These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Investigating Predator-Prey Interactions  

NSDL National Science Digital Library

In a mixed culture, how does the population of Didinium affect the population of Paramecium â?? and vice versa? Predator-prey cycles can be modeled using the Biota simulation. How do variables such as the presence of a refuge or the availability of food perturb the population cycles? * study the effects that the presence of a refuge from predators has on a model microbial population

Ethel D. Stanley (Beloit College; Biology)

2006-05-20

2

Habitat fragmentation and the stability of predator-prey interactions  

Microsoft Academic Search

Mathematical models1-3, field observations4,5, and laboratory studies6 all suggest that habitat patchiness (or 'fragmentation') profoundly affects species interactions. One especially widely cited idea is that patchiness stabilizes predator-prey dynamics7,8. I performed the first test of this idea in a natural community by experimentally manipulating the degree of patchiness in goldenrod fields that were the setting for a predator-prey interaction between

P. Kareiva

1987-01-01

3

Three-dimensional predator-prey interactions: a computer simulqtion of bird flocks and aircraft  

E-print Network

Three-dimensional predator-prey interactions: a computer simulqtion of bird flocks and aircraft-dimensional predator-prey interactions: a computer simulation of bird flocks and aircraft. Can. J. Zool. 64: 2624-2633. Three-dimensional interactions between grouped aerial predators (frontal discs of aircraft engines

Dill, Lawrence M.

4

A synthesis of subdisciplines: predator–prey interactions and biodiversity and ecosystem functioning  

Microsoft Academic Search

Abstract The last 15 years has seen parallel surges of interest in two research areas that have rarely intersected: biodiversity and ecosystem functioning (BEF), and multispecies predator– prey,interactions (PPI). Research addressing,role of,biodiversity in ecosystem functioning has focused primarily on single trophic-level systems, emphasizing additive effects of diversity that manifest through resource partitioning and the sampling effect. Conversely, research addressing predator–prey

Anthony R. Ives; J Bradley; E William; Marine Biology

5

Enhancing species distribution modeling by characterizing predator-prey interactions.  

PubMed

Niche theory is a well-established concept integrating a diverse array of environmental variables and multispecies interactions used to describe species geographic distribution. It is now customary to employ species distribution models (SDMs) that use environmental variables in conjunction with species location information to characterize species' niches and map their geographic ranges. The challenge remains, however, to account for the biotic interactions of species with other community members on which they depend. We show here how to connect species spatial distribution and their dependence with other species by modeling spatially explicit predator-prey interactions, which we call a trophic interaction distribution model (TIDM). To develop the principles, we capitalized on data from Canada lynx (Lynx canadensis) reintroduced into Colorado. Spatial location information for lynx obtained from telemetry was used in conjunction with environmental data to construct an SDM. The spatial locations of lynx-snowshoe hare encounters obtained from snow-tracking in conjunction with environmental data were used to construct a TIDM. The environmental conditions associated with lynx locations and lynx-hare encounters identified through both SDM and TIDM revealed an initial transient phase in habitat use that settled into a steady state. Nevertheless, despite the potential for the SDM to broadly encompass all lynx hunting and nonhunting spatial locations, the spatial extents of the SDM and TIDM differed; about 40% of important lynx-snowshoe hare locations identified in the TIDM were not identified in the lynx-only SDM. Our results encourage greater effort to quantify spatial locations of trophic interactions among species in a community and the associated environmental conditions when attempting to construct models aimed at projecting current and future species geographic distributions. PMID:24640545

Trainor, Anne M; Schmitz, Oswald J; Ivan, Jacob S; Shenk, Tanya M

2014-01-01

6

Predator-prey interactions of salmon in the plume and near-shore ocean  

E-print Network

Predator-prey interactions of salmon in the plume and near-shore ocean: implications for density), Elizabeth Daly, Jim Ruzicka (OSU), and Beth Phillips (UW) CRBF & W Ocean Workshop, February 14, 2013 #12;Presentation Outline · Background on competition involving salmon in the ocean · Interactions between wild

7

Predator-Prey Models  

NSDL National Science Digital Library

Using Maple, Mathmatica, or MatLab, learner should be able to develop and explore the Lotka-Volterra model for predator-prey interactions as a prototypical first-order system of differential equations.

Smith, David

2001-01-30

8

Predator-Prey Models  

NSDL National Science Digital Library

Using Maple, Mathmatica, or MatLab, learner should be able to develop the Lotka-Volterra model for predator-prey interactions and a two-populaton version of Eulers Method for solving a system of differential equations.

Smith, David

2001-01-22

9

Applying risk allocation theory in a large mammal predator-prey system : elk-wolf behavioral interactions .  

E-print Network

??Understanding the behaviorally-mediated indirect effects of predators in ecosystems requires knowledge of predator-prey behavioral interactions, and the risk allocation hypothesis can be used to make… (more)

Gude, Justin Albert.

2004-01-01

10

Predator-Prey Interactions between Shell-Boring Beetle Larvae and Rock-Dwelling Land Snails  

PubMed Central

Drilus beetle larvae (Coleoptera: Elateridae) are specialized predators of land snails. Here, we describe various aspects of the predator-prey interactions between multiple Drilus species attacking multiple Albinaria (Gastropoda: Clausiliidae) species in Greece. We observe that Drilus species may be facultative or obligate Albinaria-specialists. We map geographically varying predation rates in Crete, where on average 24% of empty shells carry fatal Drilus bore holes. We also provide first-hand observations and video-footage of prey entry and exit strategies of the Drilus larvae, and evaluate the potential mutual evolutionary impacts. We find limited evidence for an effect of shell features and snail behavioral traits on inter- and intra-specifically differing predation rates. We also find that Drilus predators adjust their predation behavior based on specific shell traits of the prey. In conclusion, we suggest that, with these baseline data, this interesting predator-prey system will be available for further, detailed more evolutionary ecology studies. PMID:24964101

Castillo Cajas, Ruth F.; van Moorsel, Coline H. M.; Kundrata, Robin; Welter-Schultes, Francisco W.; Giokas, Sinos; Schilthuizen, Menno

2014-01-01

11

Chytridiomycosis impacts predator-prey interactions in larval amphibian communities  

Microsoft Academic Search

Despite ecologists increasingly recognizing pathogens as playing significant roles in community dynamics, few experimental studies have quantified patterns of disease impacts on natural systems. Amphibians are experiencing population declines, and a fungal pathogen ( Batrachochytrium dendrobatidis; Chytridiomycota) is a suspected causal agent in many declines. We studied the effects of a pathogenic fungus on community interactions between the gray treefrog,

Matthew J. Parris; Joseph G. Beaudoin

2004-01-01

12

Shifts in the Trophic Ecology of Brook Trout Resulting from Interactions with Yellow Perch: An Intraguild Predator-Prey Interaction  

Microsoft Academic Search

In size-structured populations, predator-prey interactions may be preceded by a phase of resource competition earlier in ontogeny, with potential consequences for population dynamics and resource management. We hypothesized that brook trout Salvelinus fontinalis and yellow perch Perca flavescens would compete for shared resources and interact as predator and prey. We used stable isotopes and stomach content analysis to compare the

David R. Browne; Joseph B. Rasmussen

2009-01-01

13

Reciprocal phenotypic plasticity can lead to stable predator-prey interaction.  

PubMed

1. Inducible defences of prey and inducible offences of predators are prevalent strategies in trophic interactions with temporal variation. Due to the inducible properties of the functional traits themselves, which drive the dynamic predator-prey relationship on an ecological time-scale, predator and prey may reciprocally interact through their inducible traits (i.e. reciprocal phenotypic plasticity). 2. Although overwhelming evidence of the stabilizing effect of inducible traits in either species on community dynamics forcefully suggests a critical ecological role for reciprocal plasticity in predator-prey population dynamics, our understanding of its ecological consequences is very limited. 3. Within a mathematical modelling framework, we investigated how reciprocal plasticity influences the stability of predator-prey systems. 4. By assuming two types of phenotypic shift, a density-dependent shift and an adaptive phenotypic shift, we examined two interaction scenarios with reciprocal plasticity: (i) an arms-race-like relationship, in which the defensive prey phenotype is more protective against both predator phenotypes (i.e. normal and offensive) than the normal prey phenotype, and the offensive predator is a more efficient consumer, preying upon both prey phenotypes (i.e. normal and defensive), than the normal predator and (ii) a matching response-like relationship, in which the offensive predator consumes more defensive prey and fewer normal prey than the normal predator. 5. Results of both phenotypic shift models consistently suggest that given the used set of parameter values, the arms-race-like reciprocal plasticity scenario has the largest stability area, when compared with the other scenarios. In particular, higher stability is achieved when the prey exhibits a high-performance inducible defence. Furthermore, this stabilization is so strong that the destabilizing effects of enrichment may be eliminated, even though the higher flexibility of plasticity does not always stabilize a system. 6. Recent empirical studies support our model predictions. Clear-cut examples of reciprocal phenotypic plasticity show an arms-race-like relationship in which prey species exhibit induced high-performance defences. We may need to re-examine reported predator-prey interactions in which predator or prey exhibits inducible plasticity to determine whether arms-race-like reciprocal plasticity is a general ecological phenomenon. PMID:19622080

Mougi, Akihiko; Kishida, Osamu

2009-11-01

14

Predator-Prey Models  

NSDL National Science Digital Library

Created by David Smith for the Connected Curriculum Project, the purpose of this module is to develop the Lotka-Volterra model for predator-prey interactions and a two-populaton version of Euler's Method for solving a system of differential equations. This is one within a much larger set of learning modules hosted by Duke University.

Smith, David

15

Predator-Prey Models  

NSDL National Science Digital Library

Created by Lang Moore and David Smith for the Connected Curriculum Project, this module develops and explores the Lotka-Volterra model for predator-prey interactions as a prototypical first-order system of differential equations. This is part of a larger collection of modules hosted by Duke University.

Moore, Lang

16

Acoustic mimicry in a predator–prey interaction  

PubMed Central

Mimicry of visual warning signals is one of the keystone concepts in evolutionary biology and has received substantial research attention. By comparison, acoustic mimicry has never been rigorously tested. Visualizing bat–moth interactions with high-speed, infrared videography, we provide empirical evidence for acoustic mimicry in the ultrasonic warning sounds that tiger moths produce in response to echolocating bats. Two species of sound-producing tiger moths were offered successively to naïve, free-flying red and big brown bats. Noctuid and pyralid moth controls were also offered each night. All bats quickly learned to avoid the noxious tiger moths first offered to them, associating the warning sounds with bad taste. They then avoided the second sound-producing species regardless of whether it was chemically protected or not, verifying both Müllerian and Batesian mimicry in the acoustic modality. A subset of the red bats subsequently discovered the palatability of the Batesian mimic, demonstrating the powerful selective force these predators exert on mimetic resemblance. Given these results and the widespread presence of tiger moth species and other sound-producing insects that respond with ultrasonic clicks to bat attack, acoustic mimicry complexes are likely common components of the acoustic landscape. PMID:17517637

Barber, Jesse R.; Conner, William E.

2007-01-01

17

Thermal acclimation of interactions: differential responses to temperature change alter predator–prey relationship  

PubMed Central

Different species respond differently to environmental change so that species interactions cannot be predicted from single-species performance curves. We tested the hypothesis that interspecific difference in the capacity for thermal acclimation modulates predator–prey interactions. Acclimation of locomotor performance in a predator (Australian bass, Macquaria novemaculeata) was qualitatively different to that of its prey (eastern mosquitofish, Gambusia holbrooki). Warm (25°C) acclimated bass made more attacks than cold (15°C) acclimated fish regardless of acute test temperatures (10–30°C), and greater frequency of attacks was associated with increased prey capture success. However, the number of attacks declined at the highest test temperature (30°C). Interestingly, escape speeds of mosquitofish during predation trials were greater than burst speeds measured in a swimming arena, whereas attack speeds of bass were lower than burst speeds. As a result, escape speeds of mosquitofish were greater at warm temperatures (25°C and 30°C) than attack speeds of bass. The decline in the number of attacks and the increase in escape speed of prey means that predation pressure decreases at high temperatures. We show that differential thermal responses affect species interactions even at temperatures that are within thermal tolerance ranges. This thermal sensitivity of predator–prey interactions can be a mechanism by which global warming affects ecological communities. PMID:22859598

Grigaltchik, Veronica S.; Ward, Ashley J. W.; Seebacher, Frank

2012-01-01

18

Predator-prey interactions shape thermal patch use in a newt larvae-dragonfly nymph model.  

PubMed

Thermal quality and predation risk are considered important factors influencing habitat patch use in ectothermic prey. However, how the predator's food requirement and the prey's necessity to avoid predation interact with their respective thermoregulatory strategies remains poorly understood. The recently developed 'thermal game model' predicts that in the face of imminent predation, prey should divide their time equally among a range of thermal patches. In contrast, predators should concentrate their hunting activities towards warmer patches. In this study, we test these predictions in a laboratory setup and an artificial environment that mimics more natural conditions. In both cases, we scored thermal patch use of newt larvae (prey) and free-ranging dragonfly nymphs (predators). Similar effects were seen in both settings. The newt larvae spent less time in the warm patch if dragonfly nymphs were present. The patch use of the dragonfly nymphs did not change as a function of prey availability, even when the nymphs were starved prior to the experiment. Our behavioral observations partially corroborate predictions of the thermal game model. In line with asymmetric fitness pay-offs in predator-prey interactions (the 'life-dinner' principle), the prey's thermal strategy is more sensitive to the presence of predators than vice versa. PMID:23755175

Gvoždík, Lumír; ?ernická, Eva; Van Damme, Raoul

2014-01-01

19

Predator-Prey Interactions Shape Thermal Patch Use in a Newt Larvae-Dragonfly Nymph Model  

PubMed Central

Thermal quality and predation risk are considered important factors influencing habitat patch use in ectothermic prey. However, how the predator’s food requirement and the prey’s necessity to avoid predation interact with their respective thermoregulatory strategies remains poorly understood. The recently developed ‘thermal game model’ predicts that in the face of imminent predation, prey should divide their time equally among a range of thermal patches. In contrast, predators should concentrate their hunting activities towards warmer patches. In this study, we test these predictions in a laboratory setup and an artificial environment that mimics more natural conditions. In both cases, we scored thermal patch use of newt larvae (prey) and free-ranging dragonfly nymphs (predators). Similar effects were seen in both settings. The newt larvae spent less time in the warm patch if dragonfly nymphs were present. The patch use of the dragonfly nymphs did not change as a function of prey availability, even when the nymphs were starved prior to the experiment. Our behavioral observations partially corroborate predictions of the thermal game model. In line with asymmetric fitness pay-offs in predator-prey interactions (the ‘life-dinner’ principle), the prey’s thermal strategy is more sensitive to the presence of predators than vice versa. PMID:23755175

Gvoždík, Lumír; ?ernická, Eva; Van Damme, Raoul

2013-01-01

20

Availability of prey resources drives evolution of predator–prey interaction  

PubMed Central

Productivity is predicted to drive the ecological and evolutionary dynamics of predator–prey interaction through changes in resource allocation between different traits. Here we report results of an evolutionary experiment where prey bacteria Serratia marcescens was exposed to predatory protozoa Tetrahymena thermophila in low- and high-resource environments for approximately 2400 prey generations. Predation generally increased prey allocation to defence and caused prey selection lines to become more diverse. On average, prey became most defensive in the high-resource environment and suffered from reduced resource use ability more in the low-resource environment. As a result, the evolution of stronger prey defence in the high-resource environment led to a strong decrease in predator-to-prey ratio. Predation increased temporal variability of populations and traits of prey. However, this destabilizing effect was less pronounced in the high-resource environment. Our results demonstrate that prey resource availability can shape the trade-off allocation of prey traits, which in turn affects multiple properties of the evolving predator–prey system. PMID:18430643

Friman, Ville-Petri; Hiltunen, Teppo; Laakso, Jouni; Kaitala, Veijo

2008-01-01

21

Do Predators Always Win? Starfish versus Limpets: A Hands-On Activity Examining Predator-Prey Interactions  

ERIC Educational Resources Information Center

In this article we propose a hands-on experimental activity about predator-prey interactions that can be performed both in a research laboratory and in the classroom. The activity, which engages students in a real scientific experiment, can be explored not only to improve students' understanding about the diversity of anti-predator behaviors but…

Faria, Claudia; Boaventura, Diana; Galvao, Cecilia; Chagas, Isabel

2011-01-01

22

Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on coastal molluscs.  

PubMed

The influence of environmental change on species interactions will affect population dynamics and community structure in the future, but our current understanding of the outcomes of species interactions in a high-CO2 world is limited. Here, we draw upon emerging experimental research examining the effects of ocean acidification on coastal molluscs to provide hypotheses of the potential impacts of high-CO2 on predator-prey interactions. Coastal molluscs, such as oysters, mussels, and snails, allocate energy among defenses, growth, and reproduction. Ocean acidification increases the energetic costs of physiological processes such as acid-base regulation and calcification. Impacted molluscs can display complex and divergent patterns of energy allocation to defenses and growth that may influence predator-prey interactions; these include changes in shell properties, body size, tissue mass, immune function, or reproductive output. Ocean acidification has also been shown to induce complex changes in chemoreception, behavior, and inducible defenses, including altered cue detection and predator avoidance behaviors. Each of these responses may ultimately alter the susceptibility of coastal molluscs to predation through effects on predator handling time, satiation, and search time. While many of these effects may manifest as increases in per capita predation rates on coastal molluscs, the ultimate outcome of predator-prey interactions will also depend on how ocean acidification affects the specified predators, which also exhibit complex responses to ocean acidification. Changes in predator-prey interactions could have profound and unexplored consequences for the population dynamics of coastal molluscs in a high-CO2 ocean. PMID:25070866

Kroeker, Kristy J; Sanford, Eric; Jellison, Brittany M; Gaylord, Brian

2014-06-01

23

Infrared tomographic PIV and 3D motion tracking system applied to aquatic predator-prey interaction  

NASA Astrophysics Data System (ADS)

Infrared tomographic PIV and 3D motion tracking are combined to measure evolving volumetric velocity fields and organism trajectories during aquatic predator-prey interactions. The technique was used to study zebrafish foraging on both non-evasive and evasive prey species. Measurement volumes of 22.5 mm × 10.5 mm × 12 mm were reconstructed from images captured on a set of four high-speed cameras. To obtain accurate fluid velocity vectors within each volume, fish were first masked out using an automated visual hull method. Fish and prey locations were identified independently from the same image sets and tracked separately within the measurement volume. Experiments demonstrated that fish were not influenced by the infrared laser illumination or the tracer particles. Results showed that the zebrafish used different strategies, suction and ram feeding, for successful capture of non-evasive and evasive prey, respectively. The two strategies yielded different variations in fluid velocity between the fish mouth and the prey. In general, the results suggest that the local flow field, the direction of prey locomotion with respect to the predator and the relative accelerations and speeds of the predator and prey may all be significant in determining predation success.

Adhikari, Deepak; Longmire, Ellen K.

2013-02-01

24

Predator-Prey Simulation Exercises for the Classroom  

NSDL National Science Digital Library

Illustrations of predator-prey interactions looking at different prey distributions, structural complexity of the environment, prey's reproductive rate,and both predator-prey reproduction in a complex environment.

James Waddell (University of Maine at Orono; )

2009-08-26

25

Predator–prey fuzzy model  

Microsoft Academic Search

In this work we have used fuzzy rule-based systems to elaborate a predator–prey type of model to study the interaction between aphids (preys) and ladybugs (predators) in citriculture, where the aphids are considered as transmitter agents of the Citrus Sudden Death (CSD). Simulations were performed and a graph was drawn to show the prey population, the potentiality of the predators,

Magda da Silva Peixoto; Laécio Carvalho de Barros; Rodney Carlos Bassanezi

2008-01-01

26

Long-range interactions and evolutionary stability in a predator-prey system.  

PubMed

Evolving ecosystems often are dominated by spatially local dynamics, but many also include long-range transport that mixes spatially separated groups. The existence of such mixing may be of critical importance since research shows spatial separation may be responsible for long-term stability of predator-prey systems. Complete mixing results in rapid global extinction, while spatial systems achive long term stability due to an inhomogeneous spatial pattern of local extinctions. We consider the robustness of a generic evolving predator-prey or host-pathogen model to long-range mixing and find a transition to global extinction at nontrivial values implying that even if significant mixing already exists, a small amount of additional mixing may cause extinction. Our results are relevant to the global mixing of species due to human intervention and to global transport of infectious disease. PMID:16605322

Rauch, Erik M; Bar-Yam, Yaneer

2006-02-01

27

Spatial ecology of predator-prey interactions: corridors and patch shape influence seed predation.  

SciTech Connect

J.L. Orrock, B.J. Danielson, M.J. Burns, and D.J. Levey. 2003. Spatial ecology of predator-prey interactions: corridors and patch shape influence seed predation. Ecology, 84(10):2589-2599. Abstract: Corridors that connect patches of disjunct habitat may be promising tools for mediating the negative impacts of habitat fragmentation, but little is known about how corridors affect ecological interactions. In eight 12-ha experimental landscapes, we examined how corridors affect the impact of invertebrate, rodent, and avian seed predators on pokeweed, Phytolacca americana. Over 13 months in 2000 and 2001, we quantified the effects of patch shape, connectivity, and predator type on the number of seeds germinating in the field (germinants), seed removal, and the viability of remaining seeds. Corridors did not affect the number of P. americana germinants in experimental exclosures or the viability of seeds remaining in exclosures. However, corridors affected the removal of seeds in a predator-specific manner: invertebrates removed more seeds in unconnected patches, whereas rodents removed more seeds in connected patches. Seed removal by birds was similar in connected and unconnected patches. Total seed removal by all seed predators was not affected by corridors, because invertebrates removed more seeds where rodents removed fewer seeds, and vice versa. Overall, seed predation signi®cantly reduced the number and viability of remaining seeds, and reduced the number of germinants in 2000 but not in 2001. The abundance of naturally occurring P. americana plants in our experimental patches in 2000 decreased with increasing seed removal from exclosures but was not related to viability or germinants in 2000, suggesting that seed removal may shape the distribution and abundance of this species. Complementary patterns of seed removal by rodents and invertebrates suggest that corridors alter the effects of these predator taxa by changing the relative amounts of edge and core (nonedge) habitats in a patch. Because invertebrates and rodents do not completely overlap in the seeds they consume, corridors may change predation pressure on seeds that are primarily consumed by one predator type, with potential consequences for the composition of plant and seed predator communities.

J. L . Orrock; B. J. Danielson; M. J. Burns; D. J. Levey

2003-02-03

28

A link between water availability and nesting success mediated by predator-prey interactions in the Arctic.  

PubMed

Although water availability is primarily seen as a factor affecting food availability (a bottom-up process), we examined its effect on predator-prey interactions through an influence on prey behavior (a top-down process). We documented a link between water availability, predation risk, and reproductive success in a goose species (Chen caerulescens atlantica) inhabiting an Arctic environment where water is not considered a limited commodity. To reach water sources during incubation recesses, geese nesting in mesic tundra (low water availability) must move almost four times as far from their nest than those nesting in wetlands, which reduced their ability to defend their nest against predators and led to a higher predation rate. Nesting success was improved in high rainfall years due to increased water availability, and more so for geese nesting in the low water availability habitat. Likewise, nesting success was improved in years where the potential for evaporative water loss (measured by the atmospheric water vapor pressure) was low, presumably because females had to leave their nest less often to drink. Females from water-supplemented nests traveled a shorter distance to drink, and their nesting success was enhanced by 20% compared to the control. This shows that water availability and rainfall can have a strong effect on predator-prey dynamics and that changes in precipitation brought by climate change could have an impact on some Arctic species through a top-down effect. PMID:19323230

Lecomte, Nicolas; Gauthier, Gilles; Giroux, Jean-François

2009-02-01

29

Effects of an Infectious Fungus, Batrachochytrium dendrobatidis, on Amphibian Predator-Prey Interactions  

PubMed Central

The effects of parasites and pathogens on host behaviors may be particularly important in predator-prey contexts, since few animal behaviors are more crucial for ensuring immediate survival than the avoidance of lethal predators in nature. We examined the effects of an emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis, on anti-predator behaviors of tadpoles of four frog species. We also investigated whether amphibian predators consumed infected prey, and whether B. dendrobatidis caused differences in predation rates among prey in laboratory feeding trials. We found differences in anti-predator behaviors among larvae of four amphibian species, and show that infected tadpoles of one species (Anaxyrus boreas) were more active and sought refuge more frequently when exposed to predator chemical cues. Salamander predators consumed infected and uninfected tadpoles of three other prey species at similar rates in feeding trials, and predation risk among prey was unaffected by B. dendrobatidis. Collectively, our results show that even sub-lethal exposure to B. dendrobatidis can alter fundamental anti-predator behaviors in some amphibian prey species, and suggest the unexplored possibility that indiscriminate predation between infected and uninfected prey (i.e., non-selective predation) could increase the prevalence of this widely distributed pathogen in amphibian populations. Because one of the most prominent types of predators in many amphibian systems is salamanders, and because salamanders are susceptible to B. dendrobatidis, our work suggests the importance of considering host susceptibility and behavioral changes that could arise from infection in both predators and prey. PMID:21311771

Han, Barbara A.; Searle, Catherine L.; Blaustein, Andrew R.

2011-01-01

30

Inducible offences affect predator-prey interactions and life-history plasticity in both predators and prey.  

PubMed

Phenotypic plasticity can have strong impacts on predator-prey interactions. Although much work has examined the effects of inducible defences, less understood is how inducible offences in predators affect predator-prey interactions and predator and prey phenotypes. Here, we examine the impacts of an inducible offence on the interactions and life histories of a cohort of predatory Hynobius retardatus salamander larvae and their prey, Rana pirica tadpoles. We examined larval (duration, survival) and post-metamorphic (size) traits of both species after manipulating the presence/absence of tadpoles and salamanders with offensive (broadened gape width) or non-offensive phenotypes in pond enclosures. Offensive phenotype salamanders reduced tadpole survival and metamorph emergence by 58% compared to tadpole-only treatments, and by over 30% compared to non-offensive phenotypes. Average time to metamorphosis of frogs was delayed by 30% in the presence of salamanders, although this was independent of salamander phenotype. Thus, offensive phenotype salamanders reduced the number of tadpoles remaining in the pond over time by reducing tadpole survival, not by altering patterns of metamorph emergence. Offensive phenotypes also caused tadpoles to metamorphose 19% larger than no salamander treatments and 6% larger than non-offensive phenotype treatments. Pooled across salamander treatments, tadpoles caused salamanders to reach metamorphosis faster and larger. Moreover, in the presence of tadpoles, offensive phenotype salamanders metamorphosed 25% faster and 5% larger than non-offensive phenotype salamanders, but in their absence, neither their size nor larval period differed from non-offensive phenotype individuals. To our knowledge, this study is the first to demonstrate that inducible offences in predators can have strong impacts on predator and prey phenotypes across multiple life stages. Since early metamorphosis at a larger size has potential fitness advantages, the impacts of offensive phenotypes on frog and salamander life histories likely have significant consequences for individuals and populations. Furthermore, increased predation on tadpoles likely causes offensive phenotype individuals to have strong impacts on pond communities. Future studies should examine the fitness consequences of morphological and life-history plasticity across multiple life stages and should address the population and community level consequences of offensive phenotypes. PMID:24320092

Kishida, Osamu; Costa, Zacharia; Tezuka, Ayumi; Michimae, Hirofumi

2013-12-01

31

Coevolution can reverse predator-prey cycles.  

PubMed

A hallmark of Lotka-Volterra models, and other ecological models of predator-prey interactions, is that in predator-prey cycles, peaks in prey abundance precede peaks in predator abundance. Such models typically assume that species life history traits are fixed over ecologically relevant time scales. However, the coevolution of predator and prey traits has been shown to alter the community dynamics of natural systems, leading to novel dynamics including antiphase and cryptic cycles. Here, using an eco-coevolutionary model, we show that predator-prey coevolution can also drive population cycles where the opposite of canonical Lotka-Volterra oscillations occurs: predator peaks precede prey peaks. These reversed cycles arise when selection favors extreme phenotypes, predator offense is costly, and prey defense is effective against low-offense predators. We present multiple datasets from phage-cholera, mink-muskrat, and gyrfalcon-rock ptarmigan systems that exhibit reversed-peak ordering. Our results suggest that such cycles are a potential signature of predator-prey coevolution and reveal unique ways in which predator-prey coevolution can shape, and possibly reverse, community dynamics. PMID:24799689

Cortez, Michael H; Weitz, Joshua S

2014-05-20

32

Interaction between Coastal and Oceanic Ecosystems of the Western and Central Pacific Ocean through Predator-Prey Relationship Studies  

PubMed Central

The Western and Central Pacific Ocean sustains the highest tuna production in the world. This province is also characterized by many islands and a complex bathymetry that induces specific current circulation patterns with the potential to create a high degree of interaction between coastal and oceanic ecosystems. Based on a large dataset of oceanic predator stomach contents, our study used generalized linear models to explore the coastal-oceanic system interaction by analyzing predator-prey relationship. We show that reef organisms are a frequent prey of oceanic predators. Predator species such as albacore (Thunnus alalunga) and yellowfin tuna (Thunnus albacares) frequently consume reef prey with higher probability of consumption closer to land and in the western part of the Pacific Ocean. For surface-caught-predators consuming reef prey, this prey type represents about one third of the diet of predators smaller than 50 cm. The proportion decreases with increasing fish size. For predators caught at depth and consuming reef prey, the proportion varies with predator species but generally represents less than 10%. The annual consumption of reef prey by the yellowfin tuna population was estimated at 0.8±0.40CV million tonnes or 2.17×1012±0.40CV individuals. This represents 6.1%±0.17CV in weight of their diet. Our analyses identify some of the patterns of coastal-oceanic ecosystem interactions at a large scale and provides an estimate of annual consumption of reef prey by oceanic predators. PMID:22615796

Allain, Valerie; Fernandez, Emilie; Hoyle, Simon D.; Caillot, Sylvain; Jurado-Molina, Jesus; Andréfouët, Serge; Nicol, Simon J.

2012-01-01

33

Bottom-up meets top-down: leaf litter inputs influence predator-prey interactions in wetlands.  

PubMed

While the common conceptual role of resource subsidies is one of bottom-up nutrient and energy supply, inputs can also alter the structural complexity of environments. This can further impact resource flow by providing refuge for prey and decreasing predation rates. However, the direct influence of different organic subsidies on predator-prey dynamics is rarely examined. In forested wetlands, leaf litter inputs are a dominant energy and nutrient resource and they can also increase benthic surface cover and decrease water clarity, which may provide refugia for prey and subsequently reduce predation rates. In outdoor mesocosms, we investigated how inputs of leaf litter that alter benthic surface cover and water clarity influence the mortality and growth of gray treefrog tadpoles (Hyla versicolor) in the presence of free-swimming adult newts (Notophthalmus viridiscens), which are visual predators. To manipulate surface cover, we added either oak (Quercus spp.) or red pine (Pinus resinosa) litter and crossed these treatments with three levels of red maple (Acer rubrum) litter leachate to manipulate water clarity. In contrast to our predictions, benthic surface cover had no effect on tadpole survival while darkening the water caused lower survival. In addition, individual tadpole mass was lowest in the high maple leachate treatments, suggesting an interaction between bottom-up effects of leaf litter and top-down effects of predation risk that altered mortality and growth of tadpoles. Our results indicate that realistic changes in forest tree composition, which cause concomitant changes in litter inputs to wetlands, can substantially alter community interactions. PMID:23386045

Stoler, Aaron B; Relyea, Rick A

2013-09-01

34

An ecological regime shift resulting from disrupted predator-prey interactions in Holocene Australia.  

PubMed

The mass extinction events during human prehistory are striking examples of ecological regime shifts, the causes of which are still hotly debated. In Australia, human arrival approximately 50 thousand years ago was associated with the continental-scale extinction of numerous marsupial megafauna species and a permanent change in vegetation structure. An alternative stable state persisted until a second regime shift occurred during the late Holocene, when the largest two remaining marsupial carnivores, the thylacine and devil, disappeared from mainland Australia. These extinctions have been widely attributed to the human-assisted invasion of a competing predator, the dingo. In this unusual case, the simultaneous effects of human "intensification" (population growth and technological advances) and climate change (particularly increased ENSO variability) have been largely overlooked. We developed a dynamic model system capable of simulating the complex interactions between the main predators (humans, thylacines, devils, dingoes) and their marsupial prey (macropods), which we coupled with reconstructions of human population growth and climate change for late-Holocene Australia. Because the strength of important interspecific interactions cannot be estimated directly, we used detailed scenario testing and sensitivity analysis to identify robust model outcomes and investigate competing explanations for the Holocene regime shift. This approach identified human intensification as the most probable cause, while also demonstrating the potential importance of synergies with the effects of climate change. Our models indicate that the prehistoric impact of humans on Australian mammals was not limited to the late Pleistocene (i.e., the megafaunal extinctions) but extended into the late Holocene. PMID:24804453

Prowse, Thomas A A; Johnson, Christopher N; Bradshaw, Corey J A; Brook, Barry W

2014-03-01

35

Exponential Runge-Kutta integrators for modelling Predator-Prey interactions  

NASA Astrophysics Data System (ADS)

Spatially explicit models consisting of reaction-diffusion partial differential equations are considered in order to model prey-predator interactions, since it is known that the role of spatial processes reveals of great interest in the study of the effects of habitat fragmentation on biodiversity. As almost all of the realistic models in biology, these models are nonlinear and their solution is not known in closed form. Our aim is approximating the solution itself by means of exponential Runge-Kutta integrators. Moreover, we apply the shift-and-invert Krylov approach in order to evaluate the entire functions needed for implementing the exponential method. This numerical procedure reveals to be very eff cient in avoiding numerical instability during the simulation, since it allows us to adopt high order in the accuracy. This work has received funding from the European Union's Seventh Framework Programme FP7/2007-2013, SPA.2010.1.1-04: "Stimulating the development of GMES services in specif c are", under grant agreement 263435, project title: Biodiversity Multi-Source Monitoring System:from Space To Species (BIOSOS) coordinated by CNR-ISSIA, Bari-Italy (http://www.biosos.eu).

Diele, F.; Marangi, C.; Ragni, S.

2012-09-01

36

Ultrasonic predator–prey interactions in water–convergent evolution with insects and bats in air?  

PubMed Central

Toothed whales and bats have independently evolved biosonar systems to navigate and locate and catch prey. Such active sensing allows them to operate in darkness, but with the potential cost of warning prey by the emission of intense ultrasonic signals. At least six orders of nocturnal insects have independently evolved ears sensitive to ultrasound and exhibit evasive maneuvers when exposed to bat calls. Among aquatic prey on the other hand, the ability to detect and avoid ultrasound emitting predators seems to be limited to only one subfamily of Clupeidae: the Alosinae (shad and menhaden). These differences are likely rooted in the different physical properties of air and water where cuticular mechanoreceptors have been adapted to serve as ultrasound sensitive ears, whereas ultrasound detection in water have called for sensory cells mechanically connected to highly specialized gas volumes that can oscillate at high frequencies. In addition, there are most likely differences in the risk of predation between insects and fish from echolocating predators. The selection pressure among insects for evolving ultrasound sensitive ears is high, because essentially all nocturnal predation on flying insects stems from echolocating bats. In the interaction between toothed whales and their prey the selection pressure seems weaker, because toothed whales are by no means the only marine predators placing a selection pressure on their prey to evolve specific means to detect and avoid them. Toothed whales can generate extremely intense sound pressure levels, and it has been suggested that they may use these to debilitate prey. Recent experiments, however, show that neither fish with swim bladders, nor squid are debilitated by such signals. This strongly suggests that the production of high amplitude ultrasonic clicks serve the function of improving the detection range of the toothed whale biosonar system rather than debilitation of prey. PMID:23781206

Wilson, Maria; Wahlberg, Magnus; Surlykke, Annemarie; Madsen, Peter Teglberg

2013-01-01

37

Predator-prey quasicycles from a path-integral formalism.  

PubMed

The existence of beyond mean-field quasicycle oscillations in a simple spatial model of predator-prey interactions is derived from a path-integral formalism. The results agree substantially with those obtained from analysis of similar models using system size expansions of the master equation. In all of these analyses, the discrete nature of predator-prey populations and finite-size effects lead to persistent oscillations in time, but spatial patterns fail to form. The path-integral formalism goes beyond mean-field theory and provides a focus on individual realizations of the stochastic time evolution of population not captured in the standard master-equation approach. PMID:19392001

Butler, Thomas; Reynolds, David

2009-03-01

38

Putting prey and predator into the CO2 equation--qualitative and quantitative effects of ocean acidification on predator-prey interactions.  

PubMed

Little is known about the impact of ocean acidification on predator-prey dynamics. Herein, we examined the effect of carbon dioxide (CO(2)) on both prey and predator by letting one predatory reef fish interact for 24 h with eight small or large juvenile damselfishes from four congeneric species. Both prey and predator were exposed to control or elevated levels of CO(2). Mortality rate and predator selectivity were compared across CO(2) treatments, prey size and species. Small juveniles of all species sustained greater mortality at high CO(2) levels, while large recruits were not affected. For large prey, the pattern of prey selectivity by predators was reversed under elevated CO(2). Our results demonstrate both quantitative and qualitative consumptive effects of CO(2) on small and larger damselfish recruits respectively, resulting from CO(2)-induced behavioural changes likely mediated by impaired neurological function. This study highlights the complexity of predicting the effects of climate change on coral reef ecosystems. PMID:21936880

Ferrari, Maud C O; McCormick, Mark I; Munday, Philip L; Meekan, Mark G; Dixson, Danielle L; Lonnstedt, Öona; Chivers, Douglas P

2011-11-01

39

Predator-Prey Population Dynamics By Victor Piotrowicz  

E-print Network

into PPPD has practical implications in management of endangered species. Topically, it is important-Evolutionary System with Predator-Prey Interactions to Solving Multi-Objective Optimization Problems [http://ieeexplore.ieee.org/Xplore/login.jsp?reload=true&url=http%3A%2F%2Fieeexplore.ieee.org%2 Fiel5%2F4222970%2F

Goldschmidt, Christina

40

Potential impact of low-concentration silver nanoparticles on predator-prey interactions between predatory dragonfly nymphs and Daphnia magna as a prey.  

PubMed

This study investigated the potential impacts of low-concentration citrate-coated silver nanoparticles (citrate-nAg; 2 ?g L(-1) as total Ag) on the interactions of Daphnia magna Straus (as a prey) with the predatory dragonfly ( Anax junius : Odonata) nymph using the behavioral, survival, and reproductive end points. Four different toxicity bioassays were evaluated: (i) horizontal migration; (ii) vertical migration; (iii) 48 h survival; and (iv) 21 day reproduction; using four different treatment combinations: (i) Daphnia + citrate-nAg; (ii) Daphnia + predator; (iii) Daphnia + citrate-nAg + predator; and (iv) Daphnia only (control). Daphnia avoided the predators using the horizontal and vertical movements, indicating that Daphnia might have perceived a significant risk of predation. However, with citrate-nAg + predator treatment, Daphnia response did not differ from control in the vertical migration test, suggesting that Daphnia were unable to detect the presence of predator with citrate-nAg treatment and this may have potential implication on daphnids population structure owing to predation risk. The 48 h survival test showed a significant mortality of Daphnia individuals in the presence of predators, with or without citrate-nAg, in the test environment. Average reproduction of daphnids increased by 185% with low-concentration citrate-nAg treatment alone but was severely compromised in the presence of predators (decreased by 91.3%). Daphnia reproduction was slightly enhanced by approximately 128% with citrate-nAg + predator treatment. Potential mechanisms of these differential effects of low-concentration citrate-nAg, with or without predators, are discussed. Because silver dissolution was minimal, the observed toxicity could not be explained by dissolved Ag alone. These findings offer novel insights into how exposure to low-concentration silver nanoparticles could influence predator-prey interactions in the fresh water systems. PMID:22697289

Pokhrel, Lok R; Dubey, Brajesh

2012-07-17

41

Half-soliton interaction of population taxis waves in predator-prey systems with pursuit and evasion.  

PubMed

In this paper, we use numerical simulations to demonstrate a half-soliton interaction of waves in a mathematical model of a "prey-predator" system with taxis when of two colliding waves, one annihilates and the other continues to propagate. We show that this effect depends on the "ages" or, equivalently, "widths" of the colliding waves. In two spatial dimensions we demonstrate that the type of interaction, i.e., annihilation, quasisoliton, or half-soliton, depends not only on curvature and width of the colliding waves, but also on the angle of the collision. When conditions of collision are varying in such a way that only a part of a wave survives the collision, then "taxitons," compact pieces of solitary waves, may form, which can exist for a significant time. PMID:15524543

Tsyganov, M A; Biktashev, V N

2004-09-01

42

Effects of Predator–prey Body Size Ratios on the Stability of Food Chains  

Microsoft Academic Search

The effects of predator-prey body size ratios on the resilience and probability of stability in linear Lotka–Volterra food chains have been analysed. The prey per capita interaction strengths of the model is assumed to be negatively correlated to the relative size difference between a predator and its prey. The relationship between prey interaction strength and predator–prey body size ratios is

Tomas Jonsson; Bo Ebenman

1998-01-01

43

Probability of detecting marine predator-prey and species interactions using novel hybrid acoustic transmitter-receiver tags.  

PubMed

Understanding the nature of inter-specific and conspecific interactions in the ocean is challenging because direct observation is usually impossible. The development of dual transmitter/receivers, Vemco Mobile Transceivers (VMT), and satellite-linked (e.g. GPS) tags provides a unique opportunity to better understand between and within species interactions in space and time. Quantifying the uncertainty associated with detecting a tagged animal, particularly under varying field conditions, is vital for making accurate biological inferences when using VMTs. We evaluated the detection efficiency of VMTs deployed on grey seals, Halichoerus grypus, off Sable Island (NS, Canada) in relation to environmental characteristics and seal behaviour using generalized linear models (GLM) to explore both post-processed detection data and summarized raw VMT data. When considering only post-processed detection data, only about half of expected detections were recorded at best even when two VMT-tagged seals were estimated to be within 50-200 m of one another. At a separation of 400 m, only about 15% of expected detections were recorded. In contrast, when incomplete transmissions from the summarized raw data were also considered, the ratio of complete transmission to complete and incomplete transmissions was about 70% for distances ranging from 50-1000 m, with a minimum of around 40% at 600 m and a maximum of about 85% at 50 m. Distance between seals, wind stress, and depth were the most important predictors of detection efficiency. Access to the raw VMT data allowed us to focus on the physical and environmental factors that limit a transceiver's ability to resolve a transmitter's identity. PMID:24892286

Baker, Laurie L; Jonsen, Ian D; Mills Flemming, Joanna E; Lidgard, Damian C; Bowen, William D; Iverson, Sara J; Webber, Dale M

2014-01-01

44

Group formation stabilizes predator-prey dynamics.  

PubMed

Theoretical ecology is largely founded on the principle of mass action, in which uncoordinated populations of predators and prey move in a random and well-mixed fashion across a featureless landscape. The conceptual core of this body of theory is the functional response, predicting the rate of prey consumption by individual predators as a function of predator and/or prey densities. This assumption is seriously violated in many ecosystems in which predators and/or prey form social groups. Here we develop a new set of group-dependent functional responses to consider the ecological implications of sociality and apply the model to the Serengeti ecosystem. All of the prey species typically captured by Serengeti lions (Panthera leo) are gregarious, exhibiting nonlinear relationships between prey-group density and population density. The observed patterns of group formation profoundly reduce food intake rates below the levels expected under random mixing, having as strong an impact on intake rates as the seasonal migratory behaviour of the herbivores. A dynamical system model parameterized for the Serengeti ecosystem (using wildebeest (Connochaetes taurinus) as a well-studied example) shows that grouping strongly stabilizes interactions between lions and wildebeest. Our results suggest that social groups rather than individuals are the basic building blocks around which predator-prey interactions should be modelled and that group formation may provide the underlying stability of many ecosystems. PMID:17960242

Fryxell, John M; Mosser, Anna; Sinclair, Anthony R E; Packer, Craig

2007-10-25

45

Predator-prey-substrate model of wastewater treatment in bioreactor system  

NASA Astrophysics Data System (ADS)

This paper analyses the mathematical model of the interaction between predator-prey and substrate that have been expressed as a system of nonlinear ordinary differential equations. This mathematical model can help to investigate the biological reaction of the interaction of predator-prey and substrate in biological wastewater treatment to improve the quality of water that flows out from the reactor. By using Monod Kinetics Growth Model, the steady state solutions have been obtained and their stability is determined as a function of the residence time.

Sadikin, Zubaidah; Salim, Normah; Allias, Razihan

2013-04-01

46

Anthropogenic resource subsidies decouple predator-prey relationships.  

PubMed

The extent to which resource subsidies affect food web dynamics is poorly understood in anthropogenic landscapes. To better understand how species interactions are influenced by subsidies, we studied breeding birds and nest predators along a rural-to-urban landscape gradient that varied in subsidies provided to generalist predators. We hypothesized that resource subsidies in urban landscapes would decouple predator-prey relationships, as predators switch from natural to anthropogenic foods. From 2004 to 2009, we surveyed nest predators and monitored 2942 nests of five songbird species breeding in 19 mature forest stands in Ohio, USA. Eighteen species were video-recorded depredating nests. Numbers of avian and mammalian nest predators were positively associated with the amount of urban development surrounding forests, with the exception of Brown-headed Cowbirds (Molothrus ater). Although nest survival strongly declined with detections of nest predators in rural landscapes, nest survival and predator numbers were unrelated in urban landscapes. Thus, the strength of interaction between breeding birds and nest predators diminished as landscapes surrounding forested parks became more urbanized. Our work suggests that decoupling of predator-prey relationships can arise when synanthropic predators are heavily subsidized by anthropogenic resources. In this way, human drivers can alter, and completely disarticulate, relationships among species that are well established in more natural systems. PMID:21639056

Rodewald, Amanda D; Kearns, Laura J; Shustack, Daniel P

2011-04-01

47

Along Came a Spider: Using Live Arthropods in a Predator–Prey Activity  

Microsoft Academic Search

We developed a predator–prey activity with eighth-grade students in which they used wolf spiders (Lycosa carolinensis), house crickets (Acheta domestica), and abiotic factors to address how (1) adaptations in predators and prey shape their interaction and (2) abiotic factors modify the interaction between predators and prey. We tested student understanding with pre- and postquizzes, written observations, and interpretations of graphical

Matthew L. Richardson; Janice Hari

2011-01-01

48

SHIFTING PREY SELECTION GENERATES CONTRASTING HERBIVORE DYNAMICS WITHIN A LARGE-MAMMAL PREDATOR–PREY WEB  

Microsoft Academic Search

Shifting prey selection has been identified as a mechanism potentially regulating predator-prey interactions, but it may also lead to different outcomes, especially in more complex systems with multiple prey species available. We assessed changing prey selection by lions, the major predator for 12 large herbivore species in South Africa's Kruger National Park. The database was provided by records of found

Norman Owen-Smith; M. G. L. Mills

2008-01-01

49

Environmental versus demographic variability in stochastic predator-prey models  

NASA Astrophysics Data System (ADS)

In contrast to the neutral population cycles of the deterministic mean-field Lotka-Volterra rate equations, including spatial structure and stochastic noise in models for predator-prey interactions yields complex spatio-temporal structures associated with long-lived erratic population oscillations. Environmental variability in the form of quenched spatial randomness in the predation rates results in more localized activity patches. Our previous study showed that population fluctuations in rare favorable regions in turn cause a remarkable increase in the asymptotic densities of both predators and prey. Very intriguing features are found when variable interaction rates are affixed to individual particles rather than lattice sites. Stochastic dynamics with demographic variability in conjunction with inheritable predation efficiencies generate non-trivial time evolution for the predation rate distributions, yet with overall essentially neutral optimization.

Dobramysl, U.; Täuber, U. C.

2013-10-01

50

Aerosol–cloud–precipitation system as a predator-prey problem  

PubMed Central

We show that the aerosol–cloud–precipitation system exhibits characteristics of the predator-prey problem in the field of population dynamics. Both a detailed large eddy simulation of the dynamics and microphysics of a precipitating shallow boundary layer cloud system and a simpler model built upon basic physical principles, reproduce predator-prey behavior with rain acting as the predator and cloud as the prey. The aerosol is shown to modulate the predator-prey response. Steady-state solution to the proposed model shows the known existence of bistability in cloudiness. Three regimes are identified in the time-dependent solutions: (i) the weakly precipitating regime where cloud and rain coexist in a quasi steady state; (ii) the moderately drizzling regime where limit-cycle behavior in the cloud and rain fields is produced; and (iii) the heavily precipitating clouds where collapse of the boundary layer is predicted. The manifestation of predator-prey behavior in the aerosol–cloud–precipitation system is a further example of the self-organizing properties of the system and suggests that exploiting principles of population dynamics may help reduce complex aerosol–cloud–rain interactions to a more tractable problem. PMID:21742979

Koren, Ilan; Feingold, Graham

2011-01-01

51

Phase transitions in predator-prey systems.  

PubMed

The relationship between predator and prey plays an important role in ecosystem conservation. However, our understanding of the principles underlying the spatial distribution of predators and prey is still poor. Here we present a phase diagram of a predator-prey system and investigate the lattice formation in such a system. We show that the production of stable lattice structures depends on the limited diffusion or migration of prey as well as higher carrying capacity for the prey. In addition, when the prey's growth rate is lower than the birth rate of the predator, global prey lattice formation is initiated by microlattices at the center of prey spirals. The predator lattice is later formed in the predator spirals. But both lattice formations proceed together as the prey growth rate increases. PMID:22400599

Nagano, Seido; Maeda, Yusuke

2012-01-01

52

Effects of rapid prey evolution on predator–prey cycles  

Microsoft Academic Search

We study the qualitative properties of population cycles in a predator–prey system where genetic variability allows contemporary\\u000a rapid evolution of the prey. Previous numerical studies have found that prey evolution in response to changing predation risk\\u000a can have major quantitative and qualitative effects on predator–prey cycles, including: (1) large increases in cycle period,\\u000a (2) changes in phase relations (so that

Laura E. Jones; Stephen P. Ellner

2007-01-01

53

A fluid mechanical model for mixing in a plankton predator-prey system  

NASA Astrophysics Data System (ADS)

A Lagrangian method is developed to study mixing of small particles in open flows. Particle Lagrangian Coherent Structures (pLCS) are identified as transport barriers in the dynamical systems of particles. We apply this method to a planktonic predator-prey system in which moon jellyfish Aurelia aurita uses its body motion to generate fluid currents which carry their prey to the vicinity of their capture appendages. With the flow generated by the jellyfish experimentally measured and the dynamics of prey particles in the flow described by a modified Maxey-Riley equation, we use pLCS to identify the capture region in which prey can be captured. The properties of the capture region enable analysis of the effects of several physiological and mechanical parameters on the predator-prey interaction, such as prey size, escape force, predator perception, etc. The method provides a new methodology to study dynamics and mixing of small organisms in general.

Peng, J.; Dabiri, J. O.

2009-04-01

54

Testing for predator dependence in predator-prey dynamics: a non-parametric approach.  

PubMed Central

The functional response is a key element in all predator-prey interactions. Although functional responses are traditionally modelled as being a function of prey density only, evidence is accumulating that predator density also has an important effect. However, much of the evidence comes from artificial experimental arenas under conditions not necessarily representative of the natural system, and neglecting the temporal dynamics of the organism (in particular the effects of prey depletion on the estimated functional response). Here we present a method that removes these limitations by reconstructing the functional response non-parametrically from predator-prey time-series data. This method is applied to data on a protozoan predator-prey interaction, and we obtain significant evidence of predator dependence in the functional response. A crucial element in this analysis is to include time-lags in the prey and predator reproduction rates, and we show that these delays improve the fit of the model significantly. Finally, we compare the non-parametrically reconstructed functional response to parametric forms, and suggest that a modified version of the Hassell-Varley predator interference model provides a simple and flexible function for theoretical investigation and applied modelling. PMID:11467423

Jost, C; Ellner, S P

2000-01-01

55

Predator-prey systems depend on a prey refuge.  

PubMed

Models of near-exclusive predator-prey systems such as that of the Canadian lynx and snowshoe hare have included factors such as a second prey species, a Holling Type II predator response and climatic or seasonal effects to reproduce sub-sets of six signature patterns in the empirical data. We present an agent-based model which does not require the factors or constraints of previous models to reproduce all six patterns in persistent populations. Our parsimonious model represents a generalised predator and prey species with a small prey refuge. The lack of the constraints of previous models, considered to be important for those models, casts doubt on the current hypothesised mechanisms of exclusive predator-prey systems. The implication for management of the lynx, a protected species, is that maintenance of an heterogeneous environment offering natural refuge areas for the hare is the most important factor for the conservation of this species. PMID:25058806

Chivers, W J; Gladstone, W; Herbert, R D; Fuller, M M

2014-11-01

56

Nash Equilibria in Noncooperative Predator-Prey Games  

SciTech Connect

A noncooperative game governed by a distributed-parameter predator-prey system is considered, assuming that two players control initial conditions for predator and prey, respectively. Existence of a Nash equilibrium is shown under the condition that the desired population profiles and the environmental carrying capacity for the prey are sufficiently small. A conceptual approximation algorithm is proposed and analyzed. Finally, numerical simulations are performed, too.

Ramos, Angel Manuel [Departamento de Matematica Aplicada, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 (Spain)], E-mail: Angel_Ramos@mat.ucm.es; Roubicek, Tomas [Mathematical Institute, Charles University, Sokolovska 83, CZ-186 75 Praha 8 and Institute of Information Theory and Automation, Academy of Sciences, Pod vodarenskou vezi 4 (Czech Republic)], E-mail: roubicek@karlin.mff.cuni.cz

2007-09-15

57

Stability of the unfolding of the predator-prey model  

Microsoft Academic Search

We prove a conjecture of Zeeman that any generic unfolding of the Volterra's original predator-prey model is stable. This well-known two-dimensional model has co-dimension one in the planar Lotka- Volterra system and all its orbits are closed in the region of physical interest. Any generic unfolding of the model locally induces a degenerate Hopf bifurcation, but the presence of a

Abbas Edalat

1994-01-01

58

Potential Landscape and Probabilistic Flux of a Predator Prey Network  

PubMed Central

Predator-prey system, as an essential element of ecological dynamics, has been recently studied experimentally with synthetic biology. We developed a global probabilistic landscape and flux framework to explore a synthetic predator-prey network constructed with two Escherichia coli populations. We developed a self consistent mean field method to solve multidimensional problem and uncovered the potential landscape with Mexican hat ring valley shape for predator-prey oscillations. The landscape attracts the system down to the closed oscillation ring. The probability flux drives the coherent oscillations on the ring. Both the landscape and flux are essential for the stable and coherent oscillations. The landscape topography characterized by the barrier height from the top of Mexican hat to the closed ring valley provides a quantitative measure of global stability of system. The entropy production rate for the energy dissipation is less for smaller environmental fluctuations or perturbations. The global sensitivity analysis based on the landscape topography gives specific predictions for the effects of parameters on the stability and function of the system. This may provide some clues for the global stability, robustness, function and synthetic network design. PMID:21423576

Li, Chunhe; Wang, Erkang; Wang, Jin

2011-01-01

59

The Influence of Predator–Prey Population Dynamics on the Long-term Evolution of Food Web Structure  

Microsoft Academic Search

We develop a set of equations to describe the population dynamics of many interacting species in food webs. Predator–prey interactions are nonlinear, and are based on ratio-dependent functional responses. The equations account for competition for resources between members of the same species, and between members of different species. Predators divide their total hunting\\/foraging effort between the available prey species according

BARBARA DROSSEL; PAUL G. HIGGS; ALAN J. MCKANE

2001-01-01

60

Estimating a predator-prey dynamical model with the parameter cascades method.  

PubMed

Ordinary differential equations (ODEs) are widely used in ecology to describe the dynamical behavior of systems of interacting populations. However, systems of ODEs rarely provide quantitative solutions that are close to real field observations or experimental data because natural systems are subject to environmental and demographic noise and ecologists are often uncertain about the correct parameterization. In this article we introduce "parameter cascades" as an improved method to estimate ODE parameters such that the corresponding ODE solutions fit the real data well. This method is based on the modified penalized smoothing with the penalty defined by ODEs and a generalization of profiled estimation, which leads to fast estimation and good precision for ODE parameters from noisy data. This method is applied to a set of ODEs originally developed to describe an experimental predator-prey system that undergoes oscillatory dynamics. The new parameterization considerably improves the fit of the ODE model to the experimental data sets. At the same time, our method reveals that important structural assumptions that underlie the original ODE model are essentially correct. The mathematical formulations of the two nonlinear interaction terms (functional responses) that link the ODEs in the predator-prey model are validated by estimating the functional responses nonparametrically from the real data. We suggest two major applications of "parameter cascades" to ecological modeling: It can be used to estimate parameters when original data are noisy, missing, or when no reliable priori estimates are available; it can help to validate the structural soundness of the mathematical modeling approach. PMID:18047526

Cao, Jiguo; Fussmann, Gregor F; Ramsay, James O

2008-09-01

61

Generation of periodic waves by landscape features in cyclic predator-prey systems.  

PubMed Central

The vast majority of models for spatial dynamics of natural populations assume a homogeneous physical environment. However, in practice, dispersing organisms may encounter landscape features that significantly inhibit their movement. We use mathematical modelling to investigate the effect of such landscape features on cyclic predator-prey populations. We show that when appropriate boundary conditions are applied at the edge of the obstacle, a pattern of periodic travelling waves develops, moving out and away from the obstacle. Depending on the assumptions of the model, these waves can take the form of roughly circular 'target patterns' or spirals. This is, to our knowledge, a new mechanism for periodic-wave generation in ecological systems and our results suggest that it may apply quite generally not only to cyclic predator-prey interactions, but also to populations that oscillate for other reasons. In particular, we suggest that it may provide an explanation for the observed pattern of travelling waves in the densities of field voles (Microtus agrestis) in Kielder Forest (Scotland-England border) and of red grouse (Lagopus lagopus scoticus) on Kerloch Moor (northeast Scotland), which in both cases move orthogonally to any large-scale obstacles to movement. Moreover, given that such obstacles to movement are the rule rather than the exception in real-world environments, our results suggest that complex spatio-temporal patterns such as periodic travelling waves are likely to be much more common in the natural world than has previously been assumed. PMID:11886619

Sherratt, J A; Lambin, X; Thomas, C J; Sherratt, T N

2002-01-01

62

THE ROSENZWEIG-MACARTHUR PREDATOR-PREY HAL L. SMITH*  

E-print Network

THE ROSENZWEIG-MACARTHUR PREDATOR-PREY MODEL HAL L. SMITH* SCHOOL OF MATHEMATICAL AND STATISTICAL. It is the per predator kill rate. 1 #12;2 H.L. Smith 0 0.5 1 1.5 2 2.5 3 3.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1 that solutions are bounded in the future and therefore are defined for all t 0. #12;4 H.L. Smith Notice that 2

Smith, Hal

63

Spreading of families in cyclic predator-prey models.  

PubMed

We study the spreading of families in two-dimensional multispecies predator-prey systems, in which species cyclically dominate each other. In each time step randomly chosen individuals invade one of the nearest sites of the square lattice eliminating their prey. Initially all individuals get a family name which will be carried on by their descendants. Monte Carlo simulations show that the systems with several species (N=3,4,5) are asymptotically approaching the behavior of the voter model, i.e., the survival probability of families, the mean size of families, and the mean-square distance of descendants from their ancestor exhibits the same scaling behavior. The scaling behavior of the survival probability of families has a logarithmic correction. In case of the voter model this correction depends on the number of species, while cyclic predator-prey models behave like the voter model with infinite species. It is found that changing the rates of invasions does not change this asymptotic behavior. As an application a three-species system with a fourth-species intruder is also discussed. PMID:15324103

Ravasz, Mária; Szabó, György; Szolnoki, Attila

2004-07-01

64

Period Doubling Cascades in a Predator-Prey Model with a Scavenger  

E-print Network

Period Doubling Cascades in a Predator-Prey Model with a Scavenger Joseph P. Previte Kathleen A-prey model are well understood. We introduce a scavenger species, who scavenges the predator and is also goal is to introduce a third scavenger species to the classical predator-prey equations

Previte, Joseph P.

65

Spatiotemporal complexity of a ratio-dependent predator-prey system.  

PubMed

In this paper, we investigate the emergence of a ratio-dependent predator-prey system with Michaelis-Menten-type functional response and reaction diffusion. We obtain the conditions of Hopf, Turing, and wave bifurcation in a spatial domain. Furthermore, we present a theoretical analysis of evolutionary processes that involves organisms distribution and their interaction of spatially distributed population with local diffusion. The results of numerical simulations reveal that the typical dynamics of population density variation is the formation of isolated groups, i.e., stripelike or spotted or coexistence of both. Our study shows that the spatially extended model has not only more complex dynamic patterns in the space, but also chaos and spiral waves. It may help us better understand the dynamics of an aquatic community in a real marine environment. PMID:17677104

Wang, Weiming; Liu, Quan-Xing; Jin, Zhen

2007-05-01

66

Shifting prey selection generates contrasting herbivore dynamics within a large-mammal predator-prey web.  

PubMed

Shifting prey selection has been identified as a mechanism potentially regulating predator-prey interactions, but it may also lead to different outcomes, especially in more complex systems with multiple prey species available. We assessed changing prey selection by lions, the major predator for 12 large herbivore species in South Africa's Kruger National Park. The database was provided by records of found carcasses ascribed to kills by lions assembled over 70 years, coupled with counts of changing prey abundance extending over 30 years. Wildebeest and zebra constituted the most favored prey species during the early portion of the study period, while selection for buffalo rose in the south of the park after a severe drought increased their vulnerability. Rainfall had a negative influence on the proportional representation of buffalo in lion kills, but wildebeest and zebra appeared less susceptible to being killed under conditions of low rainfall. Selection by lions for alternative prey species, including giraffe, kudu, waterbuck, and warthog, was influenced by the changing relative abundance and vulnerability of the three principal prey species. Simultaneous declines in the abundance of rarer antelope species were associated with a sharp increase in selection for these species at a time when all three principal prey species were less available. Hence shifting prey selection by lions affected the dynamics of herbivore populations in different ways: promoting contrasting responses by principal prey species to rainfall variation, while apparently being the main cause of sharp declines by alternative prey species under certain conditions. Accordingly, adaptive responses by predators, to both the changing relative abundance of the principal prey species, and other conditions affecting the relative vulnerability of various species, should be taken into account to understand the interactive dynamics of multispecies predator-prey webs. PMID:18481536

Owen-Smith, Norman; Mills, M G L

2008-04-01

67

Predator-Prey Dynamics Driven by Feedback between Functionally Diverse Trophic Levels  

PubMed Central

Neglecting the naturally existing functional diversity of communities and the resulting potential to respond to altered conditions may strongly reduce the realism and predictive power of ecological models. We therefore propose and study a predator-prey model that describes mutual feedback via species shifts in both predator and prey, using a dynamic trait approach. Species compositions of the two trophic levels were described by mean functional traits—prey edibility and predator food-selectivity—and functional diversities by the variances. Altered edibility triggered shifts in food-selectivity so that consumers continuously respond to the present prey composition, and vice versa. This trait-mediated feedback mechanism resulted in a complex dynamic behavior with ongoing oscillations in the mean trait values, reflecting continuous reorganization of the trophic levels. The feedback was only possible if sufficient functional diversity was present in both trophic levels. Functional diversity was internally maintained on the prey level as no niche existed in our system, which was ideal under any composition of the predator level due to the trade-offs between edibility, growth and carrying capacity. The predators were only subject to one trade-off between food-selectivity and grazing ability and in the absence of immigration, one predator type became abundant, i.e., functional diversity declined to zero. In the lack of functional diversity the system showed the same dynamics as conventional models of predator-prey interactions ignoring the potential for shifts in species composition. This way, our study identified the crucial role of trade-offs and their shape in physiological and ecological traits for preserving diversity. PMID:22096560

Wirtz, Kai; Gaedke, Ursula

2011-01-01

68

Use of Cobra Lily (Darlingtonia californica) & Drosophila for Investigating Predator-Prey Relationships.  

ERIC Educational Resources Information Center

Describes an experiment that uses the cobra lily (Darlingtonia californica) and fruit flies (Drosophila virilis) to investigate predator-prey relationships in a classroom laboratory. Suggestions for classroom extension of this experimental system are provided. (ZWH)

Pratt, Carl R.

1994-01-01

69

Nonlinear functional response parameter estimation in a stochastic predator-prey model.  

PubMed

Parameter estimation for the functional response of predator-prey systems is a critical methodological problem in population ecology. In this paper we consider a stochastic predator-prey system with non-linear Ivlev functional response and propose a method for model parameter estimation based on time series of field data. We tackle the problem of parameter estimation using a Bayesian approach relying on a Markov Chain Monte Carlo algorithm. The efficiency of the method is tested on a set of simulated data. Then, the method is applied to a predator-prey system of importance for Integrated Pest Management and biological control, the pest mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. The model is estimated on a dataset obtained from a field survey. Finally, the estimated model is used to forecast predator-prey dynamics in similar fields, with slightly different initial conditions. PMID:22229397

Gilioli, Gianni; Pasquali, Sara; Ruggeri, Fabrizio

2012-01-01

70

Periodic and Chaotic Events in a Discrete Model of Logistic Type for the Competitive Interaction of Two Species  

E-print Network

Two symmetrically coupled logistic equations are proposed to mimic the competitive interaction between two species. The phenomena of coexistence, oscillations and chaos are present in this cubic discrete system. This work, together with two other similar ones recently published by the authors, completes a triptych dedicated to the two-species relationships present in Nature, namely the symbiosis, the predator-prey and the competition. These models can be used as basic ingredients to build up more complex interactions in the ecological networks.

Ricardo Lopez-Ruiz; Daniele Fournier-Prunaret

2005-04-13

71

Solving ratio-dependent predator-prey system with constant effort harvesting using Adomian decomposition method  

Microsoft Academic Search

In this paper, an algorithm based on Adomian’s decomposition method is developed to approximate the solution of the ratio-dependent predator–prey system with constant effort harvesting. The convergence of the decomposition series is enhanced using Padé approximation technique. The qualitative analysis of the model reveals that constant effort prey harvesting may contribute to mutual extinction as a possible outcome of predator–prey

Oluwole Daniel Makinde

2007-01-01

72

Behavioral response races, predator-prey shell games, ecology of fear, and patch use of pumas and their ungulate prey.  

PubMed

The predator-prey shell game predicts random movement of prey across the landscape, whereas the behavioral response race and landscape of fear models predict that there should be a negative relationship between the spatial distribution of a predator and its behaviorally active prey. Additionally, prey have imperfect information on the whereabouts of their predator, which the predator should incorporate in its patch use strategy. I used a one-predator-one-prey system, puma (Puma concolor)-mule deer (Odocoileus hemionus) to test the following predictions regarding predator-prey distribution and patch use by the predator. (1) Pumas will spend more time in high prey risk/low prey use habitat types, while deer will spend their time in low-risk habitats. Pumas should (2) select large forage patches more often, (3) remain in large patches longer, and (4) revisit individual large patches more often than individual smaller ones. I tested these predictions with an extensive telemetry data set collected over 16 years in a study area of patchy forested habitat. When active, pumas spent significantly less time in open areas of low intrinsic predation risk than did deer. Pumas used large patches more than expected, revisited individual large patches significantly more often than smaller ones, and stayed significantly longer in larger patches than in smaller ones. The results supported the prediction of a negative relationship in the spatial distribution of a predator and its prey and indicated that the predator is incorporating the prey's imperfect information about its presence. These results indicate a behavioral complexity on the landscape scale that can have far-reaching impacts on predator-prey interactions. PMID:21058559

Laundré, John W

2010-10-01

73

Predator-Prey Model for A-Ring Haloes  

NASA Astrophysics Data System (ADS)

Cassini ISS, VIMS, UVIS spectroscopy and occultations show bright haloes around the strongest density waves. . We observe opposing effects: both small and large particles are found at the perturbed locations. Based on a predator-prey model for ring dynamics, we offer the following explanation: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; This forms a halo around the ILR; Surrounding particles diffuse back too slowly to erase the effect; Meteoritic bombardment creates fresh ice fragments at the regions of decreased regolith. Our explanation is based on the idea that moon-triggered clumping occurs at perturbed regions in Saturn's rings. Cyclic system trajectories forced around the stable point create both high velocity dispersion and large aggregates at these distances. This explanation supports the view of a triple architecture of ring particles: a broad size distribution of particles; that aggregate into temporary rubble piles; coated by a regolith of dust. The aggregate model can explain the dynamic nature of the rings and the aggregates can renew rings by shielding and recycling fresh ice.

Esposito, L. W.; Madhusudhana, P.; Colwell, J. E.; Sremcevic, M.; Bradley, E. T.

2013-12-01

74

Predator-Prey model for haloes in Saturn's A ring  

NASA Astrophysics Data System (ADS)

UVIS SOI reflectance spectra show bright 'haloes' around the locations of some of the strongest resonances in Saturn's A ring (Esposito etal 2005). UV spectra constrain the size and composition of the icy ring particles (Bradley etal 2010, 2012). The correspondence of IR, UV spectroscopy, HSP wavelet analysis indicate that we detect the same phenomenon. We investigate the Janus 2:1. 4:3, 5:3, 6:5 and Mimas 5:3 inner Lindblad resonances as well as at the Mimas 5:3 vertical resonance (bending wave location). Models of ring particle regolith evolution (Elliott and Esposito 2010) indicate the deeper regolith is made of older and purer ice. The strong resonances can cause streamline crowding (Lewis and Stewart 2005) which damps the interparticle velocity, allowing temporary clumps to grow, which in turn increase the velocity, eroding the clumps and releasing smaller particles and regolith (see the predator-prey model of Esposito etal 2012). This cyclic behavior, driven by the resonant perturbation from the moon, can yield collision velocities at particular azimuths greater than 1m/sec, sufficient to erode the aggregates (Blum 2006), exposing older, purer materials: In the perturbed region, collisions erode the regolith, removing smaller particles. The released regolith material settles in the less perturbed neighboring regions. Diffusion spreads these ring particles with smaller regolith into a 'halo'. Thus, the radial location of the strongest resonances can be where we find both large aggregates and disrupted fragments, in a balance maintained by the periodic moon forcing. If this stirring exposes older, and purer ice, the velocity threshold for eroding the aggregates can explain why only the strongest Lindblad resonances show haloes. Diffusion can explain the morphology of these haloes, although they are not well-resolved spatially by UVIS.

Esposito, Larry W.; Bradley, E. Todd; Colwell, Joshua E.; Madhusudhanan, Prasanna; Sremcevic, Miodrag

2013-04-01

75

Predator-Prey Model for Haloes in Saturn's Rings  

NASA Astrophysics Data System (ADS)

Particles in Saturn’s rings have a tripartite nature: (1) a broad distribution of fragments from the disruption of a previous moon that accrete into (2) transient aggregates, resembling piles of rubble, covered by a (3) regolith of smaller grains that result from collisions and meteoritic grinding. Evidence for this triple architecture of ring particles comes from a multitude of Cassini observations. In a number of ring locations (including Saturn’s F ring, the shepherded outer edges of rings A and B and at the locations of the strongest density waves) aggregation and dis-aggregation are operating now. ISS, VIMS, UVIS spectroscopy and occultations show haloes around the strongest density waves. Based on a predator-prey model for ring dynamics, we offer the following explanation: •Cyclic velocity changes cause the perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; •This forms a bright halo around the ILR, if the forcing is strong enough; •Surrounding particles diffuse back too slowly to erase the effect; they diffuse away to form the halo. The most rapid time scale is for forcing/aggregate growth/disaggregation; then irreversible regolith erosion; diffusion and/or ballistic transport; and slowest, meteoritic pollution/darkening. We observe both smaller and larger particles at perturbed regions. Straw, UVIS power spectral analysis, kittens and equinox objects show the prey (mass aggregates); while the haloes’ VIMS spectral signature, correlation length and excess variance are created by the predators (velocity dispersion) in regions stirred in the rings. Moon forcing triggers aggregation to create longer-lived aggregates that protect their interiors from meteoritic darkening and recycle the ring material to maintain the current purity of the rings. It also provides a mechanism for creation of new moons at resonance locations in the Roche zone, as proposed by Charnoz etal and Canup.

Esposito, Larry W.; Colwell, Joshua; Sremcevic, Miodrag; Madhusudhanan, Prasanna

76

Maternal effects mechanism of population cycling: a formidable competitor to the traditional predator-prey view.  

PubMed

In the language of mathematics, one needs minimally two interacting variables (two dimensions) to describe repeatable periodic behaviour, and in the language of density dependence, one needs delayed, not immediate, density dependence to produce cyclicity. Neither language specifies the causal mechanism. There are two major potential mechanisms: exogenous mechanisms involving species interactions as in predator-prey or host-parasite, and endogenous mechanisms such as maternal effects where population growth results from the cross-generational transmission of individual quality. The species interactions view stemming from a major observation of Elton and a simultaneous independent theory by Lotka and Volterra is currently dominant. Most ecologists, when faced with cyclic phenomena, automatically look for an interacting species one step below or above in a food chain in order to find an explanation. Maternal effects hypothesis, verbally suggested in the 1950s, had only found its theoretical implementation in the 1990 s. In a relatively short time, the degree of acceptance of this view grew to the level of a 'minority opinion' as evidenced by the widely used textbook of Begon et al. This short review attempts to describe the arguments for and against this internal two-dimensional approach. PMID:19324616

Inchausti, Pablo; Ginzburg, Lev R

2009-04-27

77

Computational Science Technical Note CSTN-015 A Zoology of Emergent Patterns in a Predator-Prey Simulation Model  

E-print Network

0 Computational Science Technical Note CSTN-015 A Zoology of Emergent Patterns in a Predator Zoology of Emergent Patterns in a Predator-Prey Simulation Model}, booktitle = {Proceedings of the Sixth CSTN-015 A Zoology of Emergent Patterns in a Predator-Prey Simulation Model K.A. Hawick, H.A. James

Hawick, Ken

78

Novel predator-prey interactions: is resistance futile?  

Microsoft Academic Search

Premise: Prey species may possess inappropriate behavioural, morphological, and\\/or physiological responses to introduced, novel predators. Thus, introduced predators may exert strong selection on prey species. Organisms: Black-capped vireo, Vireo atricapilla, and the fire ant, Solenopsis invicta. Data: Behavioural response of and time-energy budget for parental vireo defence against nest predation by fire ants. Field site: Fort Hood, Texas, an 88,500-hectare

Jennifer E. Smith; Christopher J. Whelan; Steven J. Taylor; Michael L. Denight; Mike M. Stake

2007-01-01

79

Predator-prey relationships and the evolution of colour polymorphism: a comparative analysis in diurnal raptors  

Microsoft Academic Search

Genetically based variation in coloration occurs in populations of many organisms belonging to various taxa, includ- ing birds, mammals, frogs, molluscs, insects and plants. Colour polymorphism has evolved in raptors more often than in any other group of birds, suggesting that predator-prey relationships was a driving evolutionary force. Individuals displaying a new invading colour morph may enjoy an initial foraging

A. ROULIN; M. WINK

2004-01-01

80

A fluid mechanical model for mixing in a plankton predator-prey system  

Microsoft Academic Search

A Lagrangian method is developed to study mixing of small particles in open flows. Particle Lagrangian Coherent Structures (pLCS) are identified as transport barriers in the dynamical systems of particles. We apply this method to a planktonic predator-prey system in which moon jellyfish Aurelia aurita uses its body motion to generate fluid currents which carry their prey to the vicinity

J. Peng; J. O. Dabiri

2009-01-01

81

Senses & Sensibility: Predator-Prey Experiments Reveal How Fish Perceive & Respond to Threats  

ERIC Educational Resources Information Center

The predator-prey relationship is one of the most recognizable and well-studied animal relationships. One of the more striking aspects of this relationship is the differential natural selection pressure placed on predators and their prey. This differential pressure results from differing costs of failure, the so-called life-dinner principle. If a…

Jones, Jason; Holloway, Barbara; Ketcham, Elizabeth; Long, John

2008-01-01

82

Bionomic Exploitation of a Ratio-Dependent Predator-Prey System  

ERIC Educational Resources Information Center

The present article deals with the problem of combined harvesting of a Michaelis-Menten-type ratio-dependent predator-prey system. The problem of determining the optimal harvest policy is solved by invoking Pontryagin's Maximum Principle. Dynamic optimization of the harvest policy is studied by taking the combined harvest effort as a dynamic…

Maiti, Alakes; Patra, Bibek; Samanta, G. P.

2008-01-01

83

Examining predator-prey body size, trophic level and body mass across marine and terrestrial mammals.  

PubMed

Predator-prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator-prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator-prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator-prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities. PMID:25377460

Tucker, Marlee A; Rogers, Tracey L

2014-12-22

84

Predation of Notiophilus (Coleoptera: Carabidae) on Collembola as a Predator-Prey Teaching Model.  

ERIC Educational Resources Information Center

The carabid beetle (Notiophilus) preys readily on an easily-cultured collembolan in simple experimental conditions. Some features of this predator-prey system are outlined to emphasize its use in biology instruction. Experiments with another potential collembolan are described in the context of developing the method for more advanced studies.…

Higgins, R. C.

1982-01-01

85

Deterministic and Stochastic Analysis of a Prey-Dependent Predator-Prey System  

ERIC Educational Resources Information Center

This paper reports on studies of the deterministic and stochastic behaviours of a predator-prey system with prey-dependent response function. The first part of the paper deals with the deterministic analysis of uniform boundedness, permanence, stability and bifurcation. In the second part the reproductive and mortality factors of the prey and…

Maiti, Alakes; Samanta, G. P.

2005-01-01

86

Random dispersal in a predator-prey-parasite model 1 Introduction  

E-print Network

Random dispersal in a predator-prey-parasite model Abstract. 1 Introduction An intermediate host is a host that harbors the parasite only for a short transition period of time, during which some developmental stage may be completed. On the other hand, a definitive host is a host in which the parasite

Baglama, James

87

The Macaroni Lab: A Directed Inquiry Project on Predator-Prey Relationships.  

ERIC Educational Resources Information Center

Presents a directed-inquiry activity to take students one step beyond observation of how living organisms capture prey. Uses a field lab based upon predator-prey relationships to enliven the teaching of food web concepts to non-science-major freshman undergraduates. Can also be used in teaching high school biology students through college science…

Oyler, Michelle; Rivera, John; Roffol, Melanie; Gibson, David J.; Middleton, Beth A.; Mathis, Marilyn

1999-01-01

88

theoretical population biology 50, 368393 (1996) Lotka's Game in PredatorPrey Theory  

E-print Network

theoretical population biology 50, 368393 (1996) Lotka's Game in PredatorPrey Theory: Linking that extinctions due to demographic stochasticity dominate the dynamics. Local extinction dynamics produce wave of population biology's goals is to understand population level dynamics given the behavior, physiology

Wilson, Will

89

Robustness of predator-prey models for confinement regime transitions in fusion plasmas  

NASA Astrophysics Data System (ADS)

Energy transport and confinement in tokamak fusion plasmas is usually determined by the coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear structures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-dimensional models, designed to embody plausible physical narratives for these interactions, can help to identify the origin of enhanced energy confinement and of transitions between confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here, we extend a successful three-variable (temperature gradient; microturbulence level; one class of coherent structure) model in this genre [M. A. Malkov and P. H. Diamond, Phys. Plasmas 16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure. This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenology generated by the model of Malkov and Diamond, given this additional physics. We study and compare the long-time behaviour of the three-equation and four-equation systems, their evolution towards the final state, and their attractive fixed points and limit cycles. We explore the sensitivity of paths to attractors. It is found that, for example, an attractive fixed point of the three-equation system can become a limit cycle of the four-equation system. Addressing these questions which we together refer to as "robustness" for convenience is particularly important for models which, as here, generate sharp transitions in the values of system variables which may replicate some key features of confinement transitions. Our results help to establish the robustness of the zero-dimensional model approach to capturing observed confinement phenomenology in tokamak fusion plasmas.

Zhu, H.; Chapman, S. C.; Dendy, R. O.

2013-04-01

90

Symbiosis: Using Predator-Prey Games as a Test Bed for Studying Competitive Co-evolution  

Microsoft Academic Search

The animal approach constitutes an intriguing attempt to study and comprehend the behavior of adaptive, learning entities in complex environments. Further inspired by the notions of co-evolution and evolutionary ''arms races\\

Fani A. Tzima; Andreas L. Symeonidis; Pericles A. Mitkas

2007-01-01

91

Bioenergetics-based predator-prey relationships between piscivorous birds and juvenile salmonids in the Columbia River estuary.  

E-print Network

??This dissertation focuses on the predator-prey relationship between two species of avian predators, Caspian terns (Hydroprogne caspia) and double-crested cormorants (Phalacrocorax auritus), and one of… (more)

Lyons, Donald E.

2010-01-01

92

a Predator-Prey Model Based on the Fully Parallel Cellular Automata  

NASA Astrophysics Data System (ADS)

We presented a predator-prey lattice model containing moveable wolves and sheep, which are characterized by Penna double bit strings. Sexual reproduction and child-care strategies are considered. To implement this model in an efficient way, we build a fully parallel Cellular Automata based on a new definition of the neighborhood. We show the roles played by the initial densities of the populations, the mutation rate and the linear size of the lattice in the evolution of this model.

He, Mingfeng; Ruan, Hongbo; Yu, Changliang

93

Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models  

Microsoft Academic Search

In this paper we are concerned with the fractional-order predator–prey model and the fractional-order rabies model. Existence and uniqueness of solutions are proved. The stability of equilibrium points are studied. Numerical solutions of these models are given. An example is given where the equilibrium point is a centre for the integer order system but locally asymptotically stable for its fractional-order

E. Ahmed; A. M. A. El-Sayed; H. A. A. El-Saka

2007-01-01

94

Climate change and cyclic predator-prey population dynamics in the high Arctic  

Microsoft Academic Search

The high Arctic has the world's simplest terrestrial vertebrate predator-prey community, with the collared lemming being the single main prey of four predators, the snowy owl, the Arctic fox, the long-tailed skua, and the stoat. Using a 20-year-long time series of population densities for the five species and a dynamic model that has been previously parameterized for northeast Greenland, we

OLIVIER G ILG; ILKKA H ANSKI

2009-01-01

95

Uniform persistence and periodic solutions for a discrete predator-prey system with delays  

NASA Astrophysics Data System (ADS)

In this paper, we deal with a discrete predator-prey system with delay. We first give a sufficient condition for the uniform persistence of the system. Assuming that the coefficients in the system are periodic, by generalizing the Yoshizawa's theorem on the existence of periodic solution for ordinary differential equations to the difference equations with delays, we obtain the existence of a periodic solution basing on the uniform persistence result.

Yang, Xitao

2006-04-01

96

Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models  

NASA Astrophysics Data System (ADS)

In this paper we are concerned with the fractional-order predator-prey model and the fractional-order rabies model. Existence and uniqueness of solutions are proved. The stability of equilibrium points are studied. Numerical solutions of these models are given. An example is given where the equilibrium point is a centre for the integer order system but locally asymptotically stable for its fractional-order counterpart.

Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A.

2007-01-01

97

Optimal Harvesting in an Age-Structured Predator-Prey Model  

SciTech Connect

We investigate optimal harvesting control in a predator-prey model in which the prey population is represented by a first-order partial differential equation with age-structure and the predator population is represented by an ordinary differential equation in time. The controls are the proportions of the populations to be harvested, and the objective functional represents the profit from harvesting. The existence and uniqueness of the optimal control pair are established.

Fister, K. Renee [Department of Mathematics and Statistics, Murray State University, Murray, KY 42071-3341 (United States)], E-mail: renee.fister@murraystate.edu; Lenhart, Suzanne [Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300 (United States) and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6016 (United States)], E-mail: lenhart@math.utk.edu

2006-06-15

98

Salmonid predator–prey dynamics in Lake Pend Oreille, Idaho, USA  

Microsoft Academic Search

Our objective was to evaluate the long-term sustainability of lake trout Salvelinus namaycush and rainbow trout Oncorhynchus mykiss populations subjected to a range of fishing mortality (F) in Lake Pend Oreille, Idaho, USA, while providing for bull trout Salvelinus confluentus and kokanee Oncorhynchus nerka recovery. In order to achieve our objective, we developed a density-dependent stochastic predator–prey simulation model for

Michael J. Hansen; Dan Schill; Jim Fredericks; Andy Dux

2010-01-01

99

Bifurcation analysis of predator-prey systems with constant rate harvesting using non-standard discretization.  

PubMed

We formulate and apply non-standard discretization methods that enable us to study the saddle, elliptic and parabolic cases of the predator-prey system with constant rate harvesting as difference dynamical systems. Our models have the same qualitative features as their corresponding continuous models. By choosing appropriate bifurcation parameters, we combine analytical and numerical investigations to produce interesting global bifurcation diagrams, including saddle-node, Hopf and Bogdanov-Takens bifurcations. PMID:17572988

Erjaee, G H

2007-07-01

100

Spatial dynamics in a predator-prey model with Beddington-DeAngelis functional response.  

PubMed

In this paper spatial dynamics of the Beddington-DeAngelis predator-prey model is investigated. We analyze the linear stability and obtain the condition of Turing instability of this model. Moreover, we deduce the amplitude equations and determine the stability of different patterns. In Turing space, we found that this model has coexistence of H(0) hexagon patterns and stripe patterns, H(?) hexagon patterns, and H(0) hexagon patterns. To better describe the real ecosystem, we consider the ecosystem as an open system and take the environmental noise into account. It is found that noise can decrease the number of the patterns and make the patterns more regular. What is more, noise can induce two kinds of typical pattern transitions. One is from the H(?) hexagon patterns to the regular stripe patterns, and the other is from the coexistence of H(0) hexagon patterns and stripe patterns to the regular stripe patterns. The obtained results enrich the finding in the Beddington-DeAngelis predator-prey model well. PMID:22463261

Zhang, Xiao-Chong; Sun, Gui-Quan; Jin, Zhen

2012-02-01

101

The Symbiosis Interactome: a computational approach reveals novel components, functional interactions and modules in Sinorhizobium meliloti  

PubMed Central

Background Rhizobium-Legume symbiosis is an attractive biological process that has been studied for decades because of its importance in agriculture. However, this system has undergone extensive study and although many of the major factors underpinning the process have been discovered using traditional methods, much remains to be discovered. Results Here we present an analysis of the 'Symbiosis Interactome' using novel computational methods in order to address the complex dynamic interactions between proteins involved in the symbiosis of the model bacteria Sinorhizobium meliloti with its plant hosts. Our study constitutes the first large-scale analysis attempting to reconstruct this complex biological process, and to identify novel proteins involved in establishing symbiosis. We identified 263 novel proteins potentially associated with the Symbiosis Interactome. The topology of the Symbiosis Interactome was used to guide experimental techniques attempting to validate novel proteins involved in different stages of symbiosis. The contribution of a set of novel proteins was tested analyzing the symbiotic properties of several S. meliloti mutants. We found mutants with altered symbiotic phenotypes suggesting novel proteins that provide key complementary roles for symbiosis. Conclusion Our 'systems-based model' represents a novel framework for studying host-microbe interactions, provides a theoretical basis for further experimental validations, and can also be applied to the study of other complex processes such as diseases. PMID:19531251

Rodriguez-Llorente, Ignacio; Caviedes, Miguel A; Dary, Mohammed; Palomares, Antonio J; Cánovas, Francisco M; Peregrín-Alvarez, José M

2009-01-01

102

The scaling of locomotor performance in predator-prey encounters: from fish to killer whales.  

PubMed

During predator-prey encounters, a high locomotor performance in unsteady manoeuvres (i.e. acceleration, turning) is desirable for both predators and prey. While speed increases with size in fish and other aquatic vertebrates in continuous swimming, the speed achieved within a given time, a relevant parameter in predator-prey encounters, is size independent. In addition, most parameters indicating high performance in unsteady swimming decrease with size. Both theoretical considerations and data on acceleration suggest a decrease with body size. Small turning radii and high turning rates are indices of maneuverability in space and in time, respectively. Maneuverability decreases with body length, as minimum turning radii and maximum turning rates increase and decrease with body length, respectively. In addition, the scaling of linear performance in fish locomotion may be modulated by turning behaviour, which is an essential component of the escape response. In angelfish, for example, the speed of large fish is inversely related to their turning angle, i.e. fish escaping at large turning angles show lower speed than fish escaping at small turning angles. The scaling of unsteady locomotor performance makes it difficult for large aquatic vertebrates to capture elusive prey by using whole-body attacks, since the overall maneuverability and acceleration of small prey is likely to be superior to that of large predators. Feeding strategies in vertebrate predators can be related to the predator-prey length ratios. At prey-predator ratios higher than approximately 10(-2), vertebrate predators are particulate feeders, while at smaller ratios, they tend to be filter feeders. At intermediate ratios, large aquatic predators may use a variety of feeding methods that aid, or do not involve, whole body attacks. Among these are bubble curtains used by humpback whales to trap fish schools, and tail-slapping of fish by delphinids. Tail slapping by killer whales is discussed as an example of these strategies. The speed and acceleration achieved by the flukes of killer whales during tail slaps are higher and comparable, respectively, to those that can be expected in their prey, making tail-slapping an effective predator behaviour. PMID:11733175

Domenici, P

2001-12-01

103

Computational Science Technical Note CSTN-085 Cross-Caste Communication in a Multi-Agent Predator-Prey Model  

E-print Network

possible a number of complex and emergent behaviours. The mech- anisms for communications between bacteria0 Computational Science Technical Note CSTN-085 Cross-Caste Communication in a Multi-Agent Predator-Prey Model C. J. Scogings and K. A. Hawick 2011 Communication amongst multi-agents in a system gives rise

Hawick, Ken

104

The population dynamics of pike, Esox lucius , and perch, Perca fluviatilis , in a simple predator-prey system  

Microsoft Academic Search

The population dynamics and predator-prey relationship of pike, Esox lucius, and perch, Perca fluviatilis, were examined in simple fish communities in two adjacent shallow lakes, Lochs Kinord and Davan, Deeside, Scotland. Few perch survive to age 3 but Z is low for fish > 3 years and perch live up to 17 years. Population fecundity remained relatively high and constant

James W. Treasurer; Roger Owen; Eric Bowers

1992-01-01

105

Complex dynamics of Holling type II Lotka–Volterra predator–prey system with impulsive perturbations on the predator  

Microsoft Academic Search

This paper develops the Holling type II Lotka–Volterra predator–prey system, which may inherently oscillate, by introducing periodic constant impulsive immigration of predator. Condition for the system to be extinct is given and permanence condition is established via the method of comparison involving multiple Liapunov functions. Further influences of the impulsive perturbations on the inherent oscillation are studied numerically, which shows

Xianning Liu; Lansun Chen

2003-01-01

106

Analysis of a predator-prey model with Holling II functional response concerning impulsive control strategy  

NASA Astrophysics Data System (ADS)

According to biological and chemical control strategy for pest control, we investigate the dynamic behavior of a Holling II functional response predator-prey system concerning impulsive control strategy-periodic releasing natural enemies and spraying pesticide at different fixed times. By using Floquet theorem and small amplitude perturbation method, we prove that there exists a stable pest-eradication periodic solution when the impulsive period is less than some critical value. Further, the condition for the permanence of the system is also given. Numerical results show that the system we consider can take on various kinds of periodic fluctuations and several types of attractor coexistence and is dominated by periodic, quasiperiodic and chaotic solutions, which implies that the presence of pulses makes the dynamic behavior more complex. Finally, we conclude that our impulsive control strategy is more effective than the classical one if we take chemical control efficiently.

Liu, Bing; Teng, Zhidong; Chen, Lansun

2006-08-01

107

Enhanced understanding of predator-prey relationships using molecular methods to identify predator species, individual and sex.  

PubMed

Predator species identification is an important step in understanding predator-prey interactions, but predator identifications using kill site observations are often unreliable. We used molecular tools to analyse predator saliva, scat and hair from caribou calf kills in Newfoundland, Canada to identify the predator species, individual and sex. We sampled DNA from 32 carcasses using cotton swabs to collect predator saliva. We used fragment length analysis and sequencing of mitochondrial DNA to distinguish between coyote, black bear, Canada lynx and red fox and used nuclear DNA microsatellite analysis to identify individuals. We compared predator species detected using molecular tools to those assigned via field observations at each kill. We identified a predator species at 94% of carcasses using molecular methods, while observational methods assigned a predator species to 62.5% of kills. Molecular methods attributed 66.7% of kills to coyote and 33.3% to black bear, while observations assigned 40%, 45%, 10% and 5% to coyote, bear, lynx and fox, respectively. Individual identification was successful at 70% of kills where a predator species was identified. Only one individual was identified at each kill, but some individuals were found at multiple kills. Predator sex was predominantly male. We demonstrate the first large-scale evaluation of predator species, individual and sex identification using molecular techniques to extract DNA from swabs of wild prey carcasses. Our results indicate that kill site swabs (i) can be highly successful in identifying the predator species and individual responsible; and (ii) serve to inform and complement traditional methods. PMID:23957886

Mumma, Matthew A; Soulliere, Colleen E; Mahoney, Shane P; Waits, Lisette P

2014-01-01

108

The roles of predator maturation delay and functional response in determining the periodicity of predator-prey cycles.  

PubMed

Population cycles in small mammals have attracted the attention of several generations of theoretical and experimental biologists and continue to generate controversy. Top-down and bottom-up trophic regulations are two recent competing hypotheses. The principal purpose of this paper is to explore the relative contributions of a variety of ecological factors to predator-prey population cycles. Here we suggest that for some species - collared lemmings, snowshoe hares and moose in particular - maturation delay of predators and the functional response of predation appear to be the primary determinants. Our study suggests that maturation delay alone almost completely determines the cycle period, whereas the functional response greatly affects its amplitude and even its existence. These results are obtained from sensitivity analysis of all parameters in a mathematical model of the lemming-stoat delayed system, which is an extension of Gilg's model. Our result may also explain why lemmings have a 4-year cycle whereas snowshoe hares have a 10-year cycle. Our parameterized model supports and extends May's assertion that time delay impacts cycle period and amplitude. Furthermore, if maturation periods of predators are too short or too long, or the functional response resembles Holling Type I, then population cycles do not appear; however, suitable intermediate predator maturation periods and suitable functional responses can generate population cycles for both prey and predators. These results seem to explain why some populations are cyclic whereas others are not. Finally, we find parameterizations of our model that generate a 38-year population cycle consistent with the putative cycles of the moose-wolf interactions on Isle Royale, Michigan. PMID:19563815

Wang, Hao; Nagy, John D; Gilg, Olivier; Kuang, Yang

2009-09-01

109

Differential effects of mercury on activity and swimming endurance in a model aquatic predator-prey system  

SciTech Connect

In addition to direct effects of contaminants on organisms, populations and communities, there may also be indirect or secondary effects related to altered behavior. This study examined the effects of mercury exposure on locomotory behavior in a model predator-prey system of largemouth bass (Micropterus salmoides) and fathead minnows (Pimephales promelas). At both low and high mercury concentrations, there was a significant effect of exposure on unforced activity and swimming endurance in fathead minnows. At all tested mercury concentrations, activity and endurance also were both positively correlated to body length. However, largemouth bass unforced activity and swimming endurance were not affected by exposure to low mercury concentrations. In light of these differential locomotory effects at environmentally relevant mercury concentrations, the potential impact on aquatic predator-prey systems will be discussed.

Benton, M.J.; Carlson, J.K.; Benson, W.H. [Univ. of Mississippi, University, MS (United States)

1994-12-31

110

Fitting a predator–prey model to zooplankton time-series data in the Gironde estuary (France): Ecological significance of the parameters  

Microsoft Academic Search

The relationships between the seasonal fluctuations of the copepod Eurytemora affinis and the mysid Neomysis integer were studied from observed data and experimental results, using a predator–prey model in the oligo-mesohaline area of the Gironde estuary. Mean seasonal fluctuations of abundances were derived from long term data series collected from 1978 to 2003 for both species. In situ predator–prey experiments

Valérie David; Pierre Chardy; Benoît Sautour

2006-01-01

111

Existence and stability of periodic solution of a Lotka-Volterra predator-prey model with state dependent impulsive effects  

NASA Astrophysics Data System (ADS)

According to biological and chemical control strategy for pest, we investigate the dynamic behavior of a Lotka-Volterra predator-prey state-dependent impulsive system by releasing natural enemies and spraying pesticide at different thresholds. By using Poincaré map and the properties of the Lambert W function, we prove that the sufficient conditions for the existence and stability of semi-trivial solution and positive periodic solution. Numerical simulations are carried out to illustrate the feasibility of our main results.

Nie, Linfei; Peng, Jigen; Teng, Zhidong; Hu, Lin

2009-02-01

112

Stabilization and complex dynamics in a predator–prey model with predator suffering from an infectious disease  

Microsoft Academic Search

We study the effects of a non-specified infectious disease of the predator on the dynamics a predator–prey system, by evaluating the dynamics of a three-dimensional model. The predator population in this (PSI) model is split into a susceptible and an unrecoverable infected population, while all newborn are susceptible. The incidence rate at which susceptible become infectious is described by a

Bob W. Kooi; George A. K. van Voorn; Krishna pada Das

2011-01-01

113

ARTICLE IN PRESS Interactions between ectomycorrhizal symbiosis and uorescent  

E-print Network

of the ectomycorrhizal symbiosis between an Australian Acacia (A. holosericea) and Pisolithus sp. strain IR100. Keywords: Fluorescent pseudomonads; Restriction fragment length polymorphism; Siderotyping; Pisolithus sp- mis) was enhanced when they were inoculated with di¡er- ent strains of Pisolithus spp. or rhizobial

Thioulouse, Jean

114

On the selection of ordinary differential equation models with application to predator-prey dynamical models.  

PubMed

We consider model selection and estimation in a context where there are competing ordinary differential equation (ODE) models, and all the models are special cases of a "full" model. We propose a computationally inexpensive approach that employs statistical estimation of the full model, followed by a combination of a least squares approximation (LSA) and the adaptive Lasso. We show the resulting method, here called the LSA method, to be an (asymptotically) oracle model selection method. The finite sample performance of the proposed LSA method is investigated with Monte Carlo simulations, in which we examine the percentage of selecting true ODE models, the efficiency of the parameter estimation compared to simply using the full and true models, and coverage probabilities of the estimated confidence intervals for ODE parameters, all of which have satisfactory performances. Our method is also demonstrated by selecting the best predator-prey ODE to model a lynx and hare population dynamical system among some well-known and biologically interpretable ODE models. PMID:25287611

Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J

2014-10-01

115

Absence of Frequent Herpesvirus Transmission in a Nonhuman Primate Predator-Prey System in the Wild  

PubMed Central

Emergence of viruses into the human population by transmission from nonhuman primates (NHPs) represents a serious potential threat to human health that is primarily associated with the increased bushmeat trade. Transmission of RNA viruses across primate species appears to be relatively frequent. In contrast, DNA viruses appear to be largely host specific, suggesting low transmission potential. Herein, we use a primate predator-prey system to study the risk of herpesvirus transmission between different primate species in the wild. The system was comprised of western chimpanzees (Pan troglodytes verus) and their primary (western red colobus, Piliocolobus badius badius) and secondary (black-and-white colobus, Colobus polykomos) prey monkey species. NHP species were frequently observed to be coinfected with multiple beta- and gammaherpesviruses (including new cytomegalo- and rhadinoviruses). However, despite frequent exposure of chimpanzees to blood, organs, and bones of their herpesvirus-infected monkey prey, there was no evidence for cross-species herpesvirus transmission. These findings suggest that interspecies transmission of NHP beta- and gammaherpesviruses is, at most, a rare event in the wild. PMID:23885068

Murthy, Sripriya; Couacy-Hymann, Emmanuel; Metzger, Sonja; Nowak, Kathrin; De Nys, Helene; Boesch, Christophe; Wittig, Roman; Jarvis, Michael A.; Leendertz, Fabian H.

2013-01-01

116

Shedding light on microbial predator-prey population dynamics using a quantitative bioluminescence assay.  

PubMed

This study assessed the dynamics of predation by Bdellovibrio bacteriovorus HD 100. Predation tests with two different bioluminescent strains of Escherichia coli, one expressing a heat-labile bacterial luciferase and the other a heat-stable form, showed near identical losses from both, indicating that protein expression and stability are not responsible for the "shutting-off" of the prey bioluminescence (BL). Furthermore, it was found that the loss in the prey BL was not proportional with the predator-to-prey ratio (PPR), with significantly greater losses seen as this value was increased. This suggests that other factors also play a role in lowering the prey BL. The loss in BL, however, was very consistent within nine independent experiments to the point that we were able to reliably estimate the predator numbers within only 1 h when present at a PPR of 6 or higher, Using a fluorescent prey, we found that premature lysis of the prey occurs at a significant level and was more prominent as the PPR ratio increased. Based upon the supernatant fluorescent signal, even a relatively low PPR of 10-20 led to approximately 5% of the prey population being prematurely lysed within 1 h, while a PPR of 90 led to nearly 15% lysis. Consequently, we developed a modified Lotka-Volterra predator-prey model that accounted for this lysis and is able to reliably estimate the prey and bdelloplast populations for a wide range of PPRs. PMID:24272279

Im, Hansol; Kim, Dasol; Ghim, Cheol-Min; Mitchell, Robert J

2014-01-01

117

A predator-prey model with diseases in both prey and predator  

NASA Astrophysics Data System (ADS)

In this paper, we present and analyze a predator-prey model, in which both predator and prey can be infected. Each of the predator and prey is divided into two categories, susceptible and infected. The epidemics cannot be transmitted between prey and predator by predation. The predation ability of susceptible predators is stronger than infected ones. Likewise, it is more difficult to catch a susceptible prey than an infected one. And the diseases cannot be hereditary in both of the predator and prey populations. Based on the assumptions above, we find that there are six equilibrium points in this model. Using the base reproduction number, we discuss the stability of the equilibrium points qualitatively. Then both of the local and global stabilities of the equilibrium points are analyzed quantitatively by mathematical methods. We provide numerical results to discuss some interesting biological cases that our model exhibits. Lastly, we discuss how the infectious rates affect the stability, and how the other parameters work in the five possible cases within this model.

Gao, Xubin; Pan, Qiuhui; He, Mingfeng; Kang, Yibin

2013-12-01

118

Effects of additional food in a delayed predator-prey model.  

PubMed

We examine the effects of supplying additional food to predator in a gestation delay induced predator-prey system with habitat complexity. Additional food works in favor of predator growth in our model. Presence of additional food reduces the predatory attack rate to prey in the model. Supplying additional food we can control predator population. Taking time delay as bifurcation parameter the stability of the coexisting equilibrium point is analyzed. Hopf bifurcation analysis is done with respect to time delay in presence of additional food. The direction of Hopf bifurcations and the stability of bifurcated periodic solutions are determined by applying the normal form theory and the center manifold theorem. The qualitative dynamical behavior of the model is simulated using experimental parameter values. It is observed that fluctuations of the population size can be controlled either by supplying additional food suitably or by increasing the degree of habitat complexity. It is pointed out that Hopf bifurcation occurs in the system when the delay crosses some critical value. This critical value of delay strongly depends on quality and quantity of supplied additional food. Therefore, the variation of predator population significantly effects the dynamics of the model. Model results are compared with experimental results and biological implications of the analytical findings are discussed in the conclusion section. PMID:25550287

Sahoo, Banshidhar; Poria, Swarup

2015-03-01

119

Discovering the Power of Individual-Based Modelling in Teaching and Learning: The Study of a Predator-Prey System  

NASA Astrophysics Data System (ADS)

The general aim is to promote the use of individual-based models (biological agent-based models) in teaching and learning contexts in life sciences and to make their progressive incorporation into academic curricula easier, complementing other existing modelling strategies more frequently used in the classroom. Modelling activities for the study of a predator-prey system for a mathematics classroom in the first year of an undergraduate program in biosystems engineering have been designed and implemented. These activities were designed to put two modelling approaches side by side, an individual-based model and a set of ordinary differential equations. In order to organize and display this, a system with wolves and sheep in a confined domain was considered and studied. With the teaching material elaborated and a computer to perform the numerical resolutions involved and the corresponding individual-based simulations, the students answered questions and completed exercises to achieve the learning goals set. Students' responses regarding the modelling of biological systems and these two distinct methodologies applied to the study of a predator-prey system were collected via questionnaires, open-ended queries and face-to-face dialogues. Taking into account the positive responses of the students when they were doing these activities, it was clear that using a discrete individual-based model to deal with a predator-prey system jointly with a set of ordinary differential equations enriches the understanding of the modelling process, adds new insights and opens novel perspectives of what can be done with computational models versus other models. The complementary views given by the two modelling approaches were very well assessed by students.

Ginovart, Marta

2014-08-01

120

Global hopf bifurcation on two-delays leslie-gower predator-prey system with a prey refuge.  

PubMed

A modified Leslie-Gower predator-prey system with two delays is investigated. By choosing ? 1 and ? 2 as bifurcation parameters, we show that the Hopf bifurcations occur when time delay crosses some critical values. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the theoretical results and chaotic behaviors are observed. Finally, using a global Hopf bifurcation theorem for functional differential equations, we show the global existence of the periodic solutions. PMID:24803953

Liu, Qingsong; Lin, Yiping; Cao, Jingnan

2014-01-01

121

Global Hopf Bifurcation on Two-Delays Leslie-Gower Predator-Prey System with a Prey Refuge  

PubMed Central

A modified Leslie-Gower predator-prey system with two delays is investigated. By choosing ?1 and ?2 as bifurcation parameters, we show that the Hopf bifurcations occur when time delay crosses some critical values. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the theoretical results and chaotic behaviors are observed. Finally, using a global Hopf bifurcation theorem for functional differential equations, we show the global existence of the periodic solutions. PMID:24803953

Liu, Qingsong; Lin, Yiping; Cao, Jingnan

2014-01-01

122

A multispecies statistical age-structured model to assess predator-prey balance: application to an intensively managed Lake Michigan pelagic fish community  

USGS Publications Warehouse

Using a Bayesian model fitting approach, we developed a multispecies statistical catch-at-age model to assess trade-offs between predatory demands and prey productivities, focusing on the Lake Michigan pelagic fish community. We assessed these trade-offs in terms of predation mortalities and productivities of alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) and functional responses of salmonines. Our predation mortality estimates suggest that salmonine consumption has been a major driver of historical fluctuations in prey abundance, with sharp declines in alewife abundance in the 1980s and 2000s coinciding with estimated increases in predation mortalities. While Chinook salmon (Oncorhynchus tshawytscha) were food limited during periods of low alewife abundance, other salmonines appeared to maintain a (near) maximum per-predator consumption across all observed prey densities, suggesting that feedback mechanisms are unlikely to help maintain a balance between predator consumption and prey productivity in Lake Michigan. This study demonstrates that a multispecies modeling approach that combines stock assessment methods with explicit consideration of predator–prey interactions could provide the basis for tactical decision-making from a broader ecosystem perspective.

Tsehaye, Iyob; Jones, Michael L.; Bence, James R.; Brenden, Travis O.; Madenjian, Charles P.; Warner, David M.

2014-01-01

123

Strain-specific functional and numerical responses are required to evaluate impacts on predator–prey dynamics  

PubMed Central

We use strains recently collected from the field to establish cultures; then, through laboratory studies we investigate how among strain variation in protozoan ingestion and growth rates influences population dynamics and intraspecific competition. We focused on the impact of changing temperature because of its well-established effects on protozoan rates and its ecological relevance, from daily fluctuations to climate change. We show, first, that there is considerable inter-strain variability in thermal sensitivity of maximum growth rate, revealing distinct differences among multiple strains of our model species Oxyrrhis marina. We then intensively examined two representative strains that exhibit distinctly different thermal responses and parameterised the influence of temperature on their functional and numerical responses. Finally, we assessed how these responses alter predator–prey population dynamics. We do this first considering a standard approach, which assumes that functional and numerical responses are directly coupled, and then compare these results with a novel framework that incorporates both functional and numerical responses in a fully parameterised model. We conclude that: (i) including functional diversity of protozoa at the sub-species level will alter model predictions and (ii) including directly measured, independent functional and numerical responses in a model can provide a more realistic account of predator–prey dynamics. PMID:23151643

Yang, Zhou; Lowe, Chris D; Crowther, Will; Fenton, Andy; Watts, Phillip C; Montagnes, David J S

2013-01-01

124

Stream ecological processes are modeled through a simple predator-prey model, which reproduces benthic algae and macro-invertebrates dynamics.  

E-print Network

reproduces benthic algae and macro-invertebrates dynamics. Algae biomass = growth - death loss - predation loss Macro-invertebrate biomass = growth due to predation - death loss Hydrologic drivers and controls influences on algae and macro-invertebrates dynamics will be introduced in the predator-prey model

125

Bifurcation analysis and dimension reduction of a predator-prey model for the L-H transition  

NASA Astrophysics Data System (ADS)

The L-H transition denotes a shift to an improved confinement state of a toroidal plasma in a fusion reactor. A model of the L-H transition is required to simulate the time dependence of tokamak discharges that include the L-H transition. A 3-ODE predator-prey type model of the L-H transition is investigated with bifurcation theory of dynamical systems. The analysis shows that the model contains three types of transitions: an oscillating transition, a sharp transition with hysteresis, and a smooth transition. The model is recognized as a slow-fast system. A reduced 2-ODE model consisting of the full model restricted to the flow on the critical manifold is found to contain all the same dynamics as the full model. This means that all the dynamics in the system is essentially 2-dimensional, and a minimal model of the L-H transition could be a 2-ODE model.

Dam, Magnus; Brøns, Morten; Juul Rasmussen, Jens; Naulin, Volker; Xu, Guosheng

2013-10-01

126

Bifurcation analysis and dimension reduction of a predator-prey model for the L-H transition  

SciTech Connect

The L-H transition denotes a shift to an improved confinement state of a toroidal plasma in a fusion reactor. A model of the L-H transition is required to simulate the time dependence of tokamak discharges that include the L-H transition. A 3-ODE predator-prey type model of the L-H transition is investigated with bifurcation theory of dynamical systems. The analysis shows that the model contains three types of transitions: an oscillating transition, a sharp transition with hysteresis, and a smooth transition. The model is recognized as a slow-fast system. A reduced 2-ODE model consisting of the full model restricted to the flow on the critical manifold is found to contain all the same dynamics as the full model. This means that all the dynamics in the system is essentially 2-dimensional, and a minimal model of the L-H transition could be a 2-ODE model.

Dam, Magnus; Brøns, Morten [Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)] [Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Juul Rasmussen, Jens; Naulin, Volker [Association Euratom-DTU, Department of Physics, Technical University of Denmark, DTU Risø Campus, DK-4000 Roskilde (Denmark)] [Association Euratom-DTU, Department of Physics, Technical University of Denmark, DTU Risø Campus, DK-4000 Roskilde (Denmark); Xu, Guosheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)] [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

2013-10-15

127

PREDATOR-PREY (VOLE-CRICKET) INTERACTIONS: THE EFFECTS OF WOOD PRESERVATIVES  

EPA Science Inventory

The rate of loss of crickets (Acheta domestica), with and without the presence of an adventitious predator, the gray-tailed vole (Microtus canicaudus), has been studied in Terrestrial Microcosm Chambers (TMC-II) treated with pine stakes impregnated with creosote, bis(tri-n-butylt...

128

Time-related predator/prey interactions between birds and fish in a northern Swedish river.  

PubMed

Seasonal and diel activity patterns of mergansers, gulls, and terns along a river in northern Sweden were documented, as were those of their fish prey. The seasonal and diel activity patterns of goosandersMergus merganser and gulls (Larus canus, L. argentatus, andL. fuscus) were closely related to that of the river lampreyLampetra fluviatilis. During the peak spawning of the river lamprey, birds showed a nocturnal peak in fishing activity. During the summer solstice, birds were active for 24 h. The activity patterns of red-breasted merganserMergus serrator, ternsSterna spp., and three-spined sticklebacksGasterosteus aculeatus were also similar. Activity pattern of the prey apparently influenced breeding time, diel activity and foraging area of the twoMergus species. Social relations between gulls probably corrdinated their peak in fishing, which coincided with the time lampreys were most efficiently exploited. PMID:23494338

Sjöberg, K

1989-03-01

129

Time-related predator\\/prey interactions between birds and fish in a northern Swedish river  

Microsoft Academic Search

Seasonal and diel activity patterns of mergansers, gulls, and terns along a river in northern Sweden were documented, as were those of their fish prey. The seasonal and diel activity patterns of goosandersMergus merganser and gulls (Larus canus, L. argentatus, andL. fuscus) were closely related to that of the river lampreyLampetra fluviatilis. During the peak spawning of the river lamprey,

Kjell SjiJberg

1989-01-01

130

Effects of PredatorPrey Interactions and Benthic Habitat Complexity on Selectivity of a Foraging Generalist  

E-print Network

and crayfish were not. The diets of yellow perch in Lake Michigan reflected patterns established in mesocosm strategies, affecting the preferences and consumption patterns of predators. Yellow perch Perca flavescens compared the prey selection of yellow perch (230­311 mm) foraging on common Great Lakes prey species

131

Evolutionary diversification of TTX-resistant sodium channels in a predator-prey interaction.  

PubMed

Understanding the molecular genetic basis of adaptations provides incomparable insight into the genetic mechanisms by which evolutionary diversification takes place. Whether the evolution of common traits in different lineages proceeds by similar or unique mutations, and the degree to which phenotypic evolution is controlled by changes in gene regulation as opposed to gene function, are fundamental questions in evolutionary biology that require such an understanding of genetic mechanisms. Here we identify novel changes in the molecular structure of a sodium channel expressed in snake skeletal muscle, tsNa(V)1.4, that are responsible for differences in tetrodotoxin (TTX) resistance among garter snake populations coevolving with toxic newts. By the functional expression of tsNa(V)1.4, we show how differences in the amino-acid sequence of the channel affect TTX binding and impart different levels of resistance in four snake populations. These results indicate that the evolution of a physiological trait has occurred through a series of unique functional changes in a gene that is otherwise highly conserved among vertebrates. PMID:15815629

Geffeney, Shana L; Fujimoto, Esther; Brodie, Edmund D; Brodie, Edmund D; Ruben, Peter C

2005-04-01

132

Hypoxic refuges, predator-prey interactions and habitat selection by fishes.  

PubMed

Localized hypoxic habitats were created in Delta Marsh, Manitoba, Canada to determine the potential of regions of moderate hypoxia to act as refuges for forage fishes from piscine predators. Minnow traps and giving-up density (GUD) plates (plexiglas plates covered with trout crumble and fine gravel) were used to assess habitat use and perceived habitat quality for forage fishes, respectively, while passive integrated transponder tags provided data on habitat use by predator species to assess the level of predation risk. Data were collected both before and after a hypoxia manipulation (2-3?mg?l(-1) dissolved oxygen, DO) to create a before-after control-effect style experiment. Fathead minnows Pimephales promelas were more abundant and consumed more food from GUD plates in hypoxic bays after the DO manipulation, indicating hypoxic locations were perceived as higher quality, lower-risk habitats. The frequency of predator visits was not consistently affected. The duration of visits, and therefore the total time spent in these habitats, however, was significantly shorter. These predator data, combined with the prey information, are consistent with the hypothesis that hypoxic regions function as predator refuges. The refuge effect is not the result of predator exclusion, however; instead predators are rendered less capable of foraging and pose less of a threat in hypoxic locations. PMID:25557430

Hedges, K J; Abrahams, M V

2015-01-01

133

Mammalian predator-prey interaction in a fragmented landscape: weasels and voles.  

PubMed

The relationship between predators and prey is thought to change due to habitat loss and fragmentation, but patterns regarding the direction of the effect are lacking. The common prediction is that specialized predators, often more dependent on a certain habitat type, should be more vulnerable to habitat loss compared to generalist predators, but actual fragmentation effects are unknown. If a predator is small and vulnerable to predation by other larger predators through intra-guild predation, habitat fragmentation will similarly affect both the prey and the small predator. In this case, the predator is predicted to behave similarly to the prey and avoid open and risky areas. We studied a specialist predator's, the least weasel, Mustela nivalis nivalis, spacing behavior and hunting efficiency on bank voles, Myodes glareolus, in an experimentally fragmented habitat. The habitat consisted of either one large habitat patch (non-fragmented) or four small habitat patches (fragmented) with the same total area. The study was replicated in summer and autumn during a year with high avian predation risk for both voles and weasels. As predicted, weasels under radio-surveillance killed more voles in the non-fragmented habitat which also provided cover from avian predators during their prey search. However, this was only during autumn, when the killing rate was also generally high due to cold weather. The movement areas were the same for both sexes and both fragmentation treatments, but weasels of both sexes were more prone to take risks in crossing the open matrix in the fragmented treatment. Our results support the hypothesis that habitat fragmentation may increase the persistence of specialist predator and prey populations if predators are limited in the same habitat as their prey and they share the same risk from avian predation. PMID:23728797

Haapakoski, Marko; Sundell, Janne; Ylönen, Hannu

2013-12-01

134

Effects of an Infectious Fungus, Batrachochytrium dendrobatidis, on Amphibian Predator-Prey Interactions  

E-print Network

Effects of an Infectious Fungus, Batrachochytrium dendrobatidis, on Amphibian Predator examined the effects of an emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis, on anti BA, Searle CL, Blaustein AR (2011) Effects of an Infectious Fungus, Batrachochytrium dendrobatidis

Blaustein, Andrew R.

135

Attack or attacked: the sensory and fluid mechanical constraints of copepods' predator-prey interactions.  

PubMed

Many animals are predator and prey at the same time. This dual position represents a fundamental dilemma because gathering food often leads to increased exposure to predators. The optimization of the tradeoff between eating and not being eaten depends strongly on the sensing, feeding, and mechanisms for mobility of the parties involved. Here, I describe the mechanisms of sensing, escaping predators, and capturing prey in marine pelagic copepods. I demonstrate that feeding tradeoffs vary with feeding mode, and I describe simple fluid mechanical models that are used to quantify these tradeoffs and review observations and experiments that support the assumptions and test the predictions. I conclude by presenting a mechanistically underpinned model that predicts optimal foraging behaviors and the resulting size-scaling and magnitude of copepods' clearance rates. PMID:23613321

Kiørboe, Thomas

2013-11-01

136

Predator-Prey Oscillations and Zonal Flow-Induced Turbulence Suppression Preceding the L-H Transition  

NASA Astrophysics Data System (ADS)

Understanding the L- to H-mode transition and the density/rotation dependence of the H-mode power threshold is important for the design and predictive modeling of burning plasma experiments. We present here direct experimental evidence of the importance of predator-prey oscillations and turbulence/transport regulation by low frequency zonal flows (ZFs) at the L-H transition. Near the H-mode power threshold, a narrow oscillating flow layer develops at/inside the separatrix in a neutral beam-heated DIII-D plasma. Toroidal and radial correlation of the ExB velocity, as measured by Doppler backscattering (DBS), increase at the transition to this ``dithering'' state. The observed oscillation is consistent with a radially propagating ZF with a frequency much below the expected local GAM frequency. Periodic turbulence suppression due to ZF shearing is first observed when the turbulence decorrelation rate decreases sharply (within 0.1,ms) at the transition to the dithering state and the increasing ZF shearing rate locally surpasses the decorrelation rate. The flow layer then expands radially inwards. The ZF amplitude lags the density fluctuation amplitude by 90^o. The ``final" H-mode transition (sustained turbulence/transport reduction) appears linked to increasing equilibrium flow shear due to the increasing ion pressure gradient. Both features are consistent with the predator-prey model of the L-H transition [1]. The transition dynamics is revealed with high time (<1,s) and spatial resolution (<0.5,cm), combining eight channel and five channel DBS systems, separated 180^o toroidally, with fast profile reflectometry. 3pt [1] E.J. Kim and P.H. Diamond, Phys. Rev. Lett. 90, 185006 (2003).

Schmitz, L.

2011-11-01

137

Fitting a predator prey model to zooplankton time-series data in the Gironde estuary (France): Ecological significance of the parameters  

NASA Astrophysics Data System (ADS)

The relationships between the seasonal fluctuations of the copepod Eurytemora affinis and the mysid Neomysis integer were studied from observed data and experimental results, using a predator-prey model in the oligo-mesohaline area of the Gironde estuary. Mean seasonal fluctuations of abundances were derived from long term data series collected from 1978 to 2003 for both species. In situ predator-prey experiments over a seasonal cycle were used to estimate the seasonal variation of the consumption rate of N. integer on E. affinis and to verify the order of magnitude of the biological parameters given by the model. Predator-prey experiments revealed a high seasonal variation in maximum consumption rates with a mean of 56 ± 9 ind. pred -1 d -1. Maximum consumption rates were always higher for adults than for juveniles of Neomysis integer. Recorded selectivities were higher on nauplii than on copepodids + adults of Eurytemora affinis, both for the juveniles and the adults of N. integer. Neomysis integer mainly fed on meroplanktonic larvae, when they were available in higher abundances, than E. affinis in their environment. Spring increases of abundance for Eurytemora affinis copepodids + adults seemed to be mainly controlled by temperature whereas its decreasing abundance in summer was more related to Neomysis integer predation, suggesting that summer fluctuations of E. affinis abundance are probably controlled by mysid predation at summer times. Using a Lotka-Volterra predator-prey model, the seasonal peak of abundance of the mysid N. integer was well reproduced considering a predation on copepodids + adults of E. affinis, and suggested a dependence between mysid and copepod seasonal variations. However, the seasonal peak amplitude could not be explained solely by a predation on copepodids + adults or on nauplii of the copepod. Thus, N. integer is probably dependent on the seasonal fluctuations of the copepod's abundance, complementing its diet with macrophytal detritus during periods of scarce food.

David, Valérie; Chardy, Pierre; Sautour, Benoît

2006-05-01

138

The Helmholtz Theorem for the Lotka-Volterra Equation, the Extended Conservation Relation, and Stochastic Predator-Prey Dynamics  

E-print Network

We carry out a mathematical analysis, \\`{a} la Helmholtz's and Boltzmann's 1884 studies of monocyclic Newtonian mechanics, for the Lotka-Volterra (LV) equation exhibiting oscillatory predator-prey dynamics. One of the important features of the latter system, absent in the classical mechanical model, is a natural stochastic dynamic formulation of which the LV equation is the infinite population limit. The invariant density for the stochastic dynamics plays a central role in the deterministic LV dynamics. We show how the conservation law along a single trajectory can be extended to incorporate both variations in model parameter $\\alpha$ and in the initial conditions: Helmholtz's theorem establishes a broadly valid conservation law in a class of ecological dynamics. We analyze the relationships among mean ecological activeness $\\theta$, quantities characterizing dynamic ranges of populations $\\mathcal{A}$ and $\\alpha$, and the ecological force $F_{\\alpha}$. The analysis identifies an entire orbit as a stationary ecology, and establishes the notion of an "equation of ecological state". Studies of the stochastic dynamics with finite populations show the LV equation as the rubust, fast cyclic underlying behavior. The mathematical narrative provides a novel way of capturing long-term ecological dynamical behavior with an emergent conservative ecology.

Yi-An Ma; Hong Qian

2014-05-16

139

Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems.  

PubMed

Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators:prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests. PMID:23977128

Dézerald, Olivier; Leroy, Céline; Corbara, Bruno; Carrias, Jean-François; Pélozuelo, Laurent; Dejean, Alain; Céréghino, Régis

2013-01-01

140

Impairment of O-antigen production confers resistance to grazing in a model amoeba–cyanobacterium predator–prey system  

PubMed Central

The grazing activity of predators on photosynthetic organisms is a major mechanism of mortality and population restructuring in natural environments. Grazing is also one of the primary difficulties in growing cyanobacteria and other microalgae in large, open ponds for the production of biofuels, as contaminants destroy valuable biomass and prevent stable, continuous production of biofuel crops. To address this problem, we have isolated a heterolobosean amoeba, HGG1, that grazes upon unicellular and filamentous freshwater cyanobacterial species. We have established a model predator–prey system using this amoeba and Synechococcus elongatus PCC 7942. Application of amoebae to a library of mutants of S. elongatus led to the identification of a grazer-resistant knockout mutant of the wzm ABC O-antigen transporter gene, SynPCC7942_1126. Mutations in three other genes involved in O-antigen synthesis and transport also prevented the expression of O-antigen and conferred resistance to HGG1. Complementation of these rough mutants returned O-antigen expression and susceptibility to amoebae. Rough mutants are easily identifiable by appearance, are capable of autoflocculation, and do not display growth defects under standard laboratory growth conditions, all of which are desired traits for a biofuel production strain. Thus, preventing the production of O-antigen is a pathway for producing resistance to grazing by certain amoebae. PMID:23012457

Simkovsky, Ryan; Daniels, Emy F.; Tang, Karen; Huynh, Stacey C.; Golden, Susan S.; Brahamsha, Bianca

2012-01-01

141

Self-organizing patterns maintained by competing associations in a six-species predator-prey model.  

PubMed

Formation and competition of associations are studied in a six-species ecological model where each species has two predators and two prey. Each site of a square lattice is occupied by an individual belonging to one of the six species. The evolution of the spatial distribution of species is governed by iterated invasions between the neighboring predator-prey pairs with species specific rates and by site exchange between the neutral pairs with a probability X . This dynamical rule yields the formation of five associations composed of two or three species with proper spatiotemporal patterns. For large X a cyclic dominance can occur between the three two-species associations whereas one of the two three-species associations prevails in the whole system for low values of X in the final state. Within an intermediate range of X all the five associations coexist due to the fact that cyclic invasions between the two-species associations reduce their resistance temporarily against the invasion of three-species associations. PMID:18517668

Szabó, György; Szolnoki, Attila; Borsos, István

2008-04-01

142

A predator-prey model with a holling type I functional response including a predator mutual interference  

USGS Publications Warehouse

The most widely used functional response in describing predator-prey relationships is the Holling type II functional response, where per capita predation is a smooth, increasing, and saturating function of prey density. Beddington and DeAngelis modified the Holling type II response to include interference of predators that increases with predator density. Here we introduce a predator-interference term into a Holling type I functional response. We explain the ecological rationale for the response and note that the phase plane configuration of the predator and prey isoclines differs greatly from that of the Beddington-DeAngelis response; for example, in having three possible interior equilibria rather than one. In fact, this new functional response seems to be quite unique. We used analytical and numerical methods to show that the resulting system shows a much richer dynamical behavior than the Beddington-DeAngelis response, or other typically used functional responses. For example, cyclic-fold, saddle-fold, homoclinic saddle connection, and multiple crossing bifurcations can all occur. We then use a smooth approximation to the Holling type I functional response with predator mutual interference to show that these dynamical properties do not result from the lack of smoothness, but rather from subtle differences in the functional responses. ?? 2011 Springer Science+Business Media, LLC.

Seo, G.; DeAngelis, D.L.

2011-01-01

143

Food-Web Structure in Relation to Environmental Gradients and Predator-Prey Ratios in Tank-Bromeliad Ecosystems  

PubMed Central

Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators:prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests. PMID:23977128

Dézerald, Olivier; Leroy, Céline; Corbara, Bruno; Carrias, Jean-François; Pélozuelo, Laurent; Dejean, Alain; Céréghino, Régis

2013-01-01

144

Consequences of a Refuge for the Predator-Prey Dynamics of a Wolf-Elk System in Banff National Park, Alberta, Canada  

PubMed Central

Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027–0.186 and 0.001–0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9–2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013–0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146–0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031–0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge. PMID:24670632

Goldberg, Joshua F.; Hebblewhite, Mark; Bardsley, John

2014-01-01

145

Consequences of size structure in the prey for predator–prey dynamics: the composite functional response  

Microsoft Academic Search

Summary 1. Current formulations of functional responses assume that the prey is homogeneous and independent of intraspecific processes. Most prey populations consist of different coexisting size classes that often engage in asymmetrical intraspecific interactions, including cannibalism, which can lead to nonlinear interaction effects. This may be important as the size structure with the prey could alter the overall density-dependent predation

Volker H. W. Rudolf

2008-01-01

146

Network structure, predator–prey modules, and stability in large food webs  

Microsoft Academic Search

Large, complex networks of ecological interactions with random structure tend invariably to instability. This mathematical\\u000a relationship between complexity and local stability ignited a debate that has populated ecological literature for more than\\u000a three decades. Here we show that, when species interact as predators and prey, systems as complex as the ones observed in\\u000a nature can still be stable. Moreover, stability

Stefano Allesina; Mercedes Pascual

2008-01-01

147

The role of zonal flows and predator-prey oscillations in triggering the formation of edge and core transport barriers  

NASA Astrophysics Data System (ADS)

We present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator-prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E × B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E × B shearing rate, ?E×B, in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90°, transitioning to anti-correlation (180°) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180° out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H-L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field) \\beta_{\\theta} =2\\mu_{0} n{( {T_{e} +T_{i}})}/{B_{\\theta}^{2}} in ITER.

Schmitz, L.; Zeng, L.; Rhodes, T. L.; Hillesheim, J. C.; Peebles, W. A.; Groebner, R. J.; Burrell, K. H.; McKee, G. R.; Yan, Z.; Tynan, G. R.; Diamond, P. H.; Boedo, J. A.; Doyle, E. J.; Grierson, B. A.; Chrystal, C.; Austin, M. E.; Solomon, W. M.; Wang, G.

2014-07-01

148

Advances in molecular ecology: tracking trophic links through predator-prey food-webs  

Microsoft Academic Search

Summary 1. It is not always possible to track trophic interactions between predators and prey by direct observation. This is especially true when observing small or elusive animals with cryptic food-web ecology. Gut and\\/or faecal analysis can sometimes allow prey remains to be identified visually but is only possible when a component of the diet is resistant to digestion. In

S. K. SHEPPARD; J. D. HARWOOD

2005-01-01

149

The Symbiosis Interactome: a computational approach reveals novel components, functional interactions and modules in Sinorhizobium meliloti  

Microsoft Academic Search

BACKGROUND: Rhizobium-Legume symbiosis is an attractive biological process that has been studied for decades because of its importance in agriculture. However, this system has undergone extensive study and although many of the major factors underpinning the process have been discovered using traditional methods, much remains to be discovered. RESULTS: Here we present an analysis of the 'Symbiosis Interactome' using novel

Ignacio Rodriguez-Llorente; Miguel A Caviedes; Mohammed Dary; Antonio J Palomares; Francisco M Cánovas; José M Peregrín-Alvarez

2009-01-01

150

Mechanisms of adaptation in a predator-prey arms race: TTX-resistant sodium channels.  

PubMed

Populations of the garter snake Thamnophis sirtalis have evolved geographically variable resistance to tetrodotoxin (TTX) in a coevolutionary arms race with their toxic prey, newts of the genus Taricha. Here, we identify a physiological mechanism, the expression of TTX-resistant sodium channels in skeletal muscle, responsible for adaptive diversification in whole-animal resistance. Both individual and population differences in the ability of skeletal muscle fibers to function in the presence of TTX correlate closely with whole-animal measures of TTX resistance. Demonstration of individual variation in an essential physiological function responsible for the adaptive differences among populations is a step toward linking the selective consequences of coevolutionary interactions to geographic and phylogenetic patterns of diversity. PMID:12193784

Geffeney, Shana; Brodie, Edmund D; Ruben, Peter C; Brodie, Edmund D

2002-08-23

151

Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction.  

SciTech Connect

In his 1960 paper Man-Machine Symbiosis, Licklider predicted that human brains and computing machines will be coupled in a tight partnership that will think as no human brain has ever thought and process data in a way not approached by the information-handling machines we know today. Today we are on the threshold of resurrecting the vision of symbiosis. While Licklider’s original vision suggested a co-equal relationship, here we discuss an updated vision, neo-symbiosis, in which the human holds a superordinate position in an intelligent human-computer collaborative environment. This paper was originally published as a journal article and is being published as a chapter in an upcoming book series, Advances in Novel Approaches in Cognitive Informatics and Natural Intelligence.

Griffith, Douglas; Greitzer, Frank L.

2008-12-01

152

Chemical cues from multiple predator-prey interactions induce changes in behavior and growth of anuran larvae  

Microsoft Academic Search

Chemical signals are used as information by prey to assess predation risk in their environment. To evaluate the effects of\\u000a multiple predators on prey growth, mediated by a change in prey activity, I exposed small and large bullfrog (Rana catesbeiana) larvae (tadpoles) to chemical cues from different combinations of bluegill sunfish (Lepomis macrochirus) and larval dragonfly (Anax junius) predators. Water

Peter Eklöv

2000-01-01

153

Spatial distribution of predator/prey interactions in the Scotia Sea: implications for measuring predator/fisheries overlap  

NASA Astrophysics Data System (ADS)

The measurement of spatial overlap between predators and fisheries exploiting a common prey source is dependent upon the measurement scale used; inappropriate scales may produce misleading results. Previous assessments of the level of overlap between predators and fisheries for Antarctic krill ( Euphausia superba) in the region of the South Shetland Islands used different measurement scales and arrived at contradictory conclusions. At-sea data from observations of krill predators during the CCAMLR 2000 Survey were used to identify the areas of potential overlap with fisheries in the Scotia Sea and to determine the scale at which such overlap should be measured. The relationship between autocorrelation and sampling distance was used to identify the characteristic scales of the distribution of predators, krill and krill fisheries, and an effort-corrected index of relative abundance as a function of distance from land was used to identify the characteristics of areas of high potential for overlap. Despite distinct differences in foraging ecology, a group of krill-dependent species including chinstrap penguin ( Pygoscelis antarctica), (Antarctic) fur seal ( Arctocephalus sp. ( gazella)) and white-chinned petrel ( Procellaria aequinoctialis) showed similar patterns of distribution; the relative abundances were highest at 60-120 km from land and decreased sharply at distances greater than 150 km from land. There were more inter-specific differences in the characteristic scales, which were of the order of 50-100 km. Antarctic krill had a characteristic scale of approximately 200 km and the relationship with distance from land showed a log-linear decline. Krill fisheries operate at a scale of 150 km and occur almost entirely within 100 km of land. The requirement of land for breeding and the biological and oceanographic conditions that produce the high concentrations of krill associated with those land areas produce a system in which the demand for Antarctic krill from fisheries and predators is essentially co-extensive. The areas of greatest potential overlap are within 150-200 km of land and to accommodate the scales of operation of the processes involved the extent of such overlap in these areas should be assessed at scales of 70-100 km.

Reid, Keith; Sims, Michelle; White, Richard W.; Gillon, Keith W.

2004-06-01

154

Transport of inertial particles by Lagrangian coherent structures: application to predator-prey interaction in jellyfish feeding  

Microsoft Academic Search

We use a dynamical systems approach to identify coherent structures from often chaotic motions of inertial particles in open flows. We show that particle Lagrangian coherent structures (pLCS) act as boundaries between regions in which particles have different kinematics. They provide direct geometric information about the motion of ensembles of inertial particles, which is helpful to understand their transport. As

J. O. D ABIRI

155

Understanding the importance of episodic acidification on fish predator-prey interactions: does weak acidification impair predator recognition?  

PubMed

The ability of prey to recognize predators is a fundamental prerequisite to avoid being eaten. Indeed, many prey animals learn to distinguish species that pose a threat from those that do not. Once the prey has learned the identity of one predator, it may generalize this recognition to similar predators with which the prey has no experience. The ability to generalize reduces the costs associated with learning and further enhances the ability of the prey to avoid relevant threats. For many aquatic organisms, recognition of predators is based on odor signatures, consequently any anthropogenic alteration in water chemistry has the potential to impair recognition and learning of predators. Here we explored whether episodic acidification could influence the ability of juvenile rainbow trout to learn to recognize an unknown predator and then generalize this recognition to a closely related predator. Trout were conditioned to recognize the odor of pumpkinseed sunfish under circumneutral (~pH 7) conditions, and then tested for recognition of pumpkinseed or longear sunfish under both neutral or weakly acidic (~pH 6) conditions. When tested for a response to pumpkinseed odor, we found no significant effect of predator odor pH: trout responded similarly regardless of pH. Moreover, under neutral conditions, trout were able to generalize their recognition to the odor of longear sunfish. However, the trout could not generalize their recognition of the longear sunfish under acidic conditions. Given the widespread occurrence of anthropogenic acidification, acid-mediated impairment of predator recognition and generalization may be a pervasive problem for freshwater salmonid populations and other aquatic organisms. PMID:23063639

Brown, Grant E; Elvidge, Chris K; Ferrari, Maud C O; Chivers, Douglas P

2012-11-15

156

Half-soliton interaction of population taxis waves in predator-prey systems with pursuit and M. A. Tsyganov  

E-print Network

is a system of two partial differential equations, P t = f(P, Z) + D 2 P + h- (P Z) , Z t = g(P, Z) + D 2 Z the properties of propagating waves, compared to the much better studied waves in purely reaction) Essentially different shape of the wave profiles. For P(x - ct) profile, it could be either "single

Biktashev, Vadim N.

157

Man-Computer Symbiosis  

Microsoft Academic Search

Man-computer symbiosis is an expected development in cooperative interaction between men and electronic computers. It will involve very close coupling between the human and the electronic members of the partnership. The main aims are 1) to let computers facilitate formulative thinking as they now facilitate the solution of formulated problems, and 2) to enable men and computers to cooperate in

J. C. R. Licklider

1960-01-01

158

Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction  

SciTech Connect

Abstract--The purpose of this paper is to re-address the vision of human-computer symbiosis as originally expressed by J.C.R. Licklider nearly a half-century ago. We describe this vision, place it in some historical context relating to the evolution of human factors research, and we observe that the field is now in the process of re-invigorating Licklider’s vision. We briefly assess the state of the technology within the context of contemporary theory and practice, and we describe what we regard as this emerging field of neo-symbiosis. We offer some initial thoughts on requirements to define functionality of neo-symbiotic systems and discuss research challenges associated with their development and evaluation.

Griffith, Douglas; Greitzer, Frank L.

2007-01-01

159

Predator-prey relations between age-1+ summer flounder (Paralichthys dentatus, Linnaeus) and age-0 winter flounder (Pseudopleuronectes americanus, Walbaum): predator diets, prey selection, and effects of sediments and macrophytes.  

PubMed

Laboratory experiments and weekly trammel net surveys in the Navesink River, New Jersey (USA) were used to examine the predator-prey interaction between age-1+ summer flounder (Paralichthys dentatus) and age-0 winter flounder (Pseudopleuronectes americanus). Winter flounder (24-67 mm TL) were the dominant piscine prey of summer flounder (n=95, 252-648 mm TL) collected in trammel nets. We observed a temporal shift in summer flounder diets from sand shrimp (Crangon septemspinosa) and winter flounder, dominant during June and early July, to blue crabs (Callinectes sapidus) and other fishes (primarily Atlantic silversides, Menidia menidia and Atlantic menhaden, Brevortia tyrannus) later in the summer. Variations in prey selection appeared to be related to changes in the spatial distribution of predators and spatio-temporal variation in prey availability. In laboratory experiments, summer flounder (271-345 mm total length, TL) preferred demersal winter flounder to a pelagic fish (Atlantic silversides) and a benthic invertebrate (sand shrimp) prey, and the vulnerability of winter flounder increased with increasing prey body size from 20 to 90 mm TL. Experiments testing habitat effects showed that mortality of winter flounder in three different size classes (20-29, 40-49, 60-69 mm TL) was not influenced by sediment grain sizes permitting differential burial of the prey. However, vegetation enhanced survival, with fish suffering lower mortality in eelgrass (Zostera marina, 15+/-0.04%) than in sea lettuce (Ulva lactuca, 38+/-0.04%) or bare sand (70+/-0.07%) when the macrophytes were planted to produce similar leaf surface areas (5000 cm(2) m(-2)). Prey vulnerability appeared to be related to the role of vision in the predator's attack strategy and prey activity levels. PMID:10958899

Manderson; Phelan; Stoner; Hilbert

2000-08-23

160

Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction  

SciTech Connect

We re-address the vision of human-computer symbiosis expressed by J. C. R. Licklider nearly a half-century ago, when he wrote: “The hope is that in not too many years, human brains and computing machines will be coupled together very tightly, and that the resulting partnership will think as no human brain has ever thought and process data in a way not approached by the information-handling machines we know today.” (Licklider, 1960). Unfortunately, little progress was made toward this vision over four decades following Licklider’s challenge, despite significant advancements in the fields of human factors and computer science. Licklider’s vision was largely forgotten. However, recent advances in information science and technology, psychology, and neuroscience have rekindled the potential of making the Licklider’s vision a reality. This paper provides a historical context for and updates the vision, and it argues that such a vision is needed as a unifying framework for advancing IS&T.

Griffith, Douglas; Greitzer, Frank L.

2008-03-01

161

Species interactions and coevolution Scott L. Nuismer  

E-print Network

Coevolution Focus on this project today #12;An example of spatially structured coevolution: toxic newts and resistant snakes Thamnophis sirtalis Taricha + = · Predator-prey interaction Butch Brodie #12;Toxic newts Taricha granulosa · Newts contain Tetrodotoxin, a potent neurotoxin · Some newts contain enough toxin

Gomulkiewicz, Richard

162

Feedbacks between protistan single-cell activity and bacterial physiological structure reinforce the predator/prey link in microbial foodwebs  

PubMed Central

The trophic interactions between bacteria and their main predators, the heterotrophic nanoflagellates (HNFs), play a key role in the structuring and functioning of aquatic microbial food webs. Grazing regulation of bacterial communities, both of biomass and community structure, have been frequently reported. Additionally, bottom-up responses of the HNF at the population level (numerical responses) have also been extensively described. However, the functional response of HNF at the single-cell level has not been well explored. In this study, we concurrently measured the physiological structure of bacterial communities and HNF single-cell activities during re-growth cultures of natural aquatic communities. We found that changes in the abundance and proportion of the preferred, highly active bacterial prey, caused by the feeding activity of their predators (HNF), induced a negative feedback effect on the single-cell activity of these HNF. These shifts in the specific cellular activity of HNF occur at a much shorter time scale than population level shifts in flagellate abundance, and offer a complementary mechanism to explain not only the tight coupling between bacteria and HNF, but also the relative constancy of bacterial abundance in aquatic ecosystems. PMID:25250018

Sintes, Eva; del Giorgio, Paul A.

2014-01-01

163

PredatorPrey Relationships 933 PredatorPrey  

E-print Network

.g., diving and breath-holding abilities) (Trites et al., 2006). They have also evolved specialized strategies by humpback whales (Megaptera novaeangliae) to capture herring. Marine mammals have also evolved specialized whales feed for about 6 months when plankton are abundant and con- centrated in shallow water

164

"Prey Play": Learning about Predators and Prey through an Interactive, Role-Play Game  

ERIC Educational Resources Information Center

"Prey Play" is an interactive role-play activity that provides fifth-grade students with opportunities to examine predator-prey interactions. This four-part, role-play activity allows students to take on the role of a predator and prey as they reflect on the behaviors animals exhibit as they collect food and interact with one another, as well as…

Deaton, Cynthia C. M.; Dodd, Kristen; Drennon, Katherine; Nagle, Jack

2012-01-01

165

Ocean Predator/Prey Populations  

NSDL National Science Digital Library

Susan Kelly Topic: Population change Course type: Introductory undergraduate course Description Modeling impact of change in food web Learning Goals or Outcomes Students will see how changes on one trophic level ...

166

Integrating models to investigate critical phenological overlaps in complex ecological interactions: The mountain pine beetle-fungus symbiosis.  

PubMed

The fates of individual species are often tied to synchronization of phenology, however, few methods have been developed for integrating phenological models involving linked species. In this paper, we focus on mountain pine beetle (MPB, Dendroctonus ponderosae) and its two obligate mutualistic fungi, Grosmannia clavigera and Ophiostoma montium. Growth rates of all three partners are driven by temperature, and their idiosyncratic responses affect interactions at important life stage junctures. One critical phase for MPB-fungus symbiosis occurs just before dispersal of teneral (new) adult beetles, when fungi are acquired and transported in specialized structures (mycangia). Before dispersal, fungi must capture sufficient spatial resources within the tree to ensure contact with teneral adults and get packed into mycangia. Mycangial packing occurs at an unknown time during teneral feeding. We adapt thermal models predicting fungal growth and beetle development to predict overlap between the competing fungi and MPB teneral adult feeding windows and emergence. We consider a spectrum of mycangial packing strategies and describe them in terms of explicit functions with unknown parameters. Rates of growth are fixed by laboratory data, the unknown parameters describing various packing strategies, as well as the degree to which mycangial growth is slowed in woody tissues as compared to agar, are determined by maximum likelihood and two years of field observations. At the field location used, the most likely fungus acquisition strategy for MPB was packing mycangia just prior to emergence. Estimated model parameters suggested large differences in the relative growth rates of the two fungi in trees at the study site, with the most likely model estimating that G. clavigera grew approximately twenty-five times faster than O. montium under the bark, which is completely unexpected in comparison with observed fungal growth on agar. PMID:25556687

Addison, Audrey; Powell, James A; Bentz, Barbara J; Six, Diana L

2015-03-01

167

Computer symbiosis-emergence of symbiotic behavior through evolution  

Microsoft Academic Search

Symbiosis is cooperation between distinct species. It is one of the most effective evolutionary processes, but its dynamics are not well understood as yet. A simple model of symbiosis is introduced, in which we consider interactions between hosts and parasites and also mutations of hosts and parasites. The interactions and mutations form a dynamical system on the populations of hosts

Takashi Ikegami; Kunihiko Kaneko

1990-01-01

168

How Symbiosis Creates Diversity  

ERIC Educational Resources Information Center

Diversity in habitats on Earth is astounding--whether on land or in the sea--and this is in part due to symbiosis. The lesson described in this article helps students understand how symbiosis affects different organisms through a fun and engaging game where they match hosts and symbionts based on their respective needs. This 45-minute lesson is…

Lord, Joshua

2010-01-01

169

THE EFFECT OF SIZE ON THE FAST-START PERFORMANCE OF RAINBOW TROUT SALMO GAIRDNERI, AND A CONSIDERATION OF PISCIVOROUS PREDATOR-PREY INTERACTIONS  

Microsoft Academic Search

SUMMARY The fast-start (acceleration) performance of seven groups of rainbow trout from 9-6 to 387 cm total length was measured in response to d.c. electric shock stimuli. Two fast-start kinematic patterns, L- and S-start were observed. In L-starts the body was bent into an L or U shape and a recoil turn normally accompanied acceleration. Free manoeuvre was not possible

P. W. WEBB

170

Sensory ecology of predator-prey interactions: responses of the AN2 interneuron in the field cricket, Teleogryllus oceanicus to the echolocation calls of sympatric bats.  

PubMed

We observed the responses of the AN2 interneuron in the Pacific field cricket, Teleogryllus oceanicus, a cell implicated in eliciting avoidance flight away from bats, to acoustic stimuli representing the echolocation calls of bats as well as field recordings of search and gleaning attack calls of six species of insectivorous sympatric bats (West Australia, Australia: Tadarida australis, Chalinolobus goudii, Nyctophilus geoffroyi; Queensland, Australia: Vespadelus pumilus, Myotis adversus; Kaua'i, Hawai'i: Lasiurus cinereus). The broad frequency sensitivity of the AN2 cell indicates that T. oceanicus has evolved to detect a wide range of echolocation call frequencies. The reduced sensitivity of this cell at frequencies higher than 70 kHz suggests that some bats (e.g., the gleaning species, N. geoffroyi) may circumvent this insect's auditory defences by using frequency-mismatched (allotonic) calls. The calls of the freetail bat, T. australis evoked the strongest response in the AN2 cell but, ironically, this may allow this bat to prey upon T. oceanicus as previous studies report that under certain conditions, flying crickets exhibit ambiguous directional responses towards frequencies similar to those emitted by this bat. Short duration calls (1--2 ms) are sufficient to evoke AN2 responses with instantaneous spike periods capable of causing defensive flight behaviours; most bats tested emit calls of durations greater than this. The short calls of N. geoffroyi produced during gleaning attacks may reduce this species' acoustic conspicuousness to this cricket. PMID:15886992

Fullard, James H; Ratcliffe, John M; Guignion, Cassandra

2005-07-01

171

Effects of environmental conditions on predator–prey interactions between white sharks ( Carcharodon carcharias ) and Cape fur seals ( Arctocephalus pusillus pusillus ) at Seal Island, South Africa  

Microsoft Academic Search

Effects of environmental factors on frequency and success rate of 2,546 natural predatory attacks by white sharks, Carcharodon carcharias, on Cape fur seals, Arctocephalus pusillus pusillus, were studied over an 8-year period at Seal Island, South Africa. Attacks occurred primarily during winter months (June–August). Attack frequency increased significantly during northerly winds, during high tides, and within 400 m of the island,

Neil Hammerschlag; R. Aidan Martin; Chris Fallows

2006-01-01

172

Computer symbiosis: Emergence of symbiotic behavior through evolution  

Microsoft Academic Search

Symbiosis is altruistic cooperation between distinct species. It is one of the most effective evolutionary processes, but its dynamics are not well understood as yet. A simple model of symbiosis is introduced, where we consider interactions between hosts and parasites and also mutations of hosts and parasites. It is found that a symbiotic state emerges for a suitable range of

Takashi Ikegami; Kunihiko Kaneko

1989-01-01

173

Signaling in Plant Disease Resistance and Symbiosis  

Microsoft Academic Search

Interactions between plants and microbes result in plant disease and symbiosis. The former causes considerable economic damage in modern agriculture, while the latter has produced great beneficial effects to our agriculture system. Comparison of the two interactions has revealed that a common panel of signaling pathways might participate in the establishment of the equilibrium between plant and microbes or its

Songzi Zhao; Xiaoquan Qi

2008-01-01

174

Trait-Mediated Indirect Interactions in a Simple Aquatic Food Web  

Microsoft Academic Search

This investigation examines the role of trait-mediated indirect interactions in a simple aquatic food web. We conducted the experiments in cattle watering tanks in order to establish whether competitive and predator-prey interactions between two species are affected by other species in the system; i.e., are pairwise interaction strengths affected by the background species assemblage? We examined the survival and growth

Scott D. Peacor; Earl E. Werner

1997-01-01

175

Interactions between the leech Glossiphonia complanata and its gastropod prey  

Microsoft Academic Search

Predator-prey interactions between the predatory leech, Glossiphonia complanata, and its gastropod prey were investigated in laboratory experiments, including behavioural observations with the aid of time-lapse video technique. Six gastropod species were investigated, viz. Lymnaea peregra, Planorbis planorbis, Physa fontinalis, Ancylus fluviatilis, Bithynia tentaculata, and Theodoxus fluviatilis. The species studied exhibited anti-predator defences, which had their maximum efficiency at different stages

Christer Briinmark; Bjiirn Malmqvist

1986-01-01

176

On the spatial dynamics and oscillatory behavior of a predator-prey model based on cellular automata and local particle swarm optimization.  

PubMed

A two-dimensional lattice model based on Cellular Automata theory and swarm intelligence is used to study the spatial and population dynamics of a theoretical ecosystem. It is found that the social interactions among predators provoke the formation of clusters, and that by increasing the mobility of predators the model enters into an oscillatory behavior. PMID:23927834

Molina, Mario Martínez; Moreno-Armendáriz, Marco A; Carlos Seck Tuoh Mora, Juan

2013-11-01

177

Interactions of biotic and abiotic environmental factors in an ectomycorrhizal symbiosis, and the potential for selection mosaics  

Microsoft Academic Search

BACKGROUND: Geographic selection mosaics, in which species exert different evolutionary impacts on each other in different environments, may drive diversification in coevolving species. We studied the potential for geographic selection mosaics in plant-mycorrhizal interactions by testing whether the interaction between bishop pine (Pinus muricata D. Don) and one of its common ectomycorrhizal fungi (Rhizopogon occidentalis Zeller and Dodge) varies in

Bridget J Piculell; Jason D Hoeksema; John N Thompson

2008-01-01

178

Molecular diagnosis of a previously unreported predator-prey association in coffee: Karnyothrips flavipes Jones (Thysanoptera: Phlaeothripidae) predation on the coffee berry borer  

NASA Astrophysics Data System (ADS)

The coffee berry borer, Hypothenemus hampei, is the most important pest of coffee throughout the world, causing losses estimated at US 500 million/year. The thrips Karnyothrips flavipes was observed for the first time feeding on immature stages of H. hampei in April 2008 from samples collected in the Kisii area of Western Kenya. Since the trophic interactions between H. hampei and K. flavipes are carried out entirely within the coffee berry, and because thrips feed by liquid ingestion, we used molecular gut-content analysis to confirm the potential role of K. flavipes as a predator of H. hampei in an organic coffee production system. Species-specific COI primers designed for H. hampei were shown to have a high degree of specificity for H. hampei DNA and did not produce any PCR product from DNA templates of the other insects associated with the coffee agroecosystems. In total, 3,327 K. flavipes emerged from 17,792 H. hampei-infested berries collected from the field between April and September 2008. Throughout the season, 8.3% of K. flavipes tested positive for H. hampei DNA, although at times this figure approached 50%. Prey availability was significantly correlated with prey consumption, thus indicating the potential impact on H. hampei populations.

Jaramillo, Juliana; Chapman, Eric G.; Vega, Fernando E.; Harwood, James D.

2010-03-01

179

Interactions between cougars (Puma concolor) and gray wolves (Canis lupus) in Banff National Park, Alberta  

Microsoft Academic Search

Large carnivore populations are recovering in many protected areas in North America, but the effect of increasing carnivore numbers on existing predator-prey and predator-predator interactions is poorly understood. We studied diet and spatial overlap among cougars (Puma concolor) and gray wolves (Canis lupus) in Banff National Park, Alberta (1993-2004) to evaluate how wolf recovery in the park influenced diet choice

Andrea D. KORTELLO; Thomas E. HURD; Dennis L. MURRAY

2007-01-01

180

Self-Organising Interaction Patterns of Homogeneous and Heterogeneous Multi-Agent Populations  

Microsoft Academic Search

The organic computing (OC) initiative deals with new design concepts, which facilitate the development of technical systems with life-like properties such as self-organization, self-optimization and self-configuration in order to make them robust, flexible and adaptive. In this paper, we systematically investigate different interaction patterns in self-organizing agent populations using a multi-robot observation scenario from the pursuit (predator-prey) domain. We create

Emre Cakar; Christian Müller-schloer

2009-01-01

181

Behavioral Interactions Between Aphaenogaster rudis (Hymenoptera: Formicidae) and Reticulitermes flavipes (Isoptera: Rhinotermitidae): The Importance of Physical Barriers  

Microsoft Academic Search

Predation pressure from ants is a major driving force in the adaptive evolution of termite defense strategies and termites\\u000a have evolved elaborate chemical and physical defenses to protect themselves against ants. We examined predator–prey interactions\\u000a between the woodland ant, Aphaenogaster rudis (Emery) and the eastern subterranean termite, Reticulitermes flavipes (Kollar), two sympatric species widely distributed throughout deciduous forests in eastern

Grzegorz Buczkowski; Gary Bennett

2008-01-01

182

Expanding genomics of mycorrhizal symbiosis  

PubMed Central

The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism. PMID:25408690

Kuo, Alan; Kohler, Annegret; Martin, Francis M.; Grigoriev, Igor V.

2014-01-01

183

Expanding genomics of mycorrhizal symbiosis.  

PubMed

The mycorrhizal symbiosis between soil fungi and plant roots is a ubiquitous mutualism that plays key roles in plant nutrition, soil health, and carbon cycling. The symbiosis evolved repeatedly and independently as multiple morphotypes [e.g., arbuscular mycorrhizae (AM), ectomycorrhizal (ECM)] in multiple fungal clades (e.g., phyla Glomeromycota, Ascomycota, Basidiomycota). The accessibility and cultivability of many mycorrhizal partners make them ideal models for symbiosis studies. Alongside molecular, physiological, and ecological investigations, sequencing led to the first three mycorrhizal fungal genomes, representing two morphotypes and three phyla. The genome of the ECM basidiomycete Laccaria bicolor showed that the mycorrhizal lifestyle can evolve through loss of plant cell wall-degrading enzymes (PCWDEs) and expansion of lineage-specific gene families such as short secreted protein (SSP) effectors. The genome of the ECM ascomycete Tuber melanosporum showed that the ECM type can evolve without expansion of families as in Laccaria, and thus a different set of symbiosis genes. The genome of the AM glomeromycete Rhizophagus irregularis showed that despite enormous phylogenetic distance and morphological difference from the other two fungi, symbiosis can involve similar solutions as symbiosis-induced SSPs and loss of PCWDEs. The three genomes provide a solid base for addressing fundamental questions about the nature and role of a vital mutualism. PMID:25408690

Kuo, Alan; Kohler, Annegret; Martin, Francis M; Grigoriev, Igor V

2014-01-01

184

Symbiosis catalyses niche expansion and diversification.  

PubMed

Interactions between species are important catalysts of the evolutionary processes that generate the remarkable diversity of life. Symbioses, conspicuous and inherently interesting forms of species interaction, are pervasive throughout the tree of life. However, nearly all studies of the impact of species interactions on diversification have concentrated on competition and predation leaving unclear the importance of symbiotic interaction. Here, I show that, as predicted by evolutionary theories of symbiosis and diversification, multiple origins of a key innovation, symbiosis between gall-inducing insects and fungi, catalysed both expansion in resource use (niche expansion) and diversification. Symbiotic lineages have undergone a more than sevenfold expansion in the range of host-plant taxa they use relative to lineages without such fungal symbionts, as defined by the genetic distance between host plants. Furthermore, symbiotic gall-inducing insects are more than 17 times as diverse as their non-symbiotic relatives. These results demonstrate that the evolution of symbiotic interaction leads to niche expansion, which in turn catalyses diversification. PMID:23390106

Joy, Jeffrey B

2013-04-01

185

Symbiosis catalyses niche expansion and diversification  

PubMed Central

Interactions between species are important catalysts of the evolutionary processes that generate the remarkable diversity of life. Symbioses, conspicuous and inherently interesting forms of species interaction, are pervasive throughout the tree of life. However, nearly all studies of the impact of species interactions on diversification have concentrated on competition and predation leaving unclear the importance of symbiotic interaction. Here, I show that, as predicted by evolutionary theories of symbiosis and diversification, multiple origins of a key innovation, symbiosis between gall-inducing insects and fungi, catalysed both expansion in resource use (niche expansion) and diversification. Symbiotic lineages have undergone a more than sevenfold expansion in the range of host-plant taxa they use relative to lineages without such fungal symbionts, as defined by the genetic distance between host plants. Furthermore, symbiotic gall-inducing insects are more than 17 times as diverse as their non-symbiotic relatives. These results demonstrate that the evolution of symbiotic interaction leads to niche expansion, which in turn catalyses diversification. PMID:23390106

Joy, Jeffrey B.

2013-01-01

186

A symbiosis algorithm for robotic control  

Microsoft Academic Search

An algorithm inspired by the biological phenomenon of symbiosis is presented in this paper. The genetic diversity obtained from the creation of symbiotic relationships is investigated and the symbiosis algorithm is applied to a robotic forward kinematics control problem. Compared with other evolutionary optimisation techniques, the symbiosis algorithm is shown to be an effective paradigm in discovering optimal solutions. Genetic

K. M. Ward; Mia Nazmul Haque Siddique; Liam P. Maguire; T. Martin Mcginnity

2005-01-01

187

Interactions between ectomycorrhizal symbiosis and fluorescent pseudomonads on Acacia holosericea: isolation of mycorrhiza helper bacteria (MHB) from a Soudano-Sahelian soil.  

PubMed

Abstract Acacia holosericea seedlings were planted in 1-l pots filled with a soil collected from an Australian Acacia plantation in Southern Senegal. After 6 months of culture, mycorrhizosphere soil, roots, galls induced by root-knot nematodes and Rhizobium nodules were sampled from each pot. The diversity of this bacterial group was characterized by siderotyping (pyoverdine IsoElectric Focusing (IEF) analysis) and by restriction fragment length polymorphism (RFLP). The effect of these isolates on the establishment of the ectomycorrhizal symbiosis between an Australian Acacia (A. holosericea) and Pisolithus sp. strain IR100 was studied. In the mycorrhizosphere soil, the population of fluorescent pseudomonads was represented by strains of two different siderovars (groups of bacterial strains presenting an identical pyoverdine-IEF pattern): siderovar 1 (74%) and siderovar 2 (26%). The siderotyping of the isolates around galls of the root-knot nematodes revealed three siderovars (40% from siderovar 1, 40% from siderovar 2 and about 15% from siderovar 3). RFLP of 16S rDNA divided the isolates into four different groups with MspI, two with HhaI and two with HaeIII endonucleases. The establishment of the ectomycorrhizal symbiosis with A. holosericea was promoted by 14 bacterial strains isolated from the mycorrhizosphere soil, three isolates from the roots and four from the galls. Shoot biomass of A. holosericea seedlings was stimulated by eight bacterial isolates from soil, six isolates from galls and seven from roots. These mycorrhiza helper bacteria could have a great ecological importance in tropical areas through the reforestation programs. PMID:19709237

Founoune, Hassna; Duponnois, Robin; Meyer, Jean Marie; Thioulouse, Jean; Masse, Dominique; Chotte, Jean Luc; Neyra, Marc

2002-07-01

188

Phylogenyofarbuscular mycorrhizal fungi predicts community composition of symbiosis-associated bacteria  

E-print Network

Phylogenyofarbuscular mycorrhizal fungi predicts community composition of symbiosis the effects of arbuscular mycorrhizal fungi, common symbionts of higher plants, on the composition.g. rhizodeposition) and direct biotic interactions between arbuscular mycorrhizal fungi and bacterial populations

Rilli, Matthias C.

189

On the Origin of Symbiosis  

Microsoft Academic Search

\\u000a Studies of symbiosis by botanists in the nineteenth century were advanced in virtual conflict with the germ theory of disease,\\u000a and the emphasis on the struggle for existence in evolutionary biology. While many microbiologists focused on the pathogenic\\u000a effects of infectious germs in animals from the perspective of medicine, botanists examined the morphological and beneficial\\u000a effects of intimate microbe–plant relationships

Jan Sapp

190

Evolution of symbiosis with resource allocation from fecundity to survival  

NASA Astrophysics Data System (ADS)

Symbiosis is one of the most fundamental relationships between or among organisms and includes parasitism (which has negative effects on the fitness of the interacting partner), commensalism (no effect), and mutualism (positive effects). The effects of these interactions are usually assumed to influence a single component of a species' fitness, either survival or fecundity, even though in reality the interaction can simultaneously affect both of these components. I used a dual lattice model to investigate the process of evolution of mutualistic symbiosis in the presence of interactive effects on both survival and fecundity. I demonstrate that a positive effect on survival and a negative effect on fecundity are key to the establishment of mutualism. Furthermore, both the parasitic and the mutualistic behaviour must carry large costs for mutualism to evolve. This helps develop a new understanding of symbiosis as a function of resource allocation, in which resources are shifted from fecundity to survival. The simultaneous establishment of mutualism from parasitism never occurs in two species, but can do so in one of the species as long as the partner still behaves parasitically. This suggests that one of the altruistic behaviours in a mutualistic unit consisting of two species must originate as a parasitic behaviour.

Fukui, Shin

2014-05-01

191

Coral Reef Genomics: Developing tools for functional genomics ofcoral symbiosis  

SciTech Connect

Symbioses between cnidarians and dinoflagellates in the genus Symbiodinium are widespread in the marine environment. The importance of this symbiosis to reef-building corals and reef nutrient and carbon cycles is well documented, but little is known about the mechanisms by which the partners establish and regulate the symbiosis. Because the dinoflagellate symbionts live inside the cells of their host coral, the interactions between the partners occur on cellular and molecular levels, as each partner alters the expression of genes and proteins to facilitate the partnership. These interactions can examined using high-throughput techniques that allow thousands of genes to be examined simultaneously. We are developing the groundwork so that we can use DNA microarray profiling to identify genes involved in the Montastraea faveolata and Acropora palmata symbioses. Here we report results from the initial steps in this microarray initiative, that is, the construction of cDNA libraries from 4 of 16 target stages, sequencing of 3450 cDNA clones to generate Expressed Sequenced Tags (ESTs), and annotation of the ESTs to identify candidate genes to include in the microarrays. An understanding of how the coral-dinoflagellate symbiosis is regulated will have implications for atmospheric and ocean sciences, conservation biology, the study and diagnosis of coral bleaching and disease, and comparative studies of animal-protest interactions.

Schwarz, Jodi; Brokstein, Peter; Manohar, Chitra; Coffroth, MaryAlice; Szmant, Alina; Medina, Monica

2005-03-01

192

A novel reef coral symbiosis  

NASA Astrophysics Data System (ADS)

Reef building corals form close associations with unicellular microalgae, fungi, bacteria and archaea, some of which are symbiotic and which together form the coral holobiont. Associations with multicellular eukaryotes such as polychaete worms, bivalves and sponges are not generally considered to be symbiotic as the host responds to their presence by forming physical barriers with an active growth edge in the exoskeleton isolating the invader and, at a subcellular level, activating innate immune responses such as melanin deposition. This study describes a novel symbiosis between a newly described hydrozoan ( Zanclea margaritae sp. nov.) and the reef building coral Acropora muricata (= A. formosa), with the hydrozoan hydrorhiza ramifying throughout the coral tissues with no evidence of isolation or activation of the immune systems of the host. The hydrorhiza lacks a perisarc, which is typical of symbiotic species of this and related genera, including species that associate with other cnidarians such as octocorals. The symbiosis was observed at all sites investigated from two distant locations on the Great Barrier Reef, Australia, and appears to be host species specific, being found only in A. muricata and in none of 30 other species investigated at these sites. Not all colonies of A. muricata host the hydrozoans and both the prevalence within the coral population (mean = 66%) and density of emergent hydrozoan hydranths on the surface of the coral (mean = 4.3 cm-2, but up to 52 cm-2) vary between sites. The form of the symbiosis in terms of the mutualism-parasitism continuum is not known, although the hydrozoan possesses large stenotele nematocysts, which may be important for defence from predators and protozoan pathogens. This finding expands the known A. muricata holobiont and the association must be taken into account in future when determining the corals’ abilities to defend against predators and withstand stress.

Pantos, O.; Bythell, J. C.

2010-09-01

193

Brain-Computer Symbiosis  

PubMed Central

The theoretical groundwork of the 1930’s and 1940’s and the technical advance of computers in the following decades provided the basis for dramatic increases in human efficiency. While computers continue to evolve, and we can still expect increasing benefits from their use, the interface between humans and computers has begun to present a serious impediment to full realization of the potential payoff. This article is about the theoretical and practical possibility that direct communication between the brain and the computer can be used to overcome this impediment by improving or augmenting conventional forms of human communication. It is about the opportunity that the limitations of our body’s input and output capacities can be overcome using direct interaction with the brain, and it discusses the assumptions, possible limitations, and implications of a technology that I anticipate will be a major source of pervasive changes in the coming decades. PMID:18310804

Schalk, Gerwin

2009-01-01

194

Phosphorus and Nitrogen Regulate Arbuscular Mycorrhizal Symbiosis in Petunia hybrida  

PubMed Central

Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi. PMID:24608923

Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

2014-01-01

195

Arbuscular mycorrhizal symbiosis increases host plant acceptance and population growth rates of the two-spotted spider mite Tetranychus urticae  

Microsoft Academic Search

Most terrestrial plants live in symbiosis with arbuscular mycorrhizal (AM) fungi. Studies on the direct interaction between\\u000a plants and mycorrhizal fungi are numerous whereas studies on the indirect interaction between such fungi and herbivores feeding\\u000a on aboveground plant parts are scarce. We studied the impact of AM symbiosis on host plant choice and life history of an acarine\\u000a surface piercing-sucking

Daniela Hoffmann; Horst Vierheilig; Petra Riegler; Peter Schausberger

2009-01-01

196

PtSRR1, a putative Pisolithus tinctorius symbiosis related receptor gene is expressed during the first hours of mycorrhizal interaction with Castanea sativa roots  

PubMed Central

PtSRR1 EST was previously identified in the first hours of Pisolithus tinctorius and Castanea sativa interaction. QRT-PCR confirmed PtSRR1 early expression and in silico preliminary translated peptide analysis indicated a strong probability that PtSRR1 be a transmembrane protein. These data stimulate the PtSRR1 gene research during ectomycorrhiza formation. PMID:24031360

Acioli-Santos, B.; Malosso, E.; Calzavara-Silva, C.E.; Lima, C.E.P.; Figueiredo, A.; Sebastiana, M.; Pais, M.S.

2009-01-01

197

PtSRR1, a putative Pisolithus tinctorius symbiosis related receptor gene is expressed during the first hours of mycorrhizal interaction with Castanea sativa roots.  

PubMed

PtSRR1 EST was previously identified in the first hours of Pisolithus tinctorius and Castanea sativa interaction. QRT-PCR confirmed PtSRR1 early expression and in silico preliminary translated peptide analysis indicated a strong probability that PtSRR1 be a transmembrane protein. These data stimulate the PtSRR1 gene research during ectomycorrhiza formation. PMID:24031360

Acioli-Santos, B; Malosso, E; Calzavara-Silva, C E; Lima, C E P; Figueiredo, A; Sebastiana, M; Pais, M S

2009-04-01

198

The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis  

SciTech Connect

Mycorrhizal symbioses the union of roots and soil fungi are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants 1, 2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.

Martin, F.; Aerts, A.; Ahren, D.; Brun, A.; Danchin, E. G. J.; Duchaussoy, F.; Gibon, J.; Kohler, A.; Lindquist, E.; Peresa, V.; Salamov, A.; Shapiro, H. J.; Wuyts, J.; Blaudez, D.; Buee, M.; Brokstein, P.; Canback, B.; Cohen, D.; Courty, P. E.; Coutinho, P. M.; Delaruelle, C.; Detter, J. C.; Deveau, A.; DiFazio, S.; Duplessis, S.; Fraissinet-Tachet, L.; Lucic, E.; Frey-Klett, P.; Fourrey, C.; Feussner, I.; Gay, G.; Grimwood, J.; Hoegger, P. J.; Jain, P.; Kilaru, S.; Labbe, J.; Lin, Y. C.; Legue, V.; Le Tacon, F.; Marmeisse, R.; Melayah, D.; Montanini, B.; Muratet, M.; Nehls, U.; Niculita-Hirzel, H.; Secq, M. P. Oudot-Le; Peter, M.; Quesneville, H.; Rajashekar, B.; Reich, M.; Rouhier, N.; Schmutz, J.; Yin, T.; Chalot, M.; Henrissat, B.; Kues, U.; Lucas, S.; Van de Peer, Y.; Podila, G. K.; Polle, A.; Pukkila, P. J.; Richardson, P. M.; Rouze, P.; Sanders, I. R.; Stajich, J. E.; Tunlid, A.; Tuskan, G.; Grigoriev, I. V.

2007-08-10

199

LEAF-NODULE SYMBIOSIS I.  

PubMed Central

Centifanto, Ysolina M. (University of Florida, Gainesville), and Warren S. Silver. Leafnodule symbiosis. I. Endophyte of Psychotria bacteriophila. J. Bacteriol. 88:776–781. 1964.—The leaf-nodule endophyte of Psychotria bacteriophila has been repeatedly isolated in pure culture from germinating seedlings and young leaves on a nitrogen-free mineral agar. Its morphological, serological, and cultural characteristics place it within the Klebsiella-Aerobacter group. The endophyte has been provisionally named Klebsiella rubiacearum. Pure cultures fix N2 under anaerobic conditions with good efficiency (4.54 ?g of N fixed/mg of glucose utilized in 3 days). Nitrogen fixation by pure cultures is intimately related to pyruvate and hydrogen metabolism. Images PMID:14208518

Centifanto, Ysolina M.; Silver, Warren S.

1964-01-01

200

Complexity of miRNA-dependent regulation in root symbiosis.  

PubMed

The development of root systems may be strongly affected by the symbiotic interactions that plants establish with soil organisms. Legumes are able to develop symbiotic relationships with both rhizobial bacteria and arbuscular mycorrhizal fungi leading to the formation of nitrogen-fixing nodules and mycorrhizal arbuscules, respectively. Both of these symbiotic interactions involve complex cellular reprogramming and profound morphological and physiological changes in specific root cells. In addition, the repression of pathogenic defence responses seems to be required for successful symbiotic interactions. Apart from typical regulatory genes, such as transcription factors, microRNAs (miRNAs) are emerging as riboregulators that control gene networks in eukaryotic cells through interactions with specific target mRNAs. In recent years, the availability of deep-sequencing technologies and the development of in silico approaches have allowed for the identification of large sets of miRNAs and their targets in legumes. A number of conserved and legume-specific miRNAs were found to be associated with symbiotic interactions as shown by their expression patterns or actions on symbiosis-related targets. In this review, we combine data from recent literature and genomic and deep-sequencing data on miRNAs controlling nodule development or restricting defence reactions to address the diversity and specificity of miRNA-dependent regulation in legume root symbiosis. Phylogenetic analysis of miRNA isoforms and their potential targets suggests a role for miRNAs in the repression of plant defence during symbiosis and revealed the evolution of miRNA-dependent regulation in legumes to allow for the modification of root cell specification, such as the formation of mycorrhized roots and nitrogen-fixing nodules. PMID:22527400

Bazin, Jérémie; Bustos-Sanmamed, Pilar; Hartmann, Caroline; Lelandais-Brière, Christine; Crespi, Martin

2012-06-01

201

Consequences of symbiosis for food web dynamics.  

PubMed

Basic Lotka-Volterra type models in which mutualism (a type of symbiosis where the two populations benefit both) is taken into account, may give unbounded solutions. We exclude such behaviour using explicit mass balances and study the consequences of symbiosis for the long-term dynamic behaviour of a three species system, two prey and one predator species in the chemostat. We compose a theoretical food web where a predator feeds on two prey species that have a symbiotic relationships. In addition to a species-specific resource, the two prey populations consume the products of the partner population as well. In turn, a common predator forages on these prey populations. The temporal change in the biomass and the nutrient densities in the reactor is described by ordinary differential equations (ODE). Since products are recycled, the dynamics of these abiotic materials must be taken into account as well, and they are described by odes in a similar way as the abiotic nutrients. We use numerical bifurcation analysis to assess the long-term dynamic behaviour for varying degrees of symbiosis. Attractors can be equilibria, limit cycles and chaotic attractors depending on the control parameters of the chemostat reactor. These control parameters that can be experimentally manipulated are the nutrient density of the inflow medium and the dilution rate. Bifurcation diagrams for the three species web with a facultative symbiotic association between the two prey populations, are similar to that of a bi-trophic food chain; nutrient enrichment leads to oscillatory behaviour. Predation combined with obligatory symbiotic prey-interactions has a stabilizing effect, that is, there is stable coexistence in a larger part of the parameter space than for a bi-trophic food chain. However, combined with a large growth rate of the predator, the food web can persist only in a relatively small region of the parameter space. Then, two zero-pair bifurcation points are the organizing centers. In each of these points, in addition to a tangent, transcritical and Hopf bifurcation a global heteroclinic bifurcation is emanating. This heteroclinic cycle connects two saddle equilibria where the predator is absent. Under parameter variation the period of the stable limit cycle goes to infinity and the cycle tends to the heteroclinic cycle. At this global bifurcation point this cycle breaks and the boundary of the basin of attraction disappears abruptly because the separatrix disappears together with the cycle. As a result, it becomes possible that a stable two-nutrient-two-prey population system becomes unstable by invasion of a predator and eventually the predator goes extinct together with the two prey populations, that is, the complete food web is destroyed. This is a form of over-exploitation by the predator population of the two symbiotic prey populations. When obligatory symbiotic prey-interactions are modelled with Liebig's minimum law, where growth is limited by the most limiting resource, more complicated types of bifurcations are found. This results from the fact that the Jacobian matrix changes discontinuously with respect to a varying parameter when another resource becomes most limiting. PMID:15293013

Kooi, B W; Kuijper, L D J; Kooijman, S A L M

2004-09-01

202

Rhizobium–legume symbiosis shares an exocytotic pathway required for arbuscule formation  

PubMed Central

Endosymbiotic interactions are characterized by the formation of specialized membrane compartments, by the host in which the microbes are hosted, in an intracellular manner. Two well-studied examples, which are of major agricultural and ecological importance, are the widespread arbuscular mycorrhizal symbiosis and the Rhizobium–legume symbiosis. In both symbioses, the specialized host membrane that surrounds the microbes forms a symbiotic interface, which facilitates the exchange of, for example, nutrients in a controlled manner and, therefore, forms the heart of endosymbiosis. Despite their key importance, the molecular and cellular mechanisms underlying the formation of these membrane interfaces are largely unknown. Recent studies strongly suggest that the Rhizobium–legume symbiosis coopted a signaling pathway, including receptor, from the more ancient arbuscular mycorrhizal symbiosis to form a symbiotic interface. Here, we show that two highly homologous exocytotic vesicle-associated membrane proteins (VAMPs) are required for formation of the symbiotic membrane interface in both interactions. Silencing of these Medicago VAMP72 genes has a minor effect on nonsymbiotic plant development and nodule formation. However, it blocks symbiosome as well as arbuscule formation, whereas root colonization by the microbes is not affected. Identification of these VAMP72s as common symbiotic regulators in exocytotic vesicle trafficking suggests that the ancient exocytotic pathway forming the periarbuscular membrane compartment has also been coopted in the Rhizobium–legume symbiosis. PMID:22566631

Ivanov, Sergey; Fedorova, Elena E.; Limpens, Erik; De Mita, Stephane; Genre, Andrea; Bonfante, Paola; Bisseling, Ton

2012-01-01

203

The Ectomycorrhizal Symbiosis: a Marriage of Convenience  

Microsoft Academic Search

The ectomycorrhizal fungi form a mutualistic symbiosis with tree species in most forest ecosystems. These fungi are unique\\u000a in having a simultaneous dual life style, living both within the plant roots as symbionts and, at the same time, in the soil\\u000a as facultative, transitory saprotrophs. Without this symbiosis, forests as we know them could probably not exist because of\\u000a the

Francis Martin; A Nders Tunlid

204

Symbiosis-related pea genes modulate fungal and plant gene expression during the arbuscule stage of mycorrhiza with Glomus intraradices  

Microsoft Academic Search

The arbuscular mycorrhiza association results from a successful interaction between genomes of the plant and fungal symbiotic\\u000a partners. In this study, we analyzed the effect of inactivation of late-stage symbiosis-related pea genes on symbiosis-associated\\u000a fungal and plant molecular responses in order to gain insight into their role in the functional mycorrhizal association. The\\u000a expression of a subset of ten fungal

Elena Kuznetsova; Pascale M. A. Seddas-Dozolme; Christine Arnould; Marie Tollot; Diederik van Tuinen; Alexey Borisov; Silvio Gianinazzi; Vivienne Gianinazzi-Pearson

2010-01-01

205

Elevated Temperature and Drought Interact to Reduce Parasitoid Effectiveness in Suppressing Hosts  

PubMed Central

Climate change affects the abundance, distribution and activity of natural enemies that are important for suppressing herbivore crop pests. Moreover, higher mean temperatures and increased frequency of climatic extremes are expected to induce different responses across trophic levels, potentially disrupting predator-prey interactions. Using field observations, we examined the response of an aphid host-parasitoid system to variation in temperature. Temperature was positively associated with attack rates by parasitoids, but also with a non-significant trend towards increased attack rates by higher-level hyperparasitoids. Elevated hyperparasitism could partly offset any benefit of climate warming to parasitoids, and would suggest that higher trophic levels may hamper predictions of predator-prey interactions. Additionally, the mechanisms affecting host-parasitoid dynamics were examined using controlled laboratory experiments that simulated both temperature increase and drought. Parasitoid fitness and longevity responded differently when exposed to each climatic variable in isolation, compared to the interaction of both variables at once. Although temperature increase or drought tended to positively affect the ability of parasitoids to control aphid populations, these effects were significantly reversed when the drivers were expressed in concert. Additionally, separate warming and drought treatments reduced parasitoid longevity, and although temperature increased parasitoid emergence success and drought increased offspring production, combined temperature and drought produced the lowest parasitoid emergence. The non-additive effects of different climate drivers, combined with differing responses across trophic levels, suggest that predicting future pest outbreaks will be more challenging than previously imagined. PMID:23472147

Romo, Cecilia M.; Tylianakis, Jason M.

2013-01-01

206

Sustainable agriculture: possible trajectories from mutualistic symbiosis and plant neodomestication  

E-print Network

Sustainable agriculture: possible trajectories from mutualistic symbiosis and plant. Based on recent findings, new trajectories for agriculture and plant breeding which take into account symbiosis in an innovative ecologically intensive agriculture. A sustainable food production ? Feeding

Paris-Sud XI, Université de

207

Soil phosphorus heterogeneity and mycorrhizal symbiosis regulate plant intra-specific competition and size distribution  

Microsoft Academic Search

We investigated the interactive effects of soil phosphorus (P) heterogeneity, plant density and mycorrhizal symbiosis on plant growth and size variability of Trifolium subterraneum. We set up mesocosms (trays 49Ꮉ cm and 12 cm deep) with the same amount of available P, but distributed either homogeneously or heterogeneously, in randomly arranged cells (7ǻ cm each) with high or low available

Evelina Facelli; José M. Facelli

2002-01-01

208

Molecular Adaptation in Plant Hemoglobin, a Duplicated GeneInvolved in Plant–Bacteria Symbiosis  

Microsoft Academic Search

The evolutionary history of the hemoglobin gene family in angiosperms is unusual in that it involves two mechanisms known for potentially generating molecular adaptation: gene duplication and among-species interaction. In plants able to achieve symbiosis with nitrogen-fixing bacteria, class 2 hemoglobin is expressed at high concentrations in nodules and appears to be a key factor for the achievement and regulation

Emilie Guldner; Bernard Godelle; Nicolas Galtier

2004-01-01

209

A Symbiosis of Animation and Music ROBERT E. PRINGLE BRIAN J. ROSS  

E-print Network

A Symbiosis of Animation and Music ROBERT E. PRINGLE BRIAN J. ROSS Brock University Department­ jects is investigated. An interactive environment for producing musically­controlled computer animations in a temporal setting, allow complex animation control. The script language has a number of functions that can

210

Developmental Insights into Evolving Systems: Roles of Diversity, Non-Selection, Self-Organization, Symbiosis  

Microsoft Academic Search

A developmental view of evolving systems (ecologi- cal, social, economical, organizational) is examined to clarify 1) the role of selection processes versus collec- tive, non-selective processes, 2) the origins of diversity and its role in system performance and robustness 3) the origin of explicit subsystem interactions (cooper- ation\\/symbiosis) that enhance individual and system performance, 4) the preconditions necessary for fur-

Norman L. Johnson

211

Bacterial Leaf Symbiosis in Angiosperms: Host Specificity without Co-Speciation  

PubMed Central

Bacterial leaf symbiosis is a unique and intimate interaction between bacteria and flowering plants, in which endosymbionts are organized in specialized leaf structures. Previously, bacterial leaf symbiosis has been described as a cyclic and obligate interaction in which the endosymbionts are vertically transmitted between plant generations and lack autonomous growth. Theoretically this allows for co-speciation between leaf nodulated plants and their endosymbionts. We sequenced the nodulated Burkholderia endosymbionts of 54 plant species from known leaf nodulated angiosperm genera, i.e. Ardisia, Pavetta, Psychotria and Sericanthe. Phylogenetic reconstruction of bacterial leaf symbionts and closely related free-living bacteria indicates the occurrence of multiple horizontal transfers of bacteria from the environment to leaf nodulated plant species. This rejects the hypothesis of a long co-speciation process between the bacterial endosymbionts and their host plants. Our results indicate a recent evolutionary process towards a stable and host specific interaction confirming the proposed maternal transmission mode of the endosymbionts through the seeds. Divergence estimates provide evidence for a relatively recent origin of bacterial leaf symbiosis, dating back to the Miocene (5–23 Mya). This geological epoch was characterized by cool and arid conditions, which may have triggered the origin of bacterial leaf symbiosis. PMID:21915326

Lemaire, Benny; Vandamme, Peter; Merckx, Vincent; Smets, Erik; Dessein, Steven

2011-01-01

212

Predator-prey relationships among larval dragonflies, salamanders, and frogs  

Microsoft Academic Search

Tadpoles of the barking tree frog, Hyla gratiosa, are abundant in spring and summer in some ponds and Carolina bays on the Savannah River Plant near Aiken, South Carolina. To determine how these tadpoles survive in the presence of predaceous salamander larvae, Ambystoma talpoideum, and larvae of an aeshnid dragonfly, Anax junius, we determined fields densities and sizes of the

J. P. Caldwell; J. H. Thorp; T. O. Jervey

1980-01-01

213

Predator-Prey Role Reversal in a Marine Benthic Ecosystem  

Microsoft Academic Search

Two closely located islands on the west coast of South Africa support widely different benthic communities. The biota at Malgas Island is dominated by seaweeds and by rock lobsters that consume settling mussels, thereby preventing the establishment of the mussels. They also prey on whelks, although one species, Burnupena papyracea, is protected from predation by a commensal bryozoan that covers

Amos Barkai; Christopher McQuaid

1988-01-01

214

LABORATORY #12 --BIOL 111 Predator-Prey cycles  

E-print Network

are not present. However, this is not always a healthy situation. For example, in 1944, 29 reindeer were introduced to Saint Matthew Island in the Bering Sea. Without a predator population, the reindeer population, a population crash occurred because the reindeer denuded the area (i.e., consumed all food to the point where

215

SCIENCE IN ACTION! Nature's Partners: predators, prey & you  

E-print Network

& Prey Partnerships revising mental models creating mental models O3 Wild Wolves OBSERVATIONS Module 3. Wolf & Prey Partnerships O3 Wild Wolves A3 Field studies Q3 Social Function seeking to better what I observed; my hypothesis about cause/effect MAP FAQ SOURCES O3 Wild wolves- sharing prey

Packard, Jane M.

216

Self-organized packs selection in predator-prey ecosystems.  

PubMed

We present a lattice model of a system of predators of five kinds, competing for prey. The predators are grouped in packs and characterized by two parameters-the energy spent on hunting and energy gained by the kill. The success of hunting depends on the actual competition among predators found near a prey. We determine via Monte Carlo simulations the numbers of predators of each kind as a function of time and the distribution of the size of their packs. We show that the ratio of the energy spent by the competing predators determines their fate. The energy gain plays only a secondary role. We show also that the system self-organizes itself into groups of predators living in well defined packs, which size depends on the energy spent. The most preferred size dependence on the energy spent follows a very simple power law. We present also a mean-field-type approach to the problem and we discuss the differences in the results obtained by the two methods, showing in particular, that the simulation approach produces more reliable results. PMID:16605368

Pekalski, Andrzej; Droz, Michel

2006-02-01

217

Spatial Geographic Mosaic in an Aquatic Predator-Prey Network  

PubMed Central

The geographic mosaic theory of coevolution predicts 1) spatial variation in predatory structures as well as prey defensive traits, and 2) trait matching in some areas and trait mismatching in others mediated by gene flow. We examined gene flow and documented spatial variation in crushing resistance in the freshwater snails Mexipyrgus churinceanus, Mexithauma quadripaludium, Nymphophilus minckleyi, and its relationship to the relative frequency of the crushing morphotype in the trophically polymorphic fish Herichthys minckleyi. Crushing resistance and the frequency of the crushing morphotype did show spatial variation among 11 naturally replicated communities in the Cuatro Ciénegas valley in Mexico where these species are all endemic. The variation in crushing resistance among populations was not explained by geographic proximity or by genetic similarity in any species. We detected clear phylogeographic patterns and limited gene flow for the snails but not for the fish. Gene flow among snail populations in Cuatro Ciénegas could explain the mosaic of local divergence in shell strength and be preventing the fixation of the crushing morphotype in Herichthys minckleyi. Finally, consistent with trait matching across the mosaic, the frequency of the fish morphotype was negatively correlated with shell crushing resistance likely reflecting the relative disadvantage of the crushing morphotype in communities where the snails exhibit relatively high crushing resistance. PMID:21799865

Chaves-Campos, Johel; Johnson, Steven G.; Hulsey, C. Darrin

2011-01-01

218

A Predator-Prey Model with Disease Dynamics Chris Flake  

E-print Network

among the Tilapia fish of the Salton Sea and their predator, the pelican. This model is of interest-August of 1996, a bacterial outbreak of Vibrio vulnificus in the Salton Sea among the Tilapia has led to massive of oxygen causes the fish to seek oxygen from the sea's surface and leads to a favorable environment

Logan, David

219

Symbiosis-induced adaptation to oxidative stress.  

PubMed

Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host. PMID:15634847

Richier, Sophie; Furla, Paola; Plantivaux, Amandine; Merle, Pierre-Laurent; Allemand, Denis

2005-01-01

220

The paradox of enrichment in phytoplankton by induced competitive interactions  

PubMed Central

The biodiversity loss of phytoplankton with eutrophication has been reported in many aquatic ecosystems, e.g., water pollution and red tides. This phenomenon seems similar, but different from the paradox of enrichment via trophic interactions, e.g., predator-prey systems. We here propose the paradox of enrichment by induced competitive interactions using multiple contact process (a lattice Lotka-Volterra competition model). Simulation results demonstrate how eutrophication invokes more competitions in a competitive ecosystem resulting in the loss of phytoplankton diversity in ecological time. The paradox is enhanced under local interactions, indicating that the limited dispersal of phytoplankton reduces interspecific competition greatly. Thus, the paradox of enrichment appears when eutrophication destroys an ecosystem either by elevated interspecific competition within a trophic level and/or destabilization by trophic interactions. Unless eutrophication due to human activities is ceased, the world's aquatic ecosystems will be at risk. PMID:24089056

Tubay, Jerrold M.; Ito, Hiromu; Uehara, Takashi; Kakishima, Satoshi; Morita, Satoru; Togashi, Tatsuya; Tainaka, Kei-ichi; Niraula, Mohan P.; Casareto, Beatriz E.; Suzuki, Yoshimi; Yoshimura, Jin

2013-01-01

221

Getting What Is Served? Feeding Ecology Influencing Parasite-Host Interactions in Invasive Round Goby Neogobius melanostomus  

PubMed Central

Freshwater ecosystems are increasingly impacted by alien invasive species which have the potential to alter various ecological interactions like predator-prey and host-parasite relationships. Here, we simultaneously examined predator-prey interactions and parasitization patterns of the highly invasive round goby (Neogobius melanostomus) in the rivers Rhine and Main in Germany. A total of 350 N. melanostomus were sampled between June and October 2011. Gut content analysis revealed a broad prey spectrum, partly reflecting temporal and local differences in prey availability. For the major food type (amphipods), species compositions were determined. Amphipod fauna consisted entirely of non-native species and was dominated by Dikerogammarus villosus in the Main and Echinogammarus trichiatus in the Rhine. However, the availability of amphipod species in the field did not reflect their relative abundance in gut contents of N. melanostomus. Only two metazoan parasites, the nematode Raphidascaris acus and the acanthocephalan Pomphorhynchus sp., were isolated from N. melanostomus in all months, whereas unionid glochidia were only detected in June and October in fish from the Main. To analyse infection pathways, we examined 17,356 amphipods and found Pomphorhynchus sp. larvae only in D. villosus in the river Rhine at a prevalence of 0.15%. Dikerogammarus villosus represented the most important amphipod prey for N. melanostomus in both rivers but parasite intensities differed between rivers, suggesting that final hosts (large predatory fishes) may influence host-parasite dynamics of N. melanostomus in its introduced range. PMID:25338158

Emde, Sebastian; Kochmann, Judith; Kuhn, Thomas; Plath, Martin; Klimpel, Sven

2014-01-01

222

Diminished exoproteome of Frankia spp. in culture and symbiosis.  

PubMed

Frankia species are the most geographically widespread gram-positive plant symbionts, carrying out N(2) fixation in root nodules of trees and woody shrubs called actinorhizal plants. Taking advantage of the sequencing of three Frankia genomes, proteomics techniques were used to investigate the population of extracellular proteins (the exoproteome) from Frankia, some of which potentially mediate host-microbe interactions. Initial two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of culture supernatants indicated that cytoplasmic proteins appeared in supernatants as cells aged, likely because older hyphae lyse in this slow-growing filamentous actinomycete. Using liquid chromatography coupled to tandem mass spectrometry to identify peptides, 38 proteins were identified in the culture supernatant of Frankia sp. strain CcI3, but only three had predicted export signal peptides. In symbiotic cells, 42 signal peptide-containing proteins were detected from strain CcI3 in Casuarina cunninghamiana and Casuarina glauca root nodules, while 73 and 53 putative secreted proteins containing signal peptides were identified from Frankia strains in field-collected root nodules of Alnus incana and Elaeagnus angustifolia, respectively. Solute-binding proteins were the most commonly identified secreted proteins in symbiosis, particularly those predicted to bind branched-chain amino acids and peptides. These direct proteomics results complement a previous bioinformatics study that predicted few secreted hydrolytic enzymes in the Frankia proteome and provide direct evidence that the symbiosis succeeds partly, if not largely, because of a benign relationship. PMID:19749056

Mastronunzio, J E; Huang, Y; Benson, D R

2009-11-01

223

Diminished Exoproteome of Frankia spp. in Culture and Symbiosis ? †  

PubMed Central

Frankia species are the most geographically widespread gram-positive plant symbionts, carrying out N2 fixation in root nodules of trees and woody shrubs called actinorhizal plants. Taking advantage of the sequencing of three Frankia genomes, proteomics techniques were used to investigate the population of extracellular proteins (the exoproteome) from Frankia, some of which potentially mediate host-microbe interactions. Initial two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of culture supernatants indicated that cytoplasmic proteins appeared in supernatants as cells aged, likely because older hyphae lyse in this slow-growing filamentous actinomycete. Using liquid chromatography coupled to tandem mass spectrometry to identify peptides, 38 proteins were identified in the culture supernatant of Frankia sp. strain CcI3, but only three had predicted export signal peptides. In symbiotic cells, 42 signal peptide-containing proteins were detected from strain CcI3 in Casuarina cunninghamiana and Casuarina glauca root nodules, while 73 and 53 putative secreted proteins containing signal peptides were identified from Frankia strains in field-collected root nodules of Alnus incana and Elaeagnus angustifolia, respectively. Solute-binding proteins were the most commonly identified secreted proteins in symbiosis, particularly those predicted to bind branched-chain amino acids and peptides. These direct proteomics results complement a previous bioinformatics study that predicted few secreted hydrolytic enzymes in the Frankia proteome and provide direct evidence that the symbiosis succeeds partly, if not largely, because of a benign relationship. PMID:19749056

Mastronunzio, J. E.; Huang, Y.; Benson, D. R.

2009-01-01

224

How Symbiosis Can Guide Evolution Richard A. Watson Jordan B. Pollack  

E-print Network

How Symbiosis Can Guide Evolution Richard A. Watson Jordan B. Pollack Dynamical and Evolutionary organisms of distinct species without direct transfer of genetic information. 1 Introduction Symbiosis relationship) are mutually beneficial. Despite being undeniably common, the phenomenon of symbiosis

Pollack, Jordan B.

225

Genetic symbiosis algorithm for multiobjective optimization problem  

Microsoft Academic Search

Evolutionary algorithms are often well-suited for optimization problems. Since the mid-1980's, interest in multiobjective problems has been expanding rapidly. Various evolutionary algorithms have been developed which are capable of searching for multiple solutions concurrently in a single run. In this paper, we proposed a genetic symbiosis algorithm (GSA) for multi-object optimization problems (MOP) based on the symbiotic concept found widely

Jiangming Mao; K. Hirasawa; Jinlu Hu; J. Murata

2000-01-01

226

Microfungal “Weeds” in the Leafcutter Ant Symbiosis  

Microsoft Academic Search

Leafcutter ants (Formicidae: tribe Attini) are well-known insects that cultivate basidiomycete fungi (Agaricales: Lepiotaceae)\\u000a as their principal food. Fungus gardens are monocultures of a single cultivar strain, but they also harbor a diverse assemblage\\u000a of additional microbes with largely unknown roles in the symbiosis. Cultivar-attacking microfungi in the genus Escovopsis are specialized parasites found only in association with attine gardens.

A. Rodrigues; M. Bacci Jr; U. G. Mueller; A. Ortiz; F. C. Pagnocca

2008-01-01

227

Enhancing Rhizobium –Legume Symbiosis Using Signaling Factors  

Microsoft Academic Search

\\u000a Rhizobial symbiosis with leguminous plants affects the supply of organic nitrogen. Soil bacteria comprising members of the\\u000a genera Rhizobium, Bradyrhizobium, Mesorhizobium, Sinorhizobium, and Azorhizobium, commonly referred to as rhizobia, are taxonomically diverse members of the ? and ? subclasses of the Proteobacteria. They possess the ability to induce root nodules on legume plants and provide these plants with fixed nitrogen,

Anna Skorupska; Jerzy Wielbo; Dominika Kidaj; Monika Marek-Kozaczuk

228

Disentangling the interaction among host resources, the immune system and pathogens  

PubMed Central

The interaction between the immune system and pathogens is often characterised as a predator–prey interaction. This characterisation ignores the fact that both require host resources to reproduce. Here, we propose novel theory that considers how these resource requirements can modify the interaction between the immune system and pathogens. We derive a series of models to describe the energetic interaction between the immune system and pathogens, from fully independent resources to direct competition for the same resource. We show that increasing within-host resource supply has qualitatively distinct effects under these different scenarios. In particular, we show the conditions for which pathogen load is expected to increase, decrease or even peak at intermediate resource supply. We survey the empirical literature and find evidence for all three patterns. These patterns are not explained by previous theory, suggesting that competition for host resources can have a strong influence on the outcome of disease. PMID:24350974

Cressler, Clayton E; Nelson, William A; Day, Troy; McCauley, Edward; Bonsall, Michael

2014-01-01

229

Interaction strengths in balanced carbon cycles and the absence of a relation between ecosystem complexity and stability  

PubMed Central

The strength of interactions is crucial to the stability of ecological networks. However, the patterns of interaction strengths in mathematical models of ecosystems have not yet been based upon independent observations of balanced material fluxes. Here we analyse two Antarctic ecosystems for which the interaction strengths are obtained: (1) directly, from independently measured material fluxes, (2) for the complete ecosystem and (3) with a close match between species and ‘trophic groups’. We analyse the role of recycling, predation and competition and find that ecosystem stability can be estimated by the strengths of the shortest positive and negative predator-prey feedbacks in the network. We show the generality of our explanation with another 21 observed food webs, comparing random-type parameterisations of interaction strengths with empirical ones. Our results show how functional relationships dominate over average-network topology. They make clear that the classic complexity-instability paradox is essentially an artificial interaction-strength result. PMID:24636521

Neutel, Anje-Margriet; Thorne, Michael AS

2014-01-01

230

Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change  

USGS Publications Warehouse

Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts of our findings. Overall, we hope to stimulate and guide future research that links changes in water availability to patterns of species interactions and the dynamics of populations and communities in dryland ecosystems.

McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.

2012-01-01

231

Sugar for my honey: Carbohydrate partitioning in ectomycorrhizal symbiosis  

E-print Network

Review Sugar for my honey: Carbohydrate partitioning in ectomycorrhizal symbiosis Uwe Nehls a, readily utilizable carbohydrates, necessary for growth and maintenance of large numbers of microbes, a symbiosis between tree roots and certain soil fungi, is a way to overcome nutrient and carbohydrate

Bruns, Tom

232

CLEANING SYMBIOSIS AMONG CALIFORNIA INSHORE FISHES ' EDMUND S. HOBSON'  

E-print Network

CLEANING SYMBIOSIS AMONG CALIFORNIA INSHORE FISHES ' EDMUND S. HOBSON' ABSTRACT Cleaning symbiosis among shore fishes was studied during 1968 and 1969 in southern California, with work centered at La J adaptations suited to cleaning. Because it is exceedingly abundant in a variety of habitats, the eiiorita

233

REGULAR ARTICLE Testing the ecological stability of ectomycorrhizal symbiosis  

E-print Network

REGULAR ARTICLE Testing the ecological stability of ectomycorrhizal symbiosis: effects of heat, ash of evolutionary or ecological instability in the relationship between symbiotic part- ners. For the mycorrhizal symbiosis, elevated nutrient levels may make the carbon cost to plants of supporting mycorrhizal fungi

Silver, Whendee

234

ANNUAL SYMBIOSIS WORKSHOP ---MAY 19-20TH , 2012  

E-print Network

stress · 3:40 - 4:00 Stephanie Porter Selection in symbiosis · 4:00 - 4 20, 2012 Session 3. Symbiosis: immunity and disturbance as mediation of coral-algae symbioses · 10:40- 11:00 Virginia Weis Role of host immunity

Sachs, Joel

235

ANNUAL SYMBIOSIS WORKSHOP ---MAY 19-20TH , 2012  

E-print Network

stress · 3:40 - 4:00 Stephanie Porter Selection in symbiosis · 4:00 - 4 and poster session MAY 20, 2012 Session 3. Symbiosis: immunity of coral-algae symbioses · 10:40- 11:00 Virginia Weis Role of host immunity

Sachs, Joel

236

Decompiculture: Human symbiosis with decomposer organisms  

E-print Network

"Decompiculture " is a term I coined and first used in a 1993 presentation for a symposium on The Termite Symbiont System (Myles, 1995). I also used the term in an interview for Season's Magazine (Carney, 1994). This is the first paper that I have written to more fully define the concept of decompiculture. Decompiculture is the growing or culturing of decomposer organisms by humans. The term is intended to establish a contrast with the term agriculture. Agriculture encompasses the production systems based on the culture of herbaceous plants and herbivore animals. In effect, agriculture is human symbiosis with select organisms of the herb-herbivore-carnivore food chains comprising the live plant food web. Decompiculture, in contrast, human symbiosis with organisms of the decomposer food chains comprising the dead plant-based, or plant cell wall-based detrital food web. I believe that decompiculture is equivalent in importance to agriculture and perhaps more important in terms of integrating human activities in a sustainable way with the biosphere. I also believe that just as the origin of agriculture initiated the dawn of civilization, decompiculture may now initiate the dawn of a new leap forward in human evolution. Decompiculture is now happening in minor ways in various scattered projects and activities without people seeing it for what it is- an inevitable and essential process of human symbiosis with the pre-existing organisms which in nature close the biogeochemical carbon, nitrogen, phosphorous and sulfur cycles. Unless the now enormous human population with its unsustainable resource consumption patterns learns how to symbiose with the ancient decomposer communities then

Timothy G. Myles

2003-01-01

237

Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm  

PubMed Central

Vertebrates engage in symbiotic associations with vast and complex microbial communities that colonize their gastrointestinal tracts. Recent advances have provided mechanistic insight into the important contributions of the gut microbiome to vertebrate biology, but questions remain about the evolutionary processes that have shaped symbiotic interactions in the gut and the consequences that arise for both the microbes and the host. Here we discuss the biological principles that underlie microbial symbiosis in the vertebrate gut and the potential of the development of mutualism. We then review phylogenetic and experimental studies on the vertebrate symbiont Lactobacillus reuteri that have provided novel insight into the ecological and evolutionary strategy of a gut microbe and its relationship with the host. We argue that a mechanistic understanding of the microbial symbiosis in the vertebrate gut and its evolution will be important to determine how this relationship can go awry, and it may reveal possibilities by which the gut microbiome can be manipulated to support health. PMID:20615995

Walter, Jens; Britton, Robert A.; Roos, Stefan

2011-01-01

238

Oak Root Response to Ectomycorrhizal Symbiosis Establishment: RNA-Seq Derived Transcript Identification and Expression Profiling  

PubMed Central

Ectomycorrhizal symbiosis is essential for the life and health of trees in temperate and boreal forests where it plays a major role in nutrient cycling and in functioning of the forest ecosystem. Trees with ectomycorrhizal root tips are more tolerant to environmental stresses, such as drought, and biotic stresses such as root pathogens. Detailed information on these molecular processes is essential for the understanding of symbiotic tissue development in order to optimize the benefits of this natural phenomenon. Next generation sequencing tools allow the analysis of non model ectomycorrhizal plant-fungal interactions that can contribute to find the “symbiosis toolkits” and better define the role of each partner in the mutualistic interaction. By using 454 pyrosequencing we compared ectomycorrhizal cork oak roots with non-symbiotic roots. From the two cDNA libraries sequenced, over 2 million reads were obtained that generated 19552 cork oak root unique transcripts. A total of 2238 transcripts were found to be differentially expressed when ECM roots were compared with non-symbiotic roots. Identification of up- and down-regulated gens in ectomycorrhizal roots lead to a number of insights into the molecular mechanisms governing this important symbiosis. In cork oak roots, ectomycorrhizal colonization resulted in extensive cell wall remodelling, activation of the secretory pathway, alterations in flavonoid biosynthesis, and expression of genes involved in the recognition of fungal effectors. In addition, we identified genes with putative roles in symbiotic processes such as nutrient exchange with the fungal partner, lateral root formation or root hair decay. These findings provide a global overview of the transcriptome of an ectomycorrhizal host root, and constitute a foundation for future studies on the molecular events controlling this important symbiosis. PMID:24859293

Lino-Neto, Teresa; Monteiro, Filipa; Figueiredo, Andreia; Sousa, Lisete; Pais, Maria Salomé; Tavares, Rui; Paulo, Octávio S.

2014-01-01

239

Naïveté in novel ecological interactions: lessons from theory and experimental evidence.  

PubMed

The invasion of alien species into areas beyond their native ranges is having profound effects on ecosystems around the world. In particular, novel alien predators are causing rapid extinctions or declines in many native prey species, and these impacts are generally attributed to ecological naïveté or the failure to recognise a novel enemy and respond appropriately due to a lack of experience. Despite a large body of research concerning the recognition of alien predation risk by native prey, the literature lacks an extensive review of naïveté theory that specifically asks how naïveté between novel pairings of alien predators and native prey disrupts our classical understanding of predator-prey ecological theory. Here we critically review both classic and current theory relating to predator-prey interactions between both predators and prey with shared evolutionary histories, and those that are ecologically 'mismatched' through the outcomes of biological invasions. The review is structured around the multiple levels of naïveté framework of Banks & Dickman (2007), and concepts and examples are discussed as they relate to each stage in the process from failure to recognise a novel predator (Level 1 naïveté), through to appropriate (Level 2) and effective (Level 3) antipredator responses. We discuss the relative contributions of recognition, cue types and the implied risk of cues used by novel alien and familiar native predators, to the probability that prey will recognise a novel predator. We then cover the antipredator response types available to prey and the factors that predict whether these responses will be appropriate or effective against novel alien and familiar native predators. In general, the level of naïveté of native prey can be predicted by the degree of novelty (in terms of appearance, behaviour or habitat use) of the alien predator compared to native predators with which prey are experienced. Appearance in this sense includes cue types, spatial distribution and implied risk of cues, whilst behaviour and habitat use include hunting modes and the habitat domain of the predator. Finally, we discuss whether the antipredator response can occur without recognition per se, for example in the case of morphological defences, and then consider a potential extension of the multiple levels of naïveté framework. The review concludes with recommendations for the design and execution of naïveté experiments incorporating the key concepts and issues covered here. This review aims to critique and combine classic ideas about predator-prey interactions with current naïveté theory, to further develop the multiple levels of naïveté framework, and to suggest the most fruitful avenues for future research. PMID:25319946

Carthey, Alexandra J R; Banks, Peter B

2014-11-01

240

Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism  

PubMed Central

Cell walls are deeply involved in the molecular talk between partners during plant and microbe interactions, and their role in mycorrhizae, i.e., the widespread symbiotic associations established between plant roots and soil fungi, has been investigated extensively. All mycorrhizal interactions achieve full symbiotic functionality through the development of an extensive contact surface between the plant and fungal cells, where signals and nutrients are exchanged. The exchange of molecules between the fungal and the plant cytoplasm takes place both through their plasma membranes and their cell walls; a functional compartment, known as the symbiotic interface, is thus defined. Among all the symbiotic interfaces, the complex intracellular interface of arbuscular mycorrhizal (AM) symbiosis has received a great deal of attention since its first description. Here, in fact, the host plasma membrane invaginates and proliferates around all the developing intracellular fungal structures, and cell wall material is laid down between this membrane and the fungal cell surface. By contrast, in ectomycorrhizae (ECM), where the fungus grows outside and between the root cells, plant and fungal cell walls are always in direct contact and form the interface between the two partners. The organization and composition of cell walls within the interface compartment is a topic that has attracted widespread attention, both in ecto- and endomycorrhizae. The aim of this review is to provide a general overview of the current knowledge on this topic by integrating morphological observations, which have illustrated cell wall features during mycorrhizal interactions, with the current data produced by genomic and transcriptomic approaches. PMID:24926297

Balestrini, Raffaella; Bonfante, Paola

2014-01-01

241

Assess suitability of hydroaeroponic culture to establish tripartite symbiosis between different AMF species, beans, and rhizobia  

PubMed Central

Background Like other species of the Phaseoleae tribe, common bean (Phaseolus vulgaris L.) has the potential to establish symbiosis with rhizobia and to fix the atmospheric dinitrogen (N2) for its N nutrition. Common bean has also the potential to establish symbiosis with arbuscular mycorrhizal fungi (AMF) that improves the uptake of low mobile nutrients such as phosphorus, from the soil. Both rhizobial and mycorrhizal symbioses can act synergistically in benefits on plant. Results The tripartite symbiosis of common bean with rhizobia and arbuscular mycorrhizal fungi (AMF) was assessed in hydroaeroponic culture with common bean (Phaseolus vulgaris L.), by comparing the effects of three fungi spp. on growth, nodulation and mycorrhization of the roots under sufficient versus deficient P supplies, after transfer from initial sand culture. Although Glomus intraradices Schenck & Smith colonized intensely the roots of common bean in both sand and hydroaeroponic cultures, Gigaspora rosea Nicolson & Schenck only established well under sand culture conditions, and no root-colonization was found with Acaulospora mellea Spain & Schenck under either culture conditions. Interestingly, mycorrhization by Glomus was also obtained by contact with mycorrhized Stylosanthes guianensis (Aubl.) sw in sand culture under deficient P before transfer into hydroaeroponic culture. The effect of bean genotype on both rhizobial and mycorrhizal symbioses with Glomus was subsequently assessed with the common bean recombinant inbreed line 7, 28, 83, 115 and 147, and the cultivar Flamingo. Significant differences among colonization and nodulation of the roots and growth among genotypes were found. Conclusion The hydroaeroponic culture is a valuable tool for further scrutinizing the physiological interactions and nutrient partitioning within the tripartite symbiosis. PMID:19534785

Tajini, Fatma; Suriyakup, Porntip; Vailhe, Hélène; Jansa, Jan; Drevon, Jean-Jacques

2009-01-01

242

Ectomycorrhizal symbiosis enhanced the efficiency of inoculation with two Bradyrhizobium strains and Acacia holosericea growth.  

PubMed

Two strains of Bradyrhizobium sp., Aust 13C and Aust 11C, were dually or singly inoculated with an ectomycorrhizal fungus, Pisolithus albus to assess the interactions between ectomycorrhizal symbiosis and the nodulation process in glasshouse conditions. Sequencing of strains Aust 13C and Aust 11C confirmed their previous placement in the genus Bradyrhizobium. After 4 months' culture, the ectomycorrhizal symbiosis promoted plant growth and the nodulation process of both Bradyrhizobium strains, singly or dually inoculated. PCR/RFLP analysis of the nodules randomly collected in each treatment with Aust 13C and/or Aust 11C: (1) showed that all the nodules exhibited the same patterns as those of the Bradyrhizobium strains, and (2) did not detect contaminant rhizobia. When both Bradyrhizobium isolates were inoculated together, but without P. albus IR100, Aust 11C was recorded in 13% of the treated nodules compared to 87% for Aust 13C, whereas Aust 11C and Aust 13C were represented in 20 and 80% of the treated nodules, respectively, in the ectomycorrhizal treatment. Therefore Aust 13C had a high competitive ability and a great persistence in soil. The presence of the fungus did not significantly influence the frequencies of each Bradyrhizobium sp. root nodules. Although the mechanisms remain unknown, these results showed that the ectomycorrhizal and biological nitrogen-fixing symbioses were very dependent on each other. From a practical point of view, the role of ectomycorrhizal symbiosis is of great importance to N2 fixation and, consequently, these kinds of symbiosis must be associated in any controlled inoculation. PMID:15616831

André, S; Galiana, A; Le Roux, C; Prin, Y; Neyra, M; Duponnois, R

2005-07-01

243

Growth Conditions Determine the DNF2 Requirement for Symbiosis  

PubMed Central

Rhizobia and legumes are able to interact in a symbiotic way leading to the development of root nodules. Within nodules, rhizobia fix nitrogen for the benefit of the plant. These interactions are efficient because spectacularly high densities of nitrogen fixing rhizobia are maintained in the plant cells. DNF2, a Medicago truncatula gene has been described as required for nitrogen fixation, bacteroid’s persistence and to prevent defense-like reactions in the nodules. This manuscript shows that a Rhizobium mutant unable to differentiate is not sufficient to trigger defense-like reactions in this organ. Furthermore, we show that the requirement of DNF2 for effective symbiosis can be overcome by permissive growth conditions. The dnf2 knockout mutants grown in vitro on agarose or Phytagel as gelling agents are able to produce nodules fixing nitrogen with the same efficiency as the wild-type. However, when agarose medium is supplemented with the plant defense elicitor ulvan, the dnf2 mutant recovers the fix? phenotype. Together, our data show that plant growth conditions impact the gene requirement for symbiotic nitrogen fixation and suggest that they influence the symbiotic suppression of defense reactions in nodules. PMID:24632747

Mondy, Samuel; Ratet, Pascal; Gourion, Benjamin

2014-01-01

244

Growth conditions determine the DNF2 requirement for symbiosis.  

PubMed

Rhizobia and legumes are able to interact in a symbiotic way leading to the development of root nodules. Within nodules, rhizobia fix nitrogen for the benefit of the plant. These interactions are efficient because spectacularly high densities of nitrogen fixing rhizobia are maintained in the plant cells. DNF2, a Medicago truncatula gene has been described as required for nitrogen fixation, bacteroid's persistence and to prevent defense-like reactions in the nodules. This manuscript shows that a Rhizobium mutant unable to differentiate is not sufficient to trigger defense-like reactions in this organ. Furthermore, we show that the requirement of DNF2 for effective symbiosis can be overcome by permissive growth conditions. The dnf2 knockout mutants grown in vitro on agarose or Phytagel as gelling agents are able to produce nodules fixing nitrogen with the same efficiency as the wild-type. However, when agarose medium is supplemented with the plant defense elicitor ulvan, the dnf2 mutant recovers the fix- phenotype. Together, our data show that plant growth conditions impact the gene requirement for symbiotic nitrogen fixation and suggest that they influence the symbiotic suppression of defense reactions in nodules. PMID:24632747

Berrabah, Fathi; Bourcy, Marie; Cayrel, Anne; Eschstruth, Alexis; Mondy, Samuel; Ratet, Pascal; Gourion, Benjamin

2014-01-01

245

WASTE TO VALUE: INCORPORATING INDUSTRIAL SYMBIOSIS FOR SUSTAINABLE INFRASTRUCTURE  

EPA Science Inventory

Technical Challenge: Investigators will examine the role of technology innovations as well as environmental justice (EJ) obligations in initiating and implementing urban-industrial symbiosis in Commerce City (CC), CO. The sustainability challenge invol...

246

Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula L.  

PubMed

Elevated night temperature, one of the main climate warming scenarios, can have profound effects on plant growth and metabolism. However, little attention has been paid to the potential role of mycorrhizal associations in plant responses to night warming, although it is well known that symbiotic fungi can protect host plants against various environmental stresses. In the present study, physiological traits of Medicago truncatula L. in association with the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis were investigated under simulated night warming. A constant increase in night temperature of 1.53 °C significantly reduced plant shoot and root biomass, flower and seed number, leaf sugar concentration, and shoot Zn and root P concentrations. However, the AM association essentially mitigated these negative effects of night warming by improving plant growth, especially through increased root biomass, root to shoot ratio, and shoot Zn and root P concentrations. A significant interaction was observed between R. irregularis inoculation and night warming in influencing both root sucrose concentration and expression of sucrose synthase (SusS) genes, suggesting that AM symbiosis and increased night temperature jointly regulated plant sugar metabolism. Night warming stimulated AM fungal colonization but did not influence arbuscule abundance, symbiosis-related plant or fungal gene expression, or growth of extraradical mycelium, indicating little effect of night warming on the development or functioning of AM symbiosis. These findings highlight the importance of mycorrhizal symbiosis in assisting plant resilience to climate warming. PMID:25033924

Hu, Yajun; Wu, Songlin; Sun, Yuqing; Li, Tao; Zhang, Xin; Chen, Caiyan; Lin, Ge; Chen, Baodong

2015-02-01

247

Determinant factors of industrial symbiosis: greening Pasir Gudang industrial park  

NASA Astrophysics Data System (ADS)

Green industry has been identified as an important element in attaining greater sustainability. It calls for harmonizing robust economic growth with environment protection. Industries, particularly in developing and transitional nations such as Malaysia, are in need of a reform. Many experts and international organizations suggest the concept of industrial symbiosis. Mainly, there are successful cases of industrial symbiosis practices around the world. However, there are numerous cases of failure too. As industrial symbiosis is an emerging new approach, with a short history of two decades, a lot of researches are generally focused on narrow context and technical details. There is a lack of concerted efforts to look into the drivers and barriers of industrial symbiosis across different cases. This paper aims to examine the factors influencing the development of industrial symbiosis from various countries to supports such networks to evolve in Pasir Gudang. The findings show institution, law and regulation, finance, awareness and capacity building, technology, research and development, information, collaboration, market, geography proximity, environmental issues and industry structure affect the formation of industrial symbiosis.

Teh, B. T.; Ho, C. S.; Matsuoka, Y.; Chau, L. W.; Gomi, K.

2014-02-01

248

Frankia-actinorhizal plant symbiosis Actinorhizal plants form root nodules in symbiosis with the nitrogen-fixing actinomycete  

E-print Network

in symbiosis with the nitrogen-fixing actinomycete Frankia, which enables them of nitrogen-fixing members of the genus Frankia have been addressed for manyRNA sequences in fixed bacteria. The latter studies included investigations

Upchurch, Gary - Department of Biology, Texas State University

249

Testing the ecological stability of ectomycorrhizal symbiosis: effects of heat, ash and mycorrhizal colonization on Pinus muricata seedling performance  

Microsoft Academic Search

Understanding how abiotic conditions mediate the outcome of biotic interactions is a key question in community ecology. This\\u000a is particularly interesting in the case of mutualisms because changing environmental conditions may be a source of evolutionary\\u000a or ecological instability in the relationship between symbiotic partners. For the mycorrhizal symbiosis, elevated nutrient\\u000a levels may make the carbon cost to plants of

Kabir G. Peay; Thomas D. Bruns; Matteo Garbelotto

2010-01-01

250

Bacterial Communities Associated with the Lichen Symbiosis? †  

PubMed Central

Lichens are commonly described as a mutualistic symbiosis between fungi and “algae” (Chlorophyta or Cyanobacteria); however, they also have internal bacterial communities. Recent research suggests that lichen-associated microbes are an integral component of lichen thalli and that the classical view of this symbiotic relationship should be expanded to include bacteria. However, we still have a limited understanding of the phylogenetic structure of these communities and their variability across lichen species. To address these knowledge gaps, we used bar-coded pyrosequencing to survey the bacterial communities associated with lichens. Bacterial sequences obtained from four lichen species at multiple locations on rock outcrops suggested that each lichen species harbored a distinct community and that all communities were dominated by Alphaproteobacteria. Across all samples, we recovered numerous bacterial phylotypes that were closely related to sequences isolated from lichens in prior investigations, including those from a lichen-associated Rhizobiales lineage (LAR1; putative N2 fixers). LAR1-related phylotypes were relatively abundant and were found in all four lichen species, and many sequences closely related to other known N2 fixers (e.g., Azospirillum, Bradyrhizobium, and Frankia) were recovered. Our findings confirm the presence of highly structured bacterial communities within lichens and provide additional evidence that these bacteria may serve distinct functional roles within lichen symbioses. PMID:21169444

Bates, Scott T.; Cropsey, Garrett W. G.; Caporaso, J. Gregory; Knight, Rob; Fierer, Noah

2011-01-01

251

DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis  

PubMed Central

Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-?18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-?18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-?18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis. PMID:24297892

Floss, Daniela S.; Levy, Julien G.; Lévesque-Tremblay, Véronique; Pumplin, Nathan; Harrison, Maria J.

2013-01-01

252

A review of industrial symbiosis research: theory and methodology  

NASA Astrophysics Data System (ADS)

The theory, methodologies, and case studies in the field of industrial symbiosis have been developing for nearly 30 years. In this paper, we trace the development history of industrial symbiosis, and review its current theoretical and methodological bases, as well as trends in current research. Based on the research gaps that we identify, we provide suggestions to guide the future development of this approach to permit more comprehensive analyses. Our theoretical review includes key definitions, a classification system, and a description of the formation and development mechanisms. We discuss methodological studies from the perspective of individual industrial metabolic processes and network analysis. Analyzing specific metabolic processes can help to characterize the exchanges of materials and energy, and to reveal the ecological performance and economic benefits of the symbiosis. Network analysis methods are increasingly being used to analyze both the structural and functional characteristics of a system. Our suggestions for future research focus on three aspects: how to quantitatively classify industrial symbiosis systems, monitor the dynamics of a developing industrial symbiosis system, and analyze its internal attributes more deeply.

Zhang, Yan; Zheng, Hongmei; Chen, Bin; Su, Meirong; Liu, Gengyuan

2014-06-01

253

How Symbiosis Can Guide Evolution Richard A. Watson Jordan B. Pollack  

E-print Network

How Symbiosis Can Guide Evolution Richard A. Watson Jordan B. Pollack Dynamical and Evolutionary, enlightened evolutionary theory recognises symbiosis as an integral process, and a fundamental source information. 1 Introduction Symbiosis, in its general definition, is simply the living together of different

Pollack, Jordan B.

254

Arbuscular mycorrhizal symbiosis increases host plant acceptance and population growth rates of the two-spotted spider mite Tetranychus urticae.  

PubMed

Most terrestrial plants live in symbiosis with arbuscular mycorrhizal (AM) fungi. Studies on the direct interaction between plants and mycorrhizal fungi are numerous whereas studies on the indirect interaction between such fungi and herbivores feeding on aboveground plant parts are scarce. We studied the impact of AM symbiosis on host plant choice and life history of an acarine surface piercing-sucking herbivore, the polyphagous two-spotted spider mite Tetranychus urticae. Experiments were performed on detached leaflets taken from common bean plants (Phaseolus vulgaris) colonized or not colonized by the AM fungus Glomus mosseae. T. urticae females were subjected to choice tests between leaves from mycorrhizal and non-mycorrhizal plants. Juvenile survival and development, adult female survival, oviposition rate and offspring sex ratio were measured in order to estimate the population growth parameters of T. urticae on either substrate. Moreover, we analyzed the macro- and micronutrient concentration of the aboveground plant parts. Adult T. urticae females preferentially resided and oviposited on mycorrhizal versus non-mycorrhizal leaflets. AM symbiosis significantly decreased embryonic development time and increased the overall oviposition rate as well as the proportion of female offspring produced during peak oviposition. Altogether, the improved life history parameters resulted in significant changes in net reproductive rate, intrinsic rate of increase, doubling time and finite rate of increase. Aboveground parts of colonized plants showed higher concentrations of P and K whereas Mn and Zn were both found at lower levels. This is the first study documenting the effect of AM symbiosis on the population growth rates of a herbivore, tracking the changes in life history characteristics throughout the life cycle. We discuss the AM-plant-herbivore interaction in relation to plant quality, herbivore feeding type and site and the evolutionary implications in a multi-trophic context. PMID:18949488

Hoffmann, Daniela; Vierheilig, Horst; Riegler, Petra; Schausberger, Peter

2009-01-01

255

OakContigDF159.1, a reference library for studying differential gene expression in Quercus robur during controlled biotic interactions: use for quantitative transcriptomic profiling of oak roots in ectomycorrhizal symbiosis.  

PubMed

Oaks (Quercus spp.), which are major forest trees in the northern hemisphere, host many biotic interactions, but molecular investigation of these interactions is limited by fragmentary genome data. To date, only 75 oak expressed sequence tags (ESTs) have been characterized in ectomycorrhizal (EM) symbioses. We synthesized seven beneficial and detrimental biotic interactions between microorganisms and animals and a clone (DF159) of Quercus robur. Sixteen 454 and eight Illumina cDNA libraries from leaves and roots were prepared and merged to establish a reference for RNA-Seq transcriptomic analysis of oak EMs with Piloderma croceum. Using the Mimicking Intelligent Read Assembly (MIRA) and Trinity assembler, the OakContigDF159.1 hybrid assembly, containing 65 712 contigs with a mean length of 1003 bp, was constructed, giving broad coverage of metabolic pathways. This allowed us to identify 3018 oak contigs that were differentially expressed in EMs, with genes encoding proline-rich cell wall proteins and ethylene signalling-related transcription factors showing up-regulation while auxin and defence-related genes were down-regulated. In addition to the first report of remorin expression in EMs, the extensive coverage provided by the study permitted detection of differential regulation within large gene families (nitrogen, phosphorus and sugar transporters, aquaporins). This might indicate specific mechanisms of genome regulation in oak EMs compared with other trees. PMID:23672230

Tarkka, Mika T; Herrmann, Sylvie; Wubet, Tesfaye; Feldhahn, Lasse; Recht, Sabine; Kurth, Florence; Mailänder, Sarah; Bönn, Markus; Neef, Maren; Angay, Oguzhan; Bacht, Michael; Graf, Marcel; Maboreke, Hazel; Fleischmann, Frank; Grams, Thorsten E E; Ruess, Liliane; Schädler, Martin; Brandl, Roland; Scheu, Stefan; Schrey, Silvia D; Grosse, Ivo; Buscot, François

2013-07-01

256

AM symbiosis alters phenolic acid content in tomato roots  

PubMed Central

Arbuscular mycorrhizal (AM) fungi colonize the roots of most plants to establish a mutualistic symbiosis leading to important benefits for plant health. We have recently shown that AM symbiosis alters both transcriptional and hormonal profiles in tomato roots, many of these changes related to plant defense. Here, we analytically demonstrate that the levels of other important defense-related compounds as phenolic acids are also altered in the symbiosis. Both caffeic and chlorogenic acid levels significantly decreased in tomato roots upon mycorrhization, while ferulic acid increased. Moreover, in the case of caffeic acid a differential reduction was observed depending on the colonizing AM fungus. The results confirm that AM associations imply the regulation of plant defense responses, and that the host changes may vary depending on the AM fungus involved. The potential implications of altered phenolic acid levels on plant control over mycorrhizal colonization and in the plant resistance to pathogens is discussed. PMID:21490421

Flors, Victor; García, Juan M; Pozo, Maria J

2010-01-01

257

Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis.  

PubMed

Legumes are important for nitrogen cycling in the environment and agriculture due to the ability of nitrogen fixation by rhizobia. In this review, we introduce an important and potential role of legume-rhizobia symbiosis in aiding phytoremediation of some metal contaminated soils as various legumes have been found to be the dominant plant species in metal contaminated areas. Resistant rhizobia used for phytoremediation could act on metals directly by chelation, precipitation, transformation, biosorption and accumulation. Moreover, the plant growth promoting (PGP) traits of rhizobia including nitrogen fixation, phosphorus solubilization, phytohormone synthesis, siderophore release, and production of ACC deaminase and the volatile compounds of acetoin and 2, 3-butanediol may facilitate legume growth while lessening metal toxicity. The benefits of using legumes inoculated with naturally resistant rhizobia or recombinant rhizobia with enhanced resistance, as well as co-inoculation with other plant growth promoting bacteria (PGPB) are discussed. However, the legume-rhizobia symbiosis appears to be sensitive to metals, and the effect of metal toxicity on the interaction between legumes and rhizobia is not clear. Therefore, to obtain the maximum benefits from legumes assisted by rhizobia for phytoremediation of metals, it is critical to have a good understanding of interactions between PGP traits, the symbiotic plant-rhizobia relationship and metals. PMID:24912209

Hao, X; Taghavi, S; Xie, P; Orbach, M J; Alwathnani, H A; Rensing, C; Wei, G

2014-01-01

258

Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium “Chlorochromatium aggregatum”  

PubMed Central

Background ‘Chlorochromatium aggregatum’ is a phototrophic consortium, a symbiosis that may represent the highest degree of mutual interdependence between two unrelated bacteria not associated with a eukaryotic host. ‘Chlorochromatium aggregatum’ is a motile, barrel-shaped aggregate formed from a single cell of ‘Candidatus Symbiobacter mobilis”, a polarly flagellated, non-pigmented, heterotrophic bacterium, which is surrounded by approximately 15 epibiont cells of Chlorobium chlorochromatii, a non-motile photolithoautotrophic green sulfur bacterium. Results We analyzed the complete genome sequences of both organisms to understand the basis for this symbiosis. Chl. chlorochromatii has acquired relatively few symbiosis-specific genes; most acquired genes are predicted to modify the cell wall or function in cell-cell adhesion. In striking contrast, ‘Ca. S. mobilis’ appears to have undergone massive gene loss, is probably no longer capable of independent growth, and thus may only reproduce when consortia divide. A detailed model for the energetic and metabolic bases of the dependency of ‘Ca. S. mobilis’ on Chl. chlorochromatii is described. Conclusions Genomic analyses suggest that three types of interactions lead to a highly sophisticated relationship between these two organisms. Firstly, extensive metabolic exchange, involving carbon, nitrogen, and sulfur sources as well as vitamins, occurs from the epibiont to the central bacterium. Secondly, ‘Ca. S. mobilis’ can sense and move towards light and sulfide, resources that only directly benefit the epibiont. Thirdly, electron cycling mechanisms, particularly those mediated by quinones and potentially involving shared protonmotive force, could provide an important basis for energy exchange in this and other symbiotic relationships. PMID:24267588

2013-01-01

259

Specificity and stability of the Acromyrmex–Pseudonocardia symbiosis  

PubMed Central

The stability of mutualistic interactions is likely to be affected by the genetic diversity of symbionts that compete for the same functional niche. Fungus-growing (attine) ants have multiple complex symbioses and thus provide ample opportunities to address questions of symbiont specificity and diversity. Among the partners are Actinobacteria of the genus Pseudonocardia that are maintained on the ant cuticle to produce antibiotics, primarily against a fungal parasite of the mutualistic gardens. The symbiosis has been assumed to be a hallmark of evolutionary stability, but this notion has been challenged by culturing and sequencing data indicating an unpredictably high diversity. We used 454 pyrosequencing of 16S rRNA to estimate the diversity of the cuticular bacterial community of the leaf-cutting ant Acromyrmex echinatior and other fungus-growing ants from Gamboa, Panama. Both field and laboratory samples of the same colonies were collected, the latter after colonies had been kept under laboratory conditions for up to 10 years. We show that bacterial communities are highly colony-specific and stable over time. The majority of colonies (25/26) had a single dominant Pseudonocardia strain, and only two strains were found in the Gamboa population across 17 years, confirming an earlier study. The microbial community on newly hatched ants consisted almost exclusively of a single strain of Pseudonocardia while other Actinobacteria were identified on older, foraging ants in varying but usually much lower abundances. These findings are consistent with recent theory predicting that mixtures of antibiotic-producing bacteria can remain mutualistic when dominated by a single vertically transmitted and resource-demanding strain. PMID:23899369

Andersen, S B; Hansen, L H; Sapountzis, P; Sørensen, S J; Boomsma, J J

2013-01-01

260

Chapter 9: Symbiosis of plants, animals, and microbes  

Technology Transfer Automated Retrieval System (TEKTRAN)

A diversity of plants, animals and microbes on Earth abound due to evolution, climate, competition, and symbiosis. Single cell species such as microorganisms are assumed to have evolved initially. Over time, plants and animals established and flourished. As each new kingdom of life came about, the...

261

Plant demographic responses to mycorrhizal symbiosis in tallgrass prairie  

Microsoft Academic Search

The effects of mycorrhizal symbiosis on seedling emergence, flowering and densities of several grasses and forbs were assessed in native tallgrass prairie and in sown garden populations at the Konza Prairie in northeastern Kansas. Mycorrhizal activity was experimentally suppressed with the fungicide benomyl. Flowering and stem densities of the cool-season grass, Dichanthelium oligosanthes, sedges (Carex spp.), and the forb Aster

D. C. Hartnett; R. J. Samenus; L. E. Fischer; B. A. D. Hetrick

1994-01-01

262

Identification of genes controlling development of arbuscules in AM symbiosis  

Technology Transfer Automated Retrieval System (TEKTRAN)

Most vascular flowering plants have the capacity to form mutualistic symbioses with arbuscular mycorrhizal (AM) fungi. These associations develop in the roots where the fungus delivers phosphate to the root cortical cells and receives carbon from its plant host. During the symbiosis, the fungus prol...

263

A study of evolutionary multiagent models based on symbiosis  

Microsoft Academic Search

Multiagent Systems with Symbiotic Learning and Evolution (Masbiole) has been proposed and studied, which is a new methodology of Multiagent Systems (MAS) based on symbiosis in the ecosystem. Masbiole employs a method of symbiotic learning and evolution where agents can learn or evolve according to their symbiotic relations toward others, i.e., considering the benefits\\/losses of both itself and an opponent.

Toru Eguchi; Kotaro Hirasawa; Jinglu Hu; Nathan Ota

2006-01-01

264

Managing plant symbiosis: fungal endophyte genotype alters plant community composition  

E-print Network

Managing plant symbiosis: fungal endophyte genotype alters plant community composition Jennifer A. Rudgers1 *, Susan Fischer2 and Keith Clay2 1 Department of Ecology and Evolutionary Biology, Rice would support the highest plant diversity, and that AR-542 endophyte would show intermediate effects. 3

Rudgers, Jennifer

265

Estimating the age of the polydnavirus braconid wasp symbiosis  

E-print Network

Estimating the age of the polydnavirus braconid wasp symbiosis James B. Whitfield Department some braconid wasps and their cater- pillar hosts largely by suppressing or misdirecting the host immune systems. The polydnavirus­wasp relationship is an unusual appar- ent mutualism between viruses

Whitfield, James B.

266

Search Engine-Crawler Symbiosis: Adapting to Community Interests  

E-print Network

Search Engine-Crawler Symbiosis: Adapting to Community Interests Gautam Pant, Shannon Bradshaw-pant,shannon-bradshaw,filippo-menczer}@uiowa.edu Abstract. Web crawlers have been used for nearly a decade as a search engine component to create and update large collections of documents. Typically the crawler and the rest of the search engine are not closely

Bradshaw, Shannon

267

Defoliation increases carbon limitation in ectomycorrhizal symbiosis of Betula pubescens  

Microsoft Academic Search

Boreal forest trees are highly dependent on root-colonizing mycorrhizal fungi. Since the maintenance of mycorrhizal symbiosis implies a significant carbon cost for the host plant, the loss of photosynthetic leaf area due to herbivory is expected to reduce the host investment in mycorrhizae. We tested this hypothesis in a common garden experiment by exposing ectomycorrhizal white birch ( Betula pubescens

Annamari Markkola; Karita Kuikka; Pasi Rautio; Esa Härmä; Marja Roitto; Juha Tuomi

2004-01-01

268

ANNUAL SYMBIOSIS WORKSHOP ---MAY 19-20TH , 2012  

E-print Network

hosts can induce apoptosis independent of dinoflagellate stress · 4:10 - 4 20, 2012 Session 3. Symbiosis: immunity and disturbance as mediation of coral-algae symbioses · 10:40- 11:00 Virginia Weis Role of host immunity

Sachs, Joel

269

Transgenerational effects of plant sex and arbuscular mycorrhizal symbiosis.  

PubMed

In gynodioecious plants, females are predicted to produce more and/or better offspring than hermaphrodites in order to be maintained in the same population. In the field, the roots of both sexes are usually colonized by arbuscular mycorrhizal (AM) fungi. Transgenerational effects of mycorrhizal symbiosis are largely unknown, although theoretically expected. We examined the maternal and paternal effects of AM fungal symbiosis and host sex on seed production and posterior seedling performance in Geranium sylvaticum, a gynodioecious plant. We hand-pollinated cloned females and hermaphrodites in symbiosis with AM fungi or in nonmycorrhizal conditions and measured seed number and mass, and seedling survival and growth in a glasshouse experiment. Females produced more seeds than hermaphrodites, but the seeds did not germinate, survive or grow better. Mycorrhizal plants were larger, but did not produce more seeds than nonmycorrhizal plants. Transgenerational parental effects of AM fungi were verified in seedling performance. This is the first study to show transgenerational mycorrhiza-mediated parental effects in a gynodioecious species. Mycorrhizal symbiosis affects plant fitness mainly through female functions with enduring effects on the next generation. PMID:23659431

Varga, Sandra; Vega-Frutis, Rocío; Kytöviita, Minna-Maarit

2013-08-01

270

Microgravity effects on the legume\\/Rhizobium symbiosis  

Microsoft Academic Search

Symbiotic nitrogen fixation is of critical importance to world agriculture and likely will be a critical part of life support systems developed for prolonged missions in space. Bacteroid formation, an essential step in an effective Dutch White Clover\\/Rhizobium leguminosarum bv trifolii symbiosis, is induced by succinic acid which is produced by the plant and which is bound and incorporated by

James E. Urban

1997-01-01

271

Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis.  

PubMed

Arbuscular mycorrhizal (AM) symbiosis is a widespread mutualism formed between vascular plants and fungi of the Glomeromycota. In this endosymbiosis, fungal hyphae enter the roots, growing through epidermal cells to the cortex where they establish differentiated hyphae called arbuscules in the cortical cells. Reprogramming of the plant epidermal and cortical cells occurs to enable intracellular growth of the fungal symbiont; however, the plant genes underlying this process are largely unknown. Here, through the use of RNAi, we demonstrate that the expression of a Medicago truncatula gene named Vapyrin is essential for arbuscule formation, and also for efficient epidermal penetration by AM fungi. Vapyrin is induced transiently in the epidermis coincident with hyphal penetration, and then in the cortex during arbuscule formation. The Vapyrin protein is cytoplasmic, and in cells containing AM fungal hyphae, the protein accumulates in small puncta that move through the cytoplasm. Vapyrin is a novel protein composed of two domains that mediate protein-protein interactions: an N-terminal VAMP-associated protein (VAP)/major sperm protein (MSP) domain and a C-terminal ankyrin-repeat domain. Putative Vapyrin orthologs exist widely in the plant kingdom, but not in Arabidopsis, or in non-plant species. The data suggest a role for Vapyrin in cellular remodeling to support the intracellular development of fungal hyphae during AM symbiosis. PMID:19912567

Pumplin, Nathan; Mondo, Stephen J; Topp, Stephanie; Starker, Colby G; Gantt, J Stephen; Harrison, Maria J

2010-02-01

272

Bacterial Symbiosis Maintenance in the Asexually Reproducing and Regenerating Flatworm Paracatenula galateia  

PubMed Central

Bacteriocytes set the stage for some of the most intimate interactions between animal and bacterial cells. In all bacteriocyte possessing systems studied so far, de novo formation of bacteriocytes occurs only once in the host development, at the time of symbiosis establishment. Here, we present the free-living symbiotic flatworm Paracatenula galateia and its intracellular, sulfur-oxidizing bacteria as a system with previously undescribed strategies of bacteriocyte formation and bacterial symbiont transmission. Using thymidine analogue S-phase labeling and immunohistochemistry, we show that all somatic cells in adult worms – including bacteriocytes – originate exclusively from aposymbiotic stem cells (neoblasts). The continued bacteriocyte formation from aposymbiotic stem cells in adult animals represents a previously undescribed strategy of symbiosis maintenance and makes P. galateia a unique system to study bacteriocyte differentiation and development. We also provide morphological and immunohistochemical evidence that P. galateia reproduces by asexual fragmentation and regeneration (paratomy) and, thereby, vertically transmits numerous symbiont-containing bacteriocytes to its asexual progeny. Our data support the earlier reported hypothesis that the symbiont population is subjected to reduced bottleneck effects. This would justify both the codiversification between Paracatenula hosts and their Candidatus Riegeria symbionts, and the slow evolutionary rates observed for several symbiont genes. PMID:22509347

Dirks, Ulrich; Gruber-Vodicka, Harald R.; Leisch, Nikolaus; Bulgheresi, Silvia; Egger, Bernhard; Ladurner, Peter; Ott, Jörg A.

2012-01-01

273

Expression of phenazine biosynthetic genes during the arbuscular mycorrhizal symbiosis of Glomus intraradices.  

PubMed

To explore the molecular mechanisms that prevail during the establishment of the arbuscular mycorrhiza symbiosis involving the genus Glomus, we transcriptionally analysed spores of Glomus intraradices BE3 during early hyphal growth. Among 458 transcripts initially identified as being expressed at presymbiotic stages, 20% of sequences had homology to previously characterized eukaryotic genes, 30% were homologous to fungal coding sequences, and 9% showed homology to previously characterized bacterial genes. Among them, GintPbr1a encodes a homolog to Phenazine Biosynthesis Regulator (Pbr) of Burkholderia cenocepacia, an pleiotropic regulatory protein that activates phenazine production through transcriptional activation of the protein D isochorismatase biosynthetic enzyme phzD (Ramos et al., 2010). Whereas GintPbr1a is expressed during the presymbiotic phase, the G. intraradices BE3 homolog of phzD (BGintphzD) is transcriptionally active at the time of the establishment of the arbuscular mycorrhizal symbiosis. DNA from isolated bacterial cultures found in spores of G. intraradices BE3 confirmed that both BGintPbr1a and BGintphzD are present in the genome of its potential endosymbionts. Taken together, our results indicate that spores of G. intraradices BE3 express bacterial phenazine biosynthetic genes at the onset of the fungal-plant symbiotic interaction. PMID:24031884

León-Martínez, Dionicia Gloria; Vielle-Calzada, Jean-Philippe; Olalde-Portugal, Víctor

2012-04-01

274

Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis.  

PubMed

Cnidarian bleaching is a breakdown in the mutualistic symbiosis between host Cnidarians, such as reef building corals, and their unicellular photosynthetic dinoflagellate symbionts. Bleaching is caused by a variety of environmental stressors, most notably elevated temperatures associated with global climate change in conjunction with high solar radiation, and it is a major contributor to coral death and reef degradation. This review examines the underlying cellular events that lead to symbiosis dysfunction and cause bleaching, emphasizing that, to date, we have only some pieces of a complex cellular jigsaw puzzle. Reactive oxygen species (ROS), generated by damage to both photosynthetic and mitochondrial membranes, is shown to play a central role in both injury to the partners and to inter-partner communication of a stress response. Evidence is presented that suggests that bleaching is a host innate immune response to a compromised symbiont, much like innate immune responses in other host-microbe interactions. Finally, the elimination or exit of the symbiont from host tissues is described through a variety of mechanisms including exocytosis, host cell detachment and host cell apoptosis. PMID:18805804

Weis, Virginia M

2008-10-01

275

R gene-controlled host specificity in the legume–rhizobia symbiosis  

PubMed Central

Leguminous plants can enter into root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. An intriguing but still poorly understood property of the symbiosis is its host specificity, which is controlled at multiple levels involving both rhizobial and host genes. It is widely believed that the host specificity is determined by specific recognition of bacterially derived Nod factors by the cognate host receptor(s). Here we describe the positional cloning of two soybean genes Rj2 and Rfg1 that restrict nodulation with specific strains of Bradyrhizobium japonicum and Sinorhizobium fredii, respectively. We show that Rj2 and Rfg1 are allelic genes encoding a member of the Toll-interleukin receptor/nucleotide-binding site/leucine-rich repeat (TIR-NBS-LRR) class of plant resistance (R) proteins. The involvement of host R genes in the control of genotype-specific infection and nodulation reveals a common recognition mechanism underlying symbiotic and pathogenic host–bacteria interactions and suggests the existence of their cognate avirulence genes derived from rhizobia. This study suggests that establishment of a root nodule symbiosis requires the evasion of plant immune responses triggered by rhizobial effectors. PMID:20937853

Yang, Shengming; Tang, Fang; Gao, Muqiang; Krishnan, Hari B.; Zhu, Hongyan

2010-01-01

276

A 2-component system is involved in the early stages of the Pisolithus tinctorius-Pinus greggii symbiosis.  

PubMed

Ectomycorrhizal symbiosis results in profound morphological and physiological modifications in both plant and fungus. This in turn is the product of differential gene expression in both co-symbionts, giving rise to specialized cell types capable of performing novel functions. During the precolonization stage, chemical signals from root exudates are sensed by the ectomycorrizal fungus, and vice versa, which are in principle responsible for the observed change in the developmental symbionts program. Little is known about the molecular mechanisms involved in the signaling and recognition between ectomycorrhizal fungi and their host plants. In the present work, we characterized a novel lactone, termed pinelactone, and identified a gene encoding for a histidine kinase in Pisolithus tictorius, which function is proposed to be the perception of the aforementioned metabolites. In this study, the use of closantel, a specific inhibitor of histidine kinase phosphorylation, affected the capacity for fungal colonization in the symbiosis between Pisolithus tinctorius and Pinus greggii, indicating that a 2-component system (TCS) may operate in the early events of plant-fungus interaction. Indeed, the metabolites induced the accumulation of Pisolithus tinctorius mRNA for a putative histidine kinase (termed Pthik1). Of note, Pthik1 was able to partially complement a S. cerevisiae histidine kinase mutant, demonstrating its role in the response to the presence of the aforementioned metabolites. Our results indicate a role of a 2-component pathway in the early stages of ectomycorrhizal symbiosis before colonization. Furthermore, a novel lactone from Pinus greggii root exudates may activate a signal transduction pathway that contributes to the establishment of the ectomycorrhizal symbiosis. PMID:24704731

Herrera-Martínez, Aseneth; Ruiz-Medrano, Roberto; Galván-Gordillo, Santiago Valentín; Toscano Morales, Roberto; Gómez-Silva, Lidia; Valdés, María; Hinojosa-Moya, Jesús; Xoconostle-Cázares, Beatriz

2014-01-01

277

Lotus japonicus E3 ligase SEVEN IN ABSENTIA4 destabilizes the symbiosis receptor-like kinase SYMRK and negatively regulates rhizobial infection.  

PubMed

The Lotus japonicus SYMBIOSIS RECEPTOR-LIKE KINASE (SYMRK) is required for symbiotic signal transduction upon stimulation of root cells by microbial signaling molecules. Here, we identified members of the SEVEN IN ABSENTIA (SINA) E3 ubiquitin-ligase family as SYMRK interactors and confirmed their predicted ubiquitin-ligase activity. In Nicotiana benthamiana leaves, SYMRK-yellow fluorescent protein was localized at the plasma membrane, and interaction with SINAs, as determined by bimolecular fluorescence complementation, was observed in small punctae at the cytosolic interface of the plasma membrane. Moreover, fluorescence-tagged SINA4 partially colocalized with SYMRK and caused SYMRK relocalization as well as disappearance of SYMRK from the plasma membrane. Neither the localization nor the abundance of Nod-factor receptor1 was altered by the presence of SINA4. SINA4 was transcriptionally upregulated during root symbiosis, and rhizobia inoculated roots ectopically expressing SINA4 showed reduced SYMRK protein levels. In accordance with a negative regulatory role in symbiosis, infection thread development was impaired upon ectopic expression of SINA4. Our results implicate SINA4 E3 ubiquitin ligase in the turnover of SYMRK and provide a conceptual mechanism for its symbiosis-appropriate spatio-temporal containment. PMID:22534128

Den Herder, Griet; Yoshida, Satoko; Antolín-Llovera, Meritxell; Ried, Martina K; Parniske, Martin

2012-04-01

278

Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis  

Microsoft Academic Search

Mycorrhizal fungi are a heterogeneous group of diverse fungal taxa, associated with the roots of over 90% of all plant species. Recently, state-of-the-art molecular and genetic tools, coupled to high-throughput sequencing and advanced microscopy, have led to the genome and transcriptome analysis of several symbionts. Signalling pathways between plants and fungi have now been described and the identification of several

Paola Bonfante; Andrea Genre

2010-01-01

279

Sinister Symbiosis: Pathological hematopoietic-stromal interactions in CML  

PubMed Central

Summary The impact of myeloid malignancies on the non-hematopoietic components of the bone marrow remains poorly understood. In this issue, Schepers et al. describe how malignant myeloid cells alter the endosteal hematopoietic stem cell (HSC) niche, resulting in the expansion of osteoblastic lineage cells (OBC) that preferentially support malignant HSCs. PMID:24012363

Mullally, Ann; Ebert, Benjamin L.

2013-01-01

280

Trophic interactions in a high arctic snow goose colony.  

PubMed

We examined the role of trophic interactions in structuring a high arctic tundra community characterized by a large breeding colony of greater snow geese (Chen caerulescens atlantica). According to the exploitation ecosystem hypothesis of Oksanen et al. (1981), food chains are controlled by top-down interactions. However, because the arctic primary productivity is low, herbivore populations are too small to support functional predator populations and these communities should thus be dominated by the plant/ herbivore trophic-level interaction. Since 1990, we have been monitoring annual abundance and productivity of geese, the impact of goose grazing, predator abundance (mostly arctic foxes, Alopex lagopus) and the abundance of lemmings, the other significant herbivore in this community, on Bylot Island, Nunavut, Canada. Goose grazing consistently removed a significant proportion of the standing crop (?40%) in tundra wetlands every year. Grazing changed plant community composition and reduced the production of grasses and sedges to a low-level equilibrium compared to the situation where the presence of geese had been removed. Lemming cyclic fluctuations were strong and affected fox reproduction. Fox predation on goose eggs was severe and generated marked annual variation in goose productivity. Predation intensity on geese was closely related to the lemming cycle, a consequence of an indirect interaction between lemming and geese via shared predators. We conclude that, contrary to the exploitation ecosystem hypothesis, both the plant/herbivore and predator/prey interactions are significant in this arctic community. PMID:21680492

Gauthier, Gilles; Bêty, Joël; Giroux, Jean-François; Rochefort, Line

2004-04-01

281

Root endophyte symbiosis in vitro between the ectomycorrhizal basidiomycete Tricholoma matsutake and the arbuscular mycorrhizal plant Prunus speciosa.  

PubMed

We previously reported that Tricholoma matsutake and Tricholoma fulvocastaneum, ectomycorrhizal basidiomycetes that associate with Pinaceae and Fagaceae, respectively, in the Northern Hemisphere, could interact in vitro as a root endophyte of somatic plants of Cedrela odorata (Meliaceae), which naturally harbors arbuscular mycorrhizal fungi in South America, to form a characteristic rhizospheric colony or "shiro". We questioned whether this phenomenon could have occurred because of plant-microbe interactions between geographically separated species that never encounter one another in nature. In the present study, we document that these fungi formed root endophyte interactions and shiro within 140 days of inoculation with somatic plants of Prunus speciosa (=Cerasus speciosa, Rosaceae), a wild cherry tree that naturally harbors arbuscular mycorrhizal fungi in Japan. Compared with C. odorata, infected P. speciosa plants had less mycelial sheath surrounding the exodermis, and the older the roots, especially main roots, the more hyphae penetrated. In addition, a large number of juvenile roots were not associated with hyphae. We concluded that such root endophyte interactions were not events isolated to the interactions between exotic plants and microbes but could occur generally in vitro. Our pure culture system with a somatic plant allowed these fungi to express symbiosis-related phenotypes that varied with the plant host; these traits are innately programmed but suppressed in nature and could be useful in genetic analyses of plant-fungal symbiosis. PMID:24158697

Murata, Hitoshi; Yamada, Akiyoshi; Yokota, Satoru; Maruyama, Tsuyoshi; Endo, Naoki; Yamamoto, Kohei; Ohira, Tatsuro; Neda, Hitoshi

2014-05-01

282

Evolution of mutualistic symbiosis: A differential equation model  

Microsoft Academic Search

In geological history, rapid speciation, called adaptive radiation, has occurred repeatedly. The origins of such newly developing\\u000a taxa often evolved from the symbiosis of different species. Mutualistic symbioses are generally considered to evolve from\\u000a parasitic relationships. As well as the previous model of host population with discrete generations, a differential equation\\u000a model of host population with overlapping generations shows that

Norio Yamamura

1996-01-01

283

Establishment of Coral–Algal Symbiosis Requires Attraction and Selection  

PubMed Central

Coral reef ecosystems are based on coral–zooxanthellae symbiosis. During the initiation of symbiosis, majority of corals acquire their own zooxanthellae (specifically from the dinoflagellate genus Symbiodinium) from surrounding environments. The mechanisms underlying the initial establishment of symbiosis have attracted much interest, and numerous field and laboratory experiments have been conducted to elucidate this establishment. However, it is still unclear whether the host corals selectively or randomly acquire their symbionts from surrounding environments. To address this issue, we initially compared genetic compositions of Symbiodinium within naturally settled about 2-week-old Acropora coral juveniles (recruits) and those in the adjacent seawater as the potential symbiont source. We then performed infection tests using several types of Symbiodinium culture strains and apo-symbiotic (does not have Symbiodinium cells yet) Acropora coral larvae. Our field observations indicated apparent preference toward specific Symbiodinium genotypes (A1 and D1-4) within the recruits, despite a rich abundance of other Symbiodinium in the environmental population pool. Laboratory experiments were in accordance with this field observation: Symbiodinium strains of type A1 and D1-4 showed higher infection rates for Acropora larvae than other genotype strains, even when supplied at lower cell densities. Subsequent attraction tests revealed that three Symbiodinium strains were attracted toward Acropora larvae, and within them, only A1 and D1-4 strains were acquired by the larvae. Another three strains did not intrinsically approach to the larvae. These findings suggest the initial establishment of corals–Symbiodinium symbiosis is not random, and the infection mechanism appeared to comprise two steps: initial attraction step and subsequent selective uptake by the coral. PMID:24824794

Yamashita, Hiroshi; Suzuki, Go; Kai, Sayaka; Hayashibara, Takeshi; Koike, Kazuhiko

2014-01-01

284

Establishment of coral-algal symbiosis requires attraction and selection.  

PubMed

Coral reef ecosystems are based on coral-zooxanthellae symbiosis. During the initiation of symbiosis, majority of corals acquire their own zooxanthellae (specifically from the dinoflagellate genus Symbiodinium) from surrounding environments. The mechanisms underlying the initial establishment of symbiosis have attracted much interest, and numerous field and laboratory experiments have been conducted to elucidate this establishment. However, it is still unclear whether the host corals selectively or randomly acquire their symbionts from surrounding environments. To address this issue, we initially compared genetic compositions of Symbiodinium within naturally settled about 2-week-old Acropora coral juveniles (recruits) and those in the adjacent seawater as the potential symbiont source. We then performed infection tests using several types of Symbiodinium culture strains and apo-symbiotic (does not have Symbiodinium cells yet) Acropora coral larvae. Our field observations indicated apparent preference toward specific Symbiodinium genotypes (A1 and D1-4) within the recruits, despite a rich abundance of other Symbiodinium in the environmental population pool. Laboratory experiments were in accordance with this field observation: Symbiodinium strains of type A1 and D1-4 showed higher infection rates for Acropora larvae than other genotype strains, even when supplied at lower cell densities. Subsequent attraction tests revealed that three Symbiodinium strains were attracted toward Acropora larvae, and within them, only A1 and D1-4 strains were acquired by the larvae. Another three strains did not intrinsically approach to the larvae. These findings suggest the initial establishment of corals-Symbiodinium symbiosis is not random, and the infection mechanism appeared to comprise two steps: initial attraction step and subsequent selective uptake by the coral. PMID:24824794

Yamashita, Hiroshi; Suzuki, Go; Kai, Sayaka; Hayashibara, Takeshi; Koike, Kazuhiko

2014-01-01

285

Role of Quorum Sensing in Sinorhizobium meliloti-Alfalfa Symbiosis  

Microsoft Academic Search

The ExpR\\/Sin quorum-sensing system of the gram-negative soil bacterium Sinorhizobium meliloti plays an important role in the establishment of symbiosis with its host plant Medicago sativa. A mutant unable to produce autoinducer signal molecules (sinI) is deficient in its ability to invade the host, but paradoxically, a strain lacking the quorum-sensing transcriptional regulator ExpR is as efficient as the wild

Nataliya Gurich; Juan E. Gonzalez

2009-01-01

286

Microbial Biofilms: How Effective in Rhizobium –Legume Symbiosis?  

Microsoft Academic Search

\\u000a Diverse genera of bacteria live as microbial communities called biofilms on biotic or abiotic surfaces, or interfaces. They\\u000a exhibit elevated microbial action, as a result of symbiosis in biofilm structure and physiological adaptation. The formation\\u000a of fungal–bacterial biofilms by bacterial colonization on biotic fungal surfaces gives the biofilms enhanced microbial effectiveness\\u000a compared to monocultures. When the bacteria include rhizobia, they

G. Seneviratne; M. L. M. A. W. Weerasekara; J. S. Zavahir

287

The Winnowing: Establishing the Squid-Vibrio Symbiosis  

NSDL National Science Digital Library

This Nature Reviews Microbiology article examines the symbiosis between the squid Euprymna scolopes and its luminous bacterial symbiont, Vibrio fischeri. Using image-rich illustrations, it depicts the progression of light-organ colonization as a series of steps and discusses the advent of genomic approaches used to study this model system. A subscription is required to access the full-text version of this article.

Nyholm, Spencer V.; Mcfall-Ngai, Margaret; Microbiology, Nature R.

288

Eco-evolutionary experience in novel species interactions.  

PubMed

A better understanding of how ecological novelty influences interactions in new combinations of species is key for predicting interaction outcomes, and can help focus conservation and management efforts on preventing the introduction of novel organisms or species (including invasive species, GMOs, synthetic organisms, resurrected species and emerging pathogens) that seem particularly 'risky' for resident species. Here, we consider the implications of different degrees of eco-evolutionary experience of interacting resident and non-resident species, define four qualitative risk categories for estimating the probability of successful establishment and impact of novel species and discuss how the effects of novelty change over time. Focusing then on novel predator-prey interactions, we argue that novelty entails density-dependent advantages for non-resident species, with their largest effects often being at low prey densities. This is illustrated by a comparison of predator functional responses and prey predation risk curves between novel species and ecologically similar resident species, and raises important issues for the conservation of endangered resident prey species. PMID:25626585

Saul, Wolf-Christian; Jeschke, Jonathan M

2015-03-01

289

Coral fluorescence and symbiosis : photoacclimation, thermal shock, life history changes, and implications for reef monitoring.  

E-print Network

??Coral reefs ecosystems are diverse, productive and globally threatened. Corals have endosymbiotic dinoflagellates, which provide important nutrition. This symbiosis depends on a precarious balance of… (more)

Roth, Melissa Susan

2010-01-01

290

Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis  

E-print Network

The ?-proteobacterium Sinorhizobium meliloti establishes a chronic intracellular infection during the symbiosis with its legume hosts. Within specialized host cells, S. meliloti differentiates into highly polyploid, enlarged ...

Penterman, Jon

291

Zooxanthellar symbiosis in planula larvae of the coral Pocillopora damicornis  

PubMed Central

We characterized the planular-zooxanthellae symbiosis of the coral Pocillopora damicornis using criteria that are familiar in studies on corals. Similar to adult corals, planulae exhibited photoacclimation, as changes in symbiont chlorophyll a (chl a); changes in the light-saturation constant for photosynthesis (Ik); and, at insufficient light, fewer zooxanthellae, decreased respiration, increased weight loss, and increased sensitivity to photoinhibition. Numbers of zooxanthellae in newly-released planulae varied by at least three-fold within broods. Planulae with low versus high numbers of zooxanthellae (termed pale versus dark planulae, respectively) did not differ in symbiont chl-a content, Ik, or biomass-specific rate of dark respiration. Pale planulae had lower rates of photosynthesis, but this difference vanished after three weeks, when zooxanthellar numbers increased by 225% in pale planulae and by 31% in dark planulae. Numbers of zooxanthellae also increased significantly in planulae cultured in ammonium-enriched seawater; ammonium also apparently prevented weight loss and induced settlement. Approximately 70% of photosynthetically-fixed carbon (labeled using 14C) apparently was translocated from the zooxanthellae to their host. A comparison of planulae cultured at 0.3% versus 11% sunlight suggested that photosynthesis provided ~ 31% of the energy utilized by the latter. Overall, we conclude that the physiology of symbiosis in planulae of P. damicornis is broadly similar to symbiosis physiology in adult corals. PMID:20526380

Gaither, Michelle R.; Rowan, Rob

2010-01-01

292

Symbiosis through exploitation and the merger of lineages in evolution  

PubMed Central

A model for the coevolution of two species in facultative symbiosis is used to investigate conditions under which species merge to form a single reproductive unit. Two traits evolve in each species, the first affecting loss of resources from an individual to its partner, and the second affecting vertical transmission of the symbiosis from one generation to the next. Initial conditions are set so that the symbiosis involves exploitation of one partner by the other and vertical transmission is very rare. It is shown that, even in the face of continuing exploitation, a stable symbiotic unit can evolve with maximum vertical transmission of the partners. Such evolution requires that eventually deaths should exceed births for both species in the free-living state, a condition which can be met if the victim, in the course of developing its defences, builds up sufficiently large costs in the free-living state. This result expands the set of initial conditions from which separate lineages can be expected to merge into symbiotic units.

Law, R.; Dieckmann, U.

1998-01-01

293

Some aspects of optimal human-computer symbiosis in multisensor geospatial data fusion  

NASA Astrophysics Data System (ADS)

Nowadays vast amount of the available geospatial data provides additional opportunities for the targeting accuracy increase due to possibility of geospatial data fusion. One of the most obvious operations is determining of the targets 3D shapes and geospatial positions based on overlapped 2D imagery and sensor modeling. 3D models allows for the extraction of such information about targets, which cannot be measured directly based on single non-fused imagery. Paper describes ongoing research effort at Michigan Tech attempting to combine advantages of human analysts and computer automated processing for efficient human computer symbiosis for geospatial data fusion. Specifically, capabilities provided by integration into geospatial targeting interfaces novel human-computer interaction method such as eye-tracking and EEG was explored. Paper describes research performed and results in more details.

Levin, E.; Sergeyev, A.

294

Litter-forager termite mounds enhance the ectomycorrhizal symbiosis between Acacia holosericea A.Cunn. Ex G.Don and  

E-print Network

Litter-forager termite mounds enhance the ectomycorrhizal symbiosis between Acacia holosericea A; ectomycorrhizal symbiosis; Acacia holosericea. Abstract The hypothesis of the present study was that the termite mound material on (i) the ectomycorrhization symbiosis between Acacia holosericea (an Australian Acacia

Thioulouse, Jean

295

Assessing the adaptability of the actinorhizal symbiosis in the face of environmental change  

Microsoft Academic Search

Human activity, and in particular industrial activity, has altered natural environments. Here we present an experimental approach adapted to study the actinorhizal symbiosis in alder trees and shrubs submitted to abiotic stress. We measured the impact of exogenous nitrogen on the establishment of the alder symbiosis with Frankia sp., and its primary function; nitrogen fixation. Results showed our version of

Pier-Anne Bélanger; Cyntia Bissonnette; Audrey Bernèche-D’Amours; Jean-Philippe Bellenger; Sébastien Roy

2011-01-01

296

Gene-Swapping Mediates Host Specificity among Symbiotic Bacteria in a Beneficial Symbiosis  

E-print Network

Gene-Swapping Mediates Host Specificity among Symbiotic Bacteria in a Beneficial Symbiosis Alba A understood. We examined several symbiotic loci (lux-bioluminescence, pil = pili, and msh-mannose sensitive Symbiotic Bacteria in a Beneficial Symbiosis. PLoS ONE 9(7): e101691. doi:10.1371/journal.pone.0101691

Nishiguchi, Michele

297

PRESENCE AND DISTRIBUTION OF FUNGAL SYMBIOSIS IN CHEILANTHES FEEI AND CHEILANTHES LANOSA IN SOUTHEASTERN  

E-print Network

TITLE PAGE PRESENCE AND DISTRIBUTION OF FUNGAL SYMBIOSIS IN CHEILANTHES FEEI AND CHEILANTHES LANOSA University PRESENCE AND DISTRIBUTION OF FUNGAL SYMBIOSIS IN CHEILANTHES FEEI AND CHEILANTHES LANOSA #12;ABSTRACT Cheilanthes feei (Polypodiaceae) is a xerophytic fern that grows exclusively on dry

Swatzell, Lucinda

298

A plant receptor-like kinase required for both bacterial and fungal symbiosis  

Microsoft Academic Search

Most higher plant species can enter a root symbiosis with arbuscular mycorrhizal fungi, in which plant carbon is traded for fungal phosphate. This is an ancient symbiosis, which has been detected in fossils of early land plants. In contrast, the nitrogen-fixing root nodule symbioses of plants with bacteria evolved more recently, and are phylogenetically restricted to the rosid I clade

Silke Stracke; Catherine Kistner; Satoko Yoshida; Lonneke Mulder; Shusei Sato; Takakazu Kaneko; Satoshi Tabata; Niels Sandal; Jens Stougaard; Krzysztof Szczyglowski; Martin Parniske

2002-01-01

299

Impediment to Symbiosis Establishment between Giant Clams and Symbiodinium Algae Due to Sterilization of Seawater  

PubMed Central

To survive the juvenile stage, giant clam juveniles need to establish a symbiotic relationship with the microalgae Symbiodinium occurring in the environment. The percentage of giant clam juveniles succeeding in symbiosis establishment (“symbiosis rate”) is often low, which is problematic for seed producers. We investigated how and why symbiosis rates vary, depending on whether giant clam seeds are continuously reared in UV treated or non treated seawater. Results repeatedly demonstrated that symbiosis rates were lower for UV treated seawater than for non treated seawater. Symbiosis rates were also lower for autoclaved seawater and 0.2-µm filtered seawater than for non treated seawater. The decreased symbiosis rates in various sterilized seawater suggest the possibility that some factors helping symbiosis establishment in natural seawater are weakened owing to sterilization. The possible factors include vitality of giant clam seeds, since additional experiments revealed that survival rates of seeds reared alone without Symbiodinium were lower in sterilized seawater than in non treated seawater. In conclusion, UV treatment of seawater was found to lead to decreased symbiosis rates, which is due possibly to some adverse effects common to the various sterilization techniques and relates to the vitality of the giant clam seeds. PMID:23613802

Kurihara, Takeo; Yamada, Hideaki; Inoue, Ken; Iwai, Kenji; Hatta, Masayuki

2013-01-01

300

Expression Islands Clustered on the Symbiosis Island of the Mesorhizobium loti Genome  

Microsoft Academic Search

Rhizobia are symbiotic nitrogen-fixing soil bacteria that are associated with host legumes. The establishment of rhizobial symbiosis requires signal exchanges between partners in microaerobic environments that result in mutualism for the two partners. We developed a macroarray for Mesorhizobium loti MAFF303099, a microsym- biont of the model legume Lotus japonicus, and monitored the transcriptional dynamics of the bacterium during symbiosis,

Toshiki Uchiumi; Takuji Ohwada; Manabu Itakura; Hisayuki Mitsui; Noriyuki Nukui; Pramod Dawadi; Takakazu Kaneko; Satoshi Tabata; Tadashi Yokoyama; Kouhei Tejima; Kazuhiko Saeki; Hirofumi Omori; Makoto Hayashi; Takaki Maekawa; Rutchadaporn Sriprang; Yoshikatsu Murooka; Shigeyuki Tajima; Kenshiro Simomura; Mika Nomura; Akihiro Suzuki; Yoshikazu Shimoda; Kouki Sioya; Mikiko Abe; Kiwamu Minamisawa

2004-01-01

301

Nitric Oxide in Nitrogen-Fixing Symbiosis  

Microsoft Academic Search

The establishment and functioning of nitrogen-fixing symbioses between legumes and rhizobia rely on\\u000a a succession of infectious, developmental, and metabolic processes, which end in the formation of root\\u000a nodules and the acquisition of nitrogen-fixing capacity by the bacteria. A tight regulation is required\\u000a for the establishment of a successful interaction, and the identification of the regulatory network\\u000a operating is therefore a major challenge for

Emmanuel Baudouin; Nicolas Pauly; Alain Puppo

302

Vibrio fischeri metabolism: symbiosis and beyond.  

PubMed

Vibrio fischeri is a bioluminescent, Gram-negative marine bacterium that can be found free living and in a mutualistic association with certain squids and fishes. Over the past decades, the study of V. fischeri has led to important discoveries about bioluminescence, quorum sensing, and the mechanisms that underlie beneficial host-microbe interactions. This chapter highlights what has been learned about metabolic pathways in V. fischeri, and how this information contributes to a broader understanding of the role of bacterial metabolism in host colonization by both beneficial and pathogenic bacteria, as well as in the growth and survival of free-living bacteria. PMID:23046951

Dunn, Anne K

2012-01-01

303

Emergent Properties of Interacting Populations of Spiking Neurons  

PubMed Central

Dynamic neuronal networks are a key paradigm of increasing importance in brain research, concerned with the functional analysis of biological neuronal networks and, at the same time, with the synthesis of artificial brain-like systems. In this context, neuronal network models serve as mathematical tools to understand the function of brains, but they might as well develop into future tools for enhancing certain functions of our nervous system. Here, we present and discuss our recent achievements in developing multiplicative point processes into a viable mathematical framework for spiking network modeling. The perspective is that the dynamic behavior of these neuronal networks is faithfully reflected by a set of non-linear rate equations, describing all interactions on the population level. These equations are similar in structure to Lotka-Volterra equations, well known by their use in modeling predator-prey relations in population biology, but abundant applications to economic theory have also been described. We present a number of biologically relevant examples for spiking network function, which can be studied with the help of the aforementioned correspondence between spike trains and specific systems of non-linear coupled ordinary differential equations. We claim that, enabled by the use of multiplicative point processes, we can make essential contributions to a more thorough understanding of the dynamical properties of interacting neuronal populations. PMID:22207844

Cardanobile, Stefano; Rotter, Stefan

2011-01-01

304

Repeated loss of coloniality and symbiosis in scleractinian corals  

PubMed Central

The combination of coloniality and symbiosis in Scleractinia is thought to confer competitive advantage over other benthic invertebrates, and it is likely the key factor for the dominance of corals in tropical reefs. However, the extant Scleractinia are evenly split between zooxanthellate and azooxanthellate species. Most azooxanthellate species are solitary and nearly absent from reefs, but have much wider geographic and bathymetric distributions than reef corals. Molecular phylogenetic analyses have repeatedly recovered clades formed by colonial/zooxanthellate and solitary/azooxanthellate taxa, suggesting that coloniality and symbiosis were repeatedly acquired and/or lost throughout the history of the Scleractinia. Using Bayesian ancestral state reconstruction, we found that symbiosis was lost at least three times and coloniality lost at least six times, and at least two instances in which both characters were lost. All of the azooxanthellate lineages originated from ancestors that were reconstructed as symbiotic, corroborating the onshore–offshore diversification trend recorded in marine taxa. Symbiotic sister taxa of two of these descendant lineages are extant in Caribbean reefs but disappeared from the Mediterranean before the end of the Miocene, whereas extant azooxanthellate lineages have trans-Atlantic distributions. Thus, the phyletic link between reef and nonreef communities may have played an important role in the dynamics of extinction and recovery that marks the evolutionary history of scleractinians, and some reef lineages may have escaped local extinction by diversifying into offshore environments. However, this macroevolutionary mechanism offers no hope of mitigating the effects of climate change on coral reefs in the next century. PMID:20547851

Barbeitos, Marcos S.; Romano, Sandra L.; Lasker, Howard R.

2010-01-01

305

Repeated loss of coloniality and symbiosis in scleractinian corals.  

PubMed

The combination of coloniality and symbiosis in Scleractinia is thought to confer competitive advantage over other benthic invertebrates, and it is likely the key factor for the dominance of corals in tropical reefs. However, the extant Scleractinia are evenly split between zooxanthellate and azooxanthellate species. Most azooxanthellate species are solitary and nearly absent from reefs, but have much wider geographic and bathymetric distributions than reef corals. Molecular phylogenetic analyses have repeatedly recovered clades formed by colonial/zooxanthellate and solitary/azooxanthellate taxa, suggesting that coloniality and symbiosis were repeatedly acquired and/or lost throughout the history of the Scleractinia. Using Bayesian ancestral state reconstruction, we found that symbiosis was lost at least three times and coloniality lost at least six times, and at least two instances in which both characters were lost. All of the azooxanthellate lineages originated from ancestors that were reconstructed as symbiotic, corroborating the onshore-offshore diversification trend recorded in marine taxa. Symbiotic sister taxa of two of these descendant lineages are extant in Caribbean reefs but disappeared from the Mediterranean before the end of the Miocene, whereas extant azooxanthellate lineages have trans-Atlantic distributions. Thus, the phyletic link between reef and nonreef communities may have played an important role in the dynamics of extinction and recovery that marks the evolutionary history of scleractinians, and some reef lineages may have escaped local extinction by diversifying into offshore environments. However, this macroevolutionary mechanism offers no hope of mitigating the effects of climate change on coral reefs in the next century. PMID:20547851

Barbeitos, Marcos S; Romano, Sandra L; Lasker, Howard R

2010-06-29

306

Plant-endophyte symbiosis in non-leguminous plants  

Microsoft Academic Search

Summary  A wide taxonomic range of non-leguminous dicotyledonous plants bear root nodules and are able to fix atmospheric nitrogen.\\u000a These plants belong to the orders Casuarinales, Myricales, Fagales, Rhamnales, Coriariales, and Rosales. Actinomycetes are\\u000a involved in the root-nodule symbiosis.\\u000a \\u000a Nitrogen fixation is inhibited by hydrogen and carbon monoxide. Combined nitrogen depress nodule formation, but nitrogen fixation\\u000a still occurs in the presence

J. H. Becking

1970-01-01

307

High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus  

PubMed Central

The arbuscular mycorrhizal symbiosis associates soil fungi with the roots of the majority of plants species and represents a major source of soil phosphorus acquisition. Mycorrhizal interactions begin with an exchange of molecular signals between the two partners. A root signaling pathway is recruited, for which the perception of fungal signals triggers oscillations of intracellular calcium concentration. High phosphate availability is known to inhibit the establishment and/or persistence of this symbiosis, thereby favoring the direct, non-symbiotic uptake of phosphorus by the root system. In this study, Medicago truncatula plants were used to investigate the effects of phosphate supply on the early stages of the interaction. When plants were supplied with high phosphate fungal attachment to the roots was drastically reduced. An experimental system was designed to individually study the effects of phosphate supply on the fungus, on the roots, and on root exudates. These experiments revealed that the most important effects of high phosphate supply were on the roots themselves, which became unable to host mycorrhizal fungi even when these had been appropriately stimulated. The ability of the roots to perceive their fungal partner was then investigated by monitoring nuclear calcium spiking in response to fungal signals. This response did not appear to be affected by high phosphate supply. In conclusion, high levels of phosphate predominantly impact the plant host, but apparently not in its ability to perceive the fungal partner. PMID:24194742

Balzergue, Coline; Chabaud, Mireille; Barker, David G.; Bécard, Guillaume; Rochange, Soizic F.

2013-01-01

308

Why Does Gunnera Do It and Other Angiosperms Don't? An Evolutionary Perspective on the Gunnera – Nostoc Symbiosis  

Microsoft Academic Search

The Gunnera–Nostoc symbiosis\\u000a is an enigmatic plant–cyanobacterial symbiosis: the only known angiosperm–cyanobacterial symbiosis.\\u000a We postulate that this symbiosis, together with perhaps all other plant–cyanobacterial symbioses,\\u000a was more important in the geological past and was a response to a unique suite of environmental\\u000a conditions that are uncommon today. Phylogenetic analyses indicate a distinct origin for the evolution\\u000a of the Gunnera–Nostoc symbiosis\\u000a within the angiosperms,

Bruce Osborne; Birgitta Bergman

309

A Mammalian Predator-Prey Imbalance: Grizzly Bear and Wolf Extinction Affect Avian Neotropical Migrants  

Microsoft Academic Search

Because most large, terrestrial mammalian predators have already been lost from more than 95-99% of the contiguous United States and Mexico, many ecological communities are either missing dominant selective forces or have new ones dependent upon humans. Such large-scale manipulations of a key element of most ecosystems offer unique opportunities to investigate how the loss of large carnivores affects communities,

Joel Berger; Peter B. Stacey; Lori Bellis; Matthew P. Johnson

2001-01-01

310

Conflict and assessment in a predator-prey system: ground squirrels versus rattlesnakes.  

PubMed

Adult California ground squirrels, Spermophilus beecheyi beecheyi, actively confront and harass northern Pacific rattlesnakes, Crotalus viridis oreganus, which are the principal predator of ground squirrel pups. In this report we examine the roles of risk (snake size) and context (location of encounter and squirrel reproductive category) in rattlesnake assessment by ground squirrels. In interpreting the results, we borrow heavily from the well-developed conceptual framework applied in the analogous case of intraspecific conflict. Large and small snakes were tethered near the home burrows of male ground squirrels, and maternal and nonmaternal female ground squirrels. Ground squirrels appeared to employ assessment strategies which served to mediate the level of risk associated with confronting larger snakes. The results suggest that ground squirrels exercise greater caution when dealing with large snakes and invest more in monitoring the snake from a safe distance. Maternal squirrels, which have more at stake reproductively, spent more time and effort in snake-directed activities than did squirrels from other reproductive categories. Mothers also differentiated more strongly between large and small snakes, perhaps reflecting the greater vulnerability of their pups to larger snakes. Finally, ground squirrels discriminated between snakes found close to their home burrow and those encountered further abroad. At the home burrow, squirrels monitored the snake from a closer distance, displayed a greater willingness to confront the snake, and escalated to more dangerous levels of harassment. This assessment strategy may reflect a higher payoff to squirrels that persist in driving snakes out of the home area, thereby reducing the risk of future ambush. Copyright 1999 The Association for the Study of Animal Behaviour. PMID:10328789

Swaisgood; Owings; Rowe

1999-05-01

311

Phase transition and selection in a four-species cyclic predator-prey model.  

PubMed

We study a four-species ecological system with cyclic dominance whose individuals are distributed on a square lattice. Randomly chosen individuals migrate to one of the neighboring sites if it is empty or invade this site if occupied by their prey. The cyclic dominance maintains the coexistence of all four species if the concentration of vacant sites is lower than a threshold value. Above the threshold, a symmetry breaking ordering occurs via growing domains containing only two neutral species inside. These two neutral species can protect each other from the external invaders (predators) and extend their common territory. According to our Monte Carlo simulations the observed phase transition seems to be equivalent to those found in spreading models with two equivalent absorbing states although the present model has continuous sets of absorbing states with different portions of the two neutral species. The selection mechanism yielding symmetric phases is related to the domain growth process with wide boundaries where the four species coexist. PMID:15089326

Szabó, György; Arial Sznaider, Gustavo

2004-03-01

312

Hatching in dabbling ducks and emergence in chironomids: a case of predator–prey synchrony?  

Microsoft Academic Search

It has been hypothesized that dabbling ducks (Anas spp.) time breeding to coincide with annual regional peaks in emerging dipterans, especially Chironomidae, which are important\\u000a prey for newly hatched ducklings. However, this hypothesis has never been evaluated in a replicated lake-level study, including\\u000a year effects in emergence patterns. We collected duck and invertebrate data from 12 lakes during the nesting

Lisa Dessborn; Johan Elmberg; Petri Nummi; Hannu Pöysä; Kjell Sjöberg

2009-01-01

313

An introduction to repast simphony modeling using a simple predator-prey example.  

SciTech Connect

Repast is a widely used, free, and open-source, agent-based modeling and simulation toolkit. Three Repast platforms are currently available, each of which has the same core features but a different environment for these features. Repast Simphony (Repast S) extends the Repast portfolio by offering a new approach to simulation development and execution. This paper presents a model of wolf-sheep predation as an introductory tutorial and illustration of the modeling capabilities of Repast S. We use a model of wolf-sheep predation to demonstrate the capabilities of the Repast S toolkit and as an introductory tutorial. While the example is not intended to model real phenomenon, the model's complexity is high enough to illustrate how the user may develop multi-agent models. Spatial and temporal patterns emerge in the model consisting of potentially hundreds of instances of three agent types. It is important to note that Repast S and its related tools are still under development. This paper presents the most current information at the time it was written. However, changes may occur before the planned final release.

Tatara, E.; North, M. J.; Howe, T. R.; Collier, N. T.; Vos, J. R.; Decision and Information Sciences; PantaRei Corp.; Univ. of Chicago; Univ. of Illinois

2006-01-01

314

Environmental versus demographic variability in two-species predator-prey models.  

PubMed

We investigate the competing effects and relative importance of intrinsic demographic and environmental variability on the evolutionary dynamics of a stochastic two-species Lotka-Volterra model by means of Monte Carlo simulations on a two-dimensional lattice. Individuals are assigned inheritable predation efficiencies; quenched randomness in the spatially varying reaction rates serves as environmental noise. We find that environmental variability enhances the population densities of both predators and prey while demographic variability leads to essentially neutral optimization. PMID:25166206

Dobramysl, Ulrich; Täuber, Uwe C

2013-01-25

315

Environmental Versus Demographic Variability in Two-Species Predator-Prey Models  

NASA Astrophysics Data System (ADS)

We investigate the competing effects and relative importance of intrinsic demographic and environmental variability on the evolutionary dynamics of a stochastic two-species Lotka-Volterra model by means of Monte Carlo simulations on a two-dimensional lattice. Individuals are assigned inheritable predation efficiencies; quenched randomness in the spatially varying reaction rates serves as environmental noise. We find that environmental variability enhances the population densities of both predators and prey while demographic variability leads to essentially neutral optimization.

Dobramysl, Ulrich; Täuber, Uwe C.

2013-01-01

316

Population dynamics and predator-prey relationships of the Carmen Mountains white-tailed deer  

E-print Network

from the present study and Wauer's study were made between: (1) unequal numbers of counts within moonlight categories, (2) unequal numbers of counts, overall, and (3) counts made on equivalent dates during the two studies. The preponderance of data... numbers of deer spotlighted during three seasons. Factors such as moon phases and moonlight were considered as main effects during these com- parisons. Analysis of variance and the Duncan's multiple range test were performed on data from all night road...

Atkinson, Don Eugene

2012-06-07

317

Apes finding ants: Predator-prey dynamics in a chimpanzee habitat in Nigeria.  

PubMed

Some chimpanzee populations prey upon army ants, usually with stick tools. However, how their prey's subterranean nesting and nomadic lifestyle influence the apes' harvesting success is still poorly understood. This is particularly true for chimpanzees (Pan troglodytes ellioti) at Gashaka/Nigeria, which consume army ants (Dorylus rubellus) with much higher frequency than at other sites. We assessed various harvesting and search options theoretically available to the apes. For this, we reconstructed annual consumption patterns from feces and compared the physical characteristics of exploited ant nests with those that were not targeted. Repeated exploitation of a discovered nest is viable only in the short term, as disturbed colonies soon moved to a new site. Moreover, monitoring previously occupied nest cavities is uneconomical, as ants hardly ever re-used them. Thus, the apes have to detect new nests regularly, although colony density is relatively low (1 colony/1.3 ha). Surprisingly, visual search cues seem to be of limited importance because the probability of a nest being exploited was independent of its conspicuousness (presence of excavated soil piles, concealing leaf-litter or vegetation). However, chimpanzees preferentially targeted nests in forests or at the base of food trees, that is, where the apes spend relatively more time and/or where ant colony density is highest. Taken together, our findings suggest that, instead of employing a search strategy based on visual cues or spatial memory, chimpanzee predation on army ants contains a considerable opportunistic element. PMID:24022711

Pascual-Garrido, Alejandra; Umaru, Buba; Allon, Oliver; Sommer, Volker

2013-12-01

318

Predator-Prey Cycles from Resonant Amplification of Demographic Stochasticity A. J. McKane1  

E-print Network

of other ``host-natural enemy'' systems such as host-pathogen [2] systems; one of the most well known, but our main results will have direct applicability to other host- natural enemy systems, since they can

McKane, Alan

319

Global Dynamics of a Predator-prey Model with Stage Structure for Paul Georgescu  

E-print Network

condition on the abundance of the prey population ensures the global asymptotic sta- bility of the positive consideration. Such models may also incorporate parameters, such as different death rates for mature

320

The influence of temperature and food chain length on plankton predator–prey dynamics  

Microsoft Academic Search

With recent predictions for global climate warming, the question arises as to how changes in temperature influence the dynamics of populations in natural communities. We investigated the effect of temperature (18 and 25?C) on the stability of a common freshwater predatorñprey system consisting of Daphnia pulex and phytoplankton in different types of mesocosm communities. The plantñherbivore dynamics were examined in

Beatrix E. Beisner; Edward McCauley; Frederick J. Wrona

1997-01-01

321

A NEW ADAPTIVE SYSTEM APPROACH TO PREDATOR-PREY MODELING. (R830819)  

EPA Science Inventory

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

322

Predator-prey size relationships in an African large-mammal food web.  

PubMed

1. Size relationships are central in structuring trophic linkages within food webs, leading to suggestions that the dietary niche of smaller carnivores is nested within that of larger species. However, past analyses have not taken into account the differing selection shown by carnivores for specific size ranges of prey, nor the extent to which the greater carcass mass of larger prey outweighs the greater numerical representation of smaller prey species in the predator diet. Furthermore, the top-down impact that predation has on prey abundance cannot be assessed simply in terms of the number of predator species involved. 2. Records of found carcasses and cause of death assembled over 46 years in the Kruger National Park, South Africa, corrected for under-recording of smaller species, enabled a definitive assessment of size relationships between large mammalian carnivores and their ungulate prey. Five carnivore species were considered, including lion (Panthera leo), leopard (Panthera pardus), cheetah (Acinonyx jubatus), African wild dog (Lycaon pictus) and spotted hyena (Crocuta crocuta), and 22 herbivore prey species larger than 10 kg in adult body mass. 3. These carnivores selectively favoured prey species approximately half to twice their mass, within a total prey size range from an order of magnitude below to an order of magnitude above the body mass of the predator. The three smallest carnivores, i.e. leopard, cheetah and wild dog, showed high similarity in prey species favoured. Despite overlap in prey size range, each carnivore showed a distinct dietary preference. 4. Almost all mortality was through the agency of a predator for ungulate species up to the size of a giraffe (800-1200 kg). Ungulates larger than twice the mass of the predator contributed substantially to the dietary intake of lions, despite the low proportional mortality inflicted by predation on these species. Only for megaherbivores substantially exceeding 1000 kg in adult body mass did predation become a negligible cause of mortality. 5. Hence, the relative size of predators and prey had a pervasive structuring influence on biomass fluxes within this large-mammal food web. Nevertheless, the large carnivore assemblage was dominated overwhelmingly by the largest predator, which contributed the major share of animals killed across a wide size range. PMID:18177336

Owen-Smith, Norman; Mills, M G L

2008-01-01

323

Pursuit-evasion predator-prey waves in two spatial dimensions V. N. Biktashev  

E-print Network

dimensions: unusual patterns of meander of spirals, partial reflection of waves, swelling wavetips population waves than with wavetrains, and identified some new features that are typical in our excitable

Biktashev, Vadim N.

324

Pursuit-evasion predator-prey waves in two spatial dimensions V. N. Biktashev  

E-print Network

dimensions: unusual patterns of meander of spirals, partial re ection of waves, swelling wavetips, attachment population waves than with wavetrains, and identi#12;ed some new features that are typical in our excitable

Biktashev, Vadim N.

325

Shared Metabolic Pathways in a Coevolved Insect-Bacterial Symbiosis  

PubMed Central

The symbiotic bacterium Buchnera aphidicola lacks key genes in the biosynthesis of five essential amino acids (EAAs), and yet its animal hosts (aphids) depend on the symbiosis for the synthesis of these EAAs (isoleucine, leucine, methionine, phenylalanine, and valine). We tested the hypothesis, derived from genome annotation, that the missing Buchnera reactions are mediated by host enzymes, with the exchange of metabolic intermediates between the partners. The specialized host cells bearing Buchnera were separated into a Buchnera fraction and a Buchnera-free host cell fraction (HF). Addition of HF to isolated Buchnera preparations significantly increased the production of leucine and phenylalanine, and recombinant enzymes mediating the final reactions in branched-chain amino acid and phenylalanine synthesis rescued the production of these EAAs by Buchnera preparations without HF. The likely precursors for the missing proximal reactions in isoleucine and methionine synthesis were identified, and they differed from predictions based on genome annotations: synthesis of 2-oxobutanoate, the aphid-derived precursor of isoleucine synthesis, was stimulated by homoserine and not threonine via threonine dehydratase, and production of the homocysteine precursor of methionine was driven by cystathionine, not cysteine, via reversal of the transsulfuration pathway. The evolution of shared metabolic pathways in this symbiosis can be attributed to host compensation for genomic deterioration in the symbiont, involving changes in host gene expression networks to recruit specific enzymes to the host cell. PMID:23892755

Russell, Calum W.; Bouvaine, Sophie; Newell, Peter D.

2013-01-01

326

Aphids evolved novel secreted proteins for symbiosis with bacterial endosymbiont  

PubMed Central

Aphids evolved novel cells, called bacteriocytes, that differentiate specifically to harbour the obligatory mutualistic endosymbiotic bacteria Buchnera aphidicola. The genome of the host aphid Acyrthosiphon pisum contains many orphan genes that display no similarity with genes found in other sequenced organisms, prompting us to hypothesize that some of these orphan genes are related to lineage-specific traits, such as symbiosis. We conducted deep sequencing of bacteriocytes mRNA followed by whole mount in situ hybridizations of over-represented transcripts encoding aphid-specific orphan proteins. We identified a novel class of genes that encode small proteins with signal peptides, which are often cysteine-rich, that are over-represented in bacteriocytes. These genes are first expressed at a developmental time point coincident with the incorporation of symbionts strictly in the cells that contribute to the bacteriocyte and this bacteriocyte-specific expression is maintained throughout the aphid's life. The expression pattern suggests that recently evolved secretion proteins act within bacteriocytes, perhaps to mediate the symbiosis with beneficial bacterial partners, which is reminiscent of the evolution of novel cysteine-rich secreted proteins of leguminous plants that regulate nitrogen-fixing endosymbionts. PMID:23173201

Shigenobu, Shuji; Stern, David L.

2013-01-01

327

Arsenic effect on the model crop symbiosis Bradyrhizobium-soybean.  

PubMed

Soybean (Glycine max) is often being cultivated in soils with moderate to high arsenic (As) concentrations or under irrigation with As contaminated groundwater. The purpose of this study was to determine the effect of As on soybean germination, development and nodulation in soybean-Bradyrhizobium japonicum E109 symbiosis, as a first-step approach to evaluate the impact of As on soybean production. Semi-hydroponic assays were conducted using soybean seedlings inoculated and non-inoculated with B. japonicum E109 and treated with arsenate or arsenite. Soybean germination and development, at early stage of growth, were significantly reduced from 10 ?M arsenate or arsenite. This also was seen for soybean seedlings inoculated with B. japonicum mainly with arsenite where, in addition, the number of effective nodules was reduced, despite that the microorganism tolerated the metalloid. This minor nodulation could be due to a reduced motility (swarming and swimming) of the microorganism in presence of As. Arsenic concentration in roots was about 250-times higher than in shoots. Transference coefficient values indicated that As translocation to aerial parts was low and As accumulated mainly in roots, without significant differences between inoculated and non-inoculated plants. The presence of As restricted soybean-B. japonicum symbiosis and hence, the efficiency of most used commercial inoculants for soybean. Thus, water and/or soils containing As would negatively impact on soybean production, even in plants inoculated with B. japonicum E109. PMID:23228549

Talano, Melina A; Cejas, Romina B; González, Paola S; Agostini, Elizabeth

2013-02-01

328

An ancient tripartite symbiosis of plants, ants and scale insects  

PubMed Central

In the Asian tropics, a conspicuous radiation of Macaranga plants is inhabited by obligately associated Crematogaster ants tending Coccus (Coccidae) scale insects, forming a tripartite symbiosis. Recent phylogenetic studies have shown that the plants and the ants have been codiversifying over the past 16–20 million years (Myr). The prevalence of coccoids in ant–plant mutualisms suggest that they play an important role in the evolution of ant–plant symbioses. To determine whether the scale insects were involved in the evolutionary origin of the mutualism between Macaranga and Crematogaster, we constructed a cytochrome oxidase I (COI) gene phylogeny of the scale insects collected from myrmecophytic Macaranga and estimated their time of origin based on a COI molecular clock. The minimum age of the associated Coccus was estimated to be half that of the ants, at 7–9?Myr, suggesting that they were latecomers in the evolutionary history of the symbiosis. Crematogaster mitochondrial DNA (mtDNA) lineages did not exhibit specificity towards Coccus mtDNA lineages, and the latter was not found to be specific towards Macaranga taxa, suggesting that patterns of associations in the scale insects are dictated by opportunity rather than by specialized adaptations to host plant traits. PMID:18611850

Ueda, Shouhei; Quek, Swee-Peck; Itioka, Takao; Inamori, Keita; Sato, Yumiko; Murase, Kaori; Itino, Takao

2008-01-01

329

Only One of Five groEL Genes Is Required for Viability and Successful Symbiosis in Sinorhizobium meliloti?  

PubMed Central

Many bacterial species contain multiple copies of the genes that encode the chaperone GroEL and its cochaperone, GroES, including all of the fully sequenced root-nodulating bacteria that interact symbiotically with legumes to generate fixed nitrogen. In particular, in Sinorhizobium meliloti there are four groESL operons and one groEL gene. To uncover functional redundancies of these genes during growth and symbiosis, we attempted to construct strains containing all combinations of groEL mutations. Although a double groEL1 groEL2 mutant cannot be constructed, we demonstrate that the quadruple groEL1 groESL3 groEL4 groESL5 and groEL2 groESL3 groEL4 groESL5 mutants are viable. Therefore, like E. coli and other species, S. meliloti requires only one groEL gene for viability, and either groEL1 or groEL2 will suffice. The groEL1 groESL5 double mutant is more severely affected for growth at both 30°C and 40°C than the single mutants, suggesting overlapping functions in stress response. During symbiosis the quadruple groEL2 groESL3 groEL4 groESL5 mutant acts like the wild type, but the quadruple groEL1 groESL3 groEL4 groESL5 mutant acts like the groEL1 single mutant, which cannot fully induce nod gene expression and forms ineffective nodules. Therefore, the only groEL gene required for symbiosis is groEL1. However, we show that the other groE genes are expressed in the nodule at lower levels, suggesting minor roles during symbiosis. Combining our data with other data, we conclude that groESL1 encodes the housekeeping GroEL/GroES chaperone and that groESL5 is specialized for stress response. PMID:17158666

Bittner, Alycia N.; Foltz, Amanda; Oke, Valerie

2007-01-01

330

A minimal model of predator-swarm interactions  

E-print Network

We propose a minimal model of predator-swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a "weak" predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey are able to escape by "confusing" the predator: the prey forms a ring with the predator at the center. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis which is used to predict the shape of the swarm as well as the resulting predator-prey dynamics as a function of model parameters. We show that as the predator strength is increased, there is a transition (due to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute the threshold analytically. Our analysis indicates that the swarming behaviour is not helpful in avoiding the predator, suggesting that there are other reasons why the species may swarm. The complex shape of the swarm in our model during the chasing dynamics is similar to the shape of a flock of sheep avoiding a shepherd.

Yuxin Chen; Theodore Kolokolnikov

2014-03-13

331

Hydrologic drivers and controls of stream biofilm-grazer interactions  

NASA Astrophysics Data System (ADS)

Understanding the dynamics of fluvial ecosystems linked to hydrology is one of the most important challenges of ecohydrology. In fact, streamflow, which chiefly relies on rainfall, climate, land use and geomorphologic properties, plays a fundamental role in sustaining and regulating fluvial ecosystem integrity. To analyze possible implications of hydrological fluctuations on the biofilm-grazer interaction - a major driver for nutrient cycling and metabolism in streams - we experimented with 36 3-m-long flumes. In particular, two distinct discharge treatments (constant and stochastic discharge regimes) coupled with six different light regimes (from natural light conditions to nearly 70% attenuation) have been performed. To complement and analyze the experimental results, a dynamic model, based on the Rosenzweig-MacArthur predator-prey model, is presented. Several relations between the parameters of the aforementioned model and hydrologic and hydraulic properties, such as streamflow, water depth, flow velocity, shear stress, and light availability will be explored to explain ecohydrologic influences on the basic food-web dynamics.

Ceola, S.; Bertuzzo, E.; Mari, L.; Botter, G.; Hödl, I.; Battin, T. J.; Rinaldo, A.

2011-12-01

332

Interactions between benthic predators and zooplanktonic prey are affected by turbulent waves.  

PubMed

Predators capture prey in complex and variable environments. In the ocean, bottom-dwelling (benthic) organisms are subjected to water currents, waves, and turbulent eddies. For benthic predators that feed on small animals carried in the water (zooplankton), flow not only delivers prey, but can also shape predator-prey interactions. Benthic passive suspension feeders collect prey delivered by movement of ambient water onto capture-surfaces, whereas motile benthic predators, such as burrow-dwelling fish, dart out to catch passing zooplankton. How does the flow of ambient water affect these contrasting modes of predation by benthic zooplanktivores? We studied the effects of turbulent, wavy flow on the encounter, capture, and retention of motile zooplanktonic prey (copepods, Acartia spp.) by passive benthic suspension feeders (sea anemones, Anthopleura elegantissima). Predator-prey interactions were video-recorded in a wave-generating flume under two regimes of oscillating flow with different peak wave velocities and levels of turbulent kinetic energy ("weak" and "strong" waves). Rates of encounter (number of prey passing through a sea anemone's capture zone per time), capture (prey contacting and sticking to tentacles per time), and retention (prey retained on tentacles, without struggling free or washing off, per time) were measured at both strengths of waves. Strong waves enhanced encounter rates both for dead copepods and for actively swimming copepods, but there was so much variability in the behavior of the live prey that the effect of wave strength on encounter rates was not significant. Trapping efficiency (number of prey retained per number encountered) was the same in both flow regimes because, although fewer prey executed maneuvers to escape capture in strong waves, more of the captured prey was washed off the predators' tentacles. Although peak water velocities and turbulence of waves did not affect feeding rates of passive suspension-feeding sea anemones, increases in these aspects of flow have been shown to enhance feeding rates and efficiency of motile benthic fish that lunge out of their burrows to catch zooplankton. Faster, more turbulent flow interferes with the ability of prey to detect predators and execute escape maneuvers, and thus enhances capture rates both for passive suspension-feeding predators and for actively swimming predators. However, prey captured in the mouths of fish are not washed away by ambient flow, whereas prey captured on the tentacles of suspension feeders can be swept off before they are ingested. Therefore, the effects of flowing water on predation on zooplankton by benthic animals depend on the feeding mode of the predator. PMID:23942646

Robinson, H E; Finelli, C M; Koehl, M A R

2013-11-01

333

Effects of multiple climate change factors on the tall fescue-fungal endophyte symbiosis: infection frequency and tissue chemistry.  

SciTech Connect

Climate change (altered CO{sub 2}, warming, and precipitation) may affect plant-microbial interactions, such as the Lolium arundinaceum-Neotyphodium coenophialum symbiosis, to alter future ecosystem structure and function. To assess this possibility, tall fescue tillers were collected from an existing climate manipulation experiment in a constructed old-field community in Tennessee (USA). Endophyte infection frequency (EIF) was determined, and infected (E+) and uninfected (E-) tillers were analysed for tissue chemistry. The EIF of tall fescue was higher under elevated CO{sub 2} (91% infected) than with ambient CO{sub 2} (81%) but was not affected by warming or precipitation treatments. Within E+ tillers, elevated CO{sub 2} decreased alkaloid concentrations of both ergovaline and loline, by c. 30%; whereas warming increased loline concentrations 28% but had no effect on ergovaline. Independent of endophyte infection, elevated CO{sub 2} reduced concentrations of nitrogen, cellulose, hemicellulose, and lignin. These results suggest that elevated CO{sub 2}, more than changes in temperature or precipitation, may promote this grass-fungal symbiosis, leading to higher EIF in tall fescue in old-field communities. However, as all three climate factors are likely to change in the future, predicting the symbiotic response and resulting ecological consequences may be difficult and dependent on the specific atmospheric and climatic conditions encountered.

Brosi, Glade [University of Kentucky; McCulley, Rebecca L [University of Kentucky; Bush, L P [University of Kentucky; Nelson, Jim A [University of Kentucky; Classen, Aimee T [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL

2011-01-01

334

Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti–Medicago symbiosis  

PubMed Central

Legumes and soil bacteria called rhizobia have coevolved a facultative nitrogen-fixing symbiosis. Establishment of the symbiosis requires bacterial entry via root hair infection threads and, in parallel, organogenesis of nodules that subsequently are invaded by bacteria. Tight control of nodulation and infection is required to maintain the mutualistic character of the interaction. Available evidence supports a passive bacterial role in nodulation and infection after the microsymbiont has triggered the symbiotic plant developmental program. Here we identify in Sinorhizobium meliloti, the Medicago symbiont, a cAMP-signaling regulatory cascade consisting of three receptor-like adenylate cyclases, a Crp-like regulator, and a target gene of unknown function. The cascade is activated specifically by a plant signal during nodule organogenesis. Cascade inactivation results in a hyperinfection phenotype consisting of abortive epidermal infection events uncoupled from nodulation. These findings show that, in response to a plant signal, rhizobia play an active role in the control of infection. We suggest that rhizobia may modulate the plant’s susceptibility to infection. This regulatory loop likely aims at optimizing legume infection. PMID:22493242

Tian, Chang Fu; Garnerone, Anne-Marie; Mathieu-Demazière, Céline; Masson-Boivin, Catherine; Batut, Jacques

2012-01-01

335

Bacterial discrimination by Dictyostelid amoebae reveals the complexity of ancient interspecies interactions  

PubMed Central

Background Amoebae and bacteria interact within predator/prey and host/pathogen relationships, but the general response of amoeba to bacteria is not well understood. The amoeba Dictyostelium discoideum feeds on, and is colonized by diverse bacterial species including Gram-positive [Gram(+)] and Gram-negative [Gram(?)] bacteria, two major groups of bacteria that differ in structure and macromolecular composition. Results Transcriptional profiling of D. discoideum revealed sets of genes whose expression is enriched in amoebae interacting with different species of bacteria, including sets that appear specific to amoebae interacting with Gram(+), or with Gram(?) bacteria. In a genetic screen utilizing the growth of mutant amoebae on a variety of bacteria as a phenotypic readout, we identified amoebal genes that are only required for growth on Gram(+) bacteria, including one that encodes the cell surface protein gp130, as well as several genes that are only required for growth on Gram(?) bacteria including one that encodes a putative lysozyme, AlyL. These genes are required for parts of the transcriptional response of wild-type amoebae, and this allowed their classification into potential response pathways. Conclusions We have defined genes that are critical for amoebal survival during feeding on Gram(+), or Gram(?), bacteria which we propose form part of a regulatory network that allows D. discoideum to elicit specific cellular responses to different species of bacteria in order to optimize survival. PMID:23664307

Nasser, Waleed; Santhanam, Balaji; Miranda, Edward Roshan; Parikh, Anup; Juneja, Kavina; Rot, Gregor; Dinh, Chris; Chen, Rui; Zupan, Blaz; Shaulsky, Gad; Kuspa, Adam

2014-01-01

336

Variability of community interaction networks in marine reserves and adjacent exploited areas  

USGS Publications Warehouse

Regional and small-scale local oceanographic conditions can lead to high variability in community structure even among similar habitats. Communities with identical species composition can depict distinct networks due to different levels of disturbance as well as physical and biological processes. In this study we reconstruct community networks in four different areas off the Oregon Coast by matching simulated communities with observed dynamics. We compared reserves with harvested areas. Simulations suggested that different community networks, but with the same species composition, can represent each study site. Differences were found in predator-prey interactions as well as non-predatory interactions between community members. In addition, each site can be represented as a set of models, creating alternative stages among sites. The set of alternative models that characterize each study area depicts a sequence of functional responses where each specific model or interaction structure creates different species composition patterns. Different management practices, either in the past or of the present, may lead to alternative communities. Our findings suggest that management strategies should be analyzed at a community level that considers the possible consequences of shifting from one community scenario to another. This analysis provides a novel conceptual framework to assess the consequences of different management options for ecological communities. ?? 2008 Elsevier B.V. All rights reserved.

Montano-Moctezuma, G.; Li, H.W.; Rossignol, P.A.

2008-01-01

337

Predator-vole interactions in northern Europe: the role of small mustelids revised.  

PubMed

The cyclic population dynamics of vole and predator communities is a key phenomenon in northern ecosystems, and it appears to be influenced by climate change. Reports of collapsing rodent cycles have attributed the changes to warmer winters, which weaken the interaction between voles and their specialist subnivean predators. Using population data collected throughout Finland during 1986-2011, we analyse the spatio-temporal variation in the interactions between populations of voles and specialist, generalist and avian predators, and investigate by simulations the roles of the different predators in the vole cycle. We test the hypothesis that vole population cyclicity is dependent on predator-prey interactions during winter. Our results support the importance of the small mustelids for the vole cycle. However, weakening specialist predation during winters, or an increase in generalist predation, was not associated with the loss of cyclicity. Strengthening of delayed density dependence coincided with strengthening small mustelid influence on the summer population growth rates of voles. In conclusion, a strong impact of small mustelids during summers appears highly influential to vole population dynamics, and deteriorating winter conditions are not a viable explanation for collapsing small mammal population cycles. PMID:25355481

Korpela, Katri; Helle, Pekka; Henttonen, Heikki; Korpimäki, Erkki; Koskela, Esa; Ovaskainen, Otso; Pietiäinen, Hannu; Sundell, Janne; Valkama, Jari; Huitu, Otso

2014-12-22

338

Microbial experimental evolution as a novel research approach in the Vibrionaceae and squid-Vibrio symbiosis.  

PubMed

The Vibrionaceae are a genetically and metabolically diverse family living in aquatic habitats with a great propensity toward developing interactions with eukaryotic microbial and multicellular hosts (as either commensals, pathogens, and mutualists). The Vibrionaceae frequently possess a life history cycle where bacteria are attached to a host in one phase and then another where they are free from their host as either part of the bacterioplankton or adhered to solid substrates such as marine sediment, riverbeds, lakebeds, or floating particulate debris. These two stages in their life history exert quite distinct and separate selection pressures. When bound to solid substrates or to host cells, the Vibrionaceae can also exist as complex biofilms. The association between bioluminescent Vibrio spp. and sepiolid squids (Cephalopoda: Sepiolidae) is an experimentally tractable model to study bacteria and animal host interactions, since the symbionts and squid hosts can be maintained in the laboratory independently of one another. The bacteria can be grown in pure culture and the squid hosts raised gnotobiotically with sterile light organs. The partnership between free-living Vibrio symbionts and axenic squid hatchlings emerging from eggs must be renewed every generation of the cephalopod host. Thus, symbiotic bacteria and animal host can each be studied alone and together in union. Despite virtues provided by the Vibrionaceae and sepiolid squid-Vibrio symbiosis, these assets to evolutionary biology have yet to be fully utilized for microbial experimental evolution. Experimental evolution studies already completed are reviewed, along with exploratory topics for future study. PMID:25538686

Soto, William; Nishiguchi, Michele K

2014-01-01

339

Microbial experimental evolution as a novel research approach in the Vibrionaceae and squid-Vibrio symbiosis  

PubMed Central

The Vibrionaceae are a genetically and metabolically diverse family living in aquatic habitats with a great propensity toward developing interactions with eukaryotic microbial and multicellular hosts (as either commensals, pathogens, and mutualists). The Vibrionaceae frequently possess a life history cycle where bacteria are attached to a host in one phase and then another where they are free from their host as either part of the bacterioplankton or adhered to solid substrates such as marine sediment, riverbeds, lakebeds, or floating particulate debris. These two stages in their life history exert quite distinct and separate selection pressures. When bound to solid substrates or to host cells, the Vibrionaceae can also exist as complex biofilms. The association between bioluminescent Vibrio spp. and sepiolid squids (Cephalopoda: Sepiolidae) is an experimentally tractable model to study bacteria and animal host interactions, since the symbionts and squid hosts can be maintained in the laboratory independently of one another. The bacteria can be grown in pure culture and the squid hosts raised gnotobiotically with sterile light organs. The partnership between free-living Vibrio symbionts and axenic squid hatchlings emerging from eggs must be renewed every generation of the cephalopod host. Thus, symbiotic bacteria and animal host can each be studied alone and together in union. Despite virtues provided by the Vibrionaceae and sepiolid squid-Vibrio symbiosis, these assets to evolutionary biology have yet to be fully utilized for microbial experimental evolution. Experimental evolution studies already completed are reviewed, along with exploratory topics for future study.

Soto, William; Nishiguchi, Michele K.

2014-01-01

340

Evolutionary innovation: a bone-eating marine symbiosis.  

PubMed

Symbiotic associations between microbes and invertebrates have resulted in some of the most unusual physiological and morphological adaptations that have evolved in the animal world. We document a new symbiosis between marine polychaetes of the genus Osedax and members of the bacterial group Oceanospirillales, known for heterotrophic degradation of complex organic compounds. These organisms were discovered living on the carcass of a grey whale at 2891 m depth in Monterey Canyon, off the coast of California. The mouthless and gutless worms are unique in their morphological specializations used to obtain nutrition from decomposing mammalian bones. Adult worms possess elaborate posterior root-like extensions that invade whale bone and contain bacteriocytes that house intracellular symbionts. Stable isotopes and fatty acid analyses suggest that these unusual endosymbionts are likely responsible for the nutrition of this locally abundant and reproductively prolific deep-sea worm. PMID:16104860

Goffredi, Shana K; Orphan, Victoria J; Rouse, Greg W; Jahnke, Linda; Embaye, Tsegeria; Turk, Kendra; Lee, Ray; Vrijenhoek, Robert C

2005-09-01

341

Unfolding the secrets of coral-algal symbiosis.  

PubMed

Dinoflagellates from the genus Symbiodinium form a mutualistic symbiotic relationship with reef-building corals. Here we applied massively parallel Illumina sequencing to assess genetic similarity and diversity among four phylogenetically diverse dinoflagellate clades (A, B, C and D) that are commonly associated with corals. We obtained more than 30?000 predicted genes for each Symbiodinium clade, with a majority of the aligned transcripts corresponding to sequence data sets of symbiotic dinoflagellates and <2% of sequences having bacterial or other foreign origin. We report 1053 genes, orthologous among four Symbiodinium clades, that share a high level of sequence identity to known proteins from the SwissProt (SP) database. Approximately 80% of the transcripts aligning to the 1053 SP genes were unique to Symbiodinium species and did not align to other dinoflagellates and unrelated eukaryotic transcriptomes/genomes. Six pathways were common to all four Symbiodinium clades including the phosphatidylinositol signaling system and inositol phosphate metabolism pathways. The list of Symbiodinium transcripts common to all four clades included conserved genes such as heat shock proteins (Hsp70 and Hsp90), calmodulin, actin and tubulin, several ribosomal, photosynthetic and cytochrome genes and chloroplast-based heme-containing cytochrome P450, involved in the biosynthesis of xanthophylls. Antioxidant genes, which are important in stress responses, were also preserved, as were a number of calcium-dependent and calcium/calmodulin-dependent protein kinases that may play a role in the establishment of symbiosis. Our findings disclose new knowledge about the genetic uniqueness of symbiotic dinoflagellates and provide a list of homologous genes important for the foundation of coral-algal symbiosis.The ISME Journal advance online publication, 24 October 2014; doi:10.1038/ismej.2014.182. PMID:25343511

Rosic, Nedeljka; Ling, Edmund Yew Siang; Chan, Chon-Kit Kenneth; Lee, Hong Ching; Kaniewska, Paulina; Edwards, David; Dove, Sophie; Hoegh-Guldberg, Ove

2014-10-24

342

Harnessing mosquito-Wolbachia symbiosis for vector and disease control.  

PubMed

Mosquito species, members of the genera Aedes, Anopheles and Culex, are the major vectors of human pathogens including protozoa (Plasmodium sp.), filariae and of a variety of viruses (causing dengue, chikungunya, yellow fever, West Nile). There is lack of efficient methods and tools to treat many of the diseases caused by these major human pathogens, since no efficient vaccines or drugs are available; even in malaria where insecticide use and drug therapies have reduced incidence, 219 million cases still occurred in 2010. Therefore efforts are currently focused on the control of vector populations. Insecticides alone are insufficient to control mosquito populations since reduced susceptibility and even resistance is being observed more and more frequently. There is also increased concern about the toxic effects of insecticides on non-target (even beneficial) insect populations, on humans and the environment. During recent years, the role of symbionts in the biology, ecology and evolution of insect species has been well-documented and has led to suggestions that they could potentially be used as tools to control pests and therefore diseases. Wolbachia is perhaps the most renowned insect symbiont, mainly due to its ability to manipulate insect reproduction and to interfere with major human pathogens thus providing new avenues for pest control. We herein present recent achievements in the field of mosquito-Wolbachia symbiosis with an emphasis on Aedes albopictus. We also discuss how Wolbachia symbiosis can be harnessed for vector control as well as the potential to combine the sterile insect technique and Wolbachia-based approaches for the enhancement of population suppression programs. PMID:24252486

Bourtzis, Kostas; Dobson, Stephen L; Xi, Zhiyong; Rasgon, Jason L; Calvitti, Maurizio; Moreira, Luciano A; Bossin, Hervé C; Moretti, Riccardo; Baton, Luke Anthony; Hughes, Grant L; Mavingui, Patrick; Gilles, Jeremie R L

2014-04-01

343

The evolutive role of symbiosis and the external environment: a mathematical model  

NASA Astrophysics Data System (ADS)

By recourse to an evolutive mathematical model recently introduced in the literature we investigate major macro-aspects of an ecosystem's evolution, such as symbiosis and the influence of (variable) environmental effects.

Fernandez, J.; Plastino, A.; Diambra, L.

344

Industrial symbiosis and the successional city : adapting exchange networks to energy constraints  

E-print Network

Industrial ecology offers models for hybridizing technology and natural processes, human desires and the capacities of ecosystems in an effort to reconcile the expanding conflicts among them. Industrial symbiosis applies ...

Terway, Timothy M. (Timothy Michael)

2007-01-01

345

The engine of the reef: photobiology of the coral-algal symbiosis.  

PubMed

Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral-algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral-algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral-algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral-algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing "omics" fields will provide new insights into the coral-algal symbiosis. Greater physiological and ecological understanding of the coral-algal symbiosis is needed for protection and conservation of coral reefs. PMID:25202301

Roth, Melissa S

2014-01-01

346

The engine of the reef: photobiology of the coral–algal symbiosis  

PubMed Central

Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral–algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral–algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral–algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral–algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing “omics” fields will provide new insights into the coral–algal symbiosis. Greater physiological and ecological understanding of the coral–algal symbiosis is needed for protection and conservation of coral reefs. PMID:25202301

Roth, Melissa S.

2014-01-01

347

COMBINED AND INTERACTIVE EFFECTS OF GLOBAL CLIMATE CHANGE AND TOXICANTS ON POPULATIONS AND COMMUNITIES  

PubMed Central

Increased temperature and other environmental effects of global climate change (GCC) have documented impacts on many species (e.g., polar bears, amphibians, coral reefs) as well as on ecosystem processes and species interactions (e.g., the timing of predator–prey interactions). A challenge for ecotoxicologists is to predict how joint effects of climatic stress and toxicants measured at the individual level (e.g., reduced survival and reproduction) will be manifested at the population level (e.g., population growth rate, extinction risk) and community level (e.g., species richness, food-web structure). The authors discuss how population- and community-level responses to toxicants under GCC are likely to be influenced by various ecological mechanisms. Stress due to GCC may reduce the potential for resistance to and recovery from toxicant exposure. Long-term toxicant exposure can result in acquired tolerance to this stressor at the population or community level, but an associated cost of tolerance may be the reduced potential for tolerance to subsequent climatic stress (or vice versa). Moreover, GCC can induce large-scale shifts in community composition, which may affect the vulnerability of communities to other stressors. Ecological modeling based on species traits (representing life-history traits, population vulnerability, sensitivity to toxicants, and sensitivity to climate change) can be a promising approach for predicting combined impacts of GCC and toxicants on populations and communities. Environ. Toxicol. Chem. 2013;32:49–61. © 2012 SETAC PMID:23147390

Moe, S Jannicke; De Schamphelaere, Karel; Clements, William H; Sorensen, Mary T; Van den Brink, Paul J; Liess, Matthias

2013-01-01

348

Diet of lake trout and burbot in northern Lake Michigan during spring: Evidence of ecological interaction  

USGS Publications Warehouse

We used analyses of burbot (Lota lota) and lake trout (Salvelinus namaycush) diets taken during spring gill-net surveys in northern Lake Michigan in 2006-2008 to investigate the potential for competition and predator-prey interactions between these two species. We also compared our results to historical data from 1932. During 2006-2008, lake trout diet consisted mainly of alewives (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax), whereas burbot utilized a much wider prey base including round goby (Neogobius melanostomus), rainbow smelt, alewives, and sculpins. Using the Schoener's diet overlap index, we found a higher potential for interspecific competition in 1932 than in 2006-2008, though diet overlap was not significant in either time period. No evidence of cannibalism by lake trout or lake trout predation on burbot was found in either time period. In 2006-2008, however, lake trout composed 5.4% (by weight) of burbot diet. To determine whether this predation could be having an impact on lake trout rehabilitation efforts in northern Lake Michigan, we developed a bioenergetic-based consumption estimate for burbot on Boulder Reef (a representative reef within the Northern Refuge) and found that burbot alone can consume a considerable proportion of the yearling lake trout stocked annually, depending on burbot density. Overall, we conclude that predation, rather than competition, is the more important ecological interaction between burbot and lake trout, and burbot predation may be contributing to the failed lake trout rehabilitation efforts in Lake Michigan.

Jacobs, Gregory R.; Madenjian, Charles P.; Bunnell, David B.; Holuszko, Jeffrey D.

2010-01-01

349

Life at the limits: peculiar features of lichen symbiosis related to extreme environmental factors  

NASA Astrophysics Data System (ADS)

A lichen is a symbiotic association formed by a mycobiont (fungi), a photobiont (algae) and/or a cyanobacteria. The special symbiotic contact and interaction between the bionts in a lichen is a prerequisite for maintainance of viability for each of them during influences by harsh environmental factors. In nature parameters like UV radiation, low or high temperatures and dryness may have a destructive impact on all life functions of an organism. But with lichens the evolution has created a peculiar symbiosis which enables a wide variety of lichen species to colonize habitats where their separate bionts would not be able to survive. The results of our investigations are demonstrating these aspects (de Vera et al. 2003, 2004).We have already investigated the viability of the entire lichen thallus, the embedded spores in lichen apothecia (fruiting bodies) as well as the isolated spores and isolated photobionts after exposure to most extreme conditions caused by simulated space parameters as extreme UV radiation and vacuum. The results presented here focuse on the survival capacity of the isolated photobionts from the two lichen species Xanthoria elegans and Fulgensia bracteata which are not protected by the fungal structure of the lichen thallus. They are based on examinations using a Confocal Laser Scanning Microscopy (CLSM), analysed by modern methods of the Image Tool Program and by culture experiments. In contrast to photobionts embedded in the entire lichen thallus the isolated photobionts are much more sensitve to the extreme conditions of UV radiation and vaccum: while 50 % of the bionts in an entire lichen thallus are able to cope with simulated extreme space conditions (UV-radiation: ? quad ? 160nm and vacuum: p = 10-5 Pa) during an exposure time of 2 weeks, the viability of the isolated photobiont cells was already decreasing after 2 hours of exposure. All photobiont cells were inactivated after longer exposure times of about 8 hours. Further more analysis concerning the UV and vacuum effect on the cultured mycobiont will demonstrate the peculiar function of symbiosis in a lichen system to withstand extreme environmental conditions. References: de Vera JP et al. 2003, Int. J. Astrobiol. 1 (4), 285-293 de Vera JP et al. 2004, Adv. Space Res. (in press)

de Vera, J.-P.; Horneck, G.; Rettberg, P.; Ott, S.

350

[Symbiosis between the nodule bacterium Sinorhizobium meliloti and alfalfa (Medicago sativa) under salinization conditions].  

PubMed

Two hundred forty-three isolates of alfalfa nodule bacteria (Sinorhizobium meliloti) were obtained from legume nodules and soils sampled in the northern Aral region, experiencing secondary salinization. Isolates obtained from nodules (N isolates) were significantly more salt-tolerant than those from soils (S isolates) when grown in a liquid medium with 3.5% NaCl. It was found that wild species of alfalfa, melilot, and trigonella preferably formed symbioses with salt-tolerant nodule bacteria in both salinized and nonsalinized soils. Only two alfalfa species, Medicago falcata and M. trautvetteri, formed efficient symbioses in soils contrasting in salinity. The formation of efficient symbiosis with alfalfa in the presence of 0.6% NaCl was studied in 36 isolates (N and S) differing in salt tolerance and symbiotic efficiency. Fifteen isolates formed efficient symbioses in the presence of salt. The increase in the dry weight of the plants was 25-68% higher than in the control group. The efficiency of symbiotic interaction under salinization conditions depended on the efficiency of the isolates under standard conditions but did not correlate with the source of nodule bacteria (soil or nodule) or their salt tolerance. The results indicate that nodule bacterium strains forming efficient symbioses under salinization conditions can be found. PMID:16579450

Ibragimova, M V; Rumiantseva, M L; Onishchuk, O P; Belova, V S; Kurchak, O N; Andronov, E E; Dziubenko, N I; Simarov, B V

2006-01-01

351

A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis  

PubMed Central

Assimilation of inorganic nitrogen from nutrient-poor tropical seas is an essential challenge for the endosymbiosis between reef-building corals and dinoflagellates. Despite the clear evidence that reef-building corals can use ammonium as inorganic nitrogen source, the dynamics and precise roles of host and symbionts in this fundamental process remain unclear. Here, we combine high spatial resolution ion microprobe imaging (NanoSIMS) and pulse-chase isotopic labeling in order to track the dynamics of ammonium incorporation within the intact symbiosis between the reef-building coral Acropora aspera and its dinoflagellate symbionts. We demonstrate that both dinoflagellate and animal cells have the capacity to rapidly fix nitrogen from seawater enriched in ammonium (in less than one hour). Further, by establishing the relative strengths of the capability to assimilate nitrogen for each cell compartment, we infer that dinoflagellate symbionts can fix 14 to 23 times more nitrogen than their coral host cells in response to a sudden pulse of ammonium-enriched seawater. Given the importance of nitrogen in cell maintenance, growth and functioning, the capability to fix ammonium from seawater into the symbiotic system may be a key component of coral nutrition. Interestingly, this metabolic response appears to be triggered rapidly by episodic nitrogen availability. The methods and results presented in this study open up for the exploration of dynamics and spatial patterns associated with metabolic activities and nutritional interactions in a multitude of organisms that live in symbiotic relationships. PMID:22222466

Pernice, Mathieu; Meibom, Anders; Van Den Heuvel, Annamieke; Kopp, Christophe; Domart-Coulon, Isabelle; Hoegh-Guldberg, Ove; Dove, Sophie

2012-01-01

352

RAM1 and RAM2 function and expression during Arbuscular Mycorrhizal Symbiosis and Aphanomyces euteiches colonization  

PubMed Central

The establishment of the symbiotic interaction between plants and arbuscular mycorrhizal (AM) fungi requires a very tight molecular dialogue. Most of the known plant genes necessary for this process are also required for nodulation in legume plants and only very recently genes specifically required for AM symbiosis have been described. Among them we identified RAM (Reduced Arbuscular Mycorrhization)1 and RAM2, a GRAS transcription factor and a GPAT respectively, which are critical for the induction of hyphopodia formation in AM fungi. RAM2 function is also required for appressoria formation by the pathogen Phytophtora palmivora. Here we investigated the activity of RAM1 and RAM2 promoters during mycorrhization and the role of RAM1 and RAM2 during infection by the root pathogen Aphanomyces euteiches. pRAM1 is activated without cell type specificity before hyphopodia formation, while pRAM2 is specifically active in arbusculated cells providing evidence for a potential function of cutin momomers in the regulation of arbuscule formation. Furthermore, consistent with what we observed with Phytophtora, RAM2 but not RAM1 is required during Aphanomyces euteiches infection. PMID:24270627

Gobbato, Enrico; Wang, Ertao; Higgins, Gillian; Bano, Syeda Asma; Henry, Christine; Schultze, Michael; Oldroyd, Giles ED

2013-01-01

353

Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities.  

PubMed

Ocean warming and acidification are serious threats to marine life. While each stressor alone has been studied in detail, their combined effects on the outcome of ecological interactions are poorly understood. We measured predation rates and predator selectivity of two closely-related species of damselfish exposed to a predatory dottyback. We found temperature and CO2 interacted synergistically on overall predation rate, but antagonistically on predator selectivity. Notably, elevated CO2 or temperature alone reversed predator selectivity, but the interaction between the two stressors cancelled selectivity. Routine metabolic rates of the two prey showed strong species differences in tolerance to CO2 and not temperature, but these differences did not correlate with recorded mortality. This highlights the difficulty of linking species-level physiological tolerance to resulting ecological outcomes. This study is the first to document both synergistic and antagonistic effects of elevated CO2 and temperature on a crucial ecological process like predator-prey dynamics. This article is protected by copyright. All rights reserved. PMID:25430991

Ferrari, Maud C O; Munday, Philip L; Rummer, Jodie L; McCormick, Mark I; Corkill, Katherine; Watson, Sue-Ann; Allan, Bridie J M; Meekan, Mark G; Chivers, Douglas P

2014-11-27

354

Modelling multi-species interactions in the Barents Sea ecosystem with special emphasis on minke whales and their interactions with cod, herring and capelin  

NASA Astrophysics Data System (ADS)

The Barents Sea ecosystem, one of the most productive and commercially important ecosystems in the world, has experienced major fluctuations in species abundance the past five decades. Likely causes are natural variability, climate change, overfishing and predator-prey interactions. In this study, we use an age-length structured multi-species model (Gadget, Globally applicable Area-Disaggregated General Ecosystem Toolbox) to analyse the historic population dynamics of major fish and marine mammal species in the Barents Sea. The model was used to examine possible effects of a number of plausible biological and fisheries scenarios. The results suggest that changes in cod mortality from fishing or cod cannibalism levels have the largest effect on the ecosystem, while changes to the capelin fishery have had only minor effects. Alternate whale migration scenarios had only a moderate impact on the modelled ecosystem. Indirect effects are seen to be important, with cod fishing pressure, cod cannibalism and whale predation on cod having an indirect impact on capelin, emphasising the importance of multi-species modelling in understanding and managing ecosystems. Models such as the one presented here provide one step towards an ecosystem-based approach to fisheries management.

Lindstrøm, Ulf; Smout, Sophie; Howell, Daniel; Bogstad, Bjarte

2009-10-01

355

Iron: an essential micronutrient for the legume-rhizobium symbiosis  

PubMed Central

Legumes, which develop a symbiosis with nitrogen-fixing bacteria, have an increased demand for iron. Iron is required for the synthesis of iron-containing proteins in the host, including the highly abundant leghemoglobin, and in bacteroids for nitrogenase and cytochromes of the electron transport chain. Deficiencies in iron can affect initiation and development of the nodule. Within root cells, iron is chelated with organic acids such as citrate and nicotianamine and distributed to other parts of the plant. Transport to the nitrogen-fixing bacteroids in infected cells of nodules is more complicated. Formation of the symbiosis results in bacteroids internalized within root cortical cells of the legume where they are surrounded by a plant-derived membrane termed the symbiosome membrane (SM). This membrane forms an interface that regulates nutrient supply to the bacteroid. Consequently, iron must cross this membrane before being supplied to the bacteroid. Iron is transported across the SM as both ferric and ferrous iron. However, uptake of Fe(II) by both the symbiosome and bacteroid is faster than Fe(III) uptake. Members of more than one protein family may be responsible for Fe(II) transport across the SM. The only Fe(II) transporter in nodules characterized to date is GmDMT1 (Glycine max divalent metal transporter 1), which is located on the SM in soybean. Like the root plasma membrane, the SM has ferric iron reductase activity. The protein responsible has not been identified but is predicted to reduce ferric iron accumulated in the symbiosome space prior to uptake by the bacteroid. With the recent publication of a number of legume genomes including Medicago truncatula and G. max, a large number of additional candidate transport proteins have been identified. Members of the NRAMP (natural resistance-associated macrophage protein), YSL (yellow stripe-like), VIT (vacuolar iron transporter), and ZIP (Zrt-, Irt-like protein) transport families show enhanced expression in nodules and are expected to play a role in the transport of iron and other metals across symbiotic membranes. PMID:24062758

Brear, Ella M.; Day, David A.; Smith, Penelope M. C.

2013-01-01

356

Live imaging of symbiosis: spatiotemporal infection dynamics of a GFP-labelled Burkholderia symbiont in the bean bug Riptortus pedestris.  

PubMed

Many insects possess endosymbiotic bacteria inside their body, wherein intimate interactions occur between the partners. While recent technological advancements have deepened our understanding of metabolic and evolutionary features of the symbiont genomes, molecular mechanisms underpinning the intimate interactions remain difficult to approach because the insect symbionts are generally uncultivable. The bean bug Riptortus pedestris is associated with the betaproteobacterial Burkholderia symbiont in a posterior region of the midgut, which develops numerous crypts harbouring the symbiont extracellularly. Distinct from other insect symbiotic systems, R. pedestris acquires the Burkholderia symbiont not by vertical transmission but from the environment every generation. By making use of the cultivability and the genetic tractability of the symbiont, we constructed a transgenic Burkholderia strain labelled with green fluorescent protein (GFP), which enabled detailed observation of spatiotemporal dynamics and the colonization process of the symbiont in freshly prepared specimens. The symbiont live imaging revealed that, at the second instar, colonization of the symbiotic midgut M4 region started around 6 h after inoculation (hai). By 24 hai, the symbiont cells appeared in the main tract and also in several crypts of the M4. By 48 hai, most of the crypts were colonized by the symbiont cells. By 72 hai, all the crypts were filled up with the symbiont cells and the symbiont localization pattern continued during the subsequent nymphal development. Quantitative PCR of the symbiont confirmed the infection dynamics quantitatively. These results highlight the stinkbug-Burkholderia gut symbiosis as an unprecedented model for comprehensive understanding of molecular mechanisms underpinning insect symbiosis. PMID:24103110

Kikuchi, Yoshitomo; Fukatsu, Takema

2014-03-01

357

Interactive Resource Planning—An Anticipative Concept in the Simulation-Based Decision Support System EXPOSIM  

NASA Astrophysics Data System (ADS)

In our research we intend to use experiments to study human behavior in a simulation environment based on a simple Lotka-Volterra predator-prey ecology. The aim is to study the influence of participants' harvesting strategies and certain personality traits derived from [1] on the outcome in terms of sustainability and economic performance. Such an approach is embedded in a research program which intends to develop and understand interactive resource planning processes. We present the general framework as well as the new decision support system EXPOSIM. The key element is the combination of experimental design, analytical understanding of time-discrete systems (especially Lotka-Volterra systems) and economic performance. In the first part, the general role of laboratory experiments is discussed. The second part summarizes the concept of sustainable development. It is taken from [18]. As we use Lotka-Volterra systems as the basis for our simulations a theoretical framework is described afterwards. It is possible to determine optimal behavior for those systems. The empirical setting is based on the empirical approach that the subjects are put into the position of a decision-maker. They are able to model the environment in such a way that harvesting can be observed. We suggest an experimental setting which might lead to new insights in an anticipatory sense.

Leopold-Wildburger, Ulrike; Pickl, Stefan

2008-10-01

358

Mechanisms driving change: altered species interactions and ecosystem function through global warming.  

PubMed

1. We review the mechanisms behind ecosystem functions, the processes that facilitate energy transfer along food webs, and the major processes that allow the cycling of carbon, oxygen and nitrogen, and use case studies to show how these have already been, and will continue to be, altered by global warming. 2. Increased temperatures will affect the interactions between heterotrophs and autotrophs (e.g. pollination and seed dispersal), and between heterotrophs (e.g. predators-prey, parasites/pathogens-hosts), with generally negative ramifications for important ecosystem services (functions that provide direct benefit to human society such as pollination) and potential for heightened species co-extinction rates. 3. Mitigation of likely impacts of warming will require, in particular, the maintenance of species diversity as insurance for the provision of basic ecosystem services. Key to this will be long-term monitoring and focused research that seek to maintain ecosystem resilience in the face of global warming. 4. We provide guidelines for pursuing research that quantifies the nexus between ecosystem function and global warming. These include documentation of key functional species groups within systems, and understanding the principal outcomes arising from direct and indirect effects of a rapidly warming environment. Localized and targeted research and monitoring, complemented with laboratory work, will determine outcomes for resilience and guide adaptive conservation responses and long-term planning. PMID:20487086

Traill, Lochran W; Lim, Matthew L M; Sodhi, Navjot S; Bradshaw, Corey J A

2010-09-01

359

The effects of SO sub 2 on Azolla - Anabaena symbiosis  

SciTech Connect

Cultures of Azolla pinnata containing Anabaena were investigated as a sensitive and reproducible bioindicator of air pollution. Three equal doses of SO{sub 2} (week*ppb: 1*100, 2*50, 4*25) were applied to Azolla cultures growing in nitrogen-free medium in a specially-designed exposure system. Exposure to high concentrations of SO{sub 2} showed highly significant reductions in growth of the fern, while nitrogen fixation and heterocyst development were severely damaged. This was associated with a reduction of protein content in the SO{sub 2}-exposed ferns and again more significant at higher SO{sub 2} levels. There was a variation in the absolute amount of the individual pigments between SO{sub 2} doses and/or treatments which was related to the physiological development of the ferns throughout the fumigations. Moreover, the ratio of violaxanthin to antheraxanthin in the 100 ppb SO{sub 2}-treated ferns was significantly higher than that in the clean air-grown ferns. The results clearly demonstrate that SO{sub 2} has adverse effects on the symbiosis and suggest that this fern is a promising bioindicator of air pollution and a very good model to investigate the inter-relationships between photosynthesis, nitrogen fixation and air pollution stress.

Jaeseoun Hur; Wellburn, A.R. (Lancaster Univ. (United Kingdom))

1991-05-01

360

Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms  

PubMed Central

Harnessing chemosynthetic symbionts is a recurring evolutionary strategy. Eukaryotes from six phyla as well as one archaeon have acquired chemoautotrophic sulfur-oxidizing bacteria. In contrast to this broad host diversity, known bacterial partners apparently belong to two classes of bacteria—the Gamma- and Epsilonproteobacteria. Here, we characterize the intracellular endosymbionts of the mouthless catenulid flatworm genus Paracatenula as chemoautotrophic sulfur-oxidizing Alphaproteobacteria. The symbionts of Paracatenula galateia are provisionally classified as “Candidatus Riegeria galateiae” based on 16S ribosomal RNA sequencing confirmed by fluorescence in situ hybridization together with functional gene and sulfur metabolite evidence. 16S rRNA gene phylogenetic analysis shows that all 16 Paracatenula species examined harbor host species-specific intracellular Candidatus Riegeria bacteria that form a monophyletic group within the order Rhodospirillales. Comparing host and symbiont phylogenies reveals strict cocladogenesis and points to vertical transmission of the symbionts. Between 33% and 50% of the body volume of the various worm species is composed of bacterial symbionts, by far the highest proportion among all known endosymbiotic associations between bacteria and metazoans. This symbiosis, which likely originated more than 500 Mya during the early evolution of flatworms, is the oldest known animal–chemoautotrophic bacteria association. The distant phylogenetic position of the symbionts compared with other mutualistic or parasitic Alphaproteobacteria promises to illuminate the common genetic predispositions that have allowed several members of this class to successfully colonize eukaryote cells. PMID:21709249

Gruber-Vodicka, Harald Ronald; Dirks, Ulrich; Leisch, Nikolaus; Stoecker, Kilian; Bulgheresi, Silvia; Heindl, Niels Robert; Horn, Matthias; Lott, Christian; Loy, Alexander; Wagner, Michael; Ott, Jörg

2011-01-01

361

Widespread fitness alignment in the legume-rhizobium symbiosis.  

PubMed

Although 'cheaters' potentially destabilize the legume-rhizobium mutualism, we lack a comprehensive review of host-symbiont fitness correlations. Studies measuring rhizobium relative or absolute fitness and host benefit are surveyed. Mutant studies are tallied for evidence of pleiotropy; studies of natural strains are analyzed with meta-analysis. Of 80 rhizobium mutations, 19 decrease both partners' fitness, four increase both, two increase host fitness but decrease symbiont fitness and none increase symbiont fitness at the host's expense. The pooled correlation between rhizobium nodulation competitiveness and plant aboveground biomass is 0.65 across five experiments that compete natural strains against a reference, whereas, across 14 experiments that compete rhizobia against soil populations or each other, the pooled correlation is 0.24. Pooled correlations between aboveground biomass and nodule number and nodule biomass are 0.76 and 0.83. Positive correlations between legume and rhizobium fitness imply that most ineffective rhizobia are 'defective' rather than 'defectors'; this extends to natural variants, with only one significant fitness conflict. Most studies involve non-coevolved associations, indicating that fitness alignment is the default state. Rhizobium mutations that increase both host and symbiont fitness suggest that some plants maladaptively restrict symbiosis with novel strains. PMID:22404688

Friesen, Maren L

2012-06-01

362

Legumes select symbiosis island sequence variants in Bradyrhizobium.  

PubMed

Bradyrhizobium strains sampled from 14 legume genera native to eastern North America showed substantial host-related phylogenetic clustering at three loci in the symbiotic island (SI) region (nodC, nifD, nifH), indicating selection of distinct suites of SI lineages by different legumes. Bacteria assorted consistently with particular legumes across two regions separated by 800?km, implying recurrent assembly of the same symbiotic combinations. High genetic polymorphism of all three SI loci relative to four nonsymbiotic loci supported the inference that a form of multiple-niche balancing selection has acted on the SI region, arising from differential symbiont utilization by different legume taxa. Extensive discordance between the tree for SI variants and a phylogenetic tree inferred for four housekeeping loci implied that lateral transfer of the symbiosis island region has been common (at least 26 transfer events among 85 Bradyrhizobium strains analysed). Patterns of linkage disequilibrium also supported the conclusion that recombination has impacted symbiotic and nonsymbiotic regions unequally. The high prevalence of lateral transfer suggests that acquisition of a novel SI variant may often confer a strong selective advantage for recipient cells. PMID:22369247

Parker, Matthew A

2012-04-01

363

Microbial fuel cells for robotics: energy autonomy through artificial symbiosis.  

PubMed

The development of the microbial fuel cell (MFC) technology has seen an enormous growth over the last hundred years since its inception by Potter in 1911. The technology has reached a level of maturity that it is now considered to be a field in its own right with a growing scientific community. The highest level of activity has been recorded over the last decade and it is perhaps considered commonplace that MFCs are primarily suitable for stationary, passive wastewater treatment applications. Sceptics have certainly not considered MFCs as serious contenders in the race for developing renewable energy technologies. Yet this is the only type of alternative system that can convert organic waste-widely distributed around the globe-directly into electricity, and therefore, the only technology that will allow artificial agents to autonomously operate in a plethora of environments. This Minireview describes the history and current state-of-the-art regarding MFCs in robotics and their vital role in artificial symbiosis and autonomy. Furthermore, the article demonstrates how pursuing practical robotic applications can provide insights of the core MFC technology in general. PMID:22674692

Ieropoulos, Ioannis A; Greenman, John; Melhuish, Chris; Horsfield, Ian

2012-06-01

364

Microgravity effects on the legume/Rhizobium symbiosis  

NASA Astrophysics Data System (ADS)

Symbiotic nitrogen fixation is of critical importance to world agriculture and likely will be a critical part of life support systems developed for prolonged missions in space. Bacteroid formation, an essential step in an effective Dutch White Clover/Rhizobium leguminosarum bv trifolii symbiosis, is induced by succinic acid which is produced by the plant and which is bound and incorporated by the bacterium. Aspirin mimics succinate in its role as a bacteroid inducer and measures of aspirin binding mimiced measurements of succinate binding. In normal gravity (1×g), rhizobium bacteria immediately bound relatively high levels of aspirin (or succinate) in a readily reversible manner. Within a few seconds a portion of this initially bound aspirin became irreversibly bound. In the microgravity environment aboard the NASA 930 aircraft, rhizobia did not display the initial reversible binding of succinate, but did display a similar kinetic pattern of irreversible binding, and ultimately bound 32% more succinate (Acta Astronautica 36:129-133, 1995.) In normal gravity succinate treated cells stop dividing and swell to their maximum size (twice the normal cell volume) within a time equivalent to the time required for two normal cell doublings. Swelling in microgravity was tested in FPA and BPM sample holders aboard the space shuttle (USML-1, and STS-54, 57, and 60.) The behavior of cells in the two sample holders was similar, and swelling behavior of cells in microgravity was identical to behavior in normal gravity.

Urban, James E.

1997-01-01

365

Effect of Predator Removal on Greater Sage-Grouse (Centrocercus urophasianus) Ecology in the Bighorn Basin Conservation Area of Wyoming.  

E-print Network

?? The decline of greater sage-grouse (Centrocercus urophasianus) populations across western North America has intensified conservation, research, and management efforts. Predator-prey interactions have been the… (more)

Orning, Elizabeth Kari

2013-01-01

366

Journal of Animal Ecology 2002  

E-print Network

body condition. 2. I studied predation in snowshoe hares (Lepus americanus, Erxleben) when food-words: body condition, Lepus americanus, nutrition, predator­prey interactions, predation, prey selection

367

A plant receptor-like kinase required for both bacterial and fungal symbiosis.  

PubMed

Most higher plant species can enter a root symbiosis with arbuscular mycorrhizal fungi, in which plant carbon is traded for fungal phosphate. This is an ancient symbiosis, which has been detected in fossils of early land plants. In contrast, the nitrogen-fixing root nodule symbioses of plants with bacteria evolved more recently, and are phylogenetically restricted to the rosid I clade of plants. Both symbioses rely on partially overlapping genetic programmes. We have identified the molecular basis for this convergence by cloning orthologous SYMRK ('symbiosis receptor-like kinase') genes from Lotus and pea, which are required for both fungal and bacterial recognition. SYMRK is predicted to have a signal peptide, an extracellular domain comprising leucine-rich repeats, a transmembrane and an intracellular protein kinase domain. Lotus SYMRK is required for a symbiotic signal transduction pathway leading from the perception of microbial signal molecules to rapid symbiosis-related gene activation. The perception of symbiotic fungi and bacteria is mediated by at least one common signalling component, which could have been recruited during the evolution of root nodule symbioses from the already existing arbuscular mycorrhiza symbiosis. PMID:12087405

Stracke, Silke; Kistner, Catherine; Yoshida, Satoko; Mulder, Lonneke; Sato, Shusei; Kaneko, Takakazu; Tabata, Satoshi; Sandal, Niels; Stougaard, Jens; Szczyglowski, Krzysztof; Parniske, Martin

2002-06-27

368

Thiol-based redox signaling in the nitrogen-fixing symbiosis  

PubMed Central

In nitrogen poor soils legumes establish a symbiotic interaction with rhizobia that results in the formation of root nodules. These are unique plant organs where bacteria differentiate into bacteroids, which express the nitrogenase enzyme complex that reduces atmospheric N 2 to ammonia. Nodule metabolism requires a tight control of the concentrations of reactive oxygen and nitrogen species (RONS) so that they can perform useful signaling roles while avoiding nitro-oxidative damage. In nodules a thiol-dependent regulatory network that senses, transmits and responds to redox changes is starting to be elucidated. A combination of enzymatic, immunological, pharmacological and molecular analyses has allowed us to conclude that glutathione and its legume-specific homolog, homoglutathione, are abundant in meristematic and infected cells, that their spatio-temporally distribution is correlated with the corresponding (homo)glutathione synthetase activities, and that they are crucial for nodule development and function. Glutathione is at high concentrations in the bacteroids and at moderate amounts in the mitochondria, cytosol and nuclei. Less information is available on other components of the network. The expression of multiple isoforms of glutathione peroxidases, peroxiredoxins, thioredoxins, glutaredoxins and NADPH-thioredoxin reductases has been detected in nodule cells using antibodies and proteomics. Peroxiredoxins and thioredoxins are essential to regulate and in some cases to detoxify RONS in nodules. Further research is necessary to clarify the regulation of the expression and activity of thiol redox-active proteins in response to abiotic, biotic and developmental cues, their interactions with downstream targets by disulfide-exchange reactions, and their participation in signaling cascades. The availability of mutants and transgenic lines will be crucial to facilitate systematic investigations into the function of the various proteins in the legume-rhizobial symbiosis. PMID:24133498

Frendo, Pierre; Matamoros, Manuel A.; Alloing, Geneviève; Becana, Manuel

2013-01-01

369

Understanding context-dependency in plant–microbe symbiosis: The influence of abiotic and biotic contexts on host fitness and the rate of symbiont transmission  

Microsoft Academic Search

Understanding the dynamics of a hereditary symbiosis requires testing how ecological factors alter not only the fitness consequences of the symbiosis, but also the rate of symbiont transmission to the next generation. The relative importance of these two mechanisms remains unresolved because studies have not simultaneously examined how the ecological context of the symbiosis influences both costs\\/benefits and the rate

Andrew J. Davitt; Chris Chen; Jennifer A. Rudgers

2011-01-01

370

Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory NolR  

Technology Transfer Automated Retrieval System (TEKTRAN)

The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory...

371

Genome-Wide Functional Divergence after the Symbiosis of Proteobacteria with Insects Unraveled through a Novel Computational Approach  

Microsoft Academic Search

Symbiosis has been among the most important evolutionary steps to generate biological complexity. The establishment of symbiosis required an intimate metabolic link between biological systems with different complexity levels. The strict endo-cellular symbiotic bacteria of insects are beautiful examples of the metabolic coupling between organisms belonging to different kingdoms, a eukaryote and a prokaryote. The host (eukaryote) provides the endosymbiont

Christina Toft; Tom A. Williams; Mario A. Fares

2009-01-01

372

Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis  

Microsoft Academic Search

In the arbuscular mycorrhizal symbiosis, the fungal symbiont colonizes root cortical cells, where it establishes differentiated hyphae called arbuscules. As each arbuscule develops, the cortical cell undergoes a transient reorganization and envelops the arbuscule in a novel symbiosis-specific membrane, called the periarbuscular membrane. The periarbuscular membrane, which is continuous with the plant plasma membrane of the cortical cell, is a

Nathan Pumplin; Maria J. Harrison

2009-01-01

373

Electronic copy available at: http://ssrn.com/abstract=2014754 Joshua M. Pearce, "Industrial Symbiosis for Very Large Scale Photovoltaic  

E-print Network

Electronic copy available at: http://ssrn.com/abstract=2014754 Joshua M. Pearce, "Industrial://dx.doi.org/10.1016/j.renene.2007.07.002 Industrial Symbiosis of Very Large Scale Photovoltaic Manufacturing energy demands. This article explores utilizing industrial symbiosis to obtain economies of scale

Paris-Sud XI, Université de

374

Vertebrate diets derived from trophically transmitted fish parasites in the Bothnian Bay  

Microsoft Academic Search

Parasites that are transmitted through predator–prey interactions may be used as indicators of trophic relationships between\\u000a organisms. Yet, they are rarely used as such in the construction of topological (predator–prey) food webs. We constructed\\u000a food webs of vertebrate trophic interactions using observed diet alone, trophically transmitted parasites alone, and the combination\\u000a of the two based on data from 31 species

E. T. Valtonen; David J. Marcogliese; Markku Julkunen

2010-01-01

375

Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis.  

PubMed

The Périgord black truffle (Tuber melanosporum Vittad.) and the Piedmont white truffle dominate today's truffle market. The hypogeous fruiting body of T. melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolor, the expansion of gene families may have acted as a 'symbiosis toolbox'. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporum, which at approximately 125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for approximately 58% of the genome. In contrast, this genome only contains approximately 7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolor and T. melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis-'the symbiosis toolbox'-evolved along different ways in ascomycetes and basidiomycetes. PMID:20348908

Martin, Francis; Kohler, Annegret; Murat, Claude; Balestrini, Raffaella; Coutinho, Pedro M; Jaillon, Olivier; Montanini, Barbara; Morin, Emmanuelle; Noel, Benjamin; Percudani, Riccardo; Porcel, Bettina; Rubini, Andrea; Amicucci, Antonella; Amselem, Joelle; Anthouard, Véronique; Arcioni, Sergio; Artiguenave, François; Aury, Jean-Marc; Ballario, Paola; Bolchi, Angelo; Brenna, Andrea; Brun, Annick; Buée, Marc; Cantarel, Brandi; Chevalier, Gérard; Couloux, Arnaud; Da Silva, Corinne; Denoeud, France; Duplessis, Sébastien; Ghignone, Stefano; Hilselberger, Benoît; Iotti, Mirco; Marçais, Benoît; Mello, Antonietta; Miranda, Michele; Pacioni, Giovanni; Quesneville, Hadi; Riccioni, Claudia; Ruotolo, Roberta; Splivallo, Richard; Stocchi, Vilberto; Tisserant, Emilie; Viscomi, Arturo Roberto; Zambonelli, Alessandra; Zampieri, Elisa; Henrissat, Bernard; Lebrun, Marc-Henri; Paolocci, Francesco; Bonfante, Paola; Ottonello, Simone; Wincker, Patrick

2010-04-15

376

Setting realistic recovery targets for two interacting endangered species, sea otter and northern abalone.  

PubMed

Failure to account for interactions between endangered species may lead to unexpected population dynamics, inefficient management strategies, waste of scarce resources, and, at worst, increased extinction risk. The importance of species interactions is undisputed, yet recovery targets generally do not account for such interactions. This shortcoming is a consequence of species-centered legislation, but also of uncertainty surrounding the dynamics of species interactions and the complexity of modeling such interactions. The northern sea otter (Enhydra lutris kenyoni) and one of its preferred prey, northern abalone (Haliotis kamtschatkana), are endangered species for which recovery strategies have been developed without consideration of their strong predator-prey interactions. Using simulation-based optimization procedures from artificial intelligence, namely reinforcement learning and stochastic dynamic programming, we combined sea otter and northern abalone population models with functional-response models and examined how different management actions affect population dynamics and the likelihood of achieving recovery targets for each species through time. Recovery targets for these interacting species were difficult to achieve simultaneously in the absence of management. Although sea otters were predicted to recover, achieving abalone recovery targets failed even when threats to abalone such as predation and poaching were reduced. A management strategy entailing a 50% reduction in the poaching of northern abalone was a minimum requirement to reach short-term recovery goals for northern abalone when sea otters were present. Removing sea otters had a marginally positive effect on the abalone population but only when we assumed a functional response with strong predation pressure. Our optimization method could be applied more generally to any interacting threatened or invasive species for which there are multiple conservation objectives. PMID:23083059

Chadès, Iadine; Curtis, Janelle M R; Martin, Tara G

2012-12-01

377

Synthetic biology approaches to engineering the nitrogen symbiosis in cereals.  

PubMed

Nitrogen is abundant in the earth's atmosphere but, unlike carbon, cannot be directly assimilated by plants. The limitation this places on plant productivity has been circumvented in contemporary agriculture through the production and application of chemical fertilizers. The chemical reduction of nitrogen for this purpose consumes large amounts of energy and the reactive nitrogen released into the environment as a result of fertilizer application leads to greenhouse gas emissions, as well as widespread eutrophication of aquatic ecosystems. The environmental impacts are intensified by injudicious use of fertilizers in many parts of the world. Simultaneously, limitations in the production and supply of chemical fertilizers in other regions are leading to low agricultural productivity and malnutrition. Nitrogen can be directly fixed from the atmosphere by some bacteria and Archaea, which possess the enzyme nitrogenase. Some plant species, most notably legumes, have evolved close symbiotic associations with nitrogen-fixing bacteria. Engineering cereal crops with the capability to fix their own nitrogen could one day address the problems created by the over- and under-use of nitrogen fertilizers in agriculture. This could be achieved either by expression of a functional nitrogenase enzyme in the cells of the cereal crop or through transferring the capability to form a symbiotic association with nitrogen-fixing bacteria. While potentially transformative, these biotechnological approaches are challenging; however, with recent advances in synthetic biology they are viable long-term goals. This review discusses the possibility of these biotechnological solutions to the nitrogen problem, focusing on engineering the nitrogen symbiosis in cereals. PMID:24687978

Rogers, Christian; Oldroyd, Giles E D

2014-05-01

378

Divining the essence of symbiosis: insights from the squid-vibrio model.  

PubMed

Biology has a big elephant in the room. Researchers are learning that microorganisms are critical for every aspect of the biosphere's health. Even at the scale of our own bodies, we are discovering the unexpected necessity and daunting complexity of our microbial partners. How can we gain an understanding of the form and function of these "ecosystems" that are an individual animal? This essay explores how development of experimental model systems reveals basic principles that underpin the essence of symbiosis and, more specifically, how one symbiosis, the squid-vibrio association, provides insight into the persistent microbial colonization of animal epithelial surfaces. PMID:24504482

McFall-Ngai, Margaret

2014-02-01

379

The Light-Organ Symbiosis of Vibrio fischeri and the Hawaiian squid, Euprymna scolopes  

NSDL National Science Digital Library

This informational web page features the luminescent bacteria that live within the light organs of the bobtailed squid and the Hawaiian squid. The page includes a discussion of how symbionts and host influence each others development, bacterial genes required to successfully colonize the squid, the "venting" microenvironment, evidence for oxidative stress occurring inside the light organ, initiation of symbiosis, and the investigators who study the V. fischeri-E. scolopes symbiosis. It also features color images and links to selected reviews and research publications.

Graf, Joerg; Connecticut, University O.

380

Dual lattice model of the evolution of facultative symbiosis with continuous Prisoner's Dilemma game.  

PubMed

Mutualism is ubiquitous in nature and is thought to have played a key role in the history of life. However, how mutualism could evolve despite being prone to unilateral exploitation is a puzzling question in evolutionary ecology. Some theoretical studies have shown that spatial structure of habitat can facilitate the emergence and maintenance of mutualism. However, they are based on the simple assumption that the trait in question is discrete: each individual is either a mutualist or a non-mutualist. In this article I develop a simple simulation model of coevolution of facultative symbiosis using a one-shot continuous Prisoner's Dilemma game to investigate the evolutionary dynamics of mutualism between two species. In this model I assume continuous traits for both species from -1 (fully deceptive) to 1 (fully cooperative). The habitat has a dual-lattice structure, each layer is inhabited by one species. Interspecific interaction is restricted between two corresponding sites of the two layers. Without limitation on the magnitude of a single mutation, I find that mutualism can arise and persist when the intrinsic reproduction rate is low (but is above a threshold) and the benefit/cost ratio of the cooperative strategy is large, which is consistent with Yamamura et al. [2004. Evolution of mutualism through spatial effects. J. Theor. Biol. 226, 421-428]. In these cases, extreme antagonism often evolves starting from a neutral population that seems nearly stable, but once mutualism arises, the cooperative individuals quickly increase and both the populations eventually become mutualistic on average, although they are polymorphic. However, when the effect of a single mutation was limited to be small, extreme antagonism is much likely to dominate unless the intrinsic reproduction rate is low. When only one species is allowed to evolve, mutualism arises when the initial strategy of the other species is cooperative. Otherwise, excessive deception evolves in the former, and the latter often becomes driven to extinction. PMID:19409909

Ezoe, Hideo

2009-08-21

381

A Novel Type of Thioredoxin Dedicated to Symbiosis in Legumes1[W][OA  

PubMed Central

Thioredoxins (Trxs) constitute a family of small proteins in plants. This family has been extensively characterized in Arabidopsis (Arabidopsis thaliana), which contains six different Trx types: f, m, x, and y in chloroplasts, o in mitochondria, and h mainly in cytosol. A detailed study of this family in the model legume Medicago truncatula, realized here, has established the existence of two isoforms that do not belong to any of the types previously described. As no possible orthologs were further found in either rice (Oryza sativa) or poplar (Populus spp.), these novel isoforms may be specific for legumes. Nevertheless, on the basis of protein sequence and gene structure, they are both related to Trxs m and probably have evolved from Trxs m after the divergence of the higher plant families. They have redox potential values similar to those of the classical Trxs, and one of them can act as a substrate for the M. truncatula NADP-Trx reductase A. However, they differ from classical Trxs in that they possess an atypical putative catalytic site and lack disulfide reductase activity with insulin. Another important feature is the presence in both proteins of an N-terminal extension containing a putative signal peptide that targets them to the endoplasmic reticulum, as demonstrated by their transient expression in fusion with the green fluorescent protein in M. truncatula or Nicotiana benthamiana leaves. According to their pattern of expression, these novel isoforms function specifically in symbiotic interactions in legumes. They were therefore given the name of Trxs s, s for symbiosis. PMID:18614707

Alkhalfioui, Fatima; Renard, Michelle; Frendo, Pierre; Keichinger, Corinne; Meyer, Yves; Gelhaye, Eric; Hirasawa, Masakazu; Knaff, David B.; Ritzenthaler, Christophe; Montrichard, Françoise

2008-01-01

382

Lipo-Chitin Oligosaccharides, Plant Symbiosis Signalling Molecules That Modulate Mammalian Angiogenesis In Vitro  

PubMed Central

Lipochitin oligosaccharides (LCOs) are signaling molecules required by ecologically and agronomically important bacteria and fungi to establish symbioses with diverse land plants. In plants, oligo-chitins and LCOs can differentially interact with different lysin motif (LysM) receptors and affect innate immunity responses or symbiosis-related pathways. In animals, oligo-chitins also induce innate immunity and other physiological responses but LCO recognition has not been demonstrated. Here LCO and LCO-like compounds are shown to be biologically active in mammals in a structure dependent way through the modulation of angiogenesis, a tightly-regulated process involving the induction and growth of new blood vessels from existing vessels. The testing of 24 LCO, LCO-like or oligo-chitin compounds resulted in structure-dependent effects on angiogenesis in vitro leading to promotion, or inhibition or nil effects. Like plants, the mammalian LCO biological activity depended upon the presence and type of terminal substitutions. Un-substituted oligo-chitins of similar chain lengths were unable to modulate angiogenesis indicating that mammalian cells, like plant cells, can distinguish between LCOs and un-substituted oligo-chitins. The cellular mode-of-action of the biologically active LCOs in mammals was determined. The stimulation or inhibition of endothelial cell adhesion to vitronectin or fibronectin correlated with their pro- or anti-angiogenic activity. Importantly, novel and more easily synthesised LCO-like disaccharide molecules were also biologically active and de-acetylated chitobiose was shown to be the primary structural basis of recognition. Given this, simpler chitin disaccharides derivatives based on the structure of biologically active LCOs were synthesised and purified and these showed biological activity in mammalian cells. Since important chronic disease states are linked to either insufficient or excessive angiogenesis, LCO and LCO-like molecules may have the potential to be a new, carbohydrate-based class of therapeutics for modulating angiogenesis. PMID:25536397

Djordjevic, Michael A.; Bezos, Anna; Susanti; Marmuse, Laurence; Driguez, Hugues; Samain, Eric; Vauzeilles, Boris; Beau, Jean-Marie; Kordbacheh, Farzaneh; Rolfe, Barry G.; Schwörer, Ralf; Daines, Alison M.; Gresshoff, Peter M.; Parish, Christopher R.

2014-01-01

383

Evolutionary dynamics of nitrogen fixation in the legume-rhizobia symbiosis.  

PubMed

The stabilization of host-symbiont mutualism against the emergence of parasitic individuals is pivotal to the evolution of cooperation. One of the most famous symbioses occurs between legumes and their colonizing rhizobia, in which rhizobia extract nutrients (or benefits) from legume plants while supplying them with nitrogen resources produced by nitrogen fixation (or costs). Natural environments, however, are widely populated by ineffective rhizobia that extract benefits without paying costs and thus proliferate more efficiently than nitrogen-fixing cooperators. How and why this mutualism becomes stabilized and evolutionarily persists has been extensively discussed. To better understand the evolutionary dynamics of this symbiosis system, we construct a simple model based on the continuous snowdrift game with multiple interacting players. We investigate the model using adaptive dynamics and numerical simulations. We find that symbiotic evolution depends on the cost-benefit balance, and that cheaters widely emerge when the cost and benefit are similar in strength. In this scenario, the persistence of the symbiotic system is compatible with the presence of cheaters. This result suggests that the symbiotic relationship is robust to the emergence of cheaters, and may explain the prevalence of cheating rhizobia in nature. In addition, various stabilizing mechanisms, such as partner fidelity feedback, partner choice, and host sanction, can reinforce the symbiotic relationship by affecting the fitness of symbionts in various ways. This result suggests that the symbiotic relationship is cooperatively stabilized by various mechanisms. In addition, mixed nodule populations are thought to encourage cheater emergence, but our model predicts that, in certain situations, cheaters can disappear from such populations. These findings provide a theoretical basis of the evolutionary dynamics of legume-rhizobia symbioses, which is extendable to other single-host, multiple-colonizer systems. PMID:24691447

Fujita, Hironori; Aoki, Seishiro; Kawaguchi, Masayoshi

2014-01-01

384

Understanding the Role of Host Hemocytes in a Squid/Vibrio Symbiosis Using Transcriptomics and Proteomics  

PubMed Central

The symbiosis between the squid, Euprymna scolopes, and the bacterium, Vibrio fischeri, serves as a model for understanding interactions between beneficial bacteria and animal hosts. The establishment and maintenance of the association is highly specific and depends on the selection of V. fischeri and exclusion of non-symbiotic bacteria from the environment. Current evidence suggests that the host’s cellular innate immune system, in the form of macrophage-like hemocytes, helps to mediate host tolerance of V. fischeri. To begin to understand the role of hemocytes in this association, we analyzed these cells by high-throughput 454 transcriptomic and liquid chromatography/tandem mass spectrometry (LC-MS/MS) proteomic analyses. 454 high-throughput sequencing produced 650, 686 reads totaling 279.9?Mb while LC-MS/MS analyses of circulating hemocytes putatively identified 702 unique proteins. Several receptors involved with the recognition of microbial-associated molecular patterns were identified. Among these was a complete open reading frame to a putative peptidoglycan recognition protein (EsPGRP5) with conserved residues for amidase activity. Assembly of the hemocyte transcriptome showed EsPGRP5 had high coverage, suggesting it is among the 5% most abundant transcripts in circulating hemocytes. Other transcripts and proteins identified included members of the conserved NF-?B signaling pathway, putative members of the complement pathway, the carbohydrate binding protein galectin, and cephalotoxin. Quantitative Real-Time PCR of complement-like genes, cephalotoxin, EsPGRP5, and a nitric oxide synthase showed differential expression in circulating hemocytes from adult squid with colonized light organs compared to those isolated from hosts where the symbionts were removed. These data suggest that the presence of the symbiont influences gene expression of the cellular innate immune system of E. scolopes. PMID:22590467

Collins, Andrew J.; Schleicher, Tyler R.; Rader, Bethany A.; Nyholm, Spencer V.

2012-01-01

385

Linking phenological shifts to species interactions through size-mediated priority effects.  

PubMed

Interannual variation in seasonal weather patterns causes shifts in the relative timing of phenological events of species within communities, but we currently lack a mechanistic understanding of how these phenological shifts affect species interactions. Identifying these mechanisms is critical to predicting how interannual variation affects populations and communities. Species' phenologies, particularly the timing of offspring arrival, play an important role in the annual cycles of community assembly. We hypothesize that shifts in relative arrival of offspring can alter interspecific interactions through a mechanism called size-mediated priority effects (SMPE), in which individuals that arrive earlier can grow to achieve a body size advantage over those that arrive later. In this study, we used an experimental approach to isolate and quantify the importance of SMPE for species interactions. Specifically, we simulated shifts in relative arrival of the nymphs of two dragonfly species to determine the consequences for their interactions as intraguild predators. We found that shifts in relative arrival altered not only predation strength but also the nature of predator-prey interactions. When arrival differences were great, SMPE allowed the early arriver to prey intensely upon the late arriver, causing exclusion of the late arriver from nearly all habitats. As arrival differences decreased, the early arriver's size advantage also decreased. When arrival differences were smallest, there was mutual predation, and the two species coexisted in similar abundances across habitats. Importantly, we also found a nonlinear scaling relationship between shifts in relative arrival and predation strength. Specifically, small shifts in relative arrival caused large changes in predation strength while subsequent changes had relatively minor effects. These results demonstrate that SMPE can alter not only the outcome of interactions but also the demographic rates of species and the structure of communities. Elucidating the mechanisms that link phenological shifts to species interactions is crucial for understanding the dynamics of seasonal communities as well as for predicting the effects of climate change on these communities. PMID:24460681

Rasmussen, Nick L; Van Allen, Benjamin G; Rudolf, Volker H W

2014-01-26

386

Predation, individual variability and vertebrate population dynamics  

Microsoft Academic Search

Both predation and individual variation in life history traits influence population dynamics. Recent results from laboratory\\u000a predator–prey systems suggest that differences between individuals can also influence predator–prey dynamics when different\\u000a genotypes experience different predation-associated mortalities. Despite the growing number of studies in this field, there\\u000a is no synthesis identifying the overall importance of the interactions between predation and individual heterogeneity

Nathalie Pettorelli; Tim Coulson; Sarah M. Durant; Jean-Michel Gaillard

387

Host Recognition in the Rhizobium-Soybean Symbiosis  

PubMed Central

The mechanism of host-symbiont recognition in the soybean-Rhizobium symbiosis was investigated utilizing mutants of R. japonicum defective in nodulation. Soybeans were grown in clear plastic growth pouches allowing the identification of the area on the root most susceptible to Rhizobium nodulation; the area between the root tip (RT) and smallest emergent root hair (SERH). The location of nodules in relation to this developing zone is an indication of the rate of nodule initiation. Nodules were scored as to the distance from the RT mark made at the time of inoculation. Seventy-eight per cent of the plants nodulate above the RT mark when inoculated with the wild type R. japonicum strain 3I1b110 with the average distance of the uppermost nodule being approximately 2 millimeters above the RT mark. These data indicate that the wild type strain initiates nodulation rapidly within the RT-SERH zone following inoculation. However, inoculation with the slow-to-nodulate mutant strain HS111 resulted in 100% of the plants nodulating only below the RT mark with the average distance of the uppermost nodule being approximately 56 millimeters below the RT mark. Thus, mutant strain HS111 is defective in the ability to rapidly initiate infection leading to nodulation within the RT-SERH zone. The location of the nodules suggest that stain HS111 must `adapt' to the root environment before nodulation can occur. To test this, strain HS111 was incubated in soybean root exudate prior to inoculation. In this case, 68% of the plants nodulated above the RT mark with the average distance of the uppermost nodule being approximately 1 millimeter below the RT mark. Experiments indicated that the change in nodule initiation by strain HS111 brought about by incubation in soybean root exudate was due to a phenotypic, rather than a genotypic change. The half-time of root exudate incubation for strain HS111 necessary for optimal nodulation enhancement was less than 6 hours. Heat sensitivity and trypsin sensitivity of the nodulation enhancement factor(s) in soybean root exudate indicate a protein was involved in the reversal of the delay in nodulation by mutant strain HS111. PMID:16663392

Halverson, Larry J.; Stacey, Gary

1984-01-01

388

The effect of pseudo-microgravity on the symbiosis of plants and microorganisms  

NASA Astrophysics Data System (ADS)

The symbiosis of plants and microorganisms is important to conduct agriculture under space environment. However, we have less knowledge on whether this kind of symbiosis can be established under space condition. We examined the functional compounds responsible to symbiosis between rhizobiaum and Lotus japonicus as a model of symbiotic combination. The existence of the substances for their symbiosis, some flavonoids, have already been known from the study of gene expression, but the detail structures have not yet been elucidated. Pseudomicrogravity was generated by the 3D-clinorotation. Twenty flavonoids were found in the extracts of 16 days plants of Lotus japonicus grown under the normal gravity by HPLC. Content of two flavonoids among them was affected by the infection of Mesorhizobium loti to them. It has a possibility that the two flavonoids were key substances for their combination process. The productions of those flavonoids were confirmed also under the pseudo-microgravity. The amount of one flavonoid was increased by both infection of rhizobium and exposure to the normal and pseudo-micro gravity. Chemical species of these flavonoids were identified by LC- ESI/MS and spectroscopic analysis. To show the effects of pseudo-microgravity on the gene expression, enzymic activities related to the functional compounds are evaluated after the rhizobial infection.

Tomita-Yokotani, Kaori; Maki, Asano; Aoki, Toshio; Tamura, Kenji; Wada, Hidenori; Hashimoto, Hirofumi; Yamashita, Masamichi

389

Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition  

Microsoft Academic Search

Microbial symbioses are ubiquitous in nature. Hereditary symbionts warrant particular attention because of their direct effects on the evolutionary potential of their hosts. In plants, hereditary fungal endophytes can increase the competitive ability, drought tolerance, and herbivore resistance of their host, although it is unclear whether or how these ecological benefits may alter the dynamics of the endophyte symbiosis over

Keith Clay; Jenny Holah; Jennifer A. Rudgers

2005-01-01

390

The players in a mutualistic symbiosis: Insects, bacteria, viruses, and virulence genes  

E-print Network

The players in a mutualistic symbiosis: Insects, bacteria, viruses, and virulence genes Nancy A of Ecology and Evolutionary Biology and §Biochemistry and Molecular Biophysics, University of Arizona, Tucson of symbiotic bacteria, which are now known to have a variety of effects on host growth and survival. Pea aphids

Ochman, Howard

391

Possible Roles of Sulfur-Containing Amino Acids in a Chemoautotrophic Bacterium-Mollusc Symbiosis  

E-print Network

Possible Roles of Sulfur-Containing Amino Acids in a Chemoautotrophic Bacterium-Mollusc Symbiosis avoiding its toxic effects. The sulfur-containing free amino acids taurine and thiotaurine may function with methionine sulfoximine reduced levels of sulfur-containing amino acids. Chloramphenicol treatment inhibited

McFall-Ngai, Margaret

392

PHENOTYPIC BIOLUMINESCENCE AS AN INDICATOR OF COMPETITIVE DOMINANCE IN THE EUPRYMNA-WBKIO SYMBIOSIS  

E-print Network

PHENOTYPIC BIOLUMINESCENCE AS AN INDICATOR OF COMPETITIVE DOMINANCE IN THE EUPRYMNA-WBKIO SYMBIOSIS), there are few ways that one can phenotypically distinguish similar strains from one other. The sepiolid squid-bioluminescent of luminous bacteria on the coevolution and speciation between partners (6). Both the bacteria and the host

Nishiguchi, Michele

393

A Genomic Reappraisal of Symbiotic Function in the Aphid/Buchnera Symbiosis: Reduced Transporter Sets  

E-print Network

A Genomic Reappraisal of Symbiotic Function in the Aphid/Buchnera Symbiosis: Reduced Transporter the physiology of aphids by complementing their exclusive phloem sap diet. In this study, we reappraised the transport function of different Buchnera strains, from the aphids Acyrthosiphon pisum, Schizaphis graminum

Paris-Sud XI, Université de

394

Effects of nano-TiO2 on the agronomically-relevant Rhizobium-legume symbiosis  

Technology Transfer Automated Retrieval System (TEKTRAN)

The impact of nano-TiO2 on Rhizobium-legume symbiosis was studied using garden peas and the compatible bacterial partner Rhizobium leguminosarum bv. viciae 3841. Exposure to nano-TiO2 did not affect the germination of peas grown aseptically, nor did it impact the gross root structure. However, nano-...

395

THE FUNGUS DOES NOT TRANSFER CARBON TO OR BETWEEN ROOTS IN AN ARBUSCULAR MYCORRHIZAL SYMBIOSIS  

Technology Transfer Automated Retrieval System (TEKTRAN)

Very large amounts of photosynthetically fixed carbon move from plants to their fungal partners in the Arbuscular Mycorrhizal (AM) symbiosis. There is also evidence for transfer of carbon in the reverse direction. However, the significance and even existence of fungus-to-plant carbon transfer has b...

396

Nuclear calcium changes at the core of symbiosis signalling Giles ED Oldroyd and J Allan Downie  

E-print Network

Nuclear calcium changes at the core of symbiosis signalling Giles ED Oldroyd and J Allan Downie into a common signalling pathway. In the nodulation signalling pathway, calcium plays an essential role as a secondary messenger, and the component that probably transduces the calcium signal is a unique calcium

Downie, J. Allan

397

The promiscuous larvae: flexibility in the establishment of symbiosis in corals  

NASA Astrophysics Data System (ADS)

Coral reefs thrive in part because of the symbiotic partnership between corals and Symbiodinium. While this partnership is one of the keys to the success of coral reef ecosystems, surprisingly little is known about many aspects of coral symbiosis, in particular the establishment and development of symbiosis in host species that acquire symbionts anew in each generation. More specifically, the point at which symbiosis is established (i.e., larva vs. juvenile) remains uncertain, as does the source of free-living Symbiodinium in the environment. In addition, the capacity of host and symbiont to form novel combinations is unknown. To explore patterns of initial association between host and symbiont, larvae of two species of Acropora were exposed to sediment collected from three locations on the Great Barrier Reef. A high proportion of larvae established symbiosis shortly after contact with sediments, and Acropora larvae were promiscuous, taking up multiple types of Symbiodinium. The Symbiodinium types acquired from the sediments reflected the symbiont assemblage within a wide range of cnidarian hosts at each of the three sites, suggesting potential regional differences in the free-living Symbiodinium assemblage. Coral larvae clearly have the capacity to take up Symbiodinium prior to settlement, and sediment is a likely source. Promiscuous larvae allow species to associate with Symbiodinium appropriate for potentially novel environments that may be experienced following dispersal.

Cumbo, V. R.; Baird, A. H.; van Oppen, M. J. H.

2013-03-01

398

Symbiosis Between a Terrestrial-Based Integrated Services Digital Network and a Digital Satellite Network  

Microsoft Academic Search

Symbiosis between a terrestrial-based integrated services digital network (ISDN) and a digital satellite network (DSN) is investigated in this paper. The characteristics of the two networks and the types of traffic carried are first reviewed. Key technical issues that are likely to arise when these two networks are interconnected are then identified and examined in depth. Examples are the processing

J. Lee

1983-01-01

399

Symbiosis between a terrestrial-based integrated services digital network and a digital satellite network  

Microsoft Academic Search

Symbiosis between a terrestrial-based integrated services digital network (ISDN) and a digital satellite network (DSN) is investigated in this paper. The characteristics of the two networks and the types of traffic carried are first reviewed. Key technical issues that are likely to arise when these two networks are interconnected are then identified and examined in depth. Examples are the processing

J. S. Lee

1983-01-01

400

Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis  

Microsoft Academic Search

Leguminous crops are genetically polymorphous for the balance between symbiotrophic and combined types of nitrogen nutrition. In pea, polebean, alfalfa and fenugreek the wild-growing populations and local varieties exceed the agronomically advanced cultivars in the activity of N2 fixation that occurs in symbiosis with nodule bacteria (rhizobia). Combined nitrogen nutrition ensures higher productivity than symbiotrophic one in the “old” leguminous

N. A. Provorov; I. A. Tikhonovich

2003-01-01

401

Replicon-Dependent Differentiation of Symbiosis-Related Genes in Sinorhizobium Strains Nodulating Glycine max  

PubMed Central

In order to investigate the genetic differentiation of Sinorhizobium strains nodulating Glycine max and related microevolutionary mechanisms, three housekeeping genes (SMc00019, truA, and thrA) and 16 symbiosis-related genes on the chromosome (7 genes), pSymA (6 genes), and pSymB (3 genes) were analyzed. Five distinct species were identified among the test strains by calculating the average nucleotide identity (ANI) of SMc00019-truA-thrA: Sinorhizobium fredii, Sinorhizobium sojae, Sinorhizobium sp. I, Sinorhizobium sp. II, and Sinorhizobium sp. III. These species assignments were also supported by population genetics and phylogenetic analyses of housekeeping genes and symbiosis-related genes on the chromosome and pSymB. Different levels of genetic differentiation were observed among these species or different replicons. S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution. Intergenic recombination dominated the evolution of 19 genes from different replicons. Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons. PMID:24317084

Guo, Hui Juan; Wang, En Tao; Zhang, Xing Xing; Li, Qin Qin; Zhang, Yan Ming; Chen, Wen Xin

2014-01-01

402

Syllabus for Biology 250, Special Topic in Biology, Fall 2008 EVOLUTION OF SPECIES INTERACTIONS  

E-print Network

arms race 4 21, Oct. Plants versus herbivores 5 28, Oct. Host-symbiont evolution ~ Guest Instructor 6 4:135-160 (L). 3 Predator prey Arms races 14, Oct. Anne Kyle · Abrams (2000) The evolution of predator mismatches reveal escape from arms-race co-evolution PLoS Biology 6: 471-482 (L) 4 Plants vs. herbivores 21

Sachs, Joel

403

Predator Cue and Prey Density Interactively Influence Indirect Effects on Basal Resources in Intertidal Oyster Reefs  

PubMed Central

Predators can influence prey abundance and traits by direct consumption, as well as by non-consumptive effects of visual, olfactory, or tactile cues. The strength of these non-consumptive effects (NCEs) can be influenced by a variety of factors, including predator foraging mode, temporal variation in predator cues, and the density of competing prey. Testing the relative importance of these factors for determining NCEs is critical to our understanding of predator-prey interactions in a variety of settings. We addressed this knowledge gap by conducting two mesocosm experiments in a tri-trophic intertidal oyster reef food web. More specifically, we tested how a predatory fish (hardhead catfish, Ariopsis felis) directly influenced their prey (mud crabs, Panopeus spp.) and indirectly affected basal resources (juvenile oysters, Crassostrea virginica), as well as whether these direct and indirect effects changed across a density gradient of competing prey. Per capita crab foraging rates were inversely influenced by crab density, but they were not affected by water-borne predator cues. As a result, direct consumptive effects on prey foraging rates were stronger than non-consumptive effects. In contrast, predator cue and crab density interactively influenced indirect predator effects on oyster mortality in two experiments, with trait-mediated and density-mediated effects of similar magnitude operating to enhance oyster abundance. Consistent differences between a variable predator cue environment and other predator cue treatments (no cue and constant cue) suggests that an understanding of the natural risk environment experienced by prey is critical to testing and interpreting trait-mediated indirect interactions. Further, the prey response to the risk environment may be highly dependent on prey density, particularly in prey populations with strong intra-specific interactions. PMID:22970316

Hughes, A. Randall; Rooker, Kelly; Murdock, Meagan; Kimbro, David L.

2012-01-01

404

Coevolutionary motion and swarming in a niche space model of ecological species interactions  

NASA Astrophysics Data System (ADS)

Organisms are involved in coevolutionary relationships with their competitors, predators, preys and parasites. In this context, we present a simple model for the co-evolution of species in a common niche space, where the fitness of each species is defined via the network of interactions with all other species. In our model, the sign and type of the pairwise interactions (being either beneficial, harmful or neutral) is given by a pre-determined community matrix, while the interaction strength depends on the niche-overlap, i.e. the pairwise distances between species in niche space. The evolutionary process drives the species toward the places with the higher local fitness along the fitness gradient. This gives rise to a dynamic fitness landscape, since the evolutionary motion of a single species can change the landscape of the others (known as the Red Queen Principle). In the simplest case of only two-species we observe either a convergence/divergence equilibrium or a coevolutionary arms race. For a larger number of species our analysis concentrates on an antisymmetric interaction matrix, where we observe a large range of dynamic behaviour, from oscillations, quasiperiodic to chaotic dynamics. In dependence of the value of a first integral of motion we observe either quasiperiodic motion around a central region in niche space or unbounded movement, characterised by chaotic scattering of species pairs. Finally, in a linear food-chain we observe complex swarming behaviour in which the swarm moves as a whole only if the chain consists of an even number of species. Our results could be an important contribution to evolutionary niche theory.

Dommar, C. J.; Ryabov, A.; Blasius, B.

2008-04-01

405

New evidence for the symbiosis between Tuber aestivum and Picea abies.  

PubMed

The Burgundy truffle (Tuber aestivum Vittad.), an ectomycorrhizal fungus living in association with host plants, is one of the most exclusive delicacies. The symbiosis with deciduous oak, beech, and hazel dominates our concept of truffle ecophysiology, whereas potential conifer hosts have rarely been reported. Here, we present morphological and molecular evidence of a wildlife T. aestivum symbiosis with Norway spruce (Picea abies Karst.) and an independent greenhouse inoculation experiment, to confirm our field observation in southwest Germany. A total of 27 out of 50 P. abies seedlings developed T. aestivum ectomycorrhizae with a mean mycorrhization rate of 19.6 %. These findings not only suggest P. abies to be a productive host species under suitable biogeographic conditions but also emphasize the broad ecological amplitude and great symbiotic range of T. aestivum. While challenging common knowledge, this study demonstrates a significant expansion of the species' cultivation potential to the central European regions, where P. abies forests occur on calcareous soils. PMID:23674121

Stobbe, Ulrich; Stobbe, Annika; Sproll, Ludger; Tegel, Willy; Peter, Martina; Büntgen, Ulf; Egli, Simon

2013-11-01

406

Complex host-pathogen coevolution in the Apterostigma fungus-growing ant-microbe symbiosis  

Microsoft Academic Search

BACKGROUND: The fungus-growing ant-microbe symbiosis consists of coevolving microbial mutualists and pathogens. The diverse fungal lineages that these ants cultivate are attacked by parasitic microfungi of the genus Escovopsis. Previous molecular analyses have demonstrated strong phylogenetic congruence between the ants, the ants-cultivated fungi and the garden pathogen Escovopsis at ancient phylogenetic levels, suggesting coevolution of these symbionts. However, few studies

Nicole M Gerardo; Ulrich G Mueller; Cameron R Currie

2006-01-01

407

Improving Casuarina growth and symbiosis with Frankia under different soil and environmental conditions—review  

Microsoft Academic Search

Casuarinas are very important plants for their various uses and survival in adverse sites or harsh environments. As nitrogen\\u000a fixation, in symbiosis with Frankia, is an important factor for the survival of these plants under various conditions, the basis for selecting both effective\\u000a and tolerant Frankia strains and Casuarina spp., are provided. Enhancement of the symbiotic relationship between Frankia and

W. F. Sayed

2011-01-01

408

Complete Genome Sequence of Bradyrhizobium sp. S23321: Insights into Symbiosis Evolution in Soil Oligotrophs  

PubMed Central

Bradyrhizobium sp. S23321 is an oligotrophic bacterium isolated from paddy field soil. Although S23321 is phylogenetically close to Bradyrhizobium japonicum USDA110, a legume symbiont, it is unable to induce root nodules in siratro, a legume often used for testing Nod factor-dependent nodulation. The genome of S23321 is a single circular chromosome, 7,231,841 bp in length, with an average GC content of 64.3%. The genome contains 6,898 potential protein-encoding genes, one set of rRNA genes, and 45 tRNA genes. Comparison of the genome structure between S23321 and USDA110 showed strong colinearity; however, the symbiosis islands present in USDA110 were absent in S23321, whose genome lacked a chaperonin gene cluster (groELS3) for symbiosis regulation found in USDA110. A comparison of sequences around the tRNA-Val gene strongly suggested that S23321 contains an ancestral-type genome that precedes the acquisition of a symbiosis island by horizontal gene transfer. Although S23321 contains a nif (nitrogen fixation) gene cluster, the organization, homology, and phylogeny of the genes in this cluster were more similar to those of photosynthetic bradyrhizobia ORS278 and BTAi1 than to those on the symbiosis island of USDA110. In addition, we found genes encoding a complete photosynthetic system, many ABC transporters for amino acids and oligopeptides, two types (polar and lateral) of flagella, multiple respiratory chains, and a system for lignin monomer catabolism in the S23321 genome. These features suggest that S23321 is able to adapt to a wide range of environments, probably including low-nutrient conditions, with multiple survival strategies in soil and rhizosphere. PMID:22452844

Okubo, Takashi; Tsukui, Takahiro; Maita, Hiroko; Okamoto, Shinobu; Oshima, Kenshiro; Fujisawa, Takatomo; Saito, Akihiro; Futamata, Hiroyuki; Hattori, Reiko; Shimomura, Yumi; Haruta, Shin; Morimoto, Sho; Wang, Yong; Sakai, Yoriko; Hattori, Masahira; Aizawa, Shin-ichi; Nagashima, Kenji V. P.; Masuda, Sachiko; Hattori, Tsutomu; Yamashita, Akifumi; Bao, Zhihua; Hayatsu, Masahito; Kajiya-Kanegae, Hiromi; Yoshinaga, Ikuo; Sakamoto, Kazunori; Toyota, Koki; Nakao, Mitsuteru; Kohara, Mitsuyo; Anda, Mizue; Niwa, Rieko; Jung-Hwan, Park; Sameshima-Saito, Reiko; Tokuda, Shin-ichi; Yamamoto, Sumiko; Yamamoto, Syuji; Yokoyama, Tadashi; Akutsu, Tomoko; Nakamura, Yasukazu; Nakahira-Yanaka, Yuka; Hoshino, Yuko Takada; Hirakawa, Hideki; Mitsui, Hisayuki; Terasawa, Kimihiro; Itakura, Manabu; Sato, Shusei; Ikeda-Ohtsubo, Wakako; Sakakura, Natsuko; Kaminuma, Eli; Minamisawa, Kiwamu

2012-01-01

409

A model symbiosis reveals a role for sheathed-flagellum rotation in the release of immunogenic lipopolysaccharide.  

PubMed

Bacterial flagella mediate host-microbe interactions through tissue tropism during colonization, as well as by activating immune responses. The flagellar shaft of some bacteria, including several human pathogens, is encased in a membranous sheath of unknown function. While it has been hypothesized that the sheath may allow these bacteria to evade host responses to the immunogenic flagellin subunit, this unusual structural feature has remained an enigma. Here we demonstrate that the rotation of the sheathed flagellum in both the mutualist Vibrio fischeri and the pathogen Vibrio cholerae promotes release of a potent bacteria-derived immunogen, lipopolysaccharide, found in the flagellar sheath. We further present a new role for the flagellar sheath in triggering, rather than circumventing, host immune responses in the model squid-vibrio symbiosis. Such an observation not only has implications for the study of bacterial pathogens with sheathed flagella, but also raises important biophysical questions of sheathed-flagellum function. DOI: http://dx.doi.org/10.7554/eLife.01579.001. PMID:24596150

Brennan, Caitlin A; Hunt, Jason R; Kremer, Natacha; Krasity, Benjamin C; Apicella, Michael A; McFall-Ngai, Margaret J; Ruby, Edward G

2014-01-01

410

A model symbiosis reveals a role for sheathed-flagellum rotation in the release of immunogenic lipopolysaccharide  

PubMed Central

Bacterial flagella mediate host–microbe interactions through tissue tropism during colonization, as well as by activating immune responses. The flagellar shaft of some bacteria, including several human pathogens, is encased in a membranous sheath of unknown function. While it has been hypothesized that the sheath may allow these bacteria to evade host responses to the immunogenic flagellin subunit, this unusual structural feature has remained an enigma. Here we demonstrate that the rotation of the sheathed flagellum in both the mutualist Vibrio fischeri and the pathogen Vibrio cholerae promotes release of a potent bacteria-derived immunogen, lipopolysaccharide, found in the flagellar sheath. We further present a new role for the flagellar sheath in triggering, rather than circumventing, host immune responses in the model squid-vibrio symbiosis. Such an observation not only has implications for the study of bacterial pathogens with sheathed flagella, but also raises important biophysical questions of sheathed-flagellum function. DOI: http://dx.doi.org/10.7554/eLife.01579.001 PMID:24596150

Brennan, Caitlin A; Hunt, Jason R; Kremer, Natacha; Krasity, Benjamin C; Apicella, Michael A; McFall-Ngai, Margaret J; Ruby, Edward G

2014-01-01

411

Sporocarps of Pisolithus albus as an ecological niche for fluorescent pseudomonads involved in Acacia mangium Wild - Pisolithus albus ectomycorrhizal symbiosis.  

PubMed

Fresh sporocarps and root and soil samples were collected under a monospecific forest plantation of Acacia mangium in Dagana in Northern Senegal and checked for the presence of fluorescent pseudomonads. No bacteria were detected except from sporocarps collected with adhering soil and hyphal strands. Pisolithus sporocarps were dried at 30 degrees C for 2 weeks, ground, passed through a 2-mm sieve and mixed together. This dry sporocarp powder (DSP) was used to inoculate and form mycorrhizas on A. mangium seedlings in a glasshouse experiment. After 3 months culture, plant growth was increased in the DSP treatment but no ectomycorrhizas were present on the A. mangium root systems; however fluorescent pseudomonads were recorded in the cultural soil. The stimulatory effects on the plant growth were maintained for 6 months. However, fluorescent pseudomonads were no longer detected and 35% of the short roots were ectomycorrhizal. Some of the fluorescent pseudomonad isolates detected after 3 months stimulated the radial fungal growth in axenic conditions. These observations suggest that these bacteria are closely associated with the Pisolithus fructifications and could interact with the ectomycorrhizal symbiosis establishment. PMID:15644922

Duponnois, Robin; Lesueur, Didier

2004-09-01

412

A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis.  

PubMed

Rhizobia and legumes establish symbiotic interactions leading to the production of root nodules, in which bacteria fix atmospheric nitrogen for the plant's benefit. This symbiosis is efficient because of the high rhizobia population within nodules. Here, we investigated how legumes accommodate such bacterial colonization. We used a reverse genetic approach to identify a Medicago truncatula gene, SymCRK, which encodes a cysteine-rich receptor-like kinase that is required for rhizobia maintenance within the plant cells, and performed detailed phenotypic analyses of the corresponding mutant. The Medicago truncatula symCRK mutant developed nonfunctional and necrotic nodules. A nonarginine asparate (nonRD) motif, typical of receptors involved in innate immunity, is present in the SymCRK kinase domain. Similar to the dnf2 mutant, bacteroid differentiation defect, defense-like reactions and early senescence were observed in the symCRK nodules. However, the dnf2 and symCRK nodules differ by their degree of colonization, which is higher in symCRK. Furthermore, in contrast to dnf2, symCRK is not a conditional mutant. These results suggest that in M. truncatula at least two genes are involved in the symbiotic control of immunity. Furthermore, phenotype differences between the two mutants suggest that two distinct molecular mechanisms control suppression of plant immunity during nodulation. PMID:24916161

Berrabah, Fathi; Bourcy, Marie; Eschstruth, Alexis; Cayrel, Anne; Guefrachi, Ibtissem; Mergaert, Peter; Wen, Jiangqi; Jean, Viviane; Mysore, Kirankumar S; Gourion, Benjamin; Ratet, Pascal

2014-09-01

413

To dare or not to dare? Risk management by owls in a predator-prey foraging game.  

PubMed

In a foraging game, predators must catch elusive prey while avoiding injury. Predators manage their hunting success with behavioral tools such as habitat selection, time allocation, and perhaps daring-the willingness to risk injury to increase hunting success. A predator's level of daring should be state dependent: the hungrier it is, the more it should be willing to risk injury to better capture prey. We ask, in a foraging game, will a hungry predator be more willing to risk injury while hunting? We performed an experiment in an outdoor vivarium in which barn owls (Tyto alba) were allowed to hunt Allenby's gerbils (Gerbillus andersoni allenbyi) from a choice of safe and risky patches. Owls were either well fed or hungry, representing the high and low state, respectively. We quantified the owls' patch use behavior. We predicted that hungry owls would be more daring and allocate more time to the risky patches. Owls preferred to hunt in the safe patches. This indicates that owls manage risk of injury by avoiding the risky patches. Hungry owls doubled their attacks on gerbils, but directed the added effort mostly toward the safe patch and the safer, open areas in the risky patch. Thus, owls dared by performing a risky action-the attack maneuver-more times, but only in the safest places-the open areas. We conclude that daring can be used to manage risk of injury and owls implement it strategically, in ways we did not foresee, to minimize risk of injury while maximizing hunting success. PMID:24810326

Embar, Keren; Raveh, Ashael; Burns, Darren; Kotler, Burt P

2014-07-01

414

Spatial decomposition of predation risk using resource selection functions: an example in a wolf-elk predator-prey system  

Microsoft Academic Search

Predation is a fundamental ecological and evolutionary process that varies in space, and the avoidance of predation risk is of central importance in foraging theory. While there has been a recent growth of approaches to spatially model predation risk, these approaches lack an adequate mechanistic framework that can be applied to real landscapes. In this paper we show how predation

M. Hebblewhite; E. H. Merrill; T. L. McDonald

2005-01-01

415

Spatial decomposition of predation risk using resource selection functions: an example in a wolf/elk predator/prey system  

E-print Network

Spatial decomposition of predation risk using resource selection functions: an example in a wolfÁ/elk: an example in a wolfÁ/elk predatorÁ/prey system. Á/ Oikos 111:101Á/111. Predation is a fundamental ecological, the conditional probability of death given encounter, and overall wolf and elk resource selection to test whether

Hebblewhite, Mark

416

Bifurcation and optimal harvesting of a diffusive predator-prey system with delays and interval biological parameters.  

PubMed

This paper deals with a delayed reaction-diffusion three-species Lotka-Volterra model with interval biological parameters and harvesting. Sufficient conditions for the local stability of the positive equilibrium and the existence of Hopf bifurcation are obtained by analyzing the associated characteristic equation. Furthermore, formulas for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by applying the normal form method and center manifold theorem. Then an optimal control problem has been considered. Finally, numerical simulation results are presented to validate the theoretical analysis. Numerical evidence shows that the presence of harvesting can impact the existence of species and over harvesting can result in the extinction of the prey or the predator which is in line with reality. PMID:25172773

Zhang, Xuebing; Zhao, Hongyong

2014-12-21

417

Habitat loss decreases predator/prey ratios in a pine-bark beetle Krista L. Ryall and Lenore Fahrig  

E-print Network

of natural habitats, resulting in isolation of remaining habitat fragments. Using a pine-bark beetle in predator abundance and, presumably, enemy-caused mortality may lead to changes in the population dynamics for KLR: Natural Resources Canada, Canadian Forest Service, Corner Brook, Newfoundland, A2H 6J3, Canada

418

Symbiont-driven sulfur crystal formation in a thiotrophic symbiosis from deep-sea hydrocarbon seeps  

PubMed Central

The siboglinid tubeworm Sclerolinum contortum symbiosis inhabits sulfidic sediments at deep-sea hydrocarbon seeps in the Gulf of Mexico. A single symbiont phylotype in the symbiont-housing organ is inferred from phylogenetic analyses of the 16S ribosomal ribonucleic acid (16S rRNA) gene and fluorescent in situ hybridization. The phylotype we studied here, and a previous study from an arctic hydrocarbon seep population, reveal identical 16S rRNA symbiont gene sequences. While sulfide is apparently the energy source for the symbionts (and ultimately the gutless host), both partners also have to cope with its toxicity. This study demonstrates abundant large sulfur crystals restricted to the trophosome area. Based on Raman microspectroscopy and energy dispersive X-ray analysis, these crystals have the same S8 sulfur configuration as the recently described small sulfur vesicles formed in the symbionts. The crystals reside adjacent to the symbionts in the trophosome. This suggests that their formation is either extra- or intracellular in symbionts. We propose that formation of these crystals provides both energy-storage compounds for the symbionts and serves the symbiosis by removing excess toxic sulfide from host tissues. This symbiont-mediated sulfide detoxification may have been crucial for the establishment of thiotrophic symbiosis and continues to remain an important function of the symbionts. PMID:24992535

Eichinger, Irmgard; Schmitz-Esser, Stephan; Schmid, Markus; Fisher, Charles R; Bright, Monika

2014-01-01

419

Symbiont-driven sulfur crystal formation in a thiotrophic symbiosis from deep-sea hydrocarbon seeps.  

PubMed

The siboglinid tubeworm Sclerolinum contortum symbiosis inhabits sulfidic sediments at deep-sea hydrocarbon seeps in the Gulf of Mexico. A single symbiont phylotype in the symbiont-housing organ is inferred from phylogenetic analyses of the 16S ribosomal ribonucleic acid (16S rRNA) gene and fluorescent in situ hybridization. The phylotype we studied here, and a previous study from an arctic hydrocarbon seep population, reveal identical 16S rRNA symbiont gene sequences. While sulfide is apparently the energy source for the symbionts (and ultimately the gutless host), both partners also have to cope with its toxicity. This study demonstrates abundant large sulfur crystals restricted to the trophosome area. Based on Raman microspectroscopy and energy dispersive X-ray analysis, these crystals have the same S8 sulfur configuration as the recently described small sulfur vesicles formed in the symbionts. The crystals reside adjacent to the symbionts in the trophosome. This suggests that their formation is either extra- or intracellular in symbionts. We propose that formation of these crystals provides both energy-storage compounds for the symbionts and serves the symbiosis by removing excess toxic sulfide from host tissues. This symbiont-mediated sulfide detoxification may have been crucial for the establishment of thiotrophic symbiosis and continues to remain an important function of the symbionts. PMID:24992535

Eichinger, Irmgard; Schmitz-Esser, Stephan; Schmid, Markus; Fisher, Charles R; Bright, Monika

2014-08-01

420

Multi-gene analysis of Symbiodinium dinoflagellates: a perspective on rarity, symbiosis, and evolution.  

PubMed

Symbiodinium, a large group of dinoflagellates, live in symbiosis with marine protists, invertebrate metazoans, and free-living in the environment. Symbiodinium are functionally variable and play critical energetic roles in symbiosis. Our knowledge of Symbiodinium has been historically constrained by the limited number of molecular markers available to study evolution in the genus. Here we compare six functional genes, representing three cellular compartments, in the nine known Symbiodinium lineages. Despite striking similarities among the single gene phylogenies from distinct organelles, none were evolutionarily identical. A fully concatenated reconstruction, however, yielded a well-resolved topology identical to the current benchmark nr28S gene. Evolutionary rates differed among cellular compartments and clades, a pattern largely driven by higher rates of evolution in the chloroplast genes of Symbiodinium clades D2 and I. The rapid rates of evolution observed amongst these relatively uncommon Symbiodinium lineages in the functionally critical chloroplast may translate into potential innovation for the symbiosis. The multi-gene analysis highlights the potential power of assessing genome-wide evolutionary patterns using recent advances in sequencing technology and emphasizes the importance of integrating ecological data with more comprehensive sampling of free-living and symbiotic Symbiodinium in assessing the evolutionary adaptation of this enigmatic dinoflagellate. PMID:24883254

Pochon, Xavier; Putnam, Hollie M; Gates, Ruth D

2014-01-01

421

Forests trapped in nitrogen limitation--an ecological market perspective on ectomycorrhizal symbiosis.  

PubMed

Ectomycorrhizal symbiosis is omnipresent in boreal forests, where it is assumed to benefit plant growth. However, experiments show inconsistent benefits for plants and volatility of individual partnerships, which calls for a re-evaluation of the presumed role of this symbiosis. We reconcile these inconsistencies by developing a model that demonstrates how mycorrhizal networking and market mechanisms shape the strategies of individual plants and fungi to promote symbiotic stability at the ecosystem level. The model predicts that plants switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines, in agreement with the frequency distribution of ectomycorrhizal colonization intensity across a wide-ranging data set. In line with observations in field-scale isotope labeling experiments, the model explains why ectomycorrhizal symbiosis does not alleviate plant nitrogen limitation. Instead, market mechanisms may generate self-stabilization of the mycorrhizal strategy via nitrogen depletion feedback, even if plant growth is ultimately reduced. We suggest that this feedback mechanism maintains the strong nitrogen limitation ubiquitous in boreal forests. The mechanism may also have the capacity to eliminate or even reverse the expected positive effect of rising CO2 on tree growth in strongly nitrogen-limited boreal forests. PMID:24824576

Franklin, Oskar; Näsholm, Torgny; Högberg, Peter; Högberg, Mona N

2014-07-01

422

Role of arbuscular mycorrhizal symbiosis in root mineral uptake under CaCO3 stress.  

PubMed

This study investigated the effects of increasing CaCO(3) concentrations (0, 5, 10, 20 mM) on arbuscular mycorrhizal (AM) symbiosis establishment as well as on chicory root growth and mineral nutrient uptake in a monoxenic system. Although CaCO(3) treatments significantly decreased root growth and altered the symbiosis-related development steps of the AM fungus Rhizophagus irregularis (germination, germination hypha elongation, root colonization rate, extraradical hyphal development, sporulation), the fungus was able to completely fulfill its life cycle. Even when root growth decreased more drastically in mycorrhizal roots than in non-mycorrhizal ones in the presence of high CaCO(3) levels, the AM symbiosis was found to be beneficial for root mineral uptake. Significant increases in P, N, Fe, Zn and Cu concentrations were recorded in the mycorrhizal roots. Whereas acid and alkaline phosphatase enzymatic activities remained constant in mycorrhizal roots, they were affected in non-mycorrhizal roots grown in the presence of CaCO(3) when compared with the control. PMID:21866363

Labidi, Sonia; Ben Jeddi, Fayçal; Tisserant, Benoit; Debiane, Djouher; Rezgui, Salah; Grandmougin-Ferjani, Anne; Lounès-Hadj Sahraoui, Anissa

2012-07-01

423

Nitrate regulates rhizobial and mycorrhizal symbiosis in common bean (Phaseolus vulgaris L.).  

PubMed

Nitrogen-limited conditions are considered to be a prerequisite for legume-rhizobial symbiosis, but the effects of nitrate-rich conditions on symbiotic status remain poorly understood. We addressed this issue by examining rhizobial (Rhizobim tropici) and arbusclar mycorrhizal (Glomus intraradices) symbiosis in Phaseolus vulgaris L. cv. Negro Jamapa under nitrate pre-incubation and continuous nitrate conditions. Our results indicate that nitrate pre-incubation, independent of the concentration, did not affect nodule development. However, the continuous supply of nitrate at high concentrations impaired nodule maturation and nodule numbers. Low nitrate conditions, in addition to positively regulating nodule number, biomass, and nitrogenase activity, also extended the span of nitrogen-fixing activity. By contrast, for arbuscular mycorrhizae, continuous 10 and 50?mmol/L nitrate increased the percent root length colonization, concomitantly reduced arbuscule size, and enhanced ammonia transport without affecting phosphate transport. Therefore, in this manuscript, we have proposed the importance of nitrate as a positive regulator in promoting both rhizobial and mycorrhizal symbiosis in the common bean. PMID:24387000

Nanjareddy, Kalpana; Blanco, Lourdes; Arthikala, Manoj-Kumar; Affantrange, Xochitl Alvarado; Sánchez, Federico; Lara, Miguel

2014-03-01

424

Forests trapped in nitrogen limitation – an ecological market perspective on ectomycorrhizal symbiosis  

PubMed Central

Ectomycorrhizal symbiosis is omnipresent in boreal forests, where it is assumed to benefit plant growth. However, experiments show inconsistent benefits for plants and volatility of individual partnerships, which calls for a re-evaluation of the presumed role of this symbiosis. We reconcile these inconsistencies by developing a model that demonstrates how mycorrhizal networking and market mechanisms shape the strategies of individual plants and fungi to promote symbiotic stability at the ecosystem level. The model predicts that plants switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines, in agreement with the frequency distribution of ectomycorrhizal colonization intensity across a wide-ranging data set. In line with observations in field-scale isotope labeling experiments, the model explains why ectomycorrhizal symbiosis does not alleviate plant nitrogen limitation. Instead, market mechanisms may generate self-stabilization of the mycorrhizal strategy via nitrogen depletion feedback, even if plant growth is ultimately reduced. We suggest that this feedback mechanism maintains the strong nitrogen limitation ubiquitous in boreal forests. The mechanism may also have the capacity to eliminate or even reverse the expected positive effect of rising CO2 on tree growth in strongly nitrogen-limited boreal forests. PMID:24824576

Franklin, Oskar; Näsholm, Torgny; Högberg, Peter; Högberg, Mona N

2014-01-01

425

Plant nitrogen acquisition and interactions under elevated carbon dioxide: impact of endophytes and mycorrhizae  

Microsoft Academic Search

Both endophytic and mycorrhizal fungi interact with plants to form symbiosis in which the fungal partners rely on, and sometimes compete for, carbon (C) sources from their hosts. Changes in photosynthesis in host plants caused by atmospheric carbon dioxide (CO2) enrichment may, therefore, influence those mutualistic interactions, potentially modifying plant nutrient acquisition and interactions with other coexisting plant species. However,

XIN C HEN; M ICHAEL G. B URTON; KENT O. B URKEY

426

The Molecular Basis of Bacterial-Insect Symbiosis.  

PubMed

Insects provide experimentally tractable and cost-effective model systems to investigate the molecular basis of animal-bacterial interactions. Recent research is revealing the central role of the insect innate immune system, especially anti-microbial peptides and reactive oxygen species, in regulating the abundance and composition of the microbiota in various insects, including Drosophila and the mosquitoes Aedes and Anopheles. Interactions between the immune system and microbiota are, however, bidirectional with evidence that members of the resident microbiota can promote immune function, conferring resistance to pathogens and parasites by both activation of immune effectors and production of toxins. Antagonistic and mutualistic interactions among bacteria have also been implicated as determinants of the microbiota composition, including exclusion of pathogens, but the molecular mechanisms are largely unknown. Some bacteria are crucial for insect nutrition, through provisioning of specific nutrients (e.g., B vitamins, essential amino acids) and modulation of the insect nutritional sensing and signaling pathways (e.g., insulin signaling) that regulate nutrient allocation, especially to lipid and other energy reserves. A key challenge for future research is to identify the molecular interaction between specific bacterial effectors and animal receptors, as well as to determine how these interactions translate into microbiota-dependent signaling, metabolism, and immune function in the host. PMID:24735869

Douglas, Angela E

2014-11-25

427

Evolutionary Origins and Ecological Consequences of Endophyte Symbiosis with Grasses  

Microsoft Academic Search

Over the past 20 yr much has been learned about a unique symbiotic interaction between fungal endophytes and grasses. The fungi (Clavicipitaceae, Ascomycota) grow intercellularly and sys- temically in aboveground plant parts. Vertically transmitted asexual endophytes forming asymptomatic infections of cool-season grasses have been repeatedly derived from sexual species that abort host inflorescences. The phylogenetic distribution of seed-transmitted en- dophytes

Keith Clay; Christopher Schardl

2002-01-01

428

Visick Lab: Home of the Vibrio-Euprymna Symbiosis  

NSDL National Science Digital Library

This website features general information about the lab of Karen Visick, which studies the genes needed to establish an interaction between the small Hawaiian squid Euprymna scolopes and its luminescent symbiont, the marine bacterium Vibrio fischeri. It features links to more information about current research in the Visick lab, lab members and events, and the summer research program and microbiology department at Loyola University.

Visick, Karen; University, Loyola

429

Some USDA studies on the soybean-Rhizobium symbiosis  

Microsoft Academic Search

Summary  The ecology, strain evaluation, genetics of host strain interactions and physiology of nitrogen fixation ofRhizobium japonicum in association with the soybean,Glycine max, were studied.\\u000a \\u000a Results of inoculation experiments with selected strains ofRhizobium japonicum indicated that indigenous strains occupied most of the nodules of soybeans grown in highRhizobium japonicum populated soils. Nodule sampling indicated that inoculation did not result in quicker

D. F. Weber; B. E. Caldwell; C. Sloger; H. G. Vest

1971-01-01

430

Structure-Function Analysis of Nod Factor-Induced Root Hair Calcium Spiking in Rhizobium-Legume Symbiosis1  

PubMed Central

In the Rhizobium-legume symbiosis, compatible bacteria and host plants interact through an exchange of signals: Host compounds promote the expression of bacterial biosynthetic nod (nodulation) genes leading to the production of a lipochito-oligosaccharide signal, the Nod factor (NF). The particular array of nod genes carried by a given species of Rhizobium determines the NF structure synthesized and defines the range of legume hosts by which the bacterium is recognized. Purified NF can induce early host responses even in the absence of live Rhizobium One of the earliest known host responses to NF is an oscillatory behavior of cytoplasmic calcium, or calcium spiking, in root hair cells, initially observed in Medicago spp. and subsequently characterized in four other genera (D.W. Ehrhardt, R. Wais, S.R. Long [1996] Cell 85: 673–681; S.A. Walker, V. Viprey, J.A. Downie [2000] Proc Natl Acad Sci USA 97: 13413–13418; D.W. Ehrhardt, J.A. Downie, J. Harris, R.J. Wais, and S.R. Long, unpublished data). We sought to determine whether live Rhizobium trigger a rapid calcium spiking response and whether this response is NF dependent. We show that, in the Sinorhizobium meliloti-Medicago truncatula interaction, bacteria elicit a calcium spiking response that is indistinguishable from the response to purified NF. We determine that calcium spiking is a nod gene-dependent host response. Studies of calcium spiking in M. truncatula and alfalfa (Medicago sativa) also uncovered the possibility of differences in early NF signal transduction. We further demonstrate the sufficiency of the nod genes for inducing calcium spiking by using Escherichia coli BL21 (DE3) engineered to express 11 S. meliloti nod genes. PMID:12011352

Wais, Rebecca J.; Keating, David H.; Long, Sharon R.

2002-01-01

431

An insect pathogenic symbiosis between a Caenorhabditis and Serratia  

PubMed Central

We described an association between a strain of the nematode Caenorhabditis briggsae, i.e. KT0001, and the bacteria Serratia sp. SCBI (South African Caenorhabditis briggsae isolate), which was able to kill the insect Galleria (G. mellonella). Here we show that the Serratia sp. SCBI lines the gut of the nematode, similar to the Heterorhabditis-Photorhabdus complex, indicating that the association is possibly internal. We also expand on the relevance of this tripartite, i.e. insect-nematode-bacteria, interaction in the broader evolutionary context and Caenorhabditis natural history. PMID:21389770

Morrison, Julie; Cooper, Vaughn; Thomas, W. Kelley

2011-01-01

432

Metabolic Complementarity and Genomics of the Dual Bacterial Symbiosis of Sharpshooters  

PubMed Central

Mutualistic intracellular symbiosis between bacteria and insects is a widespread phenomenon that has contributed to the global success of insects. The symbionts, by provisioning nutrients lacking from diets, allow various insects to occupy or dominate ecological niches that might otherwise be unavailable. One such insect is the glassy-winged sharpshooter (Homalodisca coagulata), which feeds on xylem fluid, a diet exceptionally poor in organic nutrients. Phylogenetic studies based on rRNA have shown two types of bacterial symbionts to be coevolving with sharpshooters: the gamma-proteobacterium Baumannia cicadellinicola and the Bacteroidetes species Sulcia muelleri. We report here the sequencing and analysis of the 686,192–base pair genome of B. cicadellinicola and approximately 150 kilobase pairs of the small genome of S. muelleri, both isolated from H. coagulata. Our study, which to our knowledge is the first genomic analysis of an obligate symbiosis involving multiple partners, suggests striking complementarity in the biosynthetic capabilities of the two symbionts: B. cicadellinicola devotes a substantial portion of its genome to the biosynthesis of vitamins and cofactors required by animals and lacks most amino acid biosynthetic pathways, whereas S. muelleri apparently produces most or all of the essential amino acids needed by its host. This finding, along with other results of our genome analysis, suggests the existence of metabolic codependency among the two unrelated endosymbionts and their insect host. This dual symbiosis provides a model case for studying correlated genome evolution and genome reduction involving multiple organisms in an intimate, obligate mutualistic relationship. In addition, our analysis provides insight for the first time into the differences in symbionts between insects (e.g., aphids) that feed on phloem versus those like H. coagulata that feed on xylem. Finally, the genomes of these two symbionts provide potential targets for controlling plant pathogens such as Xylella fastidiosa, a major agroeconomic problem, for which H. coagulata and other sharpshooters serve as vectors of transmission. PMID:16729848

Wu, Dongying; Daugherty, Sean C; Van Aken, Susan E; Pai, Grace H; Watkins, Kisha L; Khouri, Hoda; Tallon, Luke J; Zaborsky, Jennifer M; Dunbar, Helen E; Tran, Phat L; Moran, Nancy A

2006-01-01

433

Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis  

PubMed Central

The ?-proteobacterium Sinorhizobium meliloti establishes a chronic intracellular infection during the symbiosis with its legume hosts. Within specialized host cells, S. meliloti differentiates into highly polyploid, enlarged nitrogen-fixing bacteroids. This differentiation is driven by host cells through the production of defensin-like peptides called “nodule-specific cysteine-rich” (NCR) peptides. Recent research has shown that synthesized NCR peptides exhibit antimicrobial activity at high concentrations but cause bacterial endoreduplication at sublethal concentrations. We leveraged synchronized S. meliloti populations to determine how treatment with a sublethal NCR peptide affects the cell cycle and physiology of bacteria at the molecular level. We found that at sublethal levels a representative NCR peptide specifically blocks cell division and antagonizes Z-ring function. Gene-expression profiling revealed that the cell division block was produced, in part, through the substantial transcriptional response elicited by sublethal NCR treatment that affected ?15% of the genome. Expression of critical cell-cycle regulators, including ctrA, and cell division genes, including genes required for Z-ring function, were greatly attenuated in NCR-treated cells. In addition, our experiments identified important symbiosis functions and stress responses that are induced by sublethal levels of NCR peptides and other antimicrobial peptides. Several of these stress-response pathways also are found in related ?-proteobacterial pathogens and might be used by S. meliloti to sense host cues during infection. Our data suggest a model in which, in addition to provoking stress responses, NCR peptides target intracellular regulatory pathways to drive S. meliloti endoreduplication and differentiation during symbiosis. PMID:24501120

Penterman, Jon; Abo, Ryan P.; De Nisco, Nicole J.; Arnold, Markus F. F.; Longhi, Renato; Zanda, Matteo; Walker, Graham C.

2014-01-01

434

Symbiosis insights through metagenomic analysis of a microbialconsortium  

SciTech Connect

Symbioses between bacteria and eukaryotes are ubiquitous, yet our understanding of the interactions driving these associations is hampered by our inability to cultivate most host-associated microbes. Here, we used a metagenomic approach to describe four co-occurring symbionts from the marine oligochaete Olavius algarvensis, a worm lacking a mouth, gut, and nephridia. Shotgun sequencing and metabolic pathway reconstruction revealed that the symbionts are sulfur-oxidizing and sulfate-reducing bacteria, all of which are capable of carbon fixation, providing the host with multiple sources of nutrition. Molecular evidence for the uptake and recycling of worm waste products by the symbionts suggests how the worm could eliminate its excretory system, an adaptation unique among annelid worms. We propose a model which describes how the versatile metabolism within this symbiotic consortium provides the host with an optimal energy supply as it shuttles between the upper oxic and lower anoxic coastal sediments which it inhabits.

Woyke, Tanja; Teeling, Hanno; Ivanova, Natalia N.; Hunteman,Marcel; Richter, Michael; Gloeckner, Frank Oliver; Boffelli, Dario; Barry, Kerrie W.; Shapiro, Harris J.; Anderson, Iain J.; Szeto, Ernest; Kyrpides, Nikos C.; Mussmann, Marc; Amann, Rudolf; Bergin, Claudia; Ruehland, Caroline; Rubin, Edward M.; Dubilier, Nicole

2006-09-01

435

Glow: Living Lights  

NSDL National Science Digital Library

This 48-page Teacher's Guide accompanies the "Glow: Living Lights" exhibit at the San Diego Natural History Museum. In PDF format, the guide contains 12 lesson plans that explore the chemical compounds and adaptations of bioluminescence, symbiosis, fireflies and other "glowing" terrestrial animals, dinoflagellates, ocean submersibles, blue vs. bright red light, the organization of life, defense, mating, and predator/prey mechanisms of bioluminescent organisms, human applications, and potential research and careers in science.

2009-07-28

436

Host/Microbe Interactions Revealed Through "Omics" in the Symbiosis Between the Hawaiian Bobtail Squid  

E-print Network

Squid Euprymna scolopes and the Bioluminescent Bacterium Vibrio fischeri BETHANY A. RADER AND SPENCER V and the bioluminescent marine bacterium Vibrio fischeri is an important natural model system for understanding host the innate immune system and symbiotic bacteria (McFall-Ngai, 2002, 2008: Nyholm and McFall- Ngai, 2004

McFall-Ngai, Margaret

437

Evolution of symbiosis in the legume genus Aeschynomene.  

PubMed

Legumes in the genus Aeschynomene form nitrogen-fixing root nodules in association with Bradyrhizobium strains. Several aquatic and subaquatic species have the additional capacity to form stem nodules, and some of them can symbiotically interact with specific strains that do not produce the common Nod factors synthesized by all other rhizobia. The question of the emergence and evolution of these nodulation characters has been the subject of recent debate. We conducted a molecular phylogenetic analysis of 38 different Aeschynomene species. The phylogeny was reconstructed with both the chloroplast DNA trnL intron and the nuclear ribosomal DNA ITS/5.8S region. We also tested 28 Aeschynomene species for their capacity to form root and stem nodules by inoculating different rhizobial strains, including nodABC-containing strains (ORS285, USDA110) and a nodABC-lacking strain (ORS278). Maximum likelihood analyses resolved four distinct phylogenetic groups of Aeschynomene. We found that stem nodulation may have evolved several times in the genus, and that all Aeschynomene species using a Nod-independent symbiotic process clustered in the same clade. The phylogenetic approach suggested that Nod-independent nodulation has evolved once in this genus, and should be considered as a derived character, and this result is discussed with regard to previous experimental studies. PMID:23879229

Chaintreuil, Clémence; Arrighi, Jean-François; Giraud, Eric; Miché, Lucie; Moulin, Lionel; Dreyfus, Bernard; Munive-Hernández, José-Antonio; Villegas-Hernandez, María Del Carmen; Béna, Gilles

2013-12-01

438

Exposing the Symbiosis of 3A 1954+319  

NASA Astrophysics Data System (ADS)

Symbiotic X-ray Binaries (SyXB) are a rare class 8 known members) of Low Mass X-ray Binaries (LMXB), in which a compact object accretes material from an evolved M-type giant. The SyXB and accreting pulsar 3A 1954+319 is further exceptional since it has the longest pulse period known for an X-ray binary. It undergoes rapid changes, which we found span a range of 5.0-5.8 hours over the interval 2005-2012 monitored with Swift-BAT, probably an indication of the expected strong interaction with the dense M-giant wind. We present an analysis of a Chandra observation performed on 2010, December 26, and an RXTE observation performed on 2011, January 10-11, both spanning two pulse cycles. The Swift-BAT context shows that during both observations the source was in a state of comparatively stable and low hard X-ray flux (at about 15 mCrab, with a pulse period around 5.6 h and overall slowing down). We discuss the broad band ``baseline'' spectrum and compare it to the two earlier X-ray broad band studies described in the literature. Strong flaring activity on timescales of hundreds to thousands of seconds is observed and studied in the light of a possible accretion shock interpretation.

Pottschmidt, Katja; Marcu, D. M.; Hell, N.; Fuerst, F.; Miškovi?a, I.; Müller, S.; Grinberg, V.; Corbet, R. H.; Wilms, J.

2013-04-01

439

An original mode of symbiosis in open ocean plankton.  

PubMed

Symbiotic relationships are widespread in nature and are fundamental for ecosystem functioning and the evolution of biodiversity. In marine environments, photosymbiosis with microalgae is best known for sustaining benthic coral reef ecosystems. Despite the importance of oceanic microbiota in global ecology and biogeochemical cycles, symbioses are poorly characterized in open ocean plankton. Here, we describe a widespread symbiotic association between Acantharia biomineralizing microorganisms that are abundant grazers in plankton communities, and members of the haptophyte genus Phaeocystis that are cosmopolitan bloom-forming microalgae. Cophylogenetic analyses demonstrate that symbiont biogeography, rather than host taxonomy, is the main determinant of the association. Molecular dating places the origin of this photosymbiosis in the Jurassic (ca. 175 Mya), a period of accentuated marine oligotrophy. Measurements of intracellular dimethylated sulfur indicate that the host likely profits from antioxidant protection provided by the symbionts as an adaptation to life in transparent oligotrophic surface waters. In contrast to terrestrial and marine symbioses characterized to date, the symbiont reported in this association is extremely abundant and ecologically active in its free-living phase. In the vast and barren open ocean, partnership with photosymbionts that have extensive free-living populations is likely an advantageous strategy for hosts that rely on such interactions. Discovery of the Acantharia-Phaeocystis association contrasts with the widely held view that symbionts are specialized organisms that are rare and ecologically passive outside the host. PMID:23071304

Decelle, Johan; Probert, Ian; Bittner, Lucie; Desdevises, Yves; Colin, Sébastien; de Vargas, Colomban; Galí, Martí; Simó, Rafel; Not, Fabrice

2012-10-30

440

The Independent Acquisition of Plant Root Nitrogen-Fixing Symbiosis in Fabids Recruited the Same Genetic Pathway for Nodule Organogenesis  

PubMed Central

Only species belonging to the Fabid clade, limited to four classes and ten families of Angiosperms, are able to form nitrogen-fixing root nodule symbioses (RNS) with soil bacteria. This concerns plants of the legume family (Fabaceae) and Parasponia (Cannabaceae) associated with the Gram-negative proteobacteria collectively called rhizobia and actinorhizal plants associated with the Gram-positive actinomycetes of the genus Frankia. Calcium and calmodulin-dependent protein kinase (CCaMK) is a key component of the common signaling pathway leading to both rhizobial and arbuscular mycorrhizal symbioses (AM) and plays a central role in cross-signaling between root nodule organogenesis and infection processes. Here, we show that CCaMK is also needed for successful actinorhiza formation and interaction with AM fungi in the actinorhizal tree Casuarina glauca and is also able to restore both nodulation and AM symbioses in a Medicago truncatula ccamk mutant. Besides, we expressed auto-active CgCCaMK lacking the auto-inhibitory/CaM domain in two actinorhizal species: C. glauca (Casuarinaceae), which develops an intracellular infection pathway, and Discaria trinervis (Rhamnaceae) which is characterized by an ancestral intercellular infection mechanism. In both species, we found induction of nodulation independent of Frankia similar to response to the activation of CCaMK in the rhizobia-legume symbiosis and conclude that the regulation of actinorhiza organogenesis is conserved regardless of the infection mode. It has been suggested that rhizobial and actinorhizal symbioses originated from a common ancestor with several independent evolutionary origins. Our findings are consistent with the recruitment of a similar genetic pathway governing rhizobial and Frankia nodule organogenesis. PMID:23741336

Svistoonoff, Sergio; Benabdoun, Faiza Meriem; Nambiar-Veetil, Mathish; Imanishi, Leandro; Vaissayre, Virginie; Cesari, Stella; Diagne, Nathalie; Hocher, Valérie; de Billy, Françoise; Bonneau, Jocelyne; Wall, Luis; Ykhlef, Nadia; Rosenberg, Charles; Bogusz, Didier; Franche, Claudine; Gherbi, Hassen

2013-01-01