Science.gov

Sample records for interaction regulates pluripotency

  1. The BET Family Member BRD4 Interacts with OCT4 and Regulates Pluripotency Gene Expression

    PubMed Central

    Wu, Tao; Pinto, Hugo Borges; Kamikawa, Yasunao F.; Donohoe, Mary E.

    2015-01-01

    Summary Embryonic stem cell (ESC) pluripotency is controlled by defined transcription factors. During cellular differentiation, ESCs undergo a global epigenetic reprogramming. Female ESCs exemplify this process as one of the two X-chromosomes is globally silenced during X chromosome inactivation (XCI) to balance the X-linked gene disparity with XY males. The pluripotent factor OCT4 regulates XCI by triggering X chromosome pairing and counting. OCT4 directly binds Xite and Tsix, which encode two long noncoding RNAs (lncRNAs) that suppress the silencer lncRNA, Xist. To control its activity as a master regulator in pluripotency and XCI, OCT4 must have chromatin protein partners. Here we show that BRD4, a member of the BET protein subfamily, interacts with OCT4. BRD4 occupies the regulatory regions of pluripotent genes and the lncRNAs of XCI. BET inhibition or depletion of BRD4 reduces the expression of many pluripotent genes and shifts cellular fate showing that BRD4 is pivotal for transcription in ESCs. PMID:25684227

  2. [The alchemy--epigenetic regulation of pluripotency].

    PubMed

    Bem, Joanna; Grabowska, Iwona

    2013-01-01

    Embryonic stem cells (ESCs) self renew their population, also they are pluripotent which means they can differentiate into any given cell type. In specific culture conditions they remain undifferentiated. On the cellular level pluripotency is determined by many transcription factors, e.g. Sox2, Nanog, Klf4, Oct4. Epigenetic regulation is also crucial for both self renewal and pluripotency. This review focuses on epigenetic mechanisms, among them DNA methylation, posttranslational histone modifications, ATP dependent chromatin remodeling and miRNAs interactions. These mechanisms affect embryonic stem cells functions keeping them poised for differentiation. PMID:24044279

  3. The transcriptional regulation of pluripotency

    PubMed Central

    Yeo, Jia-Chi; Ng, Huck-Hui

    2013-01-01

    The defining features of embryonic stem cells (ESCs) are their self-renewing and pluripotent capacities. Indeed, the ability to give rise into all cell types within the organism not only allows ESCs to function as an ideal in vitro tool to study embryonic development, but also offers great therapeutic potential within the field of regenerative medicine. However, it is also this same remarkable developmental plasticity that makes the efficient control of ESC differentiation into the desired cell type very difficult. Therefore, in order to harness ESCs for clinical applications, a detailed understanding of the molecular and cellular mechanisms controlling ESC pluripotency and lineage commitment is necessary. In this respect, through a variety of transcriptomic approaches, ESC pluripotency has been found to be regulated by a system of ESC-associated transcription factors; and the external signalling environment also acts as a key factor in modulating the ESC transcriptome. Here in this review, we summarize our current understanding of the transcriptional regulatory network in ESCs, discuss how the control of various signalling pathways could influence pluripotency, and provide a future outlook of ESC research. PMID:23229513

  4. Metaboloepigenetic Regulation of Pluripotent Stem Cells

    PubMed Central

    Harvey, Alexandra J.; Gardner, David K.

    2016-01-01

    The differentiation of pluripotent stem cells is associated with extensive changes in metabolism, as well as widespread remodeling of the epigenetic landscape. Epigenetic regulation is essential for the modulation of differentiation, being responsible for cell type specific gene expression patterns through the modification of DNA and histones, thereby establishing cell identity. Each cell type has its own idiosyncratic pattern regarding the use of specific metabolic pathways. Rather than simply being perceived as a means of generating ATP and building blocks for cell growth and division, cellular metabolism can directly influence cellular regulation and the epigenome. Consequently, the significance of nutrients and metabolites as regulators of differentiation is central to understanding how cells interact with their immediate environment. This review serves to integrate studies on pluripotent stem cell metabolism, and the regulation of DNA methylation and acetylation and identifies areas in which current knowledge is limited. PMID:26839556

  5. The variant Polycomb Repressor Complex 1 component PCGF1 interacts with a pluripotency sub-network that includes DPPA4, a regulator of embryogenesis.

    PubMed

    Oliviero, Giorgio; Munawar, Nayla; Watson, Ariane; Streubel, Gundula; Manning, Gwendolyn; Bardwell, Vivian; Bracken, Adrian P; Cagney, Gerard

    2015-01-01

    PCGF1 encodes one of six human Polycomb RING finger homologs that are linked to transcriptional repression and developmental gene regulation. Individual PCGF proteins define discrete Polycomb Repressor Complex 1 (PRC1) multi-protein complexes with diverse subunit composition whose functions are incompletely understood. PCGF1 is a component of a variant PRC1 complex that also contains the BCL6 co-repressor BCOR and the histone demethylase KDM2B. To further investigate the role of PCGF1, we mapped the physical interactions of the protein under endogenous conditions in a cell model of neuronal differentiation. Using stringent statistical cut-offs, 83 highly enriched interacting proteins were identified, including all previously reported members of the variant PRC1 complex containing PCGF1, as well as proteins linked to diverse cellular pathways such as chromatin and cell cycle regulation. Notably, a sub-network of proteins associated with the establishment and maintenance of pluripotency (NANOG, OCT4, PATZ1, and the developmental regulator DPPA4) were found to independently interact with PCGF1 in a subsequent round of physical interaction mapping experiments. Furthermore, knockdown of PCGF1 results in reduced expression of DPPA4 and other subunits of the variant PRC1 complex at both mRNA and protein levels. Thus, PCGF1 represents a physical and functional link between Polycomb function and pluripotency. PMID:26687479

  6. The variant Polycomb Repressor Complex 1 component PCGF1 interacts with a pluripotency sub-network that includes DPPA4, a regulator of embryogenesis

    PubMed Central

    Oliviero, Giorgio; Munawar, Nayla; Watson, Ariane; Streubel, Gundula; Manning, Gwendolyn; Bardwell, Vivian; Bracken, Adrian P.; Cagney, Gerard

    2015-01-01

    PCGF1 encodes one of six human Polycomb RING finger homologs that are linked to transcriptional repression and developmental gene regulation. Individual PCGF proteins define discrete Polycomb Repressor Complex 1 (PRC1) multi-protein complexes with diverse subunit composition whose functions are incompletely understood. PCGF1 is a component of a variant PRC1 complex that also contains the BCL6 co-repressor BCOR and the histone demethylase KDM2B. To further investigate the role of PCGF1, we mapped the physical interactions of the protein under endogenous conditions in a cell model of neuronal differentiation. Using stringent statistical cut-offs, 83 highly enriched interacting proteins were identified, including all previously reported members of the variant PRC1 complex containing PCGF1, as well as proteins linked to diverse cellular pathways such as chromatin and cell cycle regulation. Notably, a sub-network of proteins associated with the establishment and maintenance of pluripotency (NANOG, OCT4, PATZ1, and the developmental regulator DPPA4) were found to independently interact with PCGF1 in a subsequent round of physical interaction mapping experiments. Furthermore, knockdown of PCGF1 results in reduced expression of DPPA4 and other subunits of the variant PRC1 complex at both mRNA and protein levels. Thus, PCGF1 represents a physical and functional link between Polycomb function and pluripotency. PMID:26687479

  7. Long Noncoding RNA Regulation of Pluripotency

    PubMed Central

    Ballarino, Monica

    2016-01-01

    Pluripotent stem cells (PSCs) represent a unique kind of stem cell, as they are able to indefinitely self-renew and hold the potential to differentiate into any derivative of the three germ layers. As such, human Embryonic Stem Cells (hESCs) and human induced Pluripotent Stem Cells (hiPSCs) provide a unique opportunity for studying the earliest steps of human embryogenesis and, at the same time, are of great therapeutic interest. The molecular mechanisms underlying pluripotency represent a major field of research. Recent evidence suggests that a complex network of transcription factors, chromatin regulators, and noncoding RNAs exist in pluripotent cells to regulate the balance between self-renewal and multilineage differentiation. Regulatory noncoding RNAs come in two flavors: short and long. The first class includes microRNAs (miRNAs), which are involved in the posttranscriptional regulation of cell cycle and differentiation in PSCs. Instead, long noncoding RNAs (lncRNAs) represent a heterogeneous group of long transcripts that regulate gene expression at transcriptional and posttranscriptional levels. In this review, we focus on the role played by lncRNAs in the maintenance of pluripotency, emphasizing the interplay between lncRNAs and other pivotal regulators in PSCs. PMID:26697072

  8. Regulation of Pluripotency by RNA Binding Proteins

    PubMed Central

    Ye, Julia; Blelloch, Robert

    2015-01-01

    Establishment, maintenance, and exit from pluripotency require precise coordination of a cell’s molecular machinery. Substantial headway has been made in deciphering many aspects of this elaborate system, particularly with respect to epigenetics, transcription, and noncoding RNAs. Less attention has been paid to posttranscriptional regulatory processes such as alternative splicing, RNA processing and modification, nuclear export, regulation of transcript stability, and translation. Here, we introduce the RNA binding proteins that enable the posttranscriptional regulation of gene expression, summarizing current and ongoing research on their roles at different regulatory points and discussing how they help script the fate of pluripotent stem cells. PMID:25192462

  9. Glycosyltransferase ST6GAL1 contributes to the regulation of pluripotency in human pluripotent stem cells

    PubMed Central

    Wang, Yu-Chieh; Stein, Jason W.; Lynch, Candace L.; Tran, Ha T.; Lee, Chia-Yao; Coleman, Ronald; Hatch, Adam; Antontsev, Victor G.; Chy, Hun S.; O’Brien, Carmel M.; Murthy, Shashi K.; Laslett, Andrew L.; Peterson, Suzanne E.; Loring, Jeanne F.

    2015-01-01

    Many studies have suggested the significance of glycosyltransferase-mediated macromolecule glycosylation in the regulation of pluripotent states in human pluripotent stem cells (hPSCs). Here, we observed that the sialyltransferase ST6GAL1 was preferentially expressed in undifferentiated hPSCs compared to non-pluripotent cells. A lectin which preferentially recognizes α-2,6 sialylated galactosides showed strong binding reactivity with undifferentiated hPSCs and their glycoproteins, and did so to a much lesser extent with differentiated cells. In addition, downregulation of ST6GAL1 in undifferentiated hPSCs led to a decrease in POU5F1 (also known as OCT4) protein and significantly altered the expression of many genes that orchestrate cell morphogenesis during differentiation. The induction of cellular pluripotency in somatic cells was substantially impeded by the shRNA-mediated suppression of ST6GAL1, partially through interference with the expression of endogenous POU5F1 and SOX2. Targeting ST6GAL1 activity with a sialyltransferase inhibitor during cell reprogramming resulted in a dose-dependent reduction in the generation of human induced pluripotent stem cells (hiPSCs). Collectively, our data indicate that ST6GAL1 plays an important role in the regulation of pluripotency and differentiation in hPSCs, and the pluripotent state in human cells can be modulated using pharmacological tools to target sialyltransferase activity. PMID:26304831

  10. The L1TD1 Protein Interactome Reveals the Importance of Post-transcriptional Regulation in Human Pluripotency

    PubMed Central

    Emani, Maheswara Reddy; Närvä, Elisa; Stubb, Aki; Chakroborty, Deepankar; Viitala, Miro; Rokka, Anne; Rahkonen, Nelly; Moulder, Robert; Denessiouk, Konstantin; Trokovic, Ras; Lund, Riikka; Elo, Laura L.; Lahesmaa, Riitta

    2015-01-01

    Summary The RNA-binding protein L1TD1 is one of the most specific and abundant proteins in pluripotent stem cells and is essential for the maintenance of pluripotency in human cells. Here, we identify the protein interaction network of L1TD1 in human embryonic stem cells (hESCs) and provide insights into the interactome network constructed in human pluripotent cells. Our data reveal that L1TD1 has an important role in RNA splicing, translation, protein traffic, and degradation. L1TD1 interacts with multiple stem-cell-specific proteins, many of which are still uncharacterized in the context of development. Further, we show that L1TD1 is a part of the pluripotency interactome network of OCT4, SOX2, and NANOG, bridging nuclear and cytoplasmic regulation and highlighting the importance of RNA biology in pluripotency. PMID:25702638

  11. Lrrc34, a novel nucleolar protein, interacts with npm1 and ncl and has an impact on pluripotent stem cells.

    PubMed

    Lührig, Sandra; Siamishi, Iliana; Tesmer-Wolf, Marieke; Zechner, Ulrich; Engel, Wolfgang; Nolte, Jessica

    2014-12-01

    The gene Lrrc34 (leucine rich repeat containing 34) is highly expressed in pluripotent stem cells and its expression is strongly downregulated upon differentiation. These results let us to suggest a role for Lrrc34 in the regulation and maintenance of pluripotency. Expression analyses revealed that Lrrc34 is predominantly expressed in pluripotent stem cells and has an impact on the expression of known pluripotency genes, such as Oct4. Methylation studies of the Lrrc34 promoter showed a hypomethylation in undifferentiated stem cells and chromatin immunoprecipitation-quantitative polymerase chain reaction analyses of histone modifications revealed an enrichment of activating histone modifications on the Lrrc34 promoter region. Further, we could verify the nucleolus-the place of ribosome biogenesis-as the major subcellular localization of the LRRC34 protein. We have verified the interaction of LRRC34 with two major nucleolar proteins, Nucleophosmin and Nucleolin, by two independent methods, suggesting a role for Lrrc34 in ribosome biogenesis of pluripotent stem cells. In conclusion, LRRC34 is a novel nucleolar protein that is predominantly expressed in pluripotent stem cells. Its altered expression has an impact on pluripotency-regulating genes and it interacts with proteins known to be involved in ribosome biogenesis. Therefore we suggest a role for Lrrc34 in ribosome biogenesis of pluripotent stem cells. PMID:24991885

  12. Citrullination regulates pluripotency and histone H1 binding to chromatin

    NASA Astrophysics Data System (ADS)

    Christophorou, Maria A.; Castelo-Branco, Gonçalo; Halley-Stott, Richard P.; Oliveira, Clara Slade; Loos, Remco; Radzisheuskaya, Aliaksandra; Mowen, Kerri A.; Bertone, Paul; Silva, José C. R.; Zernicka-Goetz, Magdalena; Nielsen, Michael L.; Gurdon, John B.; Kouzarides, Tony

    2014-03-01

    Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.

  13. Glutamine Metabolism Regulates the Pluripotency Transcription Factor OCT4

    PubMed Central

    Marsboom, Glenn; Zhang, Guo-Fang; Pohl-Avila, Nicole; Zhang, Yanmin; Yuan, Yang; Kang, Hojin; Hao, Bo; Brunengraber, Henri; Malik, Asrar B.; Rehman, Jalees

    2016-01-01

    SUMMARY The molecular mechanisms underlying the regulation of pluripotency by cellular metabolism in human embryonic stem cells (hESCs) are not fully understood. We found that high levels of glutamine metabolism are essential to prevent degradation of OCT4, a key transcription factor regulating hESC pluripotency. Glutamine withdrawal depletes the endogenous anti-oxidant glutathione, which results in the oxidation of OCT4 cysteine residues required for its DNA binding and enhanced OCT4 degradation. The emergence of the OCT4lo cell population following glutamine withdrawal did not result in greater propensity for cell death. Instead, glutamine withdrawal during vascular differentiation of hESCs generated cells with greater angiogenic capacity, thus indicating that modulating glutamine metabolism enhances the differentiation and functional maturation of cells. These findings demonstrate that the pluripotency transcription factor OCT4 can serve as a metabolic-redox sensor in hESCs and that metabolic cues can act in concert with growth factor signaling to orchestrate stem cell differentiation. PMID:27346346

  14. Glutamine Metabolism Regulates the Pluripotency Transcription Factor OCT4.

    PubMed

    Marsboom, Glenn; Zhang, Guo-Fang; Pohl-Avila, Nicole; Zhang, Yanmin; Yuan, Yang; Kang, Hojin; Hao, Bo; Brunengraber, Henri; Malik, Asrar B; Rehman, Jalees

    2016-07-12

    The molecular mechanisms underlying the regulation of pluripotency by cellular metabolism in human embryonic stem cells (hESCs) are not fully understood. We found that high levels of glutamine metabolism are essential to prevent degradation of OCT4, a key transcription factor regulating hESC pluripotency. Glutamine withdrawal depletes the endogenous antioxidant glutathione (GSH), which results in the oxidation of OCT4 cysteine residues required for its DNA binding and enhanced OCT4 degradation. The emergence of the OCT4(lo) cell population following glutamine withdrawal did not result in greater propensity for cell death. Instead, glutamine withdrawal during vascular differentiation of hESCs generated cells with greater angiogenic capacity, thus indicating that modulating glutamine metabolism enhances the differentiation and functional maturation of cells. These findings demonstrate that the pluripotency transcription factor OCT4 can serve as a metabolic-redox sensor in hESCs and that metabolic cues can act in concert with growth factor signaling to orchestrate stem cell differentiation. PMID:27346346

  15. Regulation of pluripotency and differentiation by deubiquitinating enzymes.

    PubMed

    Suresh, B; Lee, J; Kim, H; Ramakrishna, S

    2016-08-01

    Post-translational modifications (PTMs) of stemness-related proteins are essential for stem cell maintenance and differentiation. In stem cell self-renewal and differentiation, PTM of stemness-related proteins is tightly regulated because the modified proteins execute various stem cell fate choices. Ubiquitination and deubiquitination, which regulate protein turnover of several stemness-related proteins, must be carefully coordinated to ensure optimal embryonic stem cell maintenance and differentiation. Deubiquitinating enzymes (DUBs), which specifically disassemble ubiquitin chains, are a central component in the ubiquitin-proteasome pathway. These enzymes often control the balance between ubiquitination and deubiquitination. To maintain stemness and achieve efficient differentiation, the ubiquitination and deubiquitination molecular switches must operate in a balanced manner. Here we summarize the current information on DUBs, with a focus on their regulation of stem cell fate determination and deubiquitinase inhibition as a therapeutic strategy. Furthermore, we discuss the possibility of using DUBs with defined stem cell transcription factors to enhance cellular reprogramming efficiency and cell fate conversion. Our review provides new insight into DUB activity by emphasizing their cellular role in regulating stem cell fate. This role paves the way for future research focused on specific DUBs or deubiquitinated substrates as key regulators of pluripotency and stem cell differentiation. PMID:27285106

  16. The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming

    PubMed Central

    Durruthy-Durruthy, Jens; Sebastiano, Vittorio; Wossidlo, Mark; Cepeda, Diana; Cui, Jun; Grow, Edward J; Davila, Jonathan; Mall, Moritz; Wong, Wing H; Wysocka, Joanna; Au, Kin Fai; Pera, Renee A Reijo

    2016-01-01

    Long intergenic noncoding RNAs (lincRNAs) are derived from thousands of loci in mammalian genomes and are frequently enriched in transposable elements (TEs). Although families of TE-derived lincRNAs have recently been implicated in the regulation of pluripotency, little is known of the specific functions of individual family members. Here we characterize three new individual TE-derived human lincRNAs, human pluripotency-associated transcripts 2, 3 and 5 (HPAT2, HPAT3 and HPAT5). Loss-of-function experiments indicate that HPAT2, HPAT3 and HPAT5 function in preimplantation embryo development to modulate the acquisition of pluripotency and the formation of the inner cell mass. CRISPR-mediated disruption of the genes for these lincRNAs in pluripotent stem cells, followed by whole-transcriptome analysis, identifies HPAT5 as a key component of the pluripotency network. Protein binding and reporter-based assays further demonstrate that HPAT5 interacts with the let-7 microRNA family. Our results indicate that unique individual members of large primate-specific lincRNA families modulate gene expression during development and differentiation to reinforce cell fate. PMID:26595768

  17. Unveiling the critical role of REX1 in the regulation of human stem cell pluripotency.

    PubMed

    Son, Mi-Young; Choi, Hoonsung; Han, Yong-Mahn; Cho, Yee Sook

    2013-11-01

    Reduced expression 1 (REX1) is a widely used pluripotency marker, but little is known about its roles in pluripotency. Here, we show that REX1 is functionally important in the reacquisition and maintenance of pluripotency. REX1-depleted human pluripotent stem cells (hPSCs) lose their self-renewal capacity and full differentiation potential, especially their mesoderm lineage potential. Cyclin B1/B2 expression was found to parallel that of REX1. REX1 positively regulates the transcriptional activity of cyclin B1/B2 through binding to their promoters. REX1 induces the phosphorylation of DRP1 at Ser616 by cyclin B/CDK1, which leads to mitochondrial fission and appears to be important for meeting the high-energy demands of highly glycolytic hPSCs. During reprogramming to pluripotency by defined factors (OCT4, SOX2, KLF4, and c-MYC), the reprogramming kinetics and efficiency are markedly improved by adding REX1 or replacing KLF4 with REX1. These improvements are achieved by lowering reprogramming barriers (growth arrest and apoptosis), by enhancing mitochondrial fission, and by conversion to glycolytic metabolism, dependent on the cyclin B1/B2-DRP1 pathway. Our results show that a novel pluripotency regulator, REX1, is essential for pluripotency and reprogramming. PMID:23939908

  18. XPC Promotes Pluripotency of Human Dental Pulp Cells through Regulation of Oct-4/Sox2/c-Myc

    PubMed Central

    Liu, Lu; Peng, Zhengjun; Xu, Zhezhen; Wei, Xi

    2016-01-01

    Introduction. Xeroderma pigmentosum group C (XPC), essential component of multisubunit stem cell coactivator complex (SCC), functions as the critical factor modulating pluripotency and genome integrity through interaction with Oct-4/Sox2. However, its specific role in regulating pluripotency and multilineage differentiation of human dental pulp cells (DPCs) remains unknown. Methods. To elucidate the functional role XPC played in pluripotency and multilineage differentiation of DPCs, expressions of XPC in DPCs with long-term culture were examined by real-time PCR and western blot. DPCs were transfected with lentiviral-mediated human XPC gene; then transfection rate was investigated by real-time PCR and western blot. Cell cycle, apoptosis, proliferation, senescence, multilineage differentiation, and expression of Oct-4/Sox2/c-Myc in transfected DPCs were examined. Results. XPC, Oct-4, Sox2, and c-Myc were downregulated at P7 compared with P3 in DPCs with long-term culture. XPC genes were upregulated in DPCs at P2 after transfection and maintained high expression level at P3 and P7. Cell proliferation, PI value, and telomerase activity were enhanced, whereas apoptosis was suppressed in transfected DPCs. Oct-4/Sox2/c-Myc were significantly upregulated, and multilineage differentiation in DPCs with XPC overexpression was enhanced after transfection. Conclusions. XPC plays an essential role in the modulation of pluripotency and multilineage differentiation of DPCs through regulation of Oct-4/Sox2/c-Myc. PMID:27127517

  19. XPC Promotes Pluripotency of Human Dental Pulp Cells through Regulation of Oct-4/Sox2/c-Myc.

    PubMed

    Liu, Lu; Peng, Zhengjun; Xu, Zhezhen; Wei, Xi

    2016-01-01

    Introduction. Xeroderma pigmentosum group C (XPC), essential component of multisubunit stem cell coactivator complex (SCC), functions as the critical factor modulating pluripotency and genome integrity through interaction with Oct-4/Sox2. However, its specific role in regulating pluripotency and multilineage differentiation of human dental pulp cells (DPCs) remains unknown. Methods. To elucidate the functional role XPC played in pluripotency and multilineage differentiation of DPCs, expressions of XPC in DPCs with long-term culture were examined by real-time PCR and western blot. DPCs were transfected with lentiviral-mediated human XPC gene; then transfection rate was investigated by real-time PCR and western blot. Cell cycle, apoptosis, proliferation, senescence, multilineage differentiation, and expression of Oct-4/Sox2/c-Myc in transfected DPCs were examined. Results. XPC, Oct-4, Sox2, and c-Myc were downregulated at P7 compared with P3 in DPCs with long-term culture. XPC genes were upregulated in DPCs at P2 after transfection and maintained high expression level at P3 and P7. Cell proliferation, PI value, and telomerase activity were enhanced, whereas apoptosis was suppressed in transfected DPCs. Oct-4/Sox2/c-Myc were significantly upregulated, and multilineage differentiation in DPCs with XPC overexpression was enhanced after transfection. Conclusions. XPC plays an essential role in the modulation of pluripotency and multilineage differentiation of DPCs through regulation of Oct-4/Sox2/c-Myc. PMID:27127517

  20. MYC TRANSCRIPTION FACTORS: KEY REGULATORS BEHIND ESTABLISHMENT AND MAINTENANCE OF PLURIPOTENCY

    PubMed Central

    Smith, Keriayn; Dalton, Stephen

    2011-01-01

    Summary The interplay between transcription factors, epigenetic modifiers, chromatin remodelers and miRNAs form the foundation of a complex regulatory network required for establishment and maintenance of the pluripotent state. Recent work indicates that Myc transcription factors are essential elements of this regulatory system. Despite numerous reports however, aspects of how Myc controls self-renewal and pluripotency remain obscure. Here, we review evidence supporting the placement of Myc as a central regulator of the pluripotent state and discuss possible mechanisms of action. PMID:21082893

  1. Regulation of germ layer formation by pluripotency factors during embryogenesis

    PubMed Central

    2013-01-01

    The classical pluripotency factors Oct4, Klf4, Sox2, and Nanog are required for the maintenance of pluripotency and self-renewal of embryonic stem (ES) cells and can reprogram terminally differentiated cells into a pluripotent state. Alteration in the levels of these factors in ES cells will cause differentiation into different lineages, suggesting that they are critical determinants of cell fates. These factors show dynamic expression patterns during embryogenesis, in particular in the pluripotent or multipotent cells of an early stage embryo, implying that they are involved in the cell fate decision during early embryonic development. Functions and the underlying molecular mechanisms have been extensively studied for these factors in ES cells under cultured conditions. However, this does not mean that the results also hold true for intact embryos. In the review, I have summarized and discussed the findings on the functions and the underlying mechanisms of the classical pluripotency factors during early embryogenesis, in particular during germ layer formation. PMID:23497659

  2. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming.

    PubMed

    Apostolou, Effie; Ferrari, Francesco; Walsh, Ryan M; Bar-Nur, Ori; Stadtfeld, Matthias; Cheloufi, Sihem; Stuart, Hannah T; Polo, Jose M; Ohsumi, Toshiro K; Borowsky, Mark L; Kharchenko, Peter V; Park, Peter J; Hochedlinger, Konrad

    2013-06-01

    The chromatin state of pluripotency genes has been studied extensively in embryonic stem cells (ESCs) and differentiated cells, but their potential interactions with other parts of the genome remain largely unexplored. Here, we identified a genome-wide, pluripotency-specific interaction network around the Nanog promoter by adapting circular chromosome conformation capture sequencing. This network was rearranged during differentiation and restored in induced pluripotent stem cells. A large fraction of Nanog-interacting loci were bound by Mediator or cohesin in pluripotent cells. Depletion of these proteins from ESCs resulted in a disruption of contacts and the acquisition of a differentiation-specific interaction pattern prior to obvious transcriptional and phenotypic changes. Similarly, the establishment of Nanog interactions during reprogramming often preceded transcriptional upregulation of associated genes, suggesting a causative link. Our results document a complex, pluripotency-specific chromatin "interactome" for Nanog and suggest a functional role for long-range genomic interactions in the maintenance and induction of pluripotency. PMID:23665121

  3. LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency.

    PubMed

    Zhang, Jin; Ratanasirintrawoot, Sutheera; Chandrasekaran, Sriram; Wu, Zhaoting; Ficarro, Scott B; Yu, Chunxiao; Ross, Christian A; Cacchiarelli, Davide; Xia, Qing; Seligson, Marc; Shinoda, Gen; Xie, Wen; Cahan, Patrick; Wang, Longfei; Ng, Shyh-Chang; Tintara, Supisara; Trapnell, Cole; Onder, Tamer; Loh, Yuin-Han; Mikkelsen, Tarjei; Sliz, Piotr; Teitell, Michael A; Asara, John M; Marto, Jarrod A; Li, Hu; Collins, James J; Daley, George Q

    2016-07-01

    The RNA-binding proteins LIN28A and LIN28B play critical roles in embryonic development, tumorigenesis, and pluripotency, but their exact functions are poorly understood. Here, we show that, like LIN28A, LIN28B can function effectively with NANOG, OCT4, and SOX2 in reprogramming to pluripotency and that reactivation of both endogenous LIN28A and LIN28B loci are required for maximal reprogramming efficiency. In human fibroblasts, LIN28B is activated early during reprogramming, while LIN28A is activated later during the transition to bona fide induced pluripotent stem cells (iPSCs). In murine cells, LIN28A and LIN28B facilitate conversion from naive to primed pluripotency. Proteomic and metabolomic analysis highlighted roles for LIN28 in maintaining the low mitochondrial function associated with primed pluripotency and in regulating one-carbon metabolism, nucleotide metabolism, and histone methylation. LIN28 binds to mRNAs of proteins important for oxidative phosphorylation and modulates protein abundance. Thus, LIN28A and LIN28B play cooperative roles in regulating reprogramming, naive/primed pluripotency, and stem cell metabolism. PMID:27320042

  4. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation and reprogramming

    PubMed Central

    Apostolou, Effie; Ferrari, Francesco; Walsh, Ryan M.; Bar-Nur, Ori; Stadtfeld, Matthias; Cheloufi, Sihem; Stuart, Hannah T.; Polo, Jose M.; Ohsumi, Toshiro K.; Borowsky, Mark L.; Kharchenko, Peter V.; Park, Peter J.; Hochedlinger, Konrad

    2013-01-01

    SUMMARY While the chromatin state of pluripotency genes has been extensively studied in embryonic stem cells (ESCs) and differentiated cells, their potential interactions with other parts of the genome remain largely unexplored. Here, we identified a genome-wide, pluripotency-specific interaction network around the Nanog promoter by adapting circular chromosome conformation capture-sequencing (4C-seq). This network was rearranged during differentiation and restored in induced pluripotent stem cells. A large fraction of Nanog-interacting loci were bound by Mediator or cohesin in pluripotent cells. Depletion of these proteins from ESCs resulted in a disruption of contacts and the acquisition of a differentiation-specific interaction pattern prior to obvious transcriptional and phenotypic changes. Similarly, the establishment of Nanog interactions during reprogramming often preceded transcriptional upregulation of associated genes, suggesting a causative link. Our results document a complex, pluripotencyspecific chromatin "interactome" for Nanog and suggest a functional role for longrange genomic interactions in the maintenance and induction of pluripotency. PMID:23665121

  5. Regulators of pluripotency and their implications in regenerative medicine

    PubMed Central

    El-Badawy, Ahmed; El-Badri, Nagwa

    2015-01-01

    The ultimate goal of regenerative medicine is to replace damaged tissues with new functioning ones. This can potentially be accomplished by stem cell transplantation. While stem cell transplantation for blood diseases has been increasingly successful, widespread application of stem cell therapy in the clinic has shown limited results. Despite successful efforts to refine existing methodologies and to develop better ones for reprogramming, clinical application of stem cell therapy suffers from issues related to the safety of the transplanted cells, as well as the low efficiency of reprogramming technology. Better understanding of the underlying mechanism(s) involved in pluripotency should accelerate the clinical application of stem cell transplantation for regenerative purposes. This review outlines the main decision-making factors involved in pluripotency, focusing on the role of microRNAs, epigenetic modification, signaling pathways, and toll-like receptors. Of special interest is the role of toll-like receptors in pluripotency, where emerging data indicate that the innate immune system plays a vital role in reprogramming. Based on these data, we propose that nongenetic mechanisms for reprogramming provide a novel and perhaps an essential strategy to accelerate application of regenerative medicine in the clinic. PMID:25960670

  6. Microwell regulation of pluripotent stem cell self-renewal and differentiation

    PubMed Central

    Hsiao, Cheston; Palecek, Sean P.

    2013-01-01

    The fates of pluripotent stem cells (PSCs), including survival, self-renewal, and differentiation, are regulated by chemical and mechanical cues presented in the three-dimensional (3D) microenvironment. Most PSC studies have been performed on two-dimensional substrates. However, 3D culture systems have demonstrated the importance of intercellular interactions in regulating PSC self-renewal and differentiation. Microwell culture systems have been developed to generate homogenous PSC colonies of defined sizes and shapes and to study how colony morphology affects cell fate. Using microwells, researchers have demonstrated that PSCs remain in a self-renewing undifferentiated state as a result of autocrine and paracrine signaling. Other studies have shown that microwell regulation of embryoid body size affects lineage commitment during differentiation via cell-cell contact and expression of soluble signals. In this review, we discuss recent advances in the design and utilization of 3D microwell platforms for studying intercellular regulation of PSC cell fate decisions and the underlying molecular mechanisms. PMID:23483802

  7. Protein post-translational modifications and regulation of pluripotency in human stem cells

    PubMed Central

    Wang, Yu-Chieh; Peterson, Suzanne E; Loring, Jeanne F

    2014-01-01

    Post-translational modifications (PTMs) are known to be essential mechanisms used by eukaryotic cells to diversify their protein functions and dynamically coordinate their signaling networks. Defects in PTMs have been linked to numerous developmental disorders and human diseases, highlighting the importance of PTMs in maintaining normal cellular states. Human pluripotent stem cells (hPSCs), including embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), are capable of self-renewal and differentiation into a variety of functional somatic cells; these cells hold a great promise for the advancement of biomedical research and clinical therapy. The mechanisms underlying cellular pluripotency in human cells have been extensively explored in the past decade. In addition to the vast amount of knowledge obtained from the genetic and transcriptional research in hPSCs, there is a rapidly growing interest in the stem cell biology field to examine pluripotency at the protein and PTM level. This review addresses recent progress toward understanding the role of PTMs (glycosylation, phosphorylation, acetylation and methylation) in the regulation of cellular pluripotency. PMID:24217768

  8. MiR-134-Mbd3 axis regulates the induction of pluripotency.

    PubMed

    Zhang, Lei; Zheng, Yongchao; Sun, Yuanqing; Zhang, Ying; Yan, Jia; Chen, Zhifeng; Jiang, Hong

    2016-06-01

    MicroRNAs (miRNAs) are post-transcriptional modulators of gene expression and play an important role in reprogramming process; however, relatively little is known about the underlying regulatory mechanism of miRNAs on how they epigenetically modulate reprogramming and pluripotency. Here, we report that the expression level of microRNA-134 (miR-134) was low in mouse embryonic stem cells (mESCs) but significantly up-regulated during neural differentiation, while down-regulated during the induction of induced pluripotent stem cells (iPSCs) from neural progenitor cells (NPCs). Inhibition of miR-134 by miR-134 sponge promoted the efficiency of reprogramming which also was highly similar to mESCs. On the contrary, up-regulation of miR-134 repressed iPSCs induction. We also found that inhibition of miR-134 promoted the maturation of pre-iPSCs and increased its pluripotency. We also showed that miR-134 can directly target to the pluripotency related factor Methyl-CpG-binding domain protein 3 (Mdb3) 3' untranslated regions (3' UTR) to down-regulate its expression. And Mbd3 was found to promote the induction of iPSCs and could block the repression of reprogramming caused by overexpression of miR-134. This work revealed the critical function of miR-134-Mbd3 axis on regulating reprogramming and pluripotency of iPSCs derived from the NPCs, and might provide an insight into the miR-134-Mbd3 axis on regulating the iPSCs quality for further clinical treatment. PMID:26929159

  9. Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier.

    PubMed

    Watanabe, Akira; Yamada, Yasuhiro; Yamanaka, Shinya

    2013-01-01

    The differentiation and reprogramming of cells are accompanied by drastic changes in the epigenetic profiles of cells. Waddington's classical model clearly describes how differentiating cells acquire their cell identity as the developmental potential of an individual cell population declines towards the terminally differentiated state. The recent discovery of induced pluripotent stem cells as well as of somatic cell nuclear transfer provided evidence that the process of differentiation can be reversed. The identity of somatic cells is strictly protected by an epigenetic barrier, and these cells acquire pluripotency by breaking the epigenetic barrier by reprogramming factors such as Oct3/4, Sox2, Klf4, Myc and LIN28. This review covers the current understanding of the spatio-temporal regulation of epigenetics in pluripotent and differentiated cells, and discusses how cells determine their identity and overcome the epigenetic barrier during the reprogramming process. PMID:23166402

  10. The pluripotency factor Nanog regulates pericentromeric heterochromatin organization in mouse embryonic stem cells.

    PubMed

    Novo, Clara Lopes; Tang, Calvin; Ahmed, Kashif; Djuric, Ugljesa; Fussner, Eden; Mullin, Nicholas P; Morgan, Natasha P; Hayre, Jasvinder; Sienerth, Arnold R; Elderkin, Sarah; Nishinakamura, Ryuichi; Chambers, Ian; Ellis, James; Bazett-Jones, David P; Rugg-Gunn, Peter J

    2016-05-01

    An open and decondensed chromatin organization is a defining property of pluripotency. Several epigenetic regulators have been implicated in maintaining an open chromatin organization, but how these processes are connected to the pluripotency network is unknown. Here, we identified a new role for the transcription factor NANOG as a key regulator connecting the pluripotency network with constitutive heterochromatin organization in mouse embryonic stem cells. Deletion of Nanog leads to chromatin compaction and the remodeling of heterochromatin domains. Forced expression of NANOG in epiblast stem cells is sufficient to decompact chromatin. NANOG associates with satellite repeats within heterochromatin domains, contributing to an architecture characterized by highly dispersed chromatin fibers, low levels of H3K9me3, and high major satellite transcription, and the strong transactivation domain of NANOG is required for this organization. The heterochromatin-associated protein SALL1 is a direct cofactor for NANOG, and loss of Sall1 recapitulates the Nanog-null phenotype, but the loss of Sall1 can be circumvented through direct recruitment of the NANOG transactivation domain to major satellites. These results establish a direct connection between the pluripotency network and chromatin organization and emphasize that maintaining an open heterochromatin architecture is a highly regulated process in embryonic stem cells. PMID:27125671

  11. The pluripotency factor Nanog regulates pericentromeric heterochromatin organization in mouse embryonic stem cells

    PubMed Central

    Novo, Clara Lopes; Tang, Calvin; Ahmed, Kashif; Djuric, Ugljesa; Fussner, Eden; Mullin, Nicholas P.; Morgan, Natasha P.; Hayre, Jasvinder; Sienerth, Arnold R.; Elderkin, Sarah; Nishinakamura, Ryuichi; Chambers, Ian; Ellis, James; Bazett-Jones, David P.; Rugg-Gunn, Peter J.

    2016-01-01

    An open and decondensed chromatin organization is a defining property of pluripotency. Several epigenetic regulators have been implicated in maintaining an open chromatin organization, but how these processes are connected to the pluripotency network is unknown. Here, we identified a new role for the transcription factor NANOG as a key regulator connecting the pluripotency network with constitutive heterochromatin organization in mouse embryonic stem cells. Deletion of Nanog leads to chromatin compaction and the remodeling of heterochromatin domains. Forced expression of NANOG in epiblast stem cells is sufficient to decompact chromatin. NANOG associates with satellite repeats within heterochromatin domains, contributing to an architecture characterized by highly dispersed chromatin fibers, low levels of H3K9me3, and high major satellite transcription, and the strong transactivation domain of NANOG is required for this organization. The heterochromatin-associated protein SALL1 is a direct cofactor for NANOG, and loss of Sall1 recapitulates the Nanog-null phenotype, but the loss of Sall1 can be circumvented through direct recruitment of the NANOG transactivation domain to major satellites. These results establish a direct connection between the pluripotency network and chromatin organization and emphasize that maintaining an open heterochromatin architecture is a highly regulated process in embryonic stem cells. PMID:27125671

  12. Netrin-1 regulates somatic cell reprogramming and pluripotency maintenance

    PubMed Central

    Ozmadenci, Duygu; Féraud, Olivier; Markossian, Suzy; Kress, Elsa; Ducarouge, Benjamin; Gibert, Benjamin; Ge, Jian; Durand, Isabelle; Gadot, Nicolas; Plateroti, Michela; Bennaceur-Griscelli, Annelise; Scoazec, Jean-Yves; Gil, Jesus; Deng, Hongkui; Bernet, Agnes; Mehlen, Patrick; Lavial, Fabrice

    2015-01-01

    The generation of induced pluripotent stem (iPS) cells holds great promise in regenerative medicine. The use of the transcription factors Oct4, Sox2, Klf4 and c-Myc for reprogramming is extensively documented, but comparatively little is known about soluble molecules promoting reprogramming. Here we identify the secreted cue Netrin-1 and its receptor DCC, described for their respective survival/death functions in normal and oncogenic contexts, as reprogramming modulators. In various somatic cells, we found that reprogramming is accompanied by a transient transcriptional repression of Netrin-1 mediated by an Mbd3/Mta1/Chd4-containing NuRD complex. Mechanistically, Netrin-1 imbalance induces apoptosis mediated by the receptor DCC in a p53-independent manner. Correction of the Netrin-1/DCC equilibrium constrains apoptosis and improves reprogramming efficiency. Our work also sheds light on Netrin-1's function in protecting embryonic stem cells from apoptosis mediated by its receptor UNC5b, and shows that the treatment with recombinant Netrin-1 improves the generation of mouse and human iPS cells. PMID:26154507

  13. Co-repressor CBFA2T2 regulates pluripotency and germline development.

    PubMed

    Tu, Shengjiang; Narendra, Varun; Yamaji, Masashi; Vidal, Simon E; Rojas, Luis Alejandro; Wang, Xiaoshi; Kim, Sang Yong; Garcia, Benjamin A; Tuschl, Thomas; Stadtfeld, Matthias; Reinberg, Danny

    2016-06-16

    Developmental specification of germ cells lies at the heart of inheritance, as germ cells contain all of the genetic and epigenetic information transmitted between generations. The critical developmental event distinguishing germline from somatic lineages is the differentiation of primordial germ cells (PGCs), precursors of sex-specific gametes that produce an entire organism upon fertilization. Germ cells toggle between uni- and pluripotent states as they exhibit their own 'latent' form of pluripotency. For example, PGCs express a number of transcription factors in common with embryonic stem (ES) cells, including OCT4 (encoded by Pou5f1), SOX2, NANOG and PRDM14 (refs 2, 3, 4). A biochemical mechanism by which these transcription factors converge on chromatin to produce the dramatic rearrangements underlying ES-cell- and PGC-specific transcriptional programs remains poorly understood. Here we identify a novel co-repressor protein, CBFA2T2, that regulates pluripotency and germline specification in mice. Cbfa2t2(-/-) mice display severe defects in PGC maturation and epigenetic reprogramming. CBFA2T2 forms a biochemical complex with PRDM14, a germline-specific transcription factor. Mechanistically, CBFA2T2 oligomerizes to form a scaffold upon which PRDM14 and OCT4 are stabilized on chromatin. Thus, in contrast to the traditional 'passenger' role of a co-repressor, CBFA2T2 functions synergistically with transcription factors at the crossroads of the fundamental developmental plasticity between uni- and pluripotency. PMID:27281218

  14. FOXD3 Regulates Pluripotent Stem Cell Potential by Simultaneously Initiating and Repressing Enhancer Activity.

    PubMed

    Krishnakumar, Raga; Chen, Amy F; Pantovich, Marisol G; Danial, Muhammad; Parchem, Ronald J; Labosky, Patricia A; Blelloch, Robert

    2016-01-01

    Early development is governed by the ability of pluripotent cells to retain the full range of developmental potential and respond accurately to developmental cues. This property is achieved in large part by the temporal and contextual regulation of gene expression by enhancers. Here, we evaluated regulation of enhancer activity during differentiation of embryonic stem to epiblast cells and uncovered the forkhead transcription factor FOXD3 as a major regulator of the developmental potential of both pluripotent states. FOXD3 bound to distinct sites in the two cell types priming enhancers through a dual-functional mechanism. It recruited the SWI/SNF chromatin remodeling complex ATPase BRG1 to promote nucleosome removal while concurrently inhibiting maximal activation of the same enhancers by recruiting histone deacetylases1/2. Thus, FOXD3 prepares cognate genes for future maximal expression by establishing and simultaneously repressing enhancer activity. Through switching of target sites, FOXD3 modulates the developmental potential of pluripotent cells as they differentiate. PMID:26748757

  15. Use of genome-wide RNAi screens to identify regulators of embryonic stem cell self-renewal and pluripotency

    PubMed Central

    Zheng, Xiaofeng; Hu, Guang

    2014-01-01

    Summary Embryonic stem cells (ESCs) are characterized by two defining features: pluripotency and self-renewal. They hold tremendous promise for both basic research and regenerative medicine. To fully realize their potentials, it is important to understand the molecular mechanisms regulating ESC pluripotency and self-renewal. The development of RNA interference (RNAi) technology has revolutionized functional genetic studies in mammalian cells. In recent years, genome-wide RNAi screens have been adopted to systematically study ESC pluripotency and self-renewal, and have uncovered many previously unknown regulators, including transcription factors, chromatin remodelers, and post-transcriptional modulators. Here, we describe a method for the identification of regulators of ESC pluripotency and self-renewal using RNAi screens, as well as assays for further validation and characterization of the identified candidates. With modifications, this method can also be adapted to study the fate specification events during ESC differentiation. PMID:24743997

  16. N(6)-Methyladenosine Methyltransferases and Demethylases: New Regulators of Stem Cell Pluripotency and Differentiation.

    PubMed

    Wu, Yunshu; Zhang, Shiwen; Yuan, Quan

    2016-07-15

    The discovery of mammalian N(6)-methyladenosine (m(6)A) methyltransferases and demethylases has enriched our knowledge of the dynamic regulation of the most prevalent posttranscriptional RNA modification, m(6)A methylation. This reversible methylation process of adding and removing m(6)A marks on RNA has been shown to have broad biological functions in fine tuning cellular processes and gene expression. Recent studies have revealed a critical role for the currently known m(6)A methyltransferases and demethylases in regulating the pluripotency and differentiation of stem cells. These data establish a novel dimension in epigenetic regulation at the RNA level to affect mammalian cell fate. PMID:27216987

  17. Coordination of m(6)A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming.

    PubMed

    Aguilo, Francesca; Zhang, Fan; Sancho, Ana; Fidalgo, Miguel; Di Cecilia, Serena; Vashisht, Ajay; Lee, Dung-Fang; Chen, Chih-Hung; Rengasamy, Madhumitha; Andino, Blanca; Jahouh, Farid; Roman, Angel; Krig, Sheryl R; Wang, Rong; Zhang, Weijia; Wohlschlegel, James A; Wang, Jianlong; Walsh, Martin J

    2015-12-01

    Epigenetic and epitranscriptomic networks have important functions in maintaining the pluripotency of embryonic stem cells (ESCs) and somatic cell reprogramming. However, the mechanisms integrating the actions of these distinct networks are only partially understood. Here we show that the chromatin-associated zinc finger protein 217 (ZFP217) coordinates epigenetic and epitranscriptomic regulation. ZFP217 interacts with several epigenetic regulators, activates the transcription of key pluripotency genes, and modulates N6-methyladenosine (m(6)A) deposition on their transcripts by sequestering the enzyme m(6)A methyltransferase-like 3 (METTL3). Consistently, Zfp217 depletion compromises ESC self-renewal and somatic cell reprogramming, globally increases m(6)A RNA levels, and enhances m(6)A modification of the Nanog, Sox2, Klf4, and c-Myc mRNAs, promoting their degradation. ZFP217 binds its own target gene mRNAs, which are also METTL3 associated, and is enriched at promoters of m(6)A-modified transcripts. Collectively, these findings shed light on how a transcription factor can tightly couple gene transcription to m(6)A RNA modification to ensure ESC identity. PMID:26526723

  18. Epigenetic regulation leading to induced pluripotency drives cancer development in vivo

    SciTech Connect

    Ohnishi, Kotaro; Semi, Katsunori; Yamada, Yasuhiro

    2014-12-05

    Highlights: • Epigenetic regulation of failed reprogramming-associated cancer cells is discussed. • Similarity between pediatric cancer and reprogramming-associated cancer is discussed. • Concept for epigenetic cancer is discussed. - Abstract: Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by the transient expression of reprogramming factors. During the reprogramming process, somatic cells acquire the ability to undergo unlimited proliferation, which is also an important characteristic of cancer cells, while their underlying DNA sequence remains unchanged. Based on the characteristics shared between pluripotent stem cells and cancer cells, the potential involvement of the factors leading to reprogramming toward pluripotency in cancer development has been discussed. Recent in vivo reprogramming studies provided some clues to understanding the role of reprogramming-related epigenetic regulation in cancer development. It was shown that premature termination of the in vivo reprogramming result in the development of tumors that resemble pediatric cancers. Given that epigenetic modifications play a central role during reprogramming, failed reprogramming-associated cancer development may have provided a proof of concept for epigenetics-driven cancer development in vivo.

  19. Genome-wide gain-of-function screen identifies novel regulators of pluripotency.

    PubMed

    Abujarour, Ramzey; Efe, Jem; Ding, Sheng

    2010-09-01

    Pluripotent stem cells are characterized by the capacity to self-renew and to differentiate into all the cell types of the body. To identify novel regulators of pluripotency, we screened cDNA libraries (>30,000 clones) in P19 embryonal carcinoma cells for factors that modulate the expression of a luciferase reporter driven by the promoter of the pluripotency master regulator Nanog. Ninety confirmed hits activated the reporter and 14 confirmed hits inhibited the reporter by more than two-fold. The identified hits were evaluated by gain- and loss-of-functions approaches. The reporter-activating hits Timp2, Hig2, and Mki67ip promoted embryonic stem (ES) cell self-renewal when episomally overexpressed in ES cells, whereas the reporter-inhibiting hits PU.1/Spi1, Prkaca, and Jun induced differentiation of ES cells. Conversely, the knockdown of the activating hits Timp2, Mki67ip, Esrrg, and Dusp7 in ES cells induced differentiation, whereas the knockdown of the reporter-inhibiting hit PU.1/Spi1 led to inhibition of differentiation. One of the novel hits, the RNA-binding protein Mki67ip was further characterized, and found to be overexpressed in ES cells and in early development and downregulated during differentiation. The knockdown of Mki67ip led to the differentiation of ES cells, decreased growth rate, reduction in pluripotency markers, and induction of lineage-specific markers. In addition, colocalization and coimmunoprecipitation experiments suggest that Mki67ip promotes ES cell self-renewal via a mechanism involving nucleophosmin, a multifunctional nucleolar protein upregulated in stem cells and cancer. PMID:20629179

  20. Regulation of CpG methylation by Dnmt and Tet in pluripotent stem cells.

    PubMed

    Horii, Takuro; Hatada, Izuho

    2016-08-25

    Vertebrate genomes are highly methylated at cytosine residues in CpG sequences. CpG methylation plays an important role in epigenetic gene silencing and genome stability. Compared with other epigenetic modifications, CpG methylation is thought to be relatively stable; however, it is sometimes affected by environmental changes, leading to epigenetic instability and disease. CpG methylation is reversible and regulated by DNA methyltransferases and demethylases including ten-eleven translocation. Here, we discuss CpG methylation instability and the regulation of CpG methylation by DNA methyltransferases and ten-eleven translocation in pluripotent stem cells. PMID:27151232

  1. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation.

    PubMed

    Chetty, Sundari; Engquist, Elise N; Mehanna, Elie; Lui, Kathy O; Tsankov, Alexander M; Melton, Douglas A

    2015-09-28

    Driving human pluripotent stem cells (hPSCs) into specific lineages is an inefficient and challenging process. We show that a potent Src inhibitor, PP1, regulates expression of genes involved in the G1 to S phase transition of the cell cycle, activates proteins in the retinoblastoma family, and subsequently increases the differentiation propensities of hPSCs into all three germ layers. We further demonstrate that genetic suppression of Src regulates the activity of the retinoblastoma protein and enhances the differentiation potential of hPSCs across all germ layers. These positive effects extend beyond the initial germ layer specification and enable efficient differentiation at subsequent stages of differentiation. PMID:26416968

  2. Regulation of CpG methylation by Dnmt and Tet in pluripotent stem cells

    PubMed Central

    HORII, Takuro; HATADA, Izuho

    2016-01-01

    Vertebrate genomes are highly methylated at cytosine residues in CpG sequences. CpG methylation plays an important role in epigenetic gene silencing and genome stability. Compared with other epigenetic modifications, CpG methylation is thought to be relatively stable; however, it is sometimes affected by environmental changes, leading to epigenetic instability and disease. CpG methylation is reversible and regulated by DNA methyltransferases and demethylases including ten-eleven translocation. Here, we discuss CpG methylation instability and the regulation of CpG methylation by DNA methyltransferases and ten-eleven translocation in pluripotent stem cells. PMID:27151232

  3. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation

    PubMed Central

    Engquist, Elise N.; Mehanna, Elie; Lui, Kathy O.; Tsankov, Alexander M.

    2015-01-01

    Driving human pluripotent stem cells (hPSCs) into specific lineages is an inefficient and challenging process. We show that a potent Src inhibitor, PP1, regulates expression of genes involved in the G1 to S phase transition of the cell cycle, activates proteins in the retinoblastoma family, and subsequently increases the differentiation propensities of hPSCs into all three germ layers. We further demonstrate that genetic suppression of Src regulates the activity of the retinoblastoma protein and enhances the differentiation potential of hPSCs across all germ layers. These positive effects extend beyond the initial germ layer specification and enable efficient differentiation at subsequent stages of differentiation. PMID:26416968

  4. Regulation of c-Myc Expression by Ahnak Promotes Induced Pluripotent Stem Cell Generation.

    PubMed

    Lim, Hee Jung; Kim, Jusong; Park, Chang-Hwan; Lee, Sang A; Lee, Man Ryul; Kim, Kye-Seong; Kim, Jaesang; Bae, Yun Soo

    2016-01-01

    We have previously reported that Ahnak-mediated TGFβ signaling leads to down-regulation of c-Myc expression. Here, we show that inhibition of Ahnak can promote generation of induced pluripotent stem cells (iPSC) via up-regulation of endogenous c-Myc. Consistent with the c-Myc inhibitory role of Ahnak, mouse embryonic fibroblasts from Ahnak-deficient mouse (Ahnak(-/-) MEF) show an increased level of c-Myc expression compared with wild type MEF. Generation of iPSC with just three of the four Yamanaka factors, Oct4, Sox2, and Klf4 (hereafter 3F), was significantly enhanced in Ahnak(-/-) MEF. Similar results were obtained when Ahnak-specific shRNA was applied to wild type MEF. Of note, expressionof Ahnak was significantly induced during the formation of embryoid bodies from embryonic stem cells, suggesting that Ahnak-mediated c-Myc inhibition is involved in embryoid body formation and the initial differentiation of pluripotent stem cells. The iPSC from 3F-infected Ahnak(-/-) MEF cells (Ahnak(-/-)-iPSC-3F) showed expression of all stem cell markers examined and the capability to form three primary germ layers. Moreover, injection of Ahnak(-/-)-iPSC-3F into athymic nude mice led to development of teratoma containing tissues from all three primary germ layers, indicating that iPSC from Ahnak(-/-) MEF are bona fide pluripotent stem cells. Taken together, these data provide evidence for a new role for Ahnak in cell fate determination during development and suggest that manipulation of Ahnak and the associated signaling pathway may provide a means to regulate iPSC generation. PMID:26598518

  5. Direct induction of haematoendothelial programs in human pluripotent stem cells by transcriptional regulators.

    PubMed

    Elcheva, Irina; Brok-Volchanskaya, Vera; Kumar, Akhilesh; Liu, Patricia; Lee, Jeong-Hee; Tong, Lilian; Vodyanik, Maxim; Swanson, Scott; Stewart, Ron; Kyba, Michael; Yakubov, Eduard; Cooke, John; Thomson, James A; Slukvin, Igor

    2014-01-01

    Advancing pluripotent stem cell technologies for modelling haematopoietic stem cell development and blood therapies requires identifying key regulators of haematopoietic commitment from human pluripotent stem cells (hPSCs). Here, by screening the effect of 27 candidate factors, we reveal two groups of transcriptional regulators capable of inducing distinct haematopoietic programs from hPSCs: pan-myeloid (ETV2 and GATA2) and erythro-megakaryocytic (GATA2 and TAL1). In both cases, these transcription factors directly convert hPSCs to endothelium, which subsequently transform into blood cells with pan-myeloid or erythro-megakaryocytic potential. These data demonstrate that two distinct genetic programs regulate the haematopoietic development from hPSCs and that both of these programs specify hPSCs directly to haemogenic endothelial cells. In addition, this study provides a novel method for the efficient induction of blood and endothelial cells from hPSCs via the overexpression of modified mRNA for the selected transcription factors. PMID:25019369

  6. Nac1 Coordinates a Sub-network of Pluripotency Factors to Regulate Embryonic Stem Cell Differentiation

    PubMed Central

    Malleshaiah, Mohan; Padi, Megha; Rué, Pau; Quackenbush, John; Martinez-Arias, Alfonso; Gunawardena, Jeremy

    2015-01-01

    Pluripotent cells give rise to distinct cell types during development and are regulated by often self-reinforcing molecular networks. How such networks allow cells to differentiate is less well understood. Here, we use integrative methods to show that external signals induce reorganization of the mouse embryonic stem cell pluripotency network and that a sub-network of four factors - Nac1, Oct4, Tcf3 and Sox2 – regulates their differentiation into the alternative mesendodermal and neuroectodermal fates. In the mesendodermal fate, Nac1 and Oct4 were constrained within quantitative windows, while Sox2 and Tcf3 were repressed. In contrast, in the neuroectodermal fate, Sox2 and Tcf3 were constrained while Nac1 and Oct4 were repressed. In addition, we show that Nac1 coordinates differentiation by activating Oct4 and inhibiting both Sox2 and Tcf3. Reorganization of progenitor cell networks around shared factors might be a common differentiation strategy and our integrative approach provides a general methodology for delineating such networks. PMID:26832399

  7. Interaction of Salmonella Typhimurium with Dendritic Cells Derived from Pluripotent Embryonic Stem Cells

    PubMed Central

    Rossi, Raffaella; Hale, Christine; Goulding, David; Andrews, Robert; Abdellah, Zarah; Fairchild, Paul J.; Dougan, Gordon

    2012-01-01

    Using an in vitro differentiation protocol we isolated cells with the properties of dendritic cells (DCs) from immunologically refractive pluripotent murine embryonic stem cells (ESCs). These ES-derived dendritic cells (ESDCs) expressed cytokines and were able to present antigen to a T cell line. Infection of ESDCs with Salmonella Typhimurium stimulated the expression of immune cell markers and thousands of murine genes, many associated with the immune response. Consequently, this system provides a novel in vitro model, amenable to genetic modification, for monitoring host/pathogen interactions. PMID:23284947

  8. Pluripotency Factors on Their Lineage Move

    PubMed Central

    Weidgang, Clair E.; Seufferlein, Thomas; Kleger, Alexander; Mueller, Martin

    2016-01-01

    Pluripotent stem cells are characterised by continuous self-renewal while maintaining the potential to differentiate into cells of all three germ layers. Regulatory networks of maintaining pluripotency have been described in great detail and, similarly, there is great knowledge on key players that regulate their differentiation. Interestingly, pluripotency has various shades with distinct developmental potential, an observation that coined the term of a ground state of pluripotency. A precise interplay of signalling axes regulates ground state conditions and acts in concert with a combination of key transcription factors. The balance between these transcription factors greatly influences the integrity of the pluripotency network and latest research suggests that minute changes in their expression can strengthen but also collapse the network. Moreover, recent studies reveal different facets of these core factors in balancing a controlled and directed exit from pluripotency. Thereby, subsets of pluripotency-maintaining factors have been shown to adopt new roles during lineage specification and have been globally defined towards neuroectodermal and mesendodermal sets of embryonic stem cell genes. However, detailed underlying insights into how these transcription factors orchestrate cell fate decisions remain largely elusive. Our group and others unravelled complex interactions in the regulation of this controlled exit. Herein, we summarise recent findings and discuss the potential mechanisms involved. PMID:26770212

  9. The extended pluripotency protein interactome and its links to reprogramming

    PubMed Central

    Huang, Xin; Wang, Jianlong

    2014-01-01

    A pluripotent state of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is maintained through the combinatorial activity of core transcriptional factors (TFs) such as Oct4, Sox2, and Nanog in conjunction with many other factors including epigenetic regulators. Proteins rarely act alone, and knowledge of protein-protein interaction network (interactome) provides an extraordinary resource about how pluripotency TFs collaborate and crosstalk with epigenetic regulators in ESCs. Recent advances in affinity purification coupled with mass spectrometry (AP-MS) allow for efficient, high-throughput identification of hundreds of interacting protein partners, which can be used to map the pluripotency landscape. Here we review recent publications employing AP-MS to investigate protein interaction networks in ESCs, discuss how protein-protein connections reveal novel pluripotency regulatory circuits and new factors for efficient reprogramming of somatic cells. PMID:25173149

  10. SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells.

    PubMed

    Myers, Samuel A; Peddada, Sailaja; Chatterjee, Nilanjana; Friedrich, Tara; Tomoda, Kiichrio; Krings, Gregor; Thomas, Sean; Maynard, Jason; Broeker, Michael; Thomson, Matthew; Pollard, Katherine; Yamanaka, Shinya; Burlingame, Alma L; Panning, Barbara

    2016-01-01

    The transcription factor SOX2 is central in establishing and maintaining pluripotency. The processes that modulate SOX2 activity to promote pluripotency are not well understood. Here, we show SOX2 is O-GlcNAc modified in its transactivation domain during reprogramming and in mouse embryonic stem cells (mESCs). Upon induction of differentiation SOX2 O-GlcNAcylation at serine 248 is decreased. Replacing wild type with an O-GlcNAc-deficient SOX2 (S248A) increases reprogramming efficiency. ESCs with O-GlcNAc-deficient SOX2 exhibit alterations in gene expression. This change correlates with altered protein-protein interactions and genomic occupancy of the O-GlcNAc-deficient SOX2 compared to wild type. In addition, SOX2 O-GlcNAcylation impairs the SOX2-PARP1 interaction, which has been shown to regulate ESC self-renewal. These findings show that SOX2 activity is modulated by O-GlcNAc, and provide a novel regulatory mechanism for this crucial pluripotency transcription factor. PMID:26949256

  11. SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells

    PubMed Central

    Myers, Samuel A; Peddada, Sailaja; Chatterjee, Nilanjana; Friedrich, Tara; Tomoda, Kiichrio; Krings, Gregor; Thomas, Sean; Maynard, Jason; Broeker, Michael; Thomson, Matthew; Pollard, Katherine; Yamanaka, Shinya; Burlingame, Alma L; Panning, Barbara

    2016-01-01

    The transcription factor SOX2 is central in establishing and maintaining pluripotency. The processes that modulate SOX2 activity to promote pluripotency are not well understood. Here, we show SOX2 is O-GlcNAc modified in its transactivation domain during reprogramming and in mouse embryonic stem cells (mESCs). Upon induction of differentiation SOX2 O-GlcNAcylation at serine 248 is decreased. Replacing wild type with an O-GlcNAc-deficient SOX2 (S248A) increases reprogramming efficiency. ESCs with O-GlcNAc-deficient SOX2 exhibit alterations in gene expression. This change correlates with altered protein-protein interactions and genomic occupancy of the O-GlcNAc-deficient SOX2 compared to wild type. In addition, SOX2 O-GlcNAcylation impairs the SOX2-PARP1 interaction, which has been shown to regulate ESC self-renewal. These findings show that SOX2 activity is modulated by O-GlcNAc, and provide a novel regulatory mechanism for this crucial pluripotency transcription factor. DOI: http://dx.doi.org/10.7554/eLife.10647.001 PMID:26949256

  12. YAP/TEAD Co-Activator Regulated Pluripotency and Chemoresistance in Ovarian Cancer Initiated Cells

    PubMed Central

    Yu, Chao; Chang, Ting; Fan, Heng-Yu

    2014-01-01

    Recent evidence suggests that some solid tumors, including ovarian cancer, contain distinct populations of stem cells that are responsible for tumor initiation, growth, chemo-resistance, and recurrence. The Hippo pathway has attracted considerable attention and some investigators have focused on YAP functions for maintaining stemness and cell differentiation. In this study, we successfully isolated the ovarian cancer initiating cells (OCICs) and demonstrated YAP promoted self-renewal of ovarian cancer initiated cell (OCIC) through its downstream co-activator TEAD. YAP and TEAD families were required for maintaining the expression of specific genes that may be involved in OCICs' stemness and chemoresistance. Taken together, our data first indicate that YAP/TEAD co-activator regulated ovarian cancer initiated cell pluripotency and chemo-resistance. It proposed a new mechanism on the drug resistance in cancer stem cell that Hippo-YAP signal pathway might serve as therapeutic targets for ovarian cancer treatment in clinical. PMID:25369529

  13. Pluripotency and Epigenetic Factors in Mouse Embryonic Stem Cell Fate Regulation

    PubMed Central

    Morey, Lluis; Santanach, Alexandra

    2015-01-01

    Embryonic stem cells (ESCs) are characterized by their ability to self-renew and to differentiate into all cell types of a given organism. Understanding the molecular mechanisms that govern the ESC state is of great interest not only for basic research—for instance, ESCs represent a perfect system to study cellular differentiation in vitro—but also for their potential implications in human health, as these mechanisms are likewise involved in cancer progression and could be exploited in regenerative medicine. In this minireview, we focus on the latest insights into the molecular mechanisms mediated by the pluripotency factors as well as their roles during differentiation. We also discuss recent advances in understanding the function of the epigenetic regulators, Polycomb and MLL complexes, in ESC biology. PMID:26031336

  14. Zfp322a Regulates Mouse ES Cell Pluripotency and Enhances Reprogramming Efficiency

    PubMed Central

    Ma, Hui; Ng, Hui Min; Teh, Xiuwen; Li, Hu; Lee, Yun Hwa; Chong, Yew Mei; Loh, Yuin Han; Collins, James J.; Feng, Bo; Yang, Henry; Wu, Qiang

    2014-01-01

    Embryonic stem (ES) cells derived from the inner cell mass (ICM) of blastocysts are characterised by their ability to self-renew and their potential to differentiate into many different cell types. Recent studies have shown that zinc finger proteins are crucial for maintaining pluripotent ES cells. Mouse zinc finger protein 322a (Zfp322a) is expressed in the ICM of early mouse embryos. However, little is known regarding the role of Zfp322a in the pluripotency maintenance of mouse ES cells. Here, we report that Zfp322a is required for mES cell identity since depletion of Zfp322a directs mES cells towards differentiation. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays revealed that Zfp322a binds to Pou5f1 and Nanog promoters and regulates their transcription. These data along with the results obtained from our ChIP-seq experiment showed that Zfp322a is an essential component of mES cell transcription regulatory network. Targets which are directly regulated by Zfp322a were identified by correlating the gene expression profile of Zfp322a RNAi-treated mES cells with the ChIP-seq results. These experiments revealed that Zfp322a inhibits mES cell differentiation by suppressing MAPK pathway. Additionally, Zfp322a is found to be a novel reprogramming factor that can replace Sox2 in the classical Yamanaka's factors (OSKM). It can be even used in combination with Yamanaka's factors and that addition leads to a higher reprogramming efficiency and to acceleration of the onset of the reprogramming process. Together, our results demonstrate that Zfp322a is a novel essential component of the transcription factor network which maintains the identity of mouse ES cells. PMID:24550733

  15. Impact of transient down-regulation of DREAM in human embryonic stem cell pluripotency: The role of DREAM in the maintenance of hESCs.

    PubMed

    Fontán-Lozano, A; Capilla-Gonzalez, V; Aguilera, Y; Mellado, N; Carrión, A M; Soria, B; Hmadcha, A

    2016-05-01

    Little is known about the functions of downstream regulatory element antagonist modulator (DREAM) in embryonic stem cells (ESCs). However, DREAM interacts with cAMP response element-binding protein (CREB) in a Ca(2+)-dependent manner, preventing CREB binding protein (CBP) recruitment. Furthermore, CREB and CBP are involved in maintaining ESC self-renewal and pluripotency. However, a previous knockout study revealed the protective function of DREAM depletion in brain aging degeneration and that aging is accompanied by a progressive decline in stem cells (SCs) function. Interestingly, we found that DREAM is expressed in different cell types, including human ESCs (hESCs), human adipose-derived stromal cells (hASCs), human bone marrow-derived stromal cells (hBMSCs), and human newborn foreskin fibroblasts (hFFs), and that transitory inhibition of DREAM in hESCs reduces their pluripotency, increasing differentiation. We stipulate that these changes are partly mediated by increased CREB transcriptional activity. Overall, our data indicates that DREAM acts in the regulation of hESC pluripotency and could be a target to promote or prevent differentiation in embryonic cells. PMID:26999760

  16. Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis

    PubMed Central

    Wagner, Daniel E.; Ho, Jaclyn J.

    2012-01-01

    Summary Pluripotency is a central, well-studied feature of embryonic development, but the role of pluripotent cell regulation in somatic tissue regeneration remains poorly understood. In planarians, regeneration of entire animals from tissue fragments is promoted by the activity of adult pluripotent stem cells (cNeoblasts). We utilized transcriptional profiling to identify planarian genes expressed in adult proliferating, regenerative cells (neoblasts). We also developed quantitative clonal analysis methods for expansion and differentiation of cNeoblast descendants that, together with RNAi, revealed gene roles in stem cell biology. Genes encoding two zinc finger proteins, Vasa, a LIM domain protein, Sox and Jun-like transcription factors, two candidate RNA-binding proteins, a Setd8-like protein, and PRC2 (Polycomb) were required for proliferative expansion and/or differentiation of cNeoblast-derived clones. These findings suggest that planarian stem cells utilize molecular mechanisms found in germ cells and other pluripotent cell types, and identify novel genetic regulators of the planarian stem cell system. PMID:22385657

  17. Epigenetic regulation of pluripotent genes mediates stem cell features in human hepatocellular carcinoma and cancer cell lines.

    PubMed

    Wang, Xiao Qi; Ng, Ray Kit; Ming, Xiaoyan; Zhang, Wu; Chen, Lin; Chu, Andrew C Y; Pang, Roberta; Lo, Chung Mau; Tsao, Sai Wah; Liu, Xuqing; Poon, Ronnie T P; Fan, Sheung Tat

    2013-01-01

    Activation of the stem cell transcriptional circuitry is an important event in cancer development. Although cancer cells demonstrate a stem cell-like gene expression signature, the epigenetic regulation of pluripotency-associated genes in cancers remains poorly understood. In this study, we characterized the epigenetic regulation of the pluripotency-associated genes NANOG, OCT4, c-MYC, KLF4, and SOX2 in a variety of cancer cell lines and in primary tumor samples, and investigated the re-activation of pluripotency regulatory circuits in cancer progression. Differential patterns of DNA methylation, histone modifications, and gene expression of pluripotent genes were demonstrated in different types of cancers, which may reflect their tissue origins. NANOG promoter hypomethylation and gene upregulation were found in metastatic human liver cancer cells and human hepatocellular carcinoma (HCC) primary tumor tissues. The upregulation of NANOG, together with p53 depletion, was significantly associated with clinical late stage of HCC. A pro-metastatic role of NANOG in colon cancer cells was also demonstrated, using a NANOG-overexpressing orthotopic tumor implantation mouse model. Demethylation of NANOG promoter was observed in CD133+(high) cancer cells. In accordance, overexpression of NANOG resulted in an increase in the population of CD133+(high) cells. In addition, we demonstrated a cross-regulation between OCT4 and NANOG in cancer cells via reprogramming of promoter methylation. Taken together, epigenetic reprogramming of NANOG can lead to the acquisition of stem cell-like properties. These results underscore the restoration of pluripotency circuits in cancer cells as a potential mechanism for cancer progression. PMID:24023739

  18. Epigenetic Mechanisms Regulate MHC and Antigen Processing Molecules in Human Embryonic and Induced Pluripotent Stem Cells

    PubMed Central

    Suárez-Álvarez, Beatriz; Rodriguez, Ramón M.; Calvanese, Vincenzo; Blanco-Gelaz, Miguel A.; Suhr, Steve T.; Ortega, Francisco; Otero, Jesus; Cibelli, Jose B.; Moore, Harry; Fraga, Mario F.; López-Larrea, Carlos

    2010-01-01

    Background Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. Methodology/Principal Findings We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. Conclusions/Significance Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance

  19. TRIM32 modulates pluripotency entry and exit by directly regulating Oct4 stability.

    PubMed

    Bahnassawy, Lamia'a; Perumal, Thanneer M; Gonzalez-Cano, Laura; Hillje, Anna-Lena; Taher, Leila; Makalowski, Wojciech; Suzuki, Yutaka; Fuellen, Georg; del Sol, Antonio; Schwamborn, Jens Christian

    2015-01-01

    Induced pluripotent stem cells (iPSCs) have revolutionized the world of regenerative medicine; nevertheless, the exact molecular mechanisms underlying their generation and differentiation remain elusive. Here, we investigated the role of the cell fate determinant TRIM32 in modulating such processes. TRIM32 is essential for the induction of neuronal differentiation of neural stem cells by poly-ubiquitinating cMyc to target it for degradation resulting in inhibition of cell proliferation. To elucidate the role of TRIM32 in regulating somatic cell reprogramming we analysed the capacity of TRIM32-knock-out mouse embryonic fibroblasts (MEFs) in generating iPSC colonies. TRIM32 knock-out MEFs produced a higher number of iPSC colonies indicating a role for TRIM32 in inhibiting this cellular transition. Further characterization of the generated iPSCs indicated that the TRIM32 knock-out iPSCs show perturbed differentiation kinetics. Additionally, mathematical modelling of global gene expression data revealed that during differentiation an Oct4 centred network in the wild-type cells is replaced by an E2F1 centred network in the TRIM32 deficient cells. We show here that this might be caused by a TRIM32-dependent downregulation of Oct4. In summary, the data presented here reveal that TRIM32 directly regulates at least two of the four Yamanaka Factors (cMyc and Oct4), to modulate cell fate transitions. PMID:26307407

  20. TRIM32 modulates pluripotency entry and exit by directly regulating Oct4 stability

    PubMed Central

    Bahnassawy, Lamia’a; Perumal, Thanneer M.; Gonzalez-Cano, Laura; Hillje, Anna-Lena; Taher, Leila; Makalowski, Wojciech; Suzuki, Yutaka; Fuellen, Georg; Sol, Antonio del; Schwamborn, Jens Christian

    2015-01-01

    Induced pluripotent stem cells (iPSCs) have revolutionized the world of regenerative medicine; nevertheless, the exact molecular mechanisms underlying their generation and differentiation remain elusive. Here, we investigated the role of the cell fate determinant TRIM32 in modulating such processes. TRIM32 is essential for the induction of neuronal differentiation of neural stem cells by poly-ubiquitinating cMyc to target it for degradation resulting in inhibition of cell proliferation. To elucidate the role of TRIM32 in regulating somatic cell reprogramming we analysed the capacity of TRIM32-knock-out mouse embryonic fibroblasts (MEFs) in generating iPSC colonies. TRIM32 knock-out MEFs produced a higher number of iPSC colonies indicating a role for TRIM32 in inhibiting this cellular transition. Further characterization of the generated iPSCs indicated that the TRIM32 knock-out iPSCs show perturbed differentiation kinetics. Additionally, mathematical modelling of global gene expression data revealed that during differentiation an Oct4 centred network in the wild-type cells is replaced by an E2F1 centred network in the TRIM32 deficient cells. We show here that this might be caused by a TRIM32-dependent downregulation of Oct4. In summary, the data presented here reveal that TRIM32 directly regulates at least two of the four Yamanaka Factors (cMyc and Oct4), to modulate cell fate transitions. PMID:26307407

  1. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    SciTech Connect

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  2. Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells.

    PubMed

    Yang, Jianchang; Chai, Li; Fowles, Taylor C; Alipio, Zaida; Xu, Dan; Fink, Louis M; Ward, David C; Ma, Yupo

    2008-12-16

    Embryonic stem cells have potential utility in regenerative medicine because of their pluripotent characteristics. Sall4, a zinc-finger transcription factor, is expressed very early in embryonic development with Oct4 and Nanog, two well-characterized pluripotency regulators. Sall4 plays an important role in governing the fate of stem cells through transcriptional regulation of both Oct4 and Nanog. By using chromatin immunoprecipitation coupled to microarray hybridization (ChIP-on-chip), we have mapped global gene targets of Sall4 to further investigate regulatory processes in W4 mouse ES cells. A total of 3,223 genes were identified that were bound by the Sall4 protein on duplicate assays with high confidence, and many of these have major functions in developmental and regulatory pathways. Sall4 bound approximately twice as many annotated genes within promoter regions as Nanog and approximately four times as many as Oct4. Immunoprecipitation revealed a heteromeric protein complex(es) between Sall4, Oct4, and Nanog, consistent with binding site co-occupancies. Decreasing Sall4 expression in W4 ES cells decreases the expression levels of Oct4, Sox2, c-Myc, and Klf4, four proteins capable of reprogramming somatic cells to an induced pluripotent state. Further, Sall4 bound many genes that are regulated in part by chromatin-based epigenetic events mediated by polycomb-repressive complexes and bivalent domains. This suggests that Sall4 plays a diverse role in regulating stem cell pluripotency during early embryonic development through integration of transcriptional and epigenetic controls. PMID:19060217

  3. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells

    PubMed Central

    Zhang, Jin; Khvorostov, Ivan; Hong, Jason S; Oktay, Yavuz; Vergnes, Laurent; Nuebel, Esther; Wahjudi, Paulin N; Setoguchi, Kiyoko; Wang, Geng; Do, Anna; Jung, Hea-Jin; McCaffery, J Michael; Kurland, Irwin J; Reue, Karen; Lee, Wai-Nang P; Koehler, Carla M; Teitell, Michael A

    2011-01-01

    It has been assumed, based largely on morphologic evidence, that human pluripotent stem cells (hPSCs) contain underdeveloped, bioenergetically inactive mitochondria. In contrast, differentiated cells harbour a branched mitochondrial network with oxidative phosphorylation as the main energy source. A role for mitochondria in hPSC bioenergetics and in cell differentiation therefore remains uncertain. Here, we show that hPSCs have functional respiratory complexes that are able to consume O2 at maximal capacity. Despite this, ATP generation in hPSCs is mainly by glycolysis and ATP is consumed by the F1F0 ATP synthase to partially maintain hPSC mitochondrial membrane potential and cell viability. Uncoupling protein 2 (UCP2) plays a regulating role in hPSC energy metabolism by preventing mitochondrial glucose oxidation and facilitating glycolysis via a substrate shunting mechanism. With early differentiation, hPSC proliferation slows, energy metabolism decreases, and UCP2 is repressed, resulting in decreased glycolysis and maintained or increased mitochondrial glucose oxidation. Ectopic UCP2 expression perturbs this metabolic transition and impairs hPSC differentiation. Overall, hPSCs contain active mitochondria and require UCP2 repression for full differentiation potential. PMID:22085932

  4. TGF-βI Regulates Cell Migration through Pluripotent Transcription Factor OCT4 in Endometriosis

    PubMed Central

    Au, Heng-Kien; Chang, Jui-Hung; Wu, Yu-Chih; Kuo, Yung-Che; Chen, Yu-Hsi; Lee, Wei-Chin; Chang, Te-Sheng; Lan, Pei-Chi; Kuo, Hung-Chih; Lee, Kha-Liang; Lee, Mei-Tsu; Tzeng, Chii-Ruey; Huang, Yen-Hua

    2015-01-01

    Transforming growth factor (TGF-β)/TGF-β receptor signal is known to promote cell migration. Up-regulation of TGF-β in serum/peritoneal fluid and increased levels of pluripotent transcription factor OCT4 in endometriotic tissues are frequently observed in patients with endometriosis. However, the mechanisms underlying how TGF-β/TGF-β receptor and OCT4 affect endometriotic cell migration still remain largely unknown. Therefore, endometriotic tissue with high cell migratory capacity were collected from patients with adenomyotic myometrium (n = 23) and chocolate cyst (n = 24); and endometrial tissue with low cell migratory capacity in normal endometrium or hyperplastic endometrium (n = 8) were collected as the controls. We found the mRNA levels of TGF-β receptor I (TGF-β RI) and OCT4 were significantly higher in the high-migratory ectopic endometriotic tissues than those of the low-migratory normal or hyperplastic endometrium. Positive correlations between TGF-β RI and OCT4, and either TGF-β RI or OCT4 with migration-related genes (SNAIL, SLUG and TWIST) regarding the mRNA levels were observed in human endometriotic tissues. TGF-βI dose-dependently increased the gene and protein levels of OCT4, SNAIL and N-Cadherin (N-CAD) and silencing of endogenous OCT4 significantly suppressed the TGF-βI-induced expressions of N-CAD and SNAIL in primary human endometriotic stromal cells and human endometrial carcinoma cell lines RL95-2 and HEC1A. Furthermore, TGF-βI significantly increased the migration ability of endometriotic cells and silencing of OCT4 dramatically suppressed the TGF-βI-induced cell migration activity evidenced by wound-closure assay, transwell assay, and confocal image of F-actin cellular distribution. In conclusion, the present findings demonstrate that the niche TGF-β plays a critical role in initiating expressions of pluripotent transcription factor OCT4 which may contribute to the ectopic endometrial growth by stimulating endometrial cell

  5. [Two vital transcriptional factors Oct-4 and Nanog to keep the pluripotency and self-renewal of stem cells and related regulation network].

    PubMed

    Zhou, Yi-Ye; Zeng, Fan-Yi

    2008-05-01

    Oct-4 and Nanog are two critical transcriptional factors to keep pluripotency and self-renewal of stem cells in vivo and in vitro, and they usually express only in pluripotent cells and not in differentiated cells. They bind to the regulatory regions of targeted gene and often interact with other transcriptional factors and extracellular signal path components, such as Sox-2, FoxD3, LIF and BMP in specific tissues or developmental stages. So that all of these constitute a transcriptional crosstalk, and finally determine the cells destiny: keeping pluripotency or turning to differentiation. PMID:18487140

  6. The nucleoporin Nup153 regulates embryonic stem cell pluripotency through gene silencing

    PubMed Central

    Jacinto, Filipe V.; Benner, Chris; Hetzer, Martin W.

    2015-01-01

    Nucleoporins (Nups) are a family of proteins best known as the constituent building blocks of nuclear pore complexes (NPCs), membrane-embedded channels that mediate nuclear transport across the nuclear envelope. Recent evidence suggests that several Nups have additional roles in controlling the activation and silencing of developmental genes; however, the mechanistic details of these functions remain poorly understood. Here, we show that depletion of Nup153 in mouse embryonic stem cells (mESCs) causes the derepression of developmental genes and induction of early differentiation. This loss of stem cell identity is not associated with defects in the nuclear import of key pluripotency factors. Rather, Nup153 binds around the transcriptional start site (TSS) of developmental genes and mediates the recruitment of the polycomb-repressive complex 1 (PRC1) to a subset of its target loci. Our results demonstrate a chromatin-associated role of Nup153 in maintaining stem cell pluripotency by functioning in mammalian epigenetic gene silencing. PMID:26080816

  7. Embryonic stem cell-specific microRNAs contribute to pluripotency by inhibiting regulators of multiple differentiation pathways.

    PubMed

    Gruber, Andreas J; Grandy, William A; Balwierz, Piotr J; Dimitrova, Yoana A; Pachkov, Mikhail; Ciaudo, Constance; Nimwegen, Erik van; Zavolan, Mihaela

    2014-08-01

    The findings that microRNAs (miRNAs) are essential for early development in many species and that embryonic miRNAs can reprogram somatic cells into induced pluripotent stem cells suggest that these miRNAs act directly on transcriptional and chromatin regulators of pluripotency. To elucidate the transcription regulatory networks immediately downstream of embryonic miRNAs, we extended the motif activity response analysis approach that infers the regulatory impact of both transcription factors (TFs) and miRNAs from genome-wide expression states. Applying this approach to multiple experimental data sets generated from mouse embryonic stem cells (ESCs) that did or did not express miRNAs of the ESC-specific miR-290-295 cluster, we identified multiple TFs that are direct miRNA targets, some of which are known to be active during cell differentiation. Our results provide new insights into the transcription regulatory network downstream of ESC-specific miRNAs, indicating that these miRNAs act on cell cycle and chromatin regulators at several levels and downregulate TFs that are involved in the innate immune response. PMID:25030899

  8. Embryonic stem cell-specific microRNAs contribute to pluripotency by inhibiting regulators of multiple differentiation pathways

    PubMed Central

    Gruber, Andreas J.; Grandy, William A.; Balwierz, Piotr J.; Dimitrova, Yoana A.; Pachkov, Mikhail; Ciaudo, Constance; van Nimwegen, Erik; Zavolan, Mihaela

    2014-01-01

    The findings that microRNAs (miRNAs) are essential for early development in many species and that embryonic miRNAs can reprogram somatic cells into induced pluripotent stem cells suggest that these miRNAs act directly on transcriptional and chromatin regulators of pluripotency. To elucidate the transcription regulatory networks immediately downstream of embryonic miRNAs, we extended the motif activity response analysis approach that infers the regulatory impact of both transcription factors (TFs) and miRNAs from genome-wide expression states. Applying this approach to multiple experimental data sets generated from mouse embryonic stem cells (ESCs) that did or did not express miRNAs of the ESC-specific miR-290-295 cluster, we identified multiple TFs that are direct miRNA targets, some of which are known to be active during cell differentiation. Our results provide new insights into the transcription regulatory network downstream of ESC-specific miRNAs, indicating that these miRNAs act on cell cycle and chromatin regulators at several levels and downregulate TFs that are involved in the innate immune response. PMID:25030899

  9. N-Myc regulates expression of pluripotency genes in neuroblastoma including lif, klf2, klf4, and lin28b.

    PubMed

    Cotterman, Rebecca; Knoepfler, Paul S

    2009-01-01

    myc genes are best known for causing tumors when overexpressed, but recent studies suggest endogenous myc regulates pluripotency and self-renewal of stem cells. For example, N-myc is associated with a number of tumors including neuroblastoma, but also plays a central role in the function of normal neural stem and precursor cells (NSC). Both c- and N-myc also enhance the production of induced pluripotent stem cells (iPSC) and are linked to neural tumor stem cells. The mechanisms by which myc regulates normal and neoplastic stem-related functions remain largely open questions. Here from a global, unbiased search for N-Myc bound genes using ChIP-chip assays in neuroblastoma, we found lif as a putative N-Myc bound gene with a number of strong N-Myc binding peaks in the promoter region enriched for E-boxes. Amongst putative N-Myc target genes in expression microarray studies in neuroblastoma we also found lif and three additional important embryonic stem cell (ESC)-related factors that are linked to production of iPSC: klf2, klf4, and lin28b. To examine the regulation of these genes by N-Myc, we measured their expression using neuroblastoma cells that contain a Tet-regulatable N-myc transgene (TET21N) as well as NSC with a nestin-cre driven N-myc knockout. N-myc levels closely correlated with the expression of all of these genes in neuroblastoma and all but lif in NSC. Direct ChIP assays also indicate that N-Myc directly binds the lif promoter. N-Myc regulates trimethylation of lysine 4 of histone H3 in the promoter of lif and possibly in the promoters of several other stem-related genes. Together these findings indicate that N-Myc regulates overlapping stem-related gene expression programs in neuroblastoma and NSC, supporting a novel model by which amplification of the N-myc gene may drive formation of neuroblastoma. They also suggest mechanisms by which Myc proteins more generally contribute to maintenance of pluripotency and self-renewal of ESC as well as to i

  10. The histone acetyltransferase p300 regulates the expression of pluripotency factors and odontogenic differentiation of human dental pulp cells.

    PubMed

    Wang, Tong; Liu, Huijuan; Ning, Yanyang; Xu, Qiong

    2014-01-01

    p300 is a well-known histone acetyltransferase (HAT) and coactivator that plays vital roles in many physiological processes. Despite extensive research on the involvement of p300 in the regulation of transcription in numerous cell lines, the roles of this protein in regulating pluripotency genes and odontogenic differentiation in human dental pulp cells (HDPCs) are poorly understood. To address this issue, we investigated the expression of OCT4, NANOG and SOX2 and the proliferation and odontogenic differentiation capacity of HDPCs following p300 overexpression. We found that p300 overexpression did not overtly affect the ability of HDPCs to proliferate. The overexpression of p300 upregulated the promoter activity and the mRNA and protein expression of NANOG and SOX2. The HAT activity of p300 appeared to partially mediate the regulation of these factors; indeed, when a mutant form of p300 lacking the HAT domain was overexpressed, the promoter activity and expression of NANOG and SOX2 decreased relative to p300 overexpression but was greater than in the control. Furthermore, we demonstrated that the mRNA levels of the odontogenic marker genes dentine matrix protein-1 (DMP-1), dentin sialophosphoprotein (DSPP), dentin sialoprotein (DSP), osteopontin (OPN) and osteocalcin (OCN) were significantly decreased in HDPCs overexpressing p300 cultured under normal culture conditions and increased in HDPCs inducted to undergo odontogenic differentiation. This finding was further confirmed by measuring levels of alkaline phosphatase (ALP) activity and assessing the formation of mineralized nodules. The HAT activity of p300 had no significant effect on odontogenic differentiation. p300 was recruited to the promoter regions of OCN and DSPP and might be acting as a coactivator to increase the acetylation of lysine 9 of histone H3 of OCN and DSPP. Collectively, our results show that p300 plays an important role in regulating the expression of key pluripotency genes in HDPCs and

  11. Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification

    PubMed Central

    Musah, Samira; Wrighton, Paul J.; Zaltsman, Yefim; Zhong, Xiaofen; Zorn, Stefan; Parlato, Matthew B.; Hsiao, Cheston; Palecek, Sean P.; Chang, Qiang; Murphy, William L.; Kiessling, Laura L.

    2014-01-01

    Physical stimuli can act in either a synergistic or antagonistic manner to regulate cell fate decisions, but it is less clear whether insoluble signals alone can direct human pluripotent stem (hPS) cell differentiation into specialized cell types. We previously reported that stiff materials promote nuclear localization of the Yes-associated protein (YAP) transcriptional coactivator and support long-term self-renewal of hPS cells. Here, we show that even in the presence of soluble pluripotency factors, compliant substrata inhibit the nuclear localization of YAP and promote highly efficient differentiation of hPS cells into postmitotic neurons. In the absence of neurogenic factors, the effective substrata produce neurons rapidly (2 wk) and more efficiently (>75%) than conventional differentiation methods. The neurons derived from substrate induction express mature markers and possess action potentials. The hPS differentiation observed on compliant surfaces could be recapitulated on stiff surfaces by adding small-molecule inhibitors of F-actin polymerization or by depleting YAP. These studies reveal that the matrix alone can mediate differentiation of hPS cells into a mature cell type, independent of soluble inductive factors. That mechanical cues can override soluble signals suggests that their contributions to early tissue development and lineage commitment are profound. PMID:25201954

  12. Interaction between DMRT1 function and genetic background modulates signaling and pluripotency to control tumor susceptibility in the fetal germ line

    PubMed Central

    Krentz, Anthony D.; Murphy, Mark W.; Zhang, Teng; Sarver, Aaron L.; Jain, Sanjay; Griswold, Michael D.; Bardwell, Vivian J.; Zarkower, David

    2013-01-01

    Dmrt1(doublesex and mab-3 related transcription factor 1) is a regulator of testis development in vertebrates that has been implicated in testicular germ cell tumors of mouse and human. In the fetal mouse testis Dmrt1 regulates germ cell pluripotency in a strain-dependent manner. Loss of Dmrt1 in 129Sv strain mice results in a >90% incidence of testicular teratomas, tumors consisting cells of multiple germ layers; by contrast, these tumors have never been observed in Dmrt1 mutants of C57BL/6J (B6) or mixed genetic backgrounds. To further investigate the interaction between Dmrt1 and genetic background we compared mRNA expression in wild type and Dmrt1 mutant fetal testes of 129Sv and B6 mice at embryonic day 15.5 (E15.5), prior to overt tumorigenesis. Loss of Dmrt1 caused misexpression of overlapping but distinct sets of mRNAs in the two strains. The mRNAs that were selectively affected included some that changed expression only in one strain or the other and some that changed in both strains but to a greater degree in one versus the other. In particular, loss of Dmrt1 in 129Sv testes caused a more severe failure to silence regulators of pluripotency than in B6 testes. A number of genes misregulated in 129Sv mutant testes also are misregulated in human testicular germ cell tumors (TGCTs), suggesting similar etiology between germ cell tumors in mouse and man. Expression profiling showed that DMRT1 also regulates pluripotency genes in the fetal ovary, although Dmrt1 mutant females do not develop teratomas. Pathway analysis indicated disruption of several signaling pathways in Dmrt1 mutant fetal testes, including Nodal, Notch, and GDNF. We used a Nanos3-cre knock-in allele to perform conditional gene targeting, testing the GDNF coreceptors Gfra1 and Ret for effects on teratoma susceptibility. Conditional deletion of Gfra1 but not Ret in fetal germ cells of animals outcrossed to 129Sv caused a modest but significant elevation in tumor incidence. Despite some

  13. TRPV3 Channel Negatively Regulates Cell Cycle Progression and Safeguards the Pluripotency of Embryonic Stem Cells.

    PubMed

    Lo, Iek Chi; Chan, Hing Chung; Qi, Zenghua; Ng, Kwun Lam; So, Chun; Tsang, Suk Ying

    2016-02-01

    Embryonic stem cells (ESCs) have tremendous potential for research and future therapeutic purposes. However, the calcium handling mechanism in ESCs is not fully elucidated. Aims of this study are (1) to investigate if transient receptor potential vanilloid-3 (TRPV3) channels are present in mouse ESCs (mESCs) and their subcellular localization; (2) to investigate the role of TRPV3 in maintaining the characteristics of mESCs. Western blot and immunocytochemistry showed that TRPV3 was present at the endoplasmic reticulum (ER) of mESCs. Calcium imaging showed that, in the absence of extracellular calcium, TRPV3 activators camphor and 6-tert-butyl-m-cresol increased the cytosolic calcium. However, depleting the ER store in advance of activator addition abolished the calcium increase, suggesting that TRPV3 released calcium from the ER. To dissect the functional role of TRPV3, TRPV3 was activated and mESC proliferation was measured by trypan blue exclusion and MTT assays. The results showed that TRPV3 activation led to a decrease in mESC proliferation. Cell cycle analysis revealed that TRPV3 activation increased the percentage of cells in G2 /M phase; consistently, Western blot also revealed a concomitant increase in the expression of inactive form of cyclin-dependent kinase 1, suggesting that TRPV3 activation arrested mESCs at G2 /M phase. TRPV3 activation did not alter the expression of pluripotency markers Oct-4, Klf4 and c-Myc, suggesting that the pluripotency was preserved. Our study is the first study to show the presence of TRPV3 at ER. Our study also reveals the novel role of TRPV3 in controlling the cell cycle and preserving the pluripotency of ESCs. PMID:26130157

  14. Regulation of Mitochondrial Function and Cellular Energy Metabolism by Protein Kinase C-λ/ι: A Novel Mode of Balancing Pluripotency

    PubMed Central

    Mahato, Biraj; Home, Pratik; Rajendran, Ganeshkumar; Paul, Arindam; Saha, Biswarup; Ganguly, Avishek; Ray, Soma; Roy, Nairita; Swerdlow, Russell H.; Paul, Soumen

    2014-01-01

    Pluripotent stem cells (PSCs) contain functionally immature mitochondria and rely upon high rates of glycolysis for their energy requirements. Thus, altered mitochondrial function and promotion of aerobic glycolysis is key to maintain and induce pluripotency. However, signaling mechanisms that regulate mitochondrial function and reprogram metabolic preferences in self-renewing vs. differentiated PSC populations are poorly understood. Here, using murine embryonic stem cells (ESCs) as a model system, we demonstrate that atypical protein kinase C isoform, PKC lambda/iota (PKCλ/ι), is a key regulator of mitochondrial function in ESCs. Depletion of PKCλ/ι in ESCs maintains their pluripotent state as evident from germline offsprings. Interestingly, loss of PKCλ/ι in ESCs leads to impairment in mitochondrial maturation, organization and a metabolic shift toward glycolysis under differentiating condition. Our mechanistic analyses indicate that a PKCλ/ι-HIF1α-PGC1α axis regulates mitochondrial respiration and balances pluripotency in ESCs. We propose that PKCλ/ι could be a crucial regulator of mitochondrial function and energy metabolism in stem cells and other cellular contexts. PMID:25142417

  15. miR-302 regulates pluripotency, teratoma formation and differentiation in stem cells via an AKT1/OCT4-dependent manner

    PubMed Central

    Li, H-L; Wei, J-F; Fan, L-Y; Wang, S-H; Zhu, L; Li, T-P; Lin, G; Sun, Y; Sun, Z-J; Ding, J; Liang, X-L; Li, J; Han, Q; Zhao, R-C-H

    2016-01-01

    Pluripotency makes human pluripotent stem cells (hPSCs) promising for regenerative medicine, but the teratoma formation has been considered to be a major obstacle for their clinical applications. Here, we determined that the downregulation of miR-302 suppresses the teratoma formation, hampers the self-renewal and pluripotency, and promotes hPSC differentiation. The underlying mechanism is that the high endogenous expression of miR-302 suppresses the AKT1 expression by directly targeting its 3'UTR and subsequently maintains the pluripotent factor OCT4 at high level. Our findings reveal that miR-302 regulates OCT4 by suppressing AKT1, which provides hPSCs two characteristics related to their potential for clinical applications: the benefit of pluripotency and the hindrance of teratoma formation. More importantly, we demonstrate that miR-302 upregulation cannot lead OCT4 negative human adult mesenchymal stem cells (hMSCs) to acquire the teratoma formation in vivo. Whether miR-302 upregulation can drive hMSCs to acquire a higher differentiation potential is worthy of deep investigation. PMID:26821070

  16. Regulation of ES Cell Self Renewal and Pluripotency by Foxd3

    PubMed Central

    Liu, Ying; Labosky, Patricia A.

    2009-01-01

    The Foxd3 forkhead transcription factor is required for maintaining pluripotent cells in the early mouse embryo and for the establishment of murine embryonic stem (ES) cell lines. To begin to understand the role of Foxd3 in ES cell maintenance, we derived ES cell lines from blastocysts that carried two conditional Foxd3 alleles and a tamoxifen-inducible Cre transgene. Tamoxifen treatment produced a rapid and near complete loss of Foxd3 mRNA and protein. Foxd3-deficient ES cells maintained a normal proliferation rate but displayed increased apoptosis, and clonally dispersed ES cells showed a decreased ability to self-renew. Under either self-renewal or differentiation-promoting culture conditions we observed a strong, precocious differentiation of Foxd3 mutant ES cells along multiple lineages including trophectoderm, endoderm and mesendoderm. This profound alteration in biological behavior occurred in the face of continued expression of factors known to induce pluripotency including Oct4, Sox2 and Nanog. We present a model for the role of Foxd3 in repressing differentiation, promoting self-renewal and maintaining survival of mouse ES cells. PMID:18653770

  17. Pursuing Self-Renewal and Pluripotency with the Stem Cell Factor Nanog

    PubMed Central

    Saunders, Arven; Faiola, Francesco; Wang, Jianlong

    2013-01-01

    Pluripotent embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) hold great promise for future use in tissue replacement therapies due to their ability to self-renew indefinitely and to differentiate into all adult cell types. Harnessing this therapeutic potential efficiently requires a much deeper understanding of the molecular processes at work within the pluripotency network. The transcription factors Nanog, Oct4, and Sox2 reside at the core of this network, where they interact and regulate their own expression as well as that of numerous other pluripotency factors. Of these core factors, Nanog is critical for blocking the differentiation of pluripotent cells, and more importantly, for establishing the pluripotent ground state during somatic cell reprogramming. Both mouse and human Nanog are able to form dimers in vivo, allowing them to preferentially interact with certain factors and perform unique functions. Recent studies have identified an evolutionary functional conservation among vertebrate Nanog orthologs from chick, zebrafish, and the axolotl salamander, adding an additional layer of complexity to Nanog function. Here we present a detailed overview of published work focusing on Nanog structure, function, dimerization, and regulation at the genetic and post-translational levels with regard to the establishment and maintenance of pluripotency. The full spectrum of Nanog function in pluripotent stem cells and in cancer is only beginning to be revealed. We therefore use this evidence to advocate for more comprehensive analysis of Nanog in the context of disease, development, and regeneration. PMID:23653415

  18. TGFβ signaling regulates the choice between pluripotent and neural fates during reprogramming of human urine derived cells

    PubMed Central

    Wang, Lihui; Li, Xirui; Huang, Wenhao; Zhou, Tiancheng; Wang, Haitao; Lin, Aiping; Hutchins, Andrew Paul; Su, Zhenghui; Chen, Qianyu; Pei, Duanqing; Pan, Guangjin

    2016-01-01

    Human urine cells (HUCs) can be reprogrammed into neural progenitor cells (NPCs) or induced pluripotent stem cells (iPSCs) with defined factors and a small molecule cocktail, but the underlying fate choice remains unresolved. Here, through sequential removal of individual compound from small molecule cocktail, we showed that A8301, a TGFβ signaling inhibitor, is sufficient to switch the cell fate from iPSCs into NPCs in OSKM-mediated HUCs reprogramming. However, TGFβ exposure at early stage inhibits HUCs reprogramming by promoting EMT. Base on these data, we developed an optimized approach for generation of NPCs or iPSCs from HUCs with significantly improved efficiency by regulating TGFβ activity at different reprogramming stages. This approach provides a simplified and improved way for HUCs reprogramming, thus would be valuable for banking human iPSCs or NPCs from people with different genetic background. PMID:26935433

  19. Cell Pluripotency Levels Associated with Imprinted Genes in Human

    PubMed Central

    Yuan, Liyun; Tang, Xiaoyan; Zhang, Binyan; Ding, Guohui

    2015-01-01

    Pluripotent stem cells are exhibited similarly in the morphology, gene expression, growth properties, and epigenetic modification with embryonic stem cells (ESCs). However, it is still controversial that the pluripotency of induced pluripotent stem cell (iPSC) is much inferior to ESC, and the differentiation capacity of iPSC and ESC can also be separated by transcriptome and epigenetics. miRNAs, which act in posttranscriptional regulation of gene expression and are involved in many basic cellular processes, may reveal the answer. In this paper, we focused on identifying the hidden relationship between miRNAs and imprinted genes in cell pluripotency. Total miRNA expression patterns in iPSC and ES cells were comprehensively analysed and linked with human imprinted genes, which show a global picture of their potential function in pluripotent level. A new CPA4-KLF14 region which locates in chromosomal homologous segments (CHSs) within mammals and include both imprinted genes and significantly expressed miRNAs was first identified. Molecular network analysis showed genes interacted with imprinted genes closely and enriched in modules such as cancer, cell death and survival, and tumor morphology. This imprinted region may provide a new look for those who are interested in cell pluripotency of hiPSCs and hESCs. PMID:26504487

  20. Cell Pluripotency Levels Associated with Imprinted Genes in Human.

    PubMed

    Yuan, Liyun; Tang, Xiaoyan; Zhang, Binyan; Ding, Guohui

    2015-01-01

    Pluripotent stem cells are exhibited similarly in the morphology, gene expression, growth properties, and epigenetic modification with embryonic stem cells (ESCs). However, it is still controversial that the pluripotency of induced pluripotent stem cell (iPSC) is much inferior to ESC, and the differentiation capacity of iPSC and ESC can also be separated by transcriptome and epigenetics. miRNAs, which act in posttranscriptional regulation of gene expression and are involved in many basic cellular processes, may reveal the answer. In this paper, we focused on identifying the hidden relationship between miRNAs and imprinted genes in cell pluripotency. Total miRNA expression patterns in iPSC and ES cells were comprehensively analysed and linked with human imprinted genes, which show a global picture of their potential function in pluripotent level. A new CPA4-KLF14 region which locates in chromosomal homologous segments (CHSs) within mammals and include both imprinted genes and significantly expressed miRNAs was first identified. Molecular network analysis showed genes interacted with imprinted genes closely and enriched in modules such as cancer, cell death and survival, and tumor morphology. This imprinted region may provide a new look for those who are interested in cell pluripotency of hiPSCs and hESCs. PMID:26504487

  1. The cell cycle and pluripotency.

    PubMed

    Hindley, Christopher; Philpott, Anna

    2013-04-15

    PSCs (pluripotent stem cells) possess two key properties that have made them the focus of global research efforts in regenerative medicine: they have unlimited expansion potential under conditions which favour their preservation as PSCs and they have the ability to generate all somatic cell types upon differentiation (pluripotency). Conditions have been defined in vitro in which pluripotency is maintained, or else differentiation is favoured and is directed towards specific somatic cell types. However, an unanswered question is whether or not the core cell cycle machinery directly regulates the pluripotency and differentiation properties of PSCs. If so, then manipulation of the cell cycle may represent an additional tool by which in vitro maintenance or differentiation of PSCs may be controlled in regenerative medicine. The present review aims to summarize our current understanding of links between the core cell cycle machinery and the maintenance of pluripotency in ESCs (embryonic stem cells) and iPSCs (induced PSCs). PMID:23535166

  2. Acetylation-dependent regulation of essential iPS-inducing factors: a regulatory crossroad for pluripotency and tumorigenesis

    PubMed Central

    Dai, Xiangpeng; Liu, Pengda; Lau, Alan W; Liu, Yueyong; Inuzuka, Hiroyuki

    2014-01-01

    Induced pluripotent stem (iPS) cells can be generated from somatic cells by coexpression of four transcription factors: Sox2, Oct4, Klf4, and c-Myc. However, the low efficiency in generating iPS cells and the tendency of tumorigenesis hinder the therapeutic applications for iPS cells in treatment of human diseases. To this end, it remains largely unknown how the iPS process is subjected to regulation by upstream signaling pathway(s). Here, we report that Akt regulates the iPS process by modulating posttranslational modifications of these iPS factors in both direct and indirect manners. Specifically, Akt directly phosphorylates Oct4 to modulate the Oct4/Sox2 heterodimer formation. Furthermore, Akt either facilitates the p300-mediated acetylation of Oct4, Sox2, and Klf4, or stabilizes Klf4 by inactivating GSK3, thus indirectly modulating stemness. As tumorigenesis shares possible common features and mechanisms with iPS, our study suggests that Akt inhibition might serve as a cancer therapeutic approach to target cancer stem cells. PMID:25116380

  3. MiRNA-Mediated Regulation of the SWI/SNF Chromatin Remodeling Complex Controls Pluripotency and Endodermal Differentiation in Human ESCs.

    PubMed

    Wade, Staton L; Langer, Lee F; Ward, James M; Archer, Trevor K

    2015-10-01

    MicroRNAs and chromatin remodeling complexes represent powerful epigenetic mechanisms that regulate the pluripotent state. miR-302 is a strong inducer of pluripotency, which is characterized by a distinct chromatin architecture. This suggests that miR-302 regulates global chromatin structure; however, a direct relationship between miR-302 and chromatin remodelers has not been established. Here, we provide data to show that miR-302 regulates Brg1 chromatin remodeling complex composition in human embryonic stem cells (hESCs) through direct repression of the BAF53a and BAF170 subunits. With the subsequent overexpression of BAF170 in hESCs, we show that miR-302's inhibition of BAF170 protein levels can affect the expression of genes involved in cell proliferation. Furthermore, miR-302-mediated repression of BAF170 regulates pluripotency by positively influencing mesendodermal differentiation. Overexpression of BAF170 in hESCs led to biased differentiation toward the ectoderm lineage during EB formation and severely hindered directed definitive endoderm differentiation. Taken together, these data uncover a direct regulatory relationship between miR-302 and the Brg1 chromatin remodeling complex that controls gene expression and cell fate decisions in hESCs and suggests that similar mechanisms are at play during early human development. PMID:26119756

  4. A hybrid microfluidic system for regulation of neural differentiation in induced pluripotent stem cells.

    PubMed

    Hesari, Zahra; Soleimani, Massoud; Atyabi, Fatemeh; Sharifdini, Meysam; Nadri, Samad; Warkiani, Majid Ebrahimi; Zare, Mehrak; Dinarvand, Rassoul

    2016-06-01

    Controlling cellular orientation, proliferation, and differentiation is valuable in designing organ replacements and directing tissue regeneration. In the present study, we developed a hybrid microfluidic system to produce a dynamic microenvironment by placing aligned PDMS microgrooves on surface of biodegradable polymers as physical guidance cues for controlling the neural differentiation of human induced pluripotent stem cells (hiPSCs). The neuronal differentiation capacity of cultured hiPSCs in the microfluidic system and other control groups was investigated using quantitative real time PCR (qPCR) and immunocytochemistry. The functionally of differentiated hiPSCs inside hybrid system's scaffolds was also evaluated on the rat hemisected spinal cord in acute phase. Implanted cell's fate was examined using tissue freeze section and the functional recovery was evaluated according to the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale. Our results confirmed the differentiation of hiPSCs to neuronal cells on the microfluidic device where the expression of neuronal-specific genes was significantly higher compared to those cultured on the other systems such as plain tissue culture dishes and scaffolds without fluidic channels. Although survival and integration of implanted hiPSCs did not lead to a significant functional recovery, we believe that combination of fluidic channels with nanofiber scaffolds provides a great microenvironment for neural tissue engineering, and can be used as a powerful tool for in situ monitoring of differentiation potential of various kinds of stem cells. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1534-1543, 2016. PMID:26914600

  5. MeCP2 Regulates the Synaptic Expression of a Dysbindin-BLOC-1 Network Component in Mouse Brain and Human Induced Pluripotent Stem Cell-Derived Neurons

    PubMed Central

    Larimore, Jennifer; Ryder, Pearl V.; Kim, Kun-Yong; Ambrose, L. Alex; Chapleau, Christopher; Calfa, Gaston; Gross, Christina; Bassell, Gary J.; Pozzo-Miller, Lucas; Smith, Yoland; Talbot, Konrad; Park, In-Hyun; Faundez, Victor

    2013-01-01

    Clinical, epidemiological, and genetic evidence suggest overlapping pathogenic mechanisms between autism spectrum disorder (ASD) and schizophrenia. We tested this hypothesis by asking if mutations in the ASD gene MECP2 which cause Rett syndrome affect the expression of genes encoding the schizophrenia risk factor dysbindin, a subunit of the biogenesis of lysosome-related organelles complex-1 (BLOC-1), and associated interacting proteins. We measured mRNA and protein levels of key components of a dysbindin interaction network by, quantitative real time PCR and quantitative immunohistochemistry in hippocampal samples of wild-type and Mecp2 mutant mice. In addition, we confirmed results by performing immunohistochemistry of normal human hippocampus and quantitative qRT-PCR of human inducible pluripotent stem cells (iPSCs)-derived human neurons from Rett syndrome patients. We defined the distribution of the BLOC-1 subunit pallidin in human and mouse hippocampus and contrasted this distribution with that of symptomatic Mecp2 mutant mice. Neurons from mutant mice and Rett syndrome patients displayed selectively reduced levels of pallidin transcript. Pallidin immunoreactivity decreased in the hippocampus of symptomatic Mecp2 mutant mice, a feature most prominent at asymmetric synapses as determined by immunoelectron microcopy. Pallidin immunoreactivity decreased concomitantly with reduced BDNF content in the hippocampus of Mecp2 mice. Similarly, BDNF content was reduced in the hippocampus of BLOC-1 deficient mice suggesting that genetic defects in BLOC-1 are upstream of the BDNF phenotype in Mecp2 deficient mice. Our results demonstrate that the ASD-related gene Mecp2 regulates the expression of components belonging to the dysbindin interactome and these molecular differences may contribute to synaptic phenotypes that characterize Mecp2 deficiencies and ASD. PMID:23750231

  6. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements

    PubMed Central

    Schoenfelder, Stefan; Furlan-Magaril, Mayra; Mifsud, Borbala; Tavares-Cadete, Filipe; Sugar, Robert; Javierre, Biola-Maria; Nagano, Takashi; Katsman, Yulia; Sakthidevi, Moorthy; Wingett, Steven W.; Dimitrova, Emilia; Dimond, Andrew; Edelman, Lucas B.; Elderkin, Sarah; Tabbada, Kristina; Darbo, Elodie; Andrews, Simon; Herman, Bram; Higgs, Andy; LeProust, Emily; Osborne, Cameron S.; Mitchell, Jennifer A.

    2015-01-01

    The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for >22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression. PMID:25752748

  7. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements.

    PubMed

    Schoenfelder, Stefan; Furlan-Magaril, Mayra; Mifsud, Borbala; Tavares-Cadete, Filipe; Sugar, Robert; Javierre, Biola-Maria; Nagano, Takashi; Katsman, Yulia; Sakthidevi, Moorthy; Wingett, Steven W; Dimitrova, Emilia; Dimond, Andrew; Edelman, Lucas B; Elderkin, Sarah; Tabbada, Kristina; Darbo, Elodie; Andrews, Simon; Herman, Bram; Higgs, Andy; LeProust, Emily; Osborne, Cameron S; Mitchell, Jennifer A; Luscombe, Nicholas M; Fraser, Peter

    2015-04-01

    The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for >22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression. PMID:25752748

  8. Molecular Analysis of Neutrophil Differentiation from Human Induced Pluripotent Stem Cells Delineates the Kinetics of Key Regulators of Hematopoiesis.

    PubMed

    Sweeney, Colin L; Teng, Ruifeng; Wang, Hongmei; Merling, Randall K; Lee, Janet; Choi, Uimook; Koontz, Sherry; Wright, Daniel G; Malech, Harry L

    2016-06-01

    In vitro generation of mature neutrophils from human induced pluripotent stem cells (iPSCs) requires hematopoietic progenitor development followed by myeloid differentiation. The purpose of our studies was to extensively characterize this process, focusing on the critical window of development between hemogenic endothelium, hematopoietic stem/progenitor cells (HSPCs), and myeloid commitment, to identify associated regulators and markers that might enable the stem cell field to improve the efficiency and efficacy of iPSC hematopoiesis. We utilized a four-stage differentiation protocol involving: embryoid body (EB) formation (stage-1); EB culture with hematopoietic cytokines (stage-2); HSPC expansion (stage-3); and neutrophil maturation (stage-4). CD34(+) CD45(-) putative hemogenic endothelial cells were observed in stage-3 cultures, and expressed VEGFR-2/Flk-1/KDR and VE-cadherin endothelial markers, GATA-2, AML1/RUNX1, and SCL/TAL1 transcription factors, and endothelial/HSPC-associated microRNAs miR-24, miR-125a-3p, miR-126/126*, and miR-155. Upon further culture, CD34(+) CD45(-) cells generated CD34(+) CD45(+) HSPCs that produced hematopoietic CFUs. Mid-stage-3 CD34(+) CD45(+) HSPCs exhibited increased expression of GATA-2, AML1/RUNX1, SCL/TAL1, C/EBPα, and PU.1 transcription factors, but exhibited decreased expression of HSPC-associated microRNAs, and failed to engraft in immune-deficient mice. Mid-stage-3 CD34(-) CD45(+) cells maintained PU.1 expression and exhibited increased expression of hematopoiesis-associated miR-142-3p/5p and a trend towards increased miR-223 expression, indicating myeloid commitment. By late Stage-4, increased CD15, CD16b, and C/EBPɛ expression were observed, with 25%-65% of cells exhibiting morphology and functions of mature neutrophils. These studies demonstrate that hematopoiesis and neutrophil differentiation from human iPSCs recapitulates many features of embryonic hematopoiesis and neutrophil production in marrow, but reveals

  9. Maintenance of Self-Renewal and Pluripotency in J1 Mouse Embryonic Stem Cells through Regulating Transcription Factor and MicroRNA Expression Induced by PD0325901

    PubMed Central

    Ai, Zhiying; Shao, Jingjing; Shi, Xinglong; Yu, Mengying; Wu, Yongyan; Du, Juan; Zhang, Yong; Guo, Zekun

    2016-01-01

    Embryonic stem cells (ESCs) have the ability to grow indefinitely and retain their pluripotency in culture, and this self-renewal capacity is governed by several crucial molecular pathways controlled by specific regulatory genes and epigenetic modifications. It is reported that multiple epigenetic regulators, such as miRNA and pluripotency factors, can be tightly integrated into molecular pathways and cooperate to maintain self-renewal of ESCs. However, mouse ESCs in serum-containing medium seem to be heterogeneous due to the self-activating differentiation signal of MEK/ERK. Thus, to seek for the crucial miRNA and key regulatory genes that establish ESC properties in MEK/ERK pathway, we performed microarray analysis and small RNA deep-sequencing of J1 mESCs treated with or without PD0325901 (PD), a well-known inhibitor of MEK/ERK signal pathway, followed by verification of western blot analysis and quantitative real-time PCR verification; we found that PD regulated the transcript expressions related to self-renewal and differentiation and antagonized the action of retinoic acid- (RA-) induced differentiation. Moreover, PD can significantly modulate the expressions of multiple miRNAs that have crucial functions in ESC development. Overall, our results demonstrate that PD could enhance ESC self-renewal capacity both by key regulatory genes and ES cell-specific miRNA, which in turn influences ESC self-renewal and cellular differentiation. PMID:26770202

  10. mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging.

    PubMed

    Menendez, Javier A; Vellon, Luciano; Oliveras-Ferraros, Cristina; Cufí, Sílvia; Vazquez-Martin, Alejandro

    2011-11-01

    mitochondrial function and in the accelerated onset of the glycolytic metabolism that is required to fuel reprogramming. By critically exploring how mTOR-regulated senescence, bioenergetic infrastructure and autophagy can actively drive the reprogramming of somatic cells to pluripotency, we define a metabolic roadmap that may be helpful for designing pharmacological and behavioral interventions to prevent or retard the dysfunction/exhaustion of aging stem cell populations. PMID:22052357

  11. Nanog RNA-binding proteins YBX1 and ILF3 affect pluripotency of embryonic stem cells.

    PubMed

    Guo, Chuanliang; Xue, Yan; Yang, Guanheng; Yin, Shang; Shi, Wansheng; Cheng, Yan; Yan, Xiaoshuang; Fan, Shuyue; Zhang, Huijun; Zeng, Fanyi

    2016-08-01

    Nanog is a well-known transcription factor that plays a fundamental role in stem cell self-renewal and the maintenance of their pluripotent cell identity. There remains a large data gap with respect to the spectrum of the key pluripotency transcription factors' interaction partners. Limited information is available concerning Nanog-associated RNA-binding proteins (RBPs), and the intrinsic protein-RNA interactions characteristic of the regulatory activities of Nanog. Herein, we used an improved affinity protocol to purify Nanog-interacting RBPs from mouse embryonic stem cells (ESCs), and 49 RBPs of Nanog were identified. Among them, the interaction of YBX1 and ILF3 with Nanog mRNA was further confirmed by in vitro assays, such as Western blot, RNA immunoprecipitation (RIP), and ex vivo methods, such as immunofluorescence staining and fluorescent in situ hybridization (FISH), MS2 in vivo biotin-tagged RNA affinity purification (MS2-BioTRAP). Interestingly, RNAi studies revealed that YBX1 and ILF3 positively affected the expression of Nanog and other pluripotency-related genes. Particularly, downregulation of YBX1 or ILF3 resulted in high expression of mesoderm markers. Thus, a reduction in the expression of YBX1 and ILF3 controls the expression of pluripotency-related genes in ESCs, suggesting their roles in further regulation of the pluripotent state of ESCs. PMID:26289635

  12. Actin-Regulator Feedback Interactions during Endocytosis.

    PubMed

    Wang, Xinxin; Galletta, Brian J; Cooper, John A; Carlsson, Anders E

    2016-03-29

    Endocytosis mediated by clathrin, a cellular process by which cells internalize membrane receptors and their extracellular ligands, is an important component of cell signaling regulation. Actin polymerization is involved in endocytosis in varying degrees depending on the cellular context. In yeast, clathrin-mediated endocytosis requires a pulse of polymerized actin and its regulators, which recruit and activate the Arp2/3 complex. In this article, we seek to identify the main protein-protein interactions that 1) cause actin and its regulators to appear in pulses, and 2) determine the effects of key mutations and drug treatments on actin and regulator assembly. We perform a joint modeling/experimental study of actin and regulator dynamics during endocytosis in the budding yeast Saccharomyces cerevisiae. We treat both a stochastic model that grows an explicit three-dimensional actin network, and a simpler two-variable Fitzhugh-Nagumo type model. The models include a negative-feedback interaction of F-actin onto the Arp2/3 regulators. Both models explain the pulse time courses and the effects of interventions on actin polymerization: the surprising increase in the peak F-actin count caused by reduced regulator branching activity, the increase in F-actin resulting from slowing of actin disassembly, and the increased Arp2/3 regulator lifetime resulting from latrunculin treatment. In addition, they predict that decreases in the regulator branching activity lead to increases in accumulation of regulators, and we confirmed this prediction with experiments on yeast harboring mutations in the Arp2/3 regulators, using quantitative fluorescence microscopy. Our experimental measurements suggest that the regulators act quasi-independently, in the sense that accumulation of a particular regulator is most strongly affected by mutations of that regulator, as opposed to the others. PMID:27028652

  13. Open chromatin in pluripotency and reprogramming

    PubMed Central

    Meshorer, Eran; Ramalho-Santos, Miguel

    2013-01-01

    Pluripotent stem cells can be derived from embryos or induced from adult cells by reprogramming. They are unique from any other stem cell in that they can give rise to all cell types of the body. Recent findings indicate that a particularly open chromatin state contributes to maintenance of pluripotency. Two emerging principles are that: specific factors maintain a globally open chromatin state that is accessible for transcriptional activation; and other chromatin regulators contribute locally to the silencing of lineage-specific genes until differentiation is triggered. These same principles may apply during reacquisition of an open chromatin state upon reprogramming to pluripotency, and during de-differentiation in cancer. PMID:21179060

  14. LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration.

    PubMed

    Wang, Lijun; Zhao, Yu; Bao, Xichen; Zhu, Xihua; Kwok, Yvonne Ka-Yin; Sun, Kun; Chen, Xiaona; Huang, Yongheng; Jauch, Ralf; Esteban, Miguel A; Sun, Hao; Wang, Huating

    2015-03-01

    Emerging studies document the roles of long non-coding RNAs (LncRNAs) in regulating gene expression at chromatin level but relatively less is known how they regulate DNA methylation. Here we identify an lncRNA, Dum (developmental pluripotency-associated 2 (Dppa2) Upstream binding Muscle lncRNA) in skeletal myoblast cells. The expression of Dum is dynamically regulated during myogenesis in vitro and in vivo. It is also transcriptionally induced by MyoD binding upon myoblast differentiation. Functional analyses show that it promotes myoblast differentiation and damage-induced muscle regeneration. Mechanistically, Dum was found to silence its neighboring gene, Dppa2, in cis through recruiting Dnmt1, Dnmt3a and Dnmt3b. Furthermore, intrachromosomal looping between Dum locus and Dppa2 promoter is necessary for Dum/Dppa2 interaction. Collectively, we have identified a novel lncRNA that interacts with Dnmts to regulate myogenesis. PMID:25686699

  15. LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration

    PubMed Central

    Wang, Lijun; Zhao, Yu; Bao, Xichen; Zhu, Xihua; Kwok, Yvonne Ka-yin; Sun, Kun; Chen, Xiaona; Huang, Yongheng; Jauch, Ralf; Esteban, Miguel A; Sun, Hao; Wang, Huating

    2015-01-01

    Emerging studies document the roles of long non-coding RNAs (LncRNAs) in regulating gene expression at chromatin level but relatively less is known how they regulate DNA methylation. Here we identify an lncRNA, Dum (developmental pluripotency-associated 2 (Dppa2) Upstream binding Muscle lncRNA) in skeletal myoblast cells. The expression of Dum is dynamically regulated during myogenesis in vitro and in vivo. It is also transcriptionally induced by MyoD binding upon myoblast differentiation. Functional analyses show that it promotes myoblast differentiation and damage-induced muscle regeneration. Mechanistically, Dum was found to silence its neighboring gene, Dppa2, in cis through recruiting Dnmt1, Dnmt3a and Dnmt3b. Furthermore, intrachromosomal looping between Dum locus and Dppa2 promoter is necessary for Dum/Dppa2 interaction. Collectively, we have identified a novel lncRNA that interacts with Dnmts to regulate myogenesis. PMID:25686699

  16. Path from schizophrenia genomics to biology: gene regulation and perturbation in neurons derived from induced pluripotent stem cells and genome editing

    PubMed Central

    Duan, Jubao

    2015-01-01

    Schizophrenia (SZ) is a devastating mental disorder afflicting 1% of the population. Recent genome-wide association studies (GWASs) of SZ have identified >100 risk loci. However, the causal variants/genes and the causal mechanisms remain largely unknown, which hinders the translation of GWAS findings into disease biology and drug targets. Most risk variants are noncoding, thus likely regulate gene expression. A major mechanism of transcriptional regulation is chromatin remodeling, and open chromatin is a versatile predictor of regulatory sequences. MicroRNA-mediated post-transcriptional regulation plays an important role in SZ pathogenesis. Neurons differentiated from patient-specific induced pluripotent stem cells (iPSCs) provide an experimental model to characterize the genetic perturbation of regulatory variants that are often specific to cell type and/or developmental stage. The emerging genome-editing technology enables the creation of isogenic iPSCs and neurons to efficiently characterize the effects of SZ-associated regulatory variants on SZ-relevant molecular and cellular phenotypes involving dopaminergic, glutamatergic, and GABAergic neurotransmissions. SZ GWAS findings equipped with the emerging functional genomics approaches provide an unprecedented opportunity for understanding new disease biology and identifying novel drug targets. PMID:25575480

  17. Fate by RNA methylation: m6A steers stem cell pluripotency.

    PubMed

    Zhao, Boxuan Simen; He, Chuan

    2015-01-01

    The N 6-methyladenosine (m6A) modification of mRNA has a crucial function in regulating pluripotency in murine stem cells: it facilitates resolution of naïve pluripotency towards differentiation. PMID:25723450

  18. Fyn Kinase regulates GluN2B subunit-dominant NMDA receptors in human induced pluripotent stem cell-derived neurons

    PubMed Central

    Zhang, Wen-Bo; Ross, P. Joel; Tu, YuShan; Wang, Yongqian; Beggs, Simon; Sengar, Ameet S.; Ellis, James; Salter, Michael W.

    2016-01-01

    NMDA receptor (NMDAR)-mediated fast excitatory neurotransmission is implicated in a broad range of physiological and pathological processes in the mammalian central nervous system. The function and regulation of NMDARs have been extensively studied in neurons from rodents and other non-human species, and in recombinant expression systems. Here, we investigated human NMDARs in situ by using neurons produced by directed differentiation of human induced pluripotent stem cells (iPSCs). The resultant cells showed electrophysiological characteristics demonstrating that they are bona fide neurons. In particular, human iPSC-derived neurons expressed functional ligand-gated ion channels, including NMDARs, AMPA receptors, GABAA receptors, as well as glycine receptors. Pharmacological and electrophysiological properties of NMDAR-mediated currents indicated that these were dominated by receptors containing GluN2B subunits. The NMDAR currents were suppressed by genistein, a broad-spectrum tyrosine kinase inhibitor. The NMDAR currents were also inhibited by a Fyn-interfering peptide, Fyn(39–57), but not a Src-interfering peptide, Src(40–58). Together, these findings are the first evidence that tyrosine phosphorylation regulates the function of NMDARs in human iPSC-derived neurons. Our findings provide a basis for utilizing human iPSC-derived neurons in screening for drugs targeting NMDARs in neurological disorders. PMID:27040756

  19. Tissue Interactions Regulating Tooth Development and Renewal.

    PubMed

    Balic, Anamaria; Thesleff, Irma

    2015-01-01

    Reciprocal interactions between epithelial and mesenchymal tissues play a fundamental role in the morphogenesis of teeth and regulate all aspects of tooth development. Extensive studies on mouse tooth development over the past 25 years have uncovered the molecular details of the signaling networks mediating these interactions (reviewed by Jussila & Thesleff, 2012; Lan, Jia, & Jiang, 2014). Five conserved signaling pathways, namely, the Wnt, BMP, FGF, Shh, and Eda, are involved in the mediation of the successive reciprocal epithelial-mesenchymal cross talk which follows the general principle of morphogenetic interactions (Davidson, 1993). The pathways regulate the expression of transcription factors which confer the identity of dental epithelium and mesenchyme. The signals and transcription factors are integrated in complex signaling networks whose fine-tuning allows the generation of the variation in tooth morphologies. In this review, we describe the principles and molecular mechanisms of the epithelial-mesenchymal interactions regulating successive stages of tooth formation: (i) the initiation of tooth development, with special reference to the shift of tooth-forming potential from epithelium to mesenchyme; (ii) the morphogenesis of the tooth crown, focusing on the roles of epithelial signaling centers; (iii) the differentiation of odontoblasts and ameloblasts, which produce dentin and enamel, respectively; and (iv) the maintenance of dental stem cells, which support the continuous growth of teeth. PMID:26589925

  20. Mass Spectrometry–based Proteomic Analysis of the Matrix Microenvironment in Pluripotent Stem Cell Culture*

    PubMed Central

    Hughes, Chris; Radan, Lida; Chang, Wing Y.; Stanford, William L.; Betts, Dean H.; Postovit, Lynne-Marie; Lajoie, Gilles A.

    2012-01-01

    The cellular microenvironment comprises soluble factors, support cells, and components of the extracellular matrix (ECM) that combine to regulate cellular behavior. Pluripotent stem cells utilize interactions between support cells and soluble factors in the microenvironment to assist in the maintenance of self-renewal and the process of differentiation. However, the ECM also plays a significant role in shaping the behavior of human pluripotent stem cells, including embryonic stem cells (hESCs) and induced pluripotent stem cells. Moreover, it has recently been observed that deposited factors in a hESC-conditioned matrix have the potential to contribute to the reprogramming of metastatic melanoma cells. Therefore, the ECM component of the pluripotent stem cell microenvironment necessitates further analysis. In this study we first compared the self-renewal and differentiation properties of hESCs grown on Matrigel™ pre-conditioned by hESCs to those on unconditioned Matrigel™. We determined that culture on conditioned Matrigel™ prevents differentiation when supportive growth factors are removed from the culture medium. To investigate and identify factors potentially responsible for this beneficial effect, we performed a defined SILAC MS-based proteomics screen of hESC-conditioned Matrigel™. From this proteomics screen, we identified over 80 extracellular proteins in matrix conditioned by hESCs and induced pluripotent stem cells. These included matrix-associated factors that participate in key stem cell pluripotency regulatory pathways, such as Nodal/Activin and canonical Wnt signaling. This work represents the first investigation of stem-cell-derived matrices from human pluripotent stem cells using a defined SILAC MS-based proteomics approach. PMID:23023296

  1. Snapshots of Pluripotency

    PubMed Central

    Tesar, Paul J.

    2016-01-01

    Summary Pluripotency is a unique developmental state that lays the foundation upon which the entire embryo is built. Pluripotent cells possess the unique capacity to generate, in an exquisitely defined sequence, all the distinct cell types comprising the fetal and adult organism. The discovery of pluripotent stem cells and now the ability to generate them from differentiated cells has had a profound impact on a vast array of scientific disciplines. In addition to their clinical potential as a source of therapeutic cell types, pluripotent stem cells provide scalable access to otherwise experimentally inaccessible development- and disease-associated biology. Here I provide my perspective on the continuum of pluripotency in the early mammalian embryo. I also discuss how novel genomic technologies are now enabling the capture of molecular “snapshots” of the several distinct pluripotent states that stem cells undergo during this pivotal developmental period. PMID:26833092

  2. Snapshots of Pluripotency.

    PubMed

    Tesar, Paul J

    2016-02-01

    Pluripotency is a unique developmental state that lays the foundation upon which the entire embryo is built. Pluripotent cells possess the unique capacity to generate, in an exquisitely defined sequence, all the distinct cell types comprising the fetal and adult organism. The discovery of pluripotent stem cells and now the ability to generate them from differentiated cells has had a profound impact on a vast array of scientific disciplines. In addition to their clinical potential as a source of therapeutic cell types, pluripotent stem cells provide scalable access to otherwise experimentally inaccessible development- and disease-associated biology. Here I provide my perspective on the continuum of pluripotency in the early mammalian embryo. I also discuss how novel genomic technologies are now enabling the capture of molecular "snapshots" of the several distinct pluripotent states that stem cells undergo during this pivotal developmental period. PMID:26833092

  3. Regulation of amino acid transporters in pluripotent cell populations in the embryo and in culture; novel roles for sodium-coupled neutral amino acid transporters.

    PubMed

    Tan, Boon Siang Nicholas; Rathjen, Peter D; Harvey, Alexandra J; Gardner, David K; Rathjen, Joy

    2016-08-01

    The developmental outcomes of preimplantation mammalian embryos are regulated directly by the surrounding microenvironment, and inappropriate concentrations of amino acids, or the loss of amino acid-sensing mechanisms, can be detrimental and impact further development. A specific role for l-proline in the differentiation of embryonic stem (ES) cells, a cell population derived from the blastocyst, has been shown in culture. l-proline acts as a signalling molecule, exerting its effects through cell uptake and subsequent metabolism. Uptake in ES cells occurs predominantly through the sodium-coupled neutral amino acid transporter 2, Slc38a2 (SNAT2). Dynamic expression of amino acid transporters has been shown in the early mammalian embryo, reflecting functional roles for amino acids in embryogenesis. The expression of SNAT2 and family member Slc38a1 (SNAT1) was determined in mouse embryos from the 2-cell stage through to the early post-implantation pre-gastrulation embryo. Key changes in expression were validated in cell culture models of development. Both transporters showed temporal dynamic expression patterns and changes in intracellular localisation as differentiation progressed. Changes in transporter expression likely reflect different amino acid requirements during development. Findings include the differential expression of SNAT1 in the inner and outer cells of the compacted morula and nuclear localisation of SNAT2 in the trophectoderm and placental lineages. Furthermore, SNAT2 expression was up-regulated in the epiblast prior to primitive ectoderm formation, an expression pattern consistent with a role for the transporter in later developmental decisions within the pluripotent lineage. We propose that the differential expression of SNAT2 in the epiblast provides evidence for an l-proline-mediated mechanism contributing to the regulation of embryonic development. PMID:27373508

  4. Dynamic regulation of lipid-protein interactions.

    PubMed

    Martfeld, Ashley N; Rajagopalan, Venkatesan; Greathouse, Denise V; Koeppe, Roger E

    2015-09-01

    We review the importance of helix motions for the function of several important categories of membrane proteins and for the properties of several model molecular systems. For voltage-gated potassium or sodium channels, sliding, tilting and/or rotational movements of the S4 helix accompanied by a swapping of cognate side-chain ion-pair interactions regulate the channel gating. In the seven-helix G protein-coupled receptors, exemplified by the rhodopsins, collective helix motions serve to activate the functional signaling. Peptides which initially associate with lipid-bilayer membrane surfaces may undergo dynamic transitions from surface-bound to tilted-transmembrane orientations, sometimes accompanied by changes in the molecularity, formation of a pore or, more generally, the activation of biological function. For single-span membrane proteins, such as the tyrosine kinases, an interplay between juxtamembrane and transmembrane domains is likely to be crucial for the regulation of dimer assembly that in turn is associated with the functional responses to external signals. Additionally, we note that experiments with designed single-span transmembrane helices offer fundamental insights into the molecular features that govern protein-lipid interactions. This article is part of a Special Issue entitled: Lipid-protein interactions. PMID:25666872

  5. Epigenomic regulation of host-microbiota interactions

    PubMed Central

    Alenghat, Theresa; Artis, David

    2014-01-01

    The trillions of beneficial commensal microorganisms that normally reside in the gastrointestinal tract have emerged as a critical source of environmentally-derived stimuli that can impact health and disease. However, the underlying cellular and molecular mechanisms that recognize commensal bacteria-derived signals and regulate mammalian homeostasis are just beginning to be defined. Highly coordinated epigenomic modifications allow mammals to alter the transcriptional program of a cell in response to environmental cues. These modifications may play a key role in regulating the dynamic relationship between mammals and their microbiota. Here we review recent advances in understanding of the interplay between the microbiota and mammalian epigenomic pathways, and highlight emerging findings that implicate a central role for histone deacetylases (HDACs) in orchestrating host-microbiota interactions. PMID:25443494

  6. The Affective Regulation of Social Interaction*

    PubMed Central

    Clore, Gerald L.; Pappas, Jesse

    2008-01-01

    The recent publication of David Heise’s Expressive Order (2007) provides an occasion for discussing some of the key ideas in Affect Control Theory. The theory proposes that a few dimensions of affective meaning provide a common basis for interrelating personal identities and social actions. It holds that during interpersonal interactions, social behavior is continually regulated to maintain an affective tone compatible with whatever social roles or identities define the situation. We outline the intellectual history of the proposed dimensions and of the idea that each social action invites an action from the other that has a particular location along these dimensions. We also relate these ideas to the Affect-as-Information hypothesis, an approach that often guides research in psychology on the role of affect in regulating judgment and thought. PMID:18461152

  7. Human induced pluripotent stem cell-derived hepatic cell lines as a new model for host interaction with hepatitis B virus

    PubMed Central

    Kaneko, Shun; Kakinuma, Sei; Asahina, Yasuhiro; Kamiya, Akihide; Miyoshi, Masato; Tsunoda, Tomoyuki; Nitta, Sayuri; Asano, Yu; Nagata, Hiroko; Otani, Satoshi; Kawai-Kitahata, Fukiko; Murakawa, Miyako; Itsui, Yasuhiro; Nakagawa, Mina; Azuma, Seishin; Nakauchi, Hiromitsu; Nishitsuji, Hironori; Ujino, Saneyuki; Shimotohno, Kunitada; Iwamoto, Masashi; Watashi, Koichi; Wakita, Takaji; Watanabe, Mamoru

    2016-01-01

    Hepatitis B virus (HBV) is not eradicated by current antiviral therapies due to persistence of HBV covalently closed circular DNA (cccDNA) in host cells, and thus development of novel culture models for productive HBV infection is urgently needed, which will allow the study of HBV cccDNA eradication. To meet this need, we developed culture models of HBV infection using human induced pluripotent stem cell-derived hepatocyte lineages, including immature proliferating hepatic progenitor-like cell lines (iPS-HPCs) and differentiated hepatocyte-like cells (iPS-Heps). These cells were susceptible to HBV infection, produced HBV particles, and maintained innate immune responses. The infection efficiency of HBV in iPS-HPCs predominantly depended on the expression levels of sodium taurocholate cotransporting polypeptide (NTCP), and was low relative to iPS-Heps: however, long-term culture of iPS-Heps was difficult. To provide a model for HBV persistence, iPS-HPCs overexpressing NTCP were established. The long-term persistence of HBV cccDNA was detected in iPS-HPCs overexpressing NTCP, and depended on the inhibition of the Janus-kinase signaling pathway. In conclusion, this study provides evidence that iPS-derived hepatic cell lines can be utilized for novel HBV culture models with genetic variation to investigate the interactions between HBV and host cells and the development of anti-HBV strategies. PMID:27386799

  8. Regulating Competing Supramolecular Interactions Using Ligand Concentration.

    PubMed

    Teunissen, Abraham J P; Paffen, Tim F E; Ercolani, Gianfranco; de Greef, Tom F A; Meijer, E W

    2016-06-01

    The complexity of biomolecular systems inevitably leads to a degree of competition between the noncovalent interactions involved. However, the outcome of biological processes is generally very well-defined often due to the competition of these interactions. In contrast, specificity in synthetic supramolecular systems is usually based on the presence of a minimum set of alternative assembly pathways. While the latter might simplify the system, it prevents the selection of specific structures and thereby limits the adaptivity of the system. Therefore, artificial systems containing competing interactions are vital to stimulate the development of more adaptive and lifelike synthetic systems. Here, we present a detailed study on the self-assembly behavior of a C2v-symmetrical tritopic molecule, functionalized with three self-complementary ureidopyrimidinone (UPy) motifs. Due to a shorter linker connecting one of these UPys, two types of cycles with different stabilities can be formed, which subsequently dimerize intermolecularly via the third UPy. The UPy complementary 2,7-diamido-1,8-naphthyridine (NaPy) motif was gradually added to this mixture in order to examine its effect on the cycle distribution. As a result of the C2v-symmetry of the tritopic UPy, together with small differences in binding strength, the cycle ratio can be regulated by altering the concentration of NaPy. We show that this ratio can be increased to an extent where one type of cycle is formed almost exclusively. PMID:27163942

  9. Phytohormone regulation of legume-rhizobia interactions.

    PubMed

    Ferguson, Brett J; Mathesius, Ulrike

    2014-07-01

    The symbiosis between legumes and nitrogen fixing bacteria called rhizobia leads to the formation of root nodules. Nodules are highly organized root organs that form in response to Nod factors produced by rhizobia, and they provide rhizobia with a specialized niche to optimize nutrient exchange and nitrogen fixation. Nodule development and invasion by rhizobia is locally controlled by feedback between rhizobia and the plant host. In addition, the total number of nodules on a root system is controlled by a systemic mechanism termed 'autoregulation of nodulation'. Both the local and the systemic control of nodulation are regulated by phytohormones. There are two mechanisms by which phytohormone signalling is altered during nodulation: through direct synthesis by rhizobia and through indirect manipulation of the phytohormone balance in the plant, triggered by bacterial Nod factors. Recent genetic and physiological evidence points to a crucial role of Nod factor-induced changes in the host phytohormone balance as a prerequisite for successful nodule formation. Phytohormones synthesized by rhizobia enhance symbiosis effectiveness but do not appear to be necessary for nodule formation. This review provides an overview of recent advances in our understanding of the roles and interactions of phytohormones and signalling peptides in the regulation of nodule infection, initiation, positioning, development, and autoregulation. Future challenges remain to unify hormone-related findings across different legumes and to test whether hormone perception, response, or transport differences among different legumes could explain the variety of nodules types and the predisposition for nodule formation in this plant family. In addition, the molecular studies carried out under controlled conditions will need to be extended into the field to test whether and how phytohormone contributions by host and rhizobial partners affect the long term fitness of the host and the survival and

  10. Steps to Pluripotent Learning: Provocative Teaching

    ERIC Educational Resources Information Center

    Rangachari, P. K.

    2011-01-01

    Education involves interactions between students and teachers in a societal framework. Teachers can best serve their students and society by making students flexible enough to thrive under uncertain conditions. They should, in a sense, nourish, nurture, provoke, and stimulate pluripotent "educatoblasts."

  11. Differentiation of hepatocytes from pluripotent stem cells

    PubMed Central

    Mallanna, Sunil K.

    2014-01-01

    Differentiation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells into hepatocyte-like cells provides a platform to study the molecular basis of human hepatocyte differentiation, to develop cell culture models of liver disease, and to potentially provide hepatocytes for treatment of end-stage liver disease. Additionally, hepatocyte-like cells generated from human pluripotent stem cells could serve as platforms for drug discovery, determination of pharmaceutical induced hepatotoxicity, and evaluation of idiosyncratic drug-drug interactions. Here, we describe a step-wise protocol previously developed in our laboratory that facilitates the highly efficient and reproducible differentiation of human pluripotent stem cells into hepatocyte-like cells. Our protocol uses defined culture conditions and closely recapitulates key developmental events that are found to occur during hepatogenesis. PMID:24510789

  12. Intricacies of Pluripotency.

    PubMed

    Bhartiya, Deepa

    2015-01-01

    Pluripotent stem cells have the potential to differentiate into 200 odd cell types present in adult body. Pluripotent stem cells available for regenerative medicine include embryonic stem (ES) cells, induced pluripotent stem (iPS) cells and very small ES-like stem (VSELs) cells. Nuclear OCT-4 is one of the crucial factors that dictate pluripotent state. Compared to ES/iPS cells grown in Petri dish, VSELs exist in adult body organs and results are emerging to suggest that they may have better potential to regenerate adult organs. This is because of their distinct epigenetic status as they are closer to the primordial germ cells from the epiblast-stage embryo compared to inner cell mass from which ES cells are obtained in vitro. We need to make special efforts to study them as they are very small in size and tend to get lost during processing. VSELs exist in adult organs, get mobilized in response to stress, undergo asymmetric cell divisions to give rise to tissue specific progenitors which further differentiate into various cell types and are possibly better candidates for regenerative medicine because they have no associated risk of tumor formation or immunological rejection. They are possibly also the 'embryonic remnants' in adult organs responsible for initiating cancer. Thus, rather than not accepting VSELs because they neither form teratoma nor divide in vitro like ES cells, it is time that scientific community should think of revising the definition of the term 'pluripotency'. PMID:26195889

  13. The Anti-inflammatory Protein TSG-6 Regulates Chemokine Function by Inhibiting Chemokine/Glycosaminoglycan Interactions*

    PubMed Central

    Dyer, Douglas P.; Salanga, Catherina L.; Johns, Scott C.; Valdambrini, Elena; Fuster, Mark M.; Milner, Caroline M.; Day, Anthony J.; Handel, Tracy M.

    2016-01-01

    TNF-stimulated gene-6 (TSG-6) is a multifunctional protein secreted in response to pro-inflammatory stimuli by a wide range of cells, including neutrophils, monocytes, and endothelial cells. It has been shown to mediate anti-inflammatory and protective effects when administered in disease models, in part, by reducing neutrophil infiltration. Human TSG-6 inhibits neutrophil migration by binding CXCL8 through its Link module (Link_TSG6) and interfering with the presentation of CXCL8 on cell-surface glycosaminoglycans (GAGs), an interaction that is vital for the function of many chemokines. TSG-6 was also found to interact with chemokines CXCL11 and CCL5, suggesting the possibility that it may function as a broad specificity chemokine-binding protein, functionally similar to those encoded by viruses. This study was therefore undertaken to explore the ability of TSG-6 to regulate the function of other chemokines. Herein, we demonstrate that Link_TSG6 binds chemokines from both the CXC and CC families, including CXCL4, CXCL12, CCL2, CCL5, CCL7, CCL19, CCL21, and CCL27. We also show that the Link_TSG6-binding sites on chemokines overlap with chemokine GAG-binding sites, and that the affinities of Link_TSG6 for these chemokines (KD values 1–85 nm) broadly correlate with chemokine-GAG affinities. Link_TSG6 also inhibits chemokine presentation on endothelial cells not only through a direct interaction with chemokines but also by binding and therefore masking the availability of GAGs. Along with previous work, these findings suggest that TSG-6 functions as a pluripotent regulator of chemokines by modulating chemokine/GAG interactions, which may be a major mechanism by which TSG-6 produces its anti-inflammatory effects in vivo. PMID:27044744

  14. The Anti-inflammatory Protein TSG-6 Regulates Chemokine Function by Inhibiting Chemokine/Glycosaminoglycan Interactions.

    PubMed

    Dyer, Douglas P; Salanga, Catherina L; Johns, Scott C; Valdambrini, Elena; Fuster, Mark M; Milner, Caroline M; Day, Anthony J; Handel, Tracy M

    2016-06-10

    TNF-stimulated gene-6 (TSG-6) is a multifunctional protein secreted in response to pro-inflammatory stimuli by a wide range of cells, including neutrophils, monocytes, and endothelial cells. It has been shown to mediate anti-inflammatory and protective effects when administered in disease models, in part, by reducing neutrophil infiltration. Human TSG-6 inhibits neutrophil migration by binding CXCL8 through its Link module (Link_TSG6) and interfering with the presentation of CXCL8 on cell-surface glycosaminoglycans (GAGs), an interaction that is vital for the function of many chemokines. TSG-6 was also found to interact with chemokines CXCL11 and CCL5, suggesting the possibility that it may function as a broad specificity chemokine-binding protein, functionally similar to those encoded by viruses. This study was therefore undertaken to explore the ability of TSG-6 to regulate the function of other chemokines. Herein, we demonstrate that Link_TSG6 binds chemokines from both the CXC and CC families, including CXCL4, CXCL12, CCL2, CCL5, CCL7, CCL19, CCL21, and CCL27. We also show that the Link_TSG6-binding sites on chemokines overlap with chemokine GAG-binding sites, and that the affinities of Link_TSG6 for these chemokines (KD values 1-85 nm) broadly correlate with chemokine-GAG affinities. Link_TSG6 also inhibits chemokine presentation on endothelial cells not only through a direct interaction with chemokines but also by binding and therefore masking the availability of GAGs. Along with previous work, these findings suggest that TSG-6 functions as a pluripotent regulator of chemokines by modulating chemokine/GAG interactions, which may be a major mechanism by which TSG-6 produces its anti-inflammatory effects in vivo. PMID:27044744

  15. Jun‐Mediated Changes in Cell Adhesion Contribute to Mouse Embryonic Stem Cell Exit from Ground State Pluripotency

    PubMed Central

    Veluscek, Giulia; Li, Yaoyong; Yang, Shen‐Hsi

    2016-01-01

    Abstract Embryonic stem cells (ESC) are able to give rise to any somatic cell type. A lot is known about how ESC pluripotency is maintained, but comparatively less is known about how differentiation is promoted. Cell fate decisions are regulated by interactions between signaling and transcriptional networks. Recent studies have shown that the overexpression or downregulation of the transcription factor Jun can affect the ESC fate. Here we have focussed on the role of the Jun in the exit of mouse ESCs from ground state pluripotency and the onset of early differentiation. Transcriptomic analysis of differentiating ESCs reveals that Jun is required to upregulate a programme of genes associated with cell adhesion as ESCs exit the pluripotent ground state. Several of these Jun‐regulated genes are shown to be required for efficient adhesion. Importantly this adhesion is required for the timely regulated exit of ESCs from ground state pluripotency and the onset of early differentiation events. Stem Cells 2016;34:1213–1224 PMID:26850660

  16. Nanog, Oct4 and Tet1 interplay in establishing pluripotency

    PubMed Central

    Olariu, Victor; Lövkvist, Cecilia; Sneppen, Kim

    2016-01-01

    A few central transcription factors inside mouse embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are believed to control the cells’ pluripotency. Characterizations of pluripotent state were put forward on both transcription factor and epigenetic levels. Whereas core players have been identified, it is desirable to map out gene regulatory networks which govern the reprogramming of somatic cells as well as the early developmental decisions. Here we propose a multiple level model where the regulatory network of Oct4, Nanog and Tet1 includes positive feedback loops involving DNA-demethylation around the promoters of Oct4 and Tet1. We put forward a mechanistic understanding of the regulatory dynamics which account for i) Oct4 overexpression is sufficient to induce pluripotency in somatic cell types expressing the other Yamanaka reprogramming factors endogenously; ii) Tet1 can replace Oct4 in reprogramming cocktail; iii) Nanog is not necessary for reprogramming however its over-expression leads to enhanced self-renewal; iv) DNA methylation is the key to the regulation of pluripotency genes; v) Lif withdrawal leads to loss of pluripotency. Overall, our paper proposes a novel framework combining transcription regulation with DNA methylation modifications which, takes into account the multi-layer nature of regulatory mechanisms governing pluripotency acquisition through reprogramming. PMID:27146218

  17. Nanog, Oct4 and Tet1 interplay in establishing pluripotency.

    PubMed

    Olariu, Victor; Lövkvist, Cecilia; Sneppen, Kim

    2016-01-01

    A few central transcription factors inside mouse embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are believed to control the cells' pluripotency. Characterizations of pluripotent state were put forward on both transcription factor and epigenetic levels. Whereas core players have been identified, it is desirable to map out gene regulatory networks which govern the reprogramming of somatic cells as well as the early developmental decisions. Here we propose a multiple level model where the regulatory network of Oct4, Nanog and Tet1 includes positive feedback loops involving DNA-demethylation around the promoters of Oct4 and Tet1. We put forward a mechanistic understanding of the regulatory dynamics which account for i) Oct4 overexpression is sufficient to induce pluripotency in somatic cell types expressing the other Yamanaka reprogramming factors endogenously; ii) Tet1 can replace Oct4 in reprogramming cocktail; iii) Nanog is not necessary for reprogramming however its over-expression leads to enhanced self-renewal; iv) DNA methylation is the key to the regulation of pluripotency genes; v) Lif withdrawal leads to loss of pluripotency. Overall, our paper proposes a novel framework combining transcription regulation with DNA methylation modifications which, takes into account the multi-layer nature of regulatory mechanisms governing pluripotency acquisition through reprogramming. PMID:27146218

  18. NaNog: A pluripotency homeobox (master) molecule

    PubMed Central

    Allouba, Mona H.; ElGuindy, Ahmed M.; Krishnamoorthy, Navaneethakrishnan; Yacoub, Magdi H.; Aguib, Yasmine E.

    2015-01-01

    One of the most intriguing aspects of cell biology is the state of pluripotency, where the cell is capable of self-renewal for as many times as deemed “necessary”, then at a specified time can differentiate into any type of cell. This fundamental process is required during organogenesis in foetal life and importantly during tissue repair in health and disease. Pluripotency is very tightly regulated, as any dysregulation can result in congenital defects, inability to repair damage, or cancer. Fuelled by the relatively recent interest in stem cell biology and tissue regeneration, the molecules implicated in regulating pluripotency have been the subject of extensive research. One of the important molecules involved in pluripotency, is NaNog, the subject of this article. PMID:26566529

  19. Regulatory factors of induced pluripotency: current status

    PubMed Central

    Ning, Bo; Qian, Chen

    2014-01-01

    Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) through enforced expression of four transcription factors [Oct4, Sox2, Klf4, and c-Myc (OSKM)]; however, the reprogramming efficiency is extremely low. This finding raises fundamental questions about the regulators that influence the change in epigenetic stability and endowment of dedifferentiation potential during reprogramming. Identification of such regulators is critical to removing the roadblocks impeding the efficient generation of safe iPSCs and their successful translation into clinical therapies. In this review, we summarize the current progress that has been made in understanding cellular reprogramming, with an emphasis on the molecular mechanisms of epigenetic regulators in induced pluripotency.

  20. Intricacies of Pluripotency

    PubMed Central

    Bhartiya, Deepa

    2015-01-01

    Pluripotent stem cells have the potential to differentiate into 200 odd cell types present in adult body. Pluripotent stem cells available for regenerative medicine include embryonic stem (ES) cells, induced pluripotent stem (iPS) cells and very small ES-like stem (VSELs) cells. Nuclear OCT-4 is one of the crucial factors that dictate pluripotent state. Compared to ES/iPS cells grown in Petri dish, VSELs exist in adult body organs and results are emerging to suggest that they may have better potential to regenerate adult organs. This is because of their distinct epigenetic status as they are closer to the primordial germ cells from the epiblast-stage embryo compared to inner cell mass from which ES cells are obtained in vitro. We need to make special efforts to study them as they are very small in size and tend to get lost during processing. VSELs exist in adult organs, get mobilized in response to stress, undergo asymmetric cell divisions to give rise to tissue specific progenitors which further differentiate into various cell types and are possibly better candidates for regenerative medicine because they have no associated risk of tumor formation or immunological rejection. They are possibly also the ‘embryonic remnants’ in adult organs responsible for initiating cancer. Thus, rather than not accepting VSELs because they neither form teratoma nor divide in vitro like ES cells, it is time that scientific community should think of revising the definition of the term ‘pluripotency’. PMID:26195889

  1. Neural circuits: Interacting interneurons regulate fear learning.

    PubMed

    Ozawa, Takaaki; Johansen, Joshua P

    2014-08-01

    A recent study has found that, during associative fear learning, different sensory stimuli activate subsets of inhibitory interneurons in distinct ways to dynamically regulate glutamatergic neural activity and behavioral memory formation. PMID:25093560

  2. Induction of Pluripotency in Mouse Somatic Cells with Lineage Specifiers

    PubMed Central

    Shu, Jian; Wu, Chen; Wu, Yetao; Li, Zhiyuan; Shao, Sida; Zhao, Wenhui; Tang, Xing; Yang, Huan; Shen, Lijun; Zuo, Xiaohan; Yang, Weifeng; Shi, Yan; Chi, Xiaochun; Zhang, Hongquan; Gao, Ge; Shu, Youmin; Yuan, Kehu; He, Weiwu; Tang, Chao; Zhao, Yang; Deng, Hongkui

    2014-01-01

    SUMMARY The reprogramming factors that induce pluripotency have been identified primarily from embryonic stem cell (ESC)-enriched, pluripotency-associated factors. Here we report that during mouse somatic cell reprogramming, pluripotency can be induced with lineage specifiers that are pluripotency rivals to suppress ESC identity, most of which are not enriched in ESCs. We found that OCT4 and SOX2, the core regulators of pluripotency, can be replaced by lineage specifiers that are involved in mesendodermal (ME) specification and in ectodermal (ECT) specification, respectively. OCT4 and its substitutes attenuated the elevated expression of a group of ECT genes whereas SOX2 and its substitutes curtailed a group of ME genes during reprogramming. Surprisingly, the two counteracting lineage specifiers can synergistically induce pluripotency in the absence of both OCT4 and SOX2. Our study suggests a “seesaw model,” in which a balance that is established using pluripotency factors and/or counteracting lineage specifiers can facilitate reprogramming. PMID:23706735

  3. Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells.

    PubMed

    Armstrong, Lyle; Tilgner, Katarzyna; Saretzki, Gabriele; Atkinson, Stuart P; Stojkovic, Miodrag; Moreno, Ruben; Przyborski, Stefan; Lako, Majlinda

    2010-04-01

    The generation of induced pluripotent stem cells (iPSC) has enormous potential for the development of patient-specific regenerative medicine. Human embryonic stem cells (hESC) are able to defend their genomic integrity by maintaining low levels of reactive oxygen species (ROS) through a combination of enhanced removal capacity and limited production of these molecules. Such limited ROS production stems partly from the small number of mitochondria present in hESC; thus, it was important to determine that human iPSC (hiPSC) generation is able to eliminate the extra mitochondria present in the parental fibroblasts (reminiscent of "bottleneck" situation after fertilization) and to show that hiPSC have antioxidant defenses similar to hESC. We were able to generate seven hiPSC lines from adult human dermal fibroblasts and have fully characterized two of those clones. Both hiPSC clones express pluripotency markers and are able to differentiate in vitro into cells belonging to all three germ layers. One of these clones is able to produce fully differentiated teratoma, whereas the other hiPSC clone is unable to silence the viral expression of OCT4 and c-MYC, produce fully differentiated teratoma, and unable to downregulate the expression of some of the pluripotency genes during the differentiation process. In spite of these differences, both clones show ROS stress defense mechanisms and mitochondrial biogenesis similar to hESC. Together our data suggest that, during the reprogramming process, certain cellular mechanisms are in place to ensure that hiPSC are provided with the same defense mechanisms against accumulation of ROS as the hESC. PMID:20073085

  4. Cops2 promotes pluripotency maintenance by Stabilizing Nanog Protein and Repressing Transcription.

    PubMed

    Zhang, Weiyu; Ni, Peiling; Mou, Chunlin; Zhang, Yanqin; Guo, Hongchao; Zhao, Tong; Loh, Yuin-Han; Chen, Lingyi

    2016-01-01

    The COP9 signalosome has been implicated in pluripotency maintenance of human embryonic stem cells. Yet, the mechanism for the COP9 signalosome to regulate pluripotency remains elusive. Through knocking down individual COP9 subunits, we demonstrate that Cops2, but not the whole COP9 signalosome, is essential for pluripotency maintenance in mouse embryonic stem cells. Down-regulation of Cops2 leads to reduced expression of pluripotency genes, slower proliferation rate, G2/M cell cycle arrest, and compromised embryoid differentiation of embryonic stem cells. Cops2 also facilitates somatic cell reprogramming. We further show that Cops2 binds to Nanog protein and prevent the degradation of Nanog by proteasome. Moreover, Cops2 functions as transcriptional corepressor to facilitate pluripotency maintenance. Altogether, our data reveal the essential role and novel mechanisms of Cops2 in pluripotency maintenance. PMID:27226076

  5. Cops2 promotes pluripotency maintenance by Stabilizing Nanog Protein and Repressing Transcription

    PubMed Central

    Zhang, Weiyu; Ni, Peiling; Mou, Chunlin; Zhang, Yanqin; Guo, Hongchao; Zhao, Tong; Loh, Yuin-Han; Chen, Lingyi

    2016-01-01

    The COP9 signalosome has been implicated in pluripotency maintenance of human embryonic stem cells. Yet, the mechanism for the COP9 signalosome to regulate pluripotency remains elusive. Through knocking down individual COP9 subunits, we demonstrate that Cops2, but not the whole COP9 signalosome, is essential for pluripotency maintenance in mouse embryonic stem cells. Down-regulation of Cops2 leads to reduced expression of pluripotency genes, slower proliferation rate, G2/M cell cycle arrest, and compromised embryoid differentiation of embryonic stem cells. Cops2 also facilitates somatic cell reprogramming. We further show that Cops2 binds to Nanog protein and prevent the degradation of Nanog by proteasome. Moreover, Cops2 functions as transcriptional corepressor to facilitate pluripotency maintenance. Altogether, our data reveal the essential role and novel mechanisms of Cops2 in pluripotency maintenance. PMID:27226076

  6. Capturing the ephemeral human pluripotent state.

    PubMed

    Ávila-González, Daniela; García-López, Guadalupe; García-Castro, Irma Lydia; Flores-Herrera, Héctor; Molina-Hernández, Anayansi; Portillo, Wendy; Díaz, Néstor Fabián

    2016-07-01

    During human development, pluripotency is present only in early stages of development. This ephemeral cell potential can be captured in vitro by obtaining pluripotent stem cells (PSC) with self-renewal properties, the human embryonic stem cells (hESC). However, diverse studies suggest the existence of a plethora of human PSC (hPSC) that can be derived from both embryonic and somatic sources, depending on defined culture conditions, their spatial origin, and the genetic engineering used for reprogramming. This review will focus on hPSC, covering the conventional primed hESC, naïve-like hPSC that resemble the ground-state of development, region-selective PSC, and human induced PSC (hiPSC). We will analyze differences and similarities in their differentiation potential as well as in the molecular circuitry of pluripotency. Finally, we describe the need for human feeder cells to derive and maintain hPSC, because they could emulate the interaction of in vivo pluripotent cells with extraembryonic structures that support development. Developmental Dynamics 245:762-773, 2016. © 2016 Wiley Periodicals, Inc. PMID:27004967

  7. State-federal interactions in nuclear regulation

    SciTech Connect

    Pasternak, A.D.; Budnitz, R.J.

    1987-12-01

    The Atomic Energy Act of 1954 established, and later Congressional amendments have confirmed, that except in areas which have been explicitly granted to the states, the federal government possesses preemptive authority to regulate radiation hazards associated with the development and use of atomic energy. Since the passage of the original Act, numerous decisions by the courts have reaffirmed the legitimacy of federal preemption, and have defined and redefined its scope. In this study, the aim is to explore the underlying issues involved in federal preemption of radiation-hazard regulation, and to recommend actions that the Department of Energy and other agencies and groups should consider undertaking in the near term to protect the preemption principle. Appropriate roles of the states are discussed, as well as recent state-level activities and their rationale, and several current arenas in which state-federal conflicts about regulation of hazards are being played out. The emphasis here is on four particular arenas that are now important arenas of conflict, but the issues discussed are far broader in scope. These four arenas are: state-level moratorium activity; emergency planning for reactors; conflicts arising from state financial regulation; and inroads in federal preemption through litigation under state law.

  8. Genetic Interactions among Regulators of Septin Organization

    PubMed Central

    Gladfelter, Amy S.; Zyla, Trevin R.; Lew, Daniel J.

    2004-01-01

    Septins form a cortical scaffold at the yeast mother-bud neck that restricts the diffusion of cortical proteins between the mother and bud and serves as a signaling center that is important for governing various cell functions. After cell cycle commitment in late G1, septins are assembled into a narrow ring at the future bud site, which spreads to form a mature septin hourglass immediately after bud emergence. Although several septin regulators have been identified, it is unclear how they cooperate to assemble the septin scaffold. We have examined septin localization in isogenic strains containing single or multiple mutations in eight septin organization genes (CDC42, RGA1, RGA2, BEM3, CLA4, GIN4, NAP1, and ELM1). Our results suggest that these regulators act largely in parallel to promote either the initial assembly of the septin ring (CDC42, RGA1, RGA2, BEM3, and CLA4) or the conversion of the ring to a stable hourglass structure at the neck (GIN4, NAP1, and ELM1). Aberrant septin localization patterns in mutant strains could be divided into apparently discrete categories, but individual strains displayed heterogeneous defects, and there was no clear-cut correspondence between the specific mutations and specific categories of defect. These findings suggest that when they are deprived of their normal regulators, septin scaffolds collapse into a limited repertoire of aberrant states in which the nature of the mutant regulators influences the probability of a given aberrant state. PMID:15302817

  9. Nanoengineered Platforms to Guide Pluripotent Stem Cell Fate

    PubMed Central

    Rutledge, Katy; Jabbarzadeh, Ehsan

    2016-01-01

    Tissue engineering utilizes cells, signaling molecules, and scaffolds towards creating functional tissue to repair damaged organs. Pluripotent stem cells (PSCs) are a promising cell source due to their ability to self-renewal indefinitely and their potential to differentiate into almost any cell type. Great strides have been taken to parse the physiological mechanisms by which PSCs respond to their microenvironment and commit to a specific lineage. The combination of physical cues and chemical factors is thought to have the most profound influence on stem cell behavior, therefore a major focus of tissue engineering strategies is scaffold design to incorporate these signals. One overlooked component of the in vivo microenvironment researchers attempt to recapitulate with three dimensional (3D) substrates is the nanoarchitecture formed by the fibrillar network of extracellular matrix (ECM) proteins. These nanoscale features have the ability to impact cell adhesion, migration, proliferation, and lineage commitment. Significant advances have been made in deciphering how these nanoscale cues interact with stem cells to determine phenotype, but much is still unknown as to how the interplay between physical and chemical signals regulate in vitro and in vivo cellular fate. This review dives deeper to investigate nanoscale platforms for engineering tissue, as well use the use of these nanotechnologies to drive pluripotent stem cell lineage determination. PMID:26918198

  10. The Affective Regulation of Social Interaction

    ERIC Educational Resources Information Center

    Clore, Gerald L.; Pappas, Jesse

    2007-01-01

    The recent publication of David Heise's "Expressive Order" (2007) provides an occasion for discussing some of the key ideas in Affect Control Theory. The theory proposes that a few dimensions of affective meaning provide a common basis for interrelating personal identities and social actions. It holds that during interpersonal interactions, social…

  11. BMP-SMAD signaling: From pluripotent stem cells to cardiovascular commitment.

    PubMed

    Orlova, Valeria V; Chuva de Sousa Lopes, Susana; Valdimarsdottir, Gudrun

    2016-02-01

    Human pluripotent stem cells (hPSCs) can form all somatic cells of the body. They thus offer opportunities for understanding (i) the basic steps of early human development, (ii) the pathophysiology in human degenerative diseases and (iii) approaches to regenerative medicine and drug development. Methods for improving their differentiation to defined mesodermal derivatives in particular will benefit their use in all of these areas but most particularly applications that require cardiac and vascular tissue. However, the molecular mechanisms that regulate mesodermal development in humans are still poorly understood. Gene ablation studies in mice have shown that the signaling pathways activated by the transforming growth factor beta (TGFβ) superfamily, including the bone morphogenetic proteins (BMP), play crucial roles in mesoderm differentiation and patterning the early embryo. Understanding their interplay and interaction with other signaling pathways, how they activate and inhibit transcription factors and epigenetic regulators during self-renewal, maintenance and exit from pluripotency and differentiation could provide vital information for a range of applications. This includes disease modeling when the hPSCs are derived from patients or drug screens for diseases of mesodermal organs. Here, we review the role of the BMP-SMAD signaling pathway in pluripotent stem cells and during mesoderm differentiation with focus on the cells that make up the cardiovascular system. PMID:26651597

  12. RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements

    PubMed Central

    Chatagnon, Amandine; Veber, Philippe; Morin, Valérie; Bedo, Justin; Triqueneaux, Gérard; Sémon, Marie; Laudet, Vincent; d'Alché-Buc, Florence; Benoit, Gérard

    2015-01-01

    In mouse embryonic cells, ligand-activated retinoic acid receptors (RARs) play a key role in inhibiting pluripotency-maintaining genes and activating some major actors of cell differentiation. To investigate the mechanism underlying this dual regulation, we performed joint RAR/RXR ChIP-seq and mRNA-seq time series during the first 48 h of the RA-induced Primitive Endoderm (PrE) differentiation process in F9 embryonal carcinoma (EC) cells. We show here that this dual regulation is associated with RAR/RXR genomic redistribution during the differentiation process. In-depth analysis of RAR/RXR binding sites occupancy dynamics and composition show that in undifferentiated cells, RAR/RXR interact with genomic regions characterized by binding of pluripotency-associated factors and high prevalence of the non-canonical DR0-containing RA response element. By contrast, in differentiated cells, RAR/RXR bound regions are enriched in functional Sox17 binding sites and are characterized with a higher frequency of the canonical DR5 motif. Our data offer an unprecedentedly detailed view on the action of RA in triggering pluripotent cell differentiation and demonstrate that RAR/RXR action is mediated via two different sets of regulatory regions tightly associated with cell differentiation status. PMID:25897113

  13. RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements.

    PubMed

    Chatagnon, Amandine; Veber, Philippe; Morin, Valérie; Bedo, Justin; Triqueneaux, Gérard; Sémon, Marie; Laudet, Vincent; d'Alché-Buc, Florence; Benoit, Gérard

    2015-05-26

    In mouse embryonic cells, ligand-activated retinoic acid receptors (RARs) play a key role in inhibiting pluripotency-maintaining genes and activating some major actors of cell differentiation. To investigate the mechanism underlying this dual regulation, we performed joint RAR/RXR ChIP-seq and mRNA-seq time series during the first 48 h of the RA-induced Primitive Endoderm (PrE) differentiation process in F9 embryonal carcinoma (EC) cells. We show here that this dual regulation is associated with RAR/RXR genomic redistribution during the differentiation process. In-depth analysis of RAR/RXR binding sites occupancy dynamics and composition show that in undifferentiated cells, RAR/RXR interact with genomic regions characterized by binding of pluripotency-associated factors and high prevalence of the non-canonical DR0-containing RA response element. By contrast, in differentiated cells, RAR/RXR bound regions are enriched in functional Sox17 binding sites and are characterized with a higher frequency of the canonical DR5 motif. Our data offer an unprecedentedly detailed view on the action of RA in triggering pluripotent cell differentiation and demonstrate that RAR/RXR action is mediated via two different sets of regulatory regions tightly associated with cell differentiation status. PMID:25897113

  14. Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency.

    PubMed

    van den Hurk, Mark; Kenis, Gunter; Bardy, Cedric; van den Hove, Daniel L; Gage, Fred H; Steinbusch, Harry W; Rutten, Bart P

    2016-08-01

    Enforced ectopic expression of a cocktail of pluripotency-associated genes such as Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells (iPSCs). The remarkable proliferation ability of iPSCs and their aptitude to redifferentiate into any cell lineage makes these cells a promising tool for generating a variety of human tissue in vitro. Yet, pluripotency induction is an inefficient process, as cells undergoing reprogramming need to overcome developmentally imposed epigenetic barriers. Recent work has shed new light on the molecular mechanisms that drive the reprogramming of somatic cells to iPSCs. Here, we present current knowledge on the transcriptional and epigenetic regulation of pluripotency induction and discuss how variability in epigenetic states impacts iPSCs' inherent biological properties. PMID:27419933

  15. An overview of mammalian pluripotency.

    PubMed

    Wu, Jun; Yamauchi, Takayoshi; Izpisua Belmonte, Juan Carlos

    2016-05-15

    Mammalian pluripotency is the ability to give rise to all somatic cells as well as the germ cells of an adult mammal. It is a unique feature of embryonic epiblast cells, existing only transiently, as cells pass through early developmental stages. By contrast, pluripotency can be captured and stabilized indefinitely in cell culture and can also be reactivated in differentiated cells via nuclear reprogramming. Pluripotent stem cells (PSCs) are the in vitro carriers of pluripotency and they can inhabit discrete pluripotent states depending on the stage at which they were derived and their culture conditions. Here, and in the accompanying poster, we provide a summary of mammalian pluripotency both in vivo and in vitro, and highlight recent and future applications of PSCs for basic and translational research. PMID:27190034

  16. Interactive Cytokine Regulation of Synoviocyte Lubricant Secretion

    PubMed Central

    Blewis, Megan E.; Lao, Brian J.; Schumacher, Barbara L.; Bugbee, William D.; Firestein, Gary S.

    2010-01-01

    Cytokine regulation of synovial fluid (SF) lubricants, hyaluronan (HA), and proteoglycan 4 (PRG4) is important in health, injury, and disease of synovial joints, and may also provide powerful regulation of lubricant secretion in bioreactors for articulating tissues. This study assessed lubricant secretion rates by human synoviocytes and the molecular weight (MW) of secreted lubricants in response to interleukin (IL)-1β, IL-17, IL-32, transforming growth factor-beta 1 (TGF-β1), and tumor necrosis factor-alpha (TNF-α), applied individually and in all combinations. Lubricant secretion rates were assessed using ELISA and binding assays, and lubricant MW was assessed using gel electrophoresis and Western blotting. HA secretion rates were increased ∼40-fold by IL-1β, and increased synergistically to ∼80-fold by the combination of IL-1β + TGF-β1 or TNF-α + IL-17. PRG4 secretion rates were increased ∼80-fold by TGF-β1, and this effect was counterbalanced by IL-1β and TNF-α. HA MW was predominantly <1 MDa for controls and individual cytokine stimulation, but was concentrated at >3 MDa after stimulation by IL-1β + TGF-β1 + TNF-α to resemble the distribution in human SF. PRG4 MW was unaffected by cytokines and similar to that in human SF. These results contribute to an understanding of the relationship between SF cytokine and lubricant content in health, injury, and disease, and provide approaches for using cytokines to modulate lubricant secretion rates and MW to help achieve desired lubricant composition of fluid in bioreactors. PMID:19908966

  17. Changes in microRNA expression during differentiation of embryonic and induced pluripotent stem cells to definitive endoderm.

    PubMed

    Francis, Natalie; Moore, Melanie; Asan, Simona G; Rutter, Guy A; Burns, Chris

    2015-01-01

    Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have the potential to treat type 1 diabetes through cell replacement therapy. However, the protocols used to generate insulin-expressing cells in vitro frequently result in cells which have an immature phenotype and are functionally restricted. MicroRNAs (miRNAs) are now known to be important in cell fate specification, and a unique miRNA signature characterises pancreatic development at the definitive endoderm stage. Several studies have described differences in miRNA expression between ESCs and iPSCs. Here we have used microarray analysis both to identify miRNAs up- or down-regulated upon endoderm formation, and also miRNAs differentially expressed between ESCs and iPSCs. Several miRNAs fulfilling both these criteria were identified, suggesting that differences in the expression of these miRNAs may affect the ability of pluripotent stem cells to differentiate into definitive endoderm. The expression of these miRNAs was validated by qRT-PCR, and the relationship between one of these miRNAs, miR-151a-5p, and its predicted target gene, SOX17, was investigated by luciferase assay, and suggested an interaction between miR-151a-5p and this key transcription factor. In conclusion, these findings demonstrate a unique miRNA expression pattern for definitive endoderm derived from both embryonic and induced pluripotent stem cells. PMID:26277621

  18. Interaction between haemopoietic regulation and airway inflammation.

    PubMed

    O'Byrne, P M; Gauvreau, G M; Wood, L J

    1999-06-01

    Asthma is characterized by reversible airway narrowing, by airway hyperresponsiveness, and by airway inflammation. Inhaled allergens are the most important of the stimuli known to cause asthma. Methods for studying inhaled allergen in the laboratory have been well standardized and extensively used for the investigation of the pathophysiology and the pharmacological modulation of allergen-induced airway responses. Allergen inhalation by a sensitized subject results in an early asthmatic response, and, in the majority of subjects, a late asthmatic response and airway hyperresponsiveness. The late response and airway hyperresponsiveness are associated with increases in airway eosinophils and metachromatic cells. Allergen-induced airway inflammation in dogs (predominantly neutrophilic) is associated with increased granulocyte-macrophage progenitors in bone marrow, which is dependent on the effects of a circulating serum factor stimulating the bone marrow. The newly formed cells traffic to the airways. These increases in granulocyte-macrophage progenitors are blocked by inhaled corticosteroids. In human subjects, allergen-induced eosinophilic inflammation is associated with increases in Eo/B progenitors, mediated through up-regulation if the IL-5 receptor on progenitors and increases responsiveness to IL-5. Inhaled corticosteroids also attenuate all allergen-induced physiological responses and airway inflammation, an effect possibly mediated, in part, through inhibition of eosinophil and basophil maturation or release from the bone marrow. PMID:10421819

  19. Molecular mechanisms of induced pluripotency

    PubMed Central

    Wróblewska, Joanna; Mazurek, Sylwia; Liszewska, Ewa

    2015-01-01

    Growing knowledge concerning transcriptional control of cellular pluripotency has led to the discovery that the fate of differentiated cells can be reversed, which has resulted in the generation, by means of genetic manipulation, of induced pluripotent stem cells. Overexpression of just four pluripotency-related transcription factors, namely Oct3/4, Sox2, Klf4, and c-Myc (Yamanaka factors, OKSM), in fibroblasts appears sufficient to produce this new cell type. Currently, we know that these factors induce several changes in genetic program of differentiated cells that can be divided in two general phases: the initial one is stochastic, and the subsequent one is highly hierarchical and organised. This review briefly discusses the molecular events leading to induction of pluripotency in response to forced presence of OKSM factors in somatic cells. We also discuss other reprogramming strategies used thus far as well as the advantages and disadvantages of laboratory approaches towards pluripotency induction in different cell types. PMID:25691818

  20. MicroRNA-122 Influences the Development of Sperm Abnormalities from Human Induced Pluripotent Stem Cells by Regulating TNP2 Expression

    PubMed Central

    Huang, Yongyi; Liu, Jianjun; Zhao, Yanhui; Jiang, Lizhen; Huang, Qin

    2013-01-01

    Sperm abnormalities are one of the main factors responsible for male infertility; however, their pathogenesis remains unclear. The role of microRNAs in the development of sperm abnormalities in infertile men has not yet been investigated. Here, we used human induced pluripotent stem cells to investigate the influence of miR-122 expression on the differentiation of these cells into spermatozoa-like cells in vitro. After induction, mutant miR-122-transfected cells formed spermatozoa-like cells. Flow cytometry of DNA content revealed a significant increase in the haploid cell population in spermatozoa-like cells derived from mutant miR-122-transfected cells as compared to those derived from miR-122-transfected cells. During induction, TNP2 and protamine mRNA and protein levels were significantly higher in mutant miR-122-transfected cells than in miR-122-transfected cells. High-throughput isobaric tags for relative and absolute quantification were used to identify and quantify the different protein expression levels in miR-122- and mutant miR-122-transfected cells. Among all the proteins analyzed, the expression of lipoproteins, for example, APOB and APOA1, showed the most significant difference between the two groups. This study illustrates that miR-122 expression is associated with abnormal sperm development. MiR-122 may influence spermatozoa-like cells by suppressing TNP2 expression and inhibiting the expression of proteins associated with sperm development. PMID:23327642

  1. c-Maf regulates pluripotency genes, proliferation/self-renewal, and lineage commitment in ROS-mediated senescence of human mesenchymal stem cells

    PubMed Central

    Li, Nan-Ting; Wu, Yao-Ming; Lin, Ming-Tsan; Hung, Shih-Chieh; Yen, Men-Luh

    2015-01-01

    Mesenchymal stem cells (MSCs) are therapeutically relevant multilineage and immunomodulatory progenitors. Ex vivo expansion of these rare cells is necessary for clinical application and can result in detrimental senescent effects, with mechanisms still largely unknown. We found that vigorous ex vivo expansion of human adipose tissue-derived MSCs (hAMSCs) results in proliferative decline, cell cycle arrest, and altered differentiation capacity. This senescent phenotype was associated with reactive oxygen species (ROS) accumulation, and with increased expression of G1 cell -cycle inhibitors— p15INK4b and p16INK4a — but decreased expression of pluripotency genes—Oct-4, Sox-2, Nanog, and c-Myc—as well as c-Maf a co-factor of MSC lineage-specific transcription factor and sensitive to oxidative stress. These global changes in the transcriptional and functional programs of proliferation, differentiation, and self-renewal were all mediated by ROS-induced suppression of c-Maf, as evidenced by binding of c-Maf to promoter regions of multiple relevant genes in hAMSCs which could be reduced by exogenous ROS. Our findings implicate the strong effects of ROS on multiple stem cell functions with a central role for c-Maf in stem cell senescence. PMID:26496036

  2. A novel feedforward compensation canceling input filter-regulator interaction

    NASA Technical Reports Server (NTRS)

    Kelkar, S. S.; Lee, F. C.

    1983-01-01

    The interaction between the input and the control loop of switching regulators often results in deterimental effects, such as loop instability, degradation of transient response, and audiosusceptibility, etc. The concept of pole-zero cancelation is employed to mitigate some of these detrimental effects and is implemented using a novel feedforward loop, in addition to existing feedback loops of a buck regulator. Experimental results are presented which show excellent correlation with theory.

  3. Proximity interactions among centrosome components identify regulators of centriole duplication.

    PubMed

    Firat-Karalar, Elif Nur; Rauniyar, Navin; Yates, John R; Stearns, Tim

    2014-03-17

    The centrosome consists of a pair of centrioles and surrounding pericentriolar material (PCM). Many vertebrate cells also have an array of granules, termed centriolar satellites, that localize around the centrosome and are associated with centrosome and cilium function. Centriole duplication occurs once per cell cycle and is effected by a set of proteins including PLK4, CEP192, CEP152, CEP63, and CPAP. Information on the relationships between these components is limited due to the difficulty in assaying interactions in the context of the centrosome. Here, we used proximity-dependent biotin identification (BioID) to identify proximity interactions among centriole duplication proteins. PLK4, CEP192, and CEP152 BioID identified known physically interacting proteins and a new interaction between CEP152 and CDK5RAP2 consistent with a function of CEP152 in PCM recruitment. BioID for CEP63 and its paralog CCDC67 revealed extensive proximity interactions with centriolar satellite proteins. Focusing on these satellite proteins identified two new regulators of centriole duplication, CCDC14 and KIAA0753. Both proteins colocalize with CEP63 to satellites, bind to CEP63, and identify other satellite proteins by BioID. KIAA0753 positively regulates centriole duplication and CEP63 centrosome localization, whereas CCDC14 negatively regulates both processes. These results suggest that centriolar satellites have a previously unappreciated function in regulating centriole duplication. PMID:24613305

  4. Coordinated Development of Voltage-Gated Na+ and K+ Currents Regulates Functional Maturation of Forebrain Neurons Derived from Human Induced Pluripotent Stem Cells

    PubMed Central

    Song, Mingke; Mohamad, Osama; Chen, Dongdong

    2013-01-01

    Like embryonic stem (ES) cells, human induced pluripotent stem (hiPS) cells can differentiate into neuronal cells. However, it is unclear how their exquisite neuronal function is electrophysiologically coordinated during differentiation and whether they are functionally identical to human ES cell-derived neurons. In this study, we differentiated hiPS and ES cells into pyramidal-like neurons and conducted electrophysiological characterization over the 4-week terminal differentiation period. The human neuron-like cells express forebrain pyramidal cell markers NeuN, neurofilament, the microtubule-associated protein 2 (MAP2), the paired box protein Pax-6 (PAX6), Tuj1, and the forkhead box protein G1 (FoxG1). The size of developing neurons increased continuously during the 4-week culture, and cell-resting membrane potentials (RMPs) underwent a negative shift from −40 to −70 mV. Expression of the muscarinic receptor-modulated K+ currents (IM) participated in the development of cell RMPs and controlled excitability. Immature neurons at week 1 could only fire abortive action potentials (APs) and the frequency of AP firing progressively increased with neuronal maturation. Interestingly, the developmental change of voltage-gated Na+ current (INa) did not correlate with the change in the AP firing frequency. On the other hand, the transient outward K+ current (IA), but not the delayed rectifier current (IK) contributed to the high frequency firing of APs. Synaptic activities were observed throughout the 4-week development. These morphological and electrophysiological features were almost identical between iPS and ES cell-derived neurons. This is the first systematic investigation showing functional evidence that hiPS cell-derived neurons possess similar neuronal activities as ES cell-derived neurons. These data support that iPS cell-derived neural progenitor cells have the potential for replacing lost neurons in cell-based therapy. PMID:23259973

  5. Otx2-PNN Interaction to Regulate Cortical Plasticity

    PubMed Central

    Bernard, Clémence; Prochiantz, Alain

    2016-01-01

    The ability of the environment to shape cortical function is at its highest during critical periods of postnatal development. In the visual cortex, critical period onset is triggered by the maturation of parvalbumin inhibitory interneurons, which gradually become surrounded by a specialized glycosaminoglycan-rich extracellular matrix: the perineuronal nets. Among the identified factors regulating cortical plasticity in the visual cortex, extracortical homeoprotein Otx2 is transferred specifically into parvalbumin interneurons and this transfer regulates both the onset and the closure of the critical period of plasticity for binocular vision. Here, we review the interaction between the complex sugars of the perineuronal nets and homeoprotein Otx2 and how this interaction regulates cortical plasticity during critical period and in adulthood. PMID:26881132

  6. Obesity and sex interact in the regulation of Alzheimer's disease.

    PubMed

    Moser, V Alexandra; Pike, Christian J

    2016-08-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder, for which a number of genetic, environmental, and lifestyle risk factors have been identified. A significant modifiable risk factor is obesity in mid-life. Interestingly, both obesity and AD exhibit sex differences and are regulated by sex steroid hormones. Accumulating evidence suggests interactions between obesity and sex in regulation of AD risk, although the pathways underlying this relationship are unclear. Inflammation and the E4 allele of apolipoprotein E have been identified as independent risk factors for AD and both interact with obesity and sex steroid hormones. We review the individual and cooperative effects of obesity and sex on development of AD and examine the potential contributions of apolipoprotein E, inflammation, and their interactions to this relationship. PMID:26708713

  7. Sensor-response regulator interactions in a cross-regulated signal transduction network.

    PubMed

    Huynh, TuAnh Ngoc; Chen, Li-Ling; Stewart, Valley

    2015-07-01

    Two-component signal transduction involves phosphoryl transfer between a histidine kinase sensor and a response regulator effector. The nitrate-responsive two-component signal transduction systems in Escherichia coli represent a paradigm for a cross-regulation network, in which the paralogous sensor-response regulator pairs, NarX-NarL and NarQ-NarP, exhibit both cognate (e.g. NarX-NarL) and non-cognate (e.g. NarQ-NarL) interactions to control output. Here, we describe results from bacterial adenylate cyclase two-hybrid (BACTH) analysis to examine sensor dimerization as well as interaction between sensor-response regulator cognate and non-cognate pairs. Although results from BACTH analysis indicated that the NarX and NarQ sensors interact with each other, results from intragenic complementation tests demonstrate that they do not form functional heterodimers. Additionally, intragenic complementation shows that both NarX and NarQ undergo intermolecular autophosphorylation, deviating from the previously reported correlation between DHp (dimerization and histidyl phosphotransfer) domain loop handedness and autophosphorylation mode. Results from BACTH analysis revealed robust interactions for the NarX-NarL, NarQ-NarL and NarQ-NarP pairs but a much weaker interaction for the NarX-NarP pair. This demonstrates that asymmetrical cross-regulation results from differential binding affinities between different sensor-regulator pairs. Finally, results indicate that the NarL effector (DNA-binding) domain inhibits NarX-NarL interaction. Missense substitutions at receiver domain residue Ser-80 enhanced NarX-NarL interaction, apparently by destabilizing the NarL receiver-effector domain interface. PMID:25873583

  8. CTCF-Mediated Functional Chromatin Interactome in Pluripotent Cells

    PubMed Central

    Handoko, Lusy; Xu, Han; Li, Guoliang; Ngan, Chew Yee; Chew, Elaine; Schnapp, Marie; Lee, Charlie Wah Heng; Ye, Chaopeng; Ping, Joanne Lim Hui; Mulawadi, Fabianus; Wong, Eleanor; Sheng, Jianpeng; Zhang, Yubo; Poh, Thompson; Chan, Chee Seng; Kunarso, Galih; Shahab, Atif; Bourque, Guillaume; Cacheux-Rataboul, Valere; Sung, Wing-Kin; Ruan, Yijun; Wei, Chia-Lin

    2011-01-01

    Mammalian genomes are viewed as functional organizations that orchestrate spatial and temporal gene regulation. CTCF, the most characterized insulator-binding protein, has been implicated as a key genome organizer. Yet, little is known about CTCF-associated higher order chromatin structures at a global scale. Here, we applied Chromatin Interaction Analysis by Paired-End-Tag sequencing to elucidate the CTCF-chromatin interactome in pluripotent cells. From this analysis, 1,480 cis and 336 trans interacting loci were identified with high reproducibility and precision. Associating these chromatin interaction loci with their underlying epigenetic states, promoter activities, enhancer binding and nuclear lamina occupancy, we uncovered five distinct chromatin domains that suggest potential new models of CTCF function in chromatin organization and transcriptional control. Specifically, CTCF interactions demarcate chromatin-nuclear membrane attachments and influence proper gene expression through extensive crosstalk between promoters and regulatory elements. This highly complex nuclear organization offers insights towards the unifying principles governing genome plasticity and function. PMID:21685913

  9. Induced Pluripotency for Translational Research

    PubMed Central

    Wu, Menghua; Chen, Guilai; Hu, Baoyang

    2013-01-01

    The advent of induced pluripotent stem cells (iPSCs) has revolutionized the concept of cellular reprogramming and potentially will solve the immunological compatibility issues that have so far hindered the application of human pluripotent stem cells in regenerative medicine. Recent findings showed that pluripotency is defined by a state of balanced lineage potency, which can be artificially instated through various procedures, including the conventional Yamanaka strategy. As a type of pluripotent stem cell, iPSCs are subject to the usual concerns over purity of differentiated derivatives and risks of tumor formation when used for cell-based therapy, though they provide certain advantages in translational research, especially in the areas of personalized medicine, disease modeling and drug screening. iPSC-based technology, human embryonic stem cells (hESCs) and direct lineage conversion each will play distinct roles in specific aspects of translational medicine, and continue yielding surprises for scientists and the public. PMID:24056061

  10. Regulation of cell proliferation of human induced pluripotent stem cell-derived mesenchymal stem cells via ether-à-go-go 1 (hEAG1) potassium channel.

    PubMed

    Zhang, Jiao; Chan, Yau-Chi; Ho, Jenny Chung-Yee; Siu, Chung-Wah; Lian, Qizhou; Tse, Hung-Fat

    2012-07-15

    The successful generation of a high yield of mesenchymal stem cells (MSCs) from human induced pluripotent stem cells (iPSCs) may represent an unlimited cell source with superior therapeutic benefits for tissue regeneration to bone marrow (BM)-derived MSCs. We investigated whether the differential expression of ion channels in iPSC-MSCs was responsible for their higher proliferation capacity than BM-MSCs. The expression of ion channels for K(+), Na(+), Ca(2+), and Cl(-) was examined by RT-PCR. The electrophysiological properties of iPSC-MSCs and BM-MSCs were then compared by patch-clamp experiments to verify their functional roles. Significant mRNA expression of ion channel genes including KCa1.1, KCa3.1, KCNH1, Kir2.1, SCN9A, CACNA1C, and Clcn3 was observed in both human iPSC-MSCs and BM-MSCs, whereas Kir2.2 and Kir2.3 were only detected in human iPSC-MSCs. Five types of currents [big-conductance Ca(2+)-activated K(+) current (BK(Ca)), delayed rectifier K(+) current (IK(DR)), inwardly rectifying K(+) current (I(Kir)), Ca(2+)-activated K(+) current (IK(Ca)), and chloride current (I(Cl))] were found in iPSC-MSCs (83%, 47%, 11%, 5%, and 4%, respectively) but only four of them (BK(Ca), IK(DR), I(Kir), and IK(Ca)) were identified in BM-MSCs (76%, 25%, 22%, and 11%, respectively). Cell proliferation was examined with MTT or bromodeoxyuridine assay, and doubling times were 2.66 and 3.72 days for iPSC-MSCs and BM-MSCs, respectively, showing a 1.4-fold discrepancy. Blockade of IK(DR) with short hairpin RNA or human ether-à-go-go 1 (hEAG1) channel blockers, 4-AP and astemizole, significantly reduced the rate of proliferation of human iPSC-MSCs. These treatments also decreased the rate of proliferation of human BM-MSCs albeit to a lesser extent. These findings demonstrate that the hEAG1 channel plays a crucial role in controlling the proliferation rate of human iPSC-MSCs and to a lesser extent in BM-MSCs. PMID:22357737

  11. Molecular nutrition: Interaction of nutrients, gene regulations and performances.

    PubMed

    Sato, Kan

    2016-07-01

    Nutrition deals with ingestion of foods, digestion, absorption, transport of nutrients, intermediary metabolism, underlying anabolism and catabolism, and excretion of unabsorbed nutrients and metabolites. In addition, nutrition interacts with gene expressions, which are involved in the regulation of animal performances. Our laboratory is concerned with the improvement of animal productions, such as milks, meats and eggs, with molecular nutritional aspects. The present review shows overviews on the nutritional regulation of metabolism, physiological functions and gene expressions to improve animal production in chickens and dairy cows. PMID:27110862

  12. Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis.

    PubMed

    Kareta, Michael S; Gorges, Laura L; Hafeez, Sana; Benayoun, Bérénice A; Marro, Samuele; Zmoos, Anne-Flore; Cecchini, Matthew J; Spacek, Damek; Batista, Luis F Z; O'Brien, Megan; Ng, Yi-Han; Ang, Cheen Euong; Vaka, Dedeepya; Artandi, Steven E; Dick, Frederick A; Brunet, Anne; Sage, Julien; Wernig, Marius

    2015-01-01

    Mutations in the retinoblastoma tumor suppressor gene Rb are involved in many forms of human cancer. In this study, we investigated the early consequences of inactivating Rb in the context of cellular reprogramming. We found that Rb inactivation promotes the reprogramming of differentiated cells to a pluripotent state. Unexpectedly, this effect is cell cycle independent, and instead reflects direct binding of Rb to pluripotency genes, including Sox2 and Oct4, which leads to a repressed chromatin state. More broadly, this regulation of pluripotency networks and Sox2 in particular is critical for the initiation of tumors upon loss of Rb in mice. These studies therefore identify Rb as a global transcriptional repressor of pluripotency networks, providing a molecular basis for previous reports about its involvement in cell fate pliability, and implicate misregulation of pluripotency factors such as Sox2 in tumorigenesis related to loss of Rb function. PMID:25467916

  13. Inhibition of Pluripotency Networks by the Rb Tumor Suppressor Restricts Reprogramming and Tumorigenesis

    PubMed Central

    Kareta, Michael S.; Gorges, Laura L.; Hafeez, Sana; Benayoun, Bérénice A.; Marro, Samuele; Zmoos, Anne-Flore; Cecchini, Matthew J.; Spacek, Damek; Batista, Luis F.Z.; O’Brien, Megan; Ng, Yi-Han; Ang, Cheen Euong; Vaka, Dedeepya; Artandi, Steven E.; Dick, Frederick A.; Brunet, Anne; Sage, Julien; Wernig, Marius

    2015-01-01

    SUMMARY Mutations in the retinoblastoma tumor suppressor gene Rb are involved in many forms of human cancer. In this study, we investigated the early consequences of inactivating Rb in the context of cellular reprogramming. We found that Rb inactivation promotes the reprogramming of differentiated cells to a pluripotent state. Unexpectedly, this effect is cell cycle independent, and instead reflects direct binding of Rb to pluripotency genes, including Sox2 and Oct4, which leads to a repressed chromatin state. More broadly, this regulation of pluripotency networks and Sox2 in particular is critical for the initiation of tumors upon loss of Rb in mice. These studies therefore identify Rb as a global transcriptional repressor of pluripotency networks, providing a molecular basis for previous reports about its involvement in cell fate pliability, and implicate misregulation of pluripotency factors such as Sox2 in tumorigenesis related to loss of Rb function. PMID:25467916

  14. Transcription is regulated by NusA:NusG interaction.

    PubMed

    Strauß, Martin; Vitiello, Christal; Schweimer, Kristian; Gottesman, Max; Rösch, Paul; Knauer, Stefan H

    2016-07-01

    NusA and NusG are major regulators of bacterial transcription elongation, which act either in concert or antagonistically. Both bind to RNA polymerase (RNAP), regulating pausing as well as intrinsic and Rho-dependent termination. Here, we demonstrate by nuclear magnetic resonance spectroscopy that the Escherichia coli NusG amino-terminal domain forms a complex with the acidic repeat domain 2 (AR2) of NusA. The interaction surface of either transcription factor overlaps with the respective binding site for RNAP. We show that NusA-AR2 is able to remove NusG from RNAP. Our in vivo and in vitro results suggest that interaction between NusA and NusG could play various regulatory roles during transcription, including recruitment of NusG to RNAP, resynchronization of transcription:translation coupling, and modulation of termination efficiency. PMID:27174929

  15. Transcription is regulated by NusA:NusG interaction

    PubMed Central

    Strauß, Martin; Vitiello, Christal; Schweimer, Kristian; Gottesman, Max; Rösch, Paul; Knauer, Stefan H.

    2016-01-01

    NusA and NusG are major regulators of bacterial transcription elongation, which act either in concert or antagonistically. Both bind to RNA polymerase (RNAP), regulating pausing as well as intrinsic and Rho-dependent termination. Here, we demonstrate by nuclear magnetic resonance spectroscopy that the Escherichia coli NusG amino-terminal domain forms a complex with the acidic repeat domain 2 (AR2) of NusA. The interaction surface of either transcription factor overlaps with the respective binding site for RNAP. We show that NusA-AR2 is able to remove NusG from RNAP. Our in vivo and in vitro results suggest that interaction between NusA and NusG could play various regulatory roles during transcription, including recruitment of NusG to RNAP, resynchronization of transcription:translation coupling, and modulation of termination efficiency. PMID:27174929

  16. The Schreber case revisited: schizophrenia as a disorder of self-regulation and of interactional regulation.

    PubMed Central

    Grotstein, J. S.

    1985-01-01

    The Schreber case has been used by generations of psychoanalysts and psychiatrists to exemplify many features of the psychoanalytic conception of psychosis. It has generally been considered the origin of a great debate in psychoanalysis as to whether schizophrenia is a disorder of nature or of nurture. I seek in this contribution to proffer a newer theory of psychopathology, one which is based upon the conception of primary and secondary disorders of attachment (bonding) and which presents itself clinically as disorders of self-regulation and of interactional regulation. I attempt to explicate this theory in the Schreber case by demonstrating that his symptoms revealed: (a) failures of normal mental state regulations, (b) the emergence of symptoms which then secondarily and pathologically restore regulation in a pathological manner, and finally (c) his/her very symptoms seem to regulate a state in the family system and/or in the system of the culture at large. PMID:4049912

  17. Looping around Reprogramming: The Topological Memory of Induced Pluripotency.

    PubMed

    Gonzales, Kevin Andrew Uy; Ng, Huck-Hui

    2016-05-01

    Genome architecture is associated with cellular identity, but how this organization changes during reprogramming is not well understood. Now in Cell Stem Cell, Krijger et al. (2016) and Beagan et al. (2016) report 3D chromatin interaction maps before and after reprogramming, providing evidence for topological memory in induced pluripotent stem cells. PMID:27152435

  18. Dynamic and social behaviors of human pluripotent stem cells

    PubMed Central

    Phadnis, Smruti M.; Loewke, Nathan O.; Dimov, Ivan K.; Pai, Sunil; Amwake, Christine E.; Solgaard, Olav; Baer, Thomas M.; Chen, Bertha; Pera, Renee A. Reijo

    2015-01-01

    Human pluripotent stem cells (hPSCs) can self-renew or differentiate to diverse cell types, thus providing a platform for basic and clinical applications. However, pluripotent stem cell populations are heterogeneous and functional properties at the single cell level are poorly documented leading to inefficiencies in differentiation and concerns regarding reproducibility and safety. Here, we use non-invasive time-lapse imaging to continuously examine hPSC maintenance and differentiation and to predict cell viability and fate. We document dynamic behaviors and social interactions that prospectively distinguish hPSC survival, self-renewal, and differentiation. Results highlight the molecular role of E-cadherin not only for cell-cell contact but also for clonal propagation of hPSCs. Results indicate that use of continuous time-lapse imaging can distinguish cellular heterogeneity with respect to pluripotency as well as a subset of karyotypic abnormalities whose dynamic properties were monitored. PMID:26381699

  19. ITSN2L Interacts with and Negatively Regulates RABEP1

    PubMed Central

    Yang, Xiaoxu; Yan, Feng; He, Zhicheng; Liu, Shan; Cheng, Yeqing; Wei, Ke; Gan, Shiquan; Yuan, Jing; Wang, Shang; Xiao, Ye; Ren, Kaiqun; Liu, Ning; Hu, Xiang; Ding, Xiaofeng; Hu, Xingwang; Xiang, Shuanglin

    2015-01-01

    Intersectin-2Long (ITSN2L) is a multi-domain protein participating in endocytosis and exocytosis. In this study, RABEP1 was identified as a novel ITSN2L interacting protein using a yeast two-hybrid screen from a human brain cDNA library and this interaction, specifically involving the ITSN2L CC domain and RABEP1 CC3 regions, was further confirmed by in vitro GST (glutathione-S-transferase) pull-down and in vivo co-immunoprecipitation assays. Corroboratively, we observed that these two proteins co-localize in the cytoplasm of mammalian cells. Furthermore, over-expression of ITSN2L promotes RABEP1 degradation and represses RABEP1-enhanced endosome aggregation, indicating that ITSN2L acts as a negative regulator of RABEP1. Finally, we showed that ITSN2L and RABEP1 play opposite roles in regulating endocytosis. Taken together, our results indicate that ITSN2L interacts with RABEP1 and stimulates its degradation in regulation of endocytosis. PMID:26633357

  20. ITSN2L Interacts with and Negatively Regulates RABEP1.

    PubMed

    Yang, Xiaoxu; Yan, Feng; He, Zhicheng; Liu, Shan; Cheng, Yeqing; Wei, Ke; Gan, Shiquan; Yuan, Jing; Wang, Shang; Xiao, Ye; Ren, Kaiqun; Liu, Ning; Hu, Xiang; Ding, Xiaofeng; Hu, Xingwang; Xiang, Shuanglin

    2015-01-01

    Intersectin-2Long (ITSN2L) is a multi-domain protein participating in endocytosis and exocytosis. In this study, RABEP1 was identified as a novel ITSN2L interacting protein using a yeast two-hybrid screen from a human brain cDNA library and this interaction, specifically involving the ITSN2L CC domain and RABEP1 CC3 regions, was further confirmed by in vitro GST (glutathione-S-transferase) pull-down and in vivo co-immunoprecipitation assays. Corroboratively, we observed that these two proteins co-localize in the cytoplasm of mammalian cells. Furthermore, over-expression of ITSN2L promotes RABEP1 degradation and represses RABEP1-enhanced endosome aggregation, indicating that ITSN2L acts as a negative regulator of RABEP1. Finally, we showed that ITSN2L and RABEP1 play opposite roles in regulating endocytosis. Taken together, our results indicate that ITSN2L interacts with RABEP1 and stimulates its degradation in regulation of endocytosis. PMID:26633357

  1. Parent Conflict Predicts Infants’ Vagal Regulation in Social Interaction

    PubMed Central

    Moore, Ginger A.

    2010-01-01

    Parent conflict during infancy may affect rapidly developing physiological regulation. To examine the association between parent conflict and infants’ vagal tone functioning, mothers (N = 48) reported levels of parent conflict and their 6-month-old male and female infants’ respiratory sinus arrhythmia (RSA) was measured in the Still-Face Paradigm (SFP). Higher parent conflict was related to lower RSA at baseline and each episode of the SFP. Infants in higher conflict families showed diminished RSA reactivity and unexpected RSA withdrawal when interacting with mothers. Findings suggest atypical RSA regulation and reliance on self-regulation for infants in families with moderate levels of parent conflict. Implications for later development and future research are discussed. PMID:20102644

  2. Parent conflict predicts infants' vagal regulation in social interaction.

    PubMed

    Moore, Ginger A

    2010-01-01

    Parent conflict during infancy may affect rapidly developing physiological regulation. To examine the association between parent conflict and infants' vagal tone functioning, mothers (N = 48) reported levels of parent conflict and their 6-month-old male and female infants' respiratory sinus arrhythmia (RSA) was measured in the still-face paradigm. Higher parent conflict was related to lower RSA at baseline and each episode of the still-face paradigm. Infants in relatively higher conflict families showed attenuated RSA withdrawal in response to mothers' disengagement and attenuated RSA activation when interacting with mothers. Findings suggest atypical RSA regulation and reliance on self-regulation for infants in families with moderate levels of parent conflict. Implications for later development and future research are discussed. PMID:20102644

  3. A Novel Feeder-Free Culture System for Human Pluripotent Stem Cell Culture and Induced Pluripotent Stem Cell Derivation

    PubMed Central

    Vuoristo, Sanna; Toivonen, Sanna; Weltner, Jere; Mikkola, Milla; Ustinov, Jarkko; Trokovic, Ras; Palgi, Jaan; Lund, Riikka; Tuuri, Timo; Otonkoski, Timo

    2013-01-01

    Correct interactions with extracellular matrix are essential to human pluripotent stem cells (hPSC) to maintain their pluripotent self-renewal capacity during in vitro culture. hPSCs secrete laminin 511/521, one of the most important functional basement membrane components, and they can be maintained on human laminin 511 and 521 in defined culture conditions. However, large-scale production of purified or recombinant laminin 511 and 521 is difficult and expensive. Here we have tested whether a commonly available human choriocarcinoma cell line, JAR, which produces high quantities of laminins, supports the growth of undifferentiated hPSCs. We were able to maintain several human pluripotent stem cell lines on decellularized matrix produced by JAR cells using a defined culture medium. The JAR matrix also supported targeted differentiation of the cells into neuronal and hepatic directions. Importantly, we were able to derive new human induced pluripotent stem cell (hiPSC) lines on JAR matrix and show that adhesion of the early hiPSC colonies to JAR matrix is more efficient than to matrigel. In summary, JAR matrix provides a cost-effective and easy-to-prepare alternative for human pluripotent stem cell culture and differentiation. In addition, this matrix is ideal for the efficient generation of new hiPSC lines. PMID:24098444

  4. Harvester ants use interactions to regulate forager activation and availability

    PubMed Central

    Pinter-Wollman, Noa; Bala, Ashwin; Merrell, Andrew; Queirolo, Jovel; Stumpe, Martin C.; Holmes, Susan; Gordon, Deborah M.

    2013-01-01

    Social groups balance flexibility and robustness in their collective response to environmental changes using feedback between behavioural processes that operate at different timescales. Here we examine how behavioural processes operating at two timescales regulate the foraging activity of colonies of the harvester ant, Pogonomyrmex barbatus, allowing them to balance their response to food availability and predation. Previous work showed that the rate at which foragers return to the nest with food influences the rate at which foragers leave the nest. To investigate how interactions inside the nest link the rates of returning and outgoing foragers, we observed outgoing foragers inside the nest in field colonies using a novel observation method. We found that the interaction rate experienced by outgoing foragers inside the nest corresponded to forager return rate, and that the interactions of outgoing foragers were spatially clustered. Activation of a forager occurred on the timescale of seconds: a forager left the nest 3–8 s after a substantial increase in interactions with returning foragers. The availability of outgoing foragers to become activated was adjusted on the timescale of minutes: when forager return was interrupted for more than 4–5 min, available foragers waiting near the nest entrance went deeper into the nest. Thus, forager activation and forager availability both increased with the rate at which foragers returned to the nest. This process was checked by negative feedback between forager activation and forager availability. Regulation of foraging activation on the timescale of seconds provides flexibility in response to fluctuations in food abundance, whereas regulation of forager availability on the timescale of minutes provides robustness in response to sustained disturbance such as predation. PMID:24031094

  5. Genetic Interactions That Regulate Inflorescence Development in Arabidopsis.

    PubMed Central

    Shannon, S; Meeks-Wagner, DR

    1993-01-01

    In Arabidopsis, floral meristems arise in continuous succession directly on the flanks of the inflorescence meristem. Thus, the pathways that regulate inflorescence and floral meristem identity must operate both simultaneously and in close spatial proximity. The TERMINAL FLOWER 1 (TFL1) gene of Arabidopsis is required for normal inflorescence meristem function, and the LEAFY (LFY), APETALA 1 (AP1), and APETALA 2 (AP2) genes are required for normal floral meristem function. We present evidence that inflorescence meristem identity is promoted by TFL1 and that floral meristem identity is promoted by parallel developmental pathways, one defined by LFY and the other defined by AP1/AP2. Our analysis suggests that the acquisition of meristem identity during inflorescence development is mediated by antagonistic interactions between TFL1 and LFY and between TFL1 and AP1/AP2. Based on this study, we propose a simple model for the genetic regulation of inflorescence development in Arabidopsis. This model is discussed in relation to the proposed interactions between the inflorescence and the floral meristem identity genes and in regard to other genes that are likely to be part of the genetic hierarchy regulating the establishment and maintenance of inflorescence and floral meristems. PMID:12271079

  6. Microbe–Host Interactions are Positively and Negatively Regulated by Galectin–Glycan Interactions

    PubMed Central

    Baum, Linda G.; Garner, Omai B.; Schaefer, Katrin; Lee, Benhur

    2014-01-01

    Microbe–host interactions are complex processes that are directly and indirectly regulated by a variety of factors, including microbe presentation of specific molecular signatures on the microbial surface, as well as host cell presentation of receptors that recognize these pathogen signatures. Cell surface glycans are one important class of microbial signatures that are recognized by a variety of host cell lectins. Host cell lectins that recognize microbial glycans include members of the galectin family of lectins that recognize specific glycan ligands on viruses, bacteria, fungi, and parasites. In this review, we will discuss the ways that the interactions of microbial glycans with host cell galectins positively and negatively regulate pathogen attachment, invasion, and survival, as well as regulate host responses that mitigate microbial pathogenesis. PMID:24995007

  7. Gene regulatory networks mediating canonical Wnt signal directed control of pluripotency and differentiation in embryo stem cells

    PubMed Central

    Zhang, Xiaoxiao; Peterson, Kevin A.; Liu, X. Shirley; McMahon, Andrew P.; Ohba, Shinsuke

    2013-01-01

    Canonical Wnt signaling supports the pluripotency of embryonic stem cells (ESCs) but also promotes differentiation of early mammalian cell lineages. To explain these paradoxical observations, we explored the gene regulatory networks at play. Canonical Wnt signaling is intertwined with the pluripotency network comprising Nanog, Oct4, and Sox2 in mouse ESCs. In defined media supporting the derivation and propagation of ESCs, Tcf3 and β-catenin interact with Oct4; Tcf3 binds to Sox motif within Oct-Sox composite motifs that are also bound by Oct4-Sox2 complexes. Further, canonical Wnt signaling up-regulates the activity of the Pou5f1 distal enhancer via the Sox motif in ESCs. When viewed in the context of published studies on Tcf3 and β-catenin mutants, our findings suggest Tcf3 counters pluripotency by competition with Sox2 at these sites, and Tcf3 inhibition is blocked by β-catenin entry into this complex. Wnt pathway stimulation also triggers β-catenin association at regulatory elements with classic Lef/Tcf motifs associated with differentiation programs. The failure to activate these targets in the presence of a MEK/ERK inhibitor essential for ESC culture suggests MEK/ERK signaling and canonical Wnt signaling combine to promote ESC differentiation. PMID:23505158

  8. Self-regulation in land plant and global climate interactions

    NASA Astrophysics Data System (ADS)

    Morel, V.; dePolo, P.; Matsumoto, K.

    2013-12-01

    The interactions between land plants and climate have long been recognized. As global climate change occurs, there is a necessity to understand the sensitivity of vegetation and the surrounding physical environment to these changes. In this study, we use MESMO-2E, an earth system model of intermediate complexity, to investigate the response of climate and land plants to changes in the optimal growth conditions of the plants (temperature and ambient carbon dioxide level). In an initial set of sensitivity experiments, the amount of carbon stored in vegetation, and consequently the air temperature, were reduced as the climate changed from pre-industrial to glacial conditions. As the optimal temperature and carbon dioxide levels were changed to be similar to that of the glacial environment, an increase in carbon vegetation and air temperature was observed, suggesting a self-regulation mechanism. Results of further sensitivity experiments that work to identify the self-regulation mechanism will be presented.

  9. The miR-290-295 cluster promotes pluripotency maintenance by regulating cell cycle phase distribution in mouse embryonic stem cells.

    PubMed

    Lichner, Zsuzsanna; Páll, Emoke; Kerekes, Andrea; Pállinger, Eva; Maraghechi, Pouneh; Bosze, Zsuzsanna; Gócza, Elen

    2011-01-01

    The mmu-miR-290-295 cluster codes for a family of microRNAs (miRNAs) that are expressed de novo during early embryogenesis and are specific for mouse embryonic stem cells (ESC) and embryonic carcinoma cells (ECC). Detailed sequence analysis and alignment studies of miR-290-295 precursors demonstrated that the cluster has evolved by repeated duplication events of the ancient miR-290 precursor. We show that under serum starvation, overexpression of miR-290-295 miRNAs withhold ES cells from early differentiation, ensures their high proliferation rate and capacity for forming alkaline phosphate positive colonies. Transcriptome analysis revealed that differentiation related marker genes are underexpressed upon high miR-290-295 level. Importantly, miR-290-295 overexpression prevents ES cells from accumulation in G1 phase at low serum level, and seems to regulate cell cycle in different phases. Our data underline that miR-290-295 miRNAs contribute to the natural absence of G1 checkpoint in embryonic stem cells. We define the cell cycle regulators Wee1 and Fbxl5 as potential direct targets of miR-290-295 miRNAs in vitro. Our results suggest that miR-290-295 miRNAs exhibit their effect predominantly through the regulation of cell cycle phase distribution. PMID:20864249

  10. Zscan4 is regulated by PI3-kinase and DNA-damaging agents and directly interacts with the transcriptional repressors LSD1 and CtBP2 in mouse embryonic stem cells.

    PubMed

    Storm, Michael P; Kumpfmueller, Benjamin; Bone, Heather K; Buchholz, Michael; Sanchez Ripoll, Yolanda; Chaudhuri, Julian B; Niwa, Hitoshi; Tosh, David; Welham, Melanie J

    2014-01-01

    The Zscan4 family of genes, encoding SCAN-domain and zinc finger-containing proteins, has been implicated in the control of early mammalian embryogenesis as well as the regulation of pluripotency and maintenance of genome integrity in mouse embryonic stem cells. However, many features of this enigmatic family of genes are poorly understood. Here we show that undifferentiated mouse embryonic stem cell (ESC) lines simultaneously express multiple members of the Zscan4 gene family, with Zscan4c, Zscan4f and Zscan4-ps2 consistently being the most abundant. Despite this, between only 0.1 and 0.7% of undifferentiated mouse pluripotent stem cells express Zscan4 protein at a given time, consistent with a very restricted pattern of Zscan4 transcripts reported previously. Herein we demonstrate that Zscan4 expression is regulated by the p110α catalytic isoform of phosphoinositide 3-kinases and is induced following exposure to a sub-class of DNA-damage-inducing agents, including Zeocin and Cisplatin. Furthermore, we observe that Zscan4 protein expression peaks during the G2 phase of the cell cycle, suggesting that it may play a critical role at this checkpoint. Studies with GAL4-fusion proteins suggest a role for Zscan4 in transcriptional regulation, further supported by the fact that protein interaction analyses demonstrate that Zscan4 interacts with both LSD1 and CtBP2 in ESC nuclei. This study advances and extends our understanding of Zscan4 expression, regulation and mechanism of action. Based on our data we propose that Zscan4 may regulate gene transcription in mouse ES cells through interaction with LSD1 and CtBP2. PMID:24594919

  11. Inference of Transcriptional Network for Pluripotency in Mouse Embryonic Stem Cells

    NASA Astrophysics Data System (ADS)

    Aburatani, S.

    2015-01-01

    In embryonic stem cells, various transcription factors (TFs) maintain pluripotency. To gain insights into the regulatory system controlling pluripotency, I inferred the regulatory relationships between the TFs expressed in ES cells. In this study, I applied a method based on structural equation modeling (SEM), combined with factor analysis, to 649 expression profiles of 19 TF genes measured in mouse Embryonic Stem Cells (ESCs). The factor analysis identified 19 TF genes that were regulated by several unmeasured factors. Since the known cell reprogramming TF genes (Pou5f1, Sox2 and Nanog) are regulated by different factors, each estimated factor is considered to be an input for signal transduction to control pluripotency in mouse ESCs. In the inferred network model, TF proteins were also arranged as unmeasured factors that control other TFs. The interpretation of the inferred network model revealed the regulatory mechanism for controlling pluripotency in ES cells.

  12. Mitochondria in human pluripotent stem cell apoptosis.

    PubMed

    TeSlaa, Tara; Setoguchi, Kiyoko; Teitell, Michael A

    2016-04-01

    Human pluripotent stem cells (hPSCs) have great potential in regenerative medicine because they can differentiate into any cell type in the body. Genome integrity is vital for human development and for high fidelity passage of genetic information across generations through the germ line. To ensure genome stability, hPSCs maintain a lower rate of mutation than somatic cells and undergo rapid apoptosis in response to DNA damage and additional cell stresses. Furthermore, cellular metabolism and the cell cycle are also differentially regulated between cells in pluripotent and differentiated states and can aid in protecting hPSCs against DNA damage and damaged cell propagation. Despite these safeguards, clinical use of hPSC derivatives could be compromised by tumorigenic potential and possible malignant transformation from failed to differentiate cells. Since hPSCs and mature cells differentially respond to cell stress, it may be possible to specifically target undifferentiated cells for rapid apoptosis in mixed cell populations to enable safer use of hPSC-differentiated cells in patients. PMID:26828436

  13. Structural Interaction and Functional Regulation of Polycystin-2 by Filamin

    PubMed Central

    Wang, Qian; Dai, Xiao-Qing; Li, Qiang; Wang, Zuocheng; Cantero, María del Rocío; Li, Shu; Shen, Ji; Tu, Jian-Cheng; Cantiello, Horacio; Chen, Xing-Zhen

    2012-01-01

    Filamins are important actin cross-linking proteins implicated in scaffolding, membrane stabilization and signal transduction, through interaction with ion channels, receptors and signaling proteins. Here we report the physical and functional interaction between filamins and polycystin-2, a TRP-type cation channel mutated in 10–15% patients with autosomal dominant polycystic kidney disease. Yeast two-hybrid and GST pull-down experiments demonstrated that the C-termini of filamin isoforms A, B and C directly bind to both the intracellular N- and C-termini of polycystin-2. Reciprocal co-immunoprecipitation experiments showed that endogenous polycystin-2 and filamins are in the same complexes in renal epithelial cells and human melanoma A7 cells. We then examined the effect of filamin on polycystin-2 channel function by electrophysiology studies with a lipid bilayer reconstitution system and found that filamin-A substantially inhibits polycystin-2 channel activity. Our study indicates that filamins are important regulators of polycystin-2 channel function, and further links actin cytoskeletal dynamics to the regulation of this channel protein. PMID:22802962

  14. Ral GTPases regulate exocyst assembly through dual subunit interactions.

    PubMed

    Moskalenko, Serge; Tong, Chao; Rosse, Carine; Mirey, Gladys; Formstecher, Etienne; Daviet, Laurent; Camonis, Jacques; White, Michael A

    2003-12-19

    Ral GTPases have been implicated in the regulation of a variety of dynamic cellular processes including proliferation, oncogenic transformation, actin-cytoskeletal dynamics, endocytosis, and exocytosis. Recently the Sec6/8 complex, or exocyst, a multisubunit complex facilitating post-Golgi targeting of distinct subclasses of secretory vesicles, has been identified as a bona fide Ral effector complex. Ral GTPases regulate exocyst-dependent vesicle trafficking and are required for exocyst complex assembly. Sec5, a membrane-associated exocyst subunit, has been identified as a direct target of activated Ral; however, the mechanism by which Ral can modulate exocyst assembly is unknown. Here we report that an additional component of the exocyst, Exo84, is a direct target of activated Ral. We provide evidence that mammalian exocyst components are present as distinct subcomplexes on vesicles and the plasma membrane and that Ral GTPases regulate the assembly interface of a full octameric exocyst complex through interaction with Sec5 and Exo84. PMID:14525976

  15. Wise Regulates Bone Deposition through Genetic Interactions with Lrp5

    PubMed Central

    Ellies, Debra L.; Economou, Androulla; Viviano, Beth; Rey, Jean-Philippe; Paine-Saunders, Stephenie; Krumlauf, Robb; Saunders, Scott

    2014-01-01

    In this study using genetic approaches in mouse we demonstrate that the secreted protein Wise plays essential roles in regulating early bone formation through its ability to modulate Wnt signaling via interactions with the Lrp5 co-receptor. In Wise−/− mutant mice we find an increase in the rate of osteoblast proliferation and a transient increase in bone mineral density. This change in proliferation is dependent upon Lrp5, as Wise;Lrp5 double mutants have normal bone mass. This suggests that Wise serves as a negative modulator of Wnt signaling in active osteoblasts. Wise and the closely related protein Sclerostin (Sost) are expressed in osteoblast cells during temporally distinct early and late phases in a manner consistent with the temporal onset of their respective increased bone density phenotypes. These data suggest that Wise and Sost may have common roles in regulating bone development through their ability to control the balance of Wnt signaling. We find that Wise is also required to potentiate proliferation in chondrocytes, serving as a potential positive modulator of Wnt activity. Our analyses demonstrate that Wise plays a key role in processes that control the number of osteoblasts and chondrocytes during bone homeostasis and provide important insight into mechanisms regulating the Wnt pathway during skeletal development. PMID:24789067

  16. lncRNA maturation to initiate heterochromatin formation in the nucleolus is required for exit from pluripotency in ESCs.

    PubMed

    Savić, Nataša; Bär, Dominik; Leone, Sergio; Frommel, Sandra C; Weber, Fabienne A; Vollenweider, Eva; Ferrari, Elena; Ziegler, Urs; Kaech, Andres; Shakhova, Olga; Cinelli, Paolo; Santoro, Raffaella

    2014-12-01

    The open chromatin of embryonic stem cells (ESCs) condenses into repressive heterochromatin as cells exit the pluripotent state. How the 3D genome organization is orchestrated and implicated in pluripotency and lineage specification is not understood. Here, we find that maturation of the long noncoding RNA (lncRNA) pRNA is required for establishment of heterochromatin at ribosomal RNA genes, the genetic component of nucleoli, and this process is inactivated in pluripotent ESCs. By using mature pRNA to tether heterochromatin at nucleoli of ESCs, we find that localized heterochromatin condensation of ribosomal RNA genes initiates establishment of highly condensed chromatin structures outside of the nucleolus. Moreover, we reveal that formation of such highly condensed, transcriptionally repressed heterochromatin promotes transcriptional activation of differentiation genes and loss of pluripotency. Our findings unravel the nucleolus as an active regulator of chromatin plasticity and pluripotency and challenge current views on heterochromatin regulation and function in ESCs. PMID:25479748

  17. Totipotency, Pluripotency and Nuclear Reprogramming

    NASA Astrophysics Data System (ADS)

    Mitalipov, Shoukhrat; Wolf, Don

    Mammalian development commences with the totipotent zygote which is capable of developing into all the specialized cells that make up the adult animal. As development unfolds, cells of the early embryo proliferate and differentiate into the first two lineages, the pluripotent inner cell mass and the trophectoderm. Pluripotent cells can be isolated, adapted and propagated indefinitely in vitro in an undifferentiated state as embryonic stem cells (ESCs). ESCs retain their ability to differentiate into cells representing the three major germ layers: endoderm, mesoderm or ectoderm or any of the 200+ cell types present in the adult body. Since many human diseases result from defects in a single cell type, pluripotent human ESCs represent an unlimited source of any cell or tissue type for replacement therapy thus providing a possible cure for many devastating conditions. Pluripotent cells resembling ESCs can also be derived experimentally by the nuclear reprogramming of somatic cells. Reprogrammed somatic cells may have an even more important role in cell replacement therapies since the patient's own somatic cells can be used for reprogramming thereby eliminating immune based rejection of transplanted cells. In this review, we summarize two major approaches to reprogramming: (1) somatic cell nuclear transfer and (2) direct reprogramming using genetic manipulations.

  18. Totipotency, Pluripotency and Nuclear Reprogramming

    PubMed Central

    Mitalipov, Shoukhrat; Wolf, Don

    2009-01-01

    Mammalian development commences with the totipotent zygote which is capable of developing into all the specialized cells that make up the adult animal. As development unfolds, cells of the early embryo proliferate and differentiate into the first two lineages, the pluripotent inner cell mass and the trophectoderm. Pluripotent cells can be isolated, adapted and propagated indefinitely in vitro in an undifferentiated state as embryonic stem cells (ESCs). ESCs retain their ability to differentiate into cells representing the three major germ layers: endoderm, mesoderm or ectoderm or any of the 200+ cell types present in the adult body. Since many human diseases result from defects in a single cell type, pluripotent human ESCs represent an unlimited source of any cell or tissue type for replacement therapy thus providing a possible cure for many devastating conditions. Pluripotent cells resembling ESCs can also be derived experimentally by the nuclear reprogramming of somatic cells. Reprogrammed somatic cells may have an even more important role in cell replacement therapies since the patient’s own somatic cells can be used for reprogramming thereby eliminating immune based rejection of transplanted cells. In this review, we summarize two major approaches to reprogramming: (1) somatic cell nuclear transfer and (2) direct reprogramming using genetic manipulations. PMID:19343304

  19. Inhibition of master transcription factors in pluripotent cells induces early stage differentiation.

    PubMed

    De, Debojyoti; Jeong, Myong-Ho; Leem, Young-Eun; Svergun, Dmitri I; Wemmer, David E; Kang, Jong-Sun; Kim, Kyeong Kyu; Kim, Sung-Hou

    2014-02-01

    The potential for pluripotent cells to differentiate into diverse specialized cell types has given much hope to the field of regenerative medicine. Nevertheless, the low efficiency of cell commitment has been a major bottleneck in this field. Here we provide a strategy to enhance the efficiency of early differentiation of pluripotent cells. We hypothesized that the initial phase of differentiation can be enhanced if the transcriptional activity of master regulators of stemness is suppressed, blocking the formation of functional transcriptomes. However, an obstacle is the lack of an efficient strategy to block protein-protein interactions. In this work, we take advantage of the biochemical property of seventeen kilodalton protein (Skp), a bacterial molecular chaperone that binds directly to sex determining region Y-box 2 (Sox2). The small angle X-ray scattering analyses provided a low resolution model of the complex and suggested that the transactivation domain of Sox2 is probably wrapped in a cleft on Skp trimer. Upon the transduction of Skp into pluripotent cells, the transcriptional activity of Sox2 was inhibited and the expression of Sox2 and octamer-binding transcription factor 4 was reduced, which resulted in the expression of early differentiation markers and appearance of early neuronal and cardiac progenitors. These results suggest that the initial stage of differentiation can be accelerated by inhibiting master transcription factors of stemness. This strategy can possibly be applied to increase the efficiency of stem cell differentiation into various cell types and also provides a clue to understanding the mechanism of early differentiation. PMID:24434556

  20. Identification of novel proteins differentially expressed in pluripotent embryonic stem cells and differentiated cells.

    PubMed

    Enomoto, Kei; Watanabe-Susaki, Kanako; Kowno, Megumi; Takada, Hitomi; Intoh, Atsushi; Yamanaka, Yuko; Hirano, Hisashi; Sugino, Hiromu; Asashima, Makoto; Kurisaki, Akira

    2015-01-01

    Mammalian pluripotent stem cells possess properties of self-renewal and pluripotency. These abilities are maintained by the strict regulation of pluripotent stem cell-specific transcription factor network and unique properties of chromatin in the stem cells. Although these major signaling pathways robustly control the characteristics of stem cells, other regulatory factors, such as metabolic pathways, are also known to modulate stem cell proliferation and differentiation. In this study, we fractionated protein samples from mouse embryonic stem (ES) cells cultured with or without the leukemia inhibitory factor (LIF). Protein expression was quantified by 2-dimensional differential gel electrophoresis (2D-DIGE). In total, 44 proteins were identified as being differentially expressed in the pluripotent stem cells and the differentiated cells. Surprisingly, half of the identified proteins were the proteins localized in mitochondria, which supply cellular energy and regulate cell cycle, development, and cell death. Some of these identified proteins are involved in the metabolic function and the regulation of pluripotency. Further analysis of the identified proteins could provide new information for the manipulation of pluripotency in ES cells. PMID:26399336

  1. AESOP- INTERACTIVE DESIGN OF LINEAR QUADRATIC REGULATORS AND KALMAN FILTERS

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.

    1994-01-01

    AESOP was developed to solve a number of problems associated with the design of controls and state estimators for linear time-invariant systems. The systems considered are modeled in state-variable form by a set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are the linear quadratic regulator (LQR) design problem and the steady-state Kalman filter design problem. AESOP is designed to be used in an interactive manner. The user can solve design problems and analyze the solutions in a single interactive session. Both numerical and graphical information are available to the user during the session. The AESOP program is structured around a list of predefined functions. Each function performs a single computation associated with control, estimation, or system response determination. AESOP contains over sixty functions and permits the easy inclusion of user defined functions. The user accesses these functions either by inputting a list of desired functions in the order they are to be performed, or by specifying a single function to be performed. The latter case is used when the choice of function and function order depends on the results of previous functions. The available AESOP functions are divided into several general areas including: 1) program control, 2) matrix input and revision, 3) matrix formation, 4) open-loop system analysis, 5) frequency response, 6) transient response, 7) transient function zeros, 8) LQR and Kalman filter design, 9) eigenvalues and eigenvectors, 10) covariances, and 11) user-defined functions. The most important functions are those that design linear quadratic regulators and Kalman filters. The user interacts with AESOP when using these functions by inputting design weighting parameters and by viewing displays of designed system response. Support functions obtain system transient and frequency responses, transfer functions, and covariance matrices. AESOP can also provide the user

  2. Direct dynamin–actin interactions regulate the actin cytoskeleton

    PubMed Central

    Gu, Changkyu; Yaddanapudi, Suma; Weins, Astrid; Osborn, Teresia; Reiser, Jochen; Pollak, Martin; Hartwig, John; Sever, Sanja

    2010-01-01

    The large GTPase dynamin assembles into higher order structures that are thought to promote endocytosis. Dynamin also regulates the actin cytoskeleton through an unknown, GTPase-dependent mechanism. Here, we identify a highly conserved site in dynamin that binds directly to actin filaments and aligns them into bundles. Point mutations in the actin-binding domain cause aberrant membrane ruffling and defective actin stress fibre formation in cells. Short actin filaments promote dynamin assembly into higher order structures, which in turn efficiently release the actin-capping protein (CP) gelsolin from barbed actin ends in vitro, allowing for elongation of actin filaments. Together, our results support a model in which assembled dynamin, generated through interactions with short actin filaments, promotes actin polymerization via displacement of actin-CPs. PMID:20935625

  3. TPX2 regulates neuronal morphology through kinesin-5 interaction

    PubMed Central

    Kahn, Olga I.; Ha, Ngoc; Baird, Michelle A.; Davidson, Michael W.; Baas, Peter W.

    2015-01-01

    TPX2 (targeting protein for Xklp2) is a multifunctional mitotic spindle assembly factor that in mammalian cells localizes and regulates mitotic motor protein kinesin-5 (also called Eg5 or kif11). We previously showed that upon depletion or inhibition of kinesin-5 in cultured neurons, microtubule movements increase, resulting in faster growing axons and thinner dendrites. Here, we show that depletion of TPX2 from cultured neurons speeds their rate of process outgrowth, similarly to kinesin-5 inhibition. The phenotype is rescued by TPX2 re-expression, but not if TPX2’s kinesin-5-interacting domain is deleted. These results, together with studies showing a spike in TPX2 expression during dendritic differentiation, suggest that the levels and distribution of TPX2 are likely to be determinants of when and where kinesin-5 acts in neurons. PMID:26257190

  4. Hippocampal Wnt Signaling: Memory Regulation and Hormone Interactions.

    PubMed

    Fortress, Ashley M; Frick, Karyn M

    2016-06-01

    Wnt signaling has emerged in recent years as a major player in both nervous system development and adult synaptic plasticity. Of particular relevance to researchers studying learning and memory, Wnt signaling is critical for normal functioning of the hippocampus, a brain region that is essential for many types of memory formation and whose dysfunction is implicated in numerous neurodegenerative and psychiatric conditions. Impaired hippocampal Wnt signaling is implicated in several of these conditions, however, little is known about how Wnt signaling mediates hippocampal memory formation. This review will provide a general overview of Wnt signaling and discuss evidence demonstrating a key role for Wnt signaling in hippocampal memory formation in both normal and disease states. The regulation of Wnt signaling by ovarian sex steroid hormones will also be highlighted, given that the neuroprotection afforded by Wnt-hormone interactions may have significant implications for cognitive function in aging, neurodegenerative disease, and ischemic injury. PMID:25717070

  5. Interacting Protein Kinases Involved in the Regulation of Flagellar Length

    PubMed Central

    Erdmann, Maja; Scholz, Anne; Melzer, Inga M.; Schmetz, Christel; Wiese, Martin

    2006-01-01

    A striking difference of the life stages of the protozoan parasite Leishmania is a long flagellum in the insect stage promastigotes and a rudimentary organelle in the mammalian amastigotes. LmxMKK, a mitogen-activated protein (MAP) kinase kinase from Leishmania mexicana, is required for growth of a full-length flagellum. We identified LmxMPK3, a MAP kinase homologue, with a similar expression pattern as LmxMKK being not detectable in amastigotes, up-regulated during the differentiation to promastigotes, constantly expressed in promastigotes, and shut down during the differentiation to amastigotes. LmxMPK3 null mutants resemble the LmxMKK knockouts with flagella reduced to one-fifth of the wild-type length, stumpy cell bodies, and vesicles and membrane fragments in the flagellar pocket. A constitutively activated recombinant LmxMKK activates LmxMPK3 in vitro. Moreover, LmxMKK is likely to be directly involved in the phosphorylation of LmxMPK3 in vivo. Finally, LmxMPK3 is able to phosphorylate LmxMKK, indicating a possible feedback regulation. This is the first time that two interacting components of a signaling cascade have been described in the genus Leishmania. Moreover, we set the stage for the analysis of reversible phosphorylation in flagellar morphogenesis. PMID:16467378

  6. 3D Chromosome Regulatory Landscape of Human Pluripotent Cells.

    PubMed

    Ji, Xiong; Dadon, Daniel B; Powell, Benjamin E; Fan, Zi Peng; Borges-Rivera, Diego; Shachar, Sigal; Weintraub, Abraham S; Hnisz, Denes; Pegoraro, Gianluca; Lee, Tong Ihn; Misteli, Tom; Jaenisch, Rudolf; Young, Richard A

    2016-02-01

    In this study, we describe the 3D chromosome regulatory landscape of human naive and primed embryonic stem cells. To devise this map, we identified transcriptional enhancers and insulators in these cells and placed them within the context of cohesin-associated CTCF-CTCF loops using cohesin ChIA-PET data. The CTCF-CTCF loops we identified form a chromosomal framework of insulated neighborhoods, which in turn form topologically associating domains (TADs) that are largely preserved during the transition between the naive and primed states. Regulatory changes in enhancer-promoter interactions occur within insulated neighborhoods during cell state transition. The CTCF anchor regions we identified are conserved across species, influence gene expression, and are a frequent site of mutations in cancer cells, underscoring their functional importance in cellular regulation. These 3D regulatory maps of human pluripotent cells therefore provide a foundation for future interrogation of the relationships between chromosome structure and gene control in development and disease. PMID:26686465

  7. Vascular Potential of Human Pluripotent Stem Cells

    PubMed Central

    Iacobas, Ionela; Vats, Archana; Hirschi, Karen K.

    2010-01-01

    Cardiovascular disease is the number one cause of death and disability in the US. Understanding the biological activity of stem and progenitor cells, and their ability to contribute to the repair, regeneration and remodeling of the heart and blood vessels affected by pathologic processes is an essential part of the paradigm in enabling us to achieve a reduction in related deaths. Both human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are promising sources of cells for clinical cardiovascular therapies. Additional in vitro studies are needed, however, to understand their relative phenotypes and molecular regulation toward cardiovascular cell fates. Further studies in translational animal models are also needed to gain insights into the potential and function of both human ES- and iPS-derived cardiovascular cells, and enable translation from experimental and pre-clinical studies to human trials. PMID:20453170

  8. OSKM Induce Extraembryonic Endoderm Stem Cells in Parallel to Induced Pluripotent Stem Cells

    PubMed Central

    Parenti, Anthony; Halbisen, Michael A.; Wang, Kai; Latham, Keith; Ralston, Amy

    2016-01-01

    Summary The reprogramming factors OCT4, SOX2, KLF4, and MYC (OSKM) can reactivate the pluripotency network in terminally differentiated cells, but also regulate expression of non-pluripotency genes in other contexts, such as the mouse primitive endoderm. The primitive endoderm is an extraembryonic lineage established in parallel to the pluripotent epiblast in the blastocyst, and is the progenitor pool for extraembryonic endoderm stem (XEN) cells. We show that OSKM induce expression of endodermal genes, leading to formation of induced XEN (iXEN) cells, which possess key properties of blastocyst-derived XEN cells, including morphology, transcription profile, self-renewal, and multipotency. Our data show that iXEN cells arise in parallel to induced pluripotent stem cells, indicating that OSKM drive cells to two distinct cell fates during reprogramming. PMID:26947975

  9. Expression of stem cell pluripotency factors during regeneration in the earthworm Eisenia foetida.

    PubMed

    Zheng, Pengfei; Shao, Qiang; Diao, Xiaoping; Li, Zandong; Han, Qian

    2016-01-01

    Stem cell pluripotency factors can induce somatic cells to form induced pluripotent stem cells, which are involved in cell reprogramming and dedifferentiation. The tissue regeneration in the earthworm Eisenia foetida may involve cell dedifferentiation. There is limited information about associations between pluripotency factors and the regeneration. In this report, cDNA sequences of pluripotency factors, oct4, nanog, sox2, c-myc and lin28 genes from the earthworm E. foetida were cloned, and quantitative PCR analysis was performed for their mRNA expressions in the head, clitellum and tail. The maximum up-regulation of oct4, nanog, sox2, c-myc and lin28 occurred at 12h, 4 days, 12h, 2 days, and 24h after amputation for 110, 178, 21, 251 and 325-fold, respectively, in comparison with the controls. The results suggest that the tissues are regenerated via cellular dedifferentiation and reprogramming. PMID:26299657

  10. Developmental complexity of early mammalian pluripotent cell populations in vivo and in vitro.

    PubMed

    Pelton, T A; Bettess, M D; Lake, J; Rathjen, J; Rathjen, P D

    1998-01-01

    Early mammalian embryogenesis is characterised by the coordinated proliferation, differentiation, migration and apoptosis of a pluripotent cell pool that is able to give rise to extraembryonic lineages and all the cell types of the embryo proper. These cells retain pluripotent differentiation capability, defined in this paper as the ability to form all cell types of the embryo and adult, until differentiation into the three embryonic germ layers at gastrulation. Our understanding of pluripotent cell biology and molecular regulation has been hampered by the difficulties associated with experimental manipulation of these cells in vivo. However, a more detailed understanding of pluripotent cell behaviour is emerging from the application of molecular technologies to early mouse embryogenesis. The construction of mouse mutants by gene targeting, mapping of gene expression in vivo, and modelling of cell decisions in vitro are providing insight into the cellular origin, identity and action of key developmental regulators, and the nature of pluripotent cells themselves. In this review we discuss the properties of early embryonic pluripotent cells in vitro and in vivo, focusing on progression from inner cell mass (ICM) cells in the blastocyst to the onset of gastrulation. PMID:10612459

  11. Zinc Chloride Transiently Maintains Mouse Embryonic Stem Cell Pluripotency by Activating Stat3 Signaling

    PubMed Central

    Hu, Jing; Yang, Zhiyong; Wang, Jinbo; Yu, Jia; Guo, Jing; Liu, Shiying; Qian, Chunmei; Song, Liwen; Wu, Yi; Cheng, Jiajing

    2016-01-01

    An improved understanding of the pluripotency maintenance of embryonic stem (ES) cells is important for investigations of early embryo development and for cell replacement therapy, but the mechanism behind pluripotency is still incompletely understood. Recent findings show that zinc, an essential trace element in humans, is critically involved in regulating various signaling pathways and genes expression. However, its role in ES cell fate determination remains to be further explored. Here we showed that 2μM zinc chloride (ZnCl2) transiently maintained mouse ES cell pluripotency in vitro. The cultured mouse ES cells remained undifferentiated under 2μM ZnCl2 treatment in leukemia inhibitory factor (LIF) withdrawal, retinoic acid (RA) or embryoid bodies (EBs) differentiation assays. In addition, ZnCl2 increased pluripotency genes expression and inhibited differentiation genes expression. Further mechanistic studies revealed that ZnCl2 transiently activated signal transducers and activators of transcription 3 (Stat3) signaling through promoting Stat3 phosphorylation. Inhibition of Stat3 signaling abrogated the effects of ZnCl2 on mouse ES cell pluripotency. Taken together, this study demonstrated a critical role of zinc in the pluripotency maintenance of mouse ES cells, as well as an important regulator of Stat3 signaling. PMID:26910359

  12. The transcriptional foundation of pluripotency.

    PubMed

    Chambers, Ian; Tomlinson, Simon R

    2009-07-01

    A fundamental goal in biology is to understand the molecular basis of cell identity. Pluripotent embryonic stem (ES) cell identity is governed by a set of transcription factors centred on the triumvirate of Oct4, Sox2 and Nanog. These proteins often bind to closely localised genomic sites. Recent studies have identified additional transcriptional modulators that bind to chromatin near sites occupied by Oct4, Sox2 and Nanog. This suggests that the combinatorial control of gene transcription might be fundamental to the ES cell state. Here we discuss how these observations advance our understanding of the transcription factor network that controls pluripotent identity and highlight unresolved issues that arise from these studies. PMID:19542351

  13. Advances in reprogramming to pluripotency.

    PubMed

    Alateeq, Suad; Fortuna, Patrick R J; Wolvetang, Ernst

    2015-01-01

    Pluripotent stem cells (PSCs) derived from somatic cells represent a powerful experimental tool for investigating the molecular mechanisms underlying the disease phenotype; with prospects to advance medical therapies. They also have significant potential as a renewable source of autologous cells for cellular therapy. Various approaches for PSC derivation from somatic cells have been reported in the literature. The method used for reprogramming is particularly relevant as it may affect the characteristics and quality of PSCs. This review will present an overview of the basic strategies and methods for reprogramming to pluripotency. These strategies will be briefly discussed in the context of how the mechanism of reprogramming could influence PSC characteristics with respect to safety and quality. Aspects of the reprogramming approach that can influence PSC properties, such as culture conditions and donor cell source, are also discussed. PMID:25697500

  14. PREFACE: Physics approaches to protein interactions and gene regulation Physics approaches to protein interactions and gene regulation

    NASA Astrophysics Data System (ADS)

    Nussinov, Ruth; Panchenko, Anna R.; Przytycka, Teresa

    2011-06-01

    networks have been identified, including scale free distribution of the vertex degree, network motifs, and modularity, to name a few. These studies of network organization require the network to be as complete as possible, which given the limitations of experimental techniques is not currently the case. Therefore, experimental procedures for detecting biomolecular interactions should be complemented by computational approaches. The paper by Lees et al provides a review of computational methods, integrating multiple independent sources of data to infer physical and functional protein-protein interaction networks. One of the important aspects of protein interactions that should be accounted for in the prediction of protein interaction networks is that many proteins are composed of distinct domains. Protein domains may mediate protein interactions while proteins and their interaction networks may gain complexity through gene duplication and expansion of existing domain architectures via domain rearrangements. The latter mechanisms have been explored in detail in the paper by Cohen-Gihon et al. Protein-protein interactions are not the only component of the cell's interactome. Regulation of cell activity can be achieved at the level of transcription and involve a transcription factor—DNA binding which typically requires recognition of a specific DNA sequence motif. Chip-Chip and the more recent Chip-Seq technologies allow in vivo identification of DNA binding sites and, together with novel in vitro approaches, provide data necessary for deciphering the corresponding binding motifs. Such information, complemented by structures of protein-DNA complexes and knowledge of the differences in binding sites among homologs, opens the door to constructing predictive binding models. The paper by Persikov and Singh provides an example of such a model in the Cys2His2 zinc finger family. Recent studies have indicated that the presence of such binding motifs is, however, neither necessary

  15. Induction of pluripotency by defined factors

    PubMed Central

    TANABE, Koji; TAKAHASHI, Kazutoshi; YAMANAKA, Shinya

    2014-01-01

    The “reversion of cell fate from differentiated states back into totipotent or pluripotent states” has been an interest of many scientists for a long time. With the help of knowledge accumulated by those scientists, we succeeded in converting somatic cells to a pluripotent cell lineage by the forced expression of defined factors. These established induced pluripotent stem (iPS) cells have similar features to embryonic stem (ES) cells, including pluripotency and immortality. The iPS cell technology provides unprecedented opportunities for regenerative medicine and drug discovery. PMID:24621955

  16. Epigenetic re-programming of the Germ Cell Nuclear Factor gene is required for proper differentiation of induced pluripotent cells

    PubMed Central

    Wang, Hongran; Wang, Xiaohong; Xu, Xueping; Zwaka, Thomas P.; Cooney, Austin J.

    2013-01-01

    Somatic cells have been reprogrammed into induced pluripotent stem (iPS) cells that recapitulate the pluripotent nature of embryonic stem (ES) cells. Reduced pluripotency and variable differentiation capacities have hampered progress with this technology for applications in regeneration medicine. We have previously shown that Germ Cell Nuclear Factor (Gcnf) is required for the repression of pluripotency genes during ES cell differentiation and embryonic development. Here we report that iPS cell lines, in which the Gcnf gene was properly re-programmed, allowing expression of Gcnf, repress pluripotency genes during subsequent differentiation. In contrast, iPS clones in which the Gcnf gene was not re-programmed maintained pluripotency gene expression during differentiation and did not differentiate properly either in vivo or in vitro. These mal-reprogrammed cells re-capitulated the phenotype of Gcnf knock out (Gcnf−/−) ES cells. Re-introduction of Gcnf into either the Gcnf negative iPS cells or the Gcnf−/− ES cells, rescued repression of Oct4 during differentiation. Our findings establish a key role for Gcnf as a regulator of iPS cell pluripotency gene expression. It also demonstrates that reactivation of the Gcnf gene may serve as a marker to distinguish completely re-programmed iPS cells from incompletely pluripotent cells, which would make therapeutic use of iPS cells safer and more practical as it would reduce the oncogenic potential of iPS cells. PMID:23495137

  17. Genome-Wide Profiling of Pluripotent Cells Reveals a Unique Molecular Signature of Human Embryonic Germ Cells

    PubMed Central

    Pashai, Nikta; Hao, Haiping; All, Angelo; Gupta, Siddharth; Chaerkady, Raghothama; De Los Angeles, Alejandro; Gearhart, John D.; Kerr, Candace L.

    2012-01-01

    Human embryonic germ cells (EGCs) provide a powerful model for identifying molecules involved in the pluripotent state when compared to their progenitors, primordial germ cells (PGCs), and other pluripotent stem cells. Microarray and Principal Component Analysis (PCA) reveals for the first time that human EGCs possess a transcription profile distinct from PGCs and other pluripotent stem cells. Validation with qRT-PCR confirms that human EGCs and PGCs express many pluripotency-associated genes but with quantifiable differences compared to pluripotent embryonic stem cells (ESCs), induced pluripotent stem cells (IPSCs), and embryonal carcinoma cells (ECCs). Analyses also identified a number of target genes that may be potentially associated with their unique pluripotent states. These include IPO7, MED7, RBM26, HSPD1, and KRAS which were upregulated in EGCs along with other pluripotent stem cells when compared to PGCs. Other potential target genes were also found which may contribute toward a primed ESC-like state. These genes were exclusively up-regulated in ESCs, IPSCs and ECCs including PARP1, CCNE1, CDK6, AURKA, MAD2L1, CCNG1, and CCNB1 which are involved in cell cycle regulation, cellular metabolism and DNA repair and replication. Gene classification analysis also confirmed that the distinguishing feature of EGCs compared to ESCs, ECCs, and IPSCs lies primarily in their genetic contribution to cellular metabolism, cell cycle, and cell adhesion. In contrast, several genes were found upregulated in PGCs which may help distinguish their unipotent state including HBA1, DMRT1, SPANXA1, and EHD2. Together, these findings provide the first glimpse into a unique genomic signature of human germ cells and pluripotent stem cells and provide genes potentially involved in defining different states of germ-line pluripotency. PMID:22737227

  18. Methods to Manipulate and Monitor Wnt Signaling in Human Pluripotent Stem Cells.

    PubMed

    Huggins, Ian J; Brafman, David; Willert, Karl

    2016-01-01

    Human pluripotent stem cells (hPSCs) may revolutionize medical practice by providing: (a) a renewable source of cells for tissue replacement therapies, (b) a powerful system to model human diseases in a dish, and (c) a platform for examining efficacy and safety of novel drugs. Furthermore, these cells offer a unique opportunity to study early human development in vitro, in particular, the process by which a seemingly uniform cell population interacts to give rise to the three main embryonic lineages: ectoderm, endoderm. and mesoderm. This process of lineage allocation is regulated by a number of inductive signals that are mediated by growth factors, including FGF, TGFβ, and Wnt. In this book chapter, we introduce a set of tools, methods, and protocols to specifically manipulate the Wnt signaling pathway with the intention of altering the cell fate outcome of hPSCs. PMID:27590161

  19. Novel repressor regulates insulin sensitivity through interaction with Foxo1

    PubMed Central

    Nakae, Jun; Cao, Yongheng; Hakuno, Fumihiko; Takemori, Hiroshi; Kawano, Yoshinaga; Sekioka, Risa; Abe, Takaya; Kiyonari, Hiroshi; Tanaka, Toshiya; Sakai, Juro; Takahashi, Shin-Ichiro; Itoh, Hiroshi

    2012-01-01

    Forkhead box-containing protein o (Foxo) 1 is a key transcription factor in insulin and glucose metabolism. We identified a Foxo1-CoRepressor (FCoR) protein in mouse adipose tissue that inhibits Foxo1's activity by enhancing acetylation via impairment of the interaction between Foxo1 and the deacetylase Sirt1 and via direct acetylation. FCoR is phosphorylated at Threonine 93 by catalytic subunit of protein kinase A and is translocated into nucleus, making it possible to bind to Foxo1 in both cytosol and nucleus. Knockdown of FCoR in 3T3-F442A cells enhanced expression of Foxo target and inhibited adipocyte differentiation. Overexpression of FCoR in white adipose tissue decreased expression of Foxo-target genes and adipocyte size and increased insulin sensitivity in Leprdb/db mice and in mice fed a high-fat diet. In contrast, Fcor knockout mice were lean, glucose intolerant, and had decreased insulin sensitivity that was accompanied by increased expression levels of Foxo-target genes and enlarged adipocytes. Taken together, these data suggest that FCoR is a novel repressor that regulates insulin sensitivity and energy metabolism in adipose tissue by acting to fine-tune Foxo1 activity. PMID:22510882

  20. Epigenetic Biomarker to Support Classification into Pluripotent and Non-Pluripotent Cells

    NASA Astrophysics Data System (ADS)

    Lenz, Michael; Goetzke, Roman; Schenk, Arne; Schubert, Claudia; Veeck, Jürgen; Hemeda, Hatim; Koschmieder, Steffen; Zenke, Martin; Schuppert, Andreas; Wagner, Wolfgang

    2015-03-01

    Quality control of human induced pluripotent stem cells (iPSCs) can be performed by several methods. These methods are usually relatively labor-intensive, difficult to standardize, or they do not facilitate reliable quantification. Here, we describe a biomarker to distinguish between pluripotent and non-pluripotent cells based on DNA methylation (DNAm) levels at only three specific CpG sites. Two of these CpG sites were selected by their discriminatory power in 258 DNAm profiles - they were either methylated in pluripotent or non-pluripotent cells. The difference between these two β-values provides an Epi-Pluri-Score that was validated on independent DNAm-datasets (264 pluripotent and 1,951 non-pluripotent samples) with 99.9% specificity and 98.9% sensitivity. This score was complemented by a third CpG within the gene POU5F1 (OCT4), which better demarcates early differentiation events. We established pyrosequencing assays for the three relevant CpG sites and thereby correctly classified DNA of 12 pluripotent cell lines and 31 non-pluripotent cell lines. Furthermore, DNAm changes at these three CpGs were tracked in the course of differentiation of iPSCs towards mesenchymal stromal cells. The Epi-Pluri-Score does not give information on lineage-specific differentiation potential, but it provides a simple, reliable, and robust biomarker to support high-throughput classification into either pluripotent or non-pluripotent cells.

  1. Electromagnetic fields mediate efficient cell reprogramming into a pluripotent state.

    PubMed

    Baek, Soonbong; Quan, Xiaoyuan; Kim, Soochan; Lengner, Christopher; Park, Jung-Keug; Kim, Jongpil

    2014-10-28

    Life on Earth is constantly exposed to natural electromagnetic fields (EMFs), and it is generally accepted that EMFs may exert a variety of effects on biological systems. Particularly, extremely low-frequency electromagnetic fields (EL-EMFs) affect biological processes such as cell development and differentiation; however, the fundamental mechanisms by which EMFs influence these processes remain unclear. Here we show that EMF exposure induces epigenetic changes that promote efficient somatic cell reprogramming to pluripotency. These epigenetic changes resulted from EMF-induced activation of the histone lysine methyltransferase Mll2. Remarkably, an EMF-free system that eliminates Earth's naturally occurring magnetic field abrogates these epigenetic changes, resulting in a failure to undergo reprogramming. Therefore, our results reveal that EMF directly regulates dynamic epigenetic changes through Mll2, providing an efficient tool for epigenetic reprogramming including the acquisition of pluripotency. PMID:25248035

  2. CD24 tracks divergent pluripotent states in mouse and human cells.

    PubMed

    Shakiba, Nika; White, Carl A; Lipsitz, Yonatan Y; Yachie-Kinoshita, Ayako; Tonge, Peter D; Hussein, Samer M I; Puri, Mira C; Elbaz, Judith; Morrissey-Scoot, James; Li, Mira; Munoz, Javier; Benevento, Marco; Rogers, Ian M; Hanna, Jacob H; Heck, Albert J R; Wollscheid, Bernd; Nagy, Andras; Zandstra, Peter W

    2015-01-01

    Reprogramming is a dynamic process that can result in multiple pluripotent cell types emerging from divergent paths. Cell surface protein expression is a particularly desirable tool to categorize reprogramming and pluripotency as it enables robust quantification and enrichment of live cells. Here we use cell surface proteomics to interrogate mouse cell reprogramming dynamics and discover CD24 as a marker that tracks the emergence of reprogramming-responsive cells, while enabling the analysis and enrichment of transgene-dependent (F-class) and -independent (traditional) induced pluripotent stem cells (iPSCs) at later stages. Furthermore, CD24 can be used to delineate epiblast stem cells (EpiSCs) from embryonic stem cells (ESCs) in mouse pluripotent culture. Importantly, regulated CD24 expression is conserved in human pluripotent stem cells (PSCs), tracking the conversion of human ESCs to more naive-like PSC states. Thus, CD24 is a conserved marker for tracking divergent states in both reprogramming and standard pluripotent culture. PMID:26076835

  3. CD24 tracks divergent pluripotent states in mouse and human cells

    PubMed Central

    Shakiba, Nika; White, Carl A.; Lipsitz, Yonatan Y.; Yachie-Kinoshita, Ayako; Tonge, Peter D; Hussein, Samer M. I.; Puri, Mira C.; Elbaz, Judith; Morrissey-Scoot, James; Li, Mira; Munoz, Javier; Benevento, Marco; Rogers, Ian M.; Hanna, Jacob H.; Heck, Albert J. R.; Wollscheid, Bernd; Nagy, Andras; Zandstra, Peter W

    2015-01-01

    Reprogramming is a dynamic process that can result in multiple pluripotent cell types emerging from divergent paths. Cell surface protein expression is a particularly desirable tool to categorize reprogramming and pluripotency as it enables robust quantification and enrichment of live cells. Here we use cell surface proteomics to interrogate mouse cell reprogramming dynamics and discover CD24 as a marker that tracks the emergence of reprogramming-responsive cells, while enabling the analysis and enrichment of transgene-dependent (F-class) and -independent (traditional) induced pluripotent stem cells (iPSCs) at later stages. Furthermore, CD24 can be used to delineate epiblast stem cells (EpiSCs) from embryonic stem cells (ESCs) in mouse pluripotent culture. Importantly, regulated CD24 expression is conserved in human pluripotent stem cells (PSCs), tracking the conversion of human ESCs to more naive-like PSC states. Thus, CD24 is a conserved marker for tracking divergent states in both reprogramming and standard pluripotent culture. PMID:26076835

  4. Mga is essential for the survival of pluripotent cells during peri-implantation development.

    PubMed

    Washkowitz, Andrew J; Schall, Caroline; Zhang, Kun; Wurst, Wolfgang; Floss, Thomas; Mager, Jesse; Papaioannou, Virginia E

    2015-01-01

    The maintenance and control of pluripotency is of great interest in stem cell biology. The dual specificity T-box/basic-helix-loop-helix-zipper transcription factor Mga is expressed in the pluripotent cells of the inner cell mass (ICM) and epiblast of the peri-implantation mouse embryo, but its function has not been investigated previously. Here, we use a loss-of-function allele and RNA knockdown to demonstrate that Mga depletion leads to the death of proliferating pluripotent ICM cells in vivo and in vitro, and the death of embryonic stem cells (ESCs) in vitro. Additionally, quiescent pluripotent cells lacking Mga are lost during embryonic diapause. Expression of Odc1, the rate-limiting enzyme in the conversion of ornithine into putrescine in the synthesis of polyamines, is reduced in Mga mutant cells, and the survival of mutant ICM cells as well as ESCs is rescued in culture by the addition of exogenous putrescine. These results suggest a mechanism whereby Mga influences pluripotent cell survival through regulation of the polyamine pool in pluripotent cells of the embryo, whether they are in a proliferative or quiescent state. PMID:25516968

  5. Mga is essential for the survival of pluripotent cells during peri-implantation development

    PubMed Central

    Washkowitz, Andrew J.; Schall, Caroline; Zhang, Kun; Wurst, Wolfgang; Floss, Thomas; Mager, Jesse; Papaioannou, Virginia E.

    2015-01-01

    The maintenance and control of pluripotency is of great interest in stem cell biology. The dual specificity T-box/basic-helix-loop-helix-zipper transcription factor Mga is expressed in the pluripotent cells of the inner cell mass (ICM) and epiblast of the peri-implantation mouse embryo, but its function has not been investigated previously. Here, we use a loss-of-function allele and RNA knockdown to demonstrate that Mga depletion leads to the death of proliferating pluripotent ICM cells in vivo and in vitro, and the death of embryonic stem cells (ESCs) in vitro. Additionally, quiescent pluripotent cells lacking Mga are lost during embryonic diapause. Expression of Odc1, the rate-limiting enzyme in the conversion of ornithine into putrescine in the synthesis of polyamines, is reduced in Mga mutant cells, and the survival of mutant ICM cells as well as ESCs is rescued in culture by the addition of exogenous putrescine. These results suggest a mechanism whereby Mga influences pluripotent cell survival through regulation of the polyamine pool in pluripotent cells of the embryo, whether they are in a proliferative or quiescent state. PMID:25516968

  6. The developmental dismantling of pluripotency is reversed by ectopic Oct4 expression

    PubMed Central

    Osorno, Rodrigo; Tsakiridis, Anestis; Wong, Frederick; Cambray, Noemí; Economou, Constantinos; Wilkie, Ronald; Blin, Guillaume; Scotting, Paul J.; Chambers, Ian; Wilson, Valerie

    2012-01-01

    The transcription factors Nanog and Oct4 regulate pluripotency in the pre-implantation epiblast and in derivative embryonic stem cells. During post-implantation development, the precise timing and mechanism of the loss of pluripotency is unknown. Here, we show that in the mouse, pluripotency is extinguished at the onset of somitogenesis, coincident with reduced expression and chromatin accessibility of Oct4 and Nanog regulatory regions. Prior to somitogenesis expression of both Nanog and Oct4 is regionalized. We show that pluripotency tracks the in vivo level of Oct4 and not Nanog by assessing the ability to reactivate or maintain Nanog expression in cell culture. Enforced Oct4 expression in somitogenesis-stage tissue provokes rapid reopening of Oct4 and Nanog chromatin, Nanog re-expression and resuscitates moribund pluripotency. Our data suggest that decreasing Oct4 expression is converted to a sudden drop in competence to maintain pluripotency gene regulatory network activity that is subsequently stabilized by epigenetic locks. PMID:22669820

  7. Regulating social interactions: Developing a functional theory of collaboration

    NASA Astrophysics Data System (ADS)

    Borge, Marcela

    A role-playing intervention was developed and implemented in a fifth grade classroom. The goal of the intervention was to address serious problems that researchers have connected to dysfunctional collaborative interactions. These problems include an inability to: engage in important aspects of argumentation and communication, monitor and regulate group processes, and ensure equity in participation. To this end, a comprehensive theory of collaboration was presented to students through the use of four sociocognitive roles: mediation manager, collaboration manager, communication manager, and productivity manager. Each role came with a written guide that included specific goals and strategies related to the role. Metacognitive activities, including planning and reflection, were also used during class sessions to support students' understanding and role-use. Each of the students in the class was assigned one of the roles to manage during a two part collaborative science project. Students took quizzes on the roles and provided verbal and written feedback about their role-use and metacognitive activities. Students from one of the video-recorded groups were also interviewed after the intervention. Analyses of data from video sessions, quizzes, and interviews supported three important findings: (1) students were able to learn goals, and strategies for all of the roles, even though they only managed a single role, (2) students demonstrated the ability to take the information they learned and put it into practice, and (3) when students employed the roles while their group was working, members of the group accepted the role-use. These findings related to the learning and utilization of the roles are important because they: (1) imply that the intervention was successful at developing students' knowledge of the theory of collaboration that the roles represented, (2) indicate that students used this knowledge to monitor and regulate behaviors in an authentic context, and (3

  8. Resetting Human Naïve Pluripotency

    PubMed Central

    Xiao, Jifang; Mai, Daniel H.; Xie, Liangqi

    2016-01-01

    The rodent naive pluripotent state is believed to represent the preimplantation inner cell mass state of the developing blastocyst and can derive self-renewing pluripotent embryonic stem cells (ESCs) in vitro. Nevertheless, human ESCs exhibit epigenetic, metabolic, and transcriptomic characteristics more akin to primed pluripotent stem cells (PSCs) derived from the postimplantation epiblast. Understanding the genetic and epigenetic mechanisms that constrain human ESCs in the primed state is crucial for the human naive pluripotent state resetting and numerous applications in regenerative medicine. In this review, we begin by defining the naive and primed states in the murine model and compare the epigenetic characteristics of those states to the human PSCs. We also examine the various reprogramming schemes to derive the human naive pluripotent state. Finally, we discuss future perspectives of studying and deriving the human naive PSCs in the context of cellular engineering and regenerative medicine. PMID:27512340

  9. An interplay between extracellular signalling and the dynamics of the exit from pluripotency drives cell fate decisions in mouse ES cells

    PubMed Central

    Turner, David A.; Trott, Jamie; Hayward, Penelope; Rué, Pau; Martinez Arias, Alfonso

    2014-01-01

    ABSTRACT Embryonic Stem cells derived from the epiblast tissue of the mammalian blastocyst retain the capability to differentiate into any adult cell type and are able to self-renew indefinitely under appropriate culture conditions. Despite the large amount of knowledge that we have accumulated to date about the regulation and control of self-renewal, efficient directed differentiation into specific tissues remains elusive. In this work, we have analysed in a systematic manner the interaction between the dynamics of loss of pluripotency and Activin/Nodal, BMP4 and Wnt signalling in fate assignment during the early stages of differentiation of mouse ES cells in culture. During the initial period of differentiation, cells exit from pluripotency and enter an Epi-like state. Following this transient stage, and under the influence of Activin/Nodal and BMP signalling, cells face a fate choice between differentiating into neuroectoderm and contributing to Primitive Streak fates. We find that Wnt signalling does not suppress neural development as previously thought and that it aids both fates in a context dependent manner. Our results suggest that as cells exit pluripotency they are endowed with a primary neuroectodermal fate and that the potency to become endomesodermal rises with time. We suggest that this situation translates into a “race for fates” in which the neuroectodermal fate has an advantage. PMID:24950969

  10. Gametogenesis from Pluripotent Stem Cells.

    PubMed

    Saitou, Mitinori; Miyauchi, Hidetaka

    2016-06-01

    The germ cell lineage originates early in development and undergoes a series of complex developmental processes that culminate in the generation of fully matured gametes, the spermatozoa and the oocytes. Remarkably, researchers have been recapitulating these developmental pathways using mouse and human pluripotent stem cells (PSCs). With further studies, including those involving non-human primate models, human gametogenesis may be fully reconstituted from PSCs, which would profoundly facilitate our understanding of human germ cell development and infertility. Here we discuss groundbreaking studies that lay the foundation for this achievement, the current state of the field, and challenges for deriving gametes from hPSCs. PMID:27257761

  11. Reprogram to pluripotency: a new logic and a chemical cocktail

    PubMed Central

    Song, Hongjun; Ming, Guo-li

    2015-01-01

    Somatic cells from animals and humans can be reprogrammed into pluripotent stem cells by pluripotency factors. Hongkui Deng and colleagues discovered that pluripotency can also be induced with exogenous lineage specifiers via balancing competing differentiation forces. In a related study they achieved, for the first time, restoration of pluripotency in adult somatic cells using a chemical cocktail alone. PMID:26998393

  12. Interactions of Metacognition with Motivation and Affect in Self-Regulated Learning: The MASRL Model

    ERIC Educational Resources Information Center

    Efklides, Anastasia

    2011-01-01

    Metacognition, motivation, and affect are components of self-regulated learning (SRL) that interact. The "metacognitive and affective model of self-regulated learning" (the MASRL model) distinguishes two levels of functioning in SRL, namely, the Person level and the Task x Person level. At the Person level interactions between trait-like…

  13. Contingencies in Mother-Child Teaching Interactions and Behavioral Regulation and Dysregulation in Early Childhood

    ERIC Educational Resources Information Center

    Lunkenheimer, Erika S.; Kemp, Christine J.; Albrecht, Erin C.

    2013-01-01

    Predictable patterns in early parent-child interactions may help lay the foundation for how children learn to self-regulate. The present study examined contingencies between maternal teaching and directives and child compliance in mother-child problem-solving interactions at age 3.5 and whether they predicted children's behavioral regulation and…

  14. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation.

    PubMed

    Geula, Shay; Moshitch-Moshkovitz, Sharon; Dominissini, Dan; Mansour, Abed AlFatah; Kol, Nitzan; Salmon-Divon, Mali; Hershkovitz, Vera; Peer, Eyal; Mor, Nofar; Manor, Yair S; Ben-Haim, Moshe Shay; Eyal, Eran; Yunger, Sharon; Pinto, Yishay; Jaitin, Diego Adhemar; Viukov, Sergey; Rais, Yoach; Krupalnik, Vladislav; Chomsky, Elad; Zerbib, Mirie; Maza, Itay; Rechavi, Yoav; Massarwa, Rada; Hanna, Suhair; Amit, Ido; Levanon, Erez Y; Amariglio, Ninette; Stern-Ginossar, Noam; Novershtern, Noa; Rechavi, Gideon; Hanna, Jacob H

    2015-02-27

    Naïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here, we identify Mettl3, an N(6)-methyladenosine (m(6)A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout preimplantation epiblasts and naïve embryonic stem cells are depleted for m(6)A in mRNAs, yet are viable. However, they fail to adequately terminate their naïve state and, subsequently, undergo aberrant and restricted lineage priming at the postimplantation stage, which leads to early embryonic lethality. m(6)A predominantly and directly reduces mRNA stability, including that of key naïve pluripotency-promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo and identifies regulatory modules that functionally influence naïve and primed pluripotency in an opposing manner. PMID:25569111

  15. Advances in Culture and Manipulation of Human Pluripotent Stem Cells

    PubMed Central

    Qian, X.; Villa-Diaz, L.G.; Krebsbach, P.H.

    2013-01-01

    Recent advances in the understanding of pluripotent stem cell biology and emerging technologies to reprogram somatic cells to a stem cell–like state are helping bring stem cell therapies for a range of human disorders closer to clinical reality. Human pluripotent stem cells (hPSCs) have become a promising resource for regenerative medicine and research into early development because these cells are able to self-renew indefinitely and are capable of differentiation into specialized cell types of all 3 germ layers and trophoectoderm. Human PSCs include embryonic stem cells (hESCs) derived from the inner cell mass of blastocyst-stage embryos and induced pluripotent stem cells (hiPSCs) generated via the reprogramming of somatic cells by the overexpression of key transcription factors. The application of hiPSCs and the finding that somatic cells can be directly reprogrammed into different cell types will likely have a significant impact on regenerative medicine. However, a major limitation for successful therapeutic application of hPSCs and their derivatives is the potential xenogeneic contamination and instability of current culture conditions. This review summarizes recent advances in hPSC culture and methods to induce controlled lineage differentiation through regulation of cell-signaling pathways and manipulation of gene expression as well as new trends in direct reprogramming of somatic cells. PMID:23934156

  16. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells

    PubMed Central

    Mason, Mike J; Fan, Guoping; Plath, Kathrin; Zhou, Qing; Horvath, Steve

    2009-01-01

    Background Recent work has revealed that a core group of transcription factors (TFs) regulates the key characteristics of embryonic stem (ES) cells: pluripotency and self-renewal. Current efforts focus on identifying genes that play important roles in maintaining pluripotency and self-renewal in ES cells and aim to understand the interactions among these genes. To that end, we investigated the use of unsigned and signed network analysis to identify pluripotency and differentiation related genes. Results We show that signed networks provide a better systems level understanding of the regulatory mechanisms of ES cells than unsigned networks, using two independent murine ES cell expression data sets. Specifically, using signed weighted gene co-expression network analysis (WGCNA), we found a pluripotency module and a differentiation module, which are not identified in unsigned networks. We confirmed the importance of these modules by incorporating genome-wide TF binding data for key ES cell regulators. Interestingly, we find that the pluripotency module is enriched with genes related to DNA damage repair and mitochondrial function in addition to transcriptional regulation. Using a connectivity measure of module membership, we not only identify known regulators of ES cells but also show that Mrpl15, Msh6, Nrf1, Nup133, Ppif, Rbpj, Sh3gl2, and Zfp39, among other genes, have important roles in maintaining ES cell pluripotency and self-renewal. We also report highly significant relationships between module membership and epigenetic modifications (histone modifications and promoter CpG methylation status), which are known to play a role in controlling gene expression during ES cell self-renewal and differentiation. Conclusion Our systems biologic re-analysis of gene expression, transcription factor binding, epigenetic and gene ontology data provides a novel integrative view of ES cell biology. PMID:19619308

  17. The implementation of novel collaborative structures for the identification and resolution of barriers to pluripotent stem cell translation.

    PubMed

    Brindley, David A; French, Anna; Suh, Jane; Roberts, MacKenna; Davies, Benjamin; Pinedo-Villanueva, Rafael; Wartolowska, Karolina; Rooke, Kelly; Kramm, Anneke; Judge, Andrew; Morrey, Mark; Chandra, Amit; Hurley, Hannah; Grover, Liam; Bingham, Ian; Siegel, Bernard; Rattley, Matt S; Buckler, R Lee; McKeon, David; Krumholz, Katie; Hook, Lilian; May, Michael; Rikabi, Sarah; Pigott, Rosie; Morys, Megan; Sabokbar, Afsie; Titus, Emily; Laabi, Yacine; Lemaitre, Gilles; Zahkia, Raymond; Sipp, Doug; Horne, Robert; Bravery, Christopher; Williams, David; Wall, Ivan; Snyder, Evan Y; Karp, Jeffrey M; Barker, Richard W; Bure, Kim; Carr, Andrew J; Reeve, Brock

    2013-12-01

    Increased global connectivity has catalyzed technological development in almost all industries, in part through the facilitation of novel collaborative structures. Notably, open innovation and crowd-sourcing-of expertise and/or funding-has tremendous potential to increase the efficiency with which biomedical ecosystems interact to deliver safe, efficacious and affordable therapies to patients. Consequently, such practices offer tremendous potential in advancing development of cellular therapies. In this vein, the CASMI Translational Stem Cell Consortium (CTSCC) was formed to unite global thought-leaders, producing academically rigorous and commercially practicable solutions to a range of challenges in pluripotent stem cell translation. Critically, the CTSCC research agenda is defined through continuous consultation with its international funding and research partners. Herein, initial findings for all research focus areas are presented to inform global product development strategies, and to stimulate continued industry interaction around biomanufacturing, strategic partnerships, standards, regulation and intellectual property and clinical adoption. PMID:24304079

  18. The Implementation of Novel Collaborative Structures for the Identification and Resolution of Barriers to Pluripotent Stem Cell Translation

    PubMed Central

    Brindley, David A.; French, Anna; Suh, Jane; Roberts, MacKenna; Davies, Benjamin; Pinedo-Villanueva, Rafael; Wartolowska, Karolina; Rooke, Kelly; Kramm, Anneke; Judge, Andrew; Morrey, Mark; Chandra, Amit; Hurley, Hannah; Grover, Liam; Bingham, Ian; Siegel, Bernard; Rattley, Matt S.; Buckler, R. Lee; McKeon, David; Krumholz, Katie; Hook, Lilian; May, Michael; Rikabi, Sarah; Pigott, Rosie; Morys, Megan; Sabokbar, Afsie; Titus, Emily; Laabi, Yacine; Lemaitre, Gilles; Zahkia, Raymond; Sipp, Doug; Horne, Robert; Bravery, Christopher; Williams, David; Wall, Ivan; Snyder, Evan Y.; Karp, Jeffrey M.; Barker, Richard W.; Bure, Kim; Carr, Andrew J.; Reeve, Brock

    2013-01-01

    Abstract Increased global connectivity has catalyzed technological development in almost all industries, in part through the facilitation of novel collaborative structures. Notably, open innovation and crowd-sourcing—of expertise and/or funding—has tremendous potential to increase the efficiency with which biomedical ecosystems interact to deliver safe, efficacious and affordable therapies to patients. Consequently, such practices offer tremendous potential in advancing development of cellular therapies. In this vein, the CASMI Translational Stem Cell Consortium (CTSCC) was formed to unite global thought-leaders, producing academically rigorous and commercially practicable solutions to a range of challenges in pluripotent stem cell translation. Critically, the CTSCC research agenda is defined through continuous consultation with its international funding and research partners. Herein, initial findings for all research focus areas are presented to inform global product development strategies, and to stimulate continued industry interaction around biomanufacturing, strategic partnerships, standards, regulation and intellectual property and clinical adoption. PMID:24304079

  19. Inhibition of β-catenin-TCF1 interaction delays differentiation of mouse embryonic stem cells.

    PubMed

    Chatterjee, Sujash S; Saj, Abil; Gocha, Tenzin; Murphy, Matthew; Gonsalves, Foster C; Zhang, Xiaoqian; Hayward, Penelope; Akgöl Oksuz, Betül; Shen, Steven S; Madar, Aviv; Martinez Arias, Alfonso; DasGupta, Ramanuj

    2015-10-12

    The ability of mouse embryonic stem cells (mESCs) to self-renew or differentiate into various cell lineages is regulated by signaling pathways and a core pluripotency transcriptional network (PTN) comprising Nanog, Oct4, and Sox2. The Wnt/β-catenin pathway promotes pluripotency by alleviating T cell factor TCF3-mediated repression of the PTN. However, it has remained unclear how β-catenin's function as a transcriptional activator with TCF1 influences mESC fate. Here, we show that TCF1-mediated transcription is up-regulated in differentiating mESCs and that chemical inhibition of β-catenin/TCF1 interaction improves long-term self-renewal and enhances functional pluripotency. Genetic loss of TCF1 inhibited differentiation by delaying exit from pluripotency and conferred a transcriptional profile strikingly reminiscent of self-renewing mESCs with high Nanog expression. Together, our data suggest that β-catenin's function in regulating mESCs is highly context specific and that its interaction with TCF1 promotes differentiation, further highlighting the need for understanding how its individual protein-protein interactions drive stem cell fate. PMID:26459597

  20. Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency.

    PubMed

    Fiorenzano, Alessandro; Pascale, Emilia; D'Aniello, Cristina; Acampora, Dario; Bassalert, Cecilia; Russo, Francesco; Andolfi, Gennaro; Biffoni, Mauro; Francescangeli, Federica; Zeuner, Ann; Angelini, Claudia; Chazaud, Claire; Patriarca, Eduardo J; Fico, Annalisa; Minchiotti, Gabriella

    2016-01-01

    Known molecular determinants of developmental plasticity are mainly transcription factors, while the extrinsic regulation of this process has been largely unexplored. Here we identify Cripto as one of the earliest epiblast markers and a key extracellular determinant of the naive and primed pluripotent states. We demonstrate that Cripto sustains mouse embryonic stem cell (ESC) self-renewal by modulating Wnt/β-catenin, whereas it maintains mouse epiblast stem cell (EpiSC) and human ESC pluripotency through Nodal/Smad2. Moreover, we provide unprecedented evidence that Cripto controls the metabolic reprogramming in ESCs to EpiSC transition. Remarkably, Cripto deficiency attenuates ESC lineage restriction in vitro and in vivo, and permits ESC transdifferentiation into trophectoderm lineage, suggesting that Cripto has earlier functions than previously recognized. All together, our studies provide novel insights into the current model of mammalian pluripotency and contribute to the understanding of the extrinsic regulation of the first cell lineage decision in the embryo. PMID:27586544

  1. Reprogrammed pluripotent stem cells from somatic cells.

    PubMed

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-06-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-like pluripotency by transferring somatic cell nuclei into oocytes, by cell fusion with pluripotent cells. Retroviral-mediated introduction of four factors, Oct4, Sox2, Klf4 and c-Myc can successfully reprogram somatic cells into ES cell-like pluripotent stem cells, known as induced pluripotent stem (iPS) cells. These cells closely resemble ES cells in gene expression pattern, cell biologic and phenotypic characteristics. However, to reach the eventual goal of clinical application, it is necessary to overcome the major drawbacks such as low reprogramming efficiency and genomic alterations due to viral integration. In this review, we discuss the current reprogramming techniques and mechanisms of nuclear reprogramming induced by transcription factor transduction. PMID:24298328

  2. Multiple cell and population-level interactions with mouse embryonic stem cell heterogeneity.

    PubMed

    Cannon, Danielle; Corrigan, Adam M; Miermont, Agnes; McDonel, Patrick; Chubb, Jonathan R

    2015-08-15

    Much of development and disease concerns the generation of gene expression differences between related cells sharing similar niches. However, most analyses of gene expression only assess population and time-averaged levels of steady-state transcription. The mechanisms driving differentiation are buried within snapshots of the average cell, lacking dynamic information and the diverse regulatory history experienced by individual cells. Here, we use a quantitative imaging platform with large time series data sets to determine the regulation of developmental gene expression by cell cycle, lineage, motility and environment. We apply this technology to the regulation of the pluripotency gene Nanog in mouse embryonic stem cells. Our data reveal the diversity of cell and population-level interactions with Nanog dynamics and heterogeneity, and how this regulation responds to triggers of pluripotency. Cell cycles are highly heterogeneous and cycle time increases with Nanog reporter expression, with longer, more variable cycle times as cells approach ground-state pluripotency. Nanog reporter expression is highly stable over multiple cell generations, with fluctuations within cycles confined by an attractor state. Modelling reveals an environmental component to expression stability, in addition to any cell-autonomous behaviour, and we identify interactions of cell density with both cycle behaviour and Nanog. Rex1 expression dynamics showed shared and distinct regulatory effects. Overall, our observations of multiple partially overlapping dynamic heterogeneities imply complex cell and environmental regulation of pluripotent cell behaviour, and suggest simple deterministic views of stem cell states are inappropriate. PMID:26209649

  3. Multiple cell and population-level interactions with mouse embryonic stem cell heterogeneity

    PubMed Central

    Cannon, Danielle; Corrigan, Adam M.; Miermont, Agnes; McDonel, Patrick; Chubb, Jonathan R.

    2015-01-01

    Much of development and disease concerns the generation of gene expression differences between related cells sharing similar niches. However, most analyses of gene expression only assess population and time-averaged levels of steady-state transcription. The mechanisms driving differentiation are buried within snapshots of the average cell, lacking dynamic information and the diverse regulatory history experienced by individual cells. Here, we use a quantitative imaging platform with large time series data sets to determine the regulation of developmental gene expression by cell cycle, lineage, motility and environment. We apply this technology to the regulation of the pluripotency gene Nanog in mouse embryonic stem cells. Our data reveal the diversity of cell and population-level interactions with Nanog dynamics and heterogeneity, and how this regulation responds to triggers of pluripotency. Cell cycles are highly heterogeneous and cycle time increases with Nanog reporter expression, with longer, more variable cycle times as cells approach ground-state pluripotency. Nanog reporter expression is highly stable over multiple cell generations, with fluctuations within cycles confined by an attractor state. Modelling reveals an environmental component to expression stability, in addition to any cell-autonomous behaviour, and we identify interactions of cell density with both cycle behaviour and Nanog. Rex1 expression dynamics showed shared and distinct regulatory effects. Overall, our observations of multiple partially overlapping dynamic heterogeneities imply complex cell and environmental regulation of pluripotent cell behaviour, and suggest simple deterministic views of stem cell states are inappropriate. PMID:26209649

  4. The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance.

    PubMed

    Teichroeb, Jonathan H; Kim, Joohwan; Betts, Dean H

    2016-08-01

    Telomeres are linear guanine-rich DNA structures at the ends of chromosomes. The length of telomeric DNA is actively regulated by a number of mechanisms in highly proliferative cells such as germ cells, cancer cells, and pluripotent stem cells. Telomeric DNA is synthesized by way of the ribonucleoprotein called telomerase containing a reverse transcriptase (TERT) subunit and RNA component (TERC). TERT is highly conserved across species and ubiquitously present in their respective pluripotent cells. Recent studies have uncovered intricate associations between telomeres and the self-renewal and differentiation properties of pluripotent stem cells. Interestingly, the past decade's work indicates that the TERT subunit also has the capacity to modulate mitochondrial function, to remodel chromatin structure, and to participate in key signaling pathways such as the Wnt/β-catenin pathway. Many of these non-canonical functions do not require TERT's catalytic activity, which hints at possible functions for the extensive number of alternatively spliced TERT isoforms that are highly expressed in pluripotent stem cells. In this review, some of the established and potential routes of pluripotency induction and maintenance are highlighted from the perspectives of telomere maintenance, known TERT isoform functions and their complex regulation. PMID:26786236

  5. Mechanobiology of Human Pluripotent Stem Cells

    PubMed Central

    Earls, Jonathan K.; Jin, Sha

    2013-01-01

    Human pluripotent stem cells (hPSCs) are self-renewing and have the potential to differentiate into any cell type in the body, making them attractive cell sources for applications in tissue engineering and regenerative medicine. However, in order for hPSCs to find use in the clinic, the mechanisms underlying their self-renewal and lineage commitment must be better understood. Many technologies that have been developed for the maintenance and directed differentiation of hPSCs involve the use of soluble growth factors, but recent studies suggest that other elements of the hPSC microenvironment also influence the growth and differentiation of hPSCs. This includes the influences of cell–cell interactions, substrate mechanics, cellular interactions with extracellular matrix, as well as the nanotopography of the substrate and physical forces such as shear stress, cyclic mechanical strain, and compression. In this review, we highlight the recent progress of this area of research and discuss ways in which the mechanical cues may be incorporated into hPSC culture regimes to improve methods for expanding and differentiating hPSCs. PMID:23472616

  6. WATER CONTENT-TEMPERATURE INTERACTIONS REGULATE SEED AGING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water content and temperature are important factors that influence the duration of seed survival in storage. The interacting effect of these two factors and the consequences on seed longevity is rarely recognized. An experiment to quantify the interaction was begun in 1994, using lettuce (Lactuca s...

  7. Pluripotent embryonic stem cells and multipotent adult germline stem cells reveal similar transcriptomes including pluripotency-related genes.

    PubMed

    Meyer, S; Nolte, J; Opitz, L; Salinas-Riester, G; Engel, W

    2010-11-01

    DNA microarray analysis was performed with mouse multipotent adult germline stem cells (maGSCs) and embryonic stem cells (ESCs) from different genetic backgrounds cultured under standard ESC-culture conditions and under differentiation-promoting conditions by the withdrawal of the leukemia inhibitory factor (LIF) and treatment with retinoic acid (RA). The analyzed undifferentiated cell lines are very similar based on their global gene expression pattern and show 97-99% identity dependent on the analyzed background. Only 621 genes are differentially expressed in cells derived from mouse 129SV-background and 72 genes show differences in expression in cells generated from transgenic Stra8-EGFP/Rosa26-LacZ-background. Both maGSCs and ESCs express the same genes involved in the regulation of pluripotency and even show no differences in the expression level of these genes. When comparing maGSCs with previously published signature genes of other pluripotent cell lines, we found that maGSCs shared a very similar gene expression pattern with embryonic germ cells (EGCs). Also after differentiation of maGSCs and ESCs the transcriptomes of the cell lines are nearly identical which suggests that both cell types differentiate spontaneously in a very similar way. This is the first study, at transcriptome level, to compare ESCs and a pluripotent cell line derived from an adult organism (maGSCs). PMID:20624824

  8. Multilevel regulation of protein protein interactions in biological circuitry

    NASA Astrophysics Data System (ADS)

    Beckett, Dorothy

    2005-06-01

    Protein-protein interactions are central to biology and, in this 'post-genomic era', prediction of these interactions has become the goal of many computational efforts. Close inspection of even relatively simple biological regulatory circuitry reveals multiple levels of control of the contributing protein interactions. The fundamental probability that an interaction will occur under a given set of conditions is difficult to predict because the relationship between structure and energy is not known. Layered on this basic difficulty are allosteric control mechanisms involving post-translational modification or small ligand binding. In addition, many biological processes involve multiple protein-protein interactions, some of which may be cooperative or even competitive. Finally, although the emphasis in predicting protein interactions is based on equilibrium thermodynamic principles, kinetics can be a major controlling feature in these systems. This complexity reinforces the necessity of performing detailed quantitative studies of the component interactions of complex biological regulatory systems. Results of such studies will help us to bridge the gap between our knowledge of structure and our understanding of functional biology.

  9. In the loop: long range chromatin interactions and gene regulation

    PubMed Central

    2011-01-01

    Enhancers, silencer and insulators are DNA elements that play central roles in regulation of the genome that are crucial for development and differentiation. In metazoans, these elements are often separated from target genes by distances that can reach 100 Kb. How regulation can be accomplished over long distances has long been intriguing. Current data indicate that although the mechanisms by which these diverse regulatory elements affect gene transcription may vary, an underlying feature is the establishment of close contacts or chromatin loops. With the generalization of this principle, new questions emerge, such as how the close contacts are formed and stabilized and, importantly, how they contribute to the regulation of transcriptional output at target genes. This review will concentrate on examples where a functional role and a mechanistic understanding has been explored for loops formed between genes and their regulatory elements or among the elements themselves. PMID:21258045

  10. Pluripotent State Induction in Mouse Embryonic Fibroblast Using mRNAs of Reprogramming Factors

    PubMed Central

    El-Sayed, Ahmed Kamel; Zhang, Zhentao; Zhang, Lei; Liu, Zhiyong; Abbott, Louise C.; Zhang, Yani; Li, Bichun

    2014-01-01

    Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs) generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF) cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1) and Rex-1 (ZFP-42, zinc finger protein 42). Using embryonic stem cells (ESCs) conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs) using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF) cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations. PMID:25437916

  11. Pluripotent Stem Cells from Domesticated Mammals.

    PubMed

    Ezashi, Toshihiko; Yuan, Ye; Roberts, R Michael

    2016-01-01

    This review deals with the latest advances in the study of embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) from domesticated species, with a focus on pigs, cattle, sheep, goats, horses, cats, and dogs. Whereas the derivation of fully pluripotent ESC from these species has proved slow, reprogramming of somatic cells to iPSC has been more straightforward. However, most of these iPSC depend on the continued expression of the introduced transgenes, a major drawback to their utility. The persistent failure in generating ESC and the dependency of iPSC on ectopic genes probably stem from an inability to maintain the stability of the endogenous gene networks necessary to maintain pluripotency. Based on work in humans and rodents, achievement of full pluripotency will likely require fine adjustments in the growth factors and signaling inhibitors provided to the cells. Finally, we discuss the future utility of these cells for biomedical and agricultural purposes. PMID:26566158

  12. An Acetylation Switch Regulates SUMO-Dependent Protein Interaction Networks

    PubMed Central

    Ullmann, Rebecca; Chien, Christopher D.; Avantaggiati, Maria Laura; Muller, Stefan

    2013-01-01

    SUMMARY The attachment of the SUMO modifier to proteins controls cellular signaling pathways through noncovalent binding to SUMO-interaction motifs (SIMs). Canonical SIMs contain a core of hydrophobic residues that bind to a hydrophobic pocket on SUMO. Negatively charged residues of SIMs frequently contribute to binding by interacting with a basic surface on SUMO. Here we define acetylation within this basic interface as a central mechanism for the control of SUMO-mediated interactions. The acetyl-mediated neutralization of basic charges on SUMO prevents binding to SIMs in PML, Daxx, and PIAS family members but does not affect the interaction between RanBP2 and SUMO. Acetylation is controlled by HDACs and attenuates SUMO- and PIAS-mediated gene silencing. Moreover, it affects the assembly of PML nuclear bodies and restrains the recruitment of the corepressor Daxx to these structures. This acetyl-dependent switch thus expands the regulatory repertoire of SUMO signaling and determines the selectivity and dynamics of SUMO-SIM interactions. PMID:22578841

  13. Dichloroacetate, the Pyruvate Dehydrogenase Complex and the Modulation of mESC Pluripotency

    PubMed Central

    Rodrigues, Ana Sofia; Correia, Marcelo; Gomes, Andreia; Pereira, Sandro L.; Perestrelo, Tânia; Sousa, Maria Inês; Ramalho-Santos, João

    2015-01-01

    Introduction The pyruvate dehydrogenase (PDH) complex is localized in the mitochondrial matrix catalyzing the irreversible decarboxylation of pyruvate to acetyl-CoA and NADH. For proper complex regulation the E1-α subunit functions as an on/off switch regulated by phosphorylation/dephosphorylation. In different cell types one of the four-pyruvate dehydrogenase kinase isoforms (PDHK1-4) can phosphorylate this subunit leading to PDH inactivation. Our previous results with human Embryonic Stem Cells (hESC), suggested that PDHK could be a key regulator in the metabolic profile of pluripotent cells, as it is upregulated in pluripotent stem cells. Therefore, we wondered if metabolic modulation, via inexpensive pharmacological inhibition of PDHK, could impact metabolism and pluripotency. Methods/Results In order to assess the importance of the PDH cycle in mouse Embryonic Stem Cells (mESC), we incubated cells with the PDHK inhibitor dichloroacetate (DCA) and observed that in its presence ESC started to differentiate. Changes in mitochondrial function and proliferation potential were also found and protein levels for PDH (both phosphorylated and non-phosphorylated) and PDHK1 were monitored. Interestingly, we were also able to describe a possible pathway that involves Hif-1α and p53 during DCA-induced loss of pluripotency. Results with ESCs treated with DCA were comparable to those obtained for cells grown without Leukemia Inhibitor Factor (LIF), used in this case as a positive control for differentiation. Conclusions DCA negatively affects ESC pluripotency by changing cell metabolism and elements related to the PDH cycle, suggesting that PDHK could function as a possible metabolic gatekeeper in ESC, and may be a good target to modulate metabolism and differentiation. Although further molecular biology-based experiments are required, our data suggests that inactive PDH favors pluripotency and that ESC have similar strategies as cancer cells to maintain a glycolytic

  14. PRMT5 is required for human embryonic stem cell proliferation but not pluripotency

    PubMed Central

    Gkountela, Sofia; Li, Ziwei; Chin, Chee Jia; Lee, Serena A.; Clark, Amander T.

    2014-01-01

    Summary Human pluripotent stem cells (PSCs) are critical in vitro tools for understanding mechanisms that regulate lineage differentiation in the human embryo as well as a potentially unlimited supply of stem cells for regenerative medicine. Pluripotent human and mouse embryonic stem cells (ESCs) derived from the inner cell mass of blastocysts share a similar transcription factor network to maintain pluripotency and self-renewal, yet there are considerable molecular differences reflecting the diverse environments in which mouse and human ESCs are derived. In the current study we evaluated the role of Protein arginine methyltransferase 5 (PRMT5) in human ESC (hESC) self-renewal and pluripotency given its critical role in safeguarding mouse ESC pluripotency. Unlike the mouse, we discovered that PRMT5 has no role in hESC pluripotency. Using microarray analysis we discovered that a significant depletion in PRMT5 RNA and protein from hESCs changed the expression of only 78 genes, with the majority being repressed. Functionally, we discovered that depletion of PRMT5 had no effect on expression of OCT4, NANOG or SOX2, and did not prevent teratoma formation. Instead, we show that PRMT5 functions in hESCs to regulate proliferation in the self-renewing state by regulating the fraction of cells in Gap 1 (G1) of the cell cycle and increasing expression of the G1 cell cycle inhibitor P57. Taken together our data unveils a distinct role for PRMT5 in hESCs and identifies P57 as new target. PMID:24477620

  15. Proteome Analysis of Ground State Pluripotency

    PubMed Central

    Taleahmad, Sara; Mirzaei, Mehdi; Parker, Lindsay M.; Hassani, Seyedeh-Nafiseh; Mollamohammadi, Sepideh; Sharifi-Zarchi, Ali; Haynes, Paul A.; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2015-01-01

    The differentiation potential of pluripotent embryonic stem cells (ESCs) can be manipulated via serum and medium conditions for direct cellular development or to maintain a naïve ground state. The self-renewal state of ESCs can thus be induced by adding inhibitors of mitogen activated protein kinase (MAPK) and glycogen synthase kinase-3 (Gsk3), known as 2 inhibitors (2i) treatment. We have used a shotgun proteomics approach to investigate differences in protein expressions between 2i- and serum-grown mESCs. The results indicated that 164 proteins were significantly upregulated and 107 proteins downregulated in 2i-grown cells compared to serum. Protein pathways in 2i-grown cells with the highest enrichment were associated with glycolysis and gluconeogenesis. Protein pathways related to organ development were downregulated in 2i-grown cells. In serum-grown ESCs, protein pathways involved in integrin and focal adhesion, and signaling proteins involved in the actin cytoskeleton regulation were enriched. We observed a number of nuclear proteins which were mostly involved in self-renewal maintenance and were expressed at higher levels in 2i compared to serum - Dnmt1, Map2k1, Parp1, Xpo4, Eif3g, Smarca4/Brg1 and Smarcc1/Baf155. Collectively, the results provided an insight into the key protein pathways used by ESCs in the ground state or metastable conditions through 2i or serum culture medium, respectively. PMID:26671762

  16. Hydrodynamic modulation of pluripotent stem cells

    PubMed Central

    2012-01-01

    Controlled expansion and differentiation of pluripotent stem cells (PSCs) using reproducible, high-throughput methods could accelerate stem cell research for clinical therapies. Hydrodynamic culture systems for PSCs are increasingly being used for high-throughput studies and scale-up purposes; however, hydrodynamic cultures expose PSCs to complex physical and chemical environments that include spatially and temporally modulated fluid shear stresses and heterogeneous mass transport. Furthermore, the effects of fluid flow on PSCs cannot easily be attributed to any single environmental parameter since the cellular processes regulating self-renewal and differentiation are interconnected and the complex physical and chemical parameters associated with fluid flow are thus difficult to independently isolate. Regardless of the challenges posed by characterizing fluid dynamic properties, hydrodynamic culture systems offer several advantages over traditional static culture, including increased mass transfer and reduced cell handling. This article discusses the challenges and opportunities of hydrodynamic culture environments for the expansion and differentiation of PSCs in microfluidic systems and larger-volume suspension bioreactors. Ultimately, an improved understanding of the effects of hydrodynamics on the self-renewal and differentiation of PSCs could yield improved bioprocessing technologies to attain scalable PSC culture strategies that will probably be requisite for the development of therapeutic and diagnostic applications. PMID:23168068

  17. Regulation of Rubisco activase and its interaction with Rubisco

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The large, alpha-isoform of Rubisco activase confers redox regulation of the ATP/ADP response of the ATP hydrolysis and Rubisco activation activities of the multimeric activase holoenzyme complex. The alpha-isoform has a C-terminal extension that contains the redox-sensitive cysteine residues and is...

  18. Nuclear transcriptome profiling of induced pluripotent stem cells and embryonic stem cells identify non-coding loci resistant to reprogramming

    PubMed Central

    Fort, Alexandre; Yamada, Daisuke; Hashimoto, Kosuke; Koseki, Haruhiko; Carninci, Piero

    2015-01-01

    Identification of functionally relevant differences between induced pluripotent stem cells (iPSC) and reference embryonic stem cells (ESC) remains a central question for therapeutic applications. Differences in gene expression between iPSC and ESC have been examined by microarray and more recently with RNA-SEQ technologies. We here report an in depth analyses of nuclear and cytoplasmic transcriptomes, using the CAGE (cap analysis of gene expression) technology, for 5 iPSC clones derived from mouse lymphocytes B and 3 ESC lines. This approach reveals nuclear transcriptomes significantly more complex in ESC than in iPSC. Hundreds of yet not annotated putative non-coding RNAs and enhancer-associated transcripts specifically transcribed in ESC have been detected and supported with epigenetic and chromatin-chromatin interactions data. We identified super-enhancers transcriptionally active specifically in ESC and associated with genes implicated in the maintenance of pluripotency. Similarly, we detected non-coding transcripts of yet unknown function being regulated by ESC specific super-enhancers. Taken together, these results demonstrate that current protocols of iPSC reprogramming do not trigger activation of numerous cis-regulatory regions. It thus reinforces the need for already suggested deeper monitoring of the non-coding transcriptome when characterizing iPSC clones. Such differences in regulatory transcript expression may indeed impact their potential for clinical applications. PMID:25664506

  19. Maintaining embryonic stem cell pluripotency with Wnt signaling.

    PubMed

    Sokol, Sergei Y

    2011-10-01

    Wnt signaling pathways control lineage specification in vertebrate embryos and regulate pluripotency in embryonic stem (ES) cells, but how the balance between progenitor self-renewal and differentiation is achieved during axis specification and tissue patterning remains highly controversial. The context- and stage-specific effects of the different Wnt pathways produce complex and sometimes opposite outcomes that help to generate embryonic cell diversity. Although the results of recent studies of the Wnt/β-catenin pathway in ES cells appear to be surprising and controversial, they converge on the same conserved mechanism that leads to the inactivation of TCF3-mediated repression. PMID:21903672

  20. Learning Emotional Understanding and Emotion Regulation through Sibling Interaction

    ERIC Educational Resources Information Center

    Kramer, Laurie

    2014-01-01

    Research Findings: Young children's relationships with their sisters and brothers offer unique and important opportunities for learning about emotions and developing emotional understanding. Through a critical analysis, this article examines sibling interaction in 3 different but normative contexts (conflict/conflict management, play, and…

  1. The Path from Pluripotency to Skeletal Muscle: Developmental Myogenesis Guides the Way

    PubMed Central

    Hicks, Michael; Pyle, April

    2016-01-01

    Following cues from mouse embryogenesis, Chal et al. (2015) identified key regulators of skeletal myogenesis from mouse and human pluripotent stem cells. Emerging myogenic progenitors were specified to form multinucleated fibers that enabled development of quiescent, satellite cell-like progenitors and a model for Duchenne Muscular Dystrophy. PMID:26340524

  2. Regulation of Bax/mitochondria interaction by AKT.

    PubMed

    Simonyan, Lilit; Renault, Thibaud T; Novais, Maria João da Costa; Sousa, Maria João; Côrte-Real, Manuela; Camougrand, Nadine; Gonzalez, Cécile; Manon, Stéphen

    2016-01-01

    Bax-dependent mitochondrial permeabilization during apoptosis is controlled by multiple factors, including the phosphorylation by the protein kinase AKT. We used the heterologous co-expression of human Bax and AKT1 in yeast to investigate how the kinase modulates the different steps underlying Bax activation. We found that AKT activated Bax and increased its cellular content. Both effects were dependent on Ser184, but a phosphorylation of this residue did not fully explain the effects of AKT. Additional experiments with mutants substituted on Ser184 suggested that the regulation of Bax dynamic equilibrium between the cytosol and mitochondria might be more tightly regulated by Bcl-xL when Bax is phosphorylated. PMID:26763134

  3. Nonclassical Regulation of Transcription: Interchromosomal Interactions at the Malic enzyme Locus of Drosophila melanogaster

    PubMed Central

    Lum, Thomas E.; Merritt, Thomas J. S.

    2011-01-01

    Regulation of transcription can be a complex process in which many cis- and trans-interactions determine the final pattern of expression. Among these interactions are trans-interactions mediated by the pairing of homologous chromosomes. These trans-effects are wide ranging, affecting gene regulation in many species and creating complex possibilities in gene regulation. Here we describe a novel case of trans-interaction between alleles of the Malic enzyme (Men) locus in Drosophila melanogaster that results in allele-specific, non-additive gene expression. Using both empirical biochemical and predictive bioinformatic approaches, we show that the regulatory elements of one allele are capable of interacting in trans with, and modifying the expression of, the second allele. Furthermore, we show that nonlocal factors—different genetic backgrounds—are capable of significant interactions with individual Men alleles, suggesting that these trans-effects can be modified by both locally and distantly acting elements. In sum, these results emphasize the complexity of gene regulation and the need to understand both small- and large-scale interactions as more complete models of the role of trans-interactions in gene regulation are developed. PMID:21900270

  4. Adaptive and maladaptive emotion regulation strategies: interactive effects during CBT for social anxiety disorder.

    PubMed

    Aldao, Amelia; Jazaieri, Hooria; Goldin, Philippe R; Gross, James J

    2014-05-01

    There has been a increasing interest in understanding emotion regulation deficits in social anxiety disorder (SAD; e.g., Hofmann, Sawyer, Fang, & Asnaani, 2012). However, much remains to be understood about the patterns of associations among regulation strategies in the repertoire. Doing so is important in light of the growing recognition that people's ability to flexibly implement strategies is associated with better mental health (e.g., Kashdan et al., 2014). Based on previous work (Aldao & Nolen-Hoeksema, 2012), we examined whether putatively adaptive and maladaptive emotion regulation strategies interacted with each other in the prediction of social anxiety symptoms in a sample of 71 participants undergoing CBT for SAD. We found that strategies interacted with each other and that this interaction was qualified by a three-way interaction with a contextual factor, namely treatment study phase. Consequently, these findings underscore the importance of modeling contextual factors when seeking to understand emotion regulation deficits in SAD. PMID:24742755

  5. On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology

    PubMed Central

    Shao, Yue; Sang, Jianming; Fu, Jianping

    2015-01-01

    Human pluripotent stem cells (hPSCs) provide promising resources for regenerating tissues and organs and modeling development and diseases in vitro. To fulfill their promise, the fate, function, and organization of hPSCs need to be precisely regulated in a three-dimensional (3D) environment to mimic cellular structures and functions of native tissues and organs. In the past decade, innovations in 3D culture systems with functional biomaterials have enabled efficient and versatile control of hPSC fate at the cellular level. However, we are just at the beginning of bringing hPSC-based regeneration and development and disease modeling to the tissue and organ levels. In this review, we summarize existing bioengineered culture platforms for controlling hPSC fate and function by regulating inductive mechanical and biochemical cues coexisting in the synthetic cell microenvironment. We highlight recent excitements in developing 3D hPSC-based in vitro tissue and organ models with in vivo-like cellular structures, interactions, and functions. We further discuss an emerging multifaceted mechanotransductive signaling network – with transcriptional coactivators YAP and TAZ at the center stage – that regulate fates and behaviors of mammalian cells, including hPSCs. Future development of 3D biomaterial systems should incorporate dynamically modulated mechanical and chemical properties targeting specific intracellular signaling events leading to desirable hPSC fate patterning and functional tissue formation in 3D. PMID:25818411

  6. A genetic interaction map of cell cycle regulators.

    PubMed

    Billmann, Maximilian; Horn, Thomas; Fischer, Bernd; Sandmann, Thomas; Huber, Wolfgang; Boutros, Michael

    2016-04-15

    Cell-based RNA interference (RNAi) is a powerful approach to screen for modulators of many cellular processes. However, resulting candidate gene lists from cell-based assays comprise diverse effectors, both direct and indirect, and further dissecting their functions can be challenging. Here we screened a genome-wide RNAi library for modulators of mitosis and cytokinesis inDrosophilaS2 cells. The screen identified many previously known genes as well as modulators that have previously not been connected to cell cycle control. We then characterized ∼300 candidate modifiers further by genetic interaction analysis using double RNAi and a multiparametric, imaging-based assay. We found that analyzing cell cycle-relevant phenotypes increased the sensitivity for associating novel gene function. Genetic interaction maps based on mitotic index and nuclear size grouped candidates into known regulatory complexes of mitosis or cytokinesis, respectively, and predicted previously uncharacterized components of known processes. For example, we confirmed a role for theDrosophilaCCR4 mRNA processing complex componentl(2)NC136during the mitotic exit. Our results show that the combination of genome-scale RNAi screening and genetic interaction analysis using process-directed phenotypes provides a powerful two-step approach to assigning components to specific pathways and complexes. PMID:26912791

  7. A genetic interaction map of cell cycle regulators

    PubMed Central

    Billmann, Maximilian; Horn, Thomas; Fischer, Bernd; Sandmann, Thomas; Huber, Wolfgang; Boutros, Michael

    2016-01-01

    Cell-based RNA interference (RNAi) is a powerful approach to screen for modulators of many cellular processes. However, resulting candidate gene lists from cell-based assays comprise diverse effectors, both direct and indirect, and further dissecting their functions can be challenging. Here we screened a genome-wide RNAi library for modulators of mitosis and cytokinesis in Drosophila S2 cells. The screen identified many previously known genes as well as modulators that have previously not been connected to cell cycle control. We then characterized ∼300 candidate modifiers further by genetic interaction analysis using double RNAi and a multiparametric, imaging-based assay. We found that analyzing cell cycle–relevant phenotypes increased the sensitivity for associating novel gene function. Genetic interaction maps based on mitotic index and nuclear size grouped candidates into known regulatory complexes of mitosis or cytokinesis, respectively, and predicted previously uncharacterized components of known processes. For example, we confirmed a role for the Drosophila CCR4 mRNA processing complex component l(2)NC136 during the mitotic exit. Our results show that the combination of genome-scale RNAi screening and genetic interaction analysis using process-directed phenotypes provides a powerful two-step approach to assigning components to specific pathways and complexes. PMID:26912791

  8. Mitochondrial Protein Interaction Mapping Identifies Regulators of Respiratory Chain Function.

    PubMed

    Floyd, Brendan J; Wilkerson, Emily M; Veling, Mike T; Minogue, Catie E; Xia, Chuanwu; Beebe, Emily T; Wrobel, Russell L; Cho, Holly; Kremer, Laura S; Alston, Charlotte L; Gromek, Katarzyna A; Dolan, Brendan K; Ulbrich, Arne; Stefely, Jonathan A; Bohl, Sarah L; Werner, Kelly M; Jochem, Adam; Westphall, Michael S; Rensvold, Jarred W; Taylor, Robert W; Prokisch, Holger; Kim, Jung-Ja P; Coon, Joshua J; Pagliarini, David J

    2016-08-18

    Mitochondria are essential for numerous cellular processes, yet hundreds of their proteins lack robust functional annotation. To reveal functions for these proteins (termed MXPs), we assessed condition-specific protein-protein interactions for 50 select MXPs using affinity enrichment mass spectrometry. Our data connect MXPs to diverse mitochondrial processes, including multiple aspects of respiratory chain function. Building upon these observations, we validated C17orf89 as a complex I (CI) assembly factor. Disruption of C17orf89 markedly reduced CI activity, and its depletion is found in an unresolved case of CI deficiency. We likewise discovered that LYRM5 interacts with and deflavinates the electron-transferring flavoprotein that shuttles electrons to coenzyme Q (CoQ). Finally, we identified a dynamic human CoQ biosynthetic complex involving multiple MXPs whose topology we map using purified components. Collectively, our data lend mechanistic insight into respiratory chain-related activities and prioritize hundreds of additional interactions for further exploration of mitochondrial protein function. PMID:27499296

  9. Tex10 Coordinates Epigenetic Control of Super-Enhancer Activity in Pluripotency and Reprogramming.

    PubMed

    Ding, Junjun; Huang, Xin; Shao, Ningyi; Zhou, Hongwei; Lee, Dung-Fang; Faiola, Francesco; Fidalgo, Miguel; Guallar, Diana; Saunders, Arven; Shliaha, Pavel V; Wang, Hailong; Waghray, Avinash; Papatsenko, Dmitri; Sánchez-Priego, Carlos; Li, Dan; Yuan, Ye; Lemischka, Ihor R; Shen, Li; Kelley, Kevin; Deng, Haiteng; Shen, Xiaohua; Wang, Jianlong

    2015-06-01

    Super-enhancers (SEs) are large clusters of transcriptional enhancers that are co-occupied by multiple lineage-specific transcription factors driving expression of genes that define cell identity. In embryonic stem cells (ESCs), SEs are highly enriched for the core pluripotency factors Oct4, Sox2, and Nanog. In this study, we sought to dissect the molecular control mechanism of SE activity in pluripotency and reprogramming. Starting from a protein interaction network surrounding Sox2, we identified Tex10 as a key pluripotency factor that plays a functionally significant role in ESC self-renewal, early embryo development, and reprogramming. Tex10 is enriched at SEs in a Sox2-dependent manner and coordinates histone acetylation and DNA demethylation at SEs. Tex10 activity is also important for pluripotency and reprogramming in human cells. Our study therefore highlights Tex10 as a core component of the pluripotency network and sheds light on its role in epigenetic control of SE activity for cell fate determination. PMID:25936917

  10. Tex10 Coordinates Epigenetic Control of Super-Enhancer Activity in Pluripotency and Reprogramming

    PubMed Central

    Ding, Junjun; Huang, Xin; Shao, Ningyi; Zhou, Hongwei; Lee, Dung-Fang; Faiola, Francesco; Fidalgo, Miguel; Guallar, Diana; Saunders, Arven; Shliaha, Pavel V.; Wang, Hailong; Waghray, Avinash; Papatsenko, Dmitri; Sánchez-Priego, Carlos; Li, Dan; Yuan, Ye; Lemischka, Ihor R.; Shen, Li; Kelley, Kevin; Deng, Haiteng; Shen, Xiaohua; Wang, Jianlong

    2015-01-01

    SUMMARY Super-enhancers (SEs) are large clusters of transcriptional enhancers that are co-occupied by multiple lineage specific transcription factors driving expression of genes that define cell identity. In embryonic stem cells (ESCs), SEs are highly enriched for the core pluripotency factors Oct4, Sox2, and Nanog. In this study, we sought to dissect the molecular control mechanism of SE activity in pluripotency and reprogramming. Starting from a protein interaction network surrounding Sox2, we identified Tex10 as a key pluripotency factor that plays a functionally significant role in ESC self-renewal, early embryo development, and reprogramming. Tex10 is enriched at SEs in a Sox2-dependent manner and coordinates histone acetylation and DNA demethylation at SEs. Tex10 activity is also important for pluripotency and reprogramming in human cells. Our study therefore highlights Tex10 as a core component of the pluripotency network and sheds light on its role in epigenetic control of SE activity for cell fate determination. PMID:25936917