization: Separation of synthetic prion peptides

    PubMed Central

    McCarthy, P.; Chattopadhyay, M.; Millhauser, G.L.; Tsarevsky, N.V.; Bombalski, L.; Matyjaszewski, K.; Shimmin, D.; Avdalovic, N.; Pohl, C.

    2010-01-01

    Atom transfer radical polymerization (ATRP) was employed to create isolated, metal-containing nanoparticles on the surface of non-porous polymeric beads with the goal of developing a new immobilized metal affnity chromatography (IMAC) stationary phase for separating prion peptides and proteins. Transmission electron microscopy was used to visualize nanoparticles on the substrate surface. Individual ferritin molecules were also visualized as ferritin–nanoparticle complexes. The column's resolving power was tested by synthesizing peptide analogs to the copper binding region of prion protein and injecting mixtures of these analogs onto the column. As expected, the column was capable of separating prion-related peptides differing in number of octapeptide repeat units (PHGGGWGQ), (PHGGGWGQ)2, and (PHGGGWGQ)4. Unexpectedly, the column could also resolve peptides containing the same number of repeats but differing only in the presence of a hydrophilic tail, Q → A substitution, or amide nitrogen methylation. PMID:17481564

  20. Polar stationary phases based on poly(oligo ethylene glycol)diacrylates for capillary gas chromatography

    NASA Astrophysics Data System (ADS)

    Shiryaeva, V. E.; Popova, T. P.; Korolev, A. A.; Kanat'eva, A. Yu.; Kurganov, A. A.

    2017-08-01

    New stationary phases for capillary columns in GC are synthesized and studied. The phases are prepared by depositing oligo(ethylene glycol)diacrylates on the column walls and subsequent polymerization (crosslinking) in the presence of peroxide initiators. It is shown that stationary phases based on monomers with molecular weights of 10 kDa or higher exhibit separation properties similar to those of conventional stationary phases based on polyethylene glycol (PEG); however, their thermal stability is higher because they have a higher degree of crosslinking and a more ordered structure of the crosslinked polymers than the respective parameters of phases based on native PEG.

  1. Investigating interactions between phospholipase B-Like 2 and antibodies during Protein A chromatography.

    PubMed

    Tran, Benjamin; Grosskopf, Vanessa; Wang, Xiangdan; Yang, Jihong; Walker, Don; Yu, Christopher; McDonald, Paul

    2016-03-18

    Purification processes for therapeutic antibodies typically exploit multiple and orthogonal chromatography steps in order to remove impurities, such as host-cell proteins. While the majority of host-cell proteins are cleared through purification processes, individual host-cell proteins such as Phospholipase B-like 2 (PLBL2) are more challenging to remove and can persist into the final purification pool even after multiple chromatography steps. With packed-bed chromatography runs using host-cell protein ELISAs and mass spectrometry analysis, we demonstrated that different therapeutic antibodies interact to varying degrees with host-cell proteins in general, and PLBL2 specifically. We then used a high-throughput Protein A chromatography method to further examine the interaction between our antibodies and PLBL2. Our results showed that the co-elution of PLBL2 during Protein A chromatography is highly dependent on the individual antibody and PLBL2 concentration in the chromatographic load. Process parameters such as antibody resin load density and pre-elution wash conditions also influence the levels of PLBL2 in the Protein A eluate. Furthermore, using surface plasmon resonance, we demonstrated that there is a preference for PLBL2 to interact with IgG4 subclass antibodies compared to IgG1 antibodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Determination of molindone enantiomers in human plasma by high-performance liquid chromatography-tandem mass spectrometry using macrocyclic antibiotic chiral stationary phases.

    PubMed

    Jiang, Hongliang; Li, Yinghe; Pelzer, Mary; Cannon, Michelle J; Randlett, Christopher; Junga, Heiko; Jiang, Xiangyu; Ji, Qin C

    2008-05-30

    A sensitive and selective bioanalytical assay was developed and validated for the determination of enantiomeric molindone in human plasma using high-performance liquid chromatography-tandem mass spectrometry along with supported liquid extraction procedures. The chiral separation was evaluated and optimized on macrocyclic antibiotic type chiral stationary phases (CSPs) based on teicoplanin aglycone (Chirobiotic TAG) in polar organic, polar ionic, and reversed-phase mode chromatography, respectively. Complete baseline separation was achieved on a Chirobiotic TAG column under isocratic condition in reversed-phase chromatography. The method validation was conducted using a Chirobiotic TAG column (100 mm x 2.1 mm) over the curve range 0.100-100 ng/ml for each molindone enantiomer using 0.0500 ml of plasma sample. The flow rate was 0.8 ml/min and the total run time was 9 min. Supported liquid extraction in a 96-well plate format was used for sample preparation. Parameters including recovery, matrix effect, linearity, sensitivity, specificity, carryover, precision, accuracy, dilution integrity, and stability were evaluated. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels were RSD

  3. Three dimensional liquid chromatography coupling ion exchange chromatography/hydrophobic interaction chromatography/reverse phase chromatography for effective protein separation in top-down proteomics.

    PubMed

    Valeja, Santosh G; Xiu, Lichen; Gregorich, Zachery R; Guner, Huseyin; Jin, Song; Ge, Ying

    2015-01-01

    To address the complexity of the proteome in mass spectrometry (MS)-based top-down proteomics, multidimensional liquid chromatography (MDLC) strategies that can effectively separate proteins with high resolution and automation are highly desirable. Although various MDLC methods that can effectively separate peptides from protein digests exist, very few MDLC strategies, primarily consisting of 2DLC, are available for intact protein separation, which is insufficient to address the complexity of the proteome. We recently demonstrated that hydrophobic interaction chromatography (HIC) utilizing a MS-compatible salt can provide high resolution separation of intact proteins for top-down proteomics. Herein, we have developed a novel 3DLC strategy by coupling HIC with ion exchange chromatography (IEC) and reverse phase chromatography (RPC) for intact protein separation. We demonstrated that a 3D (IEC-HIC-RPC) approach greatly outperformed the conventional 2D IEC-RPC approach. For the same IEC fraction (out of 35 fractions) from a crude HEK 293 cell lysate, a total of 640 proteins were identified in the 3D approach (corresponding to 201 nonredundant proteins) as compared to 47 in the 2D approach, whereas simply prolonging the gradients in RPC in the 2D approach only led to minimal improvement in protein separation and identifications. Therefore, this novel 3DLC method has great potential for effective separation of intact proteins to achieve deep proteome coverage in top-down proteomics.

  4. Assessment of the chromatographic lipophilicity of eight cephalosporins on different stationary phases.

    PubMed

    Dąbrowska, Monika; Starek, Małgorzata; Komsta, Łukasz; Szafrański, Przemysław; Stasiewicz-Urban, Anna; Opoka, Włodzimierz

    2017-04-01

    The retention behaviors were investigated for a series of eight cephalosporins in thin-layer chromatography (TLC) using stationary phases of RP-2, RP-8, RP-18, NH 2 , DIOL, and CN chemically bonded silica gel. Additionally, various binary mobile phases (water/methanol and water/acetone) were used in different volume proportions. The retention behavior of the analyzed molecules was defined by R M0 constant. In addition, reversed phase high performance liquid chromatography (RP-HPLC) was performed in lipophilicity studies by using immobilized artificial membrane (IAM) stationary phase. Obtained chromatographic data (R M0 and logk' IAM ) were correlated with the lipophilicity, expressed as values of the log calculated (logP calc ) and experimental (logP exp(shake-flask) ) partition coefficient. Principal component analysis (PCA) was applied in order to obtain an overview of similarity or dissimilarity among the analyzed compounds. Hierarchical cluster analysis (HCA) was performed to compare the separation characteristics of the applied stationary phases. This study was undertaken to identify the best chromatographic system and chromatographic data processing method to enable the prediction of logP values. A comprehensive chromatographic investigation into the retention of the analyzed cephalosporins revealed a similar behavior on RP-18, RP-8 and CN stationary phases. The weak correlations obtained between experimental and certain computed lipophilicity indices revealed that R M0 and PC1/RM are relevant lipophilicity parameters and the RP-8, CN and RP-18 plates are appropriate stationary phases for lipophilicity investigation, whereas computational approaches still cannot fully replace experimentation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Application of ion chromatography in clinical studies and pharmaceutical industry.

    PubMed

    Michalski, Rajmund

    2014-01-01

    Ion chromatography is a well-established regulatory method for analyzing anions and cations in environmental, food and many other samples. It offers an enormous range of possibilities for selecting stationary and mobile phases. Additionally, it usually helps to solve various separation problems, particularly when it is combined with different detection techniques. Ion chromatography can also be used to determine many ions and substances in clinical and pharmaceutical samples. It provides: availability of high capacity stationary phases and sensitive detectors; simple sample preparation; avoidance of hazardous chemicals; decreased sample volumes; flexible reaction options on a changing sample matrix to be analyzed; or the option to operate a fully-automated system. This paper provides a short review of the ion chromatography applications for determining different inorganic and organic substances in clinical and pharmaceutical samples.

  6. Hydrophilic interaction liquid chromatography coupled to high-resolution mass spectrometry to determine artificial sweeteners in environmental waters.

    PubMed

    Salas, Daniela; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa Maria

    2015-06-01

    Artificial sweeteners are food additives employed as sugar substitutes which are now considered to be emerging organic contaminants. In the present study, a method is developed for the determination of a group of artificial sweeteners in environmental waters. Considering the polar and hydrophilic character of these compounds, hydrophilic interaction liquid chromatography is proposed for their separation as an alternative to traditional reversed-phase liquid chromatography. Two stationary phases with different chemistry were compared for this purpose. For the detection of the analytes, high-resolution mass spectrometry (Orbitrap) was employed to take advantage of its benefits in terms of reliable quantification and confirmation for the measurement of accurate masses. Solid-phase extraction was chosen as the sample treatment, in which the extract in a mixture of NH4OH:MeOH:ACN (1:4:15) was directly injected into the chromatographic system, simplifying the analytical procedure. The optimized method was validated on river and waste water samples. For example, in the case of effluent water samples, limits of detection ranged from 0.002 to 0.7 μg/L and limits of quantification ranged from 0.004 to 1.5 μg/L. Apparent (whole method) recoveries ranged from 57 to 74% with intra-day precision (%RSD, n = 5) ranging from 6 to 25%. The method was successfully applied to water samples from different rivers in Catalonia and different waste water treatment plants in Tarragona. Acesulfame, cyclamate, saccharine and sucralose were found in several samples.

  7. Characterization of bonded stationary phase performance as a function of qualitative and quantitative chromatographic factors in chaotropic chromatography with risperidone and its impurities as model substances.

    PubMed

    Čolović, Jelena; Rmandić, Milena; Malenović, Anđelija

    2018-05-17

    Numerous stationary phases have been developed with the aim to provide desired performances during chromatographic analysis of the basic solutes in their protonated form. In this work, the procedure for the characterization of bonded stationary phase performance, when both qualitative and quantitative chromatographic factors were varied in chaotropic chromatography, was proposed. Risperidone and its three impurities were selected as model substances, while acetonitrile content in the mobile phase (20-30%), the pH of the aqueous phase (3.00-5.00), the content of chaotropic agents in the aqueous phase (10-100 mM), type of chaotropic agent (NaClO 4 , CF 3 COONa), and stationary phase type (Zorbax Eclipse XDB, Zorbax Extend) were studied as chromatographic factors. The proposed procedure implies the combination of D-optimal experimental design, indirect modeling, and polynomial-modified Gaussian model, while grid point search method was selected for the final choice of the experimental conditions which lead to the best possible stationary phase performance for basic solutes. Good agreement between experimentally obtained chromatogram and simulated chromatogram for chosen experimental conditions (25% acetonitrile, 75 mM of NaClO 4 , pH 4.00 on Zorbax Eclipse XDB column) confirmed the applicability of the proposed procedure. The additional point was selected for the verification of proposed procedure ability to distinguish changes in solutes' elution order. Simulated chromatogram for 21.5% acetonitrile, 85 mM of NaClO 4 , pH 5.00 on Zorbax Eclipse XDB column was in line with experimental data. Furthermore, the values of left and right peak half-widths obtained from indirect modeling were used in order to evaluate performances of differently modified stationary phases applying a half-width plots approach. The results from half-width plot approach as well as from the proposed procedure indicate higher efficiency and better separation performance of the stationary phase

  8. Analysis of solute-protein interactions and solute-solute competition by zonal elution affinity chromatography.

    PubMed

    Tao, Pingyang; Poddar, Saumen; Sun, Zuchen; Hage, David S; Chen, Jianzhong

    2018-02-02

    Many biological processes involve solute-protein interactions and solute-solute competition for protein binding. One method that has been developed to examine these interactions is zonal elution affinity chromatography. This review discusses the theory and principles of zonal elution affinity chromatography, along with its general applications. Examples of applications that are examined include the use of this method to estimate the relative extent of solute-protein binding, to examine solute-solute competition and displacement from proteins, and to measure the strength of these interactions. It is also shown how zonal elution affinity chromatography can be used in solvent and temperature studies and to characterize the binding sites for solutes on proteins. In addition, several alternative applications of zonal elution affinity chromatography are discussed, which include the analysis of binding by a solute with a soluble binding agent and studies of allosteric effects. Other recent applications that are considered are the combined use of immunoextraction and zonal elution for drug-protein binding studies, and binding studies that are based on immobilized receptors or small targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Analysis of plant nucleotide sugars by hydrophilic interaction liquid chromatography and tandem mass spectrometry.

    PubMed

    Ito, Jun; Herter, Thomas; Baidoo, Edward E K; Lao, Jeemeng; Vega-Sánchez, Miguel E; Michelle Smith-Moritz, A; Adams, Paul D; Keasling, Jay D; Usadel, Björn; Petzold, Christopher J; Heazlewood, Joshua L

    2014-03-01

    Understanding the intricate metabolic processes involved in plant cell wall biosynthesis is limited by difficulties in performing sensitive quantification of many involved compounds. Hydrophilic interaction liquid chromatography is a useful technique for the analysis of hydrophilic metabolites from complex biological extracts and forms the basis of this method to quantify plant cell wall precursors. A zwitterionic silica-based stationary phase has been used to separate hydrophilic nucleotide sugars involved in cell wall biosynthesis from milligram amounts of leaf tissue. A tandem mass spectrometry operating in selected reaction monitoring mode was used to quantify nucleotide sugars. This method was highly repeatable and quantified 12 nucleotide sugars at low femtomole quantities, with linear responses up to four orders of magnitude to several 100pmol. The method was also successfully applied to the analysis of purified leaf extracts from two model plant species with variations in their cell wall sugar compositions and indicated significant differences in the levels of 6 out of 12 nucleotide sugars. The plant nucleotide sugar extraction procedure was demonstrated to have good recovery rates with minimal matrix effects. The approach results in a significant improvement in sensitivity when applied to plant samples over currently employed techniques. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Non-planar microfabricated gas chromatography column

    DOEpatents

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  11. Synthesis of cis-C-Iodo-N-Tosyl-Aziridines using Diiodomethyllithium: Reaction Optimization, Product Scope and Stability, and a Protocol for Selection of Stationary Phase for Chromatography

    PubMed Central

    2013-01-01

    The preparation of C-iodo-N-Ts-aziridines with excellent cis-diastereoselectivity has been achieved in high yields by the addition of diiodomethyllithium to N-tosylimines and N-tosylimine–HSO2Tol adducts. This addition-cyclization protocol successfully provided a wide range of cis-iodoaziridines, including the first examples of alkyl-substituted iodoaziridines, with the reaction tolerating both aryl imines and alkyl imines. An ortho-chlorophenyl imine afforded a β-amino gem-diiodide under the optimized reaction conditions due to a postulated coordinated intermediate preventing cyclization. An effective protocol to assess the stability of the sensitive iodoaziridine functional group to chromatography was also developed. As a result of the judicious choice of stationary phase, the iodoaziridines could be purified by column chromatography; the use of deactivated basic alumina (activity IV) afforded high yield and purity. Rearrangements of electron-rich aryl-iodoaziridines have been promoted, selectively affording either novel α-iodo-N-Ts-imines or α-iodo-aldehydes in high yield. PMID:23738857

  12. Hydrophilic interaction liquid chromatography-mass spectrometry of (lyso)phosphatidic acids, (lyso)phosphatidylserines and other lipid classes.

    PubMed

    Cífková, Eva; Hájek, Roman; Lísa, Miroslav; HolĿapek, Michal

    2016-03-25

    The goal of this work is a systematic optimization of hydrophilic interaction liquid chromatography (HILIC) separation of acidic lipid classes (namely phosphatidic acids-PA, lysophosphatidic acids-LPA, phosphatidylserines-PS and lysophosphatidylserines-LPS) and other lipid classes under mass spectrometry (MS) compatible conditions. The main parameters included in this optimization are the type of stationary phases used in HILIC, pH of the mobile phase, the type and concentration of mobile phase additives. Nine HILIC columns with different chemistries (unmodified silica, modified silica using diol, 2-picolylamine, diethylamine and 1-aminoanthracene and hydride silica) are compared with the emphasis on peak shapes of acidic lipid classes. The optimization of pH is correlated with the theoretical calculation of acidobasic equilibria of studied lipid classes. The final method using the hydride column, pH 4 adjusted by formic acid and the gradient of acetonitrile and 40 mmol/L of aqueous ammonium formate provides good peak shapes for all analyzed lipid classes including acidic lipids. This method is applied for the identification of lipids in real samples of porcine brain and kidney extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Hydrothermal carbon nanosphere-based agglomerated anion exchanger for ion chromatography.

    PubMed

    Zhao, Qiming; Wu, Shuchao; Zhang, Kai; Lou, Chaoyan; Zhang, Peiming; Zhu, Yan

    2016-10-14

    This work reports the application of hydrothermal carbon nanospheres (HCNSs) as stationary phases in ion chromatography. HCNSs were facilely quaternized through polycondensation of methylamine and 1,4-butanediol diglycidyl ether. The quaternization was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Owing to the electrostatic interaction, quaternized HCNSs were equably attached onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to construct the anion exchangers. The aggregation was verified by scanning electron microscopy and elemental analysis. Common anions, aliphatic monocarboxylic acids, polarizable anions, and aromatic acids were well separated on the stationary phases with good stability and symmetry. The prepared column was further applied to detect phosphate content in Cola drink samples. The limit of detection (S/N=3) was 0.09mg/L, and the relative standard deviation (n=10) of retention time was 0.31%. The average recovery was 99.58%. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Hybrid carbon nanoparticles modified core-shell silica: a high efficiency carbon-based phase for hydrophilic interaction liquid chromatography.

    PubMed

    Ibrahim, Mohammed E A; Wahab, M Farooq; Lucy, Charles A

    2014-04-11

    Hydrophilic interaction liquid chromatography (HILIC) is a fast growing separation technique for hydrophilic and polar analytes. In this work, we combine the unique selectivity of carbon surfaces with the high efficiency of core-shell silica. First, 5 μm core-shell silica is electrostatically coated with 105 nm cationic latex bearing quaternary ammonium groups. Then 50 nm anionic carbon nanoparticles are anchored onto the surface of the latex coated core-shell silica particles to produce a hybrid carbon-silica phase. The hybrid phase shows different selectivity than ten previously classified HILIC column chemistries and 36 stationary phases. The hybrid HILIC phase has shape selectivity for positional isomeric pairs (phthalic/isophthalic and 1-naphthoic/2-naphthoic acids). Fast and high efficiency HILIC separations of biologically important carboxylates, phenols and pharmaceuticals are reported with efficiencies up to 85,000 plates m(-1). Reduced plate height of 1.9 (95,000 plates m(-1)) can be achieved. The hybrid phase is stable for at least 3 months of usage and storage under typical HILIC eluents. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. [Progresses in screening active compounds from herbal medicine by affinity chromatography].

    PubMed

    Feng, Ying-shu; Tong, Shan-shan; Xu, Xi-ming; Yu, Jiang-nan

    2015-03-01

    Affinity chromatography is a chromatographic method for separating molecules using the binding characteristics of the stationary phase with potential drug molecules. This method can be performed as a high throughput screening method and a chromatographic separation method to screen a variety of active drugs. This paper summarizes the history of affinity chromatography, screening technology of affinity chromatography, and application of affinity chromatography in screening bio-active compounds in herbal medicines, and then discusses its application prospects, in order to broaden applications of the affinity chromatography in drug screening.

  16. [Preparation of L-phenylalanine chiral ligand-exchange chromatographic stationary phase by atom transfer radical polymerization and resolution of racemates].

    PubMed

    Sun, Yang; Xu, Fei; Gong, Bolin

    2011-09-01

    A novel stationary phase was synthesized for chiral ligand-exchange chromatography via atom transfer radical polymerization (ATRP). Glycidyl methacrylate (GMA) was grafted onto the surface of the silica by ATRP using bromoisobutyryl bromide as an initiator, and the organic metal compound formed in the CuCl/2,2'-bipyridine(Bpy) system as a catalyst at room temperature. The chiral stationary phase was then synthesized by grafting L-phenylalanine on the surface of the silica. The stationary phase was characterized by means of elementary analysis and evaluated in detail to determine its separability. The amount of L-phenylalanine on the surface of silica was calculated to be 4.32 mg/m2. The results showed that the good enantioseparations of some DL-amino acids were obtained using ligand-exchange chromatography on the synthesized chiral stationary phase (50 degrees C) with 0.05 mol/L KH2PO4 and 0.1 mmol/L Cu(Ac)2 solution (pH 4.5) as the mobile phase at a flow rate of 1.0 mL/min and a wavelength of 223 nm. The influences of the mobile phase pH, concentration of Cu (II), and temperature of column on the resolution of DL-amino acids by ligand-exchange chromatography were investigated. The results showed that these conditions could affect the resolution of racemates. Compared with the column prepared by radical method using L-phenylalanine directly bonded onto the surface of the silica, the synthesized stationary phase showed a better separation ability, and the DL-aspartic acids and DL-asparagines could be separated at baseline.

  17. Less common applications of monoliths III. Gas chromatography

    PubMed Central

    Svec, Frantisek; Kurganov, Alexander A.

    2008-01-01

    Porous polymer monoliths emerged about two decades ago. Despite this short time, they are finding applications in a variety of fields. In addition to the most common and certainly best known use of this new category of porous media as stationary phases in liquid chromatography, monolithic materials also found their applications in other areas. This review article focuses on monoliths in capillaries designed for separations in gas chromatography. PMID:17645884

  18. Effects of salts on protein-surface interactions: applications for column chromatography.

    PubMed

    Tsumoto, Kouhei; Ejima, Daisuke; Senczuk, Anna M; Kita, Yoshiko; Arakawa, Tsutomu

    2007-07-01

    Development of protein pharmaceuticals depends on the availability of high quality proteins. Various column chromatographies are used to purify proteins and characterize the purity and properties of the proteins. Most column chromatographies require salts, whether inorganic or organic, for binding, elution or simply better recovery and resolution. The salts modulate affinity of the proteins for particular columns and nonspecific protein-protein or protein-surface interactions, depending on the type and concentration of the salts, in both specific and nonspecific manners. Salts also affect the binding capacity of the column, which determines the size of the column to be used. Binding capacity, whether equilibrium or dynamic (under an approximation of a slow flow rate), depends on the binding constant, protein concentration and the number of the binding site on the column as well as nonspecific binding. This review attempts to summarize the mechanism of the salt effects on binding affinity and capacity for various column chromatographies and on nonspecific protein-protein or protein-surface interactions. Understanding such salt effects should also be useful in preventing nonspecific protein binding to various containers. Copyright 2007 Wiley-Liss, Inc.

  19. 21 CFR 862.2270 - Thin-layer chromatography system for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thin-layer chromatography system for clinical use... Instruments § 862.2270 Thin-layer chromatography system for clinical use. (a) Identification. A thin-layer... a mixture. The mixture of compounds is absorbed onto a stationary phase or thin layer of inert...

  20. Comparison between polymerized ionic liquids synthesized using chain-growth and step-growth mechanisms used as stationary phase in gas chromatography.

    PubMed

    Roeleveld, Kevin; David, Frank; Lynen, Frédéric

    2016-06-17

    In this study the merits of polymerized imidazolium based ionic liquid (PIL) stationary phases obtained via condensation and free radical polymerizations are compared as stationary phases in gas chromatography (GC). Poly(1-vinyl-3-butyl-imidazolium - bis(trifluoromethane)sulfonamide) (poly(ViC4Im(+) NTf2(-))) was obtained via a chain-growth mechanism while poly(propylimidazolium-NTf2) (poly(C3Im(+) NTf2(-))) was synthesized via a step-growth polymerization. The thermal stability of both polymers was assessed using thermal gravimetric analysis and compared with bleeding profiles obtained from the statically coated GC columns (30m×0.25mm×0.25μm). The performance was compared to what could be obtained on commercially available 1,5-di(2,3-dimethylimidazolium)pentane(2+) 2NTf2(-) (SLB-IL111) ionic liquid based columns. It was observed that the step-growth polymer was more thermally stable, up to 325°C, while the chain-growth polymer showed initial degradation at 250°C. Both polymers allowed reaching minimal plate heights of 0.400-0.500mm for retained solutes such as benzaldehyde, acetophenone, 1-methylnaphthalene and aniline. Assessment of the McReynolds constants illustrated that the polarity of the step-growth polymer was similar to the SLB-IL111 column, while displaying improved column stability. The PIL phases and particularly the so far little studied condensation based polymer shows particular retention and satisfactory column performance for polar moieties such as esters, amine and carbonyl functionalities. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Ionic liquids as stationary phases for fatty acid analysis by gas chromatography.

    PubMed

    Fanali, C; Micalizzi, G; Dugo, P; Mondello, L

    2017-12-04

    The present paper provides an overview of the application of ionic liquid (IL) columns for GC analysis of fatty acid methyl esters (FAMEs). Although their separation can be carried out utilizing GC columns containing polar stationary phases, some ILs have been employed as stationary phases, either commercial or laboratory made, in GC analysis. Monodimensional and bidimensional GC methods have been optimized in order to achieve the best separation especially considering the geometric and positional isomers of unsaturated fatty acids. Several methods for the analysis of trans-fatty acids have also been reported. The use of GC-GC, using either the same IL columns or different columns in the first and second dimensions, allowed the separation of a large number of FAMEs. The application of the IL columns for GC analysis of FAMEs in different types of real samples is described, e.g., oil of different nature (fish, flaxseed, and olive), margarine and butter, biodiesel, milk, bacteria etc.

  2. Counter-current motion in counter-current chromatography.

    PubMed

    Ito, Yoichiro

    2014-12-12

    After the CCC2012 meeting, I have received an e-mail regarding the terminology of "Countercurrent Chromatography". It stated that the term "Countercurrent" is a misnomer, because its stationary phase is motionless in the column and that the method should be renamed as liquid-liquid separations or centrifugal separations. However, it was found that these names are already used for various other techniques as found via Google search. The term "Countercurrent Chromatography" was originally made after two preparative methods of Countercurrent distribution and liquid Chromatography, both having no countercurrent motion in the column. However, it is surprising to find that this F1 hybrid method "Countercurrent Chromatography" can clearly exhibit countercurrent motion within the separation column in both hydrodynamic and hydrostatic equilibrium systems. This justifies that "Countercurrent Chromatography" is a proper term for this chromatographic method. Published by Elsevier B.V.

  3. Sample displacement chromatography as a method for purification of proteins and peptides from complex mixtures

    PubMed Central

    Gajdosik, Martina Srajer; Clifton, James; Josic, Djuro

    2012-01-01

    Sample displacement chromatography (SDC) in reversed-phase and ion-exchange modes was introduced approximately twenty years ago. This method takes advantage of relative binding affinities of components in a sample mixture. During loading, there is a competition among different sample components for the sorption on the surface of the stationary phase. SDC was first used for the preparative purification of proteins. Later, it was demonstrated that this kind of chromatography can also be performed in ion-exchange, affinity and hydrophobic-interaction mode. It has also been shown that SDC can be performed on monoliths and membrane-based supports in both analytical and preparative scale. Recently, SDC in ion-exchange and hydrophobic interaction mode was also employed successfully for the removal of trace proteins from monoclonal antibody preparations and for the enrichment of low abundance proteins from human plasma. In this review, the principals of SDC are introduced, and the potential for separation of proteins and peptides in micro-analytical, analytical and preparative scale is discussed. PMID:22520159

  4. Enantiodifferentiation of whisky and cognac lactones using gas chromatography with different cyclodextrin chiral stationary phases.

    PubMed

    Schmarr, Hans-Georg; Mathes, Maximilian; Wall, Kristina; Metzner, Frank; Fraefel, Marius

    2017-09-22

    The chiral lactone 5-butyl-4-methyloxolan-2-one or 5-butyl-4-methyldihydro-2(3H)-furanone, often named whisky lactone, is found in oak wood, then contributing to the appreciated flavor of beverages stored in such wooden barrels. Its next higher homologue is named cognac lactone (5-pentyl-4-methyloxolan-2-one or 5-pentyl-4-methyldihydro-2(3H)-furanone), however is much less known, probably due to its minor concentration level. In order to study the direct enantioseparation of both lactones by gas chromatography on chiral stationary phases, individual enantiomers, particularly for cognac lactone were made available. This was achieved by baker's yeast reduction of synthesized ethyl 3-methyl-4-oxononanoate or, after hydrolysis, of the corresponding 4-ketoacid, that gave access to individual enantiomers of cognac lactone. Good enantioseparation was achieved for both whisky and cognac lactone with high values for the chiral resolution with 6-O-tert. butyl dimethylsilyl-2,3-dialkylated or 6-O-tert. butyl dimethylsilyl-2,3-diacylated cyclodextrin derivatives as chiral selectors. The influence of the nature and position of derivatization of the cyclodextrin moiety revealed a strong impact on the chiral recognition mechanism, as the investigated alkylated derivatives heptakis-(2,6-di-O-iso-pentyl-3-O-allyl)-β-cyclodextrin and octakis-(2,3-di-O-pentyl-6-O-methyl)-γ-cyclodextrin did not provide any or only minor chiral selectivity for the two lactones. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The use of Stationary Phase Optimized Selectivity Liquid Chromatography for the development of herbal fingerprints to detect targeted plants in plant food supplements.

    PubMed

    Deconinck, E; Djiogo, C A Sokeng; Kamugisha, A; Courselle, P

    2017-08-01

    The consumption of plant food supplements is increasing steadily and more and more, these products are bought through internet. Often the products sold through internet are not registered or declared with a national authority, meaning that no or minimal quality control is performed and that they could contain herbs or plants that are regulated. Stationary Phase Optimized Selectivity Liquid Chromatography (SOS-LC) was evaluated for the development of specific fingerprints, to be used for the detection of targeted plants in plant food supplements. Three commonly used plants in plant food supplements and two regulated plants were used to develop fingerprints with SOS-LC. It was shown that for all plants specific fingerprints could be obtained, allowing the detection of these targeted plants in triturations with different herbal matrices as well as in real samples of suspicious supplements seized by the authorities. For three of the five plants a more specific fingerprint was obtained, compared to the ones developed on traditional columns described in literature. It could therefore be concluded that the combination of segments of different types of stationary phases, as used in SOS-LC, has the potential of becoming a valuable tool in the quality control and the identification of crude herbal or plant material and in the detection of regulated plants in plant food supplements or other herbal preparations. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Characterization of adsorption on the stationary phase using high-performance immunoaffinity chromatography.

    PubMed

    Nielsen, R G; Wilson, G S

    1987-12-25

    Low-level adsorption on the stationary phase has been studied using immunochemical reagents. An immunoaffinity column has been evaluated using affinity-purified radioisotope-labeled monoclonal antibodies. Recovery experiments including continuous immunosorbent monitoring have been performed. Proper characterization of an immunoaffinity separation can result in the recovery of immunologically active material in high yield.

  7. Hydrophobic Interaction Chromatography for Bottom-Up Proteomics Analysis of Single Proteins and Protein Complexes.

    PubMed

    Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn

    2017-06-02

    Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.

  8. Frontal affinity chromatography: A unique research tool for biospecific interaction that promotes glycobiology

    PubMed Central

    KASAI, Kenichi

    2014-01-01

    Combination of bioaffinity and chromatography gave birth to affinity chromatography. A further combination with frontal analysis resulted in creation of frontal affinity chromatography (FAC). This new versatile research tool enabled detailed analysis of weak interactions that play essential roles in living systems, especially those between complex saccharides and saccharide-binding proteins. FAC now becomes the best method for the investigation of saccharide-binding proteins (lectins) from viewpoints of sensitivity, accuracy, and efficiency, and is contributing greatly to the development of glycobiology. It opened a door leading to deeper understanding of the significance of saccharide recognition in life. The theory is also concisely described. PMID:25169774

  9. Preparative enantiomer separation of dichlorprop with a cinchona-derived chiral selector employing centrifugal partition chromatography and high-performance liquid chromatography: a comparative study.

    PubMed

    Gavioli, Elena; Maier, Norbert M; Minguillón, Cristina; Lindner, Wolfgang

    2004-10-01

    A countercurrent chromatography protocol for support-free preparative enantiomer separation of the herbicidal agent 2-(2,4-dichlorphenoxy)propionic acid (dichlorprop) was developed utilizing a purposefully designed, highly enantioselective chiral stationary-phase additive (CSPA) derived from bis-1,4-(dihydroquinidinyl)phthalazine. Guided by liquid-liquid extraction experiments, a solvent system consisting of 10 mM CSPA in methyl tert-butyl ether and 100 mM sodium phosphate buffer (pH 8.0) was identified as a suitable stationary/mobile-phase combination. This solvent system provided an ideal compromise among stationary-phase retention, enantioselectivity, and well-balanced analyte distribution behavior. Using a commercial centrifugal partition chromatography instrument, complete enantiomer separations of up to 366 mg of racemic dichlorprop could be achieved, corresponding to a sample load being equivalent to the molar amount of CSPA employed. Comparison of the preparative performance characteristics of the CPC protocol with that of a HPLC separation using a silica-supported bis-1,4-(dihydroquinidinyl)phthalazine chiral stationary phase CSP revealed comparable loading capacities for both techniques but a significantly lower solvent consumption for CPC. With respect to productivity, HPLC was found to be superior, mainly due to inherent flow rate restrictions of the CPC instrument. Given that further progress in instrumental design and engineering of dedicated, highly enantioselective CSPAs can be achieved, CPC may offer a viable alternative to CSP-based HPLC for preparative-scale enantiomer separation.

  10. Free silanols and ionic liquids as their suppressors in liquid chromatography.

    PubMed

    Buszewska-Forajta, Magdalena; Markuszewski, Michał J; Kaliszan, Roman

    2018-07-20

    In this review, we will firstly discuss the types and the general properties of silica, focusing on the silica support used in chromatography and capillary electrophoresis. Additionally, the characterization of functional groups (silanols and siloxanes) will be considered in terms of activity of the stationary phases. We will then discuss physical chemistry of the stationary phases applied in liquid chromatography and capillary electrophoresis. The use of ionic liquids as a silanols' suppressors will be presented in the next parts of the study, along with the examples of specific applications. The review is completed with conclusions and an outlook for the future developments in the area of analytical applications of ionic liquids. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Automated Hydrophobic Interaction Chromatography Column Selection for Use in Protein Purification

    PubMed Central

    Murphy, Patrick J. M.; Stone, Orrin J.; Anderson, Michelle E.

    2011-01-01

    In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein 1. The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification. HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH4)2SO4). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) 2. As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter 3. Automated column scouting allows for an efficient approach for determining which HIC media

  12. Separation of proteins by hydrophobic interaction chromatography at low salt concentration.

    PubMed

    Kato, Yoshio; Nakamura, Koji; Kitamura, Takashi; Moriyama, Hiroyuki; Hasegawa, Masazumi; Sasaki, Hiroo

    2002-09-20

    We investigated protein separation by hydrophobic interaction chromatography (HIC) at low salt concentration on the supports of various hydrophobicities. Hydrophobic proteins could be successfully separated with more than 90% recovery by gradient elution of ammonium sulfate from 0.3-0.5 M to 0 in 50 mM phosphate buffer (pH 6.8) by using supports whose hydrophobicities were properly adjusted individually for each protein. Satisfactory results were also obtained by isocratic elution without ammonium sulfate and gradient elution of ethanol from 0 to 10%. HIC at low salt concentration was compatible with other modes of liquid chromatography like ion-exchange chromatography. On the other hand, it was not successful to separate hydrophilic proteins at low salt concentration. Recoveries of hydrophilic proteins decreased before they were retained enough as support hydrophobicity increased. Therefore, it is inevitable to use a higher concentration of salt, e.g., 1-2 M ammonium sulfate, on hydrophilic or moderately hydrophobic support in order to retain hydrophilic proteins without decrease in recovery.

  13. Comparison of a polymeric pseudostationary phase in EKC with ODS stationary phase in RP-HPLC.

    PubMed

    Ni, Xinjiong; Zhang, Min; Xing, Xiaoping; Cao, Yuhua; Cao, Guangqun

    2018-01-01

    Poly(stearyl methacrylate-co-methacrylic acid) (P(SMA-co-MAA)) was induced as pseudostationary phase (PSP) in electrokinetic chromatography (EKC). The n-octadecyl groups in SMA were the same as that in octadecylsilane (ODS) C18 column. Thus, the present work focused on the comparison of selectivity between polymeric PSP and ODS stationary phase (SP), and the effect of organic modifiers on the selectivity of polymeric PSP and ODS SP. 1-butanol could directly interacted with PSP as a Class I modifier, and improved both of the methylene selectivity and polar group selectivity. When the analysis times were similar, the polymeric PSP exhibited better methylene selectivity and polar group selectivity. Although the hydrophobic groups were similar, the substituted benzenes elution order was different between polymeric PSP and ODS SP. Linear solvation energy relationships (LSER) model analysis found that polymeric PSP and ODS SP exhibited two same key factors in selectivity: hydrophobic interaction and hydrogen bonding acidity. But polymeric PSP exhibited relatively strong n- and π-electrons interaction to the analytes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Analysis of carvedilol enantiomers in human plasma using chiral stationary phase column and liquid chromatography with tandem mass spectrometry.

    PubMed

    Poggi, Josiane Cristófani; Da Silva, Flávia Garcez; Coelho, Eduardo Barbosa; Marques, Maria Paula; Bertucci, Carlo; Lanchote, Vera Lucia

    2012-03-01

    Carvedilol is an antihypertensive drug available as a racemic mixture. (-)-(S)-carvedilol is responsible for the nonselective β-blocker activity but both enantiomers present similar activity on α(1)-adrenergic receptor. To our knowledge, this is the first study of carvedilol enantiomers in human plasma using a chiral stationary phase column and liquid chromatography with tandem mass spectrometry. The method involves plasma extraction with diisopropyl ether using metoprolol as internal standard and direct separation of the carvedilol enantiomers on a Chirobiotic T® (Teicoplanin) column. Protonated ions [M + H](+) and their respective ion products were monitored at transitions of 407 > 100 for the carvedilol enantiomers and 268 > 116 for the internal standard. The quantification limit was 0.2 ng ml(-1) for both enantiomers in plasma. The method was applied to study enantioselectivity in the pharmacokinetics of carvedilol administered as a single dose of 25 mg to a hypertensive patient. The results showed a higher plasma concentration of (+)-(R)-carvedilol (AUC(0-∞) 205.52 vs. 82.61 (ng h) ml(-1)), with an enantiomer ratio of 2.48. Copyright © 2012 Wiley Periodicals, Inc.

  15. Adsorption of water from aqueous acetonitrile on silica-based stationary phases in aqueous normal-phase liquid chromatography.

    PubMed

    Soukup, Jan; Jandera, Pavel

    2014-12-29

    Excess adsorption of water from aqueous acetonitrile mobile phases was investigated on 16 stationary phases using the frontal analysis method and coulometric Karl-Fischer titration. The stationary phases include silica gel and silica-bonded phases with different polarities, octadecyl and cholesterol, phenyl, nitrile, pentafluorophenylpropyl, diol and zwitterionic sulfobetaine and phosphorylcholine ligands bonded on silica, hybrid organic-silica and hydrosilated matrices. Both fully porous and core-shell column types were included. Preferential uptake of water by the columns can be described by Langmuir isotherms. Even though a diffuse rather than a compact adsorbed discrete layer of water on the adsorbent surface can be formed because of the unlimited miscibility of water with acetonitrile, for convenience, the preferentially adsorbed water was expressed in terms of a hypothetical monomolecular water layer equivalent in the inner pores. The uptake of water strongly depends on the polarity and type of the column. Less than one monomolecular water layer equivalent was adsorbed on moderate polar silica hydride-based stationary phases, Ascentis Express F5 and Ascentis Express CN column at the saturation capacity, while on more polar stationary phases, several water layer equivalents were up-taken from the mobile phase. The strongest affinity to water was observed on the ZIC cHILIC stationary phases, where more than nine water layer equivalents were adsorbed onto its surface at its saturation capacity. Columns with bonded hydroxyl and diol ligands show stronger water adsorption in comparison to bare silica. Columns based on hydrosilated silica generally show significantly decreased water uptake in comparison to stationary phases bonded on ordinary silica. Significant correlations were found between the water uptake and the separation selectivity for compounds with strong polarity differences. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Analytical and semipreparative chiral separation of cis-itraconazole on cellulose stationary phases by high-performance liquid chromatography.

    PubMed

    Kurka, Ondřej; Kučera, Lukáš; Bednář, Petr

    2016-07-01

    cis-Itraconazole is a chiral antifungal drug administered as a racemate. The knowledge of properties of individual cis-itraconazole stereoisomers is vital information for medicine and biosciences as different stereoisomers of cis-itraconazole may possess different affinity to certain biological pathways in the human body. For this purpose, either chiral synthesis of enantiomers or chiral separation of racemate can be used. This paper presents a two-step high-performance liquid chromatography approach for the semipreparative isolation of four stereoisomers (two enantiomeric pairs) of itraconazole using polysaccharide stationary phases and volatile organic mobile phases without additives in isocratic mode. The approach used involves the separation of the racemate into three fractions (i.e. two pure stereoisomers and one mixed fraction containing the remaining two stereoisomers) in the first run and consequent separation of the collected mixed fraction in the second one. For this purpose, combination of cellulose tris-(4-methylbenzoate) and cellulose tris-(3,5-dimehylphenylcarbamate) columns with complementary selectivity for cis-itraconazole provided full separation of all four stereoisomers (with purity of each isomer > 97%). The stereoisomers were collected, their optical rotation determined and their identity confirmed based on the results of a previously published study. Pure separated stereoisomers are subjected to further biological studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fiber-based monolithic columns for liquid chromatography.

    PubMed

    Ladisch, Michael; Zhang, Leyu

    2016-10-01

    Fiber-based monoliths for use in liquid chromatographic separations are defined by columns packed with aligned fibers, woven matrices, or contiguous fiber structures capable of achieving rapid separations of proteins, macromolecules, and low molecular weight components. A common denominator and motivating driver for this approach, first initiated 25 years ago, was reducing the cost of bioseparations in a manner that also reduced residence time of retained components while achieving a high ratio of mass to momentum transfer. This type of medium, when packed into a liquid chromatography column, minimized the fraction of stagnant liquid and resulted in a constant plate height for non-adsorbing species. The uncoupling of dispersion from eluent flow rate enabled the surface chemistry of the stationary phase to be considered separately from fluid transport phenomena and pointed to new ways to apply chemistry for the engineering of rapid bioseparations. This paper addresses developments and current research on fiber-based monoliths and explains how the various forms of this type of chromatographic stationary phase have potential to provide new tools for analytical and preparative scale separations. The different stationary phases are discussed, and a model that captures the observed constant plate height as a function of mobile phase velocity is reviewed. Methods that enable hydrodynamically stable fiber columns to be packed and operated over a range of mobile phase flow rates, together with the development of new fiber chemistries, are shown to provide columns that extend the versatility of liquid chromatography using monoliths, particularly at the preparative scale. Graphical Abstract Schematic representation of a sample mixture being separated by a rolled-stationary phase column, resulting separated peaks shown in the chromatogram.

  18. Investigation on the preparation and chromatographic behavior of a new para-tert-butylcalix[4]arene-1,2-crown-4 stationary phase for high performance liquid chromatography.

    PubMed

    Hu, Kai; Zhao, Wenjie; Wen, Fuyong; Liu, Junwei; Zhao, Xiaolan; Xu, Zhanhui; Niu, Bailin; Ye, Baoxian; Wu, Yangjie; Zhang, Shusheng

    2011-07-15

    In the present work, a new para-tert-butylcalix[4]arene-1,2-crown-4 bonded silica stationary phase (CBS4-4) was synthesized, structurally characterized, and employed to separate polycyclic aromatic hydrocarbons (PAHs), phenols, aromatic amines, benzoic acid and its derivatives. The chromatographic behaviors of the prepared stationary phase were investigated and compared with ODS. The effects of methanol concentrations on the retention index show that CBS4-4 exhibits high selectivity for the above analytes. The separation mechanisms based on the different interactions between calixarene and the analytes were discussed. With the assistance of quantum chemistry calculation, the interaction Gibbs free energy change ΔG(solv) (in the mobile phase) of p, m and o-phenylenediamine positional isomers and para-tert-butylcalix[4]arene-1,2-crown-4 were obtained. The ΔG(solv) values were consistent with the retention behavior of p, m and o-phenylenediamine on the CBS4-4. According to the chromatographic data, it can be concluded that the selectivity of CBS4-4 for analytes is mainly ascribed to hydrophobic interaction, accompanied by other effects such as hydrogen bonding interaction, π-π and inclusion interaction. The CBS4-4 column has been successfully employed for the analysis of benzoic acid in Sprite drink. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Monodisperse microbeads of hypercrosslinked polystyrene for liquid and supercritical fluid chromatography

    NASA Astrophysics Data System (ADS)

    Tsyurupa, M. P.; Blinnikova, Z. K.; Il'in, M. M.; Davankov, V. A.; Parenago, O. O.; Pokrovskii, O. I.; Usovich, O. I.

    2015-11-01

    Monodisperse styrene-divinylbenzene (1 wt %) copolymer microbeads are obtained via the elaborate method of high-productivity precipitation polymerization. The crosslinking of this copolymer with chloromethyl methyl ether in the presence of Friedel-Crafts catalyst yields porous hypercrosslinked polymers with degrees of crosslinking that range from 200 to 500%. Microbead sorbents are shown to be suited for selective stationary phases for high-performance liquid chromatography and supercritical fluid chromatography.

  20. On the use of ionic liquids as mobile phase additives in high-performance liquid chromatography. A review.

    PubMed

    García-Alvarez-Coque, M C; Ruiz-Angel, M J; Berthod, A; Carda-Broch, S

    2015-07-09

    The popularity of ionic liquids (ILs) has grown during the last decades in several analytical separation techniques. Consequently, the number of reports devoted to the applications of ILs is still increasing. This review is focused on the use of ILs (mainly imidazolium-based associated to chloride and tetrafluoroborate) as mobile phase additives in high-performance liquid chromatography (HPLC). In this approach, ILs just function as salts, but keep several kinds of intermolecular interactions, which are useful for chromatographic separations. Both cation and anion can be adsorbed on the stationary phase, creating a bilayer. This gives rise to hydrophobic, electrostatic and other specific interactions with the stationary phase and solutes, which modify the retention behaviour and peak shape. This review updates the advances in this field, with emphasis on topics not always deeply considered in the literature, such as the mechanisms of retention, the estimation of the suppressing potency of silanols, modelling and optimisation of the chromatographic performance, and the comparison with other additives traditionally used to avoid the silanol problem. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. High-capacity cation-exchange column for enhanced resolution of adjacent peaks of cations in ion chromatography.

    PubMed

    Rey, M A

    2001-06-22

    One of the advantages of ion chromatography [Anal Chem. 47 (1975) 1801] as compared to other analytical techniques is that several ions may be analyzed simultaneously. One of the most important contributions of cation-exchange chromatography is its sensitivity to ammonium ion, which is difficult to analyze by other techniques [J. Weiss, in: E.L. Johnson (Ed.), Handbook of Ion Chromatography, Dionex, Sunnyvale, CA, USA]. The determination of low concentrations of ammonium ion in the presence of high concentrations of sodium poses a challenge in cation-exchange chromatography [J. Weiss, Ion Chromatography, VCH, 2nd Edition, Weinheim, 1995], as both cations have similar selectivities for the common stationary phases containing either sulfonate or carboxylate functional groups. The task was to develop a new cation-exchange stationary phase (for diverse concentration ratios of adjacent peaks) to overcome limitations experienced in previous trails. Various cation-exchange capacities and column body formats were investigated to optimize this application and others. The advantages and disadvantages of two carboxylic acid columns of different cation-exchange capacities and different column formats will be discussed.

  2. Wide-pore silica-based ether-bonded phases for separation of proteins by high-performance hydrophobic-interaction and size-exclusion chromatography.

    PubMed

    Miller, N T; Feibush, B; Karger, B L

    1984-12-21

    This paper examines the use of wide-pore silica-based hydrophilic ether-bonded phases for the chromatographic separation of proteins under mild elution conditions. In particular, ether phases of the following structure identical to Si-(CH2)3-O-(CH2-CH2-O)n-R, where n = 1, 2, 3 and R = methyl, ethyl or n-butyl, have been prepared. These phases can be employed either in high-performance hydrophobic-interaction or size-exclusion chromatography, depending on mobile phase conditions. In the hydrophobic-interaction mode, a gradient of decreasing salt concentration, e.g., from 3 M ammonium sulfate (pH 6.0, 25 degrees C), yields sharp peaks with high mass recovery of active proteins. In this mode, retention can be controlled by salt type and concentration, as well as by column temperature. In the size-exclusion mode, use of medium ionic strength, e.g., 0.5 M ammonium acetate (pH 6.0) yields linear calibration of log (MW[eta]) vs. retention volume. Even at 0.05 M salt concentration, no stationary phase charge effects on protein elution are observed. These bonded-phase columns exhibit good column-to-column reproducibility and constant retention for at least five months of continual use. Examples of the high-performance separation of proteins in both modes are illustrated.

  3. Separation of carbohydrates using hydrophilic interaction liquid chromatography.

    PubMed

    Fu, Qing; Liang, Tu; Li, Zhenyu; Xu, Xiaoyong; Ke, Yanxiong; Jin, Yu; Liang, Xinmiao

    2013-09-20

    A strategy was developed to rapidly evaluate chromatographic properties of hydrophilic interaction chromatography (HILIC) columns for separating carbohydrates. Seven HILIC columns (Silica, Diol, TSK Amide-80, XAmide, Click Maltose, Click β-CD, and Click TE-Cys columns) were evaluated by using three monosaccharide and seven disaccharides as probes. The influence of column temperature on the peak shape and tautomerization of carbohydrates, as well as column selectivity were investigated. The influence of surface charge property on the retention was also studied by using glucose, glucuronic acid, and glucosamine, which indicated that buffer salt concentration and pH value in mobile phase was necessary to control the ionic interactions between ionic carbohydrates and HILIC columns. According to evaluation results, the XAmide column was selected as an example to establish experimental schemes for separation of complex mixtures of oligosaccharide. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Evaluation of different hydrophilic stationary phases for the simultaneous determination of iminosugars and other low molecular weight carbohydrates in vegetable extracts by liquid chromatography tandem mass spectrometry.

    PubMed

    Rodríguez-Sánchez, S; Quintanilla-López, J E; Soria, A C; Sanz, M L

    2014-11-01

    Iminosugars are considered potential drug candidates for the treatment of several diseases, mainly as a result of their α-glycosidase inhibition properties. A method by hydrophilic interaction liquid chromatography tandem mass spectrometry has been optimized for the first time for the simultaneous determination of complex mixtures of bioactive iminosugars and other low molecular weight carbohydrates (LMWC) in vegetable extracts. Three hydrophilic stationary phases (sulfoalkylbetaine zwitterionic, polyhydroxyethyl aspartamide and ethylene bridge hybrid (BEH) with trifunctionally bonded amide) were compared under both basic and acidic conditions. The best sensitivity (limits of detection between 0.025 and 0.28ngmL -1 ) and overall chromatographic performance in terms of resolution, peak width and analysis time were obtained with the BEH amide column using 0.1% ammonium hydroxide as a mobile phase additive. The optimized method was applied to the analysis of extracts of hyacinth bulbs, buckwheat seeds and mulberry leaves. Iminosugar and other LMWC structures were tentatively assigned by their high resolution daughter ions mass spectra. Several iminosugars such as glycosyl-fagomine in mulberry extract were also described for the first time. Among the extracts analysed, mulberry showed the widest diversity of iminosugars, whereas the highest content of them was found in hyacinth bulb (2.5mgg -1 ) followed by mulberry (1.95 mgg -1 ). Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Proteomic Analysis of Stationary Phase in the Marine Bacterium 'Candidatus Pelagibacter ubique'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, Sarah M.; Norbeck, Angela D.; Lipton, Mary S.

    2008-05-01

    Candidatus Pelagibacter ubique, an abundant marine alphaproteobacterium, subsists in nature at low ambient nutrient concentrations and may often be exposed to nutrient limitation, but its genome revealed no evidence of global regulatory adaptations to stationary phase. We used high-resolution capillary liquid chromatography (LC) coupled online to an LTQ mass spectrometer to build an Accurate Mass and Time (AMT) tag library, and employed the AMT tag approach to quantitatively examine proteome differences between exponentially growing and stationary phase Cand. P. ubique cells cultivated in a seawater medium. The AMT tag library represented 72% of the predicted protein coding genes. Stationary phasemore » protein abundance increased for OsmC, which mitigates oxidative damage, and for molecular chaperones, enzymes involved in methionine and cysteine biosynthesis, proteins involved in rho-dependent transcription termination, and the signal transduction enzymes CheY-FisH and ChvG. Our findings indicate that Cand. P. ubique responds adaptively to stationary phase by increasing the abundance of a suite of proteins that contribute to homeostasis, but does not undergo major proteome remodeling. We speculate that this limited response may enable Cand. P. ubique to cope with ambient conditions in which nutrients are often insufficient for short periods, and the ability to resume growth overrides the capacity for long term survival afforded by more comprehensive global stationary phase responses.« less

  6. Systematic Comparison of Reverse Phase and Hydrophilic Interaction Liquid Chromatography Platforms for the Analysis of N-linked Glycans

    PubMed Central

    Walker, S. Hunter; Carlisle, Brandon C.; Muddiman, David C.

    2013-01-01

    Due to the hydrophilic nature of glycans, reverse phase chromatography has not been widely used as a glycomic separation technique coupled to mass spectrometry. Other approaches such as hydrophilic interaction chromatography and porous graphitized carbon chromatography are often employed, though these strategies frequently suffer from decreased chromatographic resolution, long equilibration times, indefinite retention, and column bleed. Herein, it is shown that through an efficient hydrazone formation derivatization of N-linked glycans (∼4 hr of additional sample preparation time which is carried out in parallel), numerous experimental and practical advantages are gained when analyzing the glycans by online reverse phase chromatography. These benefits include an increased number of glycans detected, increased peak capacity of the separation, and the ability to analyze glycans on the identical liquid chromatography-mass spectrometry platform commonly used for proteomic analyses. The data presented show that separation of derivatized N-linked glycans by reverse phase chromatography significantly out-performs traditional separation of native or derivatized glycans by hydrophilic interaction chromatography. Furthermore, the movement to a more ubiquitous separation technique will afford numerous research groups the opportunity to analyze both proteomic and glycomic samples on the same platform with minimal time and physical change between experiments, increasing the efficiency of ‘multi-omic’ biological approaches. PMID:22954204

  7. Going beyond the stationary flux towers to assess the interactions of land use and climate

    NASA Astrophysics Data System (ADS)

    Yakir, Dan; Rohatyn, shani; Ramati, Efrat; Tatrinov, Fedor; Rotenberg, Eyal

    2017-04-01

    Networks of permanent, stationary flux towers that allows continuous canopy-scale measurements over annual time-scales have revolutionized the study of the contemporary carbon cycle over the past two decades. However, this approach is limited in addressing questions related to dynamic changes in land use, vegetation types, disturbance, and their interactions with variations in environmental conditions. Using mobile laboratory for measuring CO2, water, energy, COS, and VOC fluxes, permitted us to extend our stationary flux tower measurements across many sites, but also limited measurements to short-time campaigns (days to weeks). To overcome this limitation, we adopted an empirical approach (often used in remote sensing) and used state of the art campaign-based ecosystem flux measurements to 'calibrate' local meteorological data available on continuous basis, to estimate annual-scale carbon, water, and energy budgets. Using this approach, we investigated the interactions of land use change (afforestation) and climate (humid Mediterranean to semi-arid, 730 to 300 mm in annual precipitation) on the ecosystem fluxes. The results showed that across this climatic range, afforestation increased ET markedly more in the wet (+200 mm yr-1 or 30% of P) than in the dry end (+58 mm yr-1 or 19% of P). Similarly, increase in carbon sequestration (NEE) associated with forestation was greater in the wet sites (+460 gC m-2 yr-1) than in the dry sites (+30 gC m-2 yr-1). In contrast, ecosystem net-radiation (Rn) and sensible heat flux (H) increased due to afforestation much more in the dry sites than in the wet sites ( 47 vs. 27 and 49 vs. 17 Wm-2, respectively). COS and VOC fluxes were also measured but reported separately. The results provided quantitative assessment of shifts in the tradeoffs associated with afforestation in this region, between the hydrological and energy-budget 'costs', vs. carbon sequestration and other ecosystem services, (e.g, surface cooling, erosion

  8. Characterization of recombinant monoclonal antibody variants detected by hydrophobic interaction chromatography and imaged capillary isoelectric focusing electrophoresis.

    PubMed

    King, Cory; Patel, Rekha; Ponniah, Gomathinayagam; Nowak, Christine; Neill, Alyssa; Gu, Zhenyu; Liu, Hongcheng

    2018-05-15

    In-depth characterization of the commonly observed variants is critical to the successful development of recombinant monoclonal antibody therapeutics. Multiple peaks of a recombinant monoclonal antibody were observed when analyzed by hydrophobic interaction chromatography and imaged capillary isoelectric focusing. The potential modification causing the heterogeneity was localized to F(ab')2 region by analyzing the antibody after IdeS digestion using hydrophobic interaction chromatography. LC-MS analysis identified asparagine deamidation as the root cause of the observed multiple variants. While the isoelectric focusing method is expected to separate deamidated species, the similar profile observed in hydrophobic interaction chromatography indicates that the single site deamidation caused differences in hydrophobicity. Forced degradation demonstrated that the susceptible asparagine residue is highly exposed, which is expected as it is located in the light chain complementarity determining region. Deamidation of this single site decreased the mAb binding affinity to its specific antigen. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Reversed phase liquid chromatography with UV absorbance and flame ionization detection using a water mobile phase and a cyano propyl stationary phase Analysis of alcohols and chlorinated hydrocarbons.

    PubMed

    Quigley, W W; Ecker, S T; Vahey, P G; Synovec, R E

    1999-10-01

    The development of liquid chromatography with a commercially available cyano propyl stationary phase and a 100% water mobile phase is reported. Separations were performed at ambient temperature, simplifying instrumental requirements. Excellent separation efficiency using a water mobile phase was achieved, for example N=18 800, or 75 200 m(-1), was obtained for resorcinol, at a retention factor of k'=4.88 (retention time of 9.55 min at 1 ml min(-1) for a 25 cmx4.6 mm i.d. column, packed with 5 mum diameter particles with the cyano propyl stationary phase). A separation via reversed phase liquid chromatography (RP-LC) with a 100% water mobile phase of six phenols and related compounds was compared to a separation of the same compounds by traditional RP-LC, using octadecylsilane (ODS), i.e. C18, bound to silica and an aqueous mobile phase modified with acetonitrile. Nearly identical analysis time was achieved for the separation of six phenols and related compounds using the cyano propyl stationary phase with a 100% water mobile phase, as compared to traditional RP-LC requiring a relatively large fraction of organic solvent modifier in the mobile phase (25% acetonitrile:75% water). Additional understanding of the retention mechanism with the 100% water mobile phase was obtained by relating measured retention factors of aliphatic alcohols, phenols and related compounds, and chlorinated hydrocarbons to their octanol:water partition coefficients. The retention mechanism is found to be consistent with a RP-LC mechanism coupled with an additional retention effect due to residual hydroxyl groups on the cyano propyl stationary phase. Advantages due to a 100% water mobile phase for the chemical analysis of alcohol mixtures and chlorinated hydrocarbons are reported. By placing an absorbance detector in-series and preceding a novel drop interface to a flame ionization detector (FID), selective detection of a separated mixture of phenols and related compounds and aliphatic

  10. Diamond based adsorbents and their application in chromatography.

    PubMed

    Peristyy, Anton A; Fedyanina, Olga N; Paull, Brett; Nesterenko, Pavel N

    2014-08-29

    The idea of using diamond and diamond containing materials in separation sciences has attracted a strong interest in the past decade. The combination of a unique range of properties, such as chemical inertness, mechanical, thermal and hydrolytic stability, excellent thermal conductivity with minimal thermal expansion and intriguing adsorption properties makes diamond a promising material for use in various modes of chromatography. This review summarises the recent research on the preparation of diamond and diamond based stationary phases, their properties and chromatographic performance. Special attention is devoted to the dominant retention mechanisms evident for particular diamond containing phases, and their subsequent applicability to various modes of chromatography, including chromatography carried out under conditions of high temperature and pressure. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Multiple, simultaneous, independent gradients for a versatile multidimensional liquid chromatography. Part II: Application 2: Computer controlled pH gradients in the presence of urea provide improved separation of proteins: Stability influenced anion and cation exchange chromatography.

    PubMed

    Hirsh, Allen G; Tsonev, Latchezar I

    2017-04-28

    This paper details the use of a method of creating controlled pH gradients (pISep) to improve the separation of protein isoforms on ion exchange (IEX) stationary phases in the presence of various isocratic levels of urea. The pISep technology enables the development of computer controlled pH gradients on both cationic (CEX) and anionic (AEX) IEX stationary phases over the very wide pH range from 2 to 12. In pISep, titration curves generated by proportional mixing of the acidic and basic pISep working buffers alone, or in the presence of non-buffering solutes such as the neutral salt NaCl (0-1M), polar organics such as urea (0-8M) or acetonitrile (0-80 Vol%), can be fitted with high fidelity using high order polynomials which, in turn allows construction of a mathematical manifold %A (% acidic pISep buffer) vs. pH vs. [non-buffering solute], permitting precise computer control of pH and the non-buffering solute concentration allowing formation of dual uncoupled liquid chromatographic (LC) gradients of arbitrary shape (Hirsh and Tsonev, 2012 [1]). The separation of protein isoforms examined in this paper by use of such pH gradients in the presence of urea demonstrates the fractionation power of a true single step two dimensional liquid chromatography which we denote as Stability-Influenced Ion Exchange Chromatography (SIIEX). We present evidence that SIIEX is capable of increasing the resolution of protein isoforms difficult to separate by ordinary pH gradient IEX, and potentially simplifying the development of laboratory and production purification strategies involving on-column simultaneous pH and urea unfolding or refolding of targeted proteins. We model some of the physics implied by the dynamics of the observed protein fractionations as a function of both urea concentration and pH assuming that urea-induced native state unfolding competes with native state electrostatic interaction binding to an IEX stationary phase. Implications for in vivo protein

  12. Gibbsian Stationary Non-equilibrium States

    NASA Astrophysics Data System (ADS)

    De Carlo, Leonardo; Gabrielli, Davide

    2017-09-01

    We study the structure of stationary non-equilibrium states for interacting particle systems from a microscopic viewpoint. In particular we discuss two different discrete geometric constructions. We apply both of them to determine non reversible transition rates corresponding to a fixed invariant measure. The first one uses the equivalence of this problem with the construction of divergence free flows on the transition graph. Since divergence free flows are characterized by cyclic decompositions we can generate families of models from elementary cycles on the configuration space. The second construction is a functional discrete Hodge decomposition for translational covariant discrete vector fields. According to this, for example, the instantaneous current of any interacting particle system on a finite torus can be canonically decomposed in a gradient part, a circulation term and an harmonic component. All the three components are associated with functions on the configuration space. This decomposition is unique and constructive. The stationary condition can be interpreted as an orthogonality condition with respect to an harmonic discrete vector field and we use this decomposition to construct models having a fixed invariant measure.

  13. Extensive database of liquid phase diffusion coefficients of some frequently used test molecules in reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography.

    PubMed

    Song, Huiying; Vanderheyden, Yoachim; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre

    2016-07-15

    Diffusion plays an important role in all aspects of band broadening in chromatography. An accurate knowledge of molecular diffusion coefficients in different mobile phases is therefore crucial in fundamental column performance studies. Correlations available in literature, such as the Wilke-Chang equation, can provide good approximations of molecular diffusion under reversed-phase conditions. However, these correlations have been demonstrated to be less accurate for mobile phases containing a large percentage of acetonitrile, as is the case in hydrophilic interaction liquid chromatography. A database of experimentally measured molecular diffusion coefficients of some 45 polar and apolar compounds that are frequently used as test molecules under hydrophilic interaction liquid chromatography and reversed-phase conditions is therefore presented. Special attention is given to diffusion coefficients of polar compounds obtained in large percentages of acetonitrile (>90%). The effect of the buffer concentration (5-10mM ammonium acetate) on the obtained diffusion coefficients is investigated and is demonstrated to mainly influence the molecular diffusion of charged molecules. Diffusion coefficients are measured using the Taylor-Aris method and hence deduced from the peak broadening of a solute when flowing through a long open tube. The validity of the set-up employed for the measurement of the diffusion coefficients is demonstrated by ruling out the occurrence of longitudinal diffusion, secondary flow interactions and extra-column effects, while it is also shown that radial equilibration in the 15m long capillary is effective. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Method for making a non-extractable stationary phase of polymer within a capillary column

    DOEpatents

    Springston, Stephen R.

    1990-01-01

    A method for coating interior capillary column surfaces, or packing material of a packed column, used for gas chromatography, with a stationary polymer phase that is cross-linked by exposing it to a low-temperature plasma that is uniformly distributed over the column or packing material for a predetermined period of time to effect the desired degree of cross-linking of the coating.

  15. Distinction of synthetic dl-α-tocopherol from natural vitamin E (d-α-tocopherol) by reversed-phase liquid chromatography. Enhanced selectivity of a polymeric C18 stationary phase at low temperature and/or at high pressure.

    PubMed

    Yui, Yuko; Miyazaki, Shota; Ma, Yan; Ohira, Masayoshi; Fiehn, Oliver; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo

    2016-06-10

    Separation of diastereomers of dl-α-tocopherol was studied by reversed-phase liquid chromatography using three types of stationary phases, polymeric ODS, polymeric C30, and monomeric ODS. Polymeric ODS stationary phase (Inertsil ODS-P, 3mmID, 20cm) was effective for the separation of the isomers created by the presence of three chiral centers on the alkyl chain of synthetic dl-α-tocopherol. Considerable improvement of the separation of isomers was observed on ODS-P phase at high pressure and at low temperature. Complete separation of four pairs of diastereomers was achieved at 12.0°C, 536bar, while three peaks were observed when the separation was carried out either at 12.0°C at low pressure or at 20°C at 488bar. Higher temperature (30.0°C) with the ODS-P phase resulted in only partial separation of the diastereomers even at high pressure. Only slight resolution was observed for the mixture of diastereomers with the C30 stationary phase (Inertsil C30) at 12.0°C and 441bar, although the stationary phase afforded greater resolution for β- and γ-tocopherol than ODS-P. A monomeric C18 stationary phase did not show any separation at 12.0°C and 463bar. The results suggest that the binding site of the polymeric ODS-P phase is selective for flexible alkyl chains that provided the longest retention for the natural form, (R,R,R) form, and the enantiomer, (S,S,S) form, of dl-α-tocopherol. Copyright © 2016. Published by Elsevier B.V.

  16. Adsorption of ibuprofen enantiomers on a chiral stationary phase with a grafted antibiotic eremomycin

    NASA Astrophysics Data System (ADS)

    Reshetova, E. N.; Asnin, L. D.

    2015-02-01

    The adsorption of ibuprofen enantiomers on a chiral stationary phase Nautilus-E with a grafted antibiotic eremomycin from aqueous ethanol acetate buffer solutions was studied by chromatography. The ethanol concentration in the mobile phase was varied from 40 to 60 vol %. The adsorption isotherms of both enantiomers had a complex shape characterized by non-Langmuir type curvature and the presence of an inflection point. This is explained by two factors: the energy heterogeneity of the surface of the stationary phase and the dissociation of ibuprofen in the liquid phase. The effect of the system peak on the shape of the chromatograms of the target component was investigated. The temperature effect on the adsorption equilibrium was discussed.

  17. ANALYSIS OF PERFLUORINATED CARBOXYLIC ACIDS IN SOILS II: OPTIMIZATION OF CHROMATOGRAPHY AND EXTRACTION

    EPA Science Inventory

    With the objective of detecting and quantitating low concentrations of perfluorinated carboxylic acids (PFCAs), including perfluorinated octanoic acid (PFOA), in soils, we compared the analytical suitability of liquid chromatography columns containing three different stationary p...

  18. Peak distortion effects in analytical ion chromatography.

    PubMed

    Wahab, M Farooq; Anderson, Jordan K; Abdelrady, Mohamed; Lucy, Charles A

    2014-01-07

    The elution profile of chromatographic peaks provides fundamental understanding of the processes that occur in the mobile phase and the stationary phase. Major advances have been made in the column chemistry and suppressor technology in ion chromatography (IC) to handle a variety of sample matrices and ions. However, if the samples contain high concentrations of matrix ions, the overloaded peak elution profile is distorted. Consequently, the trace peaks shift their positions in the chromatogram in a manner that depends on the peak shape of the overloading analyte. In this work, the peak shapes in IC are examined from a fundamental perspective. Three commercial IC columns AS16, AS18, and AS23 were studied with borate, hydroxide and carbonate as suppressible eluents. Monovalent ions (chloride, bromide, and nitrate) are used as model analytes under analytical (0.1 mM) to overload conditions (10-500 mM). Both peak fronting and tailing are observed. On the basis of competitive Langmuir isotherms, if the eluent anion is more strongly retained than the analyte ion on an ion exchanger, the analyte peak is fronting. If the eluent is more weakly retained on the stationary phase, the analyte peak always tails under overload conditions regardless of the stationary phase capacity. If the charge of the analyte and eluent anions are different (e.g., Br(-) vs CO3(2-)), the analyte peak shapes depend on the eluent concentration in a more complex pattern. It was shown that there are interesting similarities with peak distortions due to strongly retained mobile phase components in other modes of liquid chromatography.

  19. Interaction chromatography for characterization and large-scale fractionation of chemically heterogeneous copolymers

    NASA Astrophysics Data System (ADS)

    Han, Junwon

    The remarkable development of polymer synthesis techniques to make complex polymers with controlled chain architectures has inevitably demanded the advancement of polymer characterization tools to analyze the molecular dispersity in polymeric materials beyond size exclusion chromatography (SEC). In particular, man-made synthetic copolymers that consist of more than one monomer type are disperse mixtures of polymer chains that have distributions in terms of both chemical heterogeneity and chain length (molar mass). While the molecular weight distribution has been quite reliably estimated by the SEC, it is still challenging to properly characterize the chemical composition distribution in the copolymers. Here, I have developed and applied adsorption-based interaction chromatography (IC) techniques as a promising tool to characterize and fractionate polystyrene-based block, random and branched copolymers in terms of their chemical heterogeneity. The first part of this thesis is focused on the adsorption-desorption based purification of PS-b-PMMA diblock copolymers using nanoporous silica. The liquid chromatography analysis and large scale purification are discussed for the PS-b-PMMA block copolymers that have been synthesized by sequential anionic polymerization. SEC and IC are compared to critically analyze the contents of PS homopolymers in the as-synthesized block copolymers. In addition, I have developed an IC technique to provide faster and more reliable information on the chemical heterogeneity in the as-synthesized block copolymers. Finally, a large scale (multi-gram) separation technique is developed to obtain "homopolymer-free" block copolymers via a simple chromatographic filtration technique. By taking advantage of the large specific surface area of nanoporous silica (≈300m 2/g), large scale purification of neat PS-b-PMMA has successfully been achieved by controlling adsorption and desorption of the block copolymers on the silica gel surface using a

  20. Simultaneous determination of inorganic anions and cations by supercritical fluid chromatography using evaporative light scattering detection.

    PubMed

    Foulon, Catherine; Di Giulio, Pauline; Lecoeur, Marie

    2018-01-26

    Supercritical fluid chromatography (SFC) is commonly used for the analysis of non-polar compounds, but remains poorly explored for the separation of polar and ionized molecules. In this paper, SFC has been investigated for the separation of 14 inorganic ions sampled in aqueous solutions. Four polar stationary phases were first screened using CO 2 -methanol-based mobile phases containing water or different acidic or basic additives, in order to select the most efficient conditions for the simultaneous retention of inorganic cations and anions and to favor their detection using evaporative light scattering detector (ELSD). Orthogonal selectivity was obtained depending on the stationary phase used: whereas anions are less retained on HILIC stationary phase, 2-ethylpyridine (2-EP) stationary phase exhibits strong interaction for anions. Best results were obtained under gradient elution mode using a 2-EP stationary phase and by adding 0.2% triethylamine in the CO 2 -methanol-based mobile phase. The composition of the injection solvent was also investigated. The results showed that a methanolic sample containing a percentage of water not exceeding 20% does not affect the analytical performances obtained on 2-EP. Moreover, the presence of triethylamine in the injection solvent contributes to eliminate peaks shoulders. Among the 14 inorganic ions tested, three cations (Li + , Ca 2+ and Mg 2+ ) and five anions (Cl - , Br - , NO 3 - , I - , SCN - ) were totally resolved in 15 min. NO 3 - and NO 2 - still coeluted in the final optimized conditions. The other investigated ions were either strongly retained on the stationary phase or not detected by the ELSD. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Improved Thermal Modulator for Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Hasselbrink, Ernest Frederick, Jr.; Hunt, Patrick J.; Sacks, Richard D.

    2008-01-01

    An improved thermal modulator has been invented for use in a variant of gas chromatography (GC). The variant in question denoted as two-dimensional gas chromatography (2DGC) or GC-GC involves the use of three series-connected chromatographic columns, in the form of capillary tubes coated interiorly with suitable stationary phases (compounds for which different analytes exhibit different degrees of affinity). The two end columns are relatively long and are used as standard GC columns. The thermal modulator includes the middle column, which is relatively short and is not used as a standard GC column: instead, its temperature is modulated to affect timed adsorption and desorption of analyte gases between the two end columns in accordance with a 2DGC protocol.

  2. Hydrophilic interaction chromatography (HILIC) in the analysis of antibiotics.

    PubMed

    Kahsay, Getu; Song, Huiying; Van Schepdael, Ann; Cabooter, Deirdre; Adams, Erwin

    2014-01-01

    This paper presents a general overview of the application of hydrophilic interaction chromatography (HILIC) in the analysis of antibiotics in different sample matrices including pharmaceutical, plasma, serum, fermentation broths, environmental water, animal origin, plant origin, etc. Specific applications of HILIC for analysis of aminoglycosides, β-lactams, tetracyclines and other antibiotics are reviewed. HILIC can be used as a valuable alternative LC mode for separating small polar compounds. Polar samples usually show good solubility in the mobile phase containing some water used in HILIC, which overcomes the drawbacks of the poor solubility often encountered in normal phase LC. HILIC is suitable for analyzing compounds in complex systems that elute near the void in reversed-phase chromatography. Ion-pair reagents are not required in HILIC which makes it convenient to couple with MS hence its increased popularity in recent years. In this review, the retention mechanism in HILIC is briefly discussed and a list of important applications is provided including main experimental conditions and a brief summary of the results. The references provide a comprehensive overview and insight into the application of HILIC in antibiotics analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Retention of nucleic acids in ion-pair reversed-phase high-performance liquid chromatography depends not only on base composition but also on base sequence.

    PubMed

    Qiao, Jun-Qin; Liang, Chao; Wei, Lan-Chun; Cao, Zhao-Ming; Lian, Hong-Zhen

    2016-12-01

    The study on nucleic acid retention in ion-pair reversed-phase high-performance liquid chromatography mainly focuses on size-dependence, however, other factors influencing retention behaviors have not been comprehensively clarified up to date. In this present work, the retention behaviors of oligonucleotides and double-stranded DNAs were investigated on silica-based C 18 stationary phase by ion-pair reversed-phase high-performance liquid chromatography. It is found that the retention of oligonucleotides was influenced by base composition and base sequence as well as size, and oligonucleotides prone to self-dimerization have weaker retention than those not prone to self-dimerization but with the same base composition. However, homo-oligonucleotides are suitable for the size-dependent separation as a special case of oligonucleotides. For double-stranded DNAs, the retention is also influenced by base composition and base sequence, as well as size. This may be attributed to the interaction of exposed bases in major or minor grooves with the hydrophobic alky chains of stationary phase. In addition, no specific influence of guanine and cytosine content was confirmed on retention of double-stranded DNAs. Notably, the space effect resulted from the stereostructure of nucleic acids also influences the retention behavior in ion-pair reversed-phase high-performance liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Study of Separation and Identification of the Active Ingredients in Gardenia jasminoides Ellis Based on a Two-Dimensional Liquid Chromatography by Coupling Reversed Phase Liquid Chromatography and Hydrophilic Interaction Liquid Chromatography.

    PubMed

    Zhou, Xuan; Chen, Cen; Ye, Xiaolan; Song, Fenyun; Fan, Guorong; Wu, Fuhai

    2017-01-01

    In this paper, by coupling reversed phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC), a two-dimensional liquid chromatography system was developed for separation and identification of the active ingredients in Gardenia jasminoides Ellis (GJE). By applying the semi-preparative C18 column as the first dimension and the core-shell column as the second dimension, a total of 896 peaks of GJE were separated. Among the 896 peaks, 16 active ingredients including geniposide, gardenoside, gardoside, etc. were identified by mass spectrometry analysis. The results indicated that the proposed two-dimensional RPLC/HILIC system was an effective method for the analysis of GJE and might hold a high potential to become a useful tool for analysis of other complex mixtures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Separation of piracetam derivatives on polysaccharide-based chiral stationary phases.

    PubMed

    Kažoka, H; Koliškina, O; Veinberg, G; Vorona, M

    2013-03-15

    High-performance liquid chromatography was used for the enantiomeric separation of two chiral piracetam derivatives. The suitability of six commercially available polysaccharide-based chiral stationary phases (CSPs) under normal phase mode for direct enantioseparation has been investigated. The influence of the CSPs as well the nature and content of an alcoholic modifier in the mobile phase on separation and elution order was studied. It was established that CSP Lux Amylose-2 shows high chiral recognition ability towards 4-phenylsubstituted piracetam derivatives. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Online Hydrophobic Interaction Chromatography-Mass Spectrometry for the Analysis of Intact Monoclonal Antibodies.

    PubMed

    Chen, Bifan; Lin, Ziqing; Alpert, Andrew J; Fu, Cexiong; Zhang, Qunying; Pritts, Wayne A; Ge, Ying

    2018-06-19

    Therapeutic monoclonal antibodies (mAbs) are an important class of drugs for a wide spectrum of human diseases. Liquid chromatography (LC) coupled to mass spectrometry (MS) is one of the techniques in the forefront for comprehensive characterization of analytical attributes of mAbs. Among various protein chromatography modes, hydrophobic interaction chromatography (HIC) is a popular offline nondenaturing separation technique utilized to purify and analyze mAbs, typically with the use of non-MS-compatible mobile phases. Herein we demonstrate for the first time, the application of direct HIC-MS and HIC-tandem MS (MS/MS) with electron capture dissociation (ECD) for analyzing intact mAbs on quadrupole-time-of-flight (Q-TOF) and Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, respectively. Our method allows for rapid determination of relative hydrophobicity, intact masses, and glycosylation profiles of mAbs as well as sequence and structural characterization of the complementarity-determining regions in an online configuration.

  7. Stationary and non-stationary occurrences of miniature end plate potentials are well described as stationary and non-stationary Poisson processes in the mollusc Navanax inermis.

    PubMed

    Cappell, M S; Spray, D C; Bennett, M V

    1988-06-28

    Protractor muscles in the gastropod mollusc Navanax inermis exhibit typical spontaneous miniature end plate potentials with mean amplitude 1.71 +/- 1.19 (standard deviation) mV. The evoked end plate potential is quantized, with a quantum equal to the miniature end plate potential amplitude. When their rate is stationary, occurrence of miniature end plate potentials is a random, Poisson process. When non-stationary, spontaneous miniature end plate potential occurrence is a non-stationary Poisson process, a Poisson process with the mean frequency changing with time. This extends the random Poisson model for miniature end plate potentials to the frequently observed non-stationary occurrence. Reported deviations from a Poisson process can sometimes be accounted for by the non-stationary Poisson process and more complex models, such as clustered release, are not always needed.

  8. Comprehensive analysis of pharmaceutical products using simultaneous mixed-mode (ion-exchange/reversed-phase) and hydrophilic interaction liquid chromatography.

    PubMed

    Kazarian, Artaches A; Nesterenko, Pavel N; Soisungnoen, Phimpha; Burakham, Rodjana; Srijaranai, Supalax; Paull, Brett

    2014-08-01

    Liquid chromatographic assays were developed using a mixed-mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve-mediated column switching and was based upon a single high-performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion-exchange, (ii) mixed-mode interactions under an applied dual gradient (reversed-phase/ion-exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed-mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well-resolved unknown peaks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Method for making a non-extractable stationary phase of polymer within a capillary column

    DOEpatents

    Springston, S.R.

    1990-10-30

    A method is described for coating interior capillary column surfaces, or packing material of a packed column, used for gas chromatography, with a stationary polymer phase that is cross-linked by exposing it to a low-temperature plasma that is uniformly distributed over the column or packing material for a predetermined period of time to effect the desired degree of cross-linking of the coating. 7 figs.

  10. Spiral counter-current chromatography: Design, development, application, and challenges.

    PubMed

    Huang, Xin-Yi; Sun, Xiao-Ming; Pei, Dong; Di, Duo-Long

    2017-01-01

    Depending on the rapid growth in the radial gradient of the centrifugal force, spiral counter-current chromatography can greatly improve the retention of stationary phase, especially for the aqueous two-phase systems with ultra-polar and high viscosity that are not well retained in the conventional multilayer coils counter-current chromatography. As a result, it is an attractive and alternative technology that is suited for separation of hydrophilic compounds and has led to many exciting progress in recent years. This review presents the recent advances and applications of spiral counter-current chromatography, including its major benefits and limitations, some novel methods to improve the separation efficiency and its applications in separation of real samples. In addition, the remaining challenges and future perspectives on development of spiral counter-current chromatography also are proposed in this article. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Chromatographic evaluation of self-immobilized stationary phases for reversed-phase liquid chromatography.

    PubMed

    Bottoli, Carla B G; Collins, Kenneth E; Collins, Carol H

    2003-02-14

    The preparation of stationary phases for HPLC using polymers deposited on silica usually includes an immobilization step involving cross-linking by free radicals induced by ionizing radiation or by other radical initiators. The present paper reports changes which occur at ambient temperature in the character of poly(methyloctylsiloxane) deposited on porous silica particles as a function of the time interval between particle loading and column packing. Column performance and retention factors increase with time and these changes are attributed to rearrangement (self-assembly) which result in "self-immobilization" of the polymer molecules on the silica surface.

  12. Effects of urea on selectivity and protein-ligand interactions in multimodal cation exchange chromatography.

    PubMed

    Holstein, Melissa A; Parimal, Siddharth; McCallum, Scott A; Cramer, Steven M

    2013-01-08

    Nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations were employed in concert with chromatography to provide insight into the effect of urea on protein-ligand interactions in multimodal (MM) chromatography. Chromatographic experiments with a protein library in ion exchange (IEX) and MM systems indicated that, while urea had a significant effect on protein retention and selectivity for a range of proteins in MM systems, the effects were much less pronounced in IEX. NMR titration experiments carried out with a multimodal ligand, and isotopically enriched human ubiquitin indicated that, while the ligand binding face of ubiquitin remained largely intact in the presence of urea, the strength of binding was decreased. MD simulations were carried out to provide further insight into the effect of urea on MM ligand binding. These results indicated that, while the overall ligand binding face of ubiquitin remained the same, there was a reduction in the occupancy of the MM ligand interaction region along with subtle changes in the residues involved in these interactions. This work demonstrates the effectiveness of urea in enhancing selectivity in MM chromatographic systems and also provides an in-depth analysis of how MM ligand-protein interactions are altered in the presence of this fluid phase modifier.

  13. [Renaturation with simultaneous purification of the recombinant human Flt3 ligand from inclusion bodies by high performance hydrophobic interaction chromatography].

    PubMed

    Jia, Jia; Wang, Lili; Gao, Dong; Geng, Xindu

    2010-06-01

    Flt3 ligand (FL) is a class of cytokines with the functions of promoting early hematopoiesis. It has important clinical value in promoting growth and development of hematopoietic cells and hematopoietic mobilization. In order to obtain large quantities of recombinant human FL (rhFL) by genetic engineering methods for clinic and research, in this work, rhFL was expressed in E. coli as inclusion bodies. The inclusion bodies were recovered, cleaned and solubilized in 8 mol/L urea, the solubilized rhFL was renatured by high performance hydrophobic interaction chromatography (HPHIC) with simultaneous purification, the retention feature and renaturation regularity were studied. The results showed that when the denatured protein concentration was 8.51 g/L, and the end group of stationary phase was PEG800, under the conditions of mobile phase of pH 7.0 and with the addition of 4 mol/L urea, 1.8 mmol/L glutathione (GSH) and 0.3 mmol/L oxidative glutathione (GSSG), a mass recovery of 36.9% and a purity of 94.5% were obtained after refolding with simultaneous purification. The obtained rhFL was successfully renatured with simultaneous purification in only one step of HPHIC, and it provided a foundation for the manufacturing of high quality rhFL.

  14. Similar interaction chromatography of proteins: A cross interaction chromatographic approach to estimate the osmotic second virial coefficient.

    PubMed

    Quigley, A; Williams, D R

    2016-08-12

    Self-interaction chromatography (SIC) has established itself as an important experimental technique for the measurement of the second osmotic virial coefficients B22. B22 data are critical for understanding a range of protein solution phenomena, particularly aggregation and crystallisation. A key limitation to the more extensive use of SIC is the need to develop a method for immobilising each specific protein of interest onto a chromatographic support. This requirement is both a time and protein consuming constraint, which means that SIC cannot be used as a high throughput method for screening a wide range of proteins and their variants. Here an experimental framework is presented for estimating B22 values using Similar Interaction Chromatography (SimIC). This work uses experimental B23 and B32 data for lysozyme, lactoferrin, catalase and concanavalin A to reliably estimate B22 using arithmetic mean field approximations and is demonstrated to give good agreement with SIC measurements of B22 for the same proteins. SimIC could form the basis of a rapid protein variant screening methods to assess the developability of protein therapeutic candidates for industrial and academic researchers with respect to aggregation behaviour by eluting target proteins through a series of well-characterised protein immobilized reference columns. Copyright © 2016. Published by Elsevier B.V.

  15. Comparison of various types of stationary phases in non-aqueous reversed-phase high-performance liquid chromatography-mass spectrometry of glycerolipids in blackcurrant oil and its enzymatic hydrolysis mixture.

    PubMed

    Lísa, Miroslav; Holcapek, Michal; Sovová, Helena

    2009-11-20

    The selection of column packing during the development of high-performance liquid chromatography method is a crucial step to achieve sufficient chromatographic resolution of analyzed species in complex mixtures. Various stationary phases are tested in this paper for the analysis of complex mixture of triacylglycerols (TGs) in blackcurrant oil using non-aqueous reversed-phase (NARP) system with acetonitrile-2-propanol mobile phase. Conventional C(18) column in the total length of 45 cm is used for the separation of TGs according to their equivalent carbon number, the number and positions of double bonds and acyl chain lengths. The separation of TGs and their more polar hydrolysis products after the partial enzymatic hydrolysis of blackcurrant oil in one chromatographic run is achieved using conventional C(18) column. Retention times of TGs are reduced almost 10 times without the loss of the chromatographic resolution using ultra high-performance liquid chromatography with 1.7 microm C(18) particles. The separation in NARP system on C(30) column shows an unusual phenomenon, because the retention order of TGs changes depending on the column temperature, which is reported for the first time. The commercial monolithic column modified with C(18) is used for the fast analysis of TGs to increase the sample throughput but at cost of low resolution.

  16. Strong cation exchange-type chiral stationary phase for enantioseparation of chiral amines in subcritical fluid chromatography.

    PubMed

    Wolrab, Denise; Kohout, Michal; Boras, Mario; Lindner, Wolfgang

    2013-05-10

    A new strong cation exchange type chiral stationary phase (SCX CSP) based on a syringic acid amide derivative of trans-(R, R)-2-aminocyclohexanesulfonic acid was applied to subcritical fluid chromatography (SFC) for separation of various chiral basic drugs and their analogues. Mobile phase systems consisting of aliphatic alcohols as polar modifiers and a broad range of amines with different substitution patterns and lipophilicity were employed to evaluate the impact on the SFC retention and selectivity characteristics. The observed results point to the existence of carbonic and carbamic acid salts formed as a consequence of reactions occurring between carbon dioxide, the alcoholic modifiers and the amine species present in the sub/supercritical fluid medium, respectively. Evidence is provided that these species are essential for affecting ion exchange between the strongly acidic chiral selector units and the basic analytes, following the well-established stoichiometric displacement mechanisms. Specific trends were observed when different types of amines were used as basic additives. While ammonia gave rise to the formation of the most strongly eluting carbonic and carbamic salt species, simple tertiary amines consistently provided superior levels of enantioselectivity. Furthermore, trends in the chiral SFC separation characteristics were investigated by the systematic variation of the modifier content and temperature. Different effects of additives are interpreted in terms of changes in the relative concentration of the transient ionic species contributing to analyte elution, with ammonia-derived carbamic salts being depleted at elevated temperatures by decomposition. Additionally, in an effort to optimize SFC enantiomer separation conditions for selected analytes, the impact of the type of the organic modifier, temperature, flow rate and active back pressure were also investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Cholera Toxin Inhibitors Studied with High-Performance Liquid Affinity Chromatography: A Robust Method to Evaluate Receptor–Ligand Interactions

    PubMed Central

    Bergström, Maria; Liu, Shuang; Kiick, Kristi L.; Ohlson, Sten

    2009-01-01

    Anti-adhesion drugs may be an alternative to antibiotics to control infection of micro-organisms. The well-characterized interaction between cholera toxin and the cellular glycolipid GM1 makes it an attractive model for inhibition studies in general. In this report, we demonstrate a high-performance liquid affinity chromatography approach called weak affinity chromatography to evaluate cholera toxin inhibitors. The cholera toxin B-subunit was covalently coupled to porous silica and a (weak) affinity column was produced. The KD values of galactose and meta-nitrophenyl α-D-galactoside were determined with weak affinity chromatography to be 52 and 1 mM, respectively, which agree well with IC50 values previously reported. To increase inhibition potency multivalent inhibitors have been developed and the interaction with multivalent glycopolypeptides was also evaluated. The affinity of these compounds was found to correlate with the galactoside content but KD values were not obtained because of the inhomogeneous response and slow off-rate from multivalent interactions. Despite the limitations in obtaining direct KD values of the multivalent galactopolypeptides, weak affinity chromatography represents an additional and valuable tool in the evaluation of monovalent as well as multivalent cholera toxin inhibitors. It offers multiple advantages, such as a low sample consumption, high reproducibility and short analysis time, which are often not observed in other methods of analysis. PMID:19152642

  18. Poissonian steady states: from stationary densities to stationary intensities.

    PubMed

    Eliazar, Iddo

    2012-10-01

    Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.

  19. Poissonian steady states: From stationary densities to stationary intensities

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2012-10-01

    Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.

  20. Retention properties of novel beta-CD bonded stationary phases in reversed-phase HPLC mode.

    PubMed

    Zhao, Yanyan; Guo, Zhimou; Zhang, Yongping; Xue, Xingya; Xu, Qing; Li, Xiuling; Liang, Xinmiao; Zhang, Yukui

    2009-05-15

    With the given special structures, the CD bonded stationary phases are expected to have complementary retention properties with conventional C18 stationary phase, which will be helpful to enhance the polar selectivity in RP mode separation. In this work, two beta-cyclodextrin (beta-CD) bonded stationary phases for reversed-phase HPLC, including 1, 12-dodecyldiol linked beta-CD stationary phase (CD1) and olio (ethylene glycol) (OEG) linked beta-CD stationary phase (CD2), have been synthesized via click chemistry. The resulting materials were characterized with FT-IR and elemental analysis, which proved the successful immobilization of ligands. The similarities and differences in retention characteristics between the CD and C18 stationary phases have been elucidated by using comparative linear solvation energy relationships (LSERs). The force related to solute McGowan volume has no significant difference, while the hydrogen bonding and dipolar interactions between solutes and CD stationary phases are stronger than between solutes and C18, which is attributed to the special structures (CD and triazole groups) of CD stationary phases. Chemical origins are interpreted by comparison between CD1 and CD2. Similar dispersive interactions of CD1 and CD2 are attributed to their similar length of spacer arms. CD2 which contains OEG spacer arm has relative weaker HBD acidity but stronger HBA basicity. CD stationary phases display no serious different methylene selectivity and higher polar selectivity than in the case of C18. Higher acid selectivity and lower basic selectivity are observed on CD2 than on CD1. Distinctive retention properties and good complementary separation selectivity to C18 make the novel CD bonded stationary phases available for more application in RPLC.

  1. Core-shell microspheres with porous nanostructured shells for liquid chromatography.

    PubMed

    Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei

    2018-01-01

    The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Counter-current chromatography: simple process and confusing terminology.

    PubMed

    Conway, Walter D

    2011-09-09

    The origin of counter-current chromatography is briefly stated, followed by a description of the mechanism of elution of solutes, which illustrates the elegance and simplicity of the technique. The CCC retention equation can be mentally derived from three facts; that a substance with a distribution coefficient of 0 elutes at the mobile phase solvent front (one mobile phase volume); and one with a distribution coefficient of 1 elutes at the column volume of mobile phase; and solutes with higher distribution coefficients elute at additional multiples of the stationary phase volume. The pattern corresponds to the classical solute retention equation for chromatography, V(R)=V(M)+K(C)V(S), K(C) not being limited to integer values. This allows the entire pattern of solute retention to be visualized on the chromatogram. The high volume fraction of stationary phase in CCC greatly enhances resolution. A survey of the names, symbols and definitions of several widely used chromatography and liquid-liquid distribution parameters in the IUPAC Gold Book and in a recent summary in LC-GC by Majors and Carr revealed numerous conflicts in both names and definitions. These will retard accurate dissemination of CCC research unless the discordance is resolved. It is proposed that the chromatography retention parameter, K(C), be called the distribution coefficient and that a new biphasic distribution parameter, K(Δ(A)), be defined for CCC and be called the species partition ratio. The definition of V(M) should be clarified. V(H) is suggested to represent the holdup volume and V(X) is suggested for the extra-column volume. H(V) and H(L) are suggested to represent the volume and length of a theoretical plate in CCC. Definitions of the phase ratio, β, conflict and should be clarified. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Retention characteristics of a new butylimidazolium-based stationary phase. Part II: anion exchange and partitioning.

    PubMed

    Van Meter, David S; Sun, Yaqin; Parker, Kevin M; Stalcup, Apryll M

    2008-02-01

    A surface-confined ionic liquid (SCIL) and a commercial quaternary amine silica-based stationary phase were characterized employing the linear solvation energy relationship (LSER) method in binary methanol/water mobile phases. The retention properties of the stationary phases were evaluated in terms of intermolecular interactions between 28 test solutes and the stationary phases. The comparison reveals a difference in the hydrophobic and hydrogen bond acceptance interaction properties between the two phases. The anion exchange retention mechanism of the SCIL phase was demonstrated using nucleotides. The utility of the SCIL phase in predicting logk (IL/water) values by chromatographic methods is also discussed.

  4. Silica particles encapsulated poly(styrene-divinylbenzene) monolithic stationary phases for micro-high performance liquid chromatography.

    PubMed

    Bakry, R; Stöggl, W M; Hochleitner, E O; Stecher, G; Huck, C W; Bonn, G K

    2006-11-03

    In the paper we demonstrate a new approach for the preparation and application of continuous silica bed columns that involve encapsulation (entrapment) of functionalized silica microparticles, which can be used as packing material in micro high performance liquid chromatography (micro-HPLC) and capillary electrochromatography (CEC). Like traditional packed columns, these capillaries possess characterized silica particles that offer high phase ratio and narrow pore size distribution leading to high retention and separation efficiency, respectively. More importantly, immobilization of the microparticles stabilizes the separation bed and eliminates the need for retaining frits. The developed capillary columns were fabricated in exactly the same way as a packed capillary column (slurry packing) but with an additional entrapment step. This immobilization of the packed bed was achieved by in situ polymerization of styrene and divinylbenzene in presence of decanol as a porogen and azobisisobutyronitrile as thermal initiator. Silica particles with different particle sizes and pore sizes ranging from 60 to 4000 A were studied. In addition different modified silica was used, including C-18 reversed phase, anion exchange and chiral stationary phases. Efficient separation of polyphenolic compounds, peptides, proteins and even DNA mutation were achieved using the developed technique depending on the properties of the silica particles used (particles pore size). For example, using 3 microm ProntoSIL C-18 particles with 300 A pore size, separation efficiencies in the range of 120,000-200,000 plates/m were obtained for protein separation, in a 6 cm x 200 microm i.d. capillary column. Using encapsulated silica C-18 with 1000 A pore size, separation of DNA homo and hetero duplexes were achieved under denaturing HPLC conditions for mutation detection. In addition, nucleotides were separated using anion exchange material encapsulated with poly(styrene-divinylbenzene) (PS/DVB), which

  5. On the interaction of stationary crossflow vortices and Tollmien-Schlichting waves in the boundary layer on a rotating disc

    NASA Technical Reports Server (NTRS)

    Bassom, Andrew P.; Hall, Philip

    1989-01-01

    There are many fluid flows where the onset of transition can be caused by different instability mechanisms which compete among themselves. The interaction is considered of two types of instability mode (at an asymptotically large Reynolds number) which can occur in the flow above a rotating disc. In particular, the interaction is examined between lower branch Tollmien-Schlichting (TS) waves and the upper branch, stationary, inviscid crossflow vortex whose asymptotic structure has been described by Hall (1986). This problem is studied in the context of investigating the effect of the vortex on the stability characteristics of a small TS wave. Essentially, it is found that the primary effect is felt through the modification to the mean flow induced by the presence of the vortex. Initially, the TS wave is taken to be linear in character and it is shown (for the cases of both a linear and a nonlinear stationary vortex) that the vortex can exhibit both stabilizing and destabilizing effects on the TS wave and the nature of this influence is wholly dependent upon the orientation of this latter instability. Further, the problem is examined with a larger TS wave, whose size is chosen so as to ensure that this mode is nonlinear in its own right. An amplitude equation for the evolution of the TS wave is derived which admits solutions corresponding to finite amplitude, stable, traveling waves.

  6. Purification of flavonoids from licorice using an off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method.

    PubMed

    Fan, Yunpeng; Fu, Yanhui; Fu, Qing; Cai, Jianfeng; Xin, Huaxia; Dai, Mei; Jin, Yu

    2016-07-01

    An orthogonal (71.9%) off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method coupled with effective sample pretreatment was developed for separation and purification of flavonoids from licorice. Most of the nonflavonoids were firstly removed using a self-made Click TE-Cys (60 μm) solid-phase extraction. In the first dimension, an industrial grade preparative chromatography was employed to purify the crude flavonoids. Click TE-Cys (10 μm) was selected as the stationary phase that provided an excellent separation with high reproducibility. Ethyl acetate/ethanol was selected as the mobile phase owing to their excellent solubility for flavonoids. Flavonoids co-eluted in the first dimension were selected for further purification using reversed-phase liquid chromatography. Multiple compounds could be isolated from one normal-phase fraction and some compounds with bad resolution in one-dimensional liquid chromatography could be prepared in this two-dimensional system owing to the orthogonal separation. Moreover, this two-dimensional liquid chromatography method was beneficial for the preparation of relatively trace flavonoid compounds, which were enriched in the first dimension and further purified in the second dimension. Totally, 24 flavonoid compounds with high purity were obtained. The results demonstrated that the off-line two-dimensional liquid chromatography method was effective for the preparative separation and purification of flavonoids from licorice. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Comparison of GC stationary phases for the separation of fatty acid methyl esters in biodiesel fuels.

    PubMed

    Goding, Julian C; Ragon, Dorisanne Y; O'Connor, Jack B; Boehm, Sarah J; Hupp, Amber M

    2013-07-01

    The fatty acid methyl ester (FAME) content of biodiesel fuels has traditionally been determined using gas chromatography with a polar stationary phase. In this study, a direct comparison of the separation of FAMEs present in various biodiesel samples on three polar stationary phases and one moderately polar stationary phase (with comparable column dimensions) was performed. Retention on each column was based on solubility in and polarity of the phase. Quantitative metrics describing the resolution of important FAME pairs indicate high resolution on all polar columns, yet the best resolution, particularly of geometric isomers, is achieved on the cyanopropyl column. In addition, the separation of four C18 monounsaturated isomers was optimized and the elution order determined on each column. FAME composition of various biodiesel fuel types was determined on each column to illustrate (1) chemical differences in biodiesels produced from different feedstocks and (2) chemical similarities in biodiesels of the same feedstock type produced in different locations and harvest seasons.

  8. Enantioseparation of Six Antihistamines with Immobilized Cellulose Chiral Stationary Phase by HPLC

    PubMed Central

    Zhou, Jie; Luo, Pei; Chen, Shanshan; Meng, Lingchang; Sun, Chong; Du, Qiuzheng; Sun, Fang

    2016-01-01

    A stereoselective high performance liquid chromatography method has been developed for the chiral separation of the enantiomers of six antihistamines, doxylamine, carbinoxamine, dioxopromethazine, oxomemazine, cetirizine and hydroxyzine. The effects of mobile phase additive, column temperature and flow rate on the retention time and resolution were studied. Enantiomeric separation of cetirizine, doxylamine and hydroxyzine were achieved on cellulose tris-(3,5-dichlorophenylcarbamate) immobilized on silica gel chiral stationary phase known as Chiralpak IC (RS = 3.74, RS = 1.85 and RS = 1.74, respectively). PMID:26657408

  9. Method developments approaches in supercritical fluid chromatography applied to the analysis of cosmetics.

    PubMed

    Lesellier, E; Mith, D; Dubrulle, I

    2015-12-04

    Analyses of complex samples of cosmetics, such as creams or lotions, are generally achieved by HPLC. These analyses are often multistep gradients, due to the presence of compounds with a large range of polarity. For instance, the bioactive compounds may be polar, while the matrix contains lipid components that are rather non-polar, thus cosmetic formulations are usually oil-water emulsions. Supercritical fluid chromatography (SFC) uses mobile phases composed of carbon dioxide and organic co-solvents, allowing for good solubility of both the active compounds and the matrix excipients. Moreover, the classical and well-known properties of these mobile phases yield fast analyses and ensure rapid method development. However, due to the large number of stationary phases available for SFC and to the varied additional parameters acting both on retention and separation factors (co-solvent nature and percentage, temperature, backpressure, flow rate, column dimensions and particle size), a simplified approach can be followed to ensure a fast method development. First, suited stationary phases should be carefully selected for an initial screening, and then the other operating parameters can be limited to the co-solvent nature and percentage, maintaining the oven temperature and back-pressure constant. To describe simple method development guidelines in SFC, three sample applications are discussed in this paper: UV-filters (sunscreens) in sunscreen cream, glyceryl caprylate in eye liner and caffeine in eye serum. Firstly, five stationary phases (ACQUITY UPC(2)) are screened with isocratic elution conditions (10% methanol in carbon dioxide). Complementary of the stationary phases is assessed based on our spider diagram classification which compares a large number of stationary phases based on five molecular interactions. Secondly, the one or two best stationary phases are retained for further optimization of mobile phase composition, with isocratic elution conditions or, when

  10. [Intersection point rule for the retention value with mobile phase composition and boiling point of the homologues and chlorobenzenes in soil leaching column chromatography].

    PubMed

    Xu, F; Liang, X; Lin, B; Su, F

    1999-03-01

    Based on the linear retention equation of the logarithm of the capacity factor (logk') vs. the methanol volume fraction (psi) of aqueous binary mobile phase in soil leaching column chromatography, the intersection point rule for the logk' of homologues and weak polar chlorobenzenes, with psi, as well as with boiling point, has been derived due to existence of the similar interactions among solutes of the same series, stationary phase (soil) and eluent (methanol-water). These rules were testified by experimental data of homologues (n-alkylbenzenes, methylbenzenes) and weak polar chlorobenzenes.

  11. Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review.

    PubMed

    Jandera, Pavel; Hájek, Tomáš

    2018-01-01

    Hydrophilic interaction liquid chromatography on polar columns in aqueous-organic mobile phases has become increasingly popular for the separation of many biologically important compounds in chemical, environmental, food, toxicological, and other samples. In spite of many new applications appearing in literature, the retention mechanism is still controversial. This review addresses recent progress in understanding of the retention models in hydrophilic interaction liquid chromatography. The main attention is focused on the role of water, both adsorbed by the column and contained in the bulk mobile phase. Further, the theoretical retention models in the isocratic and gradient elution modes are discussed. The dual hydrophilic interaction liquid chromatography reversed-phase retention mechanism on polar columns is treated in detail, especially with respect to the practical use in one- and two-dimensional liquid chromatography separations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The Separation and Identification of Straight Chain Hydrocarbons: An Experiment Using Gas-Liquid Chromatography.

    ERIC Educational Resources Information Center

    Benson, G. A.

    1982-01-01

    An experiment using gas-liquid chromatography is discussed, introducing the student to concept of dead volume and its measurement, idea and use of an internal reference compound, and to linear relationship existing between measurements of a separation on two different stationary phases. (Author/SK)

  13. Evidence of nonlinear interaction between quasi 2 day wave and quasi-stationary wave

    NASA Astrophysics Data System (ADS)

    Gu, Sheng-Yang; Liu, Han-Li; Li, Tao; Dou, Xiankang; Wu, Qian; Russell, James M.

    2015-02-01

    The nonlinear interaction between the westward quasi 2 day wave (QTDW) with zonal wave number s = 3 (W3) and stationary planetary wave with s = 1 (SPW1) is first investigated using both Thermosphere, Ionosphere, and Mesosphere Electric Dynamics (TIMED) satellite observations and the thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulations. A QTDW with westward s = 2 (W2) is identified in the mesosphere and lower thermosphere (MLT) region in TIMED/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature and TIMED/TIMED Doppler Imager (TIDI) wind observations during 2011/2012 austral summer period, which coincides with a strong SPW1 episode at high latitude of the northern winter hemisphere. The temperature perturbation of W2 QTDW reaches a maximum amplitude of ~8 K at ~30°S and ~88 km in the Southern Hemisphere, with a smaller amplitude in the Northern Hemisphere at similar latitude and minimum amplitude at the equator. The maximum meridional wind amplitude of the W2 QTDW is observed to be ~40 m/s at 95 km in the equatorial region. The TIME-GCM is utilized to simulate the nonlinear interactions between W3 QTDW and SPW1 by specifying both W3 QTDW and SPW1 perturbations at the lower model boundary. The model results show a clear W2 QTDW signature in the MLT region, which agrees well with the TIMED/SABER temperature and TIMED/TIDI horizontal wind observations. We conclude that the W2 QTDW during the 2011/2012 austral summer period results from the nonlinear interaction between W3 QTDW and SPW1.

  14. Separation of Aeruginosin-865 from Cultivated Soil Cyanobacterium (Nostoc sp.) by Centrifugal Partition Chromatography combined with Gel Permeation Chromatography.

    PubMed

    Cheel, José; Minceva, Mirjana; Urajová, Petra; Aslam, Rabya; Hrouzek, Pavel; Kopecký, Jiří

    2015-10-01

    Aeruginosin-865 was isolated from cultivated soil cyanobacteria using a combination of centrifugal partition chromatography (CPC) and gel permeation chromatography. The solubility of Aer-865 in different solvents was evaluated using the conductor-like screening model for real solvents (COSMO-RS). The CPC separation was performed in descending mode with a biphasic solvent system composed of water-n-BuOH-acetic acid (5:4:1, v/v/v). The upper phase was used as a stationary phase, whereas the lower phase was employed as a mobile phase at a flow rate of 10 mL/min. The revolution speed and temperature of the separation column were 1700 rpm and 25 degrees C, respectively. Preparative CPC separation followed by gel permeation chromatography was performed on 50 mg of crude extract yielding Aer-865 (3.5 mg), with a purity over 95% as determined by HPLC. The chemical identity of the isolated compound was confirmed by comparing its spectroscopic data (UV, HRESI-MS, HRESI-MS/MS) with those of an authentic standard and data available in the literature.

  15. Application of a cholesterol stationary phase in the analysis of phosphorothioate oligonucleotides by means of ion pair chromatography coupled with tandem mass spectrometry.

    PubMed

    Studzińska, Sylwia; Krzemińska, Katarzyna; Szumski, Michał; Buszewski, Bogusław

    2016-07-01

    The main aim of this study was the investigation of the influence of several ion pair reagents towards both the retention and the mass spectrometry sensitivity of phosphorothioate oligonucleotides. A cholesterol stationary phase was applied for the first time in the analysis of this group of compounds. The mobile phase composition was modified by changing the concentration and the type of amines and acetates or 1,1,1,3,3,3-hexafluoroisopropanol. It has been shown that the increase of amines concentration results in the retention factor increase for each oligonucleotide, on each adsorbent. The only exception was the mobile phase composed of triethylamine and 1,1,1,3,3,3-hexafluoroisopropanol. This is a consequence of interactions taking place between a cholesterol molecule and an alcohol. This effect was convenient when the mass spectrometry detection was applied, since it allowed an increase in the sensitivity. Moreover, optimization of the mobile phase composition and its impact on the efficiency of ionization process and on the sensitivity in mass spectrometry were also presented. The optimization of this new method, based on cholesterol stationary phase coupled with mass spectrometry detection, was finally applied for the determination of phosphorothioate oligonucleotides impurity in a real sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Affinity monolith chromatography: A review of principles and recent analytical applications

    PubMed Central

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  17. A systematic investigation of sample diluents in modern supercritical fluid chromatography.

    PubMed

    Desfontaine, Vincent; Tarafder, Abhijit; Hill, Jason; Fairchild, Jacob; Grand-Guillaume Perrenoud, Alexandre; Veuthey, Jean-Luc; Guillarme, Davy

    2017-08-18

    This paper focuses on the possibility to inject large volumes (up to 10μL) in ultra-high performance supercritical fluid chromatography (UHPSFC) under generic gradient conditions. Several injection and method parameters have been individually evaluated (i.e. analyte concentration, injection volume, initial percentage of co-solvent in the gradient, nature of the weak needle wash solvent, nature of the sample diluent, nature of the column and of the analyte). The most critical parameters were further investigated using in a multivariate approach. The overall results suggested that several aprotic solvents including methyl tert-butyl ether (MTBE), dichloromethane, acetonitrile or cyclopentyl methyl ether (CPME) were well adapted for the injection of large volume in UHPSFC, while MeOH was generally the worst alternative. However, the nature of the stationary phase also had a strong impact and some of these diluents did not perform equally on each column. This was due to the existence of a competition in the adsorption of the analyte and the diluent on the stationary phase. This observation introduced the idea that the sample diluent should not only be chosen according to the analyte but also to the column chemistry to limit the interactions between the diluent and the ligands. Other important characteristics of the "ideal" SFC sample diluent were finally highlighted. Aprotic solvents with low viscosity are preferable to avoid strong solvent effects and viscous fingering, respectively. In the end, the authors suggest that the choice of the sample diluent should be part of the method development, as a function of the analyte and the selected stationary phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Supercritical fluid chromatography approach for a sustainable manufacture of new stereoisomeric anticancer agent.

    PubMed

    Ghinet, Alina; Zehani, Yasmine; Lipka, Emmanuelle

    2017-10-25

    Two routes aimed at the manufacture of unprecedented stereoisomeric combretastatin A-4 analogue were described: flash chromatography vs supercritical fluid chromatography. The latter has many advantages over liquid chromatography and was therefore chosen for the small scale separation of methyl 1-[(3-hydroxy-4-methoxyphenyl) (3,4,5-trimethoxyphenyl)methyl]-5-oxo-l-prolinate 5, with potential antitumoral activity. After a screening of six different polysaccharide based chiral stationary phases and four co-solvents, the percentage of co-solvent, the flow-rate and the outlet pressure were optimized through a design of experiments (DoE). The preparation of 50mg of each stereoisomer was achieved successfully on a Chiralpak AD-H with isopropanol as a co-solvent. Productivity (kkd), solvent usage and environmental factor (E Factor) were calculated. Flash chromatography and supercritical fluid chromatography approaches were compared in terms of yield and purity of each stereoisomer manufactured. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Normal-phase liquid chromatography retention behavior of polycyclic aromatic sulfur heterocycles and alkyl-substituted polycyclic aromatic sulfur heterocycle isomers on an aminopropyl stationary phase.

    PubMed

    Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A

    2018-02-01

    Retention indices for 67 polycyclic aromatic sulfur heterocycles (PASHs) and 80 alkyl-substituted PASHs were determined using normal-phase liquid chromatography (NPLC) on an aminopropyl (NH 2 ) stationary phase. The retention behavior of PASH on the NH 2 phase is correlated with the number of aromatic carbon atoms and two structural characteristics have a significant influence on their retention: non-planarity (thickness, T) and the position of the sulfur atom in the bay-region of the structure. Correlations between solute retention on the NH 2 phase and T of PASHs were investigated for three cata-condensed (cata-) PASH isomer groups: (a) 13 four-ring molecular mass (MM) 234 Da cata-PASHs, (b) 20 five-ring MM 284 Da cata-PASHs, and (c) 12 six-ring MM 334 Da cata-PASHs. Correlation coefficients ranged from r = -0.49 (MM 234 Da) to r = -0.65 (MM 334 Da), which were significantly lower than structurally similar PAH isomer groups (r = -0.70 to r = -0.99). The NPLC retention behavior of the PASHs are compared to similar results for PAHs.

  20. Preparation of polymer monolithic column functionalized by arsonic acid groups for mixed-mode capillary liquid chromatography.

    PubMed

    Qin, Zhang-Na; Yu, Qiong-Wei; Wang, Ren-Qi; Feng, Yu-Qi

    2018-04-27

    A mixed-mode polymer monolithic column functionalized by arsonic acid groups was prepared by single-step in situ copolymerization of monomers p-methacryloylaminophenylarsonic acid (p-MAPHA) and pentaerythritol triacrylate (PETA). The prepared poly(p-MAPHA-co-PETA) monolithic column has a homogeneous monolithic structure with good permeability and mechanical stability. Zeta potential measurements reveal that the monolithic stationary phase holds a negative surface charge when the mobile phase resides in the pH range of 3.0-8.0. The retention mechanisms of prepared monolithic column are explored by the separation of selected polycyclic aromatic hydrocarbons (PAHs), nucleosides, and three basic compounds. The results indicate that the column functions in three different separation modes associated with reversed-phase chromatography based on hydrophobic interaction, hydrophilic interaction chromatography, and cation-exchange chromatography. The column efficiency of prepared monolithic column is estimated to be 70,000 and 76,000 theoretical plates/m for thiourea and naphthalene, respectively, at a linear flow velocity of 0.85 mm/s using acetonitrile/H 2 O (85/15, v/v) as the mobile phase. Furthermore, an analysis of the retention factors obtained for the PAHs indicates that the prepared monolithic column exhibits good reproducibility with relative standard deviations of 2.9%, 4.0%, and 4.7% based on run-to-run injections, column-to-column preparation, and batch-to-batch preparation, respectively. Finally, we investigate the separation performance of the proposed monolithic column for select phenols, sulfonamides, nucleobases and nucleosides. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Thin-layer chromatography with stationary phase gradient as a method for separation of water-soluble vitamins.

    PubMed

    Cimpoiu, Claudia; Hosu, Anamaria; Puscas, Anitta

    2012-02-03

    The group of hydrophilic vitamins play an important role in human health, and their lack or excess produces specific diseases. Therefore, the analysis of these compounds is indispensable for monitoring their content in pharmaceuticals and food in order to prevent some human diseases. TLC was successfully applied in the analysis of hydrophilic vitamins, but the most difficult problem in the simultaneous analysis of all these compounds is to find an optimum stationary phase-mobile phase system due to different chemical characteristics of analytes. Unfortunately structural analogues are difficult to separate in one chromatographic run, and this is the case in hydrophilic vitamins investigations. TLC gives the possibility to perform two-dimensional separations by using stationary phase gradient achieving the highest resolution by combining two systems with different selectivity. The goal of this work was to develop a method of analysis enabling separation of hydrophilic vitamins using TLC with adsorbent gradient. The developed method was used for identifying the water-soluble vitamins in alcoholic extracts of Hippophae rhamnoides and of Ribes nigrum. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Evaluation of a new polymeric stationary phase with reversed-phase properties for high temperature liquid chromatography.

    PubMed

    Vanhoenacker, Gerd; Dos Santos Pereira, Alberto; Kotsuka, Takashi; Cabooter, Deirdre; Desmet, Gert; Sandra, Pat

    2010-05-07

    The performance of a polymeric stationary phase with reversed-phase properties (ET-RP1) was evaluated for LC separations at elevated temperature. The most significant observation was that the reduced plate height (h) decreased from 3.4 at 25 degrees C (optimal flow 0.5 mL/min) to 2.4 at 150 degrees C (optimal flow 2.5 mL/min) which is comparable to the efficiency obtained with silica-based reversed-phase columns of 4.6mm ID operated at 0.8 mL/min. The phase showed no deterioration after long use at 150 degrees C within the pH range 1-9. Catalytic activity originating from the stationary phase material, e.g. as experienced on zirconium columns operated at elevated temperature, was absent. The performance of ET-RP1 is illustrated with the analysis of some pharmaceutical samples by LC and LC-MS. Operation at elevated temperature also allows to reduce the amount of organic modifier or to replace acetonitrile and methanol by the biodegradable ethanol. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  3. Expanding the term "Design Space" in high performance liquid chromatography (I).

    PubMed

    Monks, K E; Rieger, H-J; Molnár, I

    2011-12-15

    The current article presents a novel approach to applying Quality by Design (QbD) principles to the development of high pressure reversed phase liquid chromatography (HPLC) methods. Four common critical parameters in HPLC--gradient time, temperature, pH of the aqueous eluent, and stationary phase--are evaluated within the Quality by Design framework by the means of computer modeling software and a column database, to a satisfactory degree. This work proposes the establishment of two mutually complimentary Design Spaces to fully depict a chromatographic method; one Column Design Space (CDS) and one Eluent Design Space (EDS) to describe the influence of the stationary phase and of the mobile phase on the separation selectivity, respectively. The merge of both Design Spaces into one is founded on the continuous nature of the mobile phase influence on retention and the great variety of the stationary phases available. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Improved hydrophilic interaction chromatography LC/MS of heparinoids using a chip with postcolumn makeup flow.

    PubMed

    Staples, Gregory O; Naimy, Hicham; Yin, Hongfeng; Kileen, Kevin; Kraiczek, Karsten; Costello, Catherine E; Zaia, Joseph

    2010-01-15

    Heparan sulfate (HS) and heparin are linear, heterogeneous carbohydrates of the glycosaminoglycan (GAG) family that are modified by N-acetylation, N-sulfation, O-sulfation, and uronic acid epimerization. HS interacts with growth factors in the extracellular matrix, thereby modulating signaling pathways that govern cell growth, development, differentiation, proliferation, and adhesion. High-performance liquid chromatography (HPLC)-chip-based hydrophilic interaction liquid chromatography/mass spectrometry has emerged as a method for analyzing the domain structure of GAGs. However, analysis of highly sulfated GAG structures decasaccharide or larger in size has been limited by spray instability in the negative-ion mode. This report demonstrates that addition of postcolumn makeup flow to the amide-HPLC-chip configuration permits robust and reproducible analysis of extended GAG domains (up to degree of polymerization 18) from HS and heparin. This platform provides quantitative information regarding the oligosaccharide profile, degree of sulfation, and nonreducing chain termini. It is expected that this technology will enable quantitative, comparative glycomics profiling of extended GAG oligosaccharide domains of functional interest.

  5. The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis

    NASA Astrophysics Data System (ADS)

    Mentaschi, Lorenzo; Vousdoukas, Michalis; Voukouvalas, Evangelos; Sartini, Ludovica; Feyen, Luc; Besio, Giovanni; Alfieri, Lorenzo

    2016-09-01

    Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationarity is violated and alternative methods to conventional stationary extreme value analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, in this study we introduce the transformed-stationary (TS) methodology for non-stationary EVA. This approach consists of (i) transforming a non-stationary time series into a stationary one, to which the stationary EVA theory can be applied, and (ii) reverse transforming the result into a non-stationary extreme value distribution. As a transformation, we propose and discuss a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary generalized extreme value (GEV) and generalized Pareto distribution (GPD) models with a constant shape parameter. A validation of the methodology is carried out on time series of significant wave height, residual water level, and river discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For example, in contrast to (a), the proposed technique uses the whole time horizon of the series for the estimation of the extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b), it decouples the detection of non-stationary patterns from the fitting of the extreme value distribution. As a result, the steps of the analysis are simplified and intermediate diagnostics are

  6. Development of a test method for carbonyl compounds from stationary source emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhihua Fan; Peterson, M.R.; Jayanty, R.K.M.

    1997-12-31

    Carbonyl compounds have received increasing attention because of their important role in ground-level ozone formation. The common method used for the measurement of aldehydes and ketones is 2,4-dinitrophenylhydrazine (DNPH) derivatization followed by high performance liquid chromatography and ultra violet (HPLC-UV) analysis. One of the problems associated with this method is the low recovery for certain compounds such as acrolein. This paper presents a study in the development of a test method for the collection and measurement of carbonyl compounds from stationary source emissions. This method involves collection of carbonyl compounds in impingers, conversion of carbonyl compounds to a stable derivativemore » with O-2,3,4,5,6-pentafluorobenzyl hydroxylamine hydrochloride (PFBHA), and separation and measurement by electron capture gas chromatography (GC-ECD). Eight compounds were selected for the evaluation of this method: formaldehyde, acetaldehyde, acrolein, acetone, butanal, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and hexanal.« less

  7. Hydrophilic interaction liquid chromatography for the separation, purification, and quantification of raffinose family oligosaccharides from Lycopus lucidus Turcz.

    PubMed

    Liang, Tu; Fu, Qing; Li, Fangbing; Zhou, Wei; Xin, Huaxia; Wang, Hui; Jin, Yu; Liang, Xinmiao

    2015-08-01

    A systematic strategy based on hydrophilic interaction liquid chromatography was developed for the separation, purification and quantification of raffinose family oligosaccharides from Lycopus lucidus Turcz. Methods with enough hydrophilicity and selectivity were utilized to resolve the problems encountered in the separation of oligosaccharides such as low retention, low resolution and poor solubility. The raffinose family oligosaccharides in L. lucidus Turcz. were isolated using solid-phase extraction followed by hydrophilic interaction liquid chromatography at semi-preparative scale to obtain standards of stachyose, verbascose and ajugose. Utilizing the obtained oligosaccharides as standards, a quantitative determination method was developed, validated and applied for the content determination of raffinose family oligosaccharides both in the aerial and root parts of L. lucidus Turcz. There were no oligosaccharides in the aerial parts, while in the root parts, the total content was 686.5 mg/g with the average distribution: raffinose 66.5 mg/g, stachyose 289.0 mg/g, verbascose 212.4 mg/g, and ajugose 118.6 mg/g. The result provided the potential of roots of L. lucidus Turcz. as new raffinose family oligosaccharides sources for functional food. Moreover, since the present systematic strategy is efficient, sensitive and robust, separation, purification and quantification of oligosaccharides by hydrophilic interaction liquid chromatography seems to be possible. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preparative supercritical fluid chromatography: A powerful tool for chiral separations.

    PubMed

    Speybrouck, David; Lipka, Emmanuelle

    2016-10-07

    In 2012, the 4 biggest pharmaceutical blockbusters were pure enantiomers and separating racemic mixtures is now frequently a key step in the development of a new drug. For a long time, preparative liquid chromatography was the technique of choice for the separation of chiral compounds either during the drug discovery process to get up to a hundred grams of a pure enantiomer or during the clinical trial phases needing kilograms of material. However the advent of supercritical Fluid Chromatography (SFC) in the 1990s has changed things. Indeed, the use of carbon dioxide as the mobile phase in SFC offers many advantages including high flow rate, short equilibration time as well as low solvent consumption. Despite some initial teething troubles, SFC is becoming the primary method for preparative chiral chromatography. This article will cover recent developments in preparative SFC for the separation of enantiomers, reviewing several aspects such as instrumentation, chiral stationary phases, mobile phases or purely preparative considerations including overloading, productivity or large scale chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The Influence of Periodically Non-Stationary Afflux on Transition Behavior of Compressor Grids

    NASA Astrophysics Data System (ADS)

    Teusch, Reinhold

    2001-01-01

    The primary goal of this study is to obtain a deeper look into the physical occurrences within the shovel border layer. The author accomplishes this effort through a detailed examination of non-stationary flow behavior of compressor shovels with Controlled Diffusion Airfoil (CDA)-profiling under the influence of after-running depressions of current salient shovel rows. In addition to the checking of the precision of stationary and non-stationary calculatory processes, criteria are defined for the layout of modern compression shovels under the rubrick of rotor/stator interaction. An overview of the literature is then given regarding both the basic principles of non-stationary transition behavior under the influence of after-running depressions as well as the most up-to-date scholarship on the problematics of the field discussed.

  10. Chelate-modified polymers for atmospheric gas chromatography

    NASA Technical Reports Server (NTRS)

    Christensen, W. W.; Mayer, L. A.; Woeller, F. H. (Inventor)

    1980-01-01

    Chromatographic materials were developed to serve as the stationary phase of columns used in the separation of atmospheric gases. These materials consist of a crosslinked porous polymer matrix, e.g., a divinylbenzene polymer, into which has been embedded an inorganic complexed ion such as N,N'-ethylene-bis-(acetylacetoniminato)-cobalt (2). Organic nitrogenous bases, such as pyridine, may be incorporated into the chelate polymer complexes to increase their chromatographic utility. With such materials, the process of gas chromatography is greatly simplified, especially in terms of time and quantity of material needed for a gas separation.

  11. Iptycene-based stationary phase with three-dimensional aromatic structure for highly selective separation of H-bonding analytes and aromatic isomers.

    PubMed

    Yang, Xiaohong; Han, Ying; Qi, Meiling; Chen, Chuanfeng

    2016-05-06

    Unique structures and molecular recognition ability endow iptycene derivatives with great potential as stationary phases in chromatography, which, however, has not been explored yet. Herein, we report the first example of utilizing a pentiptycene quinone (PQ) for gas chromatographic (GC) separations. Remarkably, the statically coated capillary column with the stationary phase achieved extremely high column efficiency of 4800 plates/m. It exhibited preferential retention and high resolving capability for H-bonding and aromatic analytes and positional isomers, showing advantages over the ordinary polysiloxane phase. Moreover, the fabricated iptycene column showed excellent separation repeatability with RSD values of 0.02-0.06% for intra-day, 0.20-0.35% for inter-day and 3.1-5.5% for between-column, respectively. In conclusion, iptycene derivatives as a new class of stationary phases show promising future for their use in GC separations. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Screening anti-tumor compounds from Ligusticum wallichii using cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry.

    PubMed

    Zhang, Tao; Ding, Yuanyuan; An, Hongli; Feng, Liuxin; Wang, Sicen

    2015-07-14

    Tyrosine 367 Cysteine-fibroblast growth factor receptor 4 cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry was developed. Tyrosine 367 Cysteine-HEK293 cells were used as cell membrane stationary phase. Specificity and reproducibility of the cell membrane chromatography was evaluated using 1-tert-butyl-3-{2-[4-(diethylamino)butylamino]-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl}urea, Nimodipine and dexamethasone acetate. Then, anti-tumor components acting on Tyrosine 367 Cysteine-fibroblast growth factor receptor 4 were screened and identified from extracts of Ligusticum wallichii. Components from the extract were retained on the cell membrane chromatographic column. The retained fraction was directly eluted into high-performance liquid chromatography with mass spectrometry system for separation and identification. Finally, Levistolide A was identified as an active component from Ligusticum wallichii extracts. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan colorimetric assay revealed that Levistolide A inhibits proliferation of overexpressing the mutated receptor cells with dose-dependent manner. Phosphorylation of fibroblast growth factor receptor 4 was also decrease under Levistolide A treatment. Flex dock simulation verified that Levistolide A could bind with the tyrosine kinase domain of fibroblast growth factor receptor 4. Therefore, Levistolide A screened by the cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry can arrest cell growth. In conclusion, the two-dimensional high-performance liquid chromatography method can screen and identify potential anti-tumor ingredients which specifically act on the tyrosine kinase domain of the mutated fibroblast growth factor receptor 4. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Enantiomeric separation of type I and type II pyrethroid insecticides with different chiral stationary phases by reversed-phase high-performance liquid chromatography.

    PubMed

    Zhang, Ping; Yu, Qian; He, Xiulong; Qian, Kun; Xiao, Wei; Xu, Zhifeng; Li, Tian; He, Lin

    2018-04-01

    The enantiomeric separation of type I (bifenthrin, BF) and type II (lambda-cyhalothrin, LCT) pyrethroid insecticides on Lux Cellulose-1, Lux Cellulose-3, and Chiralpak IC chiral columns was investigated by reversed-phase high-performance liquid chromatography. Methanol/water or acetonitrile/water was used as mobile phase at a flow rate of 0.8 mL/min. The effects of chiral stationary phase, mobile phase composition, column temperature, and thermodynamic parameters on enantiomer separation were carefully studied. Bifenthrin got a partial separation on Lux Cellulose-1 column and baseline separation on Lux Cellulose-3 column, while LCT enantiomers could be completely separated on both Lux Cellulose-1 and Lux Cellulose-3 columns. Chiralpak IC provided no separation ability for both BF and LCT. Retention factor (k) and selectivity factor (α) decreased with the column temperature increasing from 10°C to 40°C for both BF and LCT enantiomers. Thermodynamic parameters including ∆H and ∆S were also calculated, and the maximum R s were not always obtained at lowest temperature. Furthermore, the quantitative analysis methods for BF and LCT enantiomers in soil and water were also established. Such results provide a new approach for pyrethroid separation under reversed-phase condition and contribute to environmental risk assessment of pyrethroids at enantiomer level. © 2017 Wiley Periodicals, Inc.

  14. Surface confined ionic liquid as a stationary phase for HPLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qian; Baker, Gary A; Baker, Sheila N

    Trimethoxysilane ionosilane derivatives of room temperature ionic liquids based on alkylimidazolium bromides were synthesized for attachment to silica support material. The derivatives 1-methyl-3-(trimethoxysilylpropyl)imidazolium bromide and 1-butyl-3-(trimethoxysilylpropyl)imidazolium bromide were used to modify the surface of 3 {micro}m diameter silica particles to act as the stationary phase for HPLC. The modified particles were characterized by thermogravimetric analysis (TGA) and {sup 13}C and {sup 29}Si NMR spectroscopies. The surface modification procedure rendered particles with a surface coverage of 0.84 {micro}mol m{sup -2} for the alkylimidazolium bromide. The ionic liquid moiety was predominantly attached to the silica surface through two siloxane bonds of themore » ionosilane derivative (63%). Columns packed with the modified silica material were tested under HPLC conditions. Preliminary evaluation of the stationary phase for HPLC was performed using aromatic carboxylic acids as model compounds. The separation mechanism appears to involve multiple interactions including ion exchange, hydrophobic interaction, and other electrostatic interactions.« less

  15. Microwave-immobilized polybutadiene stationary phase for reversed-phase high-performance liquid chromatography.

    PubMed

    Lopes, Nilva P; Collins, Kenneth E; Jardim, Isabel C S F

    2004-03-19

    Polybutadiene (PBD) has been immobilized on high-performance liquid chromatography (HPLC) silica by microwave radiation at various power levels (52-663 W) and actuation times (3-60 min). Columns prepared from these reversed-phase HPLC materials, as well as from similar non-irradiated materials, were tested with standard sample mixtures and characterized by elemental analysis (%C) and infrared spectroscopy. A microwave irradiation of 20 min at 663 W gives a layer of immobilized PBD that presented good performance. Longer irradiation times give thicker immobilized layers having less favorable chromatographic properties.

  16. Use of limonene in countercurrent chromatography: a green alkane substitute.

    PubMed

    Faure, Karine; Bouju, Elodie; Suchet, Pauline; Berthod, Alain

    2013-05-07

    Counter-current chromatography (CCC) is a preparative separation technique working with the two liquid phases of a biphasic liquid system. One phase is used as the mobile phase when the other, the stationary phase, is held in place by centrifugal fields. Limonene is a biorenewable cycloterpene solvent coming from orange peel waste. It was evaluated as a possible substitute for heptane in CCC separations. The limonene/methanol/water and heptane/methanol/water phase diagrams are very similar at room temperature. The double bonds of the limonene molecule allows for possible π-π interactions with solutes rendering limonene slightly more polar than heptane giving small differences in solute partition coefficients in the two systems. The 24% higher limonene density is a difference with heptane that has major consequences in CCC. The polar and apolar phases of the limonene/methanol/water 10/9/1 v/v have -0.025 g/cm(3) density difference (lower limonene phase) compared to +0.132 g/cm(3) with heptane (upper heptane phase). This precludes the use of this limonene system with hydrodynamic CCC columns that need significant density difference to retain a liquid stationary phase. It is an advantage with hydrostatic CCC columns because density difference is related to the working pressure drop: limonene allows one to work with high centrifugal fields and moderate pressure drop. Limonene has the capability to be a "green" alternative to petroleum-based solvents in CCC applications.

  17. Separating effective high density polyethylene segments from olefin block copolymers using high temperature liquid chromatography with a preloaded discrete adsorption promoting solvent barrier.

    PubMed

    Chatterjee, Tirtha; Rickard, Mark A; Pearce, Eric; Pangburn, Todd O; Li, Yongfu; Lyons, John W; Cong, Rongjuan; deGroot, A Willem; Meunier, David M

    2016-09-23

    Recent advances in catalyst technology have enabled the synthesis of olefin block copolymers (OBC). One type is a "hard-soft" OBC with a high density polyethylene (HDPE) block and a relatively low density polyethylene (VLDPE) block targeted as thermoplastic elastomers. Presently, one of the major challenges is to fractionate HDPE segments from the other components in an experimental OBC sample (block copolymers and VLDPE segments). Interactive high temperature liquid chromatography (HTLC) is ineffective for OBC separation as the HDPE segments and block copolymer chains experience nearly identical enthalpic interactions with the stationary phase and co-elute. In this work we have overcome this challenge by using liquid chromatography under the limiting conditions of desorption (LC LCD). A solvent plug (discrete barrier) is introduced in front of the sample which specifically promotes the adsorption of HDPE segments on the stationary phase (porous graphitic carbon). Under selected thermodynamic conditions, VLDPE segments and block copolymer chains crossed the barrier while HDPE segments followed the pore-included barrier solvent and thus enabled separation. The barrier solvent composition was optimized and the chemical composition of fractionated polymer chains was investigated as a function of barrier solvent strength using an online Fourier-transform infrared (FTIR) detector. Our study revealed that both the HDPE segments as well as asymmetric block copolymer chains (HDPE block length≫VLDPE block length) are retained in the separation and the barrier strength can be tailored to retain a particular composition. At the optimum barrier solvent composition, this method can be applied to separate effective HDPE segments from the other components, which has been demonstrated using an experimental OBC sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Normal-phase liquid chromatography retention behavior of polycyclic aromatic hydrocarbon and their methyl-substituted derivatives on an aminopropyl stationary phase.

    PubMed

    Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A

    2017-09-01

    Retention indices for 124 polycyclic aromatic hydrocarbons (PAHs) and 62 methyl-substituted (Me-) PAHs were determined using normal-phase liquid chromatography (NPLC) on a aminopropyl (NH 2 ) stationary phase. PAH retention behavior on the NH 2 phase is correlated to the total number of aromatic carbons in the PAH structure. Within an isomer group, non-planar isomers generally elute earlier than planar isomers. MePAHs generally elute slightly later but in the same region as the parent PAHs. Correlations between PAH retention behavior on the NH 2 phase and PAH thickness (T) values were investigated to determine the influence of non-planarity for isomeric PAHs with four to seven aromatic rings. Correlation coefficients ranged from r = 0.19 (five-ring peri-condensed molecular mass (MM) 252 Da) to r = -0.99 (five-ring cata-condensed MM 278 Da). In the case of the smaller PAHs (MM ≤ 252 Da), most of the PAHs had a planar structure and provided a low correlation. In the case of larger PAHs (MM ≥ 278 Da), nonplanarity had a significant influence on the retention behavior and good correlation between retention and T was obtained for the MM 278 Da, MM 302 Da, MM 328 Da, and MM 378 Da isomer sets. Graphical abstract NPLC separation of the three-, four-, five-, and six-ring PAH isomers with different number of aromatic carbon atoms and degrees of non-planarity (Thickness, T). The inserted figure plots the number of aromatic carbon atoms vs. the log I value for the 124 parent PAHs.

  19. Application of linear pH gradients for the modeling of ion exchange chromatography: Separation of monoclonal antibody monomer from aggregates.

    PubMed

    Kluters, Simon; Wittkopp, Felix; Jöhnck, Matthias; Frech, Christian

    2016-02-01

    The mobile phase pH is a key parameter of every ion exchange chromatography process. However, mechanistic insights into the pH influence on the ion exchange chromatography equilibrium are rare. This work describes a mechanistic model capturing salt and pH influence in ion exchange chromatography. The pH dependence of the characteristic protein charge and the equilibrium constant is introduced to the steric mass action model based on a protein net charge model considering the number of amino acids interacting with the stationary phase. This allows the description of the adsorption equilibrium of the chromatographed proteins as a function of pH. The model parameters were determined for a monoclonal antibody monomer, dimer, and a higher aggregated species based on a manageable set of pH gradient experiments. Without further modification of the model parameters the transfer to salt gradient elution at fixed pH is demonstrated. A lumped rate model was used to predict the separation of the monoclonal antibody monomer/aggregate mixture in pH gradient elution and for a pH step elution procedure-also at increased protein loadings up to 48 g/L packed resin. The presented model combines both salt and pH influence and may be useful for the development and deeper understanding of an ion exchange chromatography separation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Liposome retention in size exclusion chromatography

    PubMed Central

    Ruysschaert, Tristan; Marque, Audrey; Duteyrat, Jean-Luc; Lesieur, Sylviane; Winterhalter, Mathias; Fournier, Didier

    2005-01-01

    Background Size exclusion chromatography is the method of choice for separating free from liposome-encapsulated molecules. However, if the column is not presaturated with lipids this type of chromatography causes a significant loss of lipid material. To date, the mechanism of lipid retention is poorly understood. It has been speculated that lipid binds to the column material or the entire liposome is entrapped inside the void. Results Here we show that intact liposomes and their contents are retained in the exclusion gel. Retention depends on the pore size, the smaller the pores, the higher the retention. Retained liposomes are not tightly fixed to the beads and are slowly released from the gels upon direct or inverted eluent flow, long washing steps or column repacking. Further addition of free liposomes leads to the elution of part of the gel-trapped liposomes, showing that the retention is transitory. Trapping reversibility should be related to a mechanism of partitioning of the liposomes between the stationary phase, water-swelled polymeric gel, and the mobile aqueous phase. Conclusion Retention of liposomes by size exclusion gels is a dynamic and reversible process, which should be accounted for to control lipid loss and sample contamination during chromatography. PMID:15885140

  1. The Reciprocal Principle of Selectand-Selector-Systems in Supramolecular Chromatography †.

    PubMed

    Schurig, Volker

    2016-11-15

    In selective chromatography and electromigration methods, supramolecular recognition of selectands and selectors is due to the fast and reversible formation of association complexes governed by thermodynamics. Whereas the selectand molecules to be separated are always present in the mobile phase, the selector employed for the separation of the selectands is either part of the stationary phase or is added to the mobile phase. By the reciprocal principle, the roles of selector and selectand can be reversed. In this contribution in honor of Professor Stig Allenmark, the evolution of the reciprocal principle in chromatography is reviewed and its advantages and limitations are outlined. Various reciprocal scenarios, including library approaches, are discussed in efforts to optimize selectivity in separation science.

  2. Use and practice of achiral and chiral supercritical fluid chromatography in pharmaceutical analysis and purification.

    PubMed

    Lemasson, Elise; Bertin, Sophie; West, Caroline

    2016-01-01

    The interest of pharmaceutical companies for complementary high-performance chromatographic tools to assess a product's purity or enhance this purity is on the rise. The high-throughput capability and economic benefits of supercritical fluid chromatography, but also the "green" aspect of CO2 as the principal solvent, render supercritical fluid chromatography very attractive for a wide range of pharmaceutical applications. The recent reintroduction of new robust instruments dedicated to supercritical fluid chromatography and the progress in stationary phase technology have also greatly benefited supercritical fluid chromatography. Additionally, it was shown several times that supercritical fluid chromatography could be orthogonal to reversed-phase high-performance liquid chromatography and could efficiently compete with it. Supercritical fluid chromatography is an adequate tool for small molecules of pharmaceutical interest: synthetic intermediates, active pharmaceutical ingredients, impurities, or degradation products. In this review, we first discuss about general chromatographic conditions for supercritical fluid chromatography analysis to better suit compounds of pharmaceutical interest. We also discuss about the use of achiral and chiral supercritical fluid chromatography for analytical purposes and the recent applications in these areas. The use of preparative supercritical fluid chromatography by pharmaceutical companies is also covered. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Selectivity of hexaphenylbenzene-based hydrocarbon stationary phase with propeller-like conformation for aromatic and aliphatic isomers.

    PubMed

    Yang, Yinhui; Chang, Zhengfeng; Yang, Xiaohong; Qi, Meiling; Wang, Jinliang

    2018-08-03

    Herein we report a propeller-like hexaphenylbenzene-based hydrocarbon material (denoted as BT) as the stationary phase for capillary gas chromatography (GC). The statically-coated BT capillary column showed a high column efficiency of 4340 plates m -1 and weak polarity. Owing to its unique conformation, π-electron toroidal delocalization and intrinsic microporosity, the BT stationary phase exhibited interesting selectivity for aromatic compounds over alkanes. Compared with the graphene (G) column, the BT column showed much prolonged retention and high selectivity for aromatic isomers, especially methylnaphthalenes, dimethylnaphthalenes and phenanthrene/anthracene, mainly because of its propeller-like conformation with rich intercalation effects. Moreover, it exhibited good column repeatability (intra-day, inter-day) and reproducibility (between-column) with RSD values on the retention times less than 0.08% for intra-day, 0.32% for inter-day and 3.8% for between-column, respectively. Also, it showed good potential for determination of minor isomer impurities in real samples. To the best of our knowledge, this work presents the first example of employing an neat aromatic hydrocarbon material as the GC stationary phase with high selectivity for analytes of a wide ranging polarity. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. How High Pressure Unifies Solvation Processes in Liquid Chromatography.

    PubMed

    Bocian, Szymon; Škrinjar, Tea; Bolanca, Tomislav; Buszewski, Bogusław

    2017-11-01

    A series of core-shell-based stationary phases of varying surface chemistry were subjected to solvent adsorption investigation under ultra-HPLC conditions. Acetonitrile and water excess isotherms were measured using a minor disturbance method. It was observed that adsorption of organic solvent is unified under high pressure. Preferential solvation due to specific interactions between the stationary phases and solvent molecules was limited. The obtained results showed that the solvation process is almost independent of surface chemistry, in contrast to HPLC conditions in which specific interactions differentiate solvation processes.

  5. Pressurized planar electrochromatography, high-performance thin-layer chromatography and high-performance liquid chromatography--comparison of performance.

    PubMed

    Płocharz, Paweł; Klimek-Turek, Anna; Dzido, Tadeusz H

    2010-07-16

    Kinetic performance, measured by plate height, of High-Performance Thin-Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Pressurized Planar Electrochromatography (PPEC) was compared for the systems with adsorbent of the HPTLC RP18W plate from Merck as the stationary phase and the mobile phase composed of acetonitrile and buffer solution. The HPLC column was packed with the adsorbent, which was scrapped from the chromatographic plate mentioned. An additional HPLC column was also packed with adsorbent of 5 microm particle diameter, C18 type silica based (LiChrosorb RP-18 from Merck). The dependence of plate height of both HPLC and PPEC separating systems on flow velocity of the mobile phase and on migration distance of the mobile phase in TLC system was presented applying test solute (prednisolone succinate). The highest performance, amongst systems investigated, was obtained for the PPEC system. The separation efficiency of the systems investigated in the paper was additionally confirmed by the separation of test component mixture composed of six hormones. 2010 Elsevier B.V. All rights reserved.

  6. Mixed-mode chromatography/isotope ratio mass spectrometry.

    PubMed

    McCullagh, James S O

    2010-03-15

    Liquid chromatography coupled to molecular mass spectrometry (LC/MS) has been a standard technique since the early 1970s but liquid chromatography coupled to high-precision isotope ratio mass spectrometry (LC/IRMS) has only been available commercially since 2004. This development has, for the first time, enabled natural abundance and low enrichment delta(13)C measurements to be applied to individual analytes in aqueous mixtures creating new opportunities for IRMS applications, particularly for the isotopic study of biological molecules. A growing number of applications have been published in a range of areas including amino acid metabolism, carbohydrates studies, quantification of cellular and plasma metabolites, dietary tracer and nucleic acid studies. There is strong potential to extend these to new compounds and complex matrices but several challenges face the development of LC/IRMS methods. To achieve accurate isotopic measurements, HPLC separations must provide baseline-resolution between analyte peaks; however, the design of current liquid interfaces places severe restrictions on compatible flow rates and in particular mobile phase compositions. These create a significant challenge on which reports associated with LC/IRMS have not previously focused. Accordingly, this paper will address aspects of chromatography in the context of LC/IRMS, in particular focusing on mixed-mode separations and their benefits in light of these restrictions. It aims to provide an overview of mixed-mode stationary phases and of ways to improve high aqueous separations through manipulation of parameters such as column length, temperature and mobile phase pH. The results of several practical experiments are given using proteogenic amino acids and nucleosides both of which are of noted importance in the LC/IRMS literature. This communication aims to demonstrate that mixed-mode stationary phases provide a flexible approach given the constraints of LC/IRMS interface design and acts as a

  7. Nano-liquid chromatography applied to enantiomers separation.

    PubMed

    Fanali, Salvatore

    2017-02-24

    This paper presents the state of the art concerning the separation of chiral compounds by means of nano-liquid chromatography (nano-LC). The enantiomers' separation and determination are a subject of fundamental importance in various application fields such as pharmaceutical industry, biomedicine, food, agrochemical etc. Nano-LC is a miniaturized chromatographic technique offering some advantages over conventional ones such as low consumption of mobile phase, sample volume and amount of chiral stationary phase, reduced costs etc. This is reported in the first part of the paper illustrating the features of the nano-LC. In addition, chiral resolution methods are briefly illustrated. Some chiral selectors, used in high-performance liquid chromatography have also been applied in nano-LC including cyclodextrins, glycopeptide antibiotics, modified polysaccharides etc. This is discussed in the second part of the review. Finally some examples of the applications available in literature are reported. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Evaluation of a hydrophilic interaction liquid chromatography design space for sugars and sugar alcohols.

    PubMed

    Hetrick, Evan M; Kramer, Timothy T; Risley, Donald S

    2017-03-17

    Based on a column-screening exercise, a column ranking system was developed for sample mixtures containing any combination of 26 sugar and sugar alcohol analytes using 16 polar stationary phases in the HILIC mode with acetonitrile/water or acetone/water mobile phases. Each analyte was evaluated on the HILIC columns with gradient elution and the subsequent chromatography data was compiled into a statistical software package where any subset of the analytes can be selected and the columns are then ranked by the greatest separation. Since these analytes lack chromophores, aerosol-based detectors, including an evaporative light scattering detector (ELSD) and a charged aerosol detector (CAD) were employed for qualitative and quantitative detection. Example qualitative applications are provided to illustrate the practicality and efficiency of this HILIC column ranking. Furthermore, the design-space approach was used as a starting point for a quantitative method for the trace analysis of glucose in trehalose samples in a complex matrix. Knowledge gained from evaluating the design-space led to rapid development of a capable method as demonstrated through validation of the following parameters: specificity, accuracy, precision, linearity, limit of quantitation, limit of detection, and range. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Selectivity assessment of DB-200 and DB-VRX open-tubular capillary columns.

    PubMed

    Kiridena, W; Koziola, W W; Poole, C F

    2001-10-12

    The solvation parameter model is used to study the influence of composition and temperature on the selectivity of two poly(siloxane) stationary phases used for open-tubular capillary column gas chromatography. The poly(methyltrifluoropropyldimethylsiloxane) stationary phase, DB-200, has low cohesion, intermediate dipolarity/polarizability, low hydrogen-bond basicity, no hydrogen-bond acidity, and repulsive electron lone pair interactions. The DB-VRX stationary phase has low cohesion, low dipolarity/polarizability, low hydrogen-bond basicity and no hydrogen-bond acidity and no capacity for electron lone pair interactions. The selectivity of the two stationary phases is complementary to those in a database of 11 stationary phase chemistries determined under the same experimental conditions.

  10. Development of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates. Part II. Selection of an orthogonal set of stationary phases.

    PubMed

    Lemasson, Elise; Bertin, Sophie; Hennig, Philippe; Boiteux, Hélène; Lesellier, Eric; West, Caroline

    2015-08-21

    Impurity profiling of organic products that are synthesized as possible drug candidates requires complementary analytical methods to ensure that all impurities are identified. Supercritical fluid chromatography (SFC) is a very useful tool to achieve this objective, as an adequate selection of stationary phases can provide orthogonal separations so as to maximize the chances to see all impurities. In this series of papers, we have developed a method for achiral SFC-MS profiling of drug candidates, based on a selection of 160 analytes issued from Servier Research Laboratories. In the first part of this study, focusing on mobile phase selection, a gradient elution with carbon dioxide and methanol comprising 2% water and 20mM ammonium acetate proved to be the best in terms of chromatographic performance, while also providing good MS response [1]. The objective of this second part was the selection of an orthogonal set of ultra-high performance stationary phases, that was carried out in two steps. Firstly, a reduced set of analytes (20) was used to screen 23 columns. The columns selected were all 1.7-2.5μm fully porous or 2.6-2.7μm superficially porous particles, with a variety of stationary phase chemistries. Derringer desirability functions were used to rank the columns according to retention window, column efficiency evaluated with peak width of selected analytes, and the proportion of analytes successfully eluted with good peak shapes. The columns providing the worst performances were thus eliminated and a shorter selection of columns (11) was obtained. Secondly, based on 160 tested analytes, the 11 columns were ranked again. The retention data obtained on these columns were then compared to define a reduced set of the best columns providing the greatest orthogonality, to maximize the chances to see all impurities within a limited number of runs. Two high-performance columns were thus selected: ACQUITY UPC(2) HSS C18 SB and Nucleoshell HILIC. Copyright © 2015

  11. Enantioselective ultra high performance liquid and supercritical fluid chromatography: The race to the shortest chromatogram.

    PubMed

    Ciogli, Alessia; Ismail, Omar H; Mazzoccanti, Giulia; Villani, Claudio; Gasparrini, Francesco

    2018-03-01

    The ever-increasing need for enantiomerically pure chiral compounds has greatly expanded the number of enantioselective separation methods available for the precise and accurate measurements of the enantiomeric purity. The introduction of chiral stationary phases for liquid chromatography in the last decades has revolutionized the routine methods to determine enantiomeric purity of chiral drugs, agrochemicals, fragrances, and in general of organic and organometallic compounds. In recent years, additional efforts have been placed on faster, enantioselective analytical methods capable to fulfill the high throughput requirements of modern screening procedures. Efforts in this field, capitalizing on improved chromatographic particle technology and dedicated instrumentation, have led to highly efficient separations that are routinely completed on the seconds time scale. An overview of the recent achievements in the field of ultra-high-resolution chromatography on column packed with chiral stationary phases, both based on sub-2 μm fully porous and sub-3 μm superficially porous particles, will be given, with an emphasis on very recent studies on ultrafast chiral separations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Self-Interaction Chromatography of mAbs: Accurate Measurement of Dead Volumes.

    PubMed

    Hedberg, S H M; Heng, J Y Y; Williams, D R; Liddell, J M

    2015-12-01

    Measurement of the second virial coefficient B22 for proteins using self-interaction chromatography (SIC) is becoming an increasingly important technique for studying their solution behaviour. In common with all physicochemical chromatographic methods, measuring the dead volume of the SIC packed column is crucial for accurate retention data; this paper examines best practise for dead volume determination. SIC type experiments using catalase, BSA, lysozyme and a mAb as model systems are reported, as well as a number of dead column measurements. It was observed that lysozyme and mAb interacted specifically with Toyopearl AF-Formyl dead columns depending upon pH and [NaCl], invalidating their dead volume usage. Toyopearl AF-Amino packed dead columns showed no such problems and acted as suitable dead columns without any solution condition dependency. Dead volume determinations using dextran MW standards with protein immobilised SIC columns provided dead volume estimates close to those obtained using Toyopearl AF-Amino dead columns. It is concluded that specific interactions between proteins, including mAbs, and select SIC support phases can compromise the use of some standard approaches for estimating the dead volume of SIC columns. Two other methods were shown to provide good estimates for the dead volume.

  13. Theory and applications of a novel ion exchange chromatographic technology using controlled pH gradients for separating proteins on anionic and cationic stationary phases.

    PubMed

    Tsonev, Latchezar I; Hirsh, Allen G

    2008-07-25

    pISep is a major new advance in low ionic strength ion exchange chromatography. It enables the formation of externally controlled pH gradients over the very broad pH range from 2 to 12. The gradients can be generated on either cationic or anionic exchangers over arbitrary pH ranges wherein the stationary phases remain totally charged. Associated pISep software makes possible the calculation of either linear, nonlinear or combined, multi-step, multi-slope pH gradients. These highly reproducible pH gradients, while separating proteins and glycoproteins in the order of their electrophoretic pIs, provide superior chromatographic resolution compared to salt. This paper also presents a statistical mechanical model for protein binding to ion exchange stationary phases enhancing the electrostatic interaction theory for the general dependence of retention factor k, on both salt and pH simultaneously. It is shown that the retention factors computed from short time isocratic salt elution data of a model protein can be used to accurately predict its salt elution concentration in varying slope salt elution gradients formed at varying isocratic pH as well as the pH at which it will be eluted from an anionic exchange column by a pISep pH gradient in the absence of salt.

  14. Determination of citrus limonoid glucosides by high performance liquid chromatography coupled to post-column reaction with Ehrlich’s Reagent

    USDA-ARS?s Scientific Manuscript database

    A method for the identification and quantification of citrus limonoid glucosides in juices based upon high performance liquid chromatography (HPLC) separation coupled to post-column reaction with Ehrlichs’s reagent has been developed. This method utilizes a phenyl stationary phase and an isocratic ...

  15. Revisiting resolution in hydrodynamic countercurrent chromatography: tubing bore effect.

    PubMed

    Berthod, A; Faure, K

    2015-04-17

    A major challenge in countercurrent chromatography (CCC), the technique that works with a support-free biphasic liquid system, is to retain the liquid stationary phase inside the CCC column (Sf parameter). Two solutions are commercially available: the hydrostatic CCC columns, also called centrifugal partition chromatographs (CPC), with disks of interconnected channels and rotary seals, and the hydrodynamic CCC columns with bobbins of coiled open tube and no rotary seals. It was demonstrated that the amount of liquid stationary phase retained by a coiled tube was higher with larger bore tubing than with small bore tubes. At constant column volume, small bore tubing will be longer producing more efficiency than larger bore tube that will better retain the liquid stationary phase. Since the resolution equation in CCC is depending on both column efficiency and stationary phase retention ratio, the influence of the tubing bore should be studied. This theoretical work showed that there is an optimum tubing bore size depending on solute partition coefficient and mobile phase flow rate. The interesting result of the theoretical study is that larger tubing bores allow for dramatically reduced experiment durations for all solutes: in reversed phase CCC (polar mobile phase), hydrophobic solutes are usually highly retained. These apolar solutes can be separated by the same coil at high flow rates and reduced Sf with similar retention times as polar solutes separated at smaller flow rates and much higher Sf. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Stationary and non-stationary extreme value modeling of extreme temperature in Malaysia

    NASA Astrophysics Data System (ADS)

    Hasan, Husna; Salleh, Nur Hanim Mohd; Kassim, Suraiya

    2014-09-01

    Extreme annual temperature of eighteen stations in Malaysia is fitted to the Generalized Extreme Value distribution. Stationary and non-stationary models with trend are considered for each station and the Likelihood Ratio test is used to determine the best-fitting model. Results show that three out of eighteen stations i.e. Bayan Lepas, Labuan and Subang favor a model which is linear in the location parameter. A hierarchical cluster analysis is employed to investigate the existence of similar behavior among the stations. Three distinct clusters are found in which one of them consists of the stations that favor the non-stationary model. T-year estimated return levels of the extreme temperature are provided based on the chosen models.

  17. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones.

    PubMed

    Carnes, Stephanie; O'Brien, Stacey; Szewczak, Angelica; Tremeau-Cayel, Lauriane; Rowe, Walter F; McCord, Bruce; Lurie, Ira S

    2017-09-01

    A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Refolding and simultaneous purification of recombinant human proinsulin from inclusion bodies on protein-folding liquid-chromatography columns.

    PubMed

    Yuan, Jie; Zhou, Huifang; Yang, Yicong; Li, Weimin; Wan, Yi; Wang, Lili

    2015-05-01

    Protein-folding liquid chromatography (PFLC) is an effective and scalable method for protein renaturation with simultaneous purification. However, it has been a challenge to fully refold inclusion bodies in a PFLC column. In this work, refolding with simultaneous purification of recombinant human proinsulin (rhPI) from inclusion bodies from Escherichia coli were investigated using the surface of stationary phases in immobilized metal ion affinity chromatography (IMAC) and high-performance size-exclusion chromatography (HPSEC). The results indicated that both the ligand structure on the surface of the stationary phase and the composition of the mobile phase (elution buffer) influenced refolding of rhPI. Under optimized chromatographic conditions, the mass recoveries of IMAC column and HPSEC column were 77.8 and 56.8% with purifies of 97.6 and 93.7%, respectively. These results also indicated that the IMAC column fails to refold rhPI, and the HPSEC column enables efficient refolding of rhPI with a low-urea gradient-elution method. The refolded rhPI was characterized by circular dichroism spectroscopy. The molecular weight of the converted human insulin was further confirmed with SDS-18% PAGE, Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) and the biological activity assay by HP-RPLC. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Exploring Liquid Sequential Injection Chromatography to Teach Fundamentals of Separation Methods: A Very Fast Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Penteado, Jose C.; Masini, Jorge Cesar

    2011-01-01

    Influence of the solvent strength determined by the addition of a mobile-phase organic modifier and pH on chromatographic separation of sorbic acid and vanillin has been investigated by the relatively new technique, liquid sequential injection chromatography (SIC). This technique uses reversed-phase monolithic stationary phase to execute fast…

  20. COMPUTER-ASSISTED HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY METHOD DEVELOPMENT WITH APPLICATIONS TO THE ISOLATION AND ANALYSIS OF PHYTOPLANKTON PIGMENTS. (R826944)

    EPA Science Inventory

    We used chromatography modeling software to assist in HPLC method development, with the goal
    of enhancing separations through the exclusive use of gradient time and column temperature. We
    surveyed nine stationary phases for their utility in pigment purification and natur...

  1. Supercritical Fluid Chromatography--Theoretical Background and Applications on Natural Products.

    PubMed

    Hartmann, Anja; Ganzera, Markus

    2015-11-01

    The use of supercritical fluid chromatography for natural product analysis as well as underlying theoretical mechanisms and instrumental requirements are summarized in this review. A short introduction focusing on the historical development of this interesting separation technique is followed by remarks on the current instrumental design, also describing possible detection modes and useable stationary phases. The overview on relevant applications is grouped based on their basic intention, may it be (semi)preparative or purely analytical. They indicate that supercritical fluid chromatography is still primarily considered for the analysis of nonpolar analytes like carotenoids, fatty acids, or terpenes. The low polarity of supercritical carbon dioxide, which is used with modifiers almost exclusively as a mobile phase today, combined with high efficiency and fast separations might explain the popularity of supercritical fluid chromatography for the analysis of these compounds. Yet, it has been shown that more polar natural products (e.g., xanthones, flavonoids, alkaloids) are separable too, with the same (if not superior) selectivity and reproducibility than established approaches like HPLC or GC. Georg Thieme Verlag KG Stuttgart · New York.

  2. Adaptation of Mycobacterium smegmatis to Stationary Phase

    PubMed Central

    Smeulders, Marjan J.; Keer, Jacquie; Speight, Richard A.; Williams, Huw D.

    1999-01-01

    Mycobacterium tuberculosis can persist for many years within host lung tissue without causing clinical disease. Little is known about the state in which the bacilli survive, although it is frequently referred to as dormancy. Some evidence suggests that cells survive in nutrient-deprived stationary phase. Therefore, we are studying stationary-phase survival of Mycobacterium smegmatis as a model for mycobacterial persistence. M. smegmatis cultures could survive 650 days of either carbon, nitrogen, or phosphorus starvation. In carbon-limited medium, cells entered stationary phase before the carbon source (glycerol) had been completely depleted and glycerol uptake from the medium continued during the early stages of stationary phase. These results suggest that the cells are able to sense when the glycerol is approaching limiting concentrations and initiate a shutdown into stationary phase, which involves the uptake of the remaining glycerol from the medium. During early stationary phase, cells underwent reductive cell division and became more resistant to osmotic and acid stress and pool mRNA stabilized. Stationary-phase cells were also more resistant to oxidative stress, but this resistance was induced during late exponential phase in a cell-density-dependent manner. Upon recovery in fresh medium, stationary-phase cultures showed an immediate increase in protein synthesis irrespective of culture age. Colony morphology variants accumulated in stationary-phase cultures. A flat colony variant was seen in 75% of all long-term-stationary-phase cultures and frequently took over the whole population. Cryo scanning electron microscopy showed that the colony organization was different in flat colony strains, flat colonies appearing less well organized than wild-type colonies. Competition experiments with an exponential-phase-adapted wild-type strain showed that the flat strain had a competitive advantage in stationary phase, as well a providing evidence that growth and cell

  3. Gas chromatographic retention behavior of polycyclic aromatic hydrocarbons (PAHs) and alkyl-substituted PAHs on two stationary phases of different selectivity.

    PubMed

    Nalin, Federica; Sander, Lane C; Wilson, Walter B; Wise, Stephen A

    2018-01-01

    Retention indices (I) for 45 polycyclic aromatic hydrocarbons (PAHs) and 63 methyl-substituted PAHs were determined by gas chromatography - mass spectrometry (GC-MS) using two different stationary phases: a Rxi-PAH phase (a "higher phenyl-content stationary phase") and a 50% (mole fraction) liquid crystalline dimethylpolysiloxane phase. Retention data were obtained for parent PAHs from molecular mass (MM) 128 g/mol (naphthalene) to 328 g/mol (benzo[c]picene) and for 12 sets of methyl-PAHs (methylfluorenes, methylanthracenes, methylphenanthrenes, methylfluoranthenes, methylpyrenes, methylbenz[a]anthracenes, methylbenzo[c]phenanthrenes, methylchrysenes, methyltriphenylenes, methylbenzo[a]pyrenes, methylperylenes, and methylpicenes). Molecular shape descriptors such as length-to-breath ratio (L/B) and thickness (T) were determined for all the PAHs studied. Correlation between I and L/B ratio was evaluated for both stationary phases with a better correlation observed for the 50% liquid crystalline phase (correlation coefficients ranging from 0.22 to 1.00). Graphical Abstract GC separation of six methylchrysene isomers (m/z 242) on two different stationary phases: 50 % phenyl-like methylpolysiloxane phase and 50 % liquid crystalline phase. Retention indices (I) are plotted as a function of L/B for both phases. The data marker numbers identify each isomer based on methyl-substitution position.

  4. Fingerprinting of traditional Chinese medicines on the C18-Diol mixed-mode column in online or offline two-dimensional liquid chromatography on the single column modes.

    PubMed

    Wang, Qing; Tong, Ling; Yao, Lin; Zhang, Peng; Xu, Li

    2016-06-05

    In the present study, a mixed-mode stationary phase, C18-Diol, was applied for fingerprint analysis of traditional Chinese medicines. Hydrophobic, hydrogen bonding and electrostatic interactions were demonstrated to contribute the retention separately or jointly, which endowed the C18-Diol stationary phase with distinct selectivity compared to the bare C18 one. The separation of total alkaloids extracted from Fritillaria hupehensis was compared on the C18-Diol and conventional C18 column with the greater resolving power and better symmetry responses on the former one. Besides, a novel two-dimensional liquid chromatography on the single column (2D-LC-1C) was realized on C18-Diol with the offline mode for the alcohol extract of Fritillaria hupehensis and online mode for Ligusticum chuanxiong Hort. The early co-eluted extracted components with great polarity on the first dimension were reinjected on the same column and well separated on the second dimension. The results exhibited that the two complementary RPLC and HILIC modes on C18-Diol stationary phase enhanced the separation capacity and revealed more abundant chemical information of the sample, which was a powerful tool in analyzing complex herbal medicines. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. [[Chiral separation of five arylpropionic acid drugs and determination of their enantiomers in pharmaceutical preparations by reversed-phase high performance liquid chromatography with cellulose-tris-(4-methylbenzoate) stationary phase

    PubMed

    Luo, An; Wan, Qiang; Fan, Huajun; Chen, Zhi; Wu, Xuehao; Huang, Xiaowen; Zang, Linquan

    2014-09-01

    Chromatographic behaviors for enantiomeric separation of arylpropionic acid drugs were systematically developed by reversed phase-high performance liquid chromatography (RP-HPLC) using cellulose-tris-(4-methylbenzoate) (CTMB) as chiral stationary phase (CSP). The effects of the composition of the mobile phase, additives and temperature on chiral separation of flurbiprofen, pranoprofen, naproxen, ibuprofen and loxoprofen were further investigated. The enantiomers had been successfully separated on CSP of CTMB by the mobile phase of methanol-0.1% (v/v) formic acid except naproxen by acetonitrile-0.1% (v/v) formic acid at 25 °C. The mechanisms of the racemic resolution for the above mentioned five drugs are discussed thermodynamically and structurally. The resolutions between respective enantiomers for arylpropionic acid drugs on CTMB had significant differences due to their chromatographic behaviors. The order of resolutions ranked pranoprofen, loxoprofen, flurbiprofen, ibuprofen and naproxen. The method established has been successfully applied to the determination of the enantiomers of the five drugs in commercial preparations under the optimized conditions. It proved that the method is simple, reliable and accurate.

  6. Stationary states in quantum walk search

    NASA Astrophysics Data System (ADS)

    PrÅ«sis, Krišjānis; Vihrovs, Jevgěnijs; Wong, Thomas G.

    2016-09-01

    When classically searching a database, having additional correct answers makes the search easier. For a discrete-time quantum walk searching a graph for a marked vertex, however, additional marked vertices can make the search harder by causing the system to approximately begin in a stationary state, so the system fails to evolve. In this paper, we completely characterize the stationary states, or 1-eigenvectors, of the quantum walk search operator for general graphs and configurations of marked vertices by decomposing their amplitudes into uniform and flip states. This infinitely expands the number of known stationary states and gives an optimization procedure to find the stationary state closest to the initial uniform state of the walk. We further prove theorems on the existence of stationary states, with them conditionally existing if the marked vertices form a bipartite connected component and always existing if nonbipartite. These results utilize the standard oracle in Grover's algorithm, but we show that a different type of oracle prevents stationary states from interfering with the search algorithm.

  7. Determination of the purity of valine by isocratic liquid chromatography coupled with charged aerosol detection (CAD).

    PubMed

    Lodi, A; Angus, M; Nap, C J; Skellern, G; Nicolas, A

    2015-01-01

    A liquid chromatography coupled with charged aerosol detection (LC-CAD) procedure; capable of separating and quantifying the most common impurities of valine at levels as low as 0.05 per cent (m/m), has been developed. The procedure is simple (isocratic), rapid, linear, sensitive and repeatable. It employs a widely available and inexpensive stationary phase (C18).

  8. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    PubMed

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Poly(alkylmethylsiloxanes) thermally immobilized on silica as stationary phases for high-performance liquid chromatography.

    PubMed

    Bottoli, Carla B G; Chaudhry, Zahra F; Fonseca, Dania A; Collins, Kenneth E; Collins, Carol H

    2002-03-01

    Poly(methyloctylsiloxane) (PMOS) and poly(methyloctadecylsiloxane) (PMODS) were sorbed onto porous HPLC silica and thermally immobilized, in the absence of radical initiators, at temperatures in the range of 80 to 180 degrees C. Following extraction of non-immobilized polymer the materials were packed into columns and their chromatographic properties evaluated. The shorter chain (PMOS) stationary phase showed good HPLC characteristics after thermal immobilizations up to 120 degrees C while the longer chain (PMODS) phase gave satisfactory HPLC phases following thermal immobilizations at 80 and 100 degrees C. Stability evaluation for the PMOS and PMODS columns immobilized at 100 degrees C required 250 ml of pH 8.5 mobile phase at 60 degrees C to significantly decrease efficiency, suggesting a long useful life time at neutral pH and ambient temperature.

  10. Characterizing plant cell wall derived oligosaccharides using hydrophilic interaction chromatography with mass spectrometry detection.

    PubMed

    Leijdekkers, A G M; Sanders, M G; Schols, H A; Gruppen, H

    2011-12-23

    Analysis of complex mixtures of plant cell wall derived oligosaccharides is still challenging and multiple analytical techniques are often required for separation and characterization of these mixtures. In this work it is demonstrated that hydrophilic interaction chromatography coupled with evaporative light scattering and mass spectrometry detection (HILIC-ELSD-MS(n)) is a valuable tool for identification of a wide range of neutral and acidic cell wall derived oligosaccharides. The separation potential for acidic oligosaccharides observed with HILIC is much better compared to other existing techniques, like capillary electrophoresis, reversed phase and porous-graphitized carbon chromatography. Important structural information, such as presence of methyl esters and acetyl groups, is retained during analysis. Separation of acidic oligosaccharides with equal charge yet with different degrees of polymerization can be obtained. The efficient coupling of HILIC with ELSD and MS(n)-detection enables characterization and quantification of many different oligosaccharide structures present in complex mixtures. This makes HILIC-ELSD-MS(n) a versatile and powerful additional technique in plant cell wall analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Determination of pterins in urine by HPLC with UV and fluorescent detection using different types of chromatographic stationary phases (HILIC, RP C8, RP C18).

    PubMed

    Kośliński, Piotr; Jarzemski, Piotr; Markuszewski, Michał J; Kaliszan, Roman

    2014-03-01

    Pterins are a class of potential cancer biomarkers. New methods involving hydrophilic interaction liquid chromatography (HILIC) and reversed phase (RP) high-performance liquid chromatography have been developed for analysis of eight pterin compounds: 6,7-dimethylpterin, pterin, 6-OH-methylpterin, biopterin, isoxanthopterin, neopterin, xanthopterin, and pterin-6-carboxylic acid. The effect of mobile phase composition, buffer type, pH and concentration on retention using HILIC, C8 and C18 RP stationary phases were examined. Separation of pterins on RP and HILIC stationary phase was performed and optimized. Eight pterins were successfully separated on HILIC Luna diol-bonded phases, Aquasil C18 RP column and LiChrospher C8 RP column. Determination and separation of the pterins from urine samples were performed on HILIC Luna and LiChrospher C8 RP columns which were chosen as the most appropriate ones. Finally, LiChrospher C8 RP column with fluorescence detection was selected for further validation of the method. The optimum chromatographic condition was mobile phase methanol (A)/phosphoric buffer pH 7, 10mM (B), isocratic elution 0-15min 5% A flow=0.5ml/min 15-17min. 5% A, flow=0.5-1ml/min the linearity (R(2)>0.997) and retention time repeatability (RSD%<1) were at satisfactory level. The precision of peak areas expressed as RSD in % was between 0.55 and 14. Pterins detection limits varied from 0.041ng/ml to 2.9ng/ml. Finally, HPLC method was used for the analysis of pterins in urine samples with two different oxidation procedures. Concentration levels of pterin compounds in bladder cancer patients and healthy subjects were compared. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Fabrication of powdery polymer aerogel as the stationary phase for high-resolution gas chromatographic separation.

    PubMed

    Zheng, Juan; Lu, Cuiming; Huang, Junlong; Chen, Luyi; Ni, Chuyi; Xie, Xintong; Zhu, Fang; Wu, Dingcai; Ouyang, Gangfeng

    2018-08-15

    Novel powdery polymer aerogel (PPA) prepared via the (micro)emulsion polymerization and the following hyper crosslinking reaction was fabricated as stationary phase of capillary column for the first time. Due to its powdery morphology, unique 3D nano-network structure, high surface area and good thermostability, the PPA-coated capillary column demonstrated high-resolution chromatographic separation towards nonpolar and weakly polar organic compounds, including benzene series, n-alkanes, ketone mixtures and trichlorobenzenes. Moreover, the reproducibility, quantitative analysis ability and thermostability of PPA-coated capillary column were also evaluated. The relative standard deviations for three replicate determinations of selected analytes were 0.02-0.11%, 0.12-0.26% and 1.2-3.6% for run-to-run, day-to-day and column-to-column analyses, respectively. The PPA demonstrated good thermostability, and the PPA-coated capillary column was proved to be heat-resistant (270 °C). The results of this study show PPA is an excellent candidate to be employed as stationary phase for gas chromatography capillary. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Comparison of analytical protein separation characteristics for three amine-based capillary-channeled polymer (C-CP) stationary phases.

    PubMed

    Jiang, Liuwei; Marcus, R Kenneth

    2016-02-01

    Capillary-channeled polymer (C-CP) fiber stationary phases are finding utility in the realms of protein analytics as well as downstream processing. We have recently described the modification of poly(ethylene terephthalate) (PET) C-CP fibers to affect amine-rich phases for the weak anion-exchange (WAX) separation of proteins. Polyethylenimine (PEI) is covalently coupled to the PET surface, with subsequent cross-linking imparted by treatment with 1,4-butanediol diglycidyl ether (BUDGE). These modifications yield vastly improved dynamic binding capacities over the unmodified fibers. We have also previously employed native (unmodified) nylon 6 C-CP fibers as weak anion/cation-exchange (mixed-mode) and hydrophobic interaction chromatography (HIC) phases for protein separations. Polyamide, nylon 6, consists of amide groups along the polymer backbone, with primary amines and carboxylic acid end groups. The analytical separation characteristics of these three amine-based C-CP fiber phases are compared here. Each of the C-CP fiber columns in this study was shown to be able to separate a bovine serum albumin/hemoglobin/lysozyme mixture at high mobile phase linear velocity (∼70 mm s(-1)) but with different elution characteristics. These differences reflect the types of protein-surface interactions that are occurring, based on the active group composition of the fiber surfaces. This study provides important fundamental understanding for the development of surface-modified C-CP fiber columns for protein separation.

  14. Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones.

    PubMed

    Aral, Hayriye; Aral, Tarık; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep

    2013-11-15

    A novel amide-bonded silica stationary phase was prepared starting from N-Boc-phenylalanine, cyclohexylamine and spherical silica gel (4 µm, 60 Å). The amide ligand was synthesised with high yield. The resulting amide bonded stationary phase was characterised by SEM, IR and elemental analysis. The resulting selector bearing a polar amide group is used for the reversed-phase chromatography separation of different classes of thirteen phytohormones (plant hormones). The chromatographic behaviours of these analytes on the amide-silica stationary phase were compared with those of RP-C18 column under same conditions. The effects of different separation conditions, such as mobile phase, pH value, flow rate and temperature, on the separation and retention behaviours of the 13 phytohormones in this system were studied. The optimum separation was achieved using reversed-phase HPLC gradient elution with an aqueous mobile phase containing pH=6.85 potassium phosphate buffer (20 mM) and acetonitrile with a 22 °C column temperature. Under these experimental conditions, the 12 phytohormones could be separated and detected at 230 or 270 nm within 26 min. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Incorporation of ionic liquid into porous polymer monoliths to enhance the separation of small molecules in reversed-phase high-performance liquid chromatography.

    PubMed

    Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan

    2015-06-01

    An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. SEPARATION OF SOME RARE EARTHS BY REVERSED-PHASE PARTITION CHROMATOGRAPHY. Report No. 129/V; Rozdzielenie Niektorych Ziem Rzadkich za Pomoca Chromatografii Podzialowej z Odwroconymi Fazami

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siekierski, S.; Fidelis, I.

    1960-01-01

    The reversed phase partition chromatography was applied to the separation of small amounts of some rare earths. As a stationary phase TBP was used. and the elution was carried out with concentrated HNO/sub 3/. (auth)

  17. Determination of fat- and water-soluble vitamins by supercritical fluid chromatography: A review.

    PubMed

    Tyśkiewicz, Katarzyna; Dębczak, Agnieszka; Gieysztor, Roman; Szymczak, Tomasz; Rój, Edward

    2018-01-01

    Vitamins are compounds that take part in all basic functions of an organism but also are subject of number of studies performed by different researchers. Two groups of vitamins are distinguished taking into consideration their solubility. Chromatography with supercritical CO 2 has found application in the determination, separation, and quantitative analyses of both fat- and water-soluble vitamins. The methods of vitamins separation have developed and improved throughout the years. Both groups of compounds were separated using supercritical fluid chromatography with different detection on different stationary phases. The main aim of this review is to provide an overview of the studies of vitamins separation that have been determined so far. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. 30 CFR 57.14115 - Stationary grinding machines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Stationary grinding machines. 57.14115 Section... and Equipment Safety Devices and Maintenance Requirements § 57.14115 Stationary grinding machines. Stationary grinding machines, other than special bit grinders, shall be equipped with— (a) Peripheral hoods...

  19. 30 CFR 57.14115 - Stationary grinding machines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines. 57.14115 Section... and Equipment Safety Devices and Maintenance Requirements § 57.14115 Stationary grinding machines. Stationary grinding machines, other than special bit grinders, shall be equipped with— (a) Peripheral hoods...

  20. A chromatographic estimate of the degree of surface heterogeneity of reversed-phase liquid chromatography packing materials II-Endcapped monomeric C18-bonded stationary phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritti, Fabrice; Guiochon, Georges A

    2006-01-01

    In a previous report, the heterogeneity of a non-endcapped C{sub 30}-bonded stationary phase was investigated, based on the results of the measurements of the adsorption isotherms of two neutral compounds (phenol and caffeine) and two ionizable compounds (sodium naphthalene sulfonate and propranololium chloride) by frontal analysis (FA). The same method is applied here for the characterization of the surface heterogeneity of two new brands of endcapped C{sub 18}-bonded stationary phases (Gemini and Sunfire). The adsorption isotherms of the same four chemicals were measured by FA and the results confirmed by the independent calculation of the adsorption energy distribution (AED), usingmore » the expectation-maximization (EM) method. The effect of the length of the bonded alkyl chain was investigated. Shorter alkyl-bonded-chains (C{sub 18} versus C{sub 30}) and the end-capping of the silica surface contribute to decrease the surface heterogeneity under the same experimental conditions (30% methanol, 25 mM NaCl). The AEDs of phenol and caffeine are bimodal with the C{sub 18}-bonded columns while they are trimodal and quadrimodal, respectively, with a non-endcapped C{sub 30}-bonded column. The 'supersites' (adsorption energy >20 kJ/mol) found on the C{sub 30}-Prontosil column and attributed to a cation exchange mechanism completely disappear on the C{sub 18}-Gemini and C{sub 18}-Sunfire, probably because the end-capping of the silica surface eliminates most if not all the ionic interactions.« less

  1. 30 CFR 56.14115 - Stationary grinding machines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Stationary grinding machines. 56.14115 Section... Equipment Safety Devices and Maintenance Requirements § 56.14115 Stationary grinding machines. Stationary grinding machines, other than special bit grinders, shall be equipped with— (a) Peripheral hoods capable of...

  2. 30 CFR 56.14115 - Stationary grinding machines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines. 56.14115 Section... Equipment Safety Devices and Maintenance Requirements § 56.14115 Stationary grinding machines. Stationary grinding machines, other than special bit grinders, shall be equipped with— (a) Peripheral hoods capable of...

  3. Liquid chromatography and supercritical fluid chromatography as alternative techniques to gas chromatography for the rapid screening of anabolic agents in urine.

    PubMed

    Desfontaine, Vincent; Nováková, Lucie; Ponzetto, Federico; Nicoli, Raul; Saugy, Martial; Veuthey, Jean-Luc; Guillarme, Davy

    2016-06-17

    This work describes the development of two methods involving supported liquid extraction (SLE) sample treatment followed by ultra-high performance liquid chromatography or ultra-high performance supercritical fluid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS and UHPSFC-MS/MS) for the screening of 43 anabolic agents in human urine. After evaluating different stationary phases, a polar-embedded C18 and a diol columns were selected for UHPLC-MS/MS and UHPSFC-MS/MS, respectively. Sample preparation, mobile phases and MS conditions were also finely tuned to achieve highest selectivity, chromatographic resolution and sensitivity. Then, the performance of these two methods was compared to the reference routine procedure for steroid analyses in anti-doping laboratories, which combines liquid-liquid extraction (LLE) followed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). For this purpose, urine samples spiked with the compounds of interest at five different concentrations were analyzed using the three analytical platforms. The retention and selectivity of the three techniques were very different, ensuring a good complementarity. However, the two new methods displayed numerous advantages. The overall procedure was much faster thanks to high throughput SLE sample treatment using 48-well plates and faster chromatographic analysis. Moreover, the highest sensitivity was attained using UHPLC-MS/MS with 98% of the doping agents detected at the lowest concentration level (0.1ng/mL), against 76% for UHPSFC-MS/MS and only 14% for GC-MS/MS. Finally, the weakest matrix effects were obtained with UHPSFC-MS/MS with 76% of the analytes displaying relative matrix effect between -20 and 20%, while the GC-MS/MS reference method displayed very strong matrix effects (over 100%) for all of the anabolic agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Separation of metalloporphyrins from metallation reactions by liquid chromatography and electrophoresis.

    PubMed

    Duff, G A; Yeager, S A; Singhal, A K; Pestel, B C; Ressner, J M; Foster, N

    1987-04-24

    The analytical separation of the indium and manganese complexes of three synthetic, meso-substituted, water-soluble porphyrins from their respective free bases in metallation reaction mixtures is described. The ligands tetra-3N-methylpyridyl porphyrin, tetra-4N-methylpyridyl porphyrin and tetra-N,N,N-trimethylanilinium porphyrin are complexed with In (III) and Mn (III) and are separated from residual free base by high-performance liquid chromatography (HPLC) in acidic conditions with gradient elution on ODS bonded stationary phase. Electrophoretic separation is achieved on both cellulose polyacetate strips and polyacrylamide tube gels under basic conditions. Although analytical separations can be achieved by both HPLC and electrophoresis, only HPLC is suitable for the development of preparative scale separations. Column chromatography, ion-pairing and ion-suppression HPLC techniques fail to separate such highly charged and closely related aromatic compounds.

  5. Determination of drug lipophilicity by phosphatidylcholine-modified microemulsion high-performance liquid chromatography.

    PubMed

    Xuan, Xueyi; Xu, Liyuan; Li, Liangxing; Gao, Chongkai; Li, Ning

    2015-07-25

    A new biomembrane-mimetic liquid chromatographic method using a C8 stationary phase and phosphatidylcholine-modified (PC-modified) microemulsion mobile phase was used to estimate unionized and ionized drugs lipophilicity expressed as an n-octanol/water partition coefficient (logP and logD). The introduction of PC into sodium dodecyl sulfate (SDS) microemulsion yielded a good correlation between logk and logD (R(2)=0.8). The optimal composition of the PC-modified microemulsion liquid chromatography (PC-modified MELC) mobile phase was 0.2% PC-3.0% SDS-6.0% n-butanol-0.8% ethyl acetate-90.0% water (pH 7.0) for neutral and ionized molecules. The interactions between the analytes and system described by this chromatographic method is more similar to biological membrane than the n-octanol/water partition system. The result in this paper suggests that PC-modified MELC can serve as a possible alternative to the shake-flask method for high-throughput unionized and ionized drugs lipophilicity determination and simulation of biological processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. pi-Selective stationary phases: (II) Adsorption behavior of substituted aromatic compounds on n-alkyl-phenyl stationary phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritti, Fabrice; Guiochon, Georges A; Mayfield, Kirsty

    2010-01-01

    The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute-solute interactions that are likely caused by p-p interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weightmore » aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.« less

  7. Stationary Engineering. Science Manual--2.

    ERIC Educational Resources Information Center

    Frost, Harold J.; Steingress, Frederick M.

    This second-year student manual contains 140 brief related science lessons applying science and math to trade activities in the field of stationary engineering. The lessons are organized into 16 units: (1) Introduction to Stationary Engineering, (2) Engineering Fundamentals, (3) Steam Boilers, (4) Boiler Fittings, (5) Boilerroom System, (6)…

  8. Monolithic stationary phases with a longitudinal gradient of porosity.

    PubMed

    Urban, Jiří; Hájek, Tomáš; Svec, Frantisek

    2017-04-01

    The duration of the hypercrosslinking reaction has been used to control the extent of small pores formation in polymer-based monolithic stationary phases. Segments of five columns hypercrosslinked for 30-360 min were coupled via zero-volume unions to prepare columns with segmented porosity gradients. The steepness of the porosity gradient affected column efficiency, mass transfer resistance, and separation of both small-molecule alkylbenzenes and high-molar-mass polystyrene standards. In addition, the segmented column with the steepest porosity gradient was prepared as a single column with a continuous porosity gradient. The steepness of porosity gradient in this type column was tuned. Compared to a completely hypercrosslinked column, the column with the shallower gradient produced comparable size-exclusion separation of polystyrene standards but allowed higher column permeability. The completely hypercrosslinked column and the column with porosity gradient were successfully coupled in online two-dimensional liquid chromatography of polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Homochiral metal-organic frameworks and their application in chromatography enantioseparations.

    PubMed

    Peluso, Paola; Mamane, Victor; Cossu, Sergio

    2014-10-10

    The last frontier in the chiral stationary phases (CSPs) field for chromatography enantioseparations is represented by homochiral metal-organic frameworks (MOFs), a class of organic-inorganic hybrid materials built from metal-connecting nodes and organic-bridging ligands. The modular nature of these materials allows to design focused structures by combining properly metal, organic ligands and rigid polytopic spacers. Intriguingly, chiral ligands introduce molecular chirality in the MOF-network as well as homochirality in the secondary structure of materials (such as homohelicity) producing homochiral nets in a manner mimicking biopolymers (proteins, polysaccharides) which are characterized by a definite helical sense associated with the chirality of their building blocks (amino acids or sugars). Nowadays, robust and flexible materials characterized by high porosity and surface area became available by using preparative procedures typical of the so-called reticular synthesis. This review focuses on recent developments in the synthesis and applications of homochiral MOFs as supports for chromatography enantioseparations. Indeed, despite this field is in its infancy, interesting results have been produced and a critical overview of the 12 reported applications for gas chromatography (GC) and high-performance liquid chromatography (HPLC) can orient the reader approaching the field. Mechanistic aspects are shortly discussed and a view regarding future trends in this field is provided. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Characterization of goat colostrum oligosaccharides by nano-liquid chromatography on chip quadrupole time-of-flight mass spectrometry and hydrophilic interaction liquid chromatography-quadrupole mass spectrometry

    PubMed Central

    Martín-Ortiz, A.; Salcedo, J.; Barile, D.; Bunyatratchata, A.; Moreno, F.J.; Martin-García, I.; Clemente, A.; Sanz, M.L.; Ruiz-Matute, A.I.

    2016-01-01

    A detailed qualitative and quantitative characterization of goat colostrum oligosaccharides (GCO) has been carried out for the first time. Defatted and deproteinized colostrum samples, previously treated by size exclusion chromatography (SEC) to remove lactose, were analyzed by nanoflow liquid chromatography-quadrupole-time of flight mass spectrometry (Nano-LC-Chip-Q-TOF MS). Up to 78 oligosaccharides containing hexose, hexosamine, fucose, N-acetylneuraminic acid or N-glycolylneuraminic acid monomeric units were identified in the samples, some of them detected for the first time in goat colostra. As a second step, a hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS) methodology was developed for the separation and quantitation of the main GCO, both acidic and neutral carbohydrates. Among other experimental chromatographic conditions, mobile phase additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry of target carbohydrates. Narrow peaks (wh: 0.2–0.6 min) and good symmetry (As: 0.8–1.4) were obtained for GCO using an acetonitrile:water gradient with 0.1% ammonium hydroxide at 40 °C. These conditions were selected to quantify the main oligosaccharides in goat colostrum samples. Values ranging from 140 to 315 mg L−1 for neutral oligosaccharides and from 83 to 251 mg L−1 for acidic oligosaccharides were found. The combination of both techniques resulted to be useful to achieve a comprehensive characterization of GCO. PMID:26427327

  11. Characterization of goat colostrum oligosaccharides by nano-liquid chromatography on chip quadrupole time-of-flight mass spectrometry and hydrophilic interaction liquid chromatography-quadrupole mass spectrometry.

    PubMed

    Martín-Ortiz, A; Salcedo, J; Barile, D; Bunyatratchata, A; Moreno, F J; Martin-García, I; Clemente, A; Sanz, M L; Ruiz-Matute, A I

    2016-01-08

    A detailed qualitative and quantitative characterization of goat colostrum oligosaccharides (GCO) has been carried out for the first time. Defatted and deproteinized colostrum samples, previously treated by size exclusion chromatography (SEC) to remove lactose, were analyzed by nanoflow liquid chromatography-quadrupole-time of flight mass spectrometry (Nano-LC-Chip-Q-TOF MS). Up to 78 oligosaccharides containing hexose, hexosamine, fucose, N-acetylneuraminic acid or N-glycolylneuraminic acid monomeric units were identified in the samples, some of them detected for the first time in goat colostra. As a second step, a hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS) methodology was developed for the separation and quantitation of the main GCO, both acidic and neutral carbohydrates. Among other experimental chromatographic conditions, mobile phase additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry of target carbohydrates. Narrow peaks (wh: 0.2-0.6min) and good symmetry (As: 0.8-1.4) were obtained for GCO using an acetonitrile:water gradient with 0.1% ammonium hydroxide at 40°C. These conditions were selected to quantify the main oligosaccharides in goat colostrum samples. Values ranging from 140 to 315mgL(-1) for neutral oligosaccharides and from 83 to 251mgL(-1) for acidic oligosaccharides were found. The combination of both techniques resulted to be useful to achieve a comprehensive characterization of GCO. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Preparation of a polybutadiene stationary phase immobilized by gamma radiation for reversed-phase high-performance liquid chromatography.

    PubMed

    Lopes, Nilva P; Collins, Kenneth E; Jardim, Isabel C S F

    2003-02-14

    Polybutadiene (PBD) has been immobilized on HPLC silica by gamma radiation doses in the range from 5 to 180 kGy. Columns prepared from these reversed-phase materials, as well as from similar non-irradiated materials, were tested with standard sample mixtures and characterized by elemental analysis (% C) and infrared spectroscopy. A low dose of 5 kGy is sufficient to produce a layer of immobilized PBD which functions as an efficient and stable stationary phase. Higher doses give thicker immobilized layers having less favorable chromatographic properties.

  13. Analysis of phospholipids in bio-oils and fats by hydrophilic interaction liquid chromatography-tandem mass spectrometry.

    PubMed

    Viidanoja, Jyrki

    2015-09-15

    A new, sensitive and selective liquid chromatography-electrospray ionization-tandem mass spectrometric (LC-ESI-MS/MS) method was developed for the analysis of Phospholipids (PLs) in bio-oils and fats. This analysis employs hydrophilic interaction liquid chromatography-scheduled multiple reaction monitoring (HILIC-sMRM) with a ZIC-cHILIC column. Eight PL class selective internal standards (homologs) were used for the semi-quantification of 14 PL classes for the first time. More than 400 scheduled MRMs were used for the measurement of PLs with a run time of 34min. The method's performance was evaluated for vegetable oil, animal fat and algae oil. The averaged within-run precision and between-run precision were ≤10% for all of the PL classes that had a direct homologue as an internal standard. The method accuracy was generally within 80-120% for the tested PL analytes in all three sample matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Stationary Engineering Laboratory Manual--2.

    ERIC Educational Resources Information Center

    Steingress, Frederick M.; Frost, Harold J.

    The Stationary Engineering Laboratory Manual 2 was designed for vocational/technical high school students who have received instruction in the basics of stationary engineering. It was developed for students who will be operating a live plant and who will be responsible for supplying steam for heating, cooking, and baking. Each lesson in the manual…

  15. Large stationary wave features appearing repeatedly at the cloud top of Venus

    NASA Astrophysics Data System (ADS)

    Kouyama, Toru; Imamura, Takeshi; Taguchi, Makoto; Fukuhara, Tetsuya; Sato, Takao M.; Hashimoto, George L.; Futaguchi, Masahiko; Takamura, Mao; Yamada, Takeru; Satoh, Takehiko; Nakamura, Masato; Akatsuki Science Team

    2017-10-01

    At the first observation sequence after Akatsuki’s Venus orbiter re-insertion (VOI-R) on December 7, 2015, Akatsuki revealed an existence of a large-scale “bow-shaped” feature staying at almost same geographic location (above Aphrodite Terra) at the cloud top level with the Longwave Infrared Camera (LIR) and Ultra Violet Imager (UVI). It expanded ~10,000 km from south to north and bended to downstream side of the super-rotation of Venus. A numerical calculation in Fukuhara et al. (2017) suggested that a gravity wave generated in the lower atmosphere can propagate upward to the cloud top and reproduce the observed bow-shape structure. Because the wave can transport momentum to the upper atmosphere which possibly decelerates the super-rotation, it is an interesting topic whether the stationary wave event is regular or just an occasional event. For more than three Venus years, or four Venus solar days, Akatsuki has observed huge stationary wave features in LIR images again and again since the VOI-R. It has been confirmed that four high-altitude regions, east and west part of Aphrodite Terra, Atra Regio, and Beta Regio, accompany with the large stationary features. All four regions are located in lower latitudes (< 30°), while no clear stationary feature has been confirmed above Maxwell Mountain, which is the highest mountain but located at a high latitude (60°), indicating geographical and latitudinal dependencies of the generation of the stationary waves. Akatsuki also reveals the stationary features can be considered as "daily" phenomena in Venus atmosphere. At every timing when the four high-altitude regions were passing afternoon region of Venus, huge stationary waves became clearer. On the other hand, when the high mountains were located around mid-night and morning, stationary features were much weaker than that in afternoon, or cannot be confirmed, indicating strong local time dependency of the appearance. Since lower latitude has more incident solar

  16. Retentivity, selectivity and thermodynamic behavior of polycyclic aromatic hydrocarbons on charge-transfer and hypercrosslinked stationary phases under conditions of normal phase high performance liquid chromatography.

    PubMed

    Jiang, Ping; Lucy, Charles A

    2016-03-11

    Charge-transfer and hypercrosslinked polystyrene phases offer retention and separation for polycyclic aromatic hydrocarbons (PAHs) and thus have potential for petroleum analysis. The size, shape and planarity selectivity for PAH standards on charge-transfer (DNAP column) and hypercrosslinked polystyrene (HC-Tol and 5HGN columns) phases are different under normal phase liquid chromatography (NPLC). The HC-Tol column behaves like a conventional NPLC column with low retention of PAHs. Retention of PAHs on the DNAP and 5HGN are strong and increases with the number of aromatic rings. The main retention mechanism is through π-π interactions and dipole-induced dipole interaction. Thermodynamics indicates that the retention mechanism of PAHs remains unchanged over the temperature range 20-60°C. In addition, on either DNAP or 5HGN column, both linear and bent PAHs are retained through the same mechanism. But DNAP possesses smaller π-π interaction and higher planarity selectivity than 5HGN for PAHs. This is suggestive that DNAP interacts with PAHs through a disordered phase arrangement, while 5HGN behaves as an ordered adsorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Using ion exchange chromatography to purify a recombinantly expressed protein.

    PubMed

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2014-01-01

    Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. © 2014 Elsevier Inc. All rights reserved.

  18. Separation and Detection of Toxic Gases with a Silicon Micromachined Gas Chromatography System

    NASA Technical Reports Server (NTRS)

    Kolesar, Edward S.; Reston, Rocky R.

    1995-01-01

    A miniature gas chromatography (GC) system was designed and fabricated using silicon micromachining and integrated circuit (IC) processing techniques. The silicon micromachined gas chromatography system (SMGCS) is composed of a miniature sample injector that incorporates a 10 microliter sample loop; a 0.9 meter long, rectangular shaped (300 micrometer width and 10 micrometer height) capillary column coated with a 0.2 micrometer thick copper phthalocyanine (CuPc) stationary phase; and a dual detector scheme based upon a CuPc-coated chemiresistor and a commercially available 125 micrometer diameter thermal conductivity detector (TCD) bead. Silicon micromachining was employed to fabricate the interface between the sample injector and the GC column, the column itself, and the dual detector cavity. A novel IC thin-film processing technique was developed to sublime the CuPc stationary phase coating on the column walls that were micromachined in the host silicon wafer substrate and Pyrex (r) cover plate, which were then electrostatically bonded together. The SMGCS can separate binary gas mixtures composed of parts-per-million (ppm) concentrations of ammonia (NH3) and nitrogen dioxide (NO2) when isothermally operated (55-80 degrees C). With a helium carrier gas and nitrogen diluent, a 10 microliter sample volume containing ammonia and nitrogen dioxide injected at 40 psi ((2.8 x 10(exp 5)Pa)) can be separated in less than 30 minutes.

  19. Practical method for the definition of chromatographic peak parameters in preparative liquid chromatography.

    PubMed

    Jin, Gaowa; Guo, Zhimou; Xiao, Yuansheng; Yan, Jingyu; Dong, Xuefang; Shen, Aijin; Wang, Chaoran; Liang, Xinmiao

    2016-10-01

    A practical method was established for the definition of chromatographic parameters in preparative liquid chromatography. The parameters contained both the peak broadening level under different amounts of sample loading and the concentration distribution of the target compound in the elution. The parameters of the peak broadening level were defined and expressed as a matrix, which consisted of sample loading, the forward broadening and the backward broadening levels. The concentration distribution of the target compound was described by the heat map of the elution profile. The most suitable stationary phase should exhibit the narrower peak broadening and it was best to broaden to both sides to compare to the peak under analytical conditions. Besides, the concentration distribution of the target compounds should be focused on the middle of the elution. The guiding principles were validated by purification of amitriptyline from the mixture of desipramine and amitriptyline. On the selected column, when the content of the impurity desipramine was lower than 0.1%, the recovery of target compound was much higher than the other columns even when the sample loading was as high as 8.03 mg/cm 3 . The parameters and methods could be used for the evaluation and selection of stationary phases in preparative chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Elevated temperature and temperature programming in conventional liquid chromatography--fundamentals and applications.

    PubMed

    Vanhoenacker, Gerd; Sandra, Pat

    2006-08-01

    Temperature, as a powerful variable in conventional LC is discussed from a fundamental point of view and illustrated with applications from the author's laboratory. Emphasis is given to the influence of temperature on speed, selectivity, efficiency, detectability, and mobile phase composition (green chromatography). The problems accompanying the use of elevated temperature and temperature programming in LC are reviewed and solutions are described. The available stationary phases for high temperature operation are summarized and a brief overview of recent applications reported in the literature is given.

  1. Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y.-W.; Liao, W.-T.; Peters, Thorsten

    We study the creation of stationary light pulses (SLPs), i.e., light pulses without motion, based on the effect of electromagnetically induced transparency with two counterpropagating coupling fields in cold atoms. We show that the Raman excitations created by counterpropagating probe and coupling fields prohibit the formation of SLPs in media of cold and stationary atoms such as laser-cooled atom clouds, Bose condensates or color-center crystals. A method is experimentally demonstrated to suppress these Raman excitations and SLPs are realized in laser-cooled atoms. Furthermore, we report the first experimental observation of a bichromatic SLP at wavelengths for which no Bragg gratingmore » can be established. Our work advances the understanding of SLPs and opens a new avenue to SLP studies for few-photon nonlinear interactions.« less

  2. Effect of pressure on the selectivity of polymeric C18 and C30 stationary phases in reversed-phase liquid chromatography. Increased separation of isomeric fatty acid methyl esters, triacylglycerols, and tocopherols at high pressure.

    PubMed

    Okusa, Kensuke; Iwasaki, Yuki; Kuroda, Ikuma; Miwa, Shohei; Ohira, Masayoshi; Nagai, Toshiharu; Mizobe, Hoyo; Gotoh, Naohiro; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo

    2014-04-25

    A high-density, polymeric C18 stationary phase (Inertsil ODS-P) or a polymeric C30 phase (Inertsil C30) provided improved resolution of the isomeric fatty acids (FAs), FA methyl esters (FAMEs), triacylglycerols (TAGs), and tocopherols with an increase in pressure of 20-70MPa in reversed-phase HPLC. With respect to isomeric C18 FAMEs with one cis-double bond, ODS-P phase was effective for recognizing the position of a double bond among petroselinic (methyl 6Z-octadecenoate), oleic (methyl 9Z-octadecenoate), and cis-vaccenic (methyl 11Z-octadecenoate), especially at high pressure, but the differentiation between oleic and cis-vaccenic was not achieved by C30 phase regardless of the pressure. A monomeric C18 phase (InertSustain C18) was not effective for recognizing the position of the double bond in monounsaturated FAME, while the separation of cis- and trans-isomers was achieved by any of the stationary phases. The ODS-P and C30 phases provided increased separation for TAGs and β- and γ-tocopherols at high pressure. The transfer of FA, FAME, or TAG molecules from the mobile phase to the ODS-P stationary phase was accompanied by large volume reduction (-30∼-90mL/mol) resulting in a large increase in retention (up to 100% for an increase of 50MPa) and improved isomer separation at high pressure. For some isomer pairs, the ODS-P and C30 provided the opposite elution order, and in each case higher pressure improved the separation. The two stationary phases showed selectivity for the isomers having rigid structures, but only the ODS-P was effective for differentiating the position of a double bond in monounsaturated FAMEs. The results indicate that the improved isomer separation was provided by the increased dispersion interactions between the solute and the binding site of the stationary phase at high pressure. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. [Separation of alkaloids in tea by high-speed counter-current chromatography].

    PubMed

    Yuan, L; Fu, R; Zhang, T; Deng, J; Li, X

    1998-07-01

    Alkaloids extracted from the green tea were separated by high-speed counter-current chromatography. A series of experiments have been performed to investigate effects of different solvent system. A system of CHCl3-CH3OH-NaH2PO4(23 mmol/L) = (4:3:2) was selected, in which the upper phase was used as the stationary phase, and the lower phase as mobile phase. When acidity of solvent system is pH 5.6, three chemical components are very efficiently isolated by one injection of 50 mg sample mixture. Analyzing the eluted fractions by TLC, we know that one is caffeine, and the other is theophylline. In comparing the separation results by high-speed counter-current chromatography with those by TLC, the advantages of this method is verified. It should find wide applications of this technology for the separation of crude mixture of plant components.

  4. Isolation and purification of recombinant proteins, antibodies and plasmid DNA with hydroxyapatite chromatography.

    PubMed

    Hilbrig, Frank; Freitag, Ruth

    2012-01-01

    Hydroxyapatite and related stationary phases increasingly play a role in the downstream processing of high-value biological materials, such as recombinant proteins, therapeutic antibodies and pharmaceutical-grade plasmid DNA. Chromatographic hydroxyapatite is an inorganic, ceramic material identical in composition, if not in structure, to calcium phosphate found in human bones and teeth. The interaction of hydroxyapatite with biomacromolecules is complex and highly dynamic, which can make predicting performance difficult, but also allows the design of very selective isolation processes. This review discusses the currently commercially available chromatographic materials, different retention mechanisms supported by these materials and differential exploitation for the design of highly specific isolation procedures. The state of the art of antibody purification by hydroxy- and fluoroapatite is reviewed together with tested routines for method development and implementation. Finally, the isolation of plasmid DNA is discussed, since the purification of DNA therapeutics at a sufficiently large scale is an emerging need in bioprocess development and perhaps the area in bioseparation where apatite chromatography can make its most important contribution to date. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. On-line coupling of size exclusion chromatography with mixed-mode liquid chromatography for comprehensive profiling of biopharmaceutical drug product.

    PubMed

    He, Yan; Friese, Olga V; Schlittler, Michele R; Wang, Qian; Yang, Xun; Bass, Laura A; Jones, Michael T

    2012-11-02

    A methodology based on on-line coupling of size exclusion chromatography (SEC) with mixed-mode liquid chromatography (LC) has been developed. The method allows for simultaneous measurement of a wide range of components in biopharmaceutical drug products. These components include the active pharmaceutical ingredient (protein) and various kinds of excipients such as cations, anions, nonionic hydrophobic surfactant and hydrophilic sugars. Dual short SEC columns are used to separate small molecule excipients from large protein molecules. The separated protein is quantified using a UV detector at 280 nm. The isolated excipients are switched, online, to the Trinity P1 mixed-mode column for separation, and detected by an evaporative light scattering detector (ELSD). Using a stationary phase with 1.7 μm particles in SEC allows for the use of volatile buffers for both SEC and mix-mode separation. This facilitates the detection of different excipients by ELSD and provides potential for online characterization of the protein with mass spectrometry (MS). The method has been applied to quantitate protein and excipients in different biopharmaceutical drug products including monoclonal antibodies (mAb), antibody drug conjugates (ADC) and vaccines. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A simple subcritical chromatographic test for an extended ODS high performance liquid chromatography column classification.

    PubMed

    Lesellier, Eric; Tchapla, Alain

    2005-12-23

    This paper describes a new test designed in subcritical fluid chromatography (SFC) to compare the commercial C18 stationary phase properties. This test provides, from a single analysis of carotenoid pigments, the absolute hydrophobicity, the silanol activity and the steric separation factor of the ODS stationary phases. Both the choice of the analytical conditions and the validation of the information obtained from the chromatographic measurements are detailed. Correlations of the carotenoid test results with results obtained from other tests (Tanaka, Engelhard, Sander and Wise) performed both in SFC and HPLC are discussed. Two separation factors, calculated from the retention of carotenoid pigments used as probe, allowed to draw a first classification diagram. Columns, which present identical chromatographic behaviors are located in the same area on this diagram. This location can be related to the stationary phase properties: endcapping treatments, bonding density, linkage functionality, specific area or silica pore diameter. From the first classification, eight groups of columns are distinguished. One group of polymer coated silica, three groups of polymeric octadecyl phases, depending on the pore size and the endcapping treatment, and four groups of monomeric stationary phases. An additional classification of the four monomeric groups allows the comparison of these stationary phases inside each group by using the total hydrophobicity. One hundred and twenty-nine columns were analysed by this simple and rapid test, which allows a comparison of columns with the aim of helping along their choice in HPLC.

  7. 30 CFR 57.4561 - Stationary diesel equipment underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Stationary diesel equipment underground. 57... Fire Prevention and Control Installation/construction/maintenance § 57.4561 Stationary diesel equipment underground. Stationary diesel equipment underground shall be— (a) Supported on a noncombustible base; and (b...

  8. Gaining insight in the behaviour of imidazolium-based ionic liquids as additives in reversed-phase liquid chromatography for the analysis of basic compounds.

    PubMed

    Ubeda-Torres, M T; Ortiz-Bolsico, C; García-Alvarez-Coque, M C; Ruiz-Angel, M J

    2015-02-06

    In reversed-phase liquid chromatography in the absence of additives, cationic basic compounds give rise to broad and asymmetrical peaks as a result of ionic interactions with residual free silanols on silica-based stationary phases. Ionic liquids (ILs), added to the mobile phase, have been suggested as alternatives to amines to block the activity of silanols. However, the dual character of ILs should be considered: both cation and anion may be adsorbed on the stationary phase, thereby creating a double asymmetrical layer positively or negatively charged, depending on the relative adsorption of both ions. In this work, a study of the performance of six imidazolium-based ILs (the chlorides and tetrafluoroborates of 1-ethyl-, 1-butyl- and 1-hexyl-3-methylimidazolium) as modifiers of the chromatographic behaviour of a group of 10 β-blockers is performed, and compared with triethylamine and dimethyloctylamine. In order to gain more insight in the behaviour of ILs in RPLC, the changes in the nature of the chromatographic system, at increasing concentration of the additives, were followed based on retention and peak shape modelling. The multiple interactions that amines and ILs experience inside the chromatographic system suggest that the suppressing potency should be measured based on the shape of chromatographic peaks and not on the changes in retention. The ILs 1-hexyl-3-methyl-imidazolium chloride and tetrafluoroborate offered the most interesting features for the separation of the basic drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Characterization of the pigment fraction in sweet bell peppers (Capsicum annuum L.) harvested at green and overripe yellow and red stages by offline multidimensional convergence chromatography/liquid chromatography-mass spectrometry.

    PubMed

    Bonaccorsi, Ivana; Cacciola, Francesco; Utczas, Margita; Inferrera, Veronica; Giuffrida, Daniele; Donato, Paola; Dugo, Paola; Mondello, Luigi

    2016-09-01

    Offline multidimensional supercritical fluid chromatography combined with reversed-phase liquid chromatography was employed for the carotenoid and chlorophyll characterization in different sweet bell peppers (Capsicum annuum L.) for the first time. The first dimension consisted of an Acquity HSS C18 SB (100 × 3 mm id, 1.8 μm particles) column operated with a supercritical mobile phase in an ultra-performance convergence chromatography system, whereas the second dimension was performed in reversed-phase mode with a C30 (250 × 4.6 mm id, 3.0 μm particles) stationary phase combined with photodiode array and mass spectrometry detection. This approach allowed the determination of 115 different compounds belonging to chlorophylls, free xanthophylls, free carotenes, xanthophyll monoesters, and xanthophyll diesters, and proved to be a significant improvement in the pigments determination compared to the conventional one-dimensional liquid chromatography approach so far applied to the carotenoid analysis in the studied species. Moreover, the present study also aimed to investigate and to compare the carotenoid stability and composition in overripe yellow and red bell peppers collected directly from the plant, thus also evaluating whether biochemical changes are linked to carotenoid degradation in the nonclimacteric investigated fruits, for the first time. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hydrophobic interaction chromatography in dual salt system increases protein binding capacity.

    PubMed

    Senczuk, Anna M; Klinke, Ralph; Arakawa, Tsutomu; Vedantham, Ganesh; Yigzaw, Yinges

    2009-08-01

    Hydrophobic interaction chromatography (HIC) uses weakly hydrophobic resins and requires a salting-out salt to promote protein-resin interaction. The salting-out effects increase with protein and salt concentration. Dynamic binding capacity (DBC) is dependent on the binding constant, as well as on the flow characteristics during sample loading. DBC increases with the salt concentration but decreases with increasing flow rate. Dynamic and operational binding capacity have a major raw material cost/processing time impact on commercial scale production of monoclonal antibodies. In order to maximize DBC the highest salt concentration without causing precipitation is used. We report here a novel method to maintain protein solubility while increasing the DBC by using a combination of two salting-out salts (referred to as dual salt). In a series of experiments, we explored the dynamic capacity of a HIC resin (TosoBioscience Butyl 650M) with combinations of salts. Using a model antibody, we developed a system allowing us to increase the dynamic capacity up to twofold using the dual salt system over traditional, single salt system. We also investigated the application of this novel approach to several other proteins and salt combinations, and noted a similar protein solubility and DBC increase. The observed increase in DBC in the dual salt system was maintained at different linear flow rates and did not impact selectivity.

  11. Comparison of isocratic retention models for hydrophilic interaction liquid chromatographic separation of native and fluorescently labeled oligosaccharides.

    PubMed

    Česla, Petr; Vaňková, Nikola; Křenková, Jana; Fischer, Jan

    2016-03-18

    In this work, we have investigated retention of maltooligosaccharides and their fluorescent derivatives in hydrophilic interaction liquid chromatography using four different stationary phases. The non-derivatized maltooligosaccharides (maltose to maltoheptaose) and their derivatives with 2-aminobenzoic acid, 2-aminobenzamide, 2-aminopyridine and 8-aminonaphthalene-1,3,6-trisulfonic acid were analyzed on silica gel, aminopropyl silica, amide (carbamoyl-bonded silica) and ZIC-HILIC zwitterionic sulfobetain bonded phase. The partitioning of the analytes between the bulk mobile phase and adsorbed water-rich layer, polar and ionic interactions of analytes with stationary phase have been evaluated and compared. The effects of the mobile phase additives (0.1% (v/v) of acetic acid and ammonium acetate in concentration range 5-30 mmol L(-1)) on retention were described. The suitability of different models for prediction of retention was tested including linear solvent strength model, quadratic model, mixed-mode model, and empirical Neue-Kuss model. The mixed-mode model was extended to the parameter describing the contribution of monomeric glucose unit to the retention of non-derivatized and derivatized maltooligosaccharides, which was used for evaluation of contribution of both, oligosaccharide backbone and end-group to retention. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Determination of gamma-aminobutyric acid in food matrices by isotope dilution hydrophilic interaction chromatography coupled to mass spectrometry.

    PubMed

    Zazzeroni, Raniero; Homan, Andrew; Thain, Emma

    2009-08-01

    The estimation of the dietary intake of gamma-aminobutyric acid (GABA) is dependent upon the knowledge of its concentration values in food matrices. To this end, an isotope dilution liquid chromatography-mass spectrometry method has been developed employing the hydrophilic interaction chromatography technique for analyte separation. This approach enabled accurate quantification of GABA in apple, potato, soybeans, and orange juice without the need of a pre- or post-column derivatization reaction. A selective and precise analytical measurement has been obtained with a triple quadrupole mass spectrometer operating in multiple reaction monitoring using the method of standard additions and GABA-d(6) as an internal standard. The concentrations of GABA found in the matrices tested are 7 microg/g of apple, 342 microg/g of potatoes, 211 microg/g of soybeans, and 344 microg/mL of orange juice.

  13. Survival of Campylobacter jejuni during Stationary Phase: Evidence for the Absence of a Phenotypic Stationary-Phase Response

    PubMed Central

    Kelly, Alison F.; Park, Simon F.; Bovill, Richard; Mackey, Bernard M.

    2001-01-01

    When Campylobacter jejuni NCTC 11351 was grown microaerobically in rich medium at 39°C, entry into stationary phase was followed by a rapid decline in viable numbers to leave a residual population of 1% of the maximum number or less. Loss of viability was preceded by sublethal injury, which was seen as a loss of the ability to grow on media containing 0.1% sodium deoxycholate or 1% sodium chloride. Resistance of cells to mild heat stress (50°C) or aeration was greatest in exponential phase and declined during early stationary phase. These results show that C. jejuni does not mount the normal phenotypic stationary-phase response which results in enhanced stress resistance. This conclusion is consistent with the absence of rpoS homologues in the recently reported genome sequence of this species and their probable absence from strain NCTC 11351. During prolonged incubation of C. jejuni NCTC 11351 in stationary phase, an unusual pattern of decreasing and increasing heat resistance was observed that coincided with fluctuations in the viable count. During stationary phase of Campylobacter coli UA585, nonmotile variants and those with impaired ability to form coccoid cells were isolated at high frequency. Taken together, these observations suggest that stationary-phase cultures of campylobacters are dynamic populations and that this may be a strategy to promote survival in at least some strains. Investigation of two spontaneously arising variants (NM3 and SC4) of C. coli UA585 showed that a reduced ability to form coccoid cells did not affect survival under nongrowth conditions. PMID:11319108

  14. Anthracenyl polar embedded stationary phases with enhanced aromatic selectivity. Part II: A density functional theory study.

    PubMed

    Mignot, Mélanie; Schammé, Benjamin; Tognetti, Vincent; Joubert, Laurent; Cardinael, Pascal; Peulon-Agasse, Valérie

    2017-10-13

    New polar embedded aromatic stationary phases (mono- and trifunctional versions) that contain an amide-embedded group coupled with a tricyclic aromatic moiety were developed for chromatographic applications and described in the first paper of this series. These phases offered better separation performance for PAHs than for alkylbenzene homologues, and an enhanced ability to differentiate aromatic planarity to aromatic tridimensional conformation, especially for the trifunctional version and when using methanol instead of acetonitrile. In this second paper, a density functional theory study of the retention process is reported. In particular, it was shown that the selection of the suitable computational protocol allowed for describing rigorously the interactions that could take place, the solvent effects, and the structural changes for the monofunctional and the trifunctional versions. For the first time, the experimental data coupled with these DFT results provided a better understanding of the interaction mechanisms and highlighted the importance of the multimodal character of the designed stationary phases: alkyl spacers for interactions with hydrophobic solutes, amide embedded groups for dipole-dipole and hydrogen-bond interactions, and aromatic terminal groups for π-π interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A simple graphical representation of selectivity in hydrophilic interaction liquid chromatography.

    PubMed

    Ibrahim, Mohammed E A; Liu, Yang; Lucy, Charles A

    2012-10-19

    This paper uses the HILIC selectivity data of Dinh et al. (J. Chromatogr. A 1218 (2011) 5880) to yield simple and easy to understand plots analogous to Neue plots for selectivity in HILIC. The plots categorize 21 previously studied HILIC phases (data from Dinh et al.), 8 additional HILIC columns and 4 reversed phase columns (our data) using selected probes for specific interactions. The relative retention of cytosine vs. uracil is used to probe the "hydrophilicity" of the HILIC phases; adenosine vs. adenine is used to probe the ability of the stationary phase to participate in hydrogen bonding; and benzyltrimethylammonium (BTMA) vs. cytosine is used to probe the cation exchange and anion exchange character of the column. Plots of kBTMA/kcytosine vs. kcytosine/kuracil successfully classify silica, amide, zwitterionic, diol and reverse phase columns in terms of their HILIC behavior. Polymeric columns including polymer substrate and polymer coated columns show low ion exchange character, but vary widely in their hydrophilicity. Alternatively a HILIC-Phase Selectivity Chart, in analogy to the Neue plot, is constructed by plotting log(kBTMA/kcytosine) vs. log(kcytosine). This plot enables classification of HILIC columns that will yield similar or significantly different separations. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Interaction between moving tandem wheels and an infinite rail with periodic supports - Green's matrices of the track method in stationary reference frame

    NASA Astrophysics Data System (ADS)

    Mazilu, Traian

    2017-08-01

    This paper approaches the issue of the interaction between moving tandem wheels and an infinite periodically supported rail and points out at the basic characteristics in the steady-state interaction behaviour and in the interaction in the presence of the rail random irregularity. The rail is modelled as an infinite Timoshenko beam resting on supports which are discretely modelling the inertia of the sleepers and ballast and also the viscoelastic features of the rail pads, the ballast and the subgrade. Green‧s matrices of the track method in stationary reference frame were applied so as to conduct the time-domain analysis. This method allows to consider the nonlinearities of the wheel/rail contact and the Doppler effect. The study highlights certain aspects regarding the influence of the wheel base on the wheels/rail contact forces, particularly at the parametric resonance, due to the coincidence between the wheel/rail natural frequency and the passing frequency and also when the rail surface exhibits random irregularity. It has been shown that the wheel/rail dynamic behaviour is less intense when the wheel base equals integer multiple of the sleeper bay.

  17. Effects of the dynamic modification of stationary phases by sorbates in gas chromatography: The possibility of separating enantiomers in achiral systems

    NASA Astrophysics Data System (ADS)

    Zenkevich, I. G.; Pavlovskii, A. A.

    2016-10-01

    It is shown that the gas chromatographic separation of enantiomers on columns with achiral nonpolar stationary phases is principally possible as a result of the dynamic modification of stationary phases by sorbates under analysis. It is found that a number of key characteristic features is intrinsic to such separation: it can be only partial, it does not occur for all chromatographic columns, and it is observed only for some compounds and only within narrow ranges of quantities of sorbates that are close to the limits of mass overload of chromatographic systems. These characteristic features are illustrated by the examples of separating (1 R,5 R)-(+)- and (1 S,5 S)-(-)-α-pinenes on a WCOT column with an RTX-5 phase. The main characteristic feature of the separation of enantiomers as a result of the dynamic modification of stationary phases is the nonconformity of peaks in chromatograms with two individual enantiomers, compared to other ways and means for their separation; the first eluting peak belongs to the enantiomer that predominates in a mixture irrespective of its configuration, while the second peak corresponds to the racemic mixture of enantiomers; i.e., the ratio of peak areas in chromatograms does not correspond to the actual ratio of enantiomers in samples under analysis and is strongly distorted as a result of their incomplete separation. It is concluded that the separation of racemic mixtures in achiral systems is fundamentally impossible under any conditions, and this is one of the key criteria of the validity of the considered concept as a whole.

  18. Comprehensive hydrophilic interaction and ion-pair reversed-phase liquid chromatography for analysis of di- to deca-oligonucleotides.

    PubMed

    Li, Qin; Lynen, Frédéric; Wang, Jian; Li, Hanlin; Xu, Guowang; Sandra, Pat

    2012-09-14

    A comprehensive two-dimensional HPLC approach with a high degree of orthogonality was developed for analysis of di- to deca-oligonucleotides (ONs). Hydrophilic interaction liquid chromatography (HILIC) was used in the first dimension, and ion-pair reversed-phase liquid chromatography (IP-RPLC) was employed in the second dimension. The two dimensions were connected via a ten-port valve interface equipped with octadecyl silica (ODS) traps to immobilize and focus the ONs eluting from the first dimension prior to IP-RPLC separation. An aqueous make-up flow was used for effective trapping. The comprehensive two-dimensional HPLC system was optimized with a mixture consisting of 27 oligonucleotide standards. An overall chromatographic peak capacity of 500 was obtained. The use of the volatile buffer triethylamine acetate in the second dimension allowed straightforward coupling to electrospray ionization mass spectrometry (ESI-MS) and detection of each ON in the negative ionization mode. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Stationary to nonstationary transition in crossed-field devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marini, Samuel; Rizzato, Felipe B.; Pakter, Renato

    2016-03-15

    The previous results based on numerical simulations showed that a cold electron beam injected in a crossed field gap does not reach a time independent stationary state in the space charge limited regime [P. J. Christenson and Y. Y. Lau, Phys. Plasmas 1, 3725 (1994)]. In this work, the effect of finite injection temperature in the transition from stationary to nonstationary states is investigated. A fully kinetic model for the electron flow is derived and used to determine the possible stationary states of the system. It is found that although there is always a stationary solution for any set ofmore » parameters, depending on the injection temperature the electron flow becomes very sensitive to fluctuations and the stationary state is never reached. By investigating the nonlinear dynamics of a characteristic electron, a theory based on a single free parameter is constructed to predict when the transition between stationary and nonstationary states occurs. In agreement with the previous numerical results, the theory indicates that for vanishing temperatures the system never reaches the time independent stationary state in the space charge limited regime. Nevertheless, as the injection temperature is raised it is found a broad range of system parameters for which the stationary state is indeed attained. By properly adjusting the free parameter in the theory, one can be able to describe, to a very good accuracy, when the transition occurs.« less

  20. Phenolic composition of pomegranate peel extracts using an liquid chromatography-mass spectrometry approach with silica hydride columns.

    PubMed

    Young, Joshua E; Pan, Zhongli; Teh, Hui Ean; Menon, Veena; Modereger, Brent; Pesek, Joseph J; Matyska, Maria T; Dao, Lan; Takeoka, Gary

    2017-04-01

    The peels of different pomegranate cultivars (Molla Nepes, Parfianka, Purple Heart, Wonderful and Vkunsyi) were compared in terms of phenolic composition and total phenolics. Analyses were performed on two silica hydride based stationary phases: phenyl and undecanoic acid columns. Quantitation was accomplished by developing a liquid chromatography with mass spectrometry approach for separating different phenolic analytes, initially in the form of reference standards and then with pomegranate extracts. The high-performance liquid chromatography columns used in the separations had the ability to retain a wide polarity range of phenolic analytes, as well as offering beneficial secondary selectivity mechanisms for resolving the isobaric compounds, catechin and epicatechin. The Vkunsyi peel extract had the highest concentration of phenolics (as determined by liquid chromatography with mass spectrometry) and was the only cultivar to contain the important compound punicalagin. The liquid chromatography with mass spectrometry data were compared to the standard total phenolics content as determined by using the Folin-Ciocalteu assay. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Frequency Analysis of Extreme Sub-Daily Precipitation under Stationary and Non-Stationary Conditions across Two Contrasting Hydroclimatic Environments

    NASA Astrophysics Data System (ADS)

    Demaria, E. M.; Goodrich, D. C.; Keefer, T.

    2017-12-01

    Observed sub-daily precipitation intensities from contrasting hydroclimatic environments in the USA are used to evaluate temporal trends and to develop Intensity-Duration Frequency (IDF) curves under stationary and nonstationary climatic conditions. Analyses are based on observations from two United States Department of Agriculture (USDA)-Agricultural Research Service (ARS) experimental watersheds located in a semi-arid and a temperate environment. We use an Annual Maximum Series (AMS) and a Partial Duration Series (PDS) approach to identify temporal trends in maximum intensities for durations ranging from 5- to 1440-minutes. A Bayesian approach with Monte Carlo techniques is used to incorporate the effect of non-stationary climatic assumptions in the IDF curves. The results show increasing trends in observed AMS sub-daily intensities in both watersheds whereas trends in the PDS observations are mostly positive in the semi-arid site and a mix of positive and negative in the temperate site. Stationary climate assumptions lead to much lower estimated sub-daily intensities than those under non-stationary assumptions with larger absolute differences found for shorter durations and smaller return periods. The risk of failure (R) of a hydraulic structure is increased for non-stationary effects over those of stationary effects, with absolute differences of 25% for a 100-year return period (T) and a project life (n) of 100 years. The study highlights the importance of considering non-stationarity, due to natural variability or to climate change, in storm design.

  2. Analysis of benzo(a)pyrene in airborne particulates by gas chromatography

    NASA Technical Reports Server (NTRS)

    Luedecke, E.

    1976-01-01

    A routine method was developed to measure benzo(a)pyrene in airborne particulates. Samples were collected on a filter and the organic portion was extracted with cyclohexane. The polynuclear hydrocarbon (PNHC) fraction was separated from the aliphatics by column chromatography. An internal standard was added to the extract and a portion of it was injected into a gas chromatograph. Although the gas chromatographic method has often been reported in the literature, satisfactory separation of benzo(a)pyrene and benzo(e)pyrene has not been achieved. With the introduction of a nematic liquid crystal as the stationary phase good separation is now possible.

  3. Genetics Home Reference: X-linked congenital stationary night blindness

    MedlinePlus

    ... Health Conditions X-linked congenital stationary night blindness X-linked congenital stationary night blindness Printable PDF Open ... Javascript to view the expand/collapse boxes. Description X-linked congenital stationary night blindness is a disorder ...

  4. Multiple stationary solutions of an irradiated slab

    NASA Astrophysics Data System (ADS)

    Taylor, P. D.; Feltham, D. L.

    2005-04-01

    A mathematical model describing the heat budget of an irradiated medium is introduced. The one-dimensional form of the equations and boundary conditions are presented and analysed. Heat transport at one face of the slab occurs by absorption (and reflection) of an incoming beam of short-wave radiation with a fraction of this radiation penetrating into the body of the slab, a diffusive heat flux in the slab and a prescribed incoming heat flux term. The other face of the slab is immersed in its own melt and is considered to be a free surface. Here, temperature continuity is prescribed and evolution of the surface is determined by a Stefan condition. These boundary conditions are flexible enough to describe a range of situations such as a laser shining on an opaque medium, or the natural environment of polar sea ice or lake ice. A two-stream radiation model is used which replaces the simple Beer's law of radiation attenuation frequently used for semi-infinite domains. The stationary solutions of the governing equations are sought and it is found that there exists two possible stationary solutions for a given set of boundary conditions and a range of parameter choices. It is found that the existence of two stationary solutions is a direct result of the model of radiation absorption, due to its effect on the albedo of the medium. A linear stability analysis and numerical calculations indicate that where two stationary solutions exist, the solution corresponding to a larger thickness is always stable and the solution corresponding to a smaller thickness is unstable. Numerical simulations reveal that when there are two solutions, if the slab is thinner than the smaller stationary thickness it will melt completely, whereas if the slab is thicker than the smaller stationary thickness it will evolve toward the larger stationary thickness. These results indicate that other mechanisms (e.g. wave-induced agglomeration of crystals) are necessary to grow a slab from zero initial

  5. Stationary and non-stationary nonlinear optical spectroscopy on surface polaritons

    NASA Technical Reports Server (NTRS)

    Ponath, H. E.

    1984-01-01

    A phenomenological theory is given for non-stationary electromagnetic surface waves propagating along the boundary plane between two homogeneous isotropic media. The description of nonlinear optical effects using shortened wave equations is demonstrated for spontaneous and simulated Raman scattering processes on surface polaritons.

  6. Liquid Chromatography at Critical Conditions: Balancing size exclusion and adsorption in nanopores

    NASA Astrophysics Data System (ADS)

    Abdulahad, Asem; Amos, Jeffrey; Ryu, Chang

    2009-03-01

    Liquid chromatography at critical condition (LCCC) is a measure to identify thermodynamic conditions, in which polymers elute independently of molar mass during high performance liquid chromatography. Under these critical conditions the entropic exclusions that dominate size exclusion chromatography (SEC) and the enthalpic adsorption that governs adsorption-based interaction chromatography (IC) are said to negate one another resulting in simultaneous elution of the polymer of different molecular weights. Using multiple C18-bonded silica columns with different average nanopore sizes (from 5 nm to 30 nm), we will study the LCCC conditions of PS in methylene chloride/acetonitrile solvent mixture at different temperature. In addition, we will show that the separation of polystyrene can be fine tuned using a refined temperature gradient interaction chromatography (TGIC) that employs multiple columns of varying pore size in sequence.

  7. Simultaneous concentration and purification through gradient deformation chromatography

    NASA Technical Reports Server (NTRS)

    Velayudhan, A.; Hendrickson, R. L.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    Mobile-phase additives, commonly used to modulate absorbate retention in gradient elution chromatography, are usually assumed to be either linearly retained or unretained. Previous theoretical work from our laboratory has shown that these modulators, such as salts in ion-exchange and hydrophobic interaction chromatography and organic modifiers in reversed-phase chromatography, can absorb nonlinearly, giving rise to gradient deformation. Consequently, adsorbate peaks that elute in the vicinity of the head of the deformed gradient may exhibit unusual shapes, form shoulders, and/or be concentrated. These effects for a reversed-phase sorbent with aqueous acetonitrile (ACN) as the modulator are verified experimentally. Gradient deformation is demonstrated experimentally and agrees with simulations based on ACN isotherm parameters that are independently determined from batch equilibrium studies using the layer model. Unusual absorbate peak shapes were found experimentally for single-component injections of phenylalanine, similar to those calculated by the simulations. A binary mixture of tryptophan and phenylalanine is used to demonstrate simultaneous concentration and separation, again in agreement with simulations. The possibility of gradient deformation in ion-exchange and hydrophobic interaction chromatography is discussed.

  8. Pattern formation and mass transfer under stationary solutal Marangoni instability.

    PubMed

    Schwarzenberger, Karin; Köllner, Thomas; Linde, Hartmut; Boeck, Thomas; Odenbach, Stefan; Eckert, Kerstin

    2014-04-01

    According to the seminal theory by Sternling and Scriven, solutal Marangoni convection during mass transfer of surface-active solutes may occur as either oscillatory or stationary instability. With strong support of Manuel G. Velarde, a combined initiative of experimental works, in particular to mention those of Linde, Wierschem and coworkers, and theory has enabled a classification of dominant wave types of the oscillatory mode and their interactions. In this way a rather comprehensive understanding of the nonlinear evolution of the oscillatory instability could be achieved. A comparably advanced state-of-the-art with respect to the stationary counterpart seemed to be out of reach a short time ago. Recent developments on both the numerical and experimental side, in combination with assessing an extensive number of older experiments, now allow one to draw a more unified picture. By reviewing these works, we show that three main building blocks exist during the nonlinear evolution: roll cells, relaxation oscillations and relaxation oscillations waves. What is frequently called interfacial turbulence results from the interaction between these partly coexisting basic patterns which may additionally occur in different hierarchy levels. The second focus of this review lies on the practical importance of such convection patterns concerning their influence on mass transfer characteristics. Particular attention is paid here to the interaction between Marangoni and buoyancy effects which frequently complicates the pattern formation even more. To shed more light on these dependencies, new simulations regarding the limiting case of stabilizing density stratification and vanishing buoyancy are incorporated. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Thermodynamic properties of hyperbranched polymer, Boltorn U3000, using inverse gas chromatography.

    PubMed

    Domańska, Urszula; Zołek-Tryznowska, Zuzanna

    2009-11-19

    Mass-fraction activity coefficients at infinite dilution (Omega13(infinity)) of alkanes (C5-C10), cycloalkanes (C5-C8), alkenes (C5-C8), alkynes (C5-C8), aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-, m-, p-xylene, thiophene), alcohols (C1-C5), water, ethers (tetrahydrofuran (THF), methyl-tert-butylether (MTBE), diethyl-, di-n-propyl-, di-n-butyl ether), and ketones (propanone, 2-pentanone, 3-pentanone, 2-hexanone, 3-hexanone, cyclopentanone) in the hyperbranched polymer, Boltorn U3000 (B-U3000), have been determined by inverse gas chromatography (IGC) using the polymer as the stationary phase. The measurements were carried out at different temperatures between 308.15 and 348.15 K. The density and thermophysical properties of polymer were described. The specific retention volume (V(g)), the Flory-Huggins interaction parameter (chi13(infinity)), the molar enthalpy of sorption (the partial molar enthalpies of solute dissolution) (Delta(s)H), the partial molar excess enthalpy at infinite dilution of the solute and polymer (DeltaH1(E,infinity)), the partial molar Gibbs excess energy at infinite dilution (DeltaG1(E,infinity)), and the solubility parameter (delta3) were calculated.

  10. Stationary Engineering Laboratory--2. Teacher's Guide.

    ERIC Educational Resources Information Center

    Steingress, Frederick M.; Frost, Harold J.

    The Stationary Engineering Laboratory Manual 2 Teacher's Guide was designed as an aid to the instructors of vocational-technical high school students who have received instruction in the basics of stationary engineering. The course of study was developed for students who will be operating a live plant and who will be responsible for supplying…

  11. Enantioseparation of napropamide by supercritical fluid chromatography: Effects of the chromatographic conditions and separation mechanism.

    PubMed

    Zhao, Lu; Xie, Jingqian; Guo, Fangjie; Liu, Kai

    2018-05-01

    Supercritical fluid chromatography (SFC) is already used for enantioseparation in the pharmaceutical industry, but it is rarely used for the separation of chiral pesticides. Comparing with high performence liquid chromatography, SFC uses much more environmnetal friendly and economic mobile phase, supercritical CO 2 . In our work, the enantioseparation of an amide herbicide, napropamide, using three different polysaccharide-type chiral stationary phases (CSPs) in SFC was investigated. By studying the effect of different CSPs, organic modifiers, temperature, back-pressure regulator pressures, and flow rates for the enantioseparation of napropamide, we established a rapid and green method for enantioseparation that takes less than 2 minutes: The column was CEL2, the mobile phase was CO 2 with 20% 2-propanol, and the flow rate was 2.0 mL/min. We found that CEL2 demonstrated the strongest resolution capability. Acetonitrile was favored over alcoholic solvents when the CSP was amylose and 2-propanol was the best choice when using cellulose. When the concentration of the modifiers or the flow rate was decreased, resolutions and analysis times increased concurrently. The temperature and back-pressure regulator pressure exhibited only minor influences on the resolution and analysis time of the napropamide enantioseparations with these chiral columns. The molecular docking analysis provided a deeper insight into the interactions between the enantiomers and the CSPs at the atomic level and partly explained the reason for the different elution orders using the different chiral columns. © 2018 Wiley Periodicals, Inc.

  12. Multiphase flow modeling in centrifugal partition chromatography.

    PubMed

    Adelmann, S; Schwienheer, C; Schembecker, G

    2011-09-09

    The separation efficiency in Centrifugal Partition Chromatography (CPC) depends on selection of a suitable biphasic solvent system (distribution ratio, selectivity factor, sample solubility) and is influenced by hydrodynamics in the chambers. Especially the stationary phase retention, the interfacial area for mass transfer and the flow pattern (backmixing) are important parameters. Their relationship with physical properties, operating parameters and chamber geometry is not completely understood and predictions are hardly possible. Experimental flow visualization is expensive and two-dimensional only. Therefore we simulated the flow pattern using a volume-of-fluid (VOF) method, which was implemented in OpenFOAM®. For the three-dimensional simulation of a rotating FCPC®-chamber, gravitational centrifugal and Coriolis forces were added to the conservation equation. For experimental validation the flow pattern of different solvent systems was visualized with an optical measurement system. The amount of mobile phase in a chamber was calculated from gray scale values of videos recorded by an image processing routine in ImageJ®. To visualize the flow of the stationary phase polyethylene particles were used to perform a qualitative particle image velocimetry (PIV) analysis. We found a good agreement between flow patterns and velocity profiles of experiments and simulations. By using the model we found that increasing the chamber depth leads to higher specific interfacial area. Additionally a circular flow in the stationary phase was identified that lowers the interfacial area because it pushes the jet of mobile phase to the chamber wall. The Coriolis force alone gives the impulse for this behavior. As a result the model is easier to handle than experiments and allows 3D prediction of hydrodynamics in the chamber. Additionally it can be used for optimizing geometry and operating parameters for given physical properties of solvent systems. Copyright © 2011 Elsevier B

  13. Electrochromatographic retention of peptides on strong cation-exchange stationary phases.

    PubMed

    Nischang, Ivo; Höltzel, Alexandra; Tallarek, Ulrich

    2010-03-01

    We analyze the systematic and substantial electrical field-dependence of electrochromatographic retention for four counterionic peptides ([Met5]enkephalin, oxytocin, [Arg8]vasopressin, and luteinizing hormone releasing hormone (LHRH) ) on a strong cation-exchange (SCX) stationary phase. Our experiments show that retention behavior in the studied system depends on the charge-selectivity of the stationary phase particles, the applied voltage, and the peptides' net charge. Retention factors of twice positively charged peptides ([Arg8]vasopressin and LHRH at pH 2.7) decrease with increasing applied voltage, whereas lower charged peptides (oxytocin and [Met5]enkephalin at pH 2.7, [Arg8]vasopressin and LHRH at pH 7.0) show a concomitant increase in their retention factors. The observed behavior is explained on the basis of electrical field-induced concentration polarization (CP) that develops around the SCX particles of the packing. The intraparticle concentration of charged species (buffer ions, peptides) increases with increasing applied voltage due to diffusive backflux from the enriched CP zone associated with each SCX particle. For twice charged and on the SCX phase strongly retained peptides the local increase in mobile phase ionic strength reduces the electrostatic interactions with the stationary phase, which explains the decrease of retention factors with increasing applied voltage and CP intensity. Lower charged and weaker retained peptides experience a much stronger relative intraparticle enrichment than the twice-charged peptides, which results in a net increase of retention factors with increasing applied voltage. The CP-related contribution to electrochromatographic retention of peptides on the SCX stationary phase is modulated by the applied voltage, the mobile phase ionic strength, and the peptides' net charge and could be used for selectivity tuning in difficult separations.

  14. 30 CFR 75.1723 - Stationary grinding machines; protective devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Stationary grinding machines; protective....1723 Stationary grinding machines; protective devices. (a) Stationary grinding machines other than... the wheel. (3) Safety washers. (b) Grinding wheels shall be operated within the specifications of the...

  15. 30 CFR 75.1723 - Stationary grinding machines; protective devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines; protective....1723 Stationary grinding machines; protective devices. (a) Stationary grinding machines other than... the wheel. (3) Safety washers. (b) Grinding wheels shall be operated within the specifications of the...

  16. Temperature-Modulated Array High-Performance Liquid Chromatography

    PubMed Central

    Premstaller, Andreas; Xiao, Wenzhong; Oberacher, Herbert; O'Keefe, Matthew; Stern, David; Willis, Thomas; Huber, Christian G.; Oefner, Peter J.

    2001-01-01

    Using novel monolithic poly(styrene-divinylbenzene) capillary columns with an internal diameter of 0.2 mm, we demonstrate for the first time the feasibility of constructing high-performance liquid chromatography arrays for the detection of mutations by heteroduplex analysis under partially denaturing conditions. In one embodiment, such an array can be used to analyze one sample simultaneously at different temperatures to maximize the detection of mutations in DNA fragments containing multiple discrete melting domains. Alternatively, one may inject different samples onto columns kept at the same effective temperature. Further improvements in throughput can be obtained by means of laser-induced fluorescence detection and the differential labeling of samples with up to four different fluorophores. Major advantages of monolithic capillary high-performance liquid chromatographic arrays over their capillary electrophoretic analogs are the chemical inertness of the poly(styrene-divinylbenzene) stationary phase, the physical robustness of the column bed due to its covalent linkage to the inner surface of the fused silica capillary, and the feasibility to modify the stationary phase thereby allowing the separation of compounds not only on the principle of size exclusion, but also adsorption, distribution, and ion exchange. Analyses times are on the order of a few minutes and turnaround time is extremely short as there is no need for the replenishment of the separation matrix between runs. PMID:11691859

  17. Phenylboronate chromatography selectively separates glycoproteins through the manipulation of electrostatic, charge transfer, and cis-diol interactions.

    PubMed

    Carvalho, Rimenys J; Woo, James; Aires-Barros, M Raquel; Cramer, Steven M; Azevedo, Ana M

    2014-10-01

    Phenylboronate chromatography (PBC) has been applied for several years, however details regarding the mechanisms of interactions between the ligand and biomolecules are still scarce. The goal of this work is to investigate the various chemical interactions between proteins and their ligands, using a protein library containing both glycosylated and nonglycosylated proteins. Differences in the adsorption of these proteins over a pH range from 4 to 9 were related to two main properties: charge and presence of glycans. Acidic or neutral proteins were strongly adsorbed below pH 8 although the uncharged trigonal form of phenylboronate (PB) is less susceptible to forming electrostatic and cis-diol interactions with proteins. The glycosylated proteins were only adsorbed above pH 8 when the electrostatic repulsion between the boronate anion and the protein surface was mitigated (at 200 mM NaCl). All basic proteins were highly adsorbed above pH 8 with PB also acting as a cation-exchanger with binding occurring through electrostatic interactions. Batch adsorption performed at acidic conditions in the presence of Lewis base showed that charge-transfer interactions are critical for protein retention. This study demonstrates the multimodal interaction of PBC, which can be a selective tool for separation of different classes of proteins. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Proteome wide evaluation of the separation ability of hydrophobic interaction chromatography by fluorescent dye binding analysis.

    PubMed

    Ibarra-Herrera, Celeste C; Reddy-Vennapusa, Rami; Rito-Palomares, Marco; Fernández-Lahore, Marcelo

    2013-12-01

    Hydrophobic interaction chromatography (HIC) is an important tool in the industrial purification of proteins from various sources. The HIC separation behavior of individual (or model) proteins has been widely researched by others. On the contrary, this study focused on the fractionation ability of HIC when it is challenged with whole proteomes. The impact of the nature of three different proteomes, that is, yeast, soybean, and Chinese hamster ovary cells, on HIC separation was investigated. In doing so, chromatography fractions obtained under standardized conditions were evaluated in terms of their overall hydrophobicity--as measured by fluorescence dye binding. This technique allowed for the calculation of an average protein surface hydrophobicity (S(0)) for each fraction; a unique correlation between S(0) and the observed chromatographic behavior was established in each case. Following a similar strategy, the effect of three different ligands (polypropylene glycol, phenyl, and butyl) and two adsorbent particle sizes (65 and 100 µm) on the chromatographic behavior of the yeast proteome was evaluated. As expected, the superficial hydrophobicity of the proteins eluted is correlated with the salt concentration of its corresponding elution step. The findings reveled how--and in which extent--the type of ligand and the size of the beads actually influenced the fractionation of the complex biological mixture. Summarizing, the approach presented here can be instrumental to the study of the performance of chromatography adsorbents under conditions close to industrial practice and to the development of downstream processing strategies. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Direct imaging of slow, stored and stationary EIT polaritons

    NASA Astrophysics Data System (ADS)

    Campbell, Geoff T.; Cho, Young-Wook; Su, Jian; Everett, Jesse; Robins, Nicholas; Lam, Ping Koy; Buchler, Ben

    2017-09-01

    Stationary and slow light effects are of great interest for quantum information applications. Using laser-cooled Rb87 atoms, we performed side imaging of our atomic ensemble under slow and stationary light conditions, which allows direct comparison with numerical models. The polaritons were generated using electromagnetically induced transparency (EIT), with stationary light generated using counter-propagating control fields. By controlling the power ratio of the two control fields, we show fine control of the group velocity of the stationary light. We also compare the dynamics of stationary light using monochromatic and bichromatic control fields. Our results show negligible difference between the two situations, in contrast to previous work in EIT-based systems.

  20. Isolation of Methoxyfuranocoumarins From Ammi majus by Centrifugal Partition Chromatography.

    PubMed

    Bartnik, Magdalena; Mazurek, Anna Katarzyna

    2016-01-01

    Pure methoxyfuranocoumarins were isolated from Ammi majus L. by use of low-pressure column chromatography (LPCC) followed by centrifugal partition chromatography (CPC). The concentrated petroleum ether extract from fruits of A. majus was fractionated on a silica gel column using a gradient of ethyl acetate in dichloromethane (0-80%, v/v). Coumarin-rich fractions were analyzed by thin-layer chromatography (TLC) and high-performance liquid chromatography with diode array detection (HPLC/DAD). Xanthotoxin (8-MOP) and isopimpinellin (isoP), structurally similar compounds, were isolated in one fraction (FR6). To avoid multistep and long-lasting TLC preparation, optimization of CPC conditions has been performed. In one run, an effective separation of 8-MOP and isoP was achieved. The two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (10 : 8 : 10 : 9; v/v) in an ascending mode (the aqueous phase was a stationary phase, and the organic phase was a mobile phase), with flow rate 3 mL/min and rotation speed 1,600 r.p.m., was used. The identification and high purities of isolated 8-MOP (98.7%) and isoP (100%) were confirmed by HPLC/DAD assay, when compared with standards. The developed CPC method could be applied to the effective isolation of 8-MOP and isoP from plant extracts. The high purity of obtained compounds makes possible further exploitation of these components in biological studies. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. 30 CFR 77.401 - Stationary grinding machines; protective devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Stationary grinding machines; protective... OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.401 Stationary grinding machines; protective devices. (a) Stationary grinding machines other than special bit grinders shall be equipped with...

  2. 30 CFR 77.401 - Stationary grinding machines; protective devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines; protective... OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.401 Stationary grinding machines; protective devices. (a) Stationary grinding machines other than special bit grinders shall be equipped with...

  3. Chromatography.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities on chromatography. Directions for preparing leaf pigment extracts using alcohol are given, and paper chromatography and thin-layer chromatography are described as modifications of the basic principles of chromatography. (KHR)

  4. The potential of immobilized artificial membrane chromatography to predict human oral absorption.

    PubMed

    Tsopelas, Fotios; Vallianatou, Theodosia; Tsantili-Kakoulidou, Anna

    2016-01-01

    The potential of immobilized artificial membrane (IAM) chromatography to estimate human oral absorption (%HOA) was investigated. For this purpose, retention indices on IAM stationary phases reported previously by our group or measured by other authors under similar conditions were used to model %HOA data, compiled from literature sources. Considering the pH gradient in gastrointestinal tract, the highest logkw(IAM) values were considered, obtained either at pH7.4 or 5.5, defined as logkw(IAM)(best). Non linear models were established upon introduction of additional parameters and after exclusion of drugs which are substrates either to efflux or uptake transporters. The best model included Abraham's hydrogen-bond acidity parameter, molecular weight as well as the positively and negatively charged molecular fractions. For reasons of comparison between IAM chromatography and traditional lipophilicity, corresponding models were derived by replacing IAM retention factors with octanol-water distribution coefficients (logD). An overexpression of electrostatic interactions with phosphate anions was observed in the case of IAM retention as expressed by the negative contribution of the positively charged fraction F(+). The same parameter is statistically significant also in the logD model, but with a positive sign, indicating the attraction of basic drugs in the negatively charged inner membrane. To validate the obtained models a blind test set of 22 structurally diverse drugs was used, whose logkw(IAM)(best) values were determined and analyzed in the present study under similar conditions. IAM retention factors were further compared with MDCK cell lines permeability data taken from literature for a set of validation drugs. The overexpression of electrostatic interactions with phosphate anions on IAM surface was also evident in respect to MDCK permeability. In contrast to the clear classification between drugs with high and poor (or intermediate) absorption provided by MDCK

  5. A Computer-Based Undergraduate Exercise Using Internet-Accessible Simulation Software for the Study of Retention Behavior and Optimization of Separation Conditions in Ion Chromatography

    ERIC Educational Resources Information Center

    Haddad, Paul R.; Shaw, Matthew J.; Madden, John E.; Dicinoski, Greg W.

    2004-01-01

    The ability to scan retention data over a wide range of eluent composition opens up the possibility of a computerized selection of the optimal separation conditions. The major characteristics of retention behavior, peak-shape effects and pH effects evident in ion chromatography (IC) using common stationary phases and eluents are illustrated.

  6. Efficient method for preparation of highly purified lipopolysaccharides by hydrophobic interaction chromatography.

    PubMed

    Muck, A; Ramm, M; Hamburger, M

    1999-09-10

    A method for the efficient preparation of highly purified lipopolysaccharides (LPSs) by hydrophobic interaction chromatography (HIC) has been developed. The procedure can be used for the purification of cell wall bound LPSs after hot phenol-water extraction and for the isolation of extracellular LPSs from the supernatant, respectively. The method described has been tested with artificial mixtures containing LPSs, polysaccharide, protein and RNA and subsequently employed for the preparative purification of two LPSs of different origin, namely the extracellular LPS secreted by Escherichia coli E49 into the culture medium, and the cell wall bound LPS from Pseudomonas aeruginosa VA11465/1. Compared to currently used methods for LPS purification such as enzymatic digestion and ultracentrifugation, the chromatographic separation reported here combines superior purity with minimal loss of LPS, high reproducibility and simple handling. The removal of contaminants such as protein, RNA and polysaccharides and the recovery of LPSs were monitored by appropriate assays.

  7. Gradient separation of oligosaccharides and suppressing anomeric mutarotation with enhanced-fluidity liquid hydrophilic interaction chromatography.

    PubMed

    Bennett, Raffeal; Olesik, Susan V

    2017-04-01

    Enhanced fluidity liquid chromatography using the hydrophilic interaction retention mechanism (EFLC-HILIC) is studied as an alternative separation mode for analyzing oligosaccharides and other sugars. These carbohydrates, which are important for the study of foods and biological systems, are difficult to comprehensively profile and either require a non-green, expensive solvent (i.e. acetonitrile) or derivatization of the analytes at the expense of time, sample loss, and loss of quantitative information. These difficulties arise from the diverse isomerism, mutarotation, and lack of a useable chromophore/fluorophore for spectroscopic detection. Enhanced fluidity liquid chromatography is an alternative separation method that involves the use of conventional polar solvents, such as methanol/water mixtures, as the primary mobile phase component and liquid carbon dioxide (CO 2 ) as the modifier in subcritical conditions. The addition of liquid CO 2 enhances diffusivity and decreases viscosity while maintaining mixture polarity, which typically results in reduced time of analysis and higher efficiency. This work illustrates an optimized EFLC-HILIC separation of a test mixture of oligosaccharides and simple sugars with a resolution greater than 1.3 and an analysis time decrease of over 35% compared to a conventional HPLC HILIC-mode analysis using acetonitrile/water mobile phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Stationary stability for evolutionary dynamics in finite populations

    DOE PAGES

    Harper, Marc; Fryer, Dashiell

    2016-08-25

    Here, we demonstrate a vast expansion of the theory of evolutionary stability to finite populations with mutation, connecting the theory of the stationary distribution of the Moran process with the Lyapunov theory of evolutionary stability. We define the notion of stationary stability for the Moran process with mutation and generalizations, as well as a generalized notion of evolutionary stability that includes mutation called an incentive stable state (ISS) candidate. For sufficiently large populations, extrema of the stationary distribution are ISS candidates and we give a family of Lyapunov quantities that are locally minimized at the stationary extrema and at ISSmore » candidates. In various examples, including for the Moran andWright–Fisher processes, we show that the local maxima of the stationary distribution capture the traditionally-defined evolutionarily stable states. The classical stability theory of the replicator dynamic is recovered in the large population limit. Finally we include descriptions of possible extensions to populations of variable size and populations evolving on graphs.« less

  9. Determination of Alternaria mycotoxins in wine and juice using ionic liquid modified countercurrent chromatography as a pretreatment method followed by high-performance liquid chromatography.

    PubMed

    Fan, Chen; Cao, Xueli; Liu, Man; Wang, Wei

    2016-03-04

    Alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA) are some of the main Alternaria mycotoxins that can be found as contaminants in food materials. The objective of this study was to develop a pretreatment method with countercurrent chromatography (CCC) for enrichment and cleanup of trace Alternaria mycotoxins in food samples prior to high-performance liquid chromatography (HPLC) analysis. An Analytical CCC instrument with a column volume 22.5mL was used, and a two-phase solvent system composed of ethyl acetate and water modified with 6% [HOOMIM][Cl] in mass to volume ratio was selected. Under the optimized CCC operation conditions, trace amounts of AOH, AME, and TeA in large volume of liquid sample were efficiently extracted and enriched in the stationary phase, and then eluted out just by reversing the stationary phase as mobile phase in the opposite flowing direction tail-to-head. The enrichment and elution strategies are unique and can be fulfilled online with high enrichment factors (87-114) and high recoveries (81.14-110.94%). The method has been successively applied to the determination of Alternaria mycotoxins in real apple juice and wine samples with the limits of detection (LOD) in the range of 0.03-0.14μgL(-1). Totally 12 wine samples and 15 apple juice samples from the local market were analyzed. The detection rate of AOH and AME in both kinds of the samples were more than 50%, while TeA was found in relatively high level of 1.75-49.61μgL(-1) in some of the apple juice samples. The proposed method is simple, rapid, and sensitive and could also be used for the analysis and monitoring of Alternaria mycotoxin in other food samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Quantitation of five organophosphorus nerve agent metabolites in serum using hydrophilic interaction liquid chromatography and tandem mass spectrometry

    PubMed Central

    Hamelin, Elizabeth I.; Schulze, Nicholas D.; Shaner, Rebecca L.; Coleman, Rebecca M.; Lawrence, Richard J.; Crow, Brian S.; Jakubowski, E. M.; Johnson, Rudolph C.

    2015-01-01

    Although nerve agent use is prohibited, concerns remain for human exposure to nerve agents during decommissioning, research, and warfare. Exposure can be detected through the analysis of the hydrolysis products in urine as well as blood. An analytical method to detect exposure to five nerve agents, including VX, VR (Russian VX), GB (sarin), GD (soman) and GF (cyclosarin), through the analysis of the hydrolysis products, which are the primary metabolites, in serum has been developed and characterized. This method uses solid phase extraction coupled with high performance liquid chromatography for separation and isotopic dilution tandem mass spectrometry for detection. An uncommon buffer of ammonium fluoride was used to enhance ionization and improve sensitivity when coupled with hydrophilic interaction liquid chromatography resulting in detection limits from 0.3–0.5 ng/mL. The assessment of two quality control samples demonstrated high accuracy (101–105%) and high precision (5–8%) for the detection of these five nerve agent hydrolysis products in serum. PMID:24633507

  11. Motion streaks do not influence the perceived position of stationary flashed objects.

    PubMed

    Pavan, Andrea; Bellacosa Marotti, Rosilari

    2012-01-01

    In the present study, we investigated whether motion streaks, produced by fast moving dots Geisler 1999, distort the positional map of stationary flashed objects producing the well-known motion-induced position shift illusion (MIPS). The illusion relies on motion-processing mechanisms that induce local distortions in the positional map of the stimulus which is derived by shape-processing mechanisms. To measure the MIPS, two horizontally offset Gaussian blobs, placed above and below a central fixation point, were flashed over two fields of dots moving in opposite directions. Subjects judged the position of the top Gaussian blob relative to the bottom one. The results showed that neither fast (motion streaks) nor slow moving dots influenced the perceived spatial position of the stationary flashed objects, suggesting that background motion does not interact with the shape-processing mechanisms involved in MIPS.

  12. Application of retention modelling to the simulation of separation of organic anions in suppressed ion chromatography.

    PubMed

    Zakaria, Philip; Dicinoski, Greg W; Ng, Boon Khing; Shellie, Robert A; Hanna-Brown, Melissa; Haddad, Paul R

    2009-09-18

    The ion-exchange separation of organic anions of varying molecular mass has been demonstrated using ion chromatography with isocratic, gradient and multi-step eluent profiles on commercially available columns with UV detection. A retention model derived previously for inorganic ions and based solely on electrostatic interactions between the analytes and the stationary phase was applied. This model was found to accurately describe the observed elution of all the anions under isocratic, gradient and multi-step eluent conditions. Hydrophobic interactions, although likely to be present to varying degrees, did not limit the applicability of the ion-exchange retention model. Various instrumental configurations were investigated to overcome problems associated with the use of organic modifiers in the eluent which caused compatibility issues with the electrolytically derived, and subsequently suppressed, eluent. The preferred configuration allowed the organic modifier stream to bypass the eluent generator, followed by subsequent mixing before entering the injection valve and column. Accurate elution prediction was achieved even when using 5-step eluent profiles with errors in retention time generally being less than 1% relative standard deviation (RSD) and all being less than 5% RSD. Peak widths for linear gradient separations were also modelled and showed good agreement with experimentally determined values.

  13. Graphene-ZIF8 composite material as stationary phase for high-resolution gas chromatographic separations of aliphatic and aromatic isomers.

    PubMed

    Yang, Xiaohong; Li, Changxia; Qi, Meiling; Qu, Liangti

    2016-08-19

    This work presents the separation performance of graphene-ZIF8 (G-Z) composite material as stationary phase for capillary gas chromatography (GC). The G-Z stationary phase achieved high column efficiency of 5000 plates/m determined by n-dodecane (k=1.22) at 120°C and showed weakly polar nature. Importantly, it exhibited high selectivity and resolving capability for branched alkane isomers and aromatic positional isomers, showing clear advantages over the reported neat graphene and ZIF8. In addition, it attained high resolution for geometric cis-/trans-isomers. The G-Z column exhibited good column thermal stability up to 300°C and column repeatability with RSD values of retention times in the range of 0.01-0.19% for intra-day, 0.05-0.88% for inter-day and 0.66-5.6% for between-column, respectively, Moreover, the G-Z column was employed for the determination of minor impurity isomers in real reagent samples, which demonstrates its promising potential in GC applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. 77 FR 52553 - Standards of Performance for Stationary Gas Turbines; Standards of Performance for Stationary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ...The EPA is proposing to amend the new source performance standards (NSPS) for stationary gas turbines and stationary combustion turbines. These amendments are primarily in response to issues raised by the regulated community. On July 6, 2006, the EPA promulgated amendments to the new source performance standards for stationary combustion turbines. On September 5, 2006, the Utility Air Regulatory Group filed a petition for reconsideration of certain aspects of the promulgated standards. The EPA is proposing to amend specific provisions in the NSPS to resolve issues and questions raised by the petition for reconsideration, and to address other technical and editorial issues. In addition, this proposed rule would amend the location and wording of existing paragraphs for clarity. The proposed amendments would increase the environmental benefits of the existing requirements because the emission standards would apply at all times. The proposed amendments would also promote efficiency by recognizing the environmental benefit of combined heat and power and the beneficial use of low energy content gases.

  15. The incorporation of calix[6]arene and cyclodextrin derivatives into sol-gels for the preparation of stationary phases for gas chromatography.

    PubMed

    Delahousse, Guillaume; Peulon-Agasse, Valérie; Debray, Jean-Christophe; Vaccaro, Marie; Cravotto, Giancarlo; Jabin, Ivan; Cardinael, Pascal

    2013-11-29

    New polyethylene-glycol-based sol-gels containing cyclodextrin or calix[6]arene derivatives have been synthesized. An original method for sol-gel preparation and capillary column coating, which consumes smaller quantities of selectors and allows for control of their amounts in the stationary phase, is reported herein. The new stationary phases exhibited excellent column efficiencies over a large range of temperatures and thermal stability up to 280°C. The cyclodextrin derivative generally showed the best separation factors for aromatic positional isomers. The calix[6]arene derivative exhibited the best selectivity for the polychlorobiphenyl congeners and some polycyclic aromatic hydrocarbon isomers. The relationship between the structure and the chromatographic properties of the selectors is discussed. The tert-butyl groups on the upper rim of the calix[6]arene were found to possibly play an important role in the recognition of solutes. The incorporation of the cyclodextrin derivative into the sol-gel matrix did not affect its enantioselective recognition capabilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Poly-proline-based chiral stationary phases: a molecular dynamics study of triproline, tetraproline, pentaproline and hexaproline interfaces.

    PubMed

    Ashtari, M; Cann, N M

    2012-11-23

    Poly-proline chains and derivatives have been recently examined as the basis for new chiral stationary phases in high performance liquid chromatography. The selectivity of poly-proline has been measured for peptides with up to ten proline units. In this article, we employ molecular dynamics simulations to examine the interfacial structure and solvation of surface-bound poly-proline chiral selectors. Specifically, we study the interfacial structure of trimethylacetyl-terminated poly-proline chains with three-to-six prolines. The surface includes silanol groups and end-caps, to better capture the characteristics of the stationary phase, and the solvent is either a polar water/methanol or a relatively apolar n-hexane/2-propanol mixture. We begin with a comprehensive ab initio study of the conformers, their energies, and an assessment of conformer flexibility. Force fields have been developed for each poly-proline selector. Molecular dynamics simulations are employed to study the preferred backbone conformations and solvent hydrogen bonding for different poly-proline/solvent interfaces. For triproline, the effect of two different terminal groups, trimethylacetyl and t-butyl carbamate are compared. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Stochastic modelling of non-stationary financial assets

    NASA Astrophysics Data System (ADS)

    Estevens, Joana; Rocha, Paulo; Boto, João P.; Lind, Pedro G.

    2017-11-01

    We model non-stationary volume-price distributions with a log-normal distribution and collect the time series of its two parameters. The time series of the two parameters are shown to be stationary and Markov-like and consequently can be modelled with Langevin equations, which are derived directly from their series of values. Having the evolution equations of the log-normal parameters, we reconstruct the statistics of the first moments of volume-price distributions which fit well the empirical data. Finally, the proposed framework is general enough to study other non-stationary stochastic variables in other research fields, namely, biology, medicine, and geology.

  18. Temporal evolutions and stationary waves for dissipative Benjamin-Ono equation

    NASA Astrophysics Data System (ADS)

    Feng, Bao-Feng; Kawahara, Takuji

    2000-05-01

    Initial value problems as well as stationary solitary and periodic waves are investigated for dissipative Benjamin-Ono (DBO) equation. Multi-hump stationary waves and their structures are identified numerically and the stability regions of stationary periodic waves are also examined numerically. These results elucidate a close relation between irregular behaviours in the initial value problem and the multiplicity of stationary waves.

  19. Gene expression profiles of Vibrio parahaemolyticus in the early stationary phase.

    PubMed

    Meng, L; Alter, T; Aho, T; Huehn, S

    2015-09-01

    Vibrio (V.) parahaemolyticus is an aquatic bacterium capable of causing foodborne gastroenteritis. In the environment or the food chain, V. parahaemolyticus cells are usually forced into the stationary phase, the common phase for bacterial survival in the environment. So far, little is known about whole genomic expression of V. parahaemolyticus in the early stationary phase compared with the exponential growth phase. We performed whole transcriptomic profiling of V. parahaemolyticus cells in both phases (exponential and early stationary phase). Our data showed in total that 172 genes were induced in early stationary phase, while 61 genes were repressed in early stationary phase compared with the exponential phase. Three functional categories showed stable gene expression in the early stationary phase. Eleven functional categories showed that up-regulation of genes was dominant over down-regulation in the early stationary phase. Although genes related to endogenous metabolism were repressed in the early stationary phase, massive regulation of gene expression occurred in the early stationary phase, indicating the expressed gene set of V. parahaemolyticus in the early stationary phase impacts environmental survival. Vibrio (V.) parahaemolyticus is one of the main bacterial causes of foodborne intestinal infections. This bacterium usually is forced into stationary phase in the environment, which includes, e.g. seafood. When bacteria are in stationary phase, physiological changes can lead to a resistance to many stresses, including physical and chemical challenges during food processing. To the best of our knowledge, highlighting the whole genome expression changes in the early stationary phase compared with exponential phase, as well as the investigation of physiological changes of V. parahaemolyticus such as the survival mechanism in the stationary phase has been the very first study in this field. © 2015 The Society for Applied Microbiology.

  20. Hydrophilic interaction liquid chromatography-solid phase extraction directly combined with protein precipitation for the determination of triptorelin in plasma.

    PubMed

    Wang, Jixia; Kong, Song; Yan, Jingyu; Jin, Gaowa; Guo, Zhimou; Shen, Aijin; Xu, Junyan; Zhang, Xiuli; Zou, Lijuan; Liang, Xinmiao

    2014-06-01

    Peptide drugs play a critical role in therapeutic treatment. However, as the complexity of plasma, determination of peptide drugs using liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a daunting task. To solve this problem, hydrophilic interaction liquid chromatography-solid phase extraction (HILIC-SPE) directly combined with protein precipitation (PPT) was developed for the selective extraction of triptorelin from plasma. The extracts were analyzed by reversed-phase liquid chromatography (RPLC). Proteins, phospholipids and highly polar interferences could be removed from plasma by the efficient combination of PPT, HILIC-SPE and RPLC-MS/MS. This method was evaluated by matrix effect, recovery and process efficiency at different concentration levels (50, 500 and 5,000 ng/mL) of triptorelin. Furthermore, the performance of HILIC-SPE was compared with that of reversed-phase C18 SPE and hydrophilic lipophilic balance (Oasis HLB) SPE. Among them, HILIC-SPE provided the minimum matrix effect (ranging from 96.02% to 103.41%), the maximum recovery (ranging from 80.68% to 90.54%) and the satisfactory process efficiency (ranging from 82.83% to 92.95%). The validated method was successfully applied to determine triptorelin in rat plasma. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. RP-HPLC×HILIC chromatography for quantifying ertapenem sodium with a look at green chemistry.

    PubMed

    Pedroso, Tahisa M; Medeiros, Ana C D; Salgado, Herida R N

    2016-11-01

    Ertapenem sodium is a polar and ionizable compound; therefore, it has little retention on traditional C18 columns in reverse-phase high-performance liquid chromatography, even using a highly-aqueous mobile phase that can result in dewetting in the stationary phase. Thus, the most coherent process for ERTM is to develop a method for Hydrophilic Interaction Chromatography. However, for the traditional methods in HILIC, the use of a highly organic mobile phase is necessary; usually an amount exceeding 80% acetonitrile is necessary. On the other hand, the RP-HPLC mode is considered for the analysis technique, which is more often used for quantification of substances, and new columns are often introduced to analyze different groups of compounds. Two new analytical methods have been developed for routine analysis. The proposed chromatographic method was adequate and advantageous by presenting simplicity, linearity, precision, accuracy, robustness, detection limits, and satisfactory quantification. Analytical methods are constantly undergoing changes and improvements. Researchers worldwide are rapidly adopting Green Chemistry. The development of new pharmaceutical methods based in Green chemistry has been encouraged by universities and the pharmaceutical industry. Issues related to green chemistry are in evidence and they have been featured in international journals of high impact. The methods described here have economic advantages and they feature an eco-friendly focus, which is discussed in this work. This work was developed with an environmental conscience, always looking to minimize the possible generated organic waste. Therefore, discussion on this aspect is included. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Monolithic poly[(trimethylsilyl-4-methylstyrene)-co- bis(4-vinylbenzyl)dimethylsilane] stationary phases for the fast separation of proteins and oligonucleotides.

    PubMed

    Jakschitz, Thomas A E; Huck, Christian W; Lubbad, Said; Bonn, Günther K

    2007-04-13

    In this paper the synthesis, optimisation and application of a silane based monolithic copolymer for the rapid separation of proteins and oligonucleotides is described. The monolith was prepared by thermal initiated in situ copolymerisation of trimethylsilyl-4-methylstyrene (TMSiMS) and bis(4-vinylbenzyl)dimethylsilane (BVBDMSi) in a silanised 200 microm I.D. fused silica column. Different ratios of monomer and crosslinker, as well as different ratios of micro- (toluene) and macro-porogen (2-propanol) were used for optimising the physical properties of the stationary phase regarding separation efficiency. The prepared monolithic stationary phases were characterised by measurement of permeability with different solvents, determination of pore size distribution by mercury intrusion porosimetry (MIP). Morphology was studied by scanning electron microscopy (SEM). Applying optimised conditions, a mixture comprised of five standard proteins ribunuclease A, cytochrome c, alpha-lactalbumine, myoglobine and ovalbumine was separated within 1 min by ion-pair reversed-phase liquid chromatography (IP-RPLC) obtaining half-height peak widths between 1.8 and 2.4 s. Baseline separation of oligonucleotides d(pT)(12-18) was achieved within 1.8 min obtaining half-height peak widths between 3.6 and 5.4 s. The results demonstrate the high potential of this stationary phase for fast separation of high-molecular weight biomolecules such as oligonucleotides and proteins.

  3. Consequences of transition from liquid chromatography to supercritical fluid chromatography on the overall performance of a chiral zwitterionic ion-exchanger.

    PubMed

    Wolrab, Denise; Frühauf, Peter; Gerner, Christopher; Kohout, Michal; Lindner, Wolfgang

    2017-09-29

    Major differences in the chromatographic performance of a zwitterion ion-exchange type (ZWIX) chiral stationary phase (CSP) in supercritical fluid chromatography (SFC) and high-performance liquid chromatography (HPLC) have been observed. To explain these differences, transition from HPLC to SFC conditions has been performed. The amount of a protic organic modifier in supercritical carbon dioxide (scCO 2 ) was stepwise increased and the effect of this change studied using acidic, basic and ampholytic analytes. At the same time, the effect of various basic additives to the mobile phase and transient acidic buffer species, formed by the reaction of scCO 2 with the organic modifier and additives, was assessed. Evidence is provided that a transient acid together with the intrinsic counter-ions present in the ZWIX selector structure drive the elution of analytes even when no buffer is employed. We show that the tested analytes can be enantioseparated under both SFC and HPLC conditions; the best conditions for the resolution of ampholytes are in the so-called enhanced-fluidity mobile phase region. As a consequence, subcritical fluid and enhanced-fluidity mobile phase regions seem to be chromatographic modes with a high potential for operating ZWIX CSPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Pushing the speed limit in enantioselective supercritical fluid chromatography.

    PubMed

    Regalado, Erik L; Welch, Christopher J

    2015-08-01

    Chromatographic enantioseparations on the order of a few seconds can be achieved by supercritical fluid chromatography using short columns packed with chiral stationary phases. The evolution of 'world record' speeds for the chromatographic separation of enantiomers has steadily dropped from an industry standard of 20-40 min just two decades ago, to a current ability to perform many enantioseparations in well under a minute. Improvements in instrument and column technologies enabled this revolution, but the ability to predict optimal separation time from an initial method development screening assay using the t(min cc) predictor greatly simplifies the development and optimization of high-speed chiral chromatographic separations. In this study, we illustrate how the use of this simple tool in combination with the workhorse technique of supercritical fluid chromatography on customized short chiral columns (1-2 cm length) allows us to achieve ultrafast enantioseparations of pharmaceutically relevant compounds on the 5-20 s scale, bringing the technique of high-throughput enantiopurity analysis out of the specialist realm and into the laboratories of most researchers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Purification of lignans from Fructus Arctii using off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography.

    PubMed

    Yang, Bichao; Xin, Huaxia; Wang, Feier; Cai, Jianfeng; Liu, Yanfang; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2017-08-01

    As a common traditional Chinese medicine, Fructus Arctii has important clinical medical values. Its main components are lignans, which are difficult to separate and analyze because of the complex composition, similar chemical structures, and close properties. In this study, an off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method, as well as an effective sample pretreatment method based on hydrophilic interaction chromatography material, was developed to enrich the minor lignan fractions and obtain high-purity compounds. In total, 12 high-purity compounds were isolated from Fructus Arctii. Their structures were identified by using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy, which showed that all were lignans and that most of them were isomers. The results demonstrated the effective off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method for the purification of lignans from Fructus Arctii. The separation protocol established here will be beneficial for the separation of complex samples from other kinds of natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Application of ionic liquids in liquid chromatography and electrodriven separation.

    PubMed

    Huang, Yi; Yao, Shun; Song, Hang

    2013-08-01

    Ionic liquids (ILs) are salts in the liquid state at ambient temperature, which are nonvolatile, nonflammable with high thermal stability and dissolve easily for a wide range of inorganic and organic materials. As a kind of potential green solvent, they show high efficiency and selectivity in the field of separation research, especially in instrumental analysis. Thus far, ILs have been successfully applied by many related researchers in high-performance liquid chromatography and capillary electrophoresis as chromatographic stationary phases, mobile phase additives or electroosmotic flow modifiers. This paper provides a detailed review of these applications in the study of natural products, foods, drugs and other fine chemicals. Furthermore, the prospects of ILs in liquid chromatographic and electrodriven techniques are discussed.

  7. Chromatographic test methods for characterizing alkylsiloxane-bonded silica columns for reversed-phase liquid chromatography.

    PubMed

    Poole, Colin F

    2018-06-07

    Major obstacles to formulating a simple retention mechanism for reversed-phase liquid chromatography have a direct impact on the development of experimental methods for column characterization as they limit our capability to understand observed differences in retention at a system level. These problems arise from the heterogeneous composition of the stationary phase, the difficulty of providing a working definition for the phase ratio, and uncertainty as to whether the distribution mechanism for varied compounds is a partition, adsorption or mixed (combination) of these models. Retention factor and separation factor measurements offer little guidance as they represent an average of various and variable contributing factors that can only be interpreted by assuming a specific model. Column characterization methods have tended to ignore these difficulties by inventing a series of terms to describe column properties, such as hydrophobicity, hydrophilicity, silanol activity, steric resistance, etc., without proper definition. This has allowed multiple scales to be proposed for the same property which generally are only weakly correlated. Against this background we review the major approaches for the characterization of alkylsiloxane-bonded silica stationary phases employing prototypical compounds, the hydrophobic-subtraction model and the solvation parameter model. Those methods using prototypical compounds are limited by the lack of compounds with a singular dominant interaction. The multivariate approaches that extract column characteristic properties from the retention of varied compounds are more hopeful but it is important to be more precise in defining the characteristic column properties and cognizant that general interpretation of these properties for varied columns cannot escape the problem of a poor understanding of the distribution mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Development and validation of a hydrophilic interaction chromatography method coupled with a charged aerosol detector for quantitative analysis of nonchromophoric α-hydroxyamines, organic impurities of metoprolol.

    PubMed

    Xu, Qun; Tan, Shane; Petrova, Katya

    2016-01-25

    The European Pharmacopeia (EP) metoprolol impurities M and N are polar, nonchromophoric α-hydroxyamines, which are poorly retained in a conventional reversed-phase chromatographic system and are invisible for UV detection. Impurities M and N are currently analyzed by TLC methods in the EP as specified impurities and in the United States Pharmacopeia-National Formulary (USP-NF) as unspecified impurities. In order to modernize the USP monographs of metoprolol drug substances and related drug products, a hydrophilic interaction chromatography (HILIC) method coupled with a charged aerosol detector (CAD) was explored for the analysis of the two impurities. A comprehensive column screening that covers a variety of HILIC stationary phases (underivatized silica, amide, diol, amino, zwitterionic, polysuccinimide, cyclodextrin, and mixed-mode) and optimization of HPLC conditions led to the identification of a Halo Penta HILIC column (4.6 × 150 mm, 5 μm) and a mobile phase comprising 85% acetonitrile and 15% ammonium formate buffer (100 mM, pH 3.2). Efficient separations of metoprolol, succinic acid, and EP metoprolol impurities M and N were achieved within a short time frame (<8 min). The HILIC-CAD method was subsequently validated per USP validation guidelines with respect to specificity, robustness, linearity, accuracy, and precision, and could be incorporated into the current USP-NF monographs to replace the outdated TLC methods. Furthermore, the developed method was successfully applied to determine organic impurities in metoprolol drug substance (metoprolol succinate) and drug products (metoprolol tartrate injection and metoprolol succinate extended release tablets). Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Chaotic Bohmian trajectories for stationary states

    NASA Astrophysics Data System (ADS)

    Cesa, Alexandre; Martin, John; Struyve, Ward

    2016-09-01

    In Bohmian mechanics, the nodes of the wave function play an important role in the generation of chaos. However, so far, most of the attention has been on moving nodes; little is known about the possibility of chaos in the case of stationary nodes. We address this question by considering stationary states, which provide the simplest examples of wave functions with stationary nodes. We provide examples of stationary wave functions for which there is chaos, as demonstrated by numerical computations, for one particle moving in three spatial dimensions and for two and three entangled particles in two dimensions. Our conclusion is that the motion of the nodes is not necessary for the generation of chaos. What is important is the overall complexity of the wave function. That is, if the wave function, or rather its phase, has a complex spatial variation, it will lead to complex Bohmian trajectories and hence to chaos. Another aspect of our work concerns the average Lyapunov exponent, which quantifies the overall amount of chaos. Since it is very hard to evaluate the average Lyapunov exponent analytically, which is often computed numerically, it is useful to have simple quantities that agree well with the average Lyapunov exponent. We investigate possible correlations with quantities such as the participation ratio and different measures of entanglement, for different systems and different families of stationary wave functions. We find that these quantities often tend to correlate to the amount of chaos. However, the correlation is not perfect, because, in particular, these measures do not depend on the form of the basis states used to expand the wave function, while the amount of chaos does.

  10. A case of Z/E-isomers elution order inversion caused by cosolvent percentage change in supercritical fluid chromatography.

    PubMed

    Pokrovskiy, Oleg I; Ustinovich, Konstantin B; Usovich, Oleg I; Parenago, Olga O; Lunin, Valeriy V; Ovchinnikov, Denis V; Kosyakov, Dmitry S

    2017-01-06

    A case of elution order inversion caused by cosolvent percentage change in supercritical fluid chromatography was observed and investigated in some detail. Z- and E-isomers of phenylisobutylketone oxime experience an elution order reversal on most columns if the mobile phase consists of CO 2 and alcohol. At lower percentages of alcohol Z-oxime is retained less, somewhere at 2-5% coelution occurs and at larger cosolvent volume elution order reverses - Z-oxime is eluted later than E-oxime. We suppose inversion with CO 2 -ROH phases happens due to a shift in balance between two main interactions governing retention. At low ROH percentages stationary phase surface is only slightly covered by ROH molecules so oximes primarily interact with adsorption sites via hydrogen bond formation. Due to intramolecular sterical hindrance Z-oxime is less able to form hydrogen bonds and consequently is eluted first. At higher percentages alcohols occupy most of strong hydrogen bonding sites on silica surface thus leaving non-specific electrostatic interactions predominantly responsible for Z/E selectivity. Z-oxime has a much larger dipole moment than E-oxime and at these conditions it is eluted later. Additional experimental data with CO 2 -CH 3 CN, hexane-iPrOH and CHF 3 -ROH mobile phases supporting this explanation are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Enantioselective separation of racemic juvenile hormone III by normal-phase high-performance liquid chromatography and preparation of [(2)H(3)]juvenile hormone III as an internal standard for liquid chromatography-mass spectrometry quantification.

    PubMed

    Ichikawa, Akio; Ono, Hiroshi; Furuta, Kenjiro; Shiotsuki, Takahiro; Shinoda, Tetsuro

    2007-08-17

    Juvenile hormone III (JH III) racemate was prepared from methyl (2E,6E)-farnesoate via epoxidation with 3-chloroperbenzoic acid (mCPBA). Enantioselective separation of JH III was conducted using normal-phase high-performance liquid chromatography (HPLC) on a chiral stationary phase. [(2)H(3)]Methyl (2E,6E)-farnesoate was also prepared from (2E,6E)-farnesoic acid and [(2)H(4)]methanol (methanol-d(4)) using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and 4-dimethylaminopyridine (DMAP); the conjugated double bond underwent isomerization to some degree. Epoxidation of [(2)H(3)]methyl (2E,6E)-farnesoate with mCPBA gave a novel deuterium-substituted internal standard [(2)H(3)]JH III (JH III-d(3)). The standard curve was produced by linear regression using the peak area ratios of JH III and JH III-d(3) in liquid chromatography-mass spectrometry (LC-MS).

  12. Establishment of A431 cell membrane chromatography-RPLC method for screening target components from Radix Caulophylli.

    PubMed

    Hou, Xiaofang; Wang, Sicen; Hou, Jingjing; He, Langchong

    2011-03-01

    We describe here an analytical method of A431 cell membrane chromatography (A431/CMC) (CMC, cell membrane chromatography) combined with RPLC for recognition, separation, and identification of target components from traditional Chinese medicines (TCMs) Radix Caulophylli. The A431 cells with high expressed epidermal growth factor receptor (EGFR) were used to prepare the stationary phase in the CMC model. Retention fractions on the A431-CMC model were collected using an automated fraction collection and injection module (FC/I). Each fraction was analyzed by RPLC under the optimized conditions. Gefitinib and erlotinib were used as standard compounds to investigate the suitability and reliability of the A431 cell membrane chromatography-RPLC method prior to screening target component from Radix Caulophylli total alkaloids. The results indicated that caulophine and taspine were the target component acting on the epidermal growth factor receptor. This method could be an efficient way in drug discovery using natural medicinal herbs as a source of novel compounds. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Characterization of the efficiency of microbore liquid chromatography columns by van Deemter and kinetic plot analysis.

    PubMed

    Hetzel, Terence; Loeker, Denise; Teutenberg, Thorsten; Schmidt, Torsten C

    2016-10-01

    The efficiency of miniaturized liquid chromatography columns with inner diameters between 200 and 300 μm has been investigated using a dedicated micro-liquid chromatography system. Fully porous, core-shell and monolithic commercially available stationary phases were compared applying van Deemter and kinetic plot analysis. The sub-2 μm fully porous as well as the 2.7 μm core-shell particle packed columns showed superior efficiency and similar values for the minimum reduced plate heights (2.56-2.69) before correction for extra-column contribution compared to normal-bore columns. Moreover, the influence of extra-column contribution was investigated to demonstrate the difference between apparent and intrinsic efficiency by replacing the column by a zero dead volume union to determine the band spreading caused by the system. It was demonstrated that 72% of the intrinsic efficiency could be reached. The results of the kinetic plot analysis indicate the superior performance of the sub-2 μm fully porous particle packed column for ultra-fast liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Influence of physical properties and operating parameters on hydrodynamics in Centrifugal Partition Chromatography.

    PubMed

    Adelmann, S; Schembecker, G

    2011-08-12

    Besides the selection of a suitable biphasic solvent system the separation efficiency in Centrifugal Partition Chromatography (CPC) is mainly influenced by the hydrodynamics in the chambers. The flow pattern, the stationary phase retention and the interfacial area for mass transfer strongly depend on physical properties of the solvent system and operating parameters. In order to measure these parameters we visualized the hydrodynamics in a FCPC-chamber for five different solvent systems with an optical measurement system and calculated the stationary phase retention, interfacial area and the distribution of mobile phase thickness in the chamber. Although inclined chambers were used we found that the Coriolis force always deflected the mobile phase towards the chamber wall reducing the interfacial area. This effect increased for systems with low density difference. We also have shown that the stability of phase systems (stationary phase retention) and its tendency to disperse increased for smaller values of the ratio of interfacial tension and density difference. But also the viscosity ratio and the flow pattern itself had a significant effect on retention and dispersion of the mobile phase. As a result operating parameters should be chosen carefully with respect to physical properties for a CPC system. In order to reduce the effect of the Coriolis force CPC devices with greater rotor radius are desirable. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Theory of chromatography of partially cyclic polymers: Tadpole-type and manacle-type macromolecules.

    PubMed

    Vakhrushev, Andrey V; Gorbunov, Alexei A

    2016-02-12

    A theory of chromatography is developed for partially cyclic polymers of tadpole- and manacle-shaped topological structures. We present exact equations for the distribution coefficient K at different adsorption interactions; simpler approximate formulae are also derived, relevant to the conditions of size-exclusion, adsorption, and critical chromatography. Theoretical chromatograms of heterogeneous partially cyclic polymers are simulated, and conditions for good separation by topology are predicted. According to the theory, an effective SEC-radius of tadpoles and manacles is mostly determined by the molar mass M, and by the linear-cyclic composition. In the interactive chromatography, the effect of molecular topology on the retention becomes significant. At the critical interaction point, partial dependences K(Mlin) and K(Mring) are qualitatively different: while being almost independent of Mlin, K increases with Mring. This behavior could be realized in critical chromatography-for separation of partially cyclic polymers by the number and molar mass of cyclic elements. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Evaluation of galectin binding by frontal affinity chromatography (FAC).

    PubMed

    Iwaki, Jun; Hirabayashi, Jun

    2015-01-01

    Frontal affinity chromatography (FAC) is a simple and versatile procedure enabling quantitative determination of diverse biological interactions in terms of dissociation constants (K d), even though these interactions are relatively weak. The method is best applied to glycans and their binding proteins, with the analytical system operating on the basis of highly reproducible isocratic elution by liquid chromatography. Its application to galectins has been successfully developed to characterize their binding specificities in detail. As a result, their minimal requirements for recognition of disaccharides, i.e., β-galactosides, as well as characteristic features of individual galectins, have been elucidated. In this chapter, we describe standard procedures to determine the K d's for interactions between a series of standard glycans and various galectins.

  17. 40 CFR 165.81 - Scope of stationary pesticide containers included.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Scope of stationary pesticide... (CONTINUED) PESTICIDE PROGRAMS PESTICIDE MANAGEMENT AND DISPOSAL Standards for Pesticide Containment Structures § 165.81 Scope of stationary pesticide containers included. (a) What is a stationary pesticide...

  18. 40 CFR 165.81 - Scope of stationary pesticide containers included.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Scope of stationary pesticide... (CONTINUED) PESTICIDE PROGRAMS PESTICIDE MANAGEMENT AND DISPOSAL Standards for Pesticide Containment Structures § 165.81 Scope of stationary pesticide containers included. (a) What is a stationary pesticide...

  19. 40 CFR 165.81 - Scope of stationary pesticide containers included.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Scope of stationary pesticide... (CONTINUED) PESTICIDE PROGRAMS PESTICIDE MANAGEMENT AND DISPOSAL Standards for Pesticide Containment Structures § 165.81 Scope of stationary pesticide containers included. (a) What is a stationary pesticide...

  20. 40 CFR 165.81 - Scope of stationary pesticide containers included.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Scope of stationary pesticide... (CONTINUED) PESTICIDE PROGRAMS PESTICIDE MANAGEMENT AND DISPOSAL Standards for Pesticide Containment Structures § 165.81 Scope of stationary pesticide containers included. (a) What is a stationary pesticide...

  1. 40 CFR 165.81 - Scope of stationary pesticide containers included.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Scope of stationary pesticide... (CONTINUED) PESTICIDE PROGRAMS PESTICIDE MANAGEMENT AND DISPOSAL Standards for Pesticide Containment Structures § 165.81 Scope of stationary pesticide containers included. (a) What is a stationary pesticide...

  2. Stationary Waves of the Ice Age Climate.

    NASA Astrophysics Data System (ADS)

    Cook, Kerry H.; Held, Isaac M.

    1988-08-01

    A linearized, steady state, primitive equation model is used to simulate the climatological zonal asymmetries (stationary eddies) in the wind and temperature fields of the 18 000 YBP climate during winter. We compare these results with the eddies simulated in the ice age experiments of Broccoli and Manabe, who used CLIMAP boundary conditions and reduced atmospheric CO2 in an atmospheric general circulation model (GCM) coupled with a static mixed layer ocean model. The agreement between the models is good, indicating that the linear model can be used to evaluate the relative influences of orography, diabatic heating, and transient eddy heat and momentum transports in generating stationary waves. We find that orographic forcing dominates in the ice age climate. The mechanical influence of the continental ice sheets on the atmosphere is responsible for most of the changes between the present day and ice age stationary eddies. This concept of the ice age climate is complicated by the sensitivity of the stationary eddies to the large increase in the magnitude of the zonal mean meridional temperature gradient simulated in the ice age GCM.

  3. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    PubMed

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Stationary plasma thruster evaluation in Russia

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1992-01-01

    A team of electric propulsion specialists from U.S. government laboratories experimentally evaluated the performance of a 1.35-kW Stationary Plasma Thruster (SPT) at the Scientific Research Institute of Thermal Processes in Moscow and at 'Fakel' Enterprise in Kaliningrad, Russia. The evaluation was performed using a combination of U.S. and Russian instrumentation and indicated that the actual performance of the thruster appears to be close to the claimed performance. The claimed performance was a specific impulse of 16,000 m/s, an overall efficiency of 50 percent, and an input power of 1.35 kW, and is superior to the performance of western electric thrusters at this specific impulse. The unique performance capabilities of the stationary plasma thruster, along with claims that more than fifty of the 660-W thrusters have been flown in space on Russian spacecraft, attracted the interest of western spacecraft propulsion specialists. A two-phase program was initiated to evaluate the stationary plasma thruster performance and technology. The first phase of this program, to experimentally evaluate the performance of the thruster with U.S. instrumentation in Russia, is described in this report. The second phase objective is to determine the suitability of the stationary plasma thruster technology for use on western spacecraft. This will be accomplished by bringing stationary plasma thrusters to the U.S. for quantification of thruster erosion rates, measurements of the performance variation as a function of long-duration operation, quantification of the exhaust beam divergence angle, and determination of the non-propellant efflux from the thruster. These issues require quantification in order to maximize the probability for user application of the SPT technology and significantly increase the propulsion capabilities of U.S. spacecraft.

  5. Binding of TEM-1 beta-lactamase to beta-lactam antibiotics by frontal affinity chromatography.

    PubMed

    Chen, Xiu; Li, Yuhua; Zhang, Yan; Yang, Jianting; Bian, Liujiao

    2017-04-15

    TEM-1 beta-lactamases can accurately catalyze the hydrolysis of the beta-lactam rings in beta-lactam antibiotics, which make beta-lactam antibiotics lose its activity, and the prerequisite for the hydrolysis procedure in the binding interaction of TEM-1 beta-lactamases with beta-lactam antibiotics is the beta-lactam rings in beta-lactam antibiotics. Therefore, the binding of TEM-1 beta-lactamase to three beta-lactam antibiotics including penicillin G, cefalexin as well as cefoxitin was explored here by frontal affinity chromatography in combination with fluorescence spectra, adsorption and thermodynamic data in the temperature range of 278-288K under simulated physiological conditions. The results showed that all the binding of TEM-1 beta-lactamase to the three antibiotics were spontaneously exothermic processes with the binding constants of 8.718×10 3 , 6.624×10 3 and 2.244×10 3 (mol/L), respectively at 288K. All the TEM-1 beta-lactamases were immobilized on the surface of the stationary phase in the mode of monolayer and there existed only one type of binding sites on them. Each TEM-1 beta-lactamase bound with only one beta-lactam antibiotic and hydrogen bond interaction and Van der Waals force were the main forces between them. This work provided an insight into the binding interactions between TEM-1 beta-lactamases and beta-lactam antibiotics, which may be beneficial for the designing and developing of new substrates resistant to TEM-1 beta-lactamases. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Synthesis and evaluation of porous polymethylsilsesquioxane microspheres as low silanol activity chromatographic stationary phase for basic compound separation.

    PubMed

    Huo, Zhixia; Wan, Qianhong; Chen, Lei

    2018-06-08

    Polymethylsilsesquioxanes (PMSQ) are potentially useful materials for liquid chromatography owing to their unique chemical, electrical and mechanical properties. Surprisingly however, no systematic studies on the use of spherical PMSQ particles as chromatographic packing have been reported. Accordingly, we present a comprehensive study aimed to characterize the chromatographic properties of this material in high performance liquid chromatography (HPLC) and to compare them with those observed on methyl (C 1 ) bonded silica phase under comparable conditions. Porous spherical particles were synthesized by a two-step hydrolysis and condensation procedure from methyltrimethoxysilane (MTMS) as a sole precursor. The as-synthesized microspheres possess spherical shape, narrow size distribution, mesoporous structure, high surface area (817 m 2  g -1 ) and reasonable carbon load (16.6%). They can be used directly as the HPLC stationary phase without the need for size classification. The PMSQ phase exhibits typical reversed-phase chromatographic properties with higher methylene selectivity and low silanol activity compared with the C 1 column. The retention mechanism for basic compounds was systematically evaluated by studying the effect of pH, ionic and solvent strength of the mobile phase. Basic compounds displayed lower retention factor and symmetric peak shape on the PMSQ column whereas longer retention and strong tailing peaks were observed on the C 1 column. The difference in retention behavior between the two columns is explained in terms of different principal retention mechanisms. Because of the low silanol activity, retention of basic compounds on the PMSQ column is governed solely by a reversed-phase mechanism. By contrast, multiple interactions including reversed-phase, cation exchange and simultaneous reversed-phase/cationic exchange interaction contribute to the retention on the C 1 column, as previously observed on other silica based reversed

  7. Protein purification by aminosquarylium cyanine dye-affinity chromatography.

    PubMed

    Silva, M S; Graça, V C; Reis, L V; Santos, P F; Almeida, P; Queiroz, J A; Sousa, F

    2013-12-01

    The most selective purification method for proteins and other biomolecules is affinity chromatography. This method is based on the unique biological-based specificity of the biomolecule-ligand interaction and commonly uses biological ligands. However, these ligands may present some drawbacks, mainly because of their cost and lability. Dye-affinity chromatography overcomes the limitations of biological ligands and is widely used owing to the low cost of synthetic dyes and to their resistance to biological and chemical degradation. In this work, immobilized aminosquarylium cyanine dyes are used in order to exploit affinity interactions with standard proteins such as lysozyme, α-chymotrypsin and trypsin. These studies evaluate the affinity interactions occurring between the immobilized ligand and the different proteins, as a reflection of the sum of several molecular interactions, namely ionic, hydrophobic and van der Waals, spread throughout the structure, in a defined spatial manner. The results show the possibility of using an aminosquarylium cyanine dye bearing a N-hexyl pendant chain, with a ligand density of 1.8 × 10(-2) mmol of dye/g of chromatographic support, to isolate lysozyme, α-chymotrypsin and trypsin from a mixture. The application of a decreasing ammonium sulfate gradient resulted in the recovery of lysozyme in the flowthrough. On the other hand, α-chymotrypsin and trypsin were retained, involving different interactions with the ligand. In conclusion, this study demonstrates the potential applicability of ligands such as aminosquarylium cyanine dyes for the separation and purification of proteins by affinity chromatography. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Quasi-stationary fluid theory of the hole-boring process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Zhikun; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn; Shi, Yin

    We present a quasi-stationary fluid theory to precisely describe the hole-boring process. The corresponding distributions of the electrostatic field and the particle density are theoretically obtained, which give more details than the previous stationary theory. The theoretical result is confirmed by one-dimensional particle-in-cell simulations. Such quasi-stationary fluid theory may help in understanding the basic mechanisms of ion acceleration in the radiation pressure acceleration.

  9. Development, validation and application of a hydrophilic interaction liquid chromatography-evaporative light scattering detection based method for process control of hydrolysis of xylans obtained from different agricultural wastes.

    PubMed

    Li, Fangbing; Wang, Hui; Xin, Huaxia; Cai, Jianfeng; Fu, Qing; Jin, Yu

    2016-12-01

    Purified standards of xylooligosaccharides (XOSs) (DP2-6) were first prepared from a mixture of XOSs using solid phase extraction (SPE), followed by semi-preparative liquid chromatography both under hydrophilic interaction liquid chromatography (HILIC) modes. Then, an accurate quantitative analysis method based on hydrophilic interaction liquid chromatography-evaporative light scattering detection (HILIC-ELSD) was developed and validated for simultaneous determination of xylose (X1), xylobiose (X2), xylotriose (X3), xylotetraose (X4), xylopentaose (X5), and xylohexaose (X6). This developed HILIC-ELSD method was applied to the comparison of different hydrolysis methods for xylans and assessment of XOSs contents from different agricultural wastes. The result indicated that enzymatic hydrolysis was preferable with fewer by-products and high XOSs yield. The XOSs yield (48.40%) from sugarcane bagasse xylan was the highest, showing conversions of 11.21g X2, 12.75g X3, 4.54g X4, 13.31g X5, and 6.78g X6 from 100g xylan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Chiral separation of a diketopiperazine pheromone from marine diatoms using supercritical fluid chromatography.

    PubMed

    Frenkel, Johannes; Wess, Carsten; Vyverman, Wim; Pohnert, Georg

    2014-03-01

    The proline derived diketopiperazine has been identified in plants, insects and fungi with unknown function and was recently also reported as the first pheromone from a diatom. Nevertheless the stereochemistry and enantiomeric excess of this natural product remained inaccessible using direct analytical methods. Here we introduce a chiral separation of this metabolite using supercritical fluid chromatography/mass spectrometry. Several chromatographic methods for chiral analysis of the diketopiperazine from the diatom Seminavis robusta and synthetic enantiomers have been evaluated but neither gas chromatography nor high performance liquid chromatography on different chiral cyclodextrin phases were successful in separating the enantiomers. In contrast, supercritical fluid chromatography achieved baseline separation within four minutes of run time using amylose tris(3,5-dimethylphenylcarbamate) as stationary phase and 2-propanol/CO2 as mobile phase. This very rapid chromatographic method in combination with ESI mass spectrometry allowed the direct analysis of the cyclic dipeptide out of the complex sea water matrix after SPE enrichment. The method could be used to determine the enantiomeric excess of freshly released pheromone and to follow the rapid degradation observed in diatom cultures. Initially only trace amounts of c(d-Pro-d-Pro) were found besides the dominant c(l-Pro-l-Pro) in the medium. However the enantiomeric excess decreased upon pheromone degradation within few hours indicating that a preferential conversion and thus inactivation of the l-proline derived natural product takes place. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Self-Organized Stationary States of Tokamaks

    DOE PAGES

    Jardin, S. C.; Ferraro, N.; Krebs, I.

    2015-11-17

    We demonstrate that in a 3D resistive magnetohydrodynamic (MHD) simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to non-linearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary non-sawtoothing “hybrid” discharges, often referred to as “flux-pumping”.

  12. Lipidomic profiling of dried seahorses by hydrophilic interaction chromatography coupled to mass spectrometry.

    PubMed

    Shen, Qing; Dai, Zhiyuan; Huang, Yao-Wen; Cheung, Hon-Yeung

    2016-08-15

    Dried seahorse is a precious raw food material for cooking soups. In this study, a lipidomics strategy using the techniques of solid-phase extraction (SPE) and hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-QTOF/MS) was developed for extraction, visualization, and quantification of phospholipids in dried seahorses. The parameters of SPE were optimized, and 1 mL of sample and chloroform/methanol (1:2, v/v) were found to be the best loading volume and eluting solvent, respectively. Afterwards, each phospholipid class was successfully separated on a HILIC column and analyzed by mass spectrometry. A total of 50 phospholipid molecular species were identified and determined, including 15 phosphatidylcholines (PCs), 14 phosphatidylethanolamines (PEs), 12 phosphatidylinositols (PIs) and 9 phosphatidylserines (PSs). In comparison to previously methods, this strategy was robust and efficient in extraction, characterization, and determination of phospholipids. The dried seahorse was found to contain large amounts of polyunsaturated fatty acyl phospholipids which are beneficial to human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Prostate cell membrane chromatography-liquid chromatography-mass spectrometry for screening of active constituents from Uncaria rhynchophylla.

    PubMed

    He, Jianyu; Han, Shengli; Yang, Fangfang; Zhou, Nan; Wang, Sicen

    2013-01-01

    Uncaria rhynchophylla is a traditional Chinese medicinal herb used to treat hypertension and convulsive disorders such as epilepsy. Rat prostate cell membrane chromatography combined with liquid chromatography-mass spectrometry (LC-MS) was used to identify active constituents from U. rhynchophylla extracts. Four compounds (corynoxeine, isorhynchophylline, isocorynoxeine and rhynchophylline) were discovered. Competitive binding assay results indicated that the four compounds were in direct competition at a single common binding site and interacted with α1A adrenergic receptors (α1A-AR) in a manner similar to tamsulosin. Affinity constant values of the four compounds binding with α1A-AR were also measured using rat prostate cell membrane chromatography (CMC). Finally, their pharmacodynamic effects were tested on rat caudal arteries. This CMC combined LC-MS system offers a means of drug discovery by screening natural medicinal herbs for new pharmacologically active molecules targeting specific receptors.

  14. Influence of Stationary Crossflow Modulation on Secondary Instability

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Paredes, Pedro

    2016-01-01

    A likely scenario for swept wing transition on subsonic aircraft with natural laminar flow involves the breakdown of stationary crossflow vortices via high frequency secondary instability. A majority of the prior research on this secondary instability has focused on crossflow vortices with a single dominant spanwise wavelength. This paper investigates the effects of the spanwise modulation of stationary crossflow vortices at a specified wavelength by a subharmonic stationary mode. Secondary instability of the modulated crossflow pattern is studied using planar, partial-differential-equation based eigenvalue analysis. Computations reveal that weak modulation by the first subharmonic of the input stationary mode leads to mode splitting that is particularly obvious for Y-type secondary modes that are driven by the wall-normal shear of the basic state. Thus, for each Y mode corresponding to the fundamental wavelength of results in unmodulated train of crossflow vortices, the modulated flow supports a pair of secondary modes with somewhat different amplification rates. The mode splitting phenomenon suggests that a more complex stationary modulation such as that induced by natural surface roughness would yield a considerably richer spectrum of secondary instability modes. Even modest levels of subharmonic modulation are shown to have a strong effect on the overall amplification of secondary disturbances, particularly the Z-modes driven by the spanwise shear of the basic state. Preliminary computations related to the nonlinear breakdown of these secondary disturbances provide interesting insights into the process of crossflow transition in the presence of the first subharmonic of the dominant stationary vortex.

  15. Compact type-I coil planet centrifuge for counter-current chromatography

    PubMed Central

    Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro

    2009-01-01

    A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 cm and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (Sf), peak resolution (Rs), theoretical plate (N) and peak retention time (tR). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-glu, DNP-β-ala and DNP-ala were resolved at Rs of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. PMID:20060979

  16. Studying Weather and Climate Extremes in a Non-stationary Framework

    NASA Astrophysics Data System (ADS)

    Wu, Z.

    2010-12-01

    The study of weather and climate extremes often uses the theory of extreme values. Such a detection method has a major problem: to obtain the probability distribution of extremes, one has to implicitly assume the Earth’s climate is stationary over a long period within which the climatology is defined. While such detection makes some sense in a purely statistical view of stationary processes, it can lead to misleading statistical properties of weather and climate extremes caused by long term climate variability and change, and may also cause enormous difficulty in attributing and predicting these extremes. To alleviate this problem, here we report a novel non-stationary framework for studying weather and climate extremes in a non-stationary framework. In this new framework, the weather and climate extremes will be defined as timescale-dependent quantities derived from the anomalies with respect to non-stationary climatologies of different timescales. With this non-stationary framework, the non-stationary and nonlinear nature of climate system will be taken into account; and the attribution and the prediction of weather and climate extremes can then be separated into 1) the change of the statistical properties of the weather and climate extremes themselves and 2) the background climate variability and change. The new non-stationary framework will use the ensemble empirical mode decomposition (EEMD) method, which is a recent major improvement of the Hilbert-Huang Transform for time-frequency analysis. Using this tool, we will adaptively decompose various weather and climate data from observation and climate models in terms of the components of the various natural timescales contained in the data. With such decompositions, the non-stationary statistical properties (both spatial and temporal) of weather and climate anomalies and of their corresponding climatologies will be analyzed and documented.

  17. 49 CFR 325.53 - Site characteristics; stationary test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 325.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR... MOTOR CARRIER NOISE EMISSION STANDARDS Measurement of Noise Emissions; Stationary Test § 325.53 Site characteristics; stationary test. (a)(1) The motor vehicle to be tested shall be parked on the test site. A...

  18. 49 CFR 325.53 - Site characteristics; stationary test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 325.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR... MOTOR CARRIER NOISE EMISSION STANDARDS Measurement of Noise Emissions; Stationary Test § 325.53 Site characteristics; stationary test. (a)(1) The motor vehicle to be tested shall be parked on the test site. A...

  19. 49 CFR 325.53 - Site characteristics; stationary test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 325.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR... MOTOR CARRIER NOISE EMISSION STANDARDS Measurement of Noise Emissions; Stationary Test § 325.53 Site characteristics; stationary test. (a)(1) The motor vehicle to be tested shall be parked on the test site. A...

  20. 49 CFR 325.53 - Site characteristics; stationary test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 325.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR... MOTOR CARRIER NOISE EMISSION STANDARDS Measurement of Noise Emissions; Stationary Test § 325.53 Site characteristics; stationary test. (a)(1) The motor vehicle to be tested shall be parked on the test site. A...

  1. 49 CFR 325.53 - Site characteristics; stationary test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 325.53 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR... MOTOR CARRIER NOISE EMISSION STANDARDS Measurement of Noise Emissions; Stationary Test § 325.53 Site characteristics; stationary test. (a)(1) The motor vehicle to be tested shall be parked on the test site. A...

  2. Response surface methodology for the determination of the design space of enantiomeric separations on cinchona-based zwitterionic chiral stationary phases by high performance liquid chromatography.

    PubMed

    Hanafi, Rasha Sayed; Lämmerhofer, Michael

    2018-01-26

    Quality-by-Design approach for enantioselective HPLC method development surpasses Quality-by-Testing in offering the optimal separation conditions with the least number of experiments and in its ability to describe the method's Design Space visually which helps to determine enantiorecognition to a significant extent. Although some schemes exist for enantiomeric separations on Cinchona-based zwitterionic stationary phases, the exact design space and the weights by which each of the chromatographic parameters influences the separation have not yet been statistically studied. In the current work, a screening design followed by a Response Surface Methodology optimization design were adopted for enantioseparation optimization of 3 model drugs namely the acidic Fmoc leucine, the amphoteric tryptophan and the basic salbutamol. The screening design proved that the acid/base additives are of utmost importance for the 3 chiral drugs, and that among 3 different pairs of acids and bases, acetic acid and diethylamine is the couple able to provide acceptable resolution at variable conditions. Visualization of the response surface of the retention factor, separation factor and resolution helped describe accurately the magnitude by which each chromatographic factor (% MeOH, concentration and ratio of acid base modifiers) affects the separation while interacting with other parameters. The global optima compromising highest enantioresolution with the least run time for the 3 chiral model drugs varied extremely, where it was best to set low % methanol with equal ratio of acid-base modifiers for the acidic drug, very high % methanol and 10-fold higher concentration of the acid for the amphoteric drug while 20 folds of the base modifier with moderate %methanol were needed for the basic drug. Considering the selected drugs as models for many series of structurally related compounds, the design space defined and the optimum conditions computed are the key for method development on

  3. Inverse liquid chromatography as a tool for characterisation of the surface layer of ceramic biomaterials.

    PubMed

    Kadlec, Karol; Adamska, Katarzyna; Okulus, Zuzanna; Voelkel, Adam

    2016-10-14

    The novel technique for ceramic biomaterials surface characterisation was proposed. The examined bone substitute materials were two orthophosphates: hydroxyapatite, β-tricalcium phosphate and the mixture of these two - biphasic calcium phosphate. The aim of this work was characterisation of the ceramic biomaterials surface expressed via the values of parameters e, s, a, b, v considered in linear free energy relationship. The values of these parameters reflect the ability of stationary phase to occur in different types of interactions. The sorption phenomena occurring on the bone substitute materials surface are responsible for the process of the multiplication of the osteoblasts. Thus the detailed description of this phenomena may contribute to the better understanding of bone loss regeneration mechanism. The data required for characterisation by using LFER model was collected by means of inverse liquid chromatography with the use of five different mobile phases: 98% ethanol, ethanol/water (50/50), water, 0.2M NaCl and SBF. The determination of the ceramic orthophosphates surface properties in SBF solution allowed to observe the behaviour of biomaterials in "natural environment" - in living organism. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Solvation enthalpies and heat capacities of n-alkanes in four polymer phases by capillary gas chromatography.

    PubMed

    Görgenyi, Miklós; Héberger, Károly

    2005-04-01

    Molar solvation enthalpy (deltasol H(o)298) and molar heat capacity changes (deltasol C(o)p) were determined by gas chromatography for the C6-C12 n-alkanes on four preferred stationary phases (100% polydimethyl siloxane, 50% diphenyl-50% dimethyl polysiloxane, 50% trifluoropropyl methylsiloxane, and polyethylene glycol) in commercial FSOT. Statistical evaluation indicated the temperature independence of deltasol C(o)p in the range 303-393 K. Deltasol H(o)298 depends linearly on the number of carbon atoms in the n-alkanes, but no linearity could be established for deltasol C(o)p of higher homologues on polar columns, which may be due to a more ordered state on the liquid phase. The homologues for which a linear temperature dependence exists demonstrated that deltasol C(o)p is related linearly to the van der Waals volume and the temperature derivative of the density of the stationary phase. The results are consistent with a simple physical explanation at the molecular level.

  5. Preparation, chromatographic evaluation and application of adenosine 5'-monophosphate modified ZrO2/SiO2 stationary phase in hydrophilic interaction chromatography.

    PubMed

    Wang, Qing; Luo, Zhi-Yuan; Ye, Mao; Wang, Yu-Zhuo; Xu, Li; Shi, Zhi-Guo; Xu, Lanying

    2015-02-27

    The zirconia-coated silica (ZrO2/SiO2) material was obtained by coupling layer-by-layer (LbL) self-assembly method and sol-gel technology, to take dual advantages of the suitable porous structure of SiO2 and basic resistance of ZrO2. Adenosine 5'-monophosphate (5'-AMP) was then self-assembled onto ZrO2/SiO2 via Lewis acid-base interaction, generating 5'-AMP-ZrO2/SiO2. The chromatographic properties of 5'-AMP-ZrO2/SiO2 were systemically studied by evaluating the effect of acetonitrile content, pH and buffer concentration in the mobile phase. The results demonstrated that the 5'-AMP-ZrO2/SiO2 possessed hydrophilic interaction chromatographic (HILIC) property comprising hydrophilic, hydrogen-bonding, electrostatic and ion-exchange interactions. For basic analytes, the column efficiency of ZrO2/SiO2 and 5'-AMP-ZrO2/SiO2 was superior to the bare ZrO2, and different selectivity was obtained after the introduction of 5'-AMP. For acidic analytes, good resolution was obtained on 5'-AMP-ZrO2/SiO2 while the analysis failed on the bare ZrO2 column owing to strong adsorption. Hence, the proposed 5'-AMP-ZrO2/SiO2 had great potential in analyzing acidic compounds in HILIC mode. It was an extended application of ZrO2 based SP. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Determination of thiopurine S-methyltransferase activity by hydrophilic interaction liquid chromatography hyphenated with mass spectrometry.

    PubMed

    Pecher, Daniel; Dokupilová, Svetlana; Zelinková, Zuzana; Peppelenbosch, Maikel; Mikušová, Veronika; Mikuš, Peter

    2017-08-05

    Thiopurine S-methyltransferase (TPMT) plays an important role in the metabolism of thiopurines used in the therapy of inflammatory bowel diseases (IBD). In this work a new progressive method for the determination of TPMT activity in red blood cells lysates was developed. Analysis was carried out by means of hydrophilic interaction liquid chromatography (HILIC) hyphenated with mass spectrometry (MS). In comparison with reversed-phase high-performance liquid chromatography (RP-HPLC), that has been typically applied in determination of TPMT activity, the HILIC significantly improved the analytical signal provided by MS, shortened analysis time, and improved chromatographic resolution. The HILIC-HPLC-MS method was optimized and validated, providing favorable parameters of detection and quantitation limits (5.5 and 16.5pmol/mL, respectively), linearity (coefficient of determination 0.9999 in the range of 0.01-1.0nmol/mL), recovery and precision (93.25-100.37% with RSD 1.06-1.32% in the whole concentration range of QC samples). Moreover, in contrast to the conventional RP-HPLC-UV approach, the complex phenotype TPMT profiles can be reliably and without interferences monitored using the HILIC-HPLC-MS method. Such advanced monitoring can provide valuable detail information on the thiopurines (e.g. evaluating ratio of methylated and non-methylated 6-mercaptopurine) and, by that, TPMT action in biological systems before and during the therapy of IBD. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Aminoquinolines as fluorescent labels for hydrophilic interaction liquid chromatography of oligosaccharides.

    PubMed

    Struwe, Weston B; Rudd, Pauline M

    2012-08-01

    In this study, we investigated the potential of four different aminoquinoline (AQ) compounds as fluorescent labels for glycan analysis using hydrophilic interaction liquid chromatography (HILIC) and fluorescence detection (FLD). We confirmed the optimal excitation and emission wavelengths of 3-AQ and 6-AQ conjugated to glycan standards using three-dimensional fluorescent spectral scanning. The optimal excitation and emission wavelengths for 6-AQ were confirmed at λ(ex)=355 nm and λ(em)=440 nm. We concluded that the optimal wavelengths for 3-AQ were λ(ex)=355 nm and λ(em)=420 nm, which differed considerably from the wavelengths applied in previous reports. HILIC-FLD chromatograms using experimentally determined wavelengths were similar to 2-aminobenzamide controls, but the peak capacity and resolution differed significantly when published 3-AQ λ(ex/em) values were applied. Furthermore, we found that 5-AQ and 8-AQ labeled maltohexaose did not display any fluorescent properties when used as a carbohydrate tag for HPLC analysis. Finally, we applied experimentally determined wavelengths to 3-AQ labeled N-glycans released from human IgG to illustrate changes in retention time as well as to demonstrate that AQ labeling is applicable to complex sample analysis via exoglycosidase sequencing.

  8. Teaching Chromatography Using Virtual Laboratory Exercises

    ERIC Educational Resources Information Center

    Stone, David C.

    2007-01-01

    Though deceptively simple to teach, chromatography presents many nuances and complex interactions that challenge both student and instructor. Time and instrumentation provide major obstacles to a thorough examination of these details in the laboratory. Modern chromatographic method-development software provides an opportunity to overcome this,…

  9. Comprehensive Two-Dimensional Hydrophilic Interaction Chromatography (HILIC) × Reversed-Phase Liquid Chromatography Coupled to High-Resolution Mass Spectrometry (RP-LC-UV-MS) Analysis of Anthocyanins and Derived Pigments in Red Wine.

    PubMed

    Willemse, Chandré M; Stander, Maria A; Vestner, Jochen; Tredoux, Andreas G J; de Villiers, André

    2015-12-15

    Changes in anthocyanin chemistry represent some of the most important transformations involved in red wine aging. However, accurate analysis of the derived pigments, as required to study the evolution of anthocyanins and tannins during aging, is hampered by their extreme structural diversity, low levels, and the fact that many of these compounds have identical mass spectral characteristics. In this context, chromatographic separation is critical. In this contribution, the application of online hydrophilic interaction chromatography (HILIC) × reversed-phase liquid chromatography (RP-LC) separation coupled to high-resolution mass spectrometry (MS) is described for the detailed characterization of anthocyanins and their derived pigments in aged red wine. A systematic approach was followed for the optimization of HILIC × RP-LC separation parameters using a capillary liquid chromatography (LC) system in the first dimension and an ultrahigh-pressure LC system in the second dimension to ensure maximum sensitivity and performance. Ninety four (94) anthocyanin-derived pigments were tentatively identified in one- and six-year-old Pinotage wines using accurate mass and fragmentation information obtained using quadrupole-time-of-flight mass spectrometry (Q-TOF-MS). Online HILIC × RP-LC-MS was found to offer high-resolution separation, because of the combination of two different separation modes, while the structured elution order observed improved the certainty in compound identification. Therefore, this approach shows promise for the detailed elucidation of the chemical alteration of anthocyanins during wine aging.

  10. Novel devices for solvent delivery and temperature programming designed for capillary liquid chromatography.

    PubMed

    Coutinho, Lincoln Figueira Marins; Nazario, Carlos Eduardo Domingues; Monteiro, Alessandra Maffei; Lanças, Fernando Mauro

    2014-08-01

    Analyses in chromatographic systems able to save mobile and stationary phases without reducing efficiency and resolution are of current interest. These advantages regarding savings have challenged us to develop a system dedicated to miniaturized liquid chromatography. This paper reports on the development of a high-pressure syringe-type pump, an oven able to perform isothermal and temperature programming and a software program to control these chromatographic devices. The experimental results show that the miniaturized system can generate reproducible and accurate temperature and flow rate. The system was applied to the separation of statins and tetracylines and showed excellent performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. [Analysis of picric acid and picramic acid in water samples by ultra performance hydrophilic interaction chromatography-tandem mass spectrometry].

    PubMed

    Qian, Feizhong; Zhu, Libo; Xu, Nengbin; Feng, Jiayong; Hong, Zhengfang; Xu, Lihong; Chen, Zhongquan; Wang, Shengle

    2014-05-01

    An ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/ MS) method was developed for the determination of picric acid and its reductive transformation product picramic acid in aqueous samples. A hydrophilic interaction liquid chromatography (HILIC) column (Acquity UPLC BEH HILIC; 100 mm x 2.1 mm, 1.7 microm) was used for the separation. Surface water samples could be injected into the UPLC system just after being filtered through a 0.2 microm membrane. The satisfactory recoveries of picric acid and picramic acid were in the range of 89% - 107%. Waste water samples were purified by solid phase extraction (SPE), and then were analyzed. The recoveries of picric acid and picramic acid in waste water were 72%-101%. The reproducibility of the method was good with the RSDs of 4.9% - 14.7%. The limits of detection (LODs) of picric acid and picramic acid were 0.1 microg/L and 0.3 microg/L, respectively. This proposed method is rapid, highly specific and suitable for the confirmation and quantitative determination of picric acid and picramic acid in surface water and waste water.

  12. Applying Chromatography.

    ERIC Educational Resources Information Center

    Klein, Jessie W.; Patev, Paul

    1998-01-01

    Presents three experiments to introduce students to different kinds of chromatography: (1) paper chromatography; (2) gel filtration chromatography; and (3) reverse-phase liquid chromatography. Written in the form of a laboratory manual, explanations of each of the techniques, materials needed, procedures, and a glossary are included. (PVD)

  13. Characterisation of capillary ionic liquid columns for gas chromatography-mass spectrometry analysis of fatty acid methyl esters.

    PubMed

    Zeng, Annie Xu; Chin, Sung-Tong; Nolvachai, Yada; Kulsing, Chadin; Sidisky, Leonard M; Marriott, Philip J

    2013-11-25

    Due to their distinct chemical properties, the application of ionic liquid (IL) compounds as gas chromatography (GC) stationary phases offer unique GC separation especially in the analysis of geometric and positional fatty acid methyl ester (FAME) isomers. Elution behaviour of FAME on several commercialised IL capillary columns including phosphonium based SLB-IL59, SLB-IL60, SLB-IL61 and SLB-IL76 and imidazolium based SLB-IL82, SLB-IL100, and SLB-IL111 as well as a general purpose column SLB-5ms, were evaluated in gas chromatography-mass spectrometry (GC-MS) analysis. The phases were further characterised by using a linear solvation energy relationship (LSER) approach according to the equivalent chain length (ECL) index of FAME. Among all tested IL columns, elution temperatures of saturated FAME increased as their McReynolds' polarity value decreased, except for IL60. ECL values increased markedly as the stationary phase polarity increased, particularly for the polyunsaturated FAME. The LSER study indicated a lowest l/e value at 0.864 for IL111, displaying phase selectivity towards unsaturated FAME, with higher peak capacity within a carbon number isomer group. s and e descriptors calculated from LSER were validated by excellent correlation with dipole moments and lowest unoccupied molecular orbital (LUMO) energies, with R(2) values of 0.99 and 0.92 respectively, calculated using GAUSSIAN. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Determination of atmospheric organosulfates using HILIC chromatography with MS detection

    NASA Astrophysics Data System (ADS)

    Hettiyadura, A. P. S.; Stone, E. A.; Kundu, S.; Baker, Z.; Geddes, E.; Richards, K.; Humphry, T.

    2015-06-01

    Measurements of organosulfates in ambient aerosols provide insight to the extent of secondary organic aerosol (SOA) formation from mixtures of biogenic gases and anthropogenic pollutants. Organosulfates have, however, proved analytically challenging to quantify, due to lack of authentic standards and the complex sample matrix in which organosulfates are observed. This study presents a sensitive and accurate new analytical method for the quantification of organosulfates based upon ultra-performance liquid chromatography (UPLC) with negative electrospray ionization mass spectrometry (MS) with the aid of synthesized organosulfate standards. The separation is based upon hydrophilic interaction liquid chromatography (HILIC) with an amide stationary phase that provides excellent retention of carboxy-organosulfates and isoprene-derived organosulfates. The method is validated using six model compounds: methyl sulfate, ethyl sulfate, benzyl sulfate, hydroxyacetone sulfate, lactic acid sulfate and glycolic acid sulfate. A straightforward protocol for synthesis of highly pure organosulfate potassium salts for use as quantification standards is presented. This method is used to evaluate the efficiency and precision of two methods of ambient PM2.5 sample extraction. Spike recoveries averaged 98 ± 8% for extraction by ultra-sonication and 98 ± 10% for extraction by rotary shaking. Ultra-sonication was determined to be a better method due to its higher precision compared to rotary shaking. Analysis of ambient PM2.5 samples collected on 10-11 July 2013 in Centreville, AL, USA during the Southeast Atmosphere Study (SAS) confirms the presence of hydroxyacetone sulfate in ambient aerosol for the first time. Lactic acid sulfate was the most abundant compound measured (9.6-19 ng m-3), followed by glycolic acid sulfate (8-14 ng m-3) and hydroxyacetone sulfate (2.7-5.8 ng m-3). Trace amounts of methyl sulfate were detected, while ethyl sulfate and benzyl sulfate were not. Application

  15. Determination of atmospheric organosulfates using HILIC chromatography with MS detection

    NASA Astrophysics Data System (ADS)

    Hettiyadura, A. P. S.; Stone, E. A.; Kundu, S.; Baker, Z.; Geddes, E.; Richards, K.; Humphry, T.

    2014-12-01

    Measurements of organosulfates in ambient aerosols provide insight to the extent of secondary organic aerosol (SOA) formation from mixtures of biogenic gases and anthropogenic pollutants. Organosulfates have, however, proved analytically challenging to measure. This study presents a sensitive new analytical method for the quantification of organosulfates based upon ultra-performance liquid chromatography with negative electrospray ionization mass spectrometry (UPLC-ESI-MS/MS). The separation is based upon hydrophilic interaction liquid chromatography (HILIC) with an amide stationary phase that provides excellent retention of carboxy-organosulfates and methyltetrol-derived organosulfates. The method is validated using six model compounds: methyl sulfate, ethyl sulfate, benzyl sulfate, hydroxyacetone sulfate, lactic acid sulfate, and glycolic acid sulfate. A straightforward protocol for preparation of highly pure organosulfate potassium salts for use as quantification standards is presented. This highly efficient method of separating and quantifying organosulfates is used to evaluate the efficiency and precision of two methods of ambient PM2.5 sample extraction. Spike recoveries averaged 98 ± 8% for extraction by sonication and 98 ± 10% for extraction by rotary-shaking. Sonication was determined to be the superior method for its better precision. Analysis of ambient PM2.5 samples collected 10-11 July 2013 in Centreville, AL, USA during the Southeast Atmosphere Study (SAS) confirms the presence of hydroxyacetone sulfate in ambient aerosol for the first time. Glycolic acid sulfate was the most abundant compound measured (ranging 8-14 ng m-3), followed by hydroxyl acetone sulfate (2.7-5.8 ng m-3) and lactic acid sulfate (1.4-2.9 ng m-3). Trace amounts of methyl sulfate were detected, while ethyl sulfate and benzyl sulfate were not detected. Future research will focus on the development of additional organosulfates standards, expansion of this UPLC-MS/MS to include

  16. Determination of alkylphenols by gas chromatography, elution liquid chromatography, and gel permeation chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittmann, S.; Decsy, Z.; Regensperger, S.

    1984-01-01

    The separation and determination of groups of alkylphenols with C/sub 15/-C/sub 33/ isoalkane chains by gas chromatography, elution liquid chromatography, and gel permeation chromatography are described. Paraffinic hydrocarbons, monoalkylphenols, dialkylphenols, and bis(hydroxyphenyl)alkanes were identified in industrial alkylphenols by mass spectrometry. 7 references, 3 figures, 2 tables.

  17. Predicting ICU mortality: a comparison of stationary and nonstationary temporal models.

    PubMed Central

    Kayaalp, M.; Cooper, G. F.; Clermont, G.

    2000-01-01

    OBJECTIVE: This study evaluates the effectiveness of the stationarity assumption in predicting the mortality of intensive care unit (ICU) patients at the ICU discharge. DESIGN: This is a comparative study. A stationary temporal Bayesian network learned from data was compared to a set of (33) nonstationary temporal Bayesian networks learned from data. A process observed as a sequence of events is stationary if its stochastic properties stay the same when the sequence is shifted in a positive or negative direction by a constant time parameter. The temporal Bayesian networks forecast mortalities of patients, where each patient has one record per day. The predictive performance of the stationary model is compared with nonstationary models using the area under the receiver operating characteristics (ROC) curves. RESULTS: The stationary model usually performed best. However, one nonstationary model using large data sets performed significantly better than the stationary model. CONCLUSION: Results suggest that using a combination of stationary and nonstationary models may predict better than using either alone. PMID:11079917

  18. Multivariate data analysis to characterize gas chromatography columns for dioxin analysis.

    PubMed

    Do, Lan; Geladi, Paul; Haglund, Peter

    2014-06-20

    Principal component analysis (PCA) was applied for evaluating the selectivity of 22 GC columns for which complete retention data were available for the 136 tetra- to octa-chlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Because the hepta- and octa-homologues are easy to separate the PCA was focused on the 128 tetra- to hexa-CDD/Fs. The analysis showed that 21 of the 22 GC columns could be subdivided into four groups with different selectivity. Group I consists of columns with non-polar thermally stable phases (Restek 5Sil MS and Dioxin 2, SGE BPX-DXN, Supelco Equity-5, and Agilent DB-1, DB-5, DB-5ms, VF-5ms, VF-Xms and DB-XLB). Group II includes ionic liquid columns (Supelco SLB-IL61, SLB-IL111 and SLB-IL76) with very high polarity. Group III includes columns with high-percentage phenyl and cyanopropyl phases (Agilent DB-17 and DB-225, Quadrex CPS-1, Supelco SP-2331, and Agilent CP-Sil 88), and Group IV columns with shape selectivity (Dionex SB-Smectic and Restek LC-50, Supelco βDEXcst, Agilent VF-Xms and DB-XLB). Thus, two columns appeared in both Group I and IV (Agilent VF-Xms and DB-XLB). The selectivity of the other column, Agilent DB-210, differs from those of these four groups. Partial least squares (PLS) regression was used to correlate the retention times of the tetra- to hexa-CDD/Fs on the 22 stationary phases with a set of physicochemical and structural descriptors to identify parameters that significantly influence the solute-stationary phase interactions. The most influential physicochemical parameters for the interaction were associated with molecular size (as reflects in the total energy, electron energy, core-core repulsion and standard entropy), solubility (aqueous solubility and n-octanol/water partition coefficient), charge distribution (molecular polarizability and dipolar moment), and reactivity (relative Gibbs free energy); and the most influential structural descriptors were related to these parameters, in particular, size and

  19. Cyclohexylamine additives for enhanced peptide separations in reversed phase liquid chromatography.

    PubMed

    Cole, S R; Dorsey, J G

    1997-01-01

    While the choice of stationary phase, organic modifier, and gradient strength can have significant effects on biomolecule separations, mobile phase additives can also have a significant effect on the chromatographic selectivity, recovery, efficiency and resolution. Given the importance of stationary phase coverage, the beneficial, silanol-masking properties of amines, and the potential for selectivity modification through ion-pair interactions, cyclohexylamine was examined as a mobile phase additive and compared with triethylamine and trifluoroacetic acid. Greatly improved separation was possible when cyclohexylamine was used as compared with phosphate buffer, and cyclohexylamine did not require purification before use, while triethylamine required distillation before 'clean' chromatograms were obtained.

  20. Evaluation between ultrahigh pressure liquid chromatography and high-performance liquid chromatography analytical methods for characterizing natural dyestuffs.

    PubMed

    Serrano, Ana; van Bommel, Maarten; Hallett, Jessica

    2013-11-29

    An evaluation was undertaken of ultrahigh pressure liquid chromatography (UHPLC) in comparison to high-performance liquid chromatography (HPLC) for characterizing natural dyes in cultural heritage objects. A new UHPLC method was optimized by testing several analytical parameters adapted from prior UHPLC studies developed in diverse fields of research. Different gradient elution programs were tested on seven UHPLC columns with different dimensions and stationary phase compositions by applying several mobile phases, flow rates, temperatures, and runtimes. The UHPLC method successfully provided more improved data than that achieved by the HPLC method. Indeed, even though carminic acid has shown circa 146% higher resolution with HPLC, UHPLC resulted in an increase of 41-61% resolution and a decrease of 91-422% limit of detection, depending on the dye compound. The optimized method was subsequently assigned to analyse 59 natural reference materials, in which 85 different components were ascribed with different physicochemical properties, in order to create a spectral database for future characterization of dyes in cultural heritage objects. The majority of these reference samples could be successfully distinguished with one single method through the examination of these compounds' retention times and their spectra acquired with a photodiode array detector. These results demonstrate that UHPLC analyses are extremely valuable for the acquisition of more precise chromatographic information concerning natural dyes with complex mixtures of different and/or closely related physicochemical properties, essential for distinguishing similar species of plants and animals used to colour cultural heritage objects. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Effects of solvent density on retention in gas-liquid chromatography. I. Alkanes solutes in polyethylene glycol stationary phases.

    PubMed

    González, F R; Pérez-Parajón, J; García-Domínguez, J A

    2002-04-12

    Gas-liquid chromatographic columns were prepared coating silica capillaries with poly(oxyethylene) polymers of different molecular mass distributions, in the range of low number-average molar masses, where the density still varies significantly. A novel, high-temperature, rapid evaporation method was developed and applied to the static coating of the low-molecular-mass stationary phases. The analysis of alkanes retention data from these columns reveals that the dependence of the partition coefficient with the solvent macroscopic density is mainly due to a variation of entropy. Enthalpies of solute transfer contribute poorly to the observed variations of retention. Since the alkanes solubility diminishes with the increasing solvent density, and this variation is weakly dependent with temperature, it is concluded that the decrease of free-volume in the liquid is responsible for this behavior.

  2. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data

    PubMed Central

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time–frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities. PMID:26953180

  3. Towards Gravitating Discs around Stationary Black Holes

    NASA Astrophysics Data System (ADS)

    Semerák, Oldřich

    This article outlines the search for an exact general relativistic description of the exterior(vacuum) gravitational field of a rotating spheroidal black hole surrounded by a realistic axially symmetric disc of matter. The problem of multi-body stationary spacetimes is first exposed from the perspective of the relativity theory (section 1) and astrophysics (section 2), listing the basic methods employed and results obtained. Then (in section 3) basic formulas for stationary axisymmetric solutions are summarized. Sections 4 and 5 review what we have learnt with Miroslav Žáček and Tomáš Zellerin about certain static and stationary situations recently. Concluding remarks are given in section 6. Although the survey part is quite general, the list of references cannot be complete.Our main desideratum was the informative value rather than originality — novelties have been preferred, mainly reviews and those with detailed introductions.

  4. New Patterns of Activity in a Pair of Interacting Excitatory-Inhibitory Neural Fields

    NASA Astrophysics Data System (ADS)

    Folias, S. E.; Ermentrout, G. B.

    2011-11-01

    In this Letter, we study stationary bump solutions in a pair of interacting excitatory-inhibitory (E-I) neural fields in one dimension. We demonstrate the existence of localized bump solutions of persistent activity that can be maintained by the pair of interacting layers when a stationary bump is not supported by either layer in isolation—a scenario which may be relevant as a mechanism for the persistent activity associated with working memory in the prefrontal cortex and may explain why bumps are not seen in in vitro slice preparations. Furthermore, we describe a new type of stationary bump solution arising from a pitchfork bifurcation which produces a stationary bump in each layer with a spatial offset that increases with the bifurcation parameter.

  5. 40 CFR 60.4305 - Does this subpart apply to my stationary combustion turbine?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stationary combustion turbine? 60.4305 Section 60.4305 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Stationary Combustion Turbines Applicability § 60.4305 Does this subpart apply to my stationary combustion turbine? (a) If you are the owner or operator of a stationary combustion...

  6. 40 CFR 60.4305 - Does this subpart apply to my stationary combustion turbine?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... stationary combustion turbine? 60.4305 Section 60.4305 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Stationary Combustion Turbines Applicability § 60.4305 Does this subpart apply to my stationary combustion turbine? (a) If you are the owner or operator of a stationary combustion...

  7. 40 CFR 60.4305 - Does this subpart apply to my stationary combustion turbine?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... stationary combustion turbine? 60.4305 Section 60.4305 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Stationary Combustion Turbines Applicability § 60.4305 Does this subpart apply to my stationary combustion turbine? (a) If you are the owner or operator of a stationary combustion...

  8. 40 CFR 60.4305 - Does this subpart apply to my stationary combustion turbine?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... stationary combustion turbine? 60.4305 Section 60.4305 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Stationary Combustion Turbines Applicability § 60.4305 Does this subpart apply to my stationary combustion turbine? (a) If you are the owner or operator of a stationary combustion...

  9. 40 CFR 60.4305 - Does this subpart apply to my stationary combustion turbine?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... stationary combustion turbine? 60.4305 Section 60.4305 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Stationary Combustion Turbines Applicability § 60.4305 Does this subpart apply to my stationary combustion turbine? (a) If you are the owner or operator of a stationary combustion...

  10. Features of the adsorption of naproxen enantiomers on weak chiral anion-exchangers in nonlinear chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asnin, Leonid; Kaczmarski, Krzysztof; Guiochon, Georges A

    The retention mechanism of the enantiomers of naproxen on a Pirkle-type chiral stationary phase (CSP) was studied. This CSP is made of a porous silica grafted with quinidine carbamate. It can interact with the weak organic electrolyte naproxen either by adsorbing it or by ion-exchange. Using frontal chromatography, we explored the adsorption equilibrium under such experimental conditions that naproxen dissociates or cannot dissociate. Under conditions preventing ionic dissociation, the adsorption isotherms were measured, the adsorption energy distributions determined, and the chromatographic profiles calculated. Three different types of the adsorption sites were found for both enantiomers. The density and the bindingmore » energy of these sites depend on the nature of the organic modifier. Different solute species, anions, neutral molecules, solvent-ion associates, and solute dimers can coexist in solution, giving rise to different forms of adsorption. This study showed the unexpected occurrence of secondary steps in the breakthrough profiles of S-naproxen in the adsorption mode at high concentrations. Being enantioselective, this phenomenon was assumed to result from the association of solute molecules involving a chiral selector moiety. A multisite Langmuir adsorption model was used to calculate band profiles. Although this model accounts excellently for the experimental adsorption isotherms, it does not explain all the features of the breakthrough profiles. A comparison between the calculated and experimental profiles allowed useful conclusions concerning the effects of the adsorbate-adsorbate and adsorbate-solvent interactions on the adsorption mechanism.« less

  11. Charging of a conducting sphere in a weakly ionized collisional plasma: Temporal dynamics and stationary state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grach, V. S., E-mail: vsgrach@app.sci-nnov.ru; Garasev, M. A.

    2015-07-15

    We consider the interaction of a isolated conducting sphere with a collisional weakly ionized plasma in an external field. We assume that the plasma consists of two species of ions neglecting of electrons. We take into account charging of the sphere due to sedimentation of plasma ions on it, the field of the sphere charge and the space charge, as well as recombination and molecular diffusion. The nonstationary problem of interaction of the sphere with the surrounding plasma is solved numerically. The temporal dynamics of the sphere charge and plasma perturbations is analyzed, as well as the properties of themore » stationary state. It is shown that the duration of transient period is determined by the recombination time and by the reverse conductivity of ions. The temporal dynamics of the sphere charge and plasma perturbations is determined by the intensity of recombination processes relative to the influence of the space charge field and diffusion. The stationary absolute value of the sphere charge increases linearly with the external electric field, decreases with the relative intensity of recombination processes and increases in the presence of substantial diffusion. The scales of the perturbed region in the plasma are determined by the radius of the sphere, the external field, the effect of diffusion, and the relative intensity of recombination processes. In the limiting case of the absence of molecular diffusion and a strong external field, the properties of the stationary state coincide with those obtained earlier as a result of approximate solution.« less

  12. Formation of iron complexs from trifluoroacetic acid based liquid chromatography mobile phases as interference ions in liquid chromatography/electrospray ionization mass spectrometric analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Anil K.; Zhang, Rui; Orton, Daniel J.

    Two unexpected singly charged ions at m/z 1103 and 944 have been observed in mass spectra obtained from electrospray ionization-mass spectrometric analysis of liquid chromatography effluents with mobile phases containing trifluoroacetic acid. Accurate mass measurement and tandem mass spectrometry studies revealed that these two ions are not due to any contamination from solvents and chemicals used for mobile and stationary phases or from the laboratory atmospheric environment. Instead these ions are clusters of trifluoroacetic acid formed in association with acetonitrile, water and iron from the stainless steel union used to connect the column with the electrospray tip and to applymore » high voltage; the molecular formulae are Fe+((OH)(H2O)2)9(CF3COOH)5 and Fe+((OH)(H2O)2)6 (CF3COOH)5.« less

  13. On Chorin's Method for Stationary Solutions of the Oberbeck-Boussinesq Equation

    NASA Astrophysics Data System (ADS)

    Kagei, Yoshiyuki; Nishida, Takaaki

    2017-06-01

    Stability of stationary solutions of the Oberbeck-Boussinesq system (OB) and the corresponding artificial compressible system is considered. The latter system is obtained by adding the time derivative of the pressure with small parameter ɛ > 0 to the continuity equation of (OB), which was proposed by A. Chorin to find stationary solutions of (OB) numerically. Both systems have the same sets of stationary solutions and the system (OB) is obtained from the artificial compressible one as the limit ɛ \\to 0 which is a singular limit. It is proved that if a stationary solution of the artificial compressible system is stable for sufficiently small ɛ > 0, then it is also stable as a solution of (OB). The converse is proved provided that the velocity field of the stationary solution satisfies some smallness condition.

  14. The Separation and Quantitation of Peptides with and without Oxidation of Methionine and Deamidation of Asparagine Using Hydrophilic Interaction Liquid Chromatography with Mass Spectrometry (HILIC-MS)

    NASA Astrophysics Data System (ADS)

    Badgett, Majors J.; Boyes, Barry; Orlando, Ron

    2017-05-01

    Peptides with deamidated asparagine residues and oxidized methionine residues are often not resolved sufficiently to allow quantitation of their native and modified forms using reversed phase (RP) chromatography. The accurate quantitation of these modifications is vital in protein biotherapeutic analysis because they can affect a protein's function, activity, and stability. We demonstrate here that hydrophilic interaction liquid chromatography (HILIC) adequately and predictably separates peptides with these modifications from their native counterparts. Furthermore, coefficients describing the extent of the hydrophilicity of these modifications have been derived and were incorporated into a previously made peptide retention prediction model that is capable of predicting the retention times of peptides with and without these modifications.

  15. Surface characteristics of Bacillus cereus and its adhesion to stainless steel.

    PubMed

    Peng, J S; Tsai, W C; Chou, C C

    2001-04-11

    The ability of a Bacillus cereus strain, isolated from spoiled milk, to adhere to the surface of stainless steel chips was evaluated during its growth in diluted tryptic soy broth (DTSB). The number of cells that adhered to the surface increased markedly as the culture reached the end of the log phase and entered stationary phase, and continued to increase with further incubation. The surface properties of cells from the log, stationary, and late stationary phases were measured by hydrophobic interaction chromatography (HIC) and electrostatic interaction chromatography (ESIC). It was found that surface hydrophobicity of B. cereus vegetative cells from the late stationary phase was the highest followed by those from the stationary phase and the log phase cultures. While the vegetative cells prepared from stationary phase and log phase cultures, respectively, had the highest and the lowest surface charges. Adhesion of B. cereus vegetative cells to stainless steel was positively correlated with the cell surface hydrophobicity (R = 0.979). Surface hydrophobicity and surface positive charge noted on the spores harvested from diluted tryptic soy agar (DTSA) and Mn2+-tryptone glucose extract agar were higher than those harvested from the sucrose or lactose-added DTSA. A wide variation in the surface charge values was noted on the surface of various spores prepared from cultures grown on the four different media tested, while their ability to adhere to stainless steel chips in phosphate buffered saline (PBS) showed no significant difference (p > 0.05). Similarly, the number of spores or vegetative cells adhering to stainless steel suspended in PBS, milk or diluted milk (1000 x) did not differ significantly (p > 0.05).

  16. Chiral ligand exchange high-speed countercurrent chromatography: mechanism, application and comparison with conventional liquid chromatography in enantioseparation of aromatic α-hydroxyl acids

    PubMed Central

    Tong, Shengqiang; Shen, Mangmang; Cheng, Dongping; Ito, Yoichiro; Yan, Jizhong

    2014-01-01

    This work concentrates on the separation mechanism and application of chiral ligand exchange high-speed countercurrent chromatography (HSCCC) in enantioseparations, and comparison with traditional chiral ligand exchange high performance liquid chromatography (HPLC). The enantioseparation of ten aromatic α-hydroxyl acids were performed by these two chromatographic methods. Results showed that five of the racemates were successfully enantioseparated by HSCCC while only three of the racemates could be enantioseparated by HPLC using a suitable chiral ligand mobile phase additive. For HSCCC, the two-phase solvent system was composed of butanol-water (1:1, v/v), to which N-n-dodecyl-L-proline was added in the organic phase as chiral ligand and cupric acetate was added in the aqueous phase as a transition metal ion. Various operation parameters in HSCCC were optimized by enantioselective liquid-liquid extraction. Based on the results of the present studies the separation mechanism for HSCCC was proposed. For HPLC, the optimized mobile phase composed of aqueous solution containing 6 mmol L−1 L-phenylalanine and 3 mmol L−1 cupric sulfate and methanol was used for enantioseparation. Among three ligands tested on a conventional reverse stationary phase column, only one was found to be effective. In the present studies HSCCC presented unique advantages due to its high versatility of two-phase solvent systems and it could be used as an alternative method for enantioseparations. PMID:25087742

  17. An equation-free approach to agent-based computation: Bifurcation analysis and control of stationary states

    NASA Astrophysics Data System (ADS)

    Siettos, C. I.; Gear, C. W.; Kevrekidis, I. G.

    2012-08-01

    We show how the equation-free approach can be exploited to enable agent-based simulators to perform system-level computations such as bifurcation, stability analysis and controller design. We illustrate these tasks through an event-driven agent-based model describing the dynamic behaviour of many interacting investors in the presence of mimesis. Using short bursts of appropriately initialized runs of the detailed, agent-based simulator, we construct the coarse-grained bifurcation diagram of the (expected) density of agents and investigate the stability of its multiple solution branches. When the mimetic coupling between agents becomes strong enough, the stable stationary state loses its stability at a coarse turning point bifurcation. We also demonstrate how the framework can be used to design a wash-out dynamic controller that stabilizes open-loop unstable stationary states even under model uncertainty.

  18. Liquid chromatography of hydrocarbonaeous quaternary amines on cyclodextrin bonded silica

    USGS Publications Warehouse

    Abidi, S.L.

    1986-01-01

    Mixtures of n-alkylbenzyldimethylammonium chloride (ABDAC) were resolved into homologous components by high-performance liquid chromatography (HPLC) with a cyclodextrin-bonded silica stationary phase. With a few exceptions, results from this study are similar to those obtained from traditional reversed-phase HPLC. It was found that the presence of electrolytes in aqueous mobile phases is not a critical factor in determining the success of HPLC separation. Under normal HPLC conditions, a mobile phase consisting of either methanol–water (50:50) or acetonitrile–water (30:70) was employed for obtaining adequate resolution of the quaternary ammonium mixtures. Although the percent organic modifier–water profiles were similar to those in previous studies with these compounds, resolution (R) and selectivity (α) parameters were found to be quite susceptible to changes in the mobile phase solvent composition. The retention behavior of the cationic analytes in the homologous series is consistent with the hydrophobic-interaction concept proposed for the retention mechanism via dominant inclusion complex formation. Several electrolytes were chosen for a study of the counter ion effect on the chromatographic characteristics of ABDAC components. Among the electrolytes examined, the perchlorate ion was found most likely to act as an ion-pairing counter ion for ammonium cations in the HPLC system studied. A correlation study established linear relationships between the chain length of ABDAC and the logarithmic capacity factor (k2). The analytical utility of the HPLC method was demonstrated by the analysis of various unknown mixtures.

  19. Chromatographic behaviour of synthetic high pressure high temperature diamond in aqueous normal phase chromatography.

    PubMed

    Peristyy, Anton; Paull, Brett; Nesterenko, Pavel N

    2016-10-28

    The chromatographic properties of high pressure high temperature synthesised diamond (HPHT) are investigated under the conditions of hydrophilic interaction liquid chromatography (HILIC). A 50×4.6mm ID stainless steel column packed with HPHT particles of mean diameter 1.6μm and specific surface area 5.1m 2 g -1 is used. According to the results of acid-base titration with NaOH the purified HPHT batch contains 4.59μeqg -1 of protogenic, mainly carboxyl- and hydroxyl-, groups, which make this polar adsorbent suitable for use as a stationary phase in HILIC. The retention behaviour of several classes of polar compounds including benzoic and benzenesulfonic acids, nitro- and chlorophenols, various organic bases, and quaternary ammonium compounds are studied using acetonitrile and methanol based mobile phases containing 5-30v/v% of water. The effects of the buffer pH and concentration, column temperature and organic solvent content on retention of model compounds are also investigated. It is shown that both pH and acetonitrile/methanol ratio in the mobile phase can be used to vary the separation selectivity. Molecular adsorption mechanism (related to aqueous normal phase mode), rather than partitioning is established to be responsible for the retention. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. VRACK: measuring pedal kinematics during stationary bike cycling.

    PubMed

    Farjadian, Amir B; Kong, Qingchao; Gade, Venkata K; Deutsch, Judith E; Mavroidis, Constantinos

    2013-06-01

    Ankle impairment and lower limb asymmetries in strength and coordination are common symptoms for individuals with selected musculoskeletal and neurological impairments. The virtual reality augmented cycling kit (VRACK) was designed as a compact mechatronics system for lower limb and mobility rehabilitation. The system measures interaction forces and cardiac activity during cycling in a virtual environment. The kinematics measurement was added to the system. Due to the constrained problem definition, the combination of inertial measurement unit (IMU) and Kalman filtering was recruited to compute the optimal pedal angular displacement during dynamic cycling exercise. Using a novel benchmarking method the accuracy of IMU-based kinematics measurement was evaluated. Relatively accurate angular measurements were achieved. The enhanced VRACK system can serve as a rehabilitation device to monitor biomechanical and physiological variables during cycling on a stationary bike.

  1. The Stationary SQUID

    NASA Astrophysics Data System (ADS)

    Berger, Jorge

    2018-06-01

    In the customary mode of operation of a SQUID, the electromagnetic field in the SQUID is an oscillatory function of time. In this situation, electromagnetic radiation is emitted and couples to the sample. This is a back action that can alter the state that we intend to measure. A circuit that could perform as a stationary SQUID consists of a loop of superconducting material that encloses the magnetic flux, connected to a superconducting and to a normal electrode. This circuit does not contain Josephson junctions, or any other miniature feature. We study the evolution of the order parameter and of the electrochemical potential in this circuit; they converge to a stationary regime, and the voltage between the electrodes depends on the enclosed flux. We obtain expressions for the power dissipation and for the heat transported by the electric current; the validity of these expressions does not rely on a particular evolution model for the order parameter. We evaluate the influence of fluctuations. For a SQUID perimeter of the order of 1μ m and temperature 0.9T_c, we obtain a flux resolution of the order of 10^{-5}Φ _0/Hz^{1/2}; the resolution is expected to improve as the temperature is lowered.

  2. Compact type-I coil planet centrifuge for counter-current chromatography.

    PubMed

    Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro

    2010-02-19

    A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (S(f)), peak resolution (R(s)), theoretical plate (N) and peak retention time (t(R)). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-DL-glu, DNP-beta-ala and DNP-l-ala were resolved at R(s) of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. Published by Elsevier B.V.

  3. Titanium-scaffolded organic-monolithic stationary phases for ultra-high-pressure liquid chromatography.

    PubMed

    Vonk, Rudy J; Vaast, Axel; Eeltink, Sebastiaan; Schoenmakers, Peter J

    2014-09-12

    Organic-polymer monoliths with overall dimensions larger than one millimetre are prone to rupture - either within the monolith itself or between the monoliths and the containing wall - due to the inevitable shrinkage accompanying the formation of a cross-linked polymeric network. This problem has been addressed by creating titanium-scaffolded poly(styrene-co-divinylbenzene) (S-co-DVB) monoliths. Titanium-scaffolded monoliths were successfully used in liquid chromatography at very high pressures (up to 80MPa) and using gradients spanning the full range of water-acetonitrile compositions (0 to 100%). The kinetic-performance of (50-mm long) titanium-scaffolded monoliths was compared to that of similar monolith created in 1-mm i.d. glass-lined tubing at pressures up to 50MPa. The peak capacities obtained with the titanium-scaffolded column was about 30% lower. An increased Eddy-diffusion, due to the pillar-structure, and a decreased permeability are thought to be the main reasons for this reduced kinetic-performance. No decrease in performance was observed when the titanium-scaffolded columns were operated at pressures of 80MPa for up to 12h. The column-to-column repeatability (n=5) was acceptable in terms of observed peak widths at half heights (RSD ca. 10%) The run-to-run repeatability (n=135) in terms of retention times and peak widths at half height were found to be good. Titanium-scaffolded columns coupled in series up to a combined length of (200mm) were used for the analyses of a complex Escherichia coli protein sample. Our experiments demonstrate that columns based on titanium-scaffolded organic-polymer monolith can be operated under strenuous conditions without loss in performance. The titanium-scaffolded approach makes it feasible to create organic-polymer monoliths in wide-bore columns with accurate temperature control. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Structural Characterisation of Acetogenins from Annona muricata by Supercritical Fluid Chromatography Coupled to High-Resolution Tandem Mass Spectrometry.

    PubMed

    Laboureur, Laurent; Bonneau, Natacha; Champy, Pierre; Brunelle, Alain; Touboul, David

    2017-11-01

    Acetogenins are plant polyketides known to be cytotoxic and proposed as antitumor candidates. They are also suspected to be alimentary neurotoxins. Their occurrence as complex mixtures renders their dereplication and structural identification difficult using liquid chromatography coupled to tandem mass spectrometry and efforts are required to improve the methodology. To develop a supercritical fluid chromatography (SFC) high-resolution tandem mass spectrometry method, involving lithium post-column cationisation, for the structural characterisation of Annonaceous acetogenins in crude extracts. The seeds of Annona muricata L. were extracted with methanol. Supercritical fluid chromatography of the extract, using a 2-ethylpyridine stationary phase column, was monitored using a high-resolution quadrupole time-of-flight mass spectrometer. Lithium iodide was added post-column in the make-up solvent. For comparison, the same extract was analysed using high-pressure liquid chromatography coupled to the same mass spectrometer, with a column based on solid core particles. Sensitivity was similar for both HPLC and SFC approaches. Retention behaviour and fragmentation pathways of three different isomer groups are described. A previously unknown group of acetogenins was also evidenced for the first time. The use of SFC-MS/MS allows the reduction of the time of analysis, of environmental impact and an increase in the chromatographic resolution, compared to liquid chromatography. This new methodology enlightened a new group of acetogenins, isomers of montanacin-D. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Supercritical Fluid Chromatography of Drugs: Parallel Factor Analysis for Column Testing in a Wide Range of Operational Conditions

    PubMed Central

    Al-Degs, Yahya; Andri, Bertyl; Thiébaut, Didier; Vial, Jérôme

    2017-01-01

    Retention mechanisms involved in supercritical fluid chromatography (SFC) are influenced by interdependent parameters (temperature, pressure, chemistry of the mobile phase, and nature of the stationary phase), a complexity which makes the selection of a proper stationary phase for a given separation a challenging step. For the first time in SFC studies, Parallel Factor Analysis (PARAFAC) was employed to evaluate the chromatographic behavior of eight different stationary phases in a wide range of chromatographic conditions (temperature, pressure, and gradient elution composition). Design of Experiment was used to optimize experiments involving 14 pharmaceutical compounds present in biological and/or environmental samples and with dissimilar physicochemical properties. The results showed the superiority of PARAFAC for the analysis of the three-way (column × drug × condition) data array over unfolding the multiway array to matrices and performing several classical principal component analyses. Thanks to the PARAFAC components, similarity in columns' function, chromatographic trend of drugs, and correlation between separation conditions could be simply depicted: columns were grouped according to their H-bonding forces, while gradient composition was dominating for condition classification. Also, the number of drugs could be efficiently reduced for columns classification as some of them exhibited a similar behavior, as shown by hierarchical clustering based on PARAFAC components. PMID:28695040

  6. Stability of Bifurcating Stationary Solutions of the Artificial Compressible System

    NASA Astrophysics Data System (ADS)

    Teramoto, Yuka

    2018-02-01

    The artificial compressible system gives a compressible approximation of the incompressible Navier-Stokes system. The latter system is obtained from the former one in the zero limit of the artificial Mach number ɛ which is a singular limit. The sets of stationary solutions of both systems coincide with each other. It is known that if a stationary solution of the incompressible system is asymptotically stable and the velocity field of the stationary solution satisfies an energy-type stability criterion, then it is also stable as a solution of the artificial compressible one for sufficiently small ɛ . In general, the range of ɛ shrinks when the spectrum of the linearized operator for the incompressible system approaches to the imaginary axis. This can happen when a stationary bifurcation occurs. It is proved that when a stationary bifurcation from a simple eigenvalue occurs, the range of ɛ can be taken uniformly near the bifurcation point to conclude the stability of the bifurcating solution as a solution of the artificial compressible system.

  7. A single step reversed-phase high performance liquid chromatography separation of polar and non-polar lipids.

    PubMed

    Olsson, Petter; Holmbäck, Jan; Herslöf, Bengt

    2014-11-21

    This paper reports a simple chromatographic system to separate lipids classes as well as their molecular species. By the use of phenyl coated silica as stationary phase in combination with a simple mobile phase consisting of methanol and water, all tested lipid classes elute within 30 min. Furthermore, a method to accurately predict retention times of specific lipid components for this type of chromatography is presented. Common detection systems were used, namely evaporative light scattering detection (ELSD), charged aerosol detection (CAD), electrospray mass spectrometry (ESI-MS), and UV detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Gradient enhanced-fluidity liquid hydrophilic interaction chromatography of ribonucleic acid nucleosides and nucleotides: A "green" technique.

    PubMed

    Beilke, Michael C; Beres, Martin J; Olesik, Susan V

    2016-03-04

    A "green" hydrophilic interaction liquid chromatography (HILIC) technique for separating the components of mixtures with a broad range of polarities is illustrated using enhanced-fluidity liquid mobile phases. Enhanced-fluidity liquid chromatography (EFLC) involves the addition of liquid CO2 to conventional liquid mobile phases. Decreased mobile phase viscosity and increased analyte diffusivity results when a liquefied gas is dissolved in common liquid mobile phases. The impact of CO2 addition to a methanol:water (MeOH:H2O) mobile phase was studied to optimize HILIC gradient conditions. For the first time a fast separation of 16 ribonucleic acid (RNA) nucleosides/nucleotides was achieved (16min) with greater than 1.3 resolution for all analyte pairs. By using a gradient, the analysis time was reduced by over 100% compared to similar separations conducted under isocratic conditions. The optimal separation using MeOH:H2O:CO2 mobile phases was compared to MeOH:H2O and acetonitrile:water (ACN:H2O) mobile phases. Based on chromatographic performance parameters (efficiency, resolution and speed of analysis) and an assessment of the environmental impact of the mobile phase mixtures, MeOH:H2O:CO2 mixtures are preferred over ACN:H2O or MeOH:H2O mobile phases for the separation of mixtures of RNA nucleosides and nucleotides. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Two-Dimensional Liquid Chromatography Analysis of Polystyrene/Polybutadiene Block Copolymers.

    PubMed

    Lee, Sanghoon; Choi, Heejae; Chang, Taihyun; Staal, Bastiaan

    2018-05-15

    A detailed characterization of a commercial polystyrene/polybutadiene block copolymer material (Styrolux) was carried out using two-dimensional liquid chromatography (2D-LC). The Styrolux is prepared by statistical linking reaction of two different polystyrene- block-polybutadienyl anion precursors with a multivalent linking agent. Therefore, it is a mixture of a number of branched block copolymers different in molecular weight, composition, and chain architecture. While individual LC analysis, including size exclusion chromatography, interaction chromatography, or liquid chromatography at critical condition, is not good enough to resolve all the polymer species, 2D-LC separations coupling two chromatography methods were able to resolve all polymer species present in the sample; at least 13 block copolymer species and a homopolystyrene blended. Four different 2D-LC analyses combining a different pair of two LC methods provide their characteristic separation results. The separation characteristics of the 2D-LC separations are compared to elucidate the elution characteristics of the block copolymer species.

  10. Determination of void volume in normal phase liquid chromatography.

    PubMed

    Jiang, Ping; Wu, Di; Lucy, Charles A

    2014-01-10

    Void volume is an important fundamental parameter in chromatography. Little prior discussion has focused on the determination of void volume in normal phase liquid chromatography (NPLC). Various methods to estimate the total void volume are compared: pycnometry; minor disturbance method based on injection of weak solvent; tracer pulse method; hold-up volume based on unretained compounds; and accessible volume based on Martin's rule and its descendants. These are applied to NPLC on silica, RingSep and DNAP columns. Pycnometry provides a theoretically maximum value for the total void volume and should be performed at least once for each new column. However, pycnometry does not reflect the volume of adsorbed strong solvent on the stationary phase, and so only yields an accurate void volume for weaker mobile phase conditions. 1,3,5-Tri-t-butyl benzene (TTBB) results in hold-up volumes that are convenient measures of the void volume for all eluent conditions on charge-transfer columns (RingSep and DNAP), but is weakly retained under weak eluent conditions on silica. Injection of the weak mobile phase component (hexane) may be used to determine void volume, but care must be exercised to select the appropriate disturbance feature. Accessible volumes, that are determined using a homologous series, are always biased low, and are not recommended as a measure of the void volume. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Behavior of macroporous vinyl silica and silica monolithic columns in high pressure gas chromatography.

    PubMed

    Maniquet, Adrien; Bruyer, Nicolas; Raffin, Guy; Baco-Antionali, Franck; Demesmay, Claire; Dugas, Vincent; Randon, Jérôme

    2017-06-30

    80% vinyltrimethoxysilane-based hybrid silica monoliths (80-VTMS), which have been initially developed for separation in reversed-phase liquid chromatography, have been investigated in high pressure gas chromatography separations (carrier gas pressure up to 60bar) and compared to silica monolithic columns. The behavior of both silica and 80-VTMS monolithic columns was investigated using helium, nitrogen and carbon dioxide as carrier gas. The efficiency of 80-VTMS monolithic columns was shown to vary differently than silica monolithic columns according to the temperature and the carrier gas used. Carrier gas nature was a significant parameter on the retention for both silica and vinyl columns in relation to its adsorption onto the stationary phase in such high pressure conditions. The comparison of retention and selectivity between 80-VTMS monoliths and silica was performed under helium using the logarithm of the retention factor according to the number of carbon atoms combined to Kovats indexes. The very good performances of these columns were demonstrated, allowing the separation of 8 compounds in less than 1min. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Non-stationary internal tides observed with satellite altimetry

    NASA Astrophysics Data System (ADS)

    Ray, R. D.; Zaron, E. D.

    2011-09-01

    Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-1 tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 cm2. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.

  13. Non-Stationary Internal Tides Observed with Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Zaron, E. D.

    2011-01-01

    Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-l tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 sq cm. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.

  14. Development of a hydrophilic interaction liquid chromatography-mass spectrometry method for detection and quantification of urea thermal decomposition by-products in emission from diesel engine employing selective catalytic reduction technology.

    PubMed

    Yassine, Mahmoud M; Dabek-Zlotorzynska, Ewa; Celo, Valbona

    2012-03-16

    The use of urea based selective catalytic reduction (SCR) technology for the reduction of NOx from the exhaust of diesel-powered vehicles has the potential to emit at least six thermal decomposition by-products, ammonia, and unreacted urea from the tailpipe. These compounds may include: biuret, dicyandiamine, cyanuric acid, ammelide, ammeline and melamine. In the present study, a simple, sensitive and reliable hydrophilic interaction liquid chromatography (HILIC)-electrospray ionization (ESI)/mass spectrometry (MS) method without complex sample pre-treatment was developed for identification and determination of urea decomposition by-products in diesel exhaust. Gradient separation was performed on a SeQuant ZIC-HILIC column with a highly polar zwitterionic stationary phase, and using a mobile phase consisting of acetonitrile (eluent A) and 15 mM ammonium formate (pH 6; eluent B). Detection and quantification were performed using a quadrupole ESI/MS operated simultaneously in negative and positive mode. With 10 μL injection volume, LODs for all target analytes were in the range of 0.2-3 μg/L. The method showed a good inter-day precision of retention time (RSD<0.5%) and peak area (RSD<3%). Satisfactory extraction recoveries from spiked blanks ranged between 96 and 98%. Analyses of samples collected during transient chassis dynamometer tests of a bus engine equipped with a diesel particulate filter (DPF) and urea based SCR technology showed the presence of five target analytes with cyanuric acid and ammelide the most abundant compounds in the exhaust. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  15. Nanostructured pillars based on vertically aligned carbon nanotubes as the stationary phase in micro-CEC.

    PubMed

    Wu, Ren-Guei; Yang, Chung-Shi; Wang, Pen-Cheng; Tseng, Fan-Gang

    2009-06-01

    We present a micro-CEC chip carrying out a highly efficient separation of dsDNA fragments through vertically aligned multi-wall carbon nanotubes (MWCNTs) in a microchannel. The vertically aligned MWCNTs were grown directly in the microchannel to form straight nanopillar arrays as ordered and directional chromatographic supports. 1-Pyrenedodecanoic acid was employed for the surface modification of the MWCNTs' stationary phase to adsorb analytes by hydrophobic interactions. This device was used for separating dsDNA fragments of three different lengths (254, 360, and 572 bp), and fluorescence detection was employed to verify the electrokinetic transport in the MWCNT array. The micro-CEC separation of the three compounds was achieved in less than 300 s at a field strength of 66 V/cm due to superior laminar flow patterns and a lower flow resistance resulting from the vertically aligned MWCNTs being used as the stationary phase medium. In addition, a fivefold reduction of band broadening was obtained when the analyte was separated by the chromatographic MWCNT array channel instead of the CE channel. From all of the results, we suggest that an in situ grown and directional MWCNT array can potentially be useful for preparing more diversified forms of stationary phases for vertically efficient chip-based electrochromatography.

  16. Mixed retention mechanism of proteins in weak anion-exchange chromatography.

    PubMed

    Liu, Peng; Yang, Haiya; Geng, Xindu

    2009-10-30

    Using four commercial weak anion-exchange chromatography (WAX) columns and 11 kinds of different proteins, we experimentally examined the involvement of hydrophobic interaction chromatography (HIC) mechanism in protein retention on the WAX columns. The HIC mechanism was found to operate in all four WAX columns, and each of these columns had a better resolution in the HIC mode than in the corresponding WAX mode. Detailed analysis of the molecular interactions in a chromatographic system indicated that it is impossible to completely eliminate hydrophobic interactions from a WAX column. Based on these results, it may be possible to employ a single WAX column for protein separation by exploiting mixed modes (WAX and HIC) of retention. The stoichiometric displacement theory and two linear plots were used to show that mechanism of the mixed modes of retention in the system was a combination of two kinds of interactions, i.e., nonselective interactions in the HIC mode and selective interactions in the IEC mode. The obtained U-shaped elution curve of proteins could be distinguished into four different ranges of salt concentration, which also represent four retention regions.

  17. Employment of High-Performance Thin-Layer Chromatography for the Quantification of Oleuropein in Olive Leaves and the Selection of a Suitable Solvent System for Its Isolation with Centrifugal Partition Chromatography.

    PubMed

    Boka, Vasiliki-Ioanna; Argyropoulou, Aikaterini; Gikas, Evangelos; Angelis, Apostolis; Aligiannis, Nektarios; Skaltsounis, Alexios-Leandros

    2015-11-01

    A high-performance thin-layer chromatographic methodology was developed and validated for the isolation and quantitative determination of oleuropein in two extracts of Olea europaea leaves. OLE_A was a crude acetone extract, while OLE_AA was its defatted residue. Initially, high-performance thin-layer chromatography was employed for the purification process of oleuropein with fast centrifugal partition chromatography, replacing high-performance liquid-chromatography, in the stage of the determination of the distribution coefficient and the retention volume. A densitometric method was developed for the determination of the distribution coefficients, KC = CS/CM. The total concentrations of the target compound in the stationary phase (CS) and in the mobile phase (CM) were calculated by the area measured in the high-performance thin-layer chromatogram. The estimated Kc was also used for the calculation of the retention volume, VR, with a chromatographic retention equation. The obtained data were successfully applied for the purification of oleuropein and the experimental results confirmed the theoretical predictions, indicating that high-performance thin-layer chromatography could be an important counterpart in the phytochemical study of natural products. The isolated oleuropein (purity > 95%) was subsequently used for the estimation of its content in each extract with a simple, sensitive and accurate high-performance thin-layer chromatography method. The best fit calibration curve from 1.0 µg/track to 6.0 µg/track of oleuropein was polynomial and the quantification was achieved by UV detection at λ 240 nm. The method was validated giving rise to an efficient and high-throughput procedure, with the relative standard deviation % of repeatability and intermediate precision not exceeding 4.9% and accuracy between 92% and 98% (recovery rates). Moreover, the method was validated for robustness, limit of quantitation, and limit of detection. The amount of oleuropein for

  18. Global charges of stationary non-Abelian black holes.

    PubMed

    Kleihaus, Burkhard; Kunz, Jutta; Navarro-Lérida, Francisco

    2003-05-02

    We consider stationary axially symmetric black holes in SU(2) Einstein-Yang-Mills-dilaton theory. We present a mass formula for these stationary non-Abelian black holes, which also holds for Abelian black holes. The presence of the dilaton field allows for rotating black holes, which possess nontrivial electric and magnetic gauge fields, but do not carry a non-Abelian charge. We further present a new uniqueness conjecture.

  19. Stationary motion stability of monocycle on ice surface

    NASA Astrophysics Data System (ADS)

    Lebedev, Dmitri A.

    2018-05-01

    The problem of the one-wheeled crew motion on smooth horizontal ice is considered. The motion equations are worked out in quasicoordinates in the form of Euler-Lagrange's equations. The variety of stationary motions is defined. Stability of some stationary motions is investigated. Comparison of the results received for a similar model of one-wheeled crew at its motion on the horizontal plane without slipping is carried out.

  20. Recent advances in capillary ultrahigh pressure liquid chromatography.

    PubMed

    Blue, Laura E; Franklin, Edward G; Godinho, Justin M; Grinias, James P; Grinias, Kaitlin M; Lunn, Daniel B; Moore, Stephanie M

    2017-11-10

    In the twenty years since its initial demonstration, capillary ultrahigh pressure liquid chromatography (UHPLC) has proven to be one of most powerful separation techniques for the analysis of complex mixtures. This review focuses on the most recent advances made since 2010 towards increasing the performance of such separations. Improvements in capillary column preparation techniques that have led to columns with unprecedented performance are described. New stationary phases and phase supports that have been reported over the past decade are detailed, with a focus on their use in capillary formats. A discussion on the instrument developments that have been required to ensure that extra-column effects do not diminish the intrinsic efficiency of these columns during analysis is also included. Finally, the impact of these capillary UHPLC topics on the field of proteomics and ways in which capillary UHPLC may continue to be applied to the separation of complex samples are addressed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Relativistic elasticity of stationary fluid branes

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Obers, Niels A.

    2013-02-01

    Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.

  2. An Advanced, Interactive, High-Performance Liquid Chromatography Simulator and Instructor Resources

    ERIC Educational Resources Information Center

    Boswell, Paul G.; Stoll, Dwight R.; Carr, Peter W.; Nagel, Megan L.; Vitha, Mark F.; Mabbott, Gary A.

    2013-01-01

    High-performance liquid chromatography (HPLC) simulation software has long been recognized as an effective educational tool, yet many of the existing HPLC simulators are either too expensive, outdated, or lack many important features necessary to make them widely useful for educational purposes. Here, a free, open-source HPLC simulator is…

  3. Supercritical fluid chromatography applied to the highly selective isolation of urinary steroid hormones prior to GC/MS analysis.

    PubMed

    Doué, Mickael; West, Caroline; Bichon, Emmanuelle; Le Bizec, Bruno; Lesellier, Eric

    2018-06-01

    To assess the presence of prohibited anabolic substances used to promote growth in livestock, calf urine is the most relevant matrix. However, the sample preparation methods (required to remove unwanted matrix components and fractionate isobaric species that may be unresolved by gas chromatography- mass spectrometry GC/MS) are long and complex. In this context, semi-preparative supercritical fluid chromatography (SFC) was considered to possibly simplify the sample preparation in reducing the number of procedures. Fifteen stationary phases were screened with SFC combined with UV and evaporative light-scattering detection (ELSD), among which two columns (Cosmosil π-NAP and Princeton DIOL) were retained for their ability to isolate steroid hormones from other matrix components and, for the second column, for the additional possibility to fractionate steroid hormones into different families (estrogens, mono-hydroxylated and di-hydroxylated androgens). The fractions were further analysed with GC/MS showing the benefit of class fractionation. The final method allows for significant time, solvent and money savings compared to the previously widely used method (solid-phase extraction combined with semi-preparative high-performance liquid chromatography). Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The Separation and Quantitation of Peptides with and without Oxidation of Methionine and Deamidation of Asparagine Using Hydrophilic Interaction Liquid Chromatography with Mass Spectrometry (HILIC-MS).

    PubMed

    Badgett, Majors J; Boyes, Barry; Orlando, Ron

    2017-05-01

    Peptides with deamidated asparagine residues and oxidized methionine residues are often not resolved sufficiently to allow quantitation of their native and modified forms using reversed phase (RP) chromatography. The accurate quantitation of these modifications is vital in protein biotherapeutic analysis because they can affect a protein's function, activity, and stability. We demonstrate here that hydrophilic interaction liquid chromatography (HILIC) adequately and predictably separates peptides with these modifications from their native counterparts. Furthermore, coefficients describing the extent of the hydrophilicity of these modifications have been derived and were incorporated into a previously made peptide retention prediction model that is capable of predicting the retention times of peptides with and without these modifications. Graphical Abstract ᅟ.

  5. Glycolipid class profiling by packed-column subcritical fluid chromatography.

    PubMed

    Deschamps, Frantz S; Lesellier, Eric; Bleton, Jean; Baillet, Arlette; Tchapla, Alain; Chaminade, Pierre

    2004-06-18

    The potential of packed-column subcritical fluid chromatography (SubFC) for the separation of lipid classes has been assessed in this study. Three polar stationary phases were checked: silica, diol, and poly(vinyl alcohol). Carbon dioxide (CO2) with methanol as modifier was used as mobile phase and detection performed by evaporative light scattering detection. The influence of methanol content, temperature, and pressure on the chromatographic behavior of sphingolipids and glycolipids were investigated. A complete separation of lipid classes from a crude wheat lipid extract was achieved using a modifier gradient from 10 to 40% methanol in carbon dioxide. Solute selectivity was improved using coupled silica and diol columns in series. Because the variation of eluotropic strength depending on the fluid density changes, a normalized separation factor product (NSP) was used to select the nature, the number and the order of the columns to reach the optimum glycolipid separation.

  6. Investigating the Free-Body Diagram of a Stationary Object on an Inclined Plane Using Apple Watch

    ERIC Educational Resources Information Center

    Dilek, Ufuk; Çaliskan, Serap

    2017-01-01

    In this study, we present an activity in which the free-body diagram of a real stationary object on an inclined plane can be examined interactively. We use an Apple Watch and a few other materials that can be accessed easily. Instead of an Apple Watch, a mobile phone or a tablet could also be used. This activity may be employed to introduce the…

  7. Inference for local autocorrelations in locally stationary models.

    PubMed

    Zhao, Zhibiao

    2015-04-01

    For non-stationary processes, the time-varying correlation structure provides useful insights into the underlying model dynamics. We study estimation and inferences for local autocorrelation process in locally stationary time series. Our constructed simultaneous confidence band can be used to address important hypothesis testing problems, such as whether the local autocorrelation process is indeed time-varying and whether the local autocorrelation is zero. In particular, our result provides an important generalization of the R function acf() to locally stationary Gaussian processes. Simulation studies and two empirical applications are developed. For the global temperature series, we find that the local autocorrelations are time-varying and have a "V" shape during 1910-1960. For the S&P 500 index, we conclude that the returns satisfy the efficient-market hypothesis whereas the magnitudes of returns show significant local autocorrelations.

  8. An orientation sensitive approach in biomolecule interaction quantitative structure-activity relationship modeling and its application in ion-exchange chromatography.

    PubMed

    Kittelmann, Jörg; Lang, Katharina M H; Ottens, Marcel; Hubbuch, Jürgen

    2017-01-27

    Quantitative structure-activity relationship (QSAR) modeling for prediction of biomolecule parameters has become an established technique in chromatographic purification process design. Unfortunately available descriptor sets fail to describe the orientation of biomolecules and the effects of ionic strength in the mobile phase on the interaction with the stationary phase. The literature describes several special descriptors used for chromatographic retention modeling, all of these do not describe the screening of electrostatic potential by the mobile phase in use. In this work we introduce two new approaches of descriptor calculations, namely surface patches and plane projection, which capture an oriented binding to charged surfaces and steric hindrance of the interaction with chromatographic ligands with regard to electrostatic potential screening by mobile phase ions. We present the use of the developed descriptor sets for predictive modeling of Langmuir isotherms for proteins at different pH values between pH 5 and 10 and varying ionic strength in the range of 10-100mM. The resulting model has a high correlation of calculated descriptors and experimental results, with a coefficient of determination of 0.82 and a predictive coefficient of determination of 0.92 for unknown molecular structures and conditions. The agreement of calculated molecular interaction orientations with both, experimental results as well as molecular dynamic simulations from literature is shown. The developed descriptors provide the means for improved QSAR models of chromatographic processes, as they reflect the complex interactions of biomolecules with chromatographic phases. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Purification of α-glucosidase from mouse intestine by countercurrent chromatography coupled with a reverse micelle solvent system.

    PubMed

    He, Kai; Zou, Zongyao; Hu, Yinran; Yang, Yong; Xiao, Yubo; Gao, Pincao; Li, Xuegang; Ye, Xiaoli

    2016-02-01

    Countercurrent chromatography coupled with a reverse micelle solvent was applied to separate α-glucosidase, which is stable at pH 6.0-8.8, 15-50°C. The separation conditions are as follows: stationary phase: pH 4.0 Tris-HCl buffer phase containing 50 mM Tris-HCl and 50 mM KCl; mobile phase A: isooctane containing 50 mM anionic surfactant sodium di(2-ethylhexyl)sulfosuccinate; mobile phase B: 50 mM Tris-HCl buffer containing 500 mM KCl (pH 8.0); In total, 25 mL (23.9 mg) crude enzyme was injected through the injection valve, the enzymatic reaction and sodium dodecylsulfate polyacrylamide gel electrophoresis results imply that the activity of purified α-glucosidase is 6.63-fold higher than that of the crude enzyme. Therefore, countercurrent chromatography coupled with a reverse micelle solvent is capable for protein separation and enrichment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Generalized Framework for Non-Stationary Extreme Value Analysis

    NASA Astrophysics Data System (ADS)

    Ragno, E.; Cheng, L.; Sadegh, M.; AghaKouchak, A.

    2017-12-01

    Empirical trends in climate variables including precipitation, temperature, snow-water equivalent at regional to continental scales are evidence of changes in climate over time. The evolving climate conditions and human activity-related factors such as urbanization and population growth can exert further changes in weather and climate extremes. As a result, the scientific community faces an increasing demand for updated appraisal of the time-varying climate extremes. The purpose of this study is to offer a robust and flexible statistical tool for non-stationary extreme value analysis which can better characterize the severity and likelihood of extreme climatic variables. This is critical to ensure a more resilient environment in a changing climate. Following the positive feedback on the first version of Non-Stationary Extreme Value Analysis (NEVA) Toolbox by Cheng at al. 2014, we present an improved version, i.e. NEVA2.0. The upgraded version herein builds upon a newly-developed hybrid evolution Markov Chain Monte Carlo (MCMC) approach for numerical parameters estimation and uncertainty assessment. This addition leads to a more robust uncertainty estimates of return levels, return periods, and risks of climatic extremes under both stationary and non-stationary assumptions. Moreover, NEVA2.0 is flexible in incorporating any user-specified covariate other than the default time-covariate (e.g., CO2 emissions, large scale climatic oscillation patterns). The new feature will allow users to examine non-stationarity of extremes induced by physical conditions that underlie the extreme events (e.g. antecedent soil moisture deficit, large-scale climatic teleconnections, urbanization). In addition, the new version offers an option to generate stationary and/or non-stationary rainfall Intensity - Duration - Frequency (IDF) curves that are widely used for risk assessment and infrastructure design. Finally, a Graphical User Interface (GUI) of the package is provided, making NEVA

  11. Normal and polar-organic-phase high-performance liquid chromatographic enantioresolution of omeprazole, rabeprazole, lansoprazole and pantoprazole using monochloro-methylated cellulose-based chiral stationary phase and determination of dexrabeprazole.

    PubMed

    Dixit, Shuchi; Dubey, Rituraj; Bhushan, Ravi

    2014-01-01

    Enantioresolution of four anti-ulcer drugs (chiral sulfoxides), namely, omeprazole, rabeprazole, lansoprazole and pantoprazole, was carried out by high-performance liquid chromatography using a polysaccharide-based chiral stationary phase consisting of monochloromethylated cellulose (Lux cellulose-2) under normal and polar-organic-phase conditions with ultraviolet detection at 285 nm. The method was validated for linearity, accuracy, precision, robustness and limit of detection. The optimized enantioresolution method was compared for both the elution modes. The optimized method was further utilized to check the enantiomeric purity of dexrabeprazole. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Study of bubble behavior in weightlessness (effects of thermal gradient and acoustic stationary wave) (M-16)

    NASA Technical Reports Server (NTRS)

    Azuma, H.

    1993-01-01

    The aim of this experiment is to understand how bubbles behave in a thermal gradient and acoustic stationary wave under microgravity. In microgravity, bubble or bubbles in a liquid will not rise upward as they do on Earth but will rest where they are formed because there exists no gravity-induced buoyancy. We are interested in how bubbles move and in the mechanisms which support the movement. We will try two ways to make bubbles migrate. The first experiment concerns behavior of bubbles in a thermal gradient. It is well known than an effect of surface tension which is masked by gravity on the ground becomes dominant in microgravity. The surface tension on the side of the bubble at a lower temperature is stronger than at a higher temperature. The bubble migrates toward the higher temperature side due to the surface tension difference. The migration speed depends on the so-called Marangoni number, which is a function of the temperature difference, the bubble diameter, liquid viscosity, and thermal diffusivity. At present, some experimental data about migration speeds in liquids with very small Marangoni numbers were obtained in space experiments, but cases of large Marangoni number are rarely obtained. In our experiment a couple of bubbles are to be injected into a cell filled with silicon oil, and the temperature gradient is to be made gradually in the cell by a heater and a cooler. We will be able to determine migration speeds in a very wide range of Marangoni numbers, as well as study interactions between the bubbles. We will observe bubble movements affected by hydrodynamical and thermal interactions, the two kinds of interactions which occur simultaneously. These observation data will be useful for analyzing the interactions as well as understanding the behavior of particles or drops in materials processing. The second experiment concerns bubble movement in an acoustic stationary wave. It is known that a bubble in a stationary wave moves toward the node or the

  13. Non-stationary measurements of Chiral Magnetic Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevchenko, V.I., E-mail: vladimir.i.shevchenko@gmail.com

    2013-12-15

    We discuss the Chiral Magnetic Effect from the quantum theory of measurements point of view for non-stationary measurements. The effect of anisotropy for fluctuations of electric currents in a magnetic field is addressed. It is shown that anisotropy caused by nonzero axial chemical potential is indistinguishable in this framework from anisotropy caused by finite measurement time or finite lifetime of the magnetic field, and in all cases it is related to abelian triangle anomaly. Possible P-odd effects in central heavy-ion collisions (where the Chiral Magnetic Effect is absent) are discussed in this context. This paper is dedicated to the memorymore » of Professor Mikhail Polikarpov (1952–2013). -- Highlights: •Asymmetry in the response function for vector currents of massless fermions in the magnetic field is computed. •Asymmetry caused by axial chemical potential is practically indistinguishable from the one caused by non-stationarity. •The CME current is non-dissipative in the stationary case and dissipative in the non-stationary case. •Importance of studies of P-odd signatures in central collisions is emphasized.« less

  14. Propagation of Boundary-Induced Discontinuity in Stationary Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Kawagoe, Daisuke; Chen, I.-Kun

    2018-01-01

    We consider the boundary value problem of the stationary transport equation in the slab domain of general dimensions. In this paper, we discuss the relation between discontinuity of the incoming boundary data and that of the solution to the stationary transport equation. We introduce two conditions posed on the boundary data so that discontinuity of the boundary data propagates along positive characteristic lines as that of the solution to the stationary transport equation. Our analysis does not depend on the celebrated velocity averaging lemma, which is different from previous works. We also introduce an example in two dimensional case which shows that piecewise continuity of the boundary data is not a sufficient condition for the main result.

  15. Dielectrokinetic chromatography devices

    DOEpatents

    Chirica, Gabriela S; Fiechtner, Gregory J; Singh, Anup K

    2014-12-16

    Disclosed herein are methods and devices for dielectrokinetic chromatography. As disclosed, the devices comprise microchannels having at least one perturber which produces a non-uniformity in a field spanning the width of the microchannel. The interaction of the field non-uniformity with a perturber produces a secondary flow which competes with a primary flow. By decreasing the size of the perturber the secondary flow becomes significant for particles/analytes in the nanometer-size range. Depending on the nature of a particle/analyte present in the fluid and its interaction with the primary flow and the secondary flow, the analyte may be retained or redirected. The composition of the primary flow can be varied to affect the magnitude of primary and/or secondary flows on the particles/analytes and thereby separate and concentrate it from other particles/analytes.

  16. Framework for Assessing Biogenic CO2 Emissions from Stationary Sources

    EPA Science Inventory

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide...

  17. Influence of stationary and non-stationary conditions on drying time and mechanical properties of a porcelain slab

    NASA Astrophysics Data System (ADS)

    Hammouda, Imen; Mihoubi, Daoued

    2017-12-01

    This work deals with a numerical study of the response of a porcelain slab when subjected to convective drying in stationary and non-stationary conditions. The used model describes heat, mass, and momentum transfers is applied to an unsaturated viscoelastic medium described by a Maxwell model. The numerical code allows us to determine the effect of the surrounding air temperature on drying kinetics and on mechanical stress intensities. Von Mises stresses are analysed in order to foresee an eventual damage that may occur during drying. Simulation results for several temperatures in the range of [30 °C, 90 °C] shows that for the temperature from 30 °C to 60 °C, Von Mises stresses are always lower than the yield strength. But above 70 °C, Von Mises stresses are higher than the ultimate strength, and consequently there is a risk of crack at the end of the constant drying rate period. The idea proposed in this work is to integrate a reducing temperature phase when the predicted Von Mises stress intensity exceeds the admissible stress. Simulation results shows that a non-stationary convective drying (90-60 °C) allows us to optimize costs and quality by reducing the drying time and maintaining Von Mises stress values under the admissible stress.

  18. Targeted profiling of hydrophilic constituents of royal jelly by hydrophilic interaction liquid chromatography-tandem mass spectrometry.

    PubMed

    Pina, Athanasia; Begou, Olga; Kanelis, Dimitris; Gika, Helen; Kalogiannis, Stavros; Tananaki, Chrysoula; Theodoridis, Georgios; Zotou, Anastasia

    2018-01-05

    In the present work a Hydrophilic Interaction Liquid Chromatography-tandem Mass Spectrometry (HILIC-MS/MS) method was developed for the efficient separation and quantification of a large number of small polar bioactive molecules in Royal Jelly. The method was validated and provided satisfactory detection sensitivity for 88 components. Quantification was proven to be precise for 64 components exhibiting good linearity, recoveries R% >90% for the majority of analytes and intra- and inter-day precision from 0.14 to 20% RSD. Analysis of 125 fresh royal jelly samples of Greek origin provided useful information on royal jelly's hydrophilic bioactive components revealing lysine, ribose, proline, melezitose and glutamic acid to be in high abundance. In addition the occurrence of 18 hydrophilic nutrients which have not been reported previously as royal jelly constituents is shown. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Combined effects of potassium chloride and ethanol as mobile phase modulators on hydrophobic interaction and reversed-phase chromatography of three insulin variants.

    PubMed

    Johansson, Karolina; Frederiksen, Søren S; Degerman, Marcus; Breil, Martin P; Mollerup, Jørgen M; Nilsson, Bernt

    2015-02-13

    The two main chromatographic modes based on hydrophobicity, hydrophobic interaction chromatography (HIC) and reversed-phase chromatography (RPC), are widely used for both analytical and preparative chromatography of proteins in the pharmaceutical industry. Despite the extensive application of these separation methods, and the vast amount of studies performed on HIC and RPC over the decades, the underlying phenomena remain elusive. As part of a systematic study of the influence of mobile phase modulators in hydrophobicity-based chromatography, we have investigated the effects of both KCl and ethanol on the retention of three insulin variants on two HIC adsorbents and two RPC adsorbents. The focus was on the linear adsorption range, separating the modulator effects from the capacity effects, but some complementary experiments at higher load were included to further investigate observed phenomena. The results show that the modulators have the same effect on the two RPC adsorbents in the linear range, indicating that the modulator concentration only affects the activity of the solute in the mobile phase, and not that of the solute-ligand complex, or that of the ligand. Unfortunately, the HIC adsorbents did not show the same behavior. However, the insulin variants displayed a strong tendency toward self-association on both HIC adsorbents; on one in particular. Since this causes peak fronting, the retention is affected, and this could probably explain the lack of congruity. This conclusion was supported by the results from the non-linear range experiments which were indicative of double-layer adsorption on the HIC adsorbents, while the RPC adsorbents gave the anticipated increased tailing at higher load. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effect of gender, cadence, and water immersion on ground reaction forces during stationary running.

    PubMed

    de Brito Fontana, Heiliane; Haupenthal, Alessandro; Ruschel, Caroline; Hubert, Marcel; Ridehalgh, Colette; Roesler, Helio

    2012-05-01

    Controlled laboratory study. To analyze the vertical and anteroposterior components of the ground reaction force during stationary running performed in water and on dry land, focusing on the effect of gender, level of immersion, and cadence. Stationary running, as a fundamental component of aquatic rehabilitation and training protocols, is little explored in the literature with regard to biomechanical variables, which makes it difficult to determine and control the mechanical load acting on the individuals. Twenty-two subjects performed 1 minute of stationary running on land, immersed to the hip, and immersed to the chest at 3 different cadences: 90 steps per minute, 110 steps per minute, and 130 steps per minute. Force data were acquired with a force plate, and the variables were vertical peak (Fy), loading rate (LR), anterior peak (Fx anterior), and posterior peak (Fx posterior). Data were normalized to subjects' body weight (BW) and analyzed using repeated-measures analysis of variance. Fy ranged from 0.98 to 2.11 BW, LR ranged from 5.38 to 11.52 BW/s, Fx anterior ranged from 0.07 to 0.14 BW, and Fx posterior ranged from 0.06 to 0.09 BW. The gender factor had no effect on the variables analyzed. A significant interaction between level of immersion and cadence was observed for Fy, Fx anterior, and Fx posterior. On dry land, Fy increased with increasing cadence, whereas in water this effect was seen only between 90 steps per minute and the 2 higher cadences. The higher the level of immersion, the lower the magnitude of Fy. LR was reduced under both water conditions and increased with increasing cadence, regardless of the level of immersion. Ground reaction forces during stationary running are similar between genders. Fy and LR are lower in water, though the values are increased at higher cadences.