Science.gov

Sample records for interactive protein manipulation

  1. Interactive protein manipulation

    SciTech Connect

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  2. A Tool for Interactive Protein Manipulation

    Energy Science and Technology Software Center (ESTSC)

    2005-03-28

    ProteinShop is a graphical environment that facilitates a solution to the protein prediction problem through a combination of unique features and capabilities. These include: 1. Helping researchers automatically generate 3D protein structures from scratcW by using the sequence of amino acids and secondary structure specifications as input. 2. Enabling users to apply their accumulated biochemical knowledge and intuition during the interactive manipulation of structures. 3. FacIlitating interactive comparison and analysis of alternative structures through visualizationmore » of free energy computed during modeling. 4. Accelerating discovery of low-energy configurations by applying local optimizations plug-in to user-selected protein structures. ProteinShop v.2.0 includes the following new features: - Visualizes multiple-domain structures - Automatically creates a user-specified number of beta-sheet configurations - Provides the interface and the libraries for energy visualization and local minimization of protein structures - Reads standard POB files without previous editing« less

  3. ProteinShop: A tool for interactive protein manipulation and steering

    SciTech Connect

    Crivelli, Silvia; Kreylos, Oliver; Max, Nelson; Hamann, Bernd; Bethel, Wes

    2004-05-25

    We describe ProteinShop, a new visualization tool that streamlines and simplifies the process of determining optimal protein folds. ProteinShop may be used at different stages of a protein structure prediction process. First, it can create protein configurations containing secondary structures specified by the user. Second, it can interactively manipulate protein fragments to achieve desired folds by adjusting the dihedral angles of selected coil regions using an Inverse Kinematics method. Last, it serves as a visual framework to monitor and steer a protein structure prediction process that may be running on a remote machine. ProteinShop was used to create initial configurations for a protein structure prediction method developed by a team that competed in CASP5. ProteinShop's use accelerated the process of generating initial configurations, reducing the time required from days to hours. This paper describes the structure of ProteinShop and discusses its main features.

  4. Manipulating Fatty Acid Biosynthesis in Microalgae for Biofuel through Protein-Protein Interactions

    PubMed Central

    Blatti, Jillian L.; Beld, Joris; Behnke, Craig A.; Mendez, Michael; Mayfield, Stephen P.; Burkart, Michael D.

    2012-01-01

    Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr) as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes. PMID:23028438

  5. Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection.

    PubMed

    DeBlasio, Stacy L; Johnson, Richard; Sweeney, Michelle M; Karasev, Alexander; Gray, Stewart M; MacCoss, Michael J; Cilia, Michelle

    2015-06-01

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a nonincorporated protein in concert with numerous insect and plant proteins to regulate virus movement/transmission and tissue tropism. Affinity purification coupled to quantitative MS was used to generate protein interaction networks for a PLRV mutant that is unable to produce the read through domain (RTD) and compared to the known wild-type PLRV protein interaction network. By quantifying differences in the protein interaction networks, we identified four distinct classes of PLRV-plant interactions: those plant and nonstructural viral proteins interacting with assembled coat protein (category I); plant proteins in complex with both coat protein and RTD (category II); plant proteins in complex with the RTD (category III); and plant proteins that had higher affinity for virions lacking the RTD (category IV). Proteins identified as interacting with the RTD are potential candidates for regulating viral processes that are mediated by the RTP such as phloem retention and systemic movement and can potentially be useful targets for the development of strategies to prevent infection and/or viral transmission of Luteoviridae species that infect important crop species. PMID:25787689

  6. Pharmacological manipulation of transcription factor protein-protein interactions: opportunities and obstacles.

    PubMed

    Fontaine, Frank; Overman, Jeroen; François, Mathias

    2015-01-01

    Much research on transcription factor biology and their genetic pathways has been undertaken over the last 30 years, especially in the field of developmental biology and cancer. Yet, very little is known about the molecular modalities of highly dynamic interactions between transcription factors, genomic DNA, and protein partners. Methodological breakthroughs such as RNA-seq (RNA-sequencing), ChIP-seq (chromatin immunoprecipitation sequencing), RIME (rapid immunoprecipitation mass spectrometry of endogenous proteins), and single-molecule imaging will dramatically accelerate the discovery rate of their molecular mode of action in the next few years. From a pharmacological viewpoint, conventional methods used to target transcription factor activity with molecules mimicking endogenous ligands fail to achieve high specificity and are limited by a lack of identification of new molecular targets. Protein-protein interactions are likely to represent one of the next major classes of therapeutic targets. Transcription factors, known to act mostly via protein-protein interaction, may well be at the forefront of this type of drug development. One hurdle in this field remains the difficulty to collate structural data into meaningful information for rational drug design. Another hurdle is the lack of chemical libraries meeting the structural requirements of protein-protein interaction disruption. As more attempts at modulating transcription factor activity are undertaken, valuable knowledge will be accumulated on the modality of action required to modulate transcription and how these findings can be applied to developing transcription factor drugs. Key discoveries will spawn into new therapeutic approaches not only as anticancer targets but also for other indications, such as those with an inflammatory component including neurodegenerative disorders, diabetes, and chronic liver and kidney diseases. PMID:25848531

  7. Energetic Manipulation of Chloroplast Protein Import and the Use of Chemical Cross-Linkers to Map Protein–Protein Interactions

    PubMed Central

    Inoue, Hitoshi; Wang, Fei; Inaba, Takehito; Schnell, Danny J.

    2014-01-01

    Most chloroplast proteins are synthesized in the cytosol as preproteins with N-terminal cleavable transit peptides and are imported into the organelle through the TOC–TIC translocon system. Import involves a complex set of recognition and membrane translocation steps that ensure the fidelity and unidirectional transport of the polypeptide across the double-membrane chloroplast envelope. To understand the mechanism of import, the molecular interactions and energetics of each step must be defined. Here, we describe the methods for capturing intermediates in the import process through the manipulation of the energy state of chloroplasts, and the use of two different chemical cross-linking approaches to examine the molecular interactions that mediate the import process and to assess the assembly state of the translocons. These approaches can be employed to identify sequential protein–protein interactions, and thereby dissect the pathway and roles of import components during protein import into chloroplasts. PMID:21822846

  8. The Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a non-incorporated protein in concert with numerous insect and plant proteins to regulate virus movem...

  9. Manipulating and Visualizing Proteins

    SciTech Connect

    Simon, Horst D.

    2003-12-05

    ProteinShop Gives Researchers a Hands-On Tool for Manipulating, Visualizing Protein Structures. The Human Genome Project and other biological research efforts are creating an avalanche of new data about the chemical makeup and genetic codes of living organisms. But in order to make sense of this raw data, researchers need software tools which let them explore and model data in a more intuitive fashion. With this in mind, researchers at Lawrence Berkeley National Laboratory and the University of California, Davis, have developed ProteinShop, a visualization and modeling program which allows researchers to manipulate protein structures with pinpoint control, guided in large part by their own biological and experimental instincts. Biologists have spent the last half century trying to unravel the ''protein folding problem,'' which refers to the way chains of amino acids physically fold themselves into three-dimensional proteins. This final shape, which resembles a crumpled ribbon or piece of origami, is what determines how the protein functions and translates genetic information. Understanding and modeling this geometrically complex formation is no easy matter. ProteinShop takes a given sequence of amino acids and uses visualization guides to help generate predictions about the secondary structures, identifying alpha helices and flat beta strands, and the coil regions that bind them. Once secondary structures are in place, researchers can twist and turn these pre-configurations until they come up with a number of possible tertiary structure conformations. In turn, these are fed into a computationally intensive optimization procedure that tries to find the final, three-dimensional protein structure. Most importantly, ProteinShop allows users to add human knowledge and intuition to the protein structure prediction process, thus bypassing bad configurations that would otherwise be fruitless for optimization. This saves compute cycles and accelerates the entire process, so

  10. Combining Single-molecule Manipulation and Imaging for the Study of Protein-DNA Interactions

    PubMed Central

    Monico, Carina; Belcastro, Gionata; Vanzi, Francesco; Pavone, Francesco S.; Capitanio, Marco

    2014-01-01

    The paper describes the combination of optical tweezers and single molecule fluorescence detection for the study of protein-DNA interaction. The method offers the opportunity of investigating interactions occurring in solution (thus avoiding problems due to closeby surfaces as in other single molecule methods), controlling the DNA extension and tracking interaction dynamics as a function of both mechanical parameters and DNA sequence. The methods for establishing successful optical trapping and nanometer localization of single molecules are illustrated. We illustrate the experimental conditions allowing the study of interaction of lactose repressor (lacI), labeled with Atto532, with a DNA molecule containing specific target sequences (operators) for LacI binding. The method allows the observation of specific interactions at the operators, as well as one-dimensional diffusion of the protein during the process of target search. The method is broadly applicable to the study of protein-DNA interactions but also to molecular motors, where control of the tension applied to the partner track polymer (for example actin or microtubules) is desirable. PMID:25226304

  11. Exploring protein-DNA interactions in 3D using in situ construction, manipulation, and visualization of individual DNA-dumbbells with optical traps, microfluidics, and fluorescence microscopy

    PubMed Central

    Forget, Anthony L.; Dombrowski, Christopher C.; Amitani, Ichiro; Kowalczykowski, Stephen C.

    2015-01-01

    In this Protocol, we describe a procedure to generate ‘DNA-dumbbells’ — single molecules of DNA with a microscopic bead attached at each end — and techniques for manipulating individual DNA-dumbbells. We also detail the design and fabrication of a microfluidic device (flow cell) used in conjunction with dual optical trapping to manipulate DNA-dumbbells and to visualize individual protein–DNA complexes by single-molecule epifluorescence microscopy. Our design of the flow cell enables the rapid movement of trapped molecules between laminar flow channels and a flow-free ‘reservoir’. The reservoir provides the means to examine formation of DNA–protein complexes in solution in the absence of external flow forces, while still maintaining a predetermined end-to-end extension of the DNA. These features facilitate examination of the role of three-dimensional DNA conformation and dynamics in protein–DNA interactions. Preparation of flow cells and reagents requires two days each; in situ DNA-dumbbell assembly and imaging of single protein–DNA complexes requires another day. PMID:23411634

  12. Interactive digital image manipulation system

    NASA Technical Reports Server (NTRS)

    Henze, J.; Dezur, R.

    1975-01-01

    The system is designed for manipulation, analysis, interpretation, and processing of a wide variety of image data. LANDSAT (ERTS) and other data in digital form can be input directly into the system. Photographic prints and transparencies are first converted to digital form with an on-line high-resolution microdensitometer. The system is implemented on a Hewlett-Packard 3000 computer with 128 K bytes of core memory and a 47.5 megabyte disk. It includes a true color display monitor, with processing memories, graphics overlays, and a movable cursor. Image data formats are flexible so that there is no restriction to a given set of remote sensors. Conversion between data types is available to provide a basis for comparison of the various data. Multispectral data is fully supported, and there is no restriction on the number of dimensions. In this way multispectral data collected at more than one point in time may simply be treated as a data collected with twice (three times, etc.) the number of sensors. There are various libraries of functions available to the user: processing functions, display functions, system functions, and earth resources applications functions.

  13. A 3D interactive optical manipulation platform

    NASA Astrophysics Data System (ADS)

    Glückstad, Jesper; Rodrigo, Peter J.; Nielson, Ivan P.

    2005-12-01

    Three-dimensional light structures can be created by modulating the spatial phase and polarization properties of the laser light. A particularly promising technique is the Generalized Phase Contrast (GPC) method invented and patented at Riso National Laboratory. Based on the combination of programmable spatial light modulator devices and an advanced graphical user-interface the GPC method enables real-time, interactive and arbitrary control over the dynamics and geometry of synthesized light patterns. Recent experiments have shown that GPC-driven micro-manipulation provides a unique technology platform for fully user-guided assembly of a plurality of particles in a plane, control of particle stacking along the beam axis, manipulation of multiple hollow beads, and the organization of living cells into three-dimensional colloidal structures. These demonstrations illustrate that GPC-driven micro-manipulation can be utilized not only for the improved synthesis of functional microstructures but also for non-contact and parallel actuation crucial for sophisticated opto- and micro-fluidic based lab-on-a-chip systems.

  14. Manipulator interactive design with interconnected flexible elements

    NASA Technical Reports Server (NTRS)

    Singh, R. P.; Likins, P. W.

    1983-01-01

    This paper describes the development of an analysis tool for the interactive design of control systems for manipulators and similar electro-mechanical systems amenable to representation as structures in a topological chain. The chain consists of a series of elastic bodies subject to small deformations and arbitrary displacements. The bodies are connected by hinges which permit kinematic constraints, control, or relative motion with six degrees of freedom. The equations of motion for the chain configuration are derived via Kane's method, extended for application to interconnected flexible bodies with time-varying boundary conditions. A corresponding set of modal coordinates has been selected. The motion equations are imbedded within a simulation that transforms the vector-dyadic equations into scalar form for numerical integration. The simulation also includes a linear, time-invariant controler specified in transfer function format and a set of sensors and actuators that interface between the structure and controller. The simulation is driven by an interactive set-up program resulting in an easy-to-use analysis tool.

  15. PIC: Protein Interactions Calculator.

    PubMed

    Tina, K G; Bhadra, R; Srinivasan, N

    2007-07-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside. PMID:17584791

  16. Bacteriophage protein-protein interactions.

    PubMed

    Häuser, Roman; Blasche, Sonja; Dokland, Terje; Haggård-Ljungquist, Elisabeth; von Brunn, Albrecht; Salas, Margarita; Casjens, Sherwood; Molineux, Ian; Uetz, Peter

    2012-01-01

    Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology. PMID:22748812

  17. Interactive Streamline Exploration and Manipulation Using Deformation

    SciTech Connect

    Tong, Xin; Chen, Chun-Ming; Shen, Han-Wei; Wong, Pak C.

    2015-01-12

    Occlusion presents a major challenge in visualizing three-dimensional flow fields with streamlines. Displaying too many streamlines at once makes it difficult to locate interesting regions, but displaying too few streamlines risks missing important features. A more ideal streamline exploration model is to allow the viewer to freely move across the field that has been populated with interesting streamlines and pull away the streamlines that cause occlusion so that the viewer can inspect the hidden ones in detail. In this paper, we present a streamline deformation algorithm that supports such user-driven interaction with three-dimensional flow fields. We define a view-dependent focus+context technique that moves the streamlines occluding the focus area using a novel displacement model. To preserve the context surrounding the user-chosen focus area, we propose two shape models to define the transition zone for the surrounding streamlines, and the displacement of the contextual streamlines is solved interactively with a goal of preserving their shapes as much as possible. Based on our deformation model, we design an interactive streamline exploration tool using a lens metaphor. Our system runs interactively so that users can move their focus and examine the flow field freely.

  18. MONA – Interactive manipulation of molecule collections

    PubMed Central

    2013-01-01

    Working with small‐molecule datasets is a routine task for cheminformaticians and chemists. The analysis and comparison of vendor catalogues and the compilation of promising candidates as starting points for screening campaigns are but a few very common applications. The workflows applied for this purpose usually consist of multiple basic cheminformatics tasks such as checking for duplicates or filtering by physico‐chemical properties. Pipelining tools allow to create and change such workflows without much effort, but usually do not support interventions once the pipeline has been started. In many contexts, however, the best suited workflow is not known in advance, thus making it necessary to take the results of the previous steps into consideration before proceeding. To support intuition‐driven processing of compound collections, we developed MONA, an interactive tool that has been designed to prepare and visualize large small‐molecule datasets. Using an SQL database common cheminformatics tasks such as analysis and filtering can be performed interactively with various methods for visual support. Great care was taken in creating a simple, intuitive user interface which can be instantly used without any setup steps. MONA combines the interactivity of molecule database systems with the simplicity of pipelining tools, thus enabling the case‐to‐case application of chemistry expert knowledge. The current version is available free of charge for academic use and can be downloaded at http://www.zbh.uni‐hamburg.de/mona. PMID:23985157

  19. Complex interactions of multiple aquatic consumers: an experimental mesocosm manipulation

    USGS Publications Warehouse

    Richardson, William B.; Threlkeld, Stephen T.

    1993-01-01

    In 7-m3 outdoor tanks filled with lake water, the presence/absence of omnivorous young-of-the- year Micropterus salmoides), zooplanktivorous Menidia beryllina , and herbivorous larval Hyla chrysocelis was experimentally manipulated. A cross-classified design was used to assess the interactive effects of these vertebrate consumers on the experimental food webs. The primary effects of the experimental manipulations on food web components were two- and three-way interactions in which the effect of a given treatment was dependent on the presence of another treatment. Results suggest that the addition or removal of consumers may not cause linear, additive changes in food webs.

  20. Two-Dimensional Heterojunctions from Nonlocal Manipulations of the Interactions.

    PubMed

    Rösner, M; Steinke, C; Lorke, M; Gies, C; Jahnke, F; Wehling, T O

    2016-04-13

    We propose to create lateral heterojunctions in two-dimensional materials based on nonlocal manipulations of the Coulomb interaction using structured dielectric environments. By means of ab initio calculations for MoS2 as well as generic semiconductor models, we show that the Coulomb interaction-induced self-energy corrections in real space are sufficiently nonlocal to be manipulated externally, but still local enough to induce spatially sharp interfaces within a single homogeneous monolayer to form heterojunctions. We find a type-II heterojunction band scheme promoted by a laterally structured dielectric environment, which exhibits a sharp band gap crossover within less than 5 unit cells. PMID:26918626

  1. Drugging Membrane Protein Interactions.

    PubMed

    Yin, Hang; Flynn, Aaron D

    2016-07-11

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind cells to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally "undruggable" regions of membrane proteins, enabling modulation of protein-protein, protein-lipid, and protein-nucleic acid interactions. In this review, we survey the state of the art of high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  2. Cellulose synthase interacting protein

    PubMed Central

    Somerville, Chris

    2010-01-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the recent identification of a novel component. CSI1, which encodes CESA interacting protein 1 (CSI1) in Arabidopsis. CSI1, as the first non-CESA proteins associated with cellulose synthase complexes, opens up many opportunities. PMID:21150290

  3. Manipulation in close relationships: five personality factors in interactional context.

    PubMed

    Buss, D M

    1992-06-01

    This research had three basic goals: (a) to identify manipulation tactics used in close relationships; (b) to document empirically the degree of generality and specificity of tactical deployment across relationship types (mates, friends, parents); and (c) to identify links between five major personality dimensions and the usage of manipulation tactics. Twelve manipulation tactics were identified through separate factor analyses of two instruments based on different data sources: Charm, Reason, Coercion, Silent Treatment, Debasement, and Regression (replicating Buss et al., 1987), and Responsibility Invocation, Reciprocity, Monetary Reward, Pleasure Induction, Social Comparison, and Hardball (an amalgam of threats, lies, and violence). The Big Five personality factors were assessed through three separate data sources: self-report, spouse report, and two independent interviewers. Personality factors showed coherent links with tactics, including Surgency (Coercion, Responsibility, Invocation), Desurgency (Debasement), Agreeableness (Pleasure Induction), Disagreeableness (Coercion), Conscientiousness (Reason), Emotional Instability (Regression), and Intellect-Openness (Reason). Discussion focuses on the consequences of the five personality factors for social interaction in close relationships. PMID:1635051

  4. Drugging Membrane Protein Interactions

    PubMed Central

    Yin, Hang; Flynn, Aaron D.

    2016-01-01

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind the cell to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally “undruggable” regions of membrane proteins, enabling modulation of protein–protein, protein–lipid, and protein–nucleic acid interactions. In this review, we survey the state of the art in high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  5. Cotton and Protein Interactions

    SciTech Connect

    Goheen, Steven C.; Edwards, J. V.; Rayburn, Alfred R.; Gaither, Kari A.; Castro, Nathan J.

    2006-06-30

    The adsorbent properties of important wound fluid proteins and cotton cellulose are reviewed. This review focuses on the adsorption of albumin to cotton-based wound dressings and some chemically modified derivatives targeted for chronic wounds. Adsorption of elastase in the presence of albumin was examined as a model to understand the interactive properties of these wound fluid components with cotton fibers. In the chronic non-healing wound, elastase appears to be over-expressed, and it digests tissue and growth factors, interfering with the normal healing process. Albumin is the most prevalent protein in wound fluid, and in highly to moderately exudative wounds, it may bind significantly to the fibers of wound dressings. Thus, the relative binding properties of both elastase and albumin to wound dressing fibers are of interest in the design of more effective wound dressings. The present work examines the binding of albumin to two different derivatives of cotton, and quantifies the elastase binding to the same derivatives following exposure of albumin to the fiber surface. An HPLC adsorption technique was employed coupled with a colorimetric enzyme assay to quantify the relative binding properties of albumin and elastase to cotton. The results of wound protein binding are discussed in relation to the porosity and surface chemistry interactions of cotton and wound proteins. Studies are directed to understanding the implications of protein adsorption phenomena in terms of fiber-protein models that have implications for rationally designing dressings for chronic wounds.

  6. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    PubMed Central

    Navarro-Garcia, Fernando; Serapio-Palacios, Antonio; Ugalde-Silva, Paul; Tapia-Pastrana, Gabriela; Chavez-Dueñas, Lucia

    2013-01-01

    The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology. PMID:23509714

  7. Length, protein protein interactions, and complexity

    NASA Astrophysics Data System (ADS)

    Tan, Taison; Frenkel, Daan; Gupta, Vishal; Deem, Michael W.

    2005-05-01

    The evolutionary reason for the increase in gene length from archaea to prokaryotes to eukaryotes observed in large-scale genome sequencing efforts has been unclear. We propose here that the increasing complexity of protein-protein interactions has driven the selection of longer proteins, as they are more able to distinguish among a larger number of distinct interactions due to their greater average surface area. Annotated protein sequences available from the SWISS-PROT database were analyzed for 13 eukaryotes, eight bacteria, and two archaea species. The number of subcellular locations to which each protein is associated is used as a measure of the number of interactions to which a protein participates. Two databases of yeast protein-protein interactions were used as another measure of the number of interactions to which each S. cerevisiae protein participates. Protein length is shown to correlate with both number of subcellular locations to which a protein is associated and number of interactions as measured by yeast two-hybrid experiments. Protein length is also shown to correlate with the probability that the protein is encoded by an essential gene. Interestingly, average protein length and number of subcellular locations are not significantly different between all human proteins and protein targets of known, marketed drugs. Increased protein length appears to be a significant mechanism by which the increasing complexity of protein-protein interaction networks is accommodated within the natural evolution of species. Consideration of protein length may be a valuable tool in drug design, one that predicts different strategies for inhibiting interactions in aberrant and normal pathways.

  8. Carotenoid-Protein Interactions

    NASA Astrophysics Data System (ADS)

    Britton, George; Helliwell, John R.

    Chapter 5 shows that the aggregation of carotenoid molecules can have a profound effect on their properties and hence their functioning in biological systems. Another important influence is the interaction between carotenoids and other molecules. The way that interactions of carotenoids with lipid bilayers influence the structure and properties of membranes and membrane-asociated processes is discussed in Chapter 10, and the aggregation of carotenoid molecules within the bilayers in Chapter 5. Of particular importance, though, are interactions between carotenoids and proteins. These allow the hydrophobic carotenoids to be transported, to exist, and to function in an aqueous environment. In some cases they may modify strongly the light-absorption properties and hence the colour and photochemistry of the carotenoids.

  9. Engineering light-matter interaction for emerging optical manipulation applications

    NASA Astrophysics Data System (ADS)

    Qiu, Cheng-Wei; Palima, Darwin; Novitsky, Andrey; Gao, Dongliang; Ding, Weiqiang; Zhukovsky, Sergei V.; Gluckstad, Jesper

    2014-06-01

    In this review, we explore recent trends in optical micromanipulation by engineering light-matter interaction and controlling the mechanical effects of optical fields. One central theme is exploring the rich phenomena beyond the now established precision measurements based on trapping micro beads with tightly focused beams. Novel synthesized beams, exploiting the linear and angular momentum of light, open new possibilities in optical trapping and micromanipulation. Similarly, novel structures are promising to enable new optical micromanipulation modalities. Moreover, an overview of the amazing features of the optics of tractor beams and backward-directed energy fluxes will be presented. Recently the so-called effect of negative propagation of the beams (existence of the backward energy fluxes) has been confirmed for X-waves and Airy beams. In the review, we will also discuss the negative pulling force of structured beams and negative energy fluxes in the vicinity of fibers. The effect is achieved due to the interaction of multipoles or, in another interpretation, the momentum conservation. Both backward-directed Poynting vector and backward optical forces are counter-intuitive and give an insight into new physics and technologies. Exploiting the degrees of freedom in synthesizing novel beams and designed microstructures offer attractive prospects for emerging optical manipulation applications.

  10. Parallel algorithms for interactive manipulation of digital terrain models

    NASA Technical Reports Server (NTRS)

    Davis, E. W.; Mcallister, D. F.; Nagaraj, V.

    1988-01-01

    Interactive three-dimensional graphics applications, such as terrain data representation and manipulation, require extensive arithmetic processing. Massively parallel machines are attractive for this application since they offer high computational rates, and grid connected architectures provide a natural mapping for grid based terrain models. Presented here are algorithms for data movement on the massive parallel processor (MPP) in support of pan and zoom functions over large data grids. It is an extension of earlier work that demonstrated real-time performance of graphics functions on grids that were equal in size to the physical dimensions of the MPP. When the dimensions of a data grid exceed the processing array size, data is packed in the array memory. Windows of the total data grid are interactively selected for processing. Movement of packed data is needed to distribute items across the array for efficient parallel processing. Execution time for data movement was found to exceed that for arithmetic aspects of graphics functions. Performance figures are given for routines written in MPP Pascal.

  11. Nanobiotechnology: protein-nanomaterial interactions.

    PubMed

    Kane, Ravi S; Stroock, Abraham D

    2007-01-01

    We review recent research that involves the interaction of nanomaterials such as nanoparticles, nanowires, and carbon nanotubes with proteins. We begin with a focus on the fundamentals of the structure and function of proteins on nanomaterials. We then review work in three areas that exploit these interactions: (1) sensing, (2) assembly of nanomaterials by proteins and proteins by nanomaterials, and (3) interactions with cells. We conclude with the identification of challenges and opportunities for the future. PMID:17335286

  12. PREFACE: Protein protein interactions: principles and predictions

    NASA Astrophysics Data System (ADS)

    Nussinov, Ruth; Tsai, Chung-Jung

    2005-06-01

    Proteins are the `workhorses' of the cell. Their roles span functions as diverse as being molecular machines and signalling. They carry out catalytic reactions, transport, form viral capsids, traverse membranes and form regulated channels, transmit information from DNA to RNA, making possible the synthesis of new proteins, and they are responsible for the degradation of unnecessary proteins and nucleic acids. They are the vehicles of the immune response and are responsible for viral entry into the cell. Given their importance, considerable effort has been centered on the prediction of protein function. A prime way to do this is through identification of binding partners. If the function of at least one of the components with which the protein interacts is known, that should let us assign its function(s) and the pathway(s) in which it plays a role. This holds since the vast majority of their chores in the living cell involve protein-protein interactions. Hence, through the intricate network of these interactions we can map cellular pathways, their interconnectivities and their dynamic regulation. Their identification is at the heart of functional genomics; their prediction is crucial for drug discovery. Knowledge of the pathway, its topology, length, and dynamics may provide useful information for forecasting side effects. The goal of predicting protein-protein interactions is daunting. Some associations are obligatory, others are continuously forming and dissociating. In principle, from the physical standpoint, any two proteins can interact, but under what conditions and at which strength? The principles of protein-protein interactions are general: the non-covalent interactions of two proteins are largely the outcome of the hydrophobic effect, which drives the interactions. In addition, hydrogen bonds and electrostatic interactions play important roles. Thus, many of the interactions observed in vitro are the outcome of experimental overexpression. Protein disorder

  13. Imaging Protein-protein Interactions in vivo

    PubMed Central

    Seegar, Tom; Barton, William

    2010-01-01

    Protein-protein interactions are a hallmark of all essential cellular processes. However, many of these interactions are transient, or energetically weak, preventing their identification and analysis through traditional biochemical methods such as co-immunoprecipitation. In this regard, the genetically encodable fluorescent proteins (GFP, RFP, etc.) and their associated overlapping fluorescence spectrum have revolutionized our ability to monitor weak interactions in vivo using Förster resonance energy transfer (FRET)1-3. Here, we detail our use of a FRET-based proximity assay for monitoring receptor-receptor interactions on the endothelial cell surface. PMID:20972411

  14. Manipulating forces by interactive separation and circulation control

    NASA Astrophysics Data System (ADS)

    Nagib, Hassan; Reinhard, Paul; Rozier, Paul

    2011-11-01

    Steady, unsteady and intermittent suction and blowing from localized or distributed slots are used to reveal the physical mechanisms and their interaction in order to manipulate (enhance or reduce) the forces on various aerodynamic bodies and surfaces. Performance under ideal inviscid conditions is used as a standard of performance to compare the outcomes to. While high-lift airfoils were part of the focus, flow over humps which lead to large separation zones was also investigated. Surface pressure measurements, wake surveys and surface visualization were utilized over a wide range of operating conditions in the NDF at IIT. Velocities ranged from 20 to 110 m/s (0 . 06 < M < 0 . 31), corresponding to chord Reynolds numbers from 500 , 000 to 3 , 700 , 000 , and included a full range of airfoil angles of attack with flap deflections from 10 to 55 degrees and various leading edge configurations. Steady suction control was more effective at eliminating the large separation bubble created by the model, requiring a pressure ratio between the applied force and inviscid force of approximately unity, whereas blowing required a two to one ratio. Pulsed suction was superior and enhanced by the operating frequency or duty cycle. Separation control (SC) was modified by the presence of circulation control (CC). Steady-blowing SC near the leading edge reduced the effect of blown-flap CC, whereas steady-suction SC increased the performance gain.

  15. Elizabethkingia anophelis: Molecular Manipulation and Interactions with Mosquito Hosts

    PubMed Central

    Bagdasarian, Michael; Walker, Edward D.

    2015-01-01

    Flavobacteria (members of the family Flavobacteriaceae) dominate the bacterial community in the Anopheles mosquito midgut. One such commensal, Elizabethkingia anophelis, is closely associated with Anopheles mosquitoes through transstadial persistence (i.e., from one life stage to the next); these and other properties favor its development for paratransgenic applications in control of malaria parasite transmission. However, the physiological requirements of E. anophelis have not been investigated, nor has its capacity to perpetuate despite digestion pressure in the gut been quantified. To this end, we first developed techniques for genetic manipulation of E. anophelis, including selectable markers, reporter systems (green fluorescent protein [GFP] and NanoLuc), and transposons that function in E. anophelis. A flavobacterial expression system based on the promoter PompA was integrated into the E. anophelis chromosome and showed strong promoter activity to drive GFP and NanoLuc reporter production. Introduced, GFP-tagged E. anophelis associated with mosquitoes at successive developmental stages and propagated in Anopheles gambiae and Anopheles stephensi but not in Aedes triseriatus mosquitoes. Feeding NanoLuc-tagged cells to A. gambiae and A. stephensi in the larval stage led to infection rates of 71% and 82%, respectively. In contrast, a very low infection rate (3%) was detected in Aedes triseriatus mosquitoes under the same conditions. Of the initial E. anophelis cells provided to larvae, 23%, 71%, and 85% were digested in A. stephensi, A. gambiae, and Aedes triseriatus, respectively, demonstrating that E. anophelis adapted to various mosquito midgut environments differently. Bacterial cell growth increased up to 3-fold when arginine was supplemented in the defined medium. Furthermore, the number of NanoLuc-tagged cells in A. stephensi significantly increased when arginine was added to a sugar diet, showing it to be an important amino acid for E. anophelis. Animal

  16. Elizabethkingia anophelis: molecular manipulation and interactions with mosquito hosts.

    PubMed

    Chen, Shicheng; Bagdasarian, Michael; Walker, Edward D

    2015-03-01

    Flavobacteria (members of the family Flavobacteriaceae) dominate the bacterial community in the Anopheles mosquito midgut. One such commensal, Elizabethkingia anophelis, is closely associated with Anopheles mosquitoes through transstadial persistence (i.e., from one life stage to the next); these and other properties favor its development for paratransgenic applications in control of malaria parasite transmission. However, the physiological requirements of E. anophelis have not been investigated, nor has its capacity to perpetuate despite digestion pressure in the gut been quantified. To this end, we first developed techniques for genetic manipulation of E. anophelis, including selectable markers, reporter systems (green fluorescent protein [GFP] and NanoLuc), and transposons that function in E. anophelis. A flavobacterial expression system based on the promoter PompA was integrated into the E. anophelis chromosome and showed strong promoter activity to drive GFP and NanoLuc reporter production. Introduced, GFP-tagged E. anophelis associated with mosquitoes at successive developmental stages and propagated in Anopheles gambiae and Anopheles stephensi but not in Aedes triseriatus mosquitoes. Feeding NanoLuc-tagged cells to A. gambiae and A. stephensi in the larval stage led to infection rates of 71% and 82%, respectively. In contrast, a very low infection rate (3%) was detected in Aedes triseriatus mosquitoes under the same conditions. Of the initial E. anophelis cells provided to larvae, 23%, 71%, and 85% were digested in A. stephensi, A. gambiae, and Aedes triseriatus, respectively, demonstrating that E. anophelis adapted to various mosquito midgut environments differently. Bacterial cell growth increased up to 3-fold when arginine was supplemented in the defined medium. Furthermore, the number of NanoLuc-tagged cells in A. stephensi significantly increased when arginine was added to a sugar diet, showing it to be an important amino acid for E. anophelis. Animal

  17. Simulation of man-machine interaction on shuttle payload manipulator

    NASA Technical Reports Server (NTRS)

    Hookway, R. O.; Jackson, R. S.

    1975-01-01

    The main objective of this simulation was to evaluate the feasibility of a simplified control system for a remote manipulator for space shuttle payloads. The motion commanded by the operator through the control system to the six degree of freedom manipulator approximates that of a backhoe. Compatibility of low arm damping, heavy payloads, small clearances in the shuttle cargo bay and stringent mission timelines were evaluated. The effects of various devices to enhance visual cues were evaluated. Phase I of the simulation was capture of a payload flying free in space relative to the shuttle. Phase II was simulation of cargo stowage into a mockup of the space shuttle cargo bay. A shuttle remote manipulator control station mockup including TV monitors and hand controllers is used in the simulation. Results evaluating various parameters of the control system and the task, including arm flexibility, are presented.

  18. Carbohydrate–Aromatic Interactions in Proteins

    PubMed Central

    2015-01-01

    Protein–carbohydrate interactions play pivotal roles in health and disease. However, defining and manipulating these interactions has been hindered by an incomplete understanding of the underlying fundamental forces. To elucidate common and discriminating features in carbohydrate recognition, we have analyzed quantitatively X-ray crystal structures of proteins with noncovalently bound carbohydrates. Within the carbohydrate-binding pockets, aliphatic hydrophobic residues are disfavored, whereas aromatic side chains are enriched. The greatest preference is for tryptophan with an increased prevalence of 9-fold. Variations in the spatial orientation of amino acids around different monosaccharides indicate specific carbohydrate C–H bonds interact preferentially with aromatic residues. These preferences are consistent with the electronic properties of both the carbohydrate C–H bonds and the aromatic residues. Those carbohydrates that present patches of electropositive saccharide C–H bonds engage more often in CH−π interactions involving electron-rich aromatic partners. These electronic effects are also manifested when carbohydrate–aromatic interactions are monitored in solution: NMR analysis indicates that indole favorably binds to electron-poor C–H bonds of model carbohydrates, and a clear linear free energy relationships with substituted indoles supports the importance of complementary electronic effects in driving protein–carbohydrate interactions. Together, our data indicate that electrostatic and electronic complementarity between carbohydrates and aromatic residues play key roles in driving protein–carbohydrate complexation. Moreover, these weak noncovalent interactions influence which saccharide residues bind to proteins, and how they are positioned within carbohydrate-binding sites. PMID:26561965

  19. PINT: Protein-protein Interactions Thermodynamic Database.

    PubMed

    Kumar, M D Shaji; Gromiha, M Michael

    2006-01-01

    The first release of Protein-protein Interactions Thermodynamic Database (PINT) contains >1500 data of several thermodynamic parameters along with sequence and structural information, experimental conditions and literature information. Each entry contains numerical data for the free energy change, dissociation constant, association constant, enthalpy change, heat capacity change and so on of the interacting proteins upon binding, which are important for understanding the mechanism of protein-protein interactions. PINT also includes the name and source of the proteins involved in binding, their Protein Information Resource, SWISS-PROT and Protein Data Bank (PDB) codes, secondary structure and solvent accessibility of residues at mutant positions, measuring methods, experimental conditions, such as buffers, ions and additives, and literature information. A WWW interface facilitates users to search data based on various conditions, feasibility to select the terms for output and different sorting options. Further, PINT is cross-linked with other related databases, PIR, SWISS-PROT, PDB and NCBI PUBMED literature database. The database is freely available at http://www.bioinfodatabase.com/pint/index.html. PMID:16381844

  20. Cooperation and conflict in host manipulation: interactions among macro-parasites and micro-organisms

    PubMed Central

    Cézilly, Frank; Perrot-Minnot, Marie-Jeanne; Rigaud, Thierry

    2014-01-01

    Several parasite species are known to manipulate the phenotype of their hosts in ways that enhance their own transmission. Co-occurrence of manipulative parasites, belonging to the same species or to more than one species, in a single host has been regularly observed. Little is known, however, on interactions between co-occurring manipulative parasites with same or different transmission routes. Several models addressing this problem have provided predictions on how cooperation and conflict between parasites could emerge from multiple infections. Here, we review the empirical evidence in favor of the existence of synergistic or antagonistic interactions between co-occurring parasites, and highlight the neglected role of micro-organisms. We particularly discuss the actual importance of selective forces shaping the evolution of interactions between manipulative parasites in relation to parasite prevalence in natural populations, efficiency in manipulation, and type of transmission (i.e., horizontal versus vertical), and we emphasize the potential for future research. PMID:24966851

  1. Biochemical Approaches for Discovering Protein-Protein Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein-protein interactions or protein complexes are indigenous to nearly all cellular processes, ranging from metabolism to structure. Elucidating both individual protein associations and complex protein interaction networks, while challenging, is an essential goal of functional genomics. For ex...

  2. Understanding the Molecular Manipulation of DCAF1 by the Lentiviral Accessory Proteins Vpr and Vpx

    PubMed Central

    Chumley, Jeffrey; Ward, Jeffrey; Barker, Edward; Planelles, Vicente

    2014-01-01

    Vpr and Vpx are primate lentivirus proteins that manipulate the cellular CRL4 ubiquitin ligase complex. While Vpr is common to all primate lentiviruses, Vpx is only encoded by HIV-2 and a limited range of SIVs. Although Vpr and Vpx share a high degree of homology they are known to induce markedly different effects in host cell biology through the recruitment of different substrates to CRL4. Here we explore the interaction of HIV-1 Vpr and SIVmac Vpx with the CRL4 substrate receptor DCAF1. Through mutational analysis of DCAF1 we demonstrate that although Vpr and Vpx share a highly similar DCAF1-binding motif, they interact with a different set of residues in DCAF1. In addition, we show that Vpx recruits SAMHD1 through a protein-protein interface that includes interactions of SAMHD1 with both Vpx and DCAF1, as was first suggested in crystallography data by Schwefel et al. (Nature 505:234, 2014). PMID:25499532

  3. Effects of manipulation of the caspase system on myofibrillar protein degradation in vitro.

    PubMed

    Kemp, C M; Wheeler, T L

    2011-10-01

    Apoptosis via the intrinsic caspase 9 pathway can be induced by oxidative stressors hydrogen peroxide (H₂O₂) and N-(4 hydroxyphenol) rentinamide (fenretinide), a synthetic retinoid. Accelerated muscle atrophy and proteolysis in muscle-wasting conditions have been linked to oxidative stress and activated protease systems. Therefore, the hypothesis of this study was that proteolysis of myofibrillar proteins could be manipulated through the induction or inhibition of the caspase system. After slaughter, LM and supraspinatus muscles from callipyge (n = 5) and normal (n = 3) lambs were excised, finely diced, and incubated with treatment buffers containing oxidative stressors fenretinide or H₂O₂, recombinant caspase 3, caspase-specific inhibitor N-acetyl-Asp-Glu-Val-Asp-CHO (DEVD), or control solution. Muscle samples were incubated for 1, 2, 7, and 21 d at 4°C. Activation of the initiator caspase, caspase 9, and myofibrillar protein degradation was determined by SDS-PAGE and Western blotting. Results showed that fenretinide, H₂O₂, and recombinant caspase 3 increased (P < 0.05) proteolysis of myofibril proteins, whereas DEVD inhibited degradation (P < 0.05). Proteolysis of myofibrillar proteins increased with incubation time (P < 0.0001), and incubation time × treatment interactions (P < 0.05) indicated that the treatment effects did not all occur at the same rate. This study has shown that manipulation of the caspase system through induction or inhibition of activity can affect degradation of myofibrillar proteins, providing further evidence that the caspase system could be involved in postmortem proteolysis and tenderization. However, these stimulated changes were not sufficient to overcome the lack of proteolysis that is characteristic of muscle from callipyge lambs. PMID:21622882

  4. Electrical manipulation of spins in a nanowire with Rashba interaction

    NASA Astrophysics Data System (ADS)

    Sakr, M. R.

    2016-07-01

    We investigate the influence of external electric fields on the spins of a ballistic nanowire in terms of variations of the Rashba parameter and modification of the confinement potential. For a weak Rashba effect, the spins along the confinement direction in a given subband nearly assume full quantization. In the presence of a perpendicular magnetic field, the state of quantization can be manipulated using a transverse electric. This process requires modifications in the spin textures. If an in-plane magnetic field is applied, spins suffer rigid displacement to one edge of the wire and their expectation value becomes independent of the transverse electric field.

  5. Domains mediate protein-protein interactions and nucleate protein assemblies.

    PubMed

    Costa, S; Cesareni, G

    2008-01-01

    Cell physiology is governed by an intricate mesh of physical and functional links among proteins, nucleic acids and other metabolites. The recent information flood coming from large-scale genomic and proteomic approaches allows us to foresee the possibility of compiling an exhaustive list of the molecules present within a cell, enriched with quantitative information on concentration and cellular localization. Moreover, several high-throughput experimental and computational techniques have been devised to map all the protein interactions occurring in a living cell. So far, such maps have been drawn as graphs where nodes represent proteins and edges represent interactions. However, this representation does not take into account the intrinsically modular nature of proteins and thus fails in providing an effective description of the determinants of binding. Since proteins are composed of domains that often confer on proteins their binding capabilities, a more informative description of the interaction network would detail, for each pair of interacting proteins in the network, which domains mediate the binding. Understanding how protein domains combine to mediate protein interactions would allow one to add important features to the protein interaction network, making it possible to discriminate between simultaneously occurring and mutually exclusive interactions. This objective can be achieved by experimentally characterizing domain recognition specificity or by analyzing the frequency of co-occurring domains in proteins that do interact. Such approaches allow gaining insights on the topology of complexes with unknown three-dimensional structure, thus opening the prospect of adopting a more rational strategy in developing drugs designed to selectively target specific protein interactions. PMID:18491061

  6. Bacteriophage Protein–Protein Interactions

    PubMed Central

    Häuser, Roman; Blasche, Sonja; Dokland, Terje; Haggård-Ljungquist, Elisabeth; von Brunn, Albrecht; Salas, Margarita; Casjens, Sherwood; Molineux, Ian

    2012-01-01

    Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage–host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology. PMID:22748812

  7. Manipulation of Plant Host Susceptibility: An Emerging Role for Viral Movement Proteins?

    PubMed Central

    Amari, Khalid; Vazquez, Franck; Heinlein, Manfred

    2012-01-01

    Viruses encode viral suppressors of RNA silencing (VSRs) to counteract RNA silencing, a major antiviral defense response in plants. Recent studies indicate a role of virus-derived siRNAs in manipulating the expression of specific host genes and that certain plant viral movement proteins (MPs) can act as viral enhancers of RNA silencing (VERs) by stimulating the spread of silencing between cells. This suggests that viruses have evolved complex responses capable to efficiently hijack the host RNA silencing machinery to their own advantage. We draw here a dynamic model of the interaction of plant viruses with the silencing machinery during invasion of the host. The model proposes that cells at the spreading front of infection, where infection starts from zero and the VSR levels are supposedly low, represent potential sites for viral manipulation of host gene expression by using virus- and host-derived small RNAs. Viral MPs may facilitate the spread of silencing to produce a wave of small RNA-mediated gene expression changes ahead of the infection to increase host susceptibility. When experimentally ascertained, this hypothetical model will call for re-defining viral movement and the function of viral MPs. PMID:22639637

  8. Protein-protein interactions as drug targets.

    PubMed

    Skwarczynska, Malgorzata; Ottmann, Christian

    2015-10-01

    Modulation of protein-protein interactions (PPIs) is becoming increasingly important in drug discovery and chemical biology. While a few years ago this 'target class' was deemed to be largely undruggable an impressing number of publications and success stories now show that targeting PPIs with small, drug-like molecules indeed is a feasible approach. Here, we summarize the current state of small-molecule inhibition and stabilization of PPIs and review the active molecules from a structural and medicinal chemistry angle, especially focusing on the key examples of iNOS, LFA-1 and 14-3-3. PMID:26510391

  9. Recognition of haptic interaction patterns in dyadic joint object manipulation.

    PubMed

    Madan, Cigil Ece; Kucukyilmaz, Ayse; Sezgin, Tevfik Metin; Basdogan, Cagatay

    2015-01-01

    The development of robots that can physically cooperate with humans has attained interest in the last decades. Obviously, this effort requires a deep understanding of the intrinsic properties of interaction. Up to now, many researchers have focused on inferring human intents in terms of intermediate or terminal goals in physical tasks. On the other hand, working side by side with people, an autonomous robot additionally needs to come up with in-depth information about underlying haptic interaction patterns that are typically encountered during human-human cooperation. However, to our knowledge, no study has yet focused on characterizing such detailed information. In this sense, this work is pioneering as an effort to gain deeper understanding of interaction patterns involving two or more humans in a physical task. We present a labeled human-human-interaction dataset, which captures the interaction of two humans, who collaboratively transport an object in an haptics-enabled virtual environment. In the light of information gained by studying this dataset, we propose that the actions of cooperating partners can be examined under three interaction types: In any cooperative task, the interacting humans either 1) work in harmony, 2) cope with conflicts, or 3) remain passive during interaction. In line with this conception, we present a taxonomy of human interaction patterns; then propose five different feature sets, comprising force-, velocity-and power-related information, for the classification of these patterns. Our evaluation shows that using a multi-class support vector machine (SVM) classifier, we can accomplish a correct classification rate of 86 percent for the identification of interaction patterns, an accuracy obtained by fusing a selected set of most informative features by Minimum Redundancy Maximum Relevance (mRMR) feature selection method. PMID:25532210

  10. Manipulating Cognitive Complexity across Task Types and Its Impact on Learners' Interaction during Oral Performance

    ERIC Educational Resources Information Center

    Gilabert, Roger; Baron, Julia; Llanes, Angels

    2009-01-01

    The goal of this study is to investigate the impact of manipulating the cognitive complexity of three different types of oral tasks on interaction. The study first considers the concepts of task complexity and interaction and then examines the specific studies that have looked at the effects of increasing task complexity on conversational…

  11. Split-Protein Systems: Beyond Binary Protein-Protein Interactions

    PubMed Central

    Shekhawat, Sujan S.; Ghosh, Indraneel

    2011-01-01

    It has been estimated that 650,000 protein-protein interactions exist in the human interactome [1], a subset of all possible macromolecular partnerships that dictate life. Thus there is a continued need for the development of sensitive and user-friendly methods for cataloguing biomacromolecules in complex environments and for detecting their interactions, modifications, and cellular location. Such methods also allow for establishing differences in the interactome between a normal and diseased cellular state and for quantifying the outcome of therapeutic intervention. A promising approach for deconvoluting the role of macromolecular partnerships is split-protein reassembly, also called protein fragment complementation. This approach relies on the appropriate fragmentation of protein reporters, such as the green fluorescent protein or firefly luciferase, which when attached to possible interacting partners can reassemble and regain function, thereby confirming the partnership. Split-protein methods have been effectively utilized for detecting protein-protein interactions in cell-free systems, E. coli, yeast, mammalian cells, plants, and live animals. Herein, we present recent advances in engineering split-protein systems that allow for the rapid detection of ternary protein complexes, small molecule inhibitors, as well as a variety of macromolecules including nucleic acids, poly(ADP) ribose, and iron sulfur clusters. We also present advances that combine split-protein systems with chemical inducers of dimerization strategies that allow for regulating the activity of orthogonal split-proteases as well as aid in identifying enzyme inhibitors. Finally, we discuss autoinhibition strategies leading to turn-on sensors as well as future directions in split-protein methodology including possible therapeutic approaches. PMID:22070901

  12. Split-protein systems: beyond binary protein-protein interactions.

    PubMed

    Shekhawat, Sujan S; Ghosh, Indraneel

    2011-12-01

    It has been estimated that 650,000 protein-protein interactions exist in the human interactome (Stumpf et al., 2008), a subset of all possible macromolecular partnerships that dictate life. Thus there is a continued need for the development of sensitive and user-friendly methods for cataloguing biomacromolecules in complex environments and for detecting their interactions, modifications, and cellular location. Such methods also allow for establishing differences in the interactome between a normal and diseased cellular state and for quantifying the outcome of therapeutic intervention. A promising approach for deconvoluting the role of macromolecular partnerships is split-protein reassembly, also called protein fragment complementation. This approach relies on the appropriate fragmentation of protein reporters, such as the green fluorescent protein or firefly luciferase, which when attached to possible interacting partners can reassemble and regain function, thereby confirming the partnership. Split-protein methods have been effectively utilized for detecting protein-protein interactions in cell-free systems, Escherichia coli, yeast, mammalian cells, plants, and live animals. Herein, we present recent advances in engineering split-protein systems that allow for the rapid detection of ternary protein complexes, small molecule inhibitors, as well as a variety of macromolecules including nucleic acids, poly(ADP) ribose, and iron sulfur clusters. We also present advances that combine split-protein systems with chemical inducers of dimerization strategies that allow for regulating the activity of orthogonal split-proteases as well as aid in identifying enzyme inhibitors. Finally, we discuss autoinhibition strategies leading to turn-on sensors as well as future directions in split-protein methodology including possible therapeutic approaches. PMID:22070901

  13. Energy design for protein-protein interactions

    PubMed Central

    Ravikant, D. V. S.; Elber, Ron

    2011-01-01

    Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions. PMID:21842951

  14. Energy design for protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Ravikant, D. V. S.; Elber, Ron

    2011-08-01

    Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions.

  15. Interactions of Pathological Hallmark Proteins

    PubMed Central

    Oláh, Judit; Vincze, Orsolya; Virók, Dezső; Simon, Dóra; Bozsó, Zsolt; Tőkési, Natália; Horváth, István; Hlavanda, Emma; Kovács, János; Magyar, Anna; Szűcs, Mária; Orosz, Ferenc; Penke, Botond; Ovádi, Judit

    2011-01-01

    The disordered tubulin polymerization promoting protein (TPPP/p25) was found to be co-enriched in neuronal and glial inclusions with α-synuclein in Parkinson disease and multiple system atrophy, respectively; however, co-occurrence of α-synuclein with β-amyloid (Aβ) in human brain inclusions has been recently reported, suggesting the existence of mixed type pathologies that could result in obstacles in the correct diagnosis and treatment. Here we identified TPPP/p25 as an interacting partner of the soluble Aβ oligomers as major risk factors for Alzheimer disease using ProtoArray human protein microarray. The interactions of oligomeric Aβ with proteins involved in the etiology of neurological disorders were characterized by ELISA, surface plasmon resonance, pelleting experiments, and tubulin polymerization assay. We showed that the Aβ42 tightly bound to TPPP/p25 (Kd = 85 nm) and caused aberrant protein aggregation by inhibiting the physiologically relevant TPPP/p25-derived microtubule assembly. The pair-wise interactions of Aβ42, α-synuclein, and tubulin were found to be relatively weak; however, these three components formed soluble ternary complex exclusively in the absence of TPPP/p25. The aggregation-facilitating activity of TPPP/p25 and its interaction with Aβ was monitored by electron microscopy with purified proteins by pelleting experiments with cell-free extracts as well as by confocal microscopy with CHO cells expressing TPPP/p25 or amyloid. The finding that the interaction of TPPP/p25 with Aβ can produce pathological-like aggregates is tightly coupled with unusual pathology of the Alzheimer disease revealed previously; that is, partial co-localization of Aβ and TPPP/p25 in the case of diffuse Lewy body disease with Alzheimer disease. PMID:21832049

  16. Single-Molecule Manipulation Studies of a Mechanically Activated Protein

    NASA Astrophysics Data System (ADS)

    Botello, Eric; Harris, Nolan; Choi, Huiwan; Bergeron, Angela; Dong, Jing-Fei; Kiang, Ching-Hwa

    2009-10-01

    Plasma von Willebrand factor (pVWF) is the largest multimeric adhesion ligand found in human blood and must be adhesively activated by exposure to shear stress, like at sites of vascular injury, to initiate blood clotting. Sheared pVWF (sVWF) will undergo a conformational change from a loose tangled coil to elongated strings forming adhesive fibers by binding with other sVWF. VWF's adhesion activity is also related to its length, with the ultra-large form of VWF (ULVWF) being hyper-actively adhesive without exposure to shear stress; it has also been shown to spontaneously form fibers. We used single molecule manipulation techniques with the AFM to stretch pVWF, sVWF and ULVWF and monitor the forces as a function of molecular extension. We showed a similar increase in resistance to unfolding for sVWF and ULVWF when compared to pVWF. This mechanical resistance to forced unfolding is reduced when other molecules known to disrupt their fibril formation are present. Our results show that sVWF and ULVWF domains unfold at higher forces than pVWF, which is consistent with the hypothesis that shear stress induces lateral association that alters adhesion activity of pVWF.

  17. Protein- protein interaction detection system using fluorescent protein microdomains

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  18. Manipulating Cofactor Binding Thermodynamics in an Artificial Oxygen Transport Protein

    PubMed Central

    Zhang, Lei; Ross Anderson, J. L.; Ahmed, Ismail; Norman, Jessica A.; Negron, Christopher; Mutter, Andrew C.; Dutton, P. Leslie; Koder, Ronald L.

    2013-01-01

    We report the mutational analysis of an artificial oxygen transport protein, HP-7, which operates via a mechanism akin to human neuroglobin and cytoglobin. This protein destabilizes one of two heme-ligating histidine residues by coupling histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Replacement of these glutamate residues with alanine, which is uncharged, increases the affinity of the distal histidine ligand by a factor of thirteen. Paradoxically, it also decreases heme binding affinity by a factor of five in the reduced state and sixty in the oxidized state. Application of a three-state binding model, in which an initial pentacoordinate binding event is followed by a protein conformational change to hexacoordinate, provides insight into the mechanism of this seemingly counterintuitive result: the initial pentacoordinate encounter complex is significantly destabilized by the loss of the glutamate side chains, and the increased affinity for the distal histidine only partially compensates. These results point to the importance of considering each oxidation and conformational state in the design of functional artificial proteins. PMID:22004125

  19. Direct Probing of Protein-Protein Interactions

    SciTech Connect

    Noy, A; Sulchek, T A; Friddle, R W

    2005-03-10

    This project aimed to establish feasibility of using experimental techniques based on direct measurements of interaction forces on the single molecule scale to characterize equilibrium interaction potentials between individual biological molecules. Such capability will impact several research areas, ranging from rapid interaction screening capabilities to providing verifiable inputs for computational models. It should be one of the enabling technologies for modern proteomics research. This study used a combination of Monte-Carlo simulations, theoretical considerations, and direct experimental measurements to investigate two model systems that represented typical experimental situations: force-induced melting of DNA rigidly attached to the tip, and force-induced unbinding of a protein-antibody pair connected to flexible tethers. Our results establish that for both systems researchers can use force spectroscopy measurements to extract reliable information about equilibrium interaction potentials. However, the approaches necessary to extract these potentials in each case--Jarzynski reconstruction and Dynamic Force Spectroscopy--are very different. We also show how the thermodynamics and kinetics of unbinding process dictates the choice between in each case.

  20. Experimental manipulation of floral scent bouquets restructures flower-visitor interactions in the field.

    PubMed

    Larue, Anne-Amélie C; Raguso, Robert A; Junker, Robert R

    2016-03-01

    A common structural feature of natural communities is the non-random distribution of pairwise interactions between organisms of different trophic levels. For plant-animal interactions, it is predicted that both stochastic processes and functional plant traits that facilitate or prevent interactions are responsible for these patterns. However, unbiased manipulative field experiments that rigorously test the effects of individual traits on community structure are lacking. We address this gap by manipulating floral scent bouquets in the field. Manipulation of floral scent bouquets led to quantitative as well as qualitative restructuring of flower-visitor networks, making them more generalized. Olfactometer trials confirmed both positive and negative responses to scent bouquets. Our results clearly show that the distribution of insect visitors to the two abundant study plant species reflects the insects' species-specific preferences for floral scents, rather than for visual or morphological floral traits. Thus, floral scents may be of major importance in partitioning flower-visitor interactions. Integrating experimental manipulations of plant traits with field observations of interaction patterns thus represents a promising approach for revealing the processes that structure species assemblages in natural communities. PMID:26428739

  1. Hydrodynamic interactions in protein folding

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Niewieczerzał, Szymon

    2009-03-01

    We incorporate hydrodynamic interactions (HIs) in a coarse-grained and structure-based model of proteins by employing the Rotne-Prager hydrodynamic tensor. We study several small proteins and demonstrate that HIs facilitate folding. We also study HIV-1 protease and show that HIs make the flap closing dynamics faster. The HIs are found to affect time correlation functions in the vicinity of the native state even though they have no impact on same time characteristics of the structure fluctuations around the native state.

  2. Hydrodynamic interactions in protein folding.

    PubMed

    Cieplak, Marek; Niewieczerzał, Szymon

    2009-03-28

    We incorporate hydrodynamic interactions (HIs) in a coarse-grained and structure-based model of proteins by employing the Rotne-Prager hydrodynamic tensor. We study several small proteins and demonstrate that HIs facilitate folding. We also study HIV-1 protease and show that HIs make the flap closing dynamics faster. The HIs are found to affect time correlation functions in the vicinity of the native state even though they have no impact on same time characteristics of the structure fluctuations around the native state. PMID:19334888

  3. The impact of interactive manipulation on the recognition of objects

    NASA Astrophysics Data System (ADS)

    Meijer, Frank; van den Broek, Egon L.; Schouten, Theo

    2008-02-01

    A new application for VR has emerged: product development, in which several stakeholders (from engineers to end users) use the same VR for development and communicate purposes. Various characteristics among these stakeholders vary considerably, which imposes potential constraints to the VR. The current paper discusses the influence of three types of exploration of objects (i.e., none, passive, active) on one of these characteristics: the ability to form mental representations or visuo-spatial ability (VSA). Through an experiment we found that all users benefit from exploring objects. Moreover, people with low VSA (e.g., end users) benefit from an interactive exploration of objects opposed to people with a medium or high VSA (e.g. engineers), who are not sensitive for the type of exploration. Hence, for VR environments in which multiple stakeholders participate (e.g. for product development), differences among their cognitive abilities (e.g., VSA) have to be taken into account to enable an efficient usage of VR.

  4. Examination and Manipulation of Protein Surface Charge in Solution with Electrospray Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Gross, Deborah S.; Van Ryswyk, Hal

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool for examining the charge of proteins in solution. The charge can be manipulated through choice of solvent and pH. Furthermore, solution-accessible, protonated lysine side chains can be specifically tagged with 18-crown-6 ether to form noncovalent adducts. Chemical derivatization…

  5. Quantifying molecule-surface interactions using AFM-based single-molecule manipulation

    NASA Astrophysics Data System (ADS)

    Tautz, F. S.; Wagner, C.; Temirov, R.; Fournier, N.; Green, M.; Esat, T.; Leinen, P.; Groetsch, A.; Ruiz, V. G.; Tkatchenko, A.; Li, C.; Muellen, K.; Rohlfing, M.

    2015-03-01

    Scanning probe microscopy plays an important role in the investigation of molecular adsorption. Promising, is the possibility to probe the molecule-surface interaction while tuning its strength through AFM tip-induced single-molecule manipulation. Here, we outline a strategy to achieve quantitative understanding of such manipulation experiments. The example of qPlus sensor based PTCDA molecule lifting experiments is used to demonstrate how different aspects of the molecule-surface interaction, namely the short-range adsorption potential, the asymptotic van der Waals potential, local chemical bonds which are the source of the surface corrugation, and molecule-molecule interactions can be measured with SPM and interpreted by the help of force-field simulations.

  6. Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins.

    PubMed

    Banerjee, Ashis Gopal; Chowdhury, Sagar; Losert, Wolfgang; Gupta, Satyandra K

    2011-05-01

    Optical tweezers have emerged as a promising technique for manipulating biological objects. Instead of direct laser exposure, more often than not, optically-trapped beads are attached to the ends or boundaries of the objects for translation, rotation, and stretching. This is referred to as indirect optical manipulation. In this paper, we utilize the concept of robotic gripping to explain the different experimental setups which are commonly used for indirect manipulation of cells, nucleic acids, and motor proteins. We also give an overview of the kind of biological insights provided by this technique. We conclude by highlighting the trends across the experimental studies, and discuss challenges and promising directions in this domain of active current research. PMID:21639562

  7. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  8. Longitudinal phase space manipulation of an ultrashort electron beam via THz IFEL interaction

    SciTech Connect

    Moody, J. T.; Li, R. K.; Musumeci, P.; Scoby, C. M.; To, H.

    2012-12-21

    A scheme where a laser locked THz source is used to manipulate the longitudinal phase space of an ultrashort electron beam using an IFEL interaction is investigated. The efficiency of THz source based on the pulse front tilt optical rectification scheme is increased by cryogenic cooling to achieve sufficient THz power for compression and synchronization. Start-to-end simulations describing the evolution of the beam from the cathode to the compression point after the undulator are presented.

  9. Bioinformatic Prediction of WSSV-Host Protein-Protein Interaction

    PubMed Central

    Sun, Zheng; Xiang, Jianhai

    2014-01-01

    WSSV is one of the most dangerous pathogens in shrimp aquaculture. However, the molecular mechanism of how WSSV interacts with shrimp is still not very clear. In the present study, bioinformatic approaches were used to predict interactions between proteins from WSSV and shrimp. The genome data of WSSV (NC_003225.1) and the constructed transcriptome data of F. chinensis were used to screen potentially interacting proteins by searching in protein interaction databases, including STRING, Reactome, and DIP. Forty-four pairs of proteins were suggested to have interactions between WSSV and the shrimp. Gene ontology analysis revealed that 6 pairs of these interacting proteins were classified into “extracellular region” or “receptor complex” GO-terms. KEGG pathway analysis showed that they were involved in the “ECM-receptor interaction pathway.” In the 6 pairs of interacting proteins, an envelope protein called “collagen-like protein” (WSSV-CLP) encoded by an early virus gene “wsv001” in WSSV interacted with 6 deduced proteins from the shrimp, including three integrin alpha (ITGA), two integrin beta (ITGB), and one syndecan (SDC). Sequence analysis on WSSV-CLP, ITGA, ITGB, and SDC revealed that they possessed the sequence features for protein-protein interactions. This study might provide new insights into the interaction mechanisms between WSSV and shrimp. PMID:24982879

  10. Proteins interacting with cloning scars: a source of false positive protein-protein interactions

    PubMed Central

    Banks, Charles A. S.; Boanca, Gina; Lee, Zachary T.; Florens, Laurence; Washburn, Michael P.

    2015-01-01

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine “cloning scar” present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected. PMID:25704442

  11. Coevolution of gene expression among interacting proteins

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  12. Protein-protein interactions in DNA mismatch repair.

    PubMed

    Friedhoff, Peter; Li, Pingping; Gotthardt, Julia

    2016-02-01

    The principal DNA mismatch repair proteins MutS and MutL are versatile enzymes that couple DNA mismatch or damage recognition to other cellular processes. Besides interaction with their DNA substrates this involves transient interactions with other proteins which is triggered by the DNA mismatch or damage and controlled by conformational changes. Both MutS and MutL proteins have ATPase activity, which adds another level to control their activity and interactions with DNA substrates and other proteins. Here we focus on the protein-protein interactions, protein interaction sites and the different levels of structural knowledge about the protein complexes formed with MutS and MutL during the mismatch repair reaction. PMID:26725162

  13. An application of the MPP to the interactive manipulation of stereo images of digital terrain models

    NASA Technical Reports Server (NTRS)

    Pol, Sanjay; Mcallister, David; Davis, Edward

    1987-01-01

    Massively Parallel Processor algorithms were developed for the interactive manipulation of flat shaded digital terrain models defined over grids. The emphasis is on real time manipulation of stereo images. Standard graphics transformations are applied to a 128 x 128 grid of elevations followed by shading and a perspective projection to produce the right eye image. The surface is then rendered using a simple painter's algorithm for hidden surface removal. The left eye image is produced by rotating the surface 6 degs about the viewer's y axis followed by a perspective projection and rendering of the image as described above. The left and right eye images are then presented on a graphics device using standard stereo technology. Performance evaluations and comparisons are presented.

  14. Transient protein-protein interactions visualized by solution NMR.

    PubMed

    Liu, Zhu; Gong, Zhou; Dong, Xu; Tang, Chun

    2016-01-01

    Proteins interact with each other to establish their identities in cell. The affinities for the interactions span more than ten orders of magnitude, and KD values in μM-mM regimen are considered transient and are important in cell signaling. Solution NMR including diamagnetic and paramagnetic techniques has enabled atomic-resolution depictions of transient protein-protein interactions. Diamagnetic NMR allows characterization of protein complexes with KD values up to several mM, whereas ultraweak and fleeting complexes can be modeled with the use of paramagnetic NMR especially paramagnetic relaxation enhancement (PRE). When tackling ever-larger protein complexes, PRE can be particularly useful in providing long-range intermolecular distance restraints. As NMR measurements are averaged over the ensemble of complex structures, structural information for dynamic protein-protein interactions besides the stereospecific one can often be extracted. Herein the protein interaction dynamics are exemplified by encounter complexes, alternative binding modes, and coupled binding/folding of intrinsically disordered proteins. Further integration of NMR with other biophysical techniques should allow better visualization of transient protein-protein interactions. In particular, single-molecule data may facilitate the interpretation of ensemble-averaged NMR data. Though same structures of proteins and protein complexes were found in cell as in diluted solution, we anticipate that the dynamics of transient protein protein-protein interactions be different, which awaits awaits exploration by NMR. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. PMID:25896389

  15. How do oncoprotein mutations rewire protein-protein interaction networks?

    PubMed

    Bowler, Emily H; Wang, Zhenghe; Ewing, Rob M

    2015-01-01

    The acquisition of mutations that activate oncogenes or inactivate tumor suppressors is a primary feature of most cancers. Mutations that directly alter protein sequence and structure drive the development of tumors through aberrant expression and modification of proteins, in many cases directly impacting components of signal transduction pathways and cellular architecture. Cancer-associated mutations may have direct or indirect effects on proteins and their interactions and while the effects of mutations on signaling pathways have been widely studied, how mutations alter underlying protein-protein interaction networks is much less well understood. Systematic mapping of oncoprotein protein interactions using proteomics techniques as well as computational network analyses is revealing how oncoprotein mutations perturb protein-protein interaction networks and drive the cancer phenotype. PMID:26325016

  16. A Gateway-Based System for Fast Evaluation of Protein-Protein Interactions in Bacteria

    PubMed Central

    Wille, Thorsten; Barlag, Britta; Jakovljevic, Vladimir; Hensel, Michael; Sourjik, Victor; Gerlach, Roman G.

    2015-01-01

    Protein-protein interactions are important layers of regulation in all kingdoms of life. Identification and characterization of these interactions is one challenging task of the post-genomic era and crucial for understanding of molecular processes within a cell. Several methods have been successfully employed during the past decades to identify protein-protein interactions in bacteria, but most of them include tedious and time-consuming manipulations of DNA. In contrast, the MultiSite Gateway system is a fast tool for transfer of multiple DNA fragments between plasmids enabling simultaneous and site directed cloning of up to four fragments into one construct. Here we developed a new set of Gateway vectors including custom made entry vectors and modular Destination vectors for studying protein-protein interactions via Fluorescence Resonance Energy Transfer (FRET), Bacterial two Hybrid (B2H) and split Gaussia luciferase (Gluc), as well as for fusions with SNAP-tag and HaloTag for dual-color super-resolution microscopy. As proof of principle, we characterized the interaction between the Salmonella effector SipA and its chaperone InvB via split Gluc and B2H approach. The suitability for FRET analysis as well as functionality of fusions with SNAP- and HaloTag could be demonstrated by studying the transient interaction between chemotaxis response regulator CheY and its phosphatase CheZ. PMID:25856398

  17. Protein Synthesis--An Interactive Game.

    ERIC Educational Resources Information Center

    Clements, Lee Ann J.; Jackson, Karen E.

    1998-01-01

    Describes an interactive game designed to help students see and understand the dynamic relationship between DNA, RNA, and proteins. Appropriate for either a class or laboratory setting, following a lecture session about protein synthesis. (DDR)

  18. Protein-protein interactions: methods for detection and analysis.

    PubMed Central

    Phizicky, E M; Fields, S

    1995-01-01

    The function and activity of a protein are often modulated by other proteins with which it interacts. This review is intended as a practical guide to the analysis of such protein-protein interactions. We discuss biochemical methods such as protein affinity chromatography, affinity blotting, coimmunoprecipitation, and cross-linking; molecular biological methods such as protein probing, the two-hybrid system, and phage display: and genetic methods such as the isolation of extragenic suppressors, synthetic mutants, and unlinked noncomplementing mutants. We next describe how binding affinities can be evaluated by techniques including protein affinity chromatography, sedimentation, gel filtration, fluorescence methods, solid-phase sampling of equilibrium solutions, and surface plasmon resonance. Finally, three examples of well-characterized domains involved in multiple protein-protein interactions are examined. The emphasis of the discussion is on variations in the approaches, concerns in evaluating the results, and advantages and disadvantages of the techniques. PMID:7708014

  19. Use of protein-protein interactions in affinity chromatography.

    PubMed

    Muronetz, V I; Sholukh, M; Korpela, T

    2001-10-30

    Biospecific recognition between proteins is a phenomenon that can be exploited for designing affinity-chromatographic purification systems for proteins. In principle, the approach is straightforward, and there are usually many alternative ways, since a protein can be always found which binds specifically enough to the desired protein. Routine immunoaffinity chromatography utilizes the recognition of antigenic epitopes by antibodies. However, forces involved in protein-protein interactions as well the forces keeping the three-dimensional structures of proteins intact are complicated, and proteins are easily unfolded by various factors with unpredictable results. Because of this and because of the generally high association strength between proteins, the correct adjustment of binding forces between an immobilized protein and the protein to be purified as well as the release of bound proteins in biologically active form from affinity complexes are the main problem. Affinity systems involving interactions like enzyme-enzyme, subunit-oligomer, protein-antibody, protein-chaperone and the specific features involved in each case are presented as examples. This article also aims to sketch prospects for further development of the use of protein-protein interactions for the purification of proteins. PMID:11694271

  20. How Many Protein-Protein Interactions Types Exist in Nature?

    PubMed Central

    Mitra, Pralay; Zhang, Yang

    2012-01-01

    Protein quaternary structure universe” refers to the ensemble of all protein-protein complexes across all organisms in nature. The number of quaternary folds thus corresponds to the number of ways proteins physically interact with other proteins. This study focuses on answering two basic questions: Whether the number of protein-protein interactions is limited and, if yes, how many different quaternary folds exist in nature. By all-to-all sequence and structure comparisons, we grouped the protein complexes in the protein data bank (PDB) into 3,629 families and 1,761 folds. A statistical model was introduced to obtain the quantitative relation between the numbers of quaternary families and quaternary folds in nature. The total number of possible protein-protein interactions was estimated around 4,000, which indicates that the current protein repository contains only 42% of quaternary folds in nature and a full coverage needs approximately a quarter century of experimental effort. The results have important implications to the protein complex structural modeling and the structure genomics of protein-protein interactions. PMID:22719985

  1. How many protein-protein interactions types exist in nature?

    PubMed

    Garma, Leonardo; Mukherjee, Srayanta; Mitra, Pralay; Zhang, Yang

    2012-01-01

    "Protein quaternary structure universe" refers to the ensemble of all protein-protein complexes across all organisms in nature. The number of quaternary folds thus corresponds to the number of ways proteins physically interact with other proteins. This study focuses on answering two basic questions: Whether the number of protein-protein interactions is limited and, if yes, how many different quaternary folds exist in nature. By all-to-all sequence and structure comparisons, we grouped the protein complexes in the protein data bank (PDB) into 3,629 families and 1,761 folds. A statistical model was introduced to obtain the quantitative relation between the numbers of quaternary families and quaternary folds in nature. The total number of possible protein-protein interactions was estimated around 4,000, which indicates that the current protein repository contains only 42% of quaternary folds in nature and a full coverage needs approximately a quarter century of experimental effort. The results have important implications to the protein complex structural modeling and the structure genomics of protein-protein interactions. PMID:22719985

  2. Computational drug design targeting protein-protein interactions.

    PubMed

    Bienstock, Rachelle J

    2012-01-01

    Novel discoveries in molecular disease pathways within the cell, combined with increasing information regarding protein binding partners has lead to a new approach in drug discovery. There is interest in designing drugs to modulate protein-protein interactions as opposed to solely targeting the catalytic active site within a single enzyme or protein. There are many challenges in this new approach to drug discovery, particularly since the protein-protein interface has a larger surface area, can comprise a discontinuous epitope, and is more amorphous and less well defined than the typical drug design target, a small contained enzyme-binding pocket. Computational methods to predict modes of protein-protein interaction, as well as protein interface hot spots, have garnered significant interest, in order to facilitate the development of drugs to successfully disrupt and inhibit protein-protein interactions. This review summarizes some current methods available for computational protein-protein docking, as well as tabulating some examples of the successful design of antagonists and small molecule inhibitors for protein-protein interactions. Several of these drugs are now beginning to appear in the clinic. PMID:22316151

  3. Phytophthora infestans RXLR Effector AVR1 Interacts with Exocyst Component Sec5 to Manipulate Plant Immunity1[OPEN

    PubMed Central

    Du, Yu; Mpina, Mohamed H.; Birch, Paul R.J.; Bouwmeester, Klaas; Govers, Francine

    2015-01-01

    Phytophthora infestans secretes numerous RXLR effectors that modulate host defense and thereby pave the way for successful invasion. Here, we show that the RXLR effector AVR1 is a virulence factor that promotes colonization and suppresses callose deposition, a hallmark of basal defense. To identify host targets of AVR1, we performed yeast two-hybrid screens and selected Sec5 as a candidate. Sec5 is a subunit of the exocyst, a protein complex that is involved in vesicle trafficking. AVR1-like (A-L), a close homolog of AVR1, also acts as a virulence factor, but unlike AVR1, A-L does not suppress CRINKLER2 (CRN2)-induced cell death or interact with Sec5. Compared with AVR1, A-L is shorter and lacks the carboxyl-terminal tail, the T-region that is crucial for CRN2-induced cell death suppression and Sec5 interaction. In planta analyses revealed that AVR1 and Sec5 are in close proximity, and coimmunoprecipitation confirmed the interaction. Sec5 is required for secretion of the pathogenesis-related protein PR-1 and callose deposition and also plays a role in CRN2-induced cell death. Our findings show that P. infestans manipulates an exocyst subunit and thereby potentially disturbs vesicle trafficking, a cellular process that is important for basal defense. This is a novel strategy that oomycete pathogens exploit to modulate host defense. PMID:26336092

  4. Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography using Surface Acoustic Waves

    PubMed Central

    Guo, Feng; Zhou, Weijie; Li, Peng; Mao, Zhangming; Yennawar, Neela; French, Jarrod B.; Jun Huang, Tony

    2015-01-01

    Advances in modern X-ray sources and detector technology have made it possible for crystallographers to collect usable data on crystals of only a few micrometers or less in size. Despite these developments, sample handling techniques have significantly lagged behind and often prevent the full realization of current beamline capabilities. In order to address this shortcoming we have developed a surface acoustic wave-based method for manipulating and patterning crystals. This method, which does not damage the fragile protein crystals, can precisely manipulate and pattern micrometer and sub-micrometer sized crystals for data collection and screening. The technique is robust, inexpensive, and easy to implement. This method not only promises to significantly increase efficiency and throughput of both conventional and serial crystallography experiments, but also will make it possible to collect data on samples that were previously intractable. PMID:25641793

  5. Current Experimental Methods for Characterizing Protein-Protein Interactions.

    PubMed

    Zhou, Mi; Li, Qing; Wang, Renxiao

    2016-04-19

    Protein molecules often interact with other partner protein molecules in order to execute their vital functions in living organisms. Characterization of protein-protein interactions thus plays a central role in understanding the molecular mechanism of relevant protein molecules, elucidating the cellular processes and pathways relevant to health or disease for drug discovery, and charting large-scale interaction networks in systems biology research. A whole spectrum of methods, based on biophysical, biochemical, or genetic principles, have been developed to detect the time, space, and functional relevance of protein-protein interactions at various degrees of affinity and specificity. This article presents an overview of these experimental methods, outlining the principles, strengths and limitations, and recent developments of each type of method. PMID:26864455

  6. Solid State NMR and Protein-Protein Interactions in Membranes

    PubMed Central

    Miao, Yimin; Cross, Timothy A.

    2013-01-01

    Solid state NMR spectroscopy has evolved rapidly in recent years into an excellent tool for the characterization of membrane proteins and their complexes. In the past few years it has also become clear that the structure of membrane proteins, especially helical membrane proteins is determined, in part, by the membrane environment. Therefore, the modeling of this environment by a liquid crystalline lipid bilayer for solid state NMR has generated a unique tool for the characterization of native conformational states, local and global dynamics, and high resolution structure for these proteins. Protein-protein interactions can also benefit from this solid state NMR capability to characterize membrane proteins in a native-like environment. These complexes take the form of oligomeric structures and hetero-protein interactions both with water soluble proteins and other membrane proteins. PMID:24034903

  7. Solid state NMR and protein-protein interactions in membranes.

    PubMed

    Miao, Yimin; Cross, Timothy A

    2013-12-01

    Solid state NMR spectroscopy has evolved rapidly in recent years into an excellent tool for the characterization of membrane proteins and their complexes. In the past few years it has also become clear that the structure of membrane proteins, especially helical membrane proteins is determined, in part, by the membrane environment. Therefore, the modeling of this environment by a liquid crystalline lipid bilayer for solid state NMR has generated a unique tool for the characterization of native conformational states, local and global dynamics, and high-resolution structure for these proteins. Protein-protein interactions can also benefit from this solid state NMR capability to characterize membrane proteins in a native-like environment. These complexes take the form of oligomeric structures and hetero-protein interactions both with water-soluble proteins and other membrane proteins. PMID:24034903

  8. Measuring protein interactions by microchip self-interaction chromatography.

    PubMed

    García, Carlos D; Hadley, DeGail J; Wilson, W William; Henry, Charles S

    2003-01-01

    The self-interaction of proteins is of paramount importance in aggregation and crystallization phenomena. Solution conditions leading to a change in the state of aggregation of a protein, whether amorphous or crystalline, have mainly been discovered by the use of trial and error screening of large numbers of solutions. Self-interaction chromatography has the potential to provide a quantitative method for determination of protein self-interactions amenable to high-throughput screening. This paper describes the construction and characterization of a microchip separation system for low-pressure self-interaction chromatography using lysozyme as a model protein. The retention time was analyzed as a function of mobile-phase composition, amount of protein injected, flow rate, and stationary-phase modification. The capacity factors (k') as a function of crystallizing agent concentration are compared with previously published values for the osmotic second virial coefficient (B(22)) obtained by static light scattering, showing the ability of the chip to accurately determine protein-protein interactions. A 500-fold reduction in protein consumption and the possibility of using conventional instrumentation and automation are some of the advantages over currently used methodologies for evaluating protein-protein interactions. PMID:12790668

  9. A Microfluidic Platform for Characterization of Protein-Protein Interactions.

    PubMed

    Javanmard, Mehdi; Talasaz, Amirali H; Nemat-Gorgani, Mohsen; Huber, David E; Pease, Fabian; Ronaghi, Mostafa; Davis, Ronald W

    2009-08-01

    Traditionally, expensive and time consuming techniques such as mass spectrometry and Western Blotting have been used for characterization of protein-protein interactions. In this paper, we describe the design, fabrication, and testing of a rapid and inexpensive sensor, involving the use of microelectrodes in a microchannel, which can be used for real-time electrical detection of specific interactions between proteins. We have successfully demonstrated detection of target glycoprotein-glycoprotein interactions, antigen-antibody interactions, and glycoprotein-antigen interactions. We have also demonstrated the ability of this technique to distinguish between strong and weak interactions. Using this approach, it may be possible to multiplex an array of these sensors onto a chip and probe a complex mixture for various types of interactions involving protein molecules. PMID:20467571

  10. Remote Manipulator System (RMS)-based Controls-Structures Interaction (CSI) flight experiment feasibility study

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.

    1990-01-01

    The feasibility of an experiment which will provide an on-orbit validation of Controls-Structures Interaction (CSI) technology, was investigated. The experiment will demonstrate the on-orbit characterization and flexible-body control of large flexible structure dynamics using the shuttle Remote Manipulator System (RMS) with an attached payload as a test article. By utilizing existing hardware as well as establishing integration, operation and safety algorithms, techniques and procedures, the experiment will minimize the costs and risks of implementing a flight experiment. The experiment will also offer spin-off enhancement to both the Shuttle RMS (SRMS) and the Space Station RMS (SSRMS).

  11. The Intrinsic Geometric Structure of Protein-Protein Interaction Networks for Protein Interaction Prediction.

    PubMed

    Fang, Yi; Sun, Mengtian; Dai, Guoxian; Ramain, Karthik

    2016-01-01

    Recent developments in high-throughput technologies for measuring protein-protein interaction (PPI) have profoundly advanced our ability to systematically infer protein function and regulation. However, inherently high false positive and false negative rates in measurement have posed great challenges in computational approaches for the prediction of PPI. A good PPI predictor should be 1) resistant to high rate of missing and spurious PPIs, and 2) robust against incompleteness of observed PPI networks. To predict PPI in a network, we developed an intrinsic geometry structure (IGS) for network, which exploits the intrinsic and hidden relationship among proteins in network through a heat diffusion process. In this process, all explicit PPIs participate simultaneously to glue local infinitesimal and noisy experimental interaction data to generate a global macroscopic descriptions about relationships among proteins. The revealed implicit relationship can be interpreted as the probability of two proteins interacting with each other. The revealed relationship is intrinsic and robust against individual, local and explicit protein interactions in the original network. We apply our approach to publicly available PPI network data for the evaluation of the performance of PPI prediction. Experimental results indicate that, under different levels of the missing and spurious PPIs, IGS is able to robustly exploit the intrinsic and hidden relationship for PPI prediction with a higher sensitivity and specificity compared to that of recently proposed methods. PMID:26886733

  12. Geminivirus C3 Protein: Replication Enhancement and Protein Interactions

    PubMed Central

    Settlage, Sharon B.; See, Renee G.; Hanley-Bowdoin, Linda

    2005-01-01

    Most dicot-infecting geminiviruses encode a replication enhancer protein (C3, AL3, or REn) that is required for optimal replication of their small, single-stranded DNA genomes. C3 interacts with C1, the essential viral replication protein that initiates rolling circle replication. C3 also homo-oligomerizes and interacts with at least two host-encoded proteins, proliferating cell nuclear antigen (PCNA) and the retinoblastoma-related protein (pRBR). It has been proposed that protein interactions contribute to C3 function. Using the C3 protein of Tomato yellow leaf curl virus, we examined the impact of mutations to amino acids that are conserved across the C3 protein family on replication enhancement and protein interactions. Surprisingly, many of the mutations did not affect replication enhancement activity of C3 in tobacco protoplasts. Other mutations either enhanced or were detrimental to C3 replication activity. Analysis of mutated proteins in yeast two-hybrid assays indicated that mutations that inactivate C3 replication enhancement activity also reduce or inactivate C3 oligomerization and interaction with C1 and PCNA. In contrast, mutated C3 proteins impaired for pRBR binding are fully functional in replication assays. Hydrophobic residues in the middle of the C3 protein were implicated in C3 interaction with itself, C1, and PCNA, while polar resides at both the N and C termini of the protein are important for C3-pRBR interaction. These experiments established the importance of C3-C3, C3-C1, and C3-PCNA interactions in geminivirus replication. While C3-pRBR interaction is not required for viral replication in cycling cells, it may play a role during infection of differentiated cells in intact plants. PMID:16014949

  13. Protein interaction networks from literature mining

    NASA Astrophysics Data System (ADS)

    Ihara, Sigeo

    2005-03-01

    The ability to accurately predict and understand physiological changes in the biological network system in response to disease or drug therapeutics is of crucial importance in life science. The extensive amount of gene expression data generated from even a single microarray experiment often proves difficult to fully interpret and comprehend the biological significance. An increasing knowledge of protein interactions stored in the PubMed database, as well as the advancement of natural language processing, however, makes it possible to construct protein interaction networks from the gene expression information that are essential for understanding the biological meaning. From the in house literature mining system we have developed, the protein interaction network for humans was constructed. By analysis based on the graph-theoretical characterization of the total interaction network in literature, we found that the network is scale-free and semantic long-ranged interactions (i.e. inhibit, induce) between proteins dominate in the total interaction network, reducing the degree exponent. Interaction networks generated based on scientific text in which the interaction event is ambiguously described result in disconnected networks. In contrast interaction networks based on text in which the interaction events are clearly stated result in strongly connected networks. The results of protein-protein interaction networks obtained in real applications from microarray experiments are discussed: For example, comparisons of the gene expression data indicative of either a good or a poor prognosis for acute lymphoblastic leukemia with MLL rearrangements, using our system, showed newly discovered signaling cross-talk.

  14. Synthetic heparin and heparan sulfate oligosaccharides and their protein interactions.

    PubMed

    Zulueta, Medel Manuel L; Lin, Shu-Yi; Hu, Yu-Peng; Hung, Shang-Cheng

    2013-12-01

    Heparin and heparan sulfate bind a host of basic proteins that take advantage of the sugar's dense structural information. The significance of these interactions in various aspects of development, physiology, and disease stimulated keen interest in evaluating structure-activity relationships. The well-defined heparin and heparan sulfate oligosaccharides needed for these studies can be mainly accessed by chemical synthesis and, more recently by chemoenzymatic means. The various synthetic strategies available to chemical synthesis have recently enabled the acquisition of several regular and irregular sequences, including a number of dodecasaccharides, through improved coupling methods and judicial protecting group manipulations. Controlled chain elongation and critical application of modification enzymes allowed the generation of well-defined constructs via chemoenzymatic synthesis. Investigations of various protein interactions with the synthetic constructs delivered valuable information that could aid future drug development endeavors. PMID:24182748

  15. Protein-protein interactions and genetic diseases: The Interactome

    PubMed Central

    Lage, Kasper

    2014-01-01

    Protein-protein interactions mediate essentially all biological processes. Despite the quality of these data being widely questioned a decade ago, the reproducibility of large-scale protein interaction data is now much improved and there is little question that the latest screens are of high quality. Moreover, common data standards and coordinated curation practices between the databases that collect the interactions have made these valuable data available to a wide group of researchers. Here, I will review how protein-protein interactions are measured, collected and quality controlled. I discuss how the architecture of molecular protein networks have informed disease biology, and how these data are now being computationally integrated with the newest genomic technologies, in particular genome-wide association studies and exome-sequencing projects, to improve our understanding of molecular processes perturbed by genetics in human diseases. PMID:24892209

  16. APID: Agile Protein Interaction DataAnalyzer.

    PubMed

    Prieto, Carlos; De Las Rivas, Javier

    2006-07-01

    Agile Protein Interaction DataAnalyzer (APID) is an interactive bioinformatics web tool developed to integrate and analyze in a unified and comparative platform main currently known information about protein-protein interactions demonstrated by specific small-scale or large-scale experimental methods. At present, the application includes information coming from five main source databases enclosing an unified sever to explore >35 000 different proteins and 111 000 different proven interactions. The web includes search tools to query and browse upon the data, allowing selection of the interaction pairs based in calculated parameters that weight and qualify the reliability of each given protein interaction. Such parameters are for the 'proteins': connectivity, cluster coefficient, Gene Ontology (GO) functional environment, GO environment enrichment; and for the 'interactions': number of methods, GO overlapping, iPfam domain-domain interaction. APID also includes a graphic interactive tool to visualize selected sub-networks and to navigate on them or along the whole interaction network. The application is available open access at http://bioinfow.dep.usal.es/apid/. PMID:16845013

  17. Manipulating perfume delivery to the interface using polymer-surfactant interactions.

    PubMed

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2016-03-15

    Enhanced delivery of perfumes to interfaces is an important element of their effectiveness in a range of home and personal care products. The role of polyelectrolyte-surfactant mixtures to promote perfume adsorption at interfaces is explored here. Neutron reflectivity, NR, was used to quantify the adsorption of the model perfumes phenylethanol, PE, and linalool, LL, at the air-water interface in the presence of the anionic surfactant sodium dodecylsulfate, SDS, and the cationic polyelectrolytes, poly(dimethyldiallyl ammonium chloride), polydmdaac, and poly(ethyleneimine), PEI. The strong SDS-polydmdaac interaction dominates the surface adsorption in SDS-polymer-perfume (PE, LL) mixtures, such that the PE and LL adsorption is greatly suppressed. For PEI-SDS-perfume mixtures the PEI-LL interaction competes with the SDS-PEI interaction at all pH at the surface and significant LL adsorption occurs, whereas for PE the PEI-SDS interaction dominates and the PE adsorption is greatly reduced. The use of the strong surface polyelectrolyte-ionic surfactant interaction to manipulate perfume adsorption at the air-water interface has been demonstrated. In particular the results show how the competition between polyelectrolyte, surfactant and perfume interactions at the surface and in solution affect the partitioning of perfumes to the surface. PMID:26724705

  18. An Interactive Introduction to Protein Structure

    ERIC Educational Resources Information Center

    Lee, W. Theodore

    2004-01-01

    To improve student understanding of protein structure and the significance of noncovalent interactions in protein structure and function, students are assigned a project to write a paper complemented with computer-generated images. The assignment provides an opportunity for students to select a protein structure that is of interest and detail…

  19. Curvature-mediated interactions between membrane proteins.

    PubMed Central

    Kim, K S; Neu, J; Oster, G

    1998-01-01

    Membrane proteins can deform the lipid bilayer in which they are embedded. If the bilayer is treated as an elastic medium, then these deformations will generate elastic interactions between the proteins. The interaction between a single pair is repulsive. However, for three or more proteins, we show that there are nonpairwise forces whose magnitude is similar to the pairwise forces. When there are five or more proteins, we show that the nonpairwise forces permit the existence of stable protein aggregates, despite their pairwise repulsions. PMID:9788923

  20. Noninvasive imaging of protein-protein interactions in living animals

    NASA Astrophysics Data System (ADS)

    Luker, Gary D.; Sharma, Vijay; Pica, Christina M.; Dahlheimer, Julie L.; Li, Wei; Ochesky, Joseph; Ryan, Christine E.; Piwnica-Worms, Helen; Piwnica-Worms, David

    2002-05-01

    Protein-protein interactions control transcription, cell division, and cell proliferation as well as mediate signal transduction, oncogenic transformation, and regulation of cell death. Although a variety of methods have been used to investigate protein interactions in vitro and in cultured cells, none can analyze these interactions in intact, living animals. To enable noninvasive molecular imaging of protein-protein interactions in vivo by positron-emission tomography and fluorescence imaging, we engineered a fusion reporter gene comprising a mutant herpes simplex virus 1 thymidine kinase and green fluorescent protein for readout of a tetracycline-inducible, two-hybrid system in vivo. By using micro-positron-emission tomography, interactions between p53 tumor suppressor and the large T antigen of simian virus 40 were visualized in tumor xenografts of HeLa cells stably transfected with the imaging constructs. Imaging protein-binding partners in vivo will enable functional proteomics in whole animals and provide a tool for screening compounds targeted to specific protein-protein interactions in living animals.

  1. DIP: The Database of Interacting Proteins

    DOE Data Explorer

    The DIP Database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. By interaction, the DIP Database creators mean that two amino acid chains were experimentally identified to bind to each other. The database lists such pairs to aid those studying a particular protein-protein interaction but also those investigating entire regulatory and signaling pathways as well as those studying the organisation and complexity of the protein interaction network at the cellular level. The data stored within the DIP database were curated, both, manually by expert curators and also automatically using computational approaches that utilize the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. It is a relational database that can be searched by protein, sequence, motif, article information, and pathBLAST. The website also serves as an access point to a number of projects related to DIP, such as LiveDIP, The Database of Ligand-Receptor Partners (DLRP) and JDIP. Users have free and open access to DIP after login. [Taken from the DIP Guide and the DIP website] (Specialized Interface) (Registration Required)

  2. Predicting Physical Interactions between Protein Complexes*

    PubMed Central

    Clancy, Trevor; Rødland, Einar Andreas; Nygard, Ståle; Hovig, Eivind

    2013-01-01

    Protein complexes enact most biochemical functions in the cell. Dynamic interactions between protein complexes are frequent in many cellular processes. As they are often of a transient nature, they may be difficult to detect using current genome-wide screens. Here, we describe a method to computationally predict physical interactions between protein complexes, applied to both humans and yeast. We integrated manually curated protein complexes and physical protein interaction networks, and we designed a statistical method to identify pairs of protein complexes where the number of protein interactions between a complex pair is due to an actual physical interaction between the complexes. An evaluation against manually curated physical complex-complex interactions in yeast revealed that 50% of these interactions could be predicted in this manner. A community network analysis of the highest scoring pairs revealed a biologically sensible organization of physical complex-complex interactions in the cell. Such analyses of proteomes may serve as a guide to the discovery of novel functional cellular relationships. PMID:23438732

  3. Understanding and Manipulating Electrostatic Fields at the Protein-Protein Interface Using Vibrational Spectroscopy and Continuum Electrostatics Calculations.

    PubMed

    Ritchie, Andrew W; Webb, Lauren J

    2015-11-01

    Biological function emerges in large part from the interactions of biomacromolecules in the complex and dynamic environment of the living cell. For this reason, macromolecular interactions in biological systems are now a major focus of interest throughout the biochemical and biophysical communities. The affinity and specificity of macromolecular interactions are the result of both structural and electrostatic factors. Significant advances have been made in characterizing structural features of stable protein-protein interfaces through the techniques of modern structural biology, but much less is understood about how electrostatic factors promote and stabilize specific functional macromolecular interactions over all possible choices presented to a given molecule in a crowded environment. In this Feature Article, we describe how vibrational Stark effect (VSE) spectroscopy is being applied to measure electrostatic fields at protein-protein interfaces, focusing on measurements of guanosine triphosphate (GTP)-binding proteins of the Ras superfamily binding with structurally related but functionally distinct downstream effector proteins. In VSE spectroscopy, spectral shifts of a probe oscillator's energy are related directly to that probe's local electrostatic environment. By performing this experiment repeatedly throughout a protein-protein interface, an experimental map of measured electrostatic fields generated at that interface is determined. These data can be used to rationalize selective binding of similarly structured proteins in both in vitro and in vivo environments. Furthermore, these data can be used to compare to computational predictions of electrostatic fields to explore the level of simulation detail that is necessary to accurately predict our experimental findings. PMID:26375183

  4. Evolutionarily Conserved Herpesviral Protein Interaction Networks

    PubMed Central

    Fossum, Even; Friedel, Caroline C.; Rajagopala, Seesandra V.; Titz, Björn; Baiker, Armin; Schmidt, Tina; Kraus, Theo; Stellberger, Thorsten; Rutenberg, Christiane; Suthram, Silpa; Bandyopadhyay, Sourav; Rose, Dietlind; von Brunn, Albrecht; Uhlmann, Mareike; Zeretzke, Christine; Dong, Yu-An; Boulet, Hélène; Koegl, Manfred; Bailer, Susanne M.; Koszinowski, Ulrich; Ideker, Trey; Uetz, Peter; Zimmer, Ralf; Haas, Jürgen

    2009-01-01

    Herpesviruses constitute a family of large DNA viruses widely spread in vertebrates and causing a variety of different diseases. They possess dsDNA genomes ranging from 120 to 240 kbp encoding between 70 to 170 open reading frames. We previously reported the protein interaction networks of two herpesviruses, varicella-zoster virus (VZV) and Kaposi's sarcoma-associated herpesvirus (KSHV). In this study, we systematically tested three additional herpesvirus species, herpes simplex virus 1 (HSV-1), murine cytomegalovirus and Epstein-Barr virus, for protein interactions in order to be able to perform a comparative analysis of all three herpesvirus subfamilies. We identified 735 interactions by genome-wide yeast-two-hybrid screens (Y2H), and, together with the interactomes of VZV and KSHV, included a total of 1,007 intraviral protein interactions in the analysis. Whereas a large number of interactions have not been reported previously, we were able to identify a core set of highly conserved protein interactions, like the interaction between HSV-1 UL33 with the nuclear egress proteins UL31/UL34. Interactions were conserved between orthologous proteins despite generally low sequence similarity, suggesting that function may be more conserved than sequence. By combining interactomes of different species we were able to systematically address the low coverage of the Y2H system and to extract biologically relevant interactions which were not evident from single species. PMID:19730696

  5. PLIC: protein-ligand interaction clusters.

    PubMed

    Anand, Praveen; Nagarajan, Deepesh; Mukherjee, Sumanta; Chandra, Nagasuma

    2014-01-01

    Most of the biological processes are governed through specific protein-ligand interactions. Discerning different components that contribute toward a favorable protein- ligand interaction could contribute significantly toward better understanding protein function, rationalizing drug design and obtaining design principles for protein engineering. The Protein Data Bank (PDB) currently hosts the structure of ∼68 000 protein-ligand complexes. Although several databases exist that classify proteins according to sequence and structure, a mere handful of them annotate and classify protein-ligand interactions and provide information on different attributes of molecular recognition. In this study, an exhaustive comparison of all the biologically relevant ligand-binding sites (84 846 sites) has been conducted using PocketMatch: a rapid, parallel, in-house algorithm. PocketMatch quantifies the similarity between binding sites based on structural descriptors and residue attributes. A similarity network was constructed using binding sites whose PocketMatch scores exceeded a high similarity threshold (0.80). The binding site similarity network was clustered into discrete sets of similar sites using the Markov clustering (MCL) algorithm. Furthermore, various computational tools have been used to study different attributes of interactions within the individual clusters. The attributes can be roughly divided into (i) binding site characteristics including pocket shape, nature of residues and interaction profiles with different kinds of atomic probes, (ii) atomic contacts consisting of various types of polar, hydrophobic and aromatic contacts along with binding site water molecules that could play crucial roles in protein-ligand interactions and (iii) binding energetics involved in interactions derived from scoring functions developed for docking. For each ligand-binding site in each protein in the PDB, site similarity information, clusters they belong to and description of

  6. PPIM: A Protein-Protein Interaction Database for Maize.

    PubMed

    Zhu, Guanghui; Wu, Aibo; Xu, Xin-Jian; Xiao, Pei-Pei; Lu, Le; Liu, Jingdong; Cao, Yongwei; Chen, Luonan; Wu, Jun; Zhao, Xing-Ming

    2016-02-01

    Maize (Zea mays) is one of the most important crops worldwide. To understand the biological processes underlying various traits of the crop (e.g. yield and response to stress), a detailed protein-protein interaction (PPI) network is highly demanded. Unfortunately, there are very few such PPIs available in the literature. Therefore, in this work, we present the Protein-Protein Interaction Database for Maize (PPIM), which covers 2,762,560 interactions among 14,000 proteins. The PPIM contains not only accurately predicted PPIs but also those molecular interactions collected from the literature. The database is freely available at http://comp-sysbio.org/ppim with a user-friendly powerful interface. We believe that the PPIM resource can help biologists better understand the maize crop. PMID:26620522

  7. Protein-protein interaction networks (PPI) and complex diseases

    PubMed Central

    Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Rezaei-Tavirani, Mostafa; Goliaei, Bahram

    2014-01-01

    The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network. PMID:25436094

  8. Real-time interactive visualization and manipulation of the volumetric data using GPU-based methods

    NASA Astrophysics Data System (ADS)

    Dietrich, Carlos A.; Nedel, Luciana P.; Olabarriaga, Silvia D.; Comba, Joao L. D.; Zanchet, Dinamar J.; Marques da Silva, Ana M.; de Souza Montero, Edna F.

    2004-05-01

    This work presents a set of tools developed to provide 3D visualization and interaction with large volumetric data that relies on recent programmable capabilities of consumer-level graphics cards. We are exploiting the programmable control of calculations performed by the graphics hardware for generating the appearance of each pixel on the screen to develop real-time, interactive volume manipulation tools. These tools allow real-time modification of visualization parameters, such as color and opacity classification or the selection of a volume of interest, extending the benefit of hardware acceleration beyond display, namely for computation of voxel visibility. Three interactive tools are proposed: a cutting tool that allows the selection of a convex volume of interest, an eraser-like tool to eliminate non-relevant parts of the image and a digger-like tool that allows the user to eliminate layers of a 3D image. To interactively apply the proposed tools on a volume, we are making use of some so known user interaction techniques, as the ones used in 2D painting systems. Our strategy is to minimize the user entrainment efforts involved in the tools learning. Finally, we illustrate the potential application of the conceived tools for preoperative planning of liver surgery and for liver vascular anatomy study. Preliminary results concerning the system performance and the images quality and resolution are presented and discussed.

  9. Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9

    PubMed Central

    Kaczmarczyk, Lech; Mende, Ylva; Zevnik, Branko; Jackson, Walker S.

    2016-01-01

    The mammalian prion protein (PrP, encoded by Prnp) is most infamous for its central role in prion diseases, invariably fatal neurodegenerative diseases affecting humans, food animals, and animals in the wild. However, PrP is also hypothesized to be an important receptor for toxic protein conformers in Alzheimer's disease, and is associated with other clinically relevant processes such as cancer and stroke. Thus, key insights into important clinical areas, as well as into understanding PrP functions in normal physiology, can be obtained from studying transgenic mouse models and cell culture systems. However, the Prnp locus is difficult to manipulate by homologous recombination, making modifications of the endogenous locus rarely attempted. Fortunately in recent years genome engineering technologies, like TALENs or CRISPR/Cas9 (CC9), have brought exceptional new possibilities for manipulating Prnp. Herein, we present our observations made during systematic experiments with the CC9 system targeting the endogenous mouse Prnp locus, to either modify sequences or to boost PrP expression using CC9-based synergistic activation mediators (SAMs). It is our hope that this information will aid and encourage researchers to implement gene-targeting techniques into their research program. PMID:27128441

  10. Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9.

    PubMed

    Kaczmarczyk, Lech; Mende, Ylva; Zevnik, Branko; Jackson, Walker S

    2016-01-01

    The mammalian prion protein (PrP, encoded by Prnp) is most infamous for its central role in prion diseases, invariably fatal neurodegenerative diseases affecting humans, food animals, and animals in the wild. However, PrP is also hypothesized to be an important receptor for toxic protein conformers in Alzheimer's disease, and is associated with other clinically relevant processes such as cancer and stroke. Thus, key insights into important clinical areas, as well as into understanding PrP functions in normal physiology, can be obtained from studying transgenic mouse models and cell culture systems. However, the Prnp locus is difficult to manipulate by homologous recombination, making modifications of the endogenous locus rarely attempted. Fortunately in recent years genome engineering technologies, like TALENs or CRISPR/Cas9 (CC9), have brought exceptional new possibilities for manipulating Prnp. Herein, we present our observations made during systematic experiments with the CC9 system targeting the endogenous mouse Prnp locus, to either modify sequences or to boost PrP expression using CC9-based synergistic activation mediators (SAMs). It is our hope that this information will aid and encourage researchers to implement gene-targeting techniques into their research program. PMID:27128441

  11. Capturing the Interaction Potential of Amyloidogenic Proteins

    SciTech Connect

    Javid, Nadeem; Vogtt, Karsten; Winter, Roland; Krywka, Christina; Tolan, Metin

    2007-07-13

    Experimentally derived static structure factors obtained for the aggregation-prone protein insulin were analyzed with a statistical mechanical model based on the Derjaguin-Landau-Verwey-Overbeek potential. The data reveal that the protein self-assembles into equilibrium clusters already at low concentrations. Furthermore, striking differences regarding interaction forces between aggregation-prone proteins such as insulin in the preaggregated regime and natively stable globular proteins are found.

  12. Methods for analyzing and quantifying protein-protein interaction.

    PubMed

    Syafrizayanti; Betzen, Christian; Hoheisel, Jörg D; Kastelic, Damjana

    2014-02-01

    Genome sequencing has led to the identification of many proteins, which had not been recognized before. In consequence, the basic set of human proteins is generally known. Far less information, however, exists about protein-protein interactions, which are required and responsible for cellular activities and their control. Many protein isoforms that result from mutations, splice-variations and post-translational modifications also come into play. Until recently, interactions of only few protein partners could be analyzed in a single experiment. However, this does not meet the challenge of investigating the highly complex interaction patterns in cellular systems. It is made even more demanding by the need to determine the intensity of interactions quantitatively in order to properly understand protein interplay. Currently available techniques vary with respect to accuracy, reliability, reproducibility and throughput and their performances range from a mere qualitative demonstration of binding to a quantitative characterization of affinities. In this article, an overview is given of the methodologies available for analysis of protein-protein interactions. PMID:24393018

  13. Signature Product Code for Predicting Protein-Protein Interactions

    SciTech Connect

    Martin, Shawn B.; Brown, William M.

    2004-09-25

    The SigProdV1.0 software consists of four programs which together allow the prediction of protein-protein interactions using only amino acid sequences and experimental data. The software is based on the use of tensor products of amino acid trimers coupled with classifiers known as support vector machines. Essentially the program looks for amino acid trimer pairs which occur more frequently in protein pairs which are known to interact. These trimer pairs are then used to make predictions about unknown protein pairs. A detailed description of the method can be found in the paper: S. Martin, D. Roe, J.L. Faulon. "Predicting protein-protein interactions using signature products," Bioinformatics, available online from Advance Access, Aug. 19, 2004.

  14. Signature Product Code for Predicting Protein-Protein Interactions

    Energy Science and Technology Software Center (ESTSC)

    2004-09-25

    The SigProdV1.0 software consists of four programs which together allow the prediction of protein-protein interactions using only amino acid sequences and experimental data. The software is based on the use of tensor products of amino acid trimers coupled with classifiers known as support vector machines. Essentially the program looks for amino acid trimer pairs which occur more frequently in protein pairs which are known to interact. These trimer pairs are then used to make predictionsmore » about unknown protein pairs. A detailed description of the method can be found in the paper: S. Martin, D. Roe, J.L. Faulon. "Predicting protein-protein interactions using signature products," Bioinformatics, available online from Advance Access, Aug. 19, 2004.« less

  15. Quantitative interaction proteomics of neurodegenerative disease proteins.

    PubMed

    Hosp, Fabian; Vossfeldt, Hannes; Heinig, Matthias; Vasiljevic, Djordje; Arumughan, Anup; Wyler, Emanuel; Landthaler, Markus; Hubner, Norbert; Wanker, Erich E; Lannfelt, Lars; Ingelsson, Martin; Lalowski, Maciej; Voigt, Aaron; Selbach, Matthias

    2015-05-19

    Several proteins have been linked to neurodegenerative disorders (NDDs), but their molecular function is not completely understood. Here, we used quantitative interaction proteomics to identify binding partners of Amyloid beta precursor protein (APP) and Presenilin-1 (PSEN1) for Alzheimer's disease (AD), Huntingtin (HTT) for Huntington's disease, Parkin (PARK2) for Parkinson's disease, and Ataxin-1 (ATXN1) for spinocerebellar ataxia type 1. Our network reveals common signatures of protein degradation and misfolding and recapitulates known biology. Toxicity modifier screens and comparison to genome-wide association studies show that interaction partners are significantly linked to disease phenotypes in vivo. Direct comparison of wild-type proteins and disease-associated variants identified binders involved in pathogenesis, highlighting the value of differential interactome mapping. Finally, we show that the mitochondrial protein LRPPRC interacts preferentially with an early-onset AD variant of APP. This interaction appears to induce mitochondrial dysfunction, which is an early phenotype of AD. PMID:25959826

  16. Protein interaction mapping: A Drosophila case study

    PubMed Central

    Formstecher, Etienne; Aresta, Sandra; Collura, Vincent; Hamburger, Alexandre; Meil, Alain; Trehin, Alexandra; Reverdy, Céline; Betin, Virginie; Maire, Sophie; Brun, Christine; Jacq, Bernard; Arpin, Monique; Bellaiche, Yohanns; Bellusci, Saverio; Benaroch, Philippe; Bornens, Michel; Chanet, Roland; Chavrier, Philippe; Delattre, Olivier; Doye, Valérie; Fehon, Richard; Faye, Gérard; Galli, Thierry; Girault, Jean-Antoine; Goud, Bruno; de Gunzburg, Jean; Johannes, Ludger; Junier, Marie-Pierre; Mirouse, Vincent; Mukherjee, Ashim; Papadopoulo, Dora; Perez, Franck; Plessis, Anne; Rossé, Carine; Saule, Simon; Stoppa-Lyonnet, Dominique; Vincent, Alain; White, Michael; Legrain, Pierre; Wojcik, Jérôme; Camonis, Jacques; Daviet, Laurent

    2005-01-01

    The Drosophila (fruit fly) model system has been instrumental in our current understanding of human biology, development, and diseases. Here, we used a high-throughput yeast two-hybrid (Y2H)-based technology to screen 102 bait proteins from Drosophila melanogaster, most of them orthologous to human cancer-related and/or signaling proteins, against high-complexity fly cDNA libraries. More than 2300 protein-protein interactions (PPI) were identified, of which 710 are of high confidence. The computation of a reliability score for each protein-protein interaction and the systematic identification of the interacting domain combined with a prediction of structural/functional motifs allow the elaboration of known complexes and the identification of new ones. The full data set can be visualized using a graphical Web interface, the PIMRider (http://pim.hybrigenics.com), and is also accessible in the PSI standard Molecular Interaction data format. Our fly Protein Interaction Map (PIM) is surprisingly different from the one recently proposed by Giot et al. with little overlap between the two data sets. Analysis of the differences in data sets and methods suggests alternative strategies to enhance the accuracy and comprehensiveness of the post-genomic generation of broad-scale protein interaction maps. PMID:15710747

  17. Retention and interference of learned dexterous manipulation: interaction between multiple sensorimotor processes.

    PubMed

    Fu, Qiushi; Santello, Marco

    2015-01-01

    An object can be used in multiple contexts, each requiring different hand actions. How the central nervous system builds and maintains memory of such dexterous manipulations remains unclear. We conducted experiments in which human subjects had to learn and recall manipulations performed in two contexts, A and B. Both contexts involved lifting the same L-shaped object whose geometry cued its asymmetrical mass distribution. Correct performance required producing a torque on the vertical handle at object lift onset to prevent it from tilting. The torque direction depended on the context, i.e., object orientation, which was changed by 180° object rotation about a vertical axis. With an A1B1A2 context switching paradigm, subjects learned A1 in the first block of eight trials as indicated by a torque approaching the required one. However, subjects made large errors in anticipating the required torque when switching to B1 immediately after A1 (negative transfer), as well as when they had to recall A1 when switching to A2 after learning B through another block of eight lifts (retrieval interference). Classic sensorimotor learning theories attribute such interferences to multi-rate, multi-state error-driven updates of internal models. However, by systematically changing the interblock break duration and within-block number of trials, our results suggest an alternative explanation underlying interference and retention of dexterous manipulation. Specifically, we identified and quantified through a novel computational model the nonlinear interaction between two sensorimotor mechanisms: a short-lived, context-independent, use-dependent sensorimotor memory and a context-sensitive, error-based learning process. PMID:25274349

  18. Multilevel regulation of protein protein interactions in biological circuitry

    NASA Astrophysics Data System (ADS)

    Beckett, Dorothy

    2005-06-01

    Protein-protein interactions are central to biology and, in this 'post-genomic era', prediction of these interactions has become the goal of many computational efforts. Close inspection of even relatively simple biological regulatory circuitry reveals multiple levels of control of the contributing protein interactions. The fundamental probability that an interaction will occur under a given set of conditions is difficult to predict because the relationship between structure and energy is not known. Layered on this basic difficulty are allosteric control mechanisms involving post-translational modification or small ligand binding. In addition, many biological processes involve multiple protein-protein interactions, some of which may be cooperative or even competitive. Finally, although the emphasis in predicting protein interactions is based on equilibrium thermodynamic principles, kinetics can be a major controlling feature in these systems. This complexity reinforces the necessity of performing detailed quantitative studies of the component interactions of complex biological regulatory systems. Results of such studies will help us to bridge the gap between our knowledge of structure and our understanding of functional biology.

  19. Sitewise manipulations and Mott insulator-superfluid transition of interacting photons using superconducting circuit simulators

    DOE PAGESBeta

    Deng, Xiuhao; Jia, Chunjing; Chien, Chih-Chun

    2015-02-23

    We report that the Bose Hubbard model (BHM) of interacting bosons in a lattice has been a paradigm in many-body physics, and it exhibits a Mott insulator (MI)-superfluid (SF) transition at integer filling. Here a quantum simulator of the BHM using a superconducting circuit is proposed. Specifically, a superconducting transmission line resonator supporting microwave photons is coupled to a charge qubit to form one site of the BHM, and adjacent sites are connected by a tunable coupler. To obtain a mapping from the superconducting circuit to the BHM, we focus on the dispersive regime where the excitations remain photonlike. Standardmore » perturbation theory is implemented to locate the parameter range where the MI-SF transition may be simulated. This simulator allows single-site manipulations and we illustrate this feature by considering two scenarios where a single-site manipulation can drive a MI-SF transition. The transition can be analyzed by mean-field analyses, and the exact diagonalization was implemented to provide accurate results. The variance of the photon density and the fidelity metric clearly show signatures of the transition. Lastly, experimental realizations and other possible applications of this simulator are also discussed.« less

  20. Sitewise manipulations and Mott insulator-superfluid transition of interacting photons using superconducting circuit simulators

    SciTech Connect

    Deng, Xiuhao; Jia, Chunjing; Chien, Chih-Chun

    2015-02-23

    We report that the Bose Hubbard model (BHM) of interacting bosons in a lattice has been a paradigm in many-body physics, and it exhibits a Mott insulator (MI)-superfluid (SF) transition at integer filling. Here a quantum simulator of the BHM using a superconducting circuit is proposed. Specifically, a superconducting transmission line resonator supporting microwave photons is coupled to a charge qubit to form one site of the BHM, and adjacent sites are connected by a tunable coupler. To obtain a mapping from the superconducting circuit to the BHM, we focus on the dispersive regime where the excitations remain photonlike. Standard perturbation theory is implemented to locate the parameter range where the MI-SF transition may be simulated. This simulator allows single-site manipulations and we illustrate this feature by considering two scenarios where a single-site manipulation can drive a MI-SF transition. The transition can be analyzed by mean-field analyses, and the exact diagonalization was implemented to provide accurate results. The variance of the photon density and the fidelity metric clearly show signatures of the transition. Lastly, experimental realizations and other possible applications of this simulator are also discussed.

  1. Characterizing carbohydrate-protein interactions by NMR

    PubMed Central

    Bewley, Carole A.; Shahzad-ul-Hussan, Syed

    2013-01-01

    Interactions between proteins and soluble carbohydrates and/or surface displayed glycans are central to countless recognition, attachment and signaling events in biology. The physical chemical features associated with these binding events vary considerably, depending on the biological system of interest. For example, carbohydrate-protein interactions can be stoichiometric or multivalent, the protein receptors can be monomeric or oligomeric, and the specificity of recognition can be highly stringent or rather promiscuous. Equilibrium dissociation constants for carbohydrate binding are known to vary from micromolar to millimolar, with weak interactions being far more prevalent; and individual carbohydrate binding sites can be truly symmetrical or merely homologous, and hence, the affinities of individual sites within a single protein can vary, as can the order of binding. Several factors, including the weak affinities with which glycans bind their protein receptors, the dynamic nature of the glycans themselves, and the non-equivalent interactions among oligomeric carbohydrate receptors, have made NMR an especially powerful tool for studying and defining carbohydrate-protein interactions. Here we describe those NMR approaches that have proven to be the most robust in characterizing these systems, and explain what type of information can (or cannot) be obtained from each. Our goal is to provide to the reader the information necessary for selecting the correct experiment or sets of experiments to characterize their carbohydrate-protein interaction of interest. PMID:23784792

  2. FAK and p53 protein interactions.

    PubMed

    Golubovskaya, Vita M; Cance, William G

    2011-09-01

    Focal Adhesion Kinase plays a major role in cell adhesion, motility, survival, proliferation, metastasis, angiogenesis and lymphangiogenesis. In 2004, we have cloned the promoter sequence of FAK and found that p53 inhibits its activity (BBA, v. 1678, 2004). In 2005, we were the first group to show that FAK and p53 proteins directly interact in the cells (JBC, v. 280, 2005). We have shown that FAK and p53 proteins interact in the cytoplasm and in the nucleus by immunoprecipitation, pull-down and confocal microscopy assays. We have shown that FAK inhibited activity of p53 with the transcriptional targets: p21, Bax and Mdm-2 through protein-protein interactions. We identified the 7 amino-acid site in p53 that is involved in interaction with FAK protein. The present review will discuss the interaction of FAK and p53 proteins and discuss the mechanism of FAK-p53 loop regulation: inhibition of FAK promoter activity by p53 protein and also inhibition of p53 transcriptional activity by FAK protein. PMID:21355845

  3. Van der Waals interactions involving proteins.

    PubMed Central

    Roth, C M; Neal, B L; Lenhoff, A M

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models, with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth. Images FIGURE 3 PMID:8789115

  4. Van der Waals Interactions Involving Proteins

    NASA Technical Reports Server (NTRS)

    Roth, Charles M.; Neal, Brian L.; Lenhoff, Abraham M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models. with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth.

  5. RNA Protein Interaction in Neurons

    PubMed Central

    Darnell, Robert B.

    2013-01-01

    Neurons have their own systems for regulating RNA. Several multigene families encode RNA binding proteins (RNABPs) that are uniquely expressed in neurons, including the well-known neuron-specific markers ELAV and NeuN, and the disease antigen NOVA. New technologies have emerged in recent years to assess the function of these proteins in vivo, and the answers are yielding insights into how and why neurons may regulate RNA in special ways—to increase cellular complexity, to spatially localize mRNA, and to regulate their expression in response to synaptic stimuli. The functions of such restricted neuronal proteins is likely to be complimented by more widely expressed RNABPs that may themselves have developed specialized functions in neurons, including Argonaute/miRNAs. Here we review what is known about such RNABPs, and explore the potential biologic and neurologic significance of neuronal RNA regulatory systems. PMID:23701460

  6. Contribution of Hydrophobic Interactions to Protein Stability

    PubMed Central

    Pace, C. Nick; Fu, Hailong; Fryar, Katrina Lee; Landua, John; Trevino, Saul R.; Shirley, Bret A.; Hendricks, Marsha McNutt; Iimura, Satoshi; Gajiwala, Ketan; Scholtz, J. Martin; Grimsley, Gerald R.

    2011-01-01

    Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin head piece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compare our results with previous studies and reach the following conclusions. 1. Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6 ± 0.3 kcal/mole per –CH2– group), than to the stability of a large protein, VlsE (1.6 ± 0.3 kcal/mol per –CH2– group). 2. Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kcal/mol): Phe 18 (3.9), Met 13 (3.1), Phe 7 (2.9), Phe 11 (2.7), and Leu 21 (2.7). 3. Based on Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a –CH2– group on folding contributes, on average, 1.1 ± 0.5 kcal/mol to protein stability. 4. The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔGtr values from water to cyclohexane. 5. For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60 ± 4% and hydrogen bonds 40 ± 4% to protein stability. 6. Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominately by hydrophobic interactions. PMID:21377472

  7. Contribution of hydrophobic interactions to protein stability.

    PubMed

    Pace, C Nick; Fu, Hailong; Fryar, Katrina Lee; Landua, John; Trevino, Saul R; Shirley, Bret A; Hendricks, Marsha McNutt; Iimura, Satoshi; Gajiwala, Ketan; Scholtz, J Martin; Grimsley, Gerald R

    2011-05-01

    Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin headpiece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compared our results with those of previous studies and reached the following conclusions: (1) Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6±0.3 kcal/mol per -CH(2)- group), than to the stability of a large protein, VlsE (1.6±0.3 kcal/mol per -CH(2)- group). (2) Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kilocalories per mole) Phe18 (3.9), Met13 (3.1), Phe7 (2.9), Phe11 (2.7), and Leu21 (2.7). (3) Based on the Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a -CH(2)- group on folding contributes, on average, 1.1±0.5 kcal/mol to protein stability. (4) The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔG(tr) values from water to cyclohexane. (5) For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60±4% and hydrogen bonds contribute 40±4% to protein stability. (6) Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominantly by hydrophobic interactions. PMID:21377472

  8. Interface-Resolved Network of Protein-Protein Interactions

    PubMed Central

    Johnson, Margaret E.; Hummer, Gerhard

    2013-01-01

    We define an interface-interaction network (IIN) to capture the specificity and competition between protein-protein interactions (PPI). This new type of network represents interactions between individual interfaces used in functional protein binding and thereby contains the detail necessary to describe the competition and cooperation between any pair of binding partners. Here we establish a general framework for the construction of IINs that merges computational structure-based interface assignment with careful curation of available literature. To complement limited structural data, the inclusion of biochemical data is critical for achieving the accuracy and completeness necessary to analyze the specificity and competition between the protein interactions. Firstly, this procedure provides a means to clarify the information content of existing data on purported protein interactions and to remove indirect and spurious interactions. Secondly, the IIN we have constructed here for proteins involved in clathrin-mediated endocytosis (CME) exhibits distinctive topological properties. In contrast to PPI networks with their global and relatively dense connectivity, the fragmentation of the IIN into distinctive network modules suggests that different functional pressures act on the evolution of its topology. Large modules in the IIN are formed by interfaces sharing specificity for certain domain types, such as SH3 domains distributed across different proteins. The shared and distinct specificity of an interface is necessary for effective negative and positive design of highly selective binding targets. Lastly, the organization of detailed structural data in a network format allows one to identify pathways of specific binding interactions and thereby predict effects of mutations at specific surfaces on a protein and of specific binding inhibitors, as we explore in several examples. Overall, the endocytosis IIN is remarkably complex and rich in features masked in the coarser

  9. Moonlighting proteins in sperm-egg interactions.

    PubMed

    Petit, François M; Serres, Catherine; Auer, Jana

    2014-12-01

    Sperm-egg interaction is a highly species-specific step during the fertilization process. The first steps consist of recognition between proteins on the sperm head and zona pellucida (ZP) glycoproteins, the acellular coat that protects the oocyte. We aimed to determine which sperm head proteins interact with ZP2, ZP3 and ZP4 in humans. Two approaches were combined to identify these proteins: immunoblotting human spermatozoa targeted by antisperm antibodies (ASAs) from infertile men and far-Western blotting of human sperm proteins overlaid by each of the human recombinant ZP (hrZP) proteins. We used a proteomic approach with 2D electrophoretic separation of sperm protein revealed using either ASAs eluted from infertile patients or recombinant human ZP glycoproteins expressed in Chinese-hamster ovary (CHO) cells. Only spots highlighted by both methods were analysed by MALDI-MS/MS for identification. We identified proteins already described in human spermatozoa, but implicated in different metabolic pathways such as glycolytic enzymes [phosphokinase type 3 (PK3), enolase 1 (ENO1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), aldolase A (ALDOA) and triose phosphate isomerase (TPI)], detoxification enzymes [GST Mu (GSTM) and phospholipid hydroperoxide glutathione peroxidase (PHGPx) 4], ion channels [voltage-dependent anion channel 2 (VDAC2)] or structural proteins (outer dense fibre 2). Several proteins were localized on the sperm head by indirect immunofluorescence, and their interaction with ZP proteins was confirmed by co-precipitation experiments. These results confirm the complexity of the sperm-ZP recognition process in humans with the implication of different proteins interacting with the main three ZP glycoproteins. The multiple roles of these proteins suggest that they are multifaceted or moonlighting proteins. PMID:25399599

  10. Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: different protein configurations.

    PubMed

    Huang, Rixiang; Carney, Randy P; Ikuma, Kaoru; Stellacci, Francesco; Lau, Boris L T

    2014-06-24

    As nanoparticles (NPs) enter into biological systems, they are immediately exposed to a variety and concentration of proteins. The physicochemical interactions between proteins and NPs are influenced by the surface properties of the NPs. To identify the effects of NP surface heterogeneity, the interactions between bovine serum albumin (BSA) and gold NPs (AuNPs) with similar chemical composition but different surface structures were investigated. Different interaction modes and BSA conformations were studied by dynamic light scattering, circular dichroism spectroscopy, fluorescence quenching and isothermal titration calorimetry (ITC). Depending on the surface structure of AuNPs, BSA seems to adopt either a "side-on" or an "end-on" conformation on AuNPs. ITC demonstrated that the adsorption of BSA onto AuNPs with randomly distributed polar and nonpolar groups was primarily driven by electrostatic interaction, and all BSA were adsorbed in the same process. The adsorption of BSA onto AuNPs covered with alternating domains of polar and nonpolar groups was a combination of different interactions. Overall, the results of this study point to the potential for utilizing nanoscale manipulation of NP surfaces to control the resulting NP-protein interactions. PMID:24882660

  11. Website on Protein Interaction and Protein Structure Related Work

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  12. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes.

    PubMed

    Angerer, Heike

    2015-01-01

    In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine) motif proteins (LYRMs) of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6) or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1) of the oxidative phosphorylation (OXPHOS) core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have been provided by analyses of EM and X-ray structures of complex I from bovine and the yeast Yarrowia lipolytica, respectively. Combined structural and biochemical studies revealed that LYRM6 resides at the matrix arm close to the ubiquinone reduction site. For LYRM3, a position at the distal proton-pumping membrane arm facing the matrix space is suggested. Both LYRMs are supposed to anchor an acyl-carrier protein (ACPM) independently to complex I. The function of this duplicated protein interaction of ACPM with respiratory complex I is still unknown. Analysis of protein-protein interaction screens, genetic analyses and predicted multi-domain LYRMs offer further clues on an interaction network and adaptor-like function of LYR proteins in mitochondria. PMID:25686363

  13. Manipulating Hydrophobic Interactions in Associative Polymer Solutions via Surfactant-Cyclodextrin Complexation

    NASA Astrophysics Data System (ADS)

    Talwar, Sachin; Harding, Jonathon; Khan, Saad A.

    2008-07-01

    Associative polymers in combination with cyclodextrin (CD) provide a potent tool to manipulate the solution rheology of aqueous solutions. In this study, we discuss the viability and scope of employing surfactants in such systems to facilitate a more versatile and effective tailoring of rheological properties. A model hydrophobically modified alkali-soluble emulsion (HASE) polymer is used which forms a transient physical network of intra- and inter-molecular hydrophobic junctions in solution arising from the interactions between hydrophobic groups grafted on the polymer backbone. The presence of these hydrophobic junctions significantly enhances the solution rheological properties with both the steady state viscosity and dynamic moduli exhibiting an increase by several orders of magnitude. The ability of nonionic surfactants to modulate and recover the hydrophobic interactions in these polymer solutions in the presence of cyclodextrin is examined. The presence of either a- or β-CD results in a dramatic decrease in viscosity and viscoelastic properties of the HASE polymer solution resulting from the encapsulation of polymer hydrophobes by CDs. Addition of nonionic surfactants to such systems promotes a competition between CDs and surfactant molecules to complex with polymer hydrophobes thereby altering the hydrophobic interactions. In this regard, nonylphenol ethoxylates (NPe) with different ethylene oxide (EO) chain lengths, which determine the surfactant hydrophilic-lipophilic balance (HLB), are used.

  14. Novel computational methods to design protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Alice Qinhua; O'Hern, Corey; Regan, Lynne

    2014-03-01

    Despite the abundance of structural data, we still cannot accurately predict the structural and energetic changes resulting from mutations at protein interfaces. The inadequacy of current computational approaches to the analysis and design of protein-protein interactions has hampered the development of novel therapeutic and diagnostic agents. In this work, we apply a simple physical model that includes only a minimal set of geometrical constraints, excluded volume, and attractive van der Waals interactions to 1) rank the binding affinity of mutants of tetratricopeptide repeat proteins with their cognate peptides, 2) rank the energetics of binding of small designed proteins to the hydrophobic stem region of the influenza hemagglutinin protein, and 3) predict the stability of T4 lysozyme and staphylococcal nuclease mutants. This work will not only lead to a fundamental understanding of protein-protein interactions, but also to the development of efficient computational methods to rationally design protein interfaces with tunable specificity and affinity, and numerous applications in biomedicine. NSF DMR-1006537, PHY-1019147, Raymond and Beverly Sackler Institute for Biological, Physical and Engineering Sciences, and Howard Hughes Medical Institute.

  15. Systematic computational prediction of protein interaction networks.

    PubMed

    Lees, J G; Heriche, J K; Morilla, I; Ranea, J A; Orengo, C A

    2011-06-01

    Determining the network of physical protein associations is an important first step in developing mechanistic evidence for elucidating biological pathways. Despite rapid advances in the field of high throughput experiments to determine protein interactions, the majority of associations remain unknown. Here we describe computational methods for significantly expanding protein association networks. We describe methods for integrating multiple independent sources of evidence to obtain higher quality predictions and we compare the major publicly available resources available for experimentalists to use. PMID:21572181

  16. Inferring Domain-Domain Interactions from Protein-Protein Interactions with Formal Concept Analysis

    PubMed Central

    Khor, Susan

    2014-01-01

    Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains. PMID:24586450

  17. Features, processing states, and heterologous protein interactions in the modulation of the retroviral nucleocapsid protein function.

    PubMed

    Mirambeau, Gilles; Lyonnais, Sébastien; Gorelick, Robert J

    2010-01-01

    Retroviral nucleocapsid (NC) is central to viral replication. Nucleic acid chaperoning is a key function for NC through the action of its conserved basic amino acids and zinc-finger structures. NC manipulates genomic RNA from its packaging in the producer cell to reverse transcription into the infected host cell. This chaperone function, in conjunction with NC's aggregating properties, is up-modulated by successive NC processing events, from the Gag precursor to the fully mature protein, resulting in the condensation of the nucleocapsid within the capsid shell. Reverse transcription also depends on NC processing, whereas this process provokes NC dissociation from double-stranded DNA, leading to a preintegration complex (PIC), competent for host chromosomal integration. In addition NC interacts with cellular proteins, some of which are involved in viral budding, and also with several viral proteins. All of these properties are reviewed here, focusing on HIV-1 as a paradigmatic reference and highlighting the plasticity of the nucleocapsid architecture. PMID:21045549

  18. Teaching Noncovalent Interactions Using Protein Molecular Evolution

    ERIC Educational Resources Information Center

    Fornasari, Maria Silvina; Parisi, Gustavo; Echave, Julian

    2008-01-01

    Noncovalent interactions and physicochemical properties of amino acids are important topics in biochemistry courses. Here, we present a computational laboratory where the capacity of each of the 20 amino acids to maintain different noncovalent interactions are used to investigate the stabilizing forces in a set of proteins coming from organisms…

  19. Evolving new protein-protein interaction specificity through promiscuous intermediates.

    PubMed

    Aakre, Christopher D; Herrou, Julien; Phung, Tuyen N; Perchuk, Barrett S; Crosson, Sean; Laub, Michael T

    2015-10-22

    Interacting proteins typically coevolve, and the identification of coevolving amino acids can pinpoint residues required for interaction specificity. This approach often assumes that an interface-disrupting mutation in one protein drives selection of a compensatory mutation in its partner during evolution. However, this model requires a non-functional intermediate state prior to the compensatory change. Alternatively, a mutation in one protein could first broaden its specificity, allowing changes in its partner, followed by a specificity-restricting mutation. Using bacterial toxin-antitoxin systems, we demonstrate the plausibility of this second, promiscuity-based model. By screening large libraries of interface mutants, we show that toxins and antitoxins with high specificity are frequently connected in sequence space to more promiscuous variants that can serve as intermediates during a reprogramming of interaction specificity. We propose that the abundance of promiscuous variants promotes the expansion and diversification of toxin-antitoxin systems and other paralogous protein families during evolution. PMID:26478181

  20. Protein-protein interaction network analysis of cirrhosis liver disease

    PubMed Central

    Safaei, Akram; Rezaei Tavirani, Mostafa; Arefi Oskouei, Afsaneh; Zamanian Azodi, Mona; Mohebbi, Seyed Reza; Nikzamir, Abdol Rahim

    2016-01-01

    Aim: Evaluation of biological characteristics of 13 identified proteins of patients with cirrhotic liver disease is the main aim of this research. Background: In clinical usage, liver biopsy remains the gold standard for diagnosis of hepatic fibrosis. Evaluation and confirmation of liver fibrosis stages and severity of chronic diseases require a precise and noninvasive biomarkers. Since the early detection of cirrhosis is a clinical problem, achieving a sensitive, specific and predictive novel method based on biomarkers is an important task. Methods: Essential analysis, such as gene ontology (GO) enrichment and protein-protein interactions (PPI) was undergone EXPASy, STRING Database and DAVID Bioinformatics Resources query. Results: Based on GO analysis, most of proteins are located in the endoplasmic reticulum lumen, intracellular organelle lumen, membrane-enclosed lumen, and extracellular region. The relevant molecular functions are actin binding, metal ion binding, cation binding and ion binding. Cell adhesion, biological adhesion, cellular amino acid derivative, metabolic process and homeostatic process are the related processes. Protein-protein interaction network analysis introduced five proteins (fibroblast growth factor receptor 4, tropomyosin 4, tropomyosin 2 (beta), lectin, Lectin galactoside-binding soluble 3 binding protein and apolipoprotein A-I) as hub and bottleneck proteins. Conclusion: Our result indicates that regulation of lipid metabolism and cell survival are important biological processes involved in cirrhosis disease. More investigation of above mentioned proteins will provide a better understanding of cirrhosis disease. PMID:27099671

  1. A Protein Interaction Map of Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Giot, L.; Bader, J. S.; Brouwer, C.; Chaudhuri, A.; Kuang, B.; Li, Y.; Hao, Y. L.; Ooi, C. E.; Godwin, B.; Vitols, E.; Vijayadamodar, G.; Pochart, P.; Machineni, H.; Welsh, M.; Kong, Y.; Zerhusen, B.; Malcolm, R.; Varrone, Z.; Collis, A.; Minto, M.; Burgess, S.; McDaniel, L.; Stimpson, E.; Spriggs, F.; Williams, J.; Neurath, K.; Ioime, N.; Agee, M.; Voss, E.; Furtak, K.; Renzulli, R.; Aanensen, N.; Carrolla, S.; Bickelhaupt, E.; Lazovatsky, Y.; DaSilva, A.; Zhong, J.; Stanyon, C. A.; Finley, R. L.; White, K. P.; Braverman, M.; Jarvie, T.; Gold, S.; Leach, M.; Knight, J.; Shimkets, R. A.; McKenna, M. P.; Chant, J.; Rothberg, J. M.

    2003-12-01

    Drosophila melanogaster is a proven model system for many aspects of human biology. Here we present a two-hybrid-based protein-interaction map of the fly proteome. A total of 10,623 predicted transcripts were isolated and screened against standard and normalized complementary DNA libraries to produce a draft map of 7048 proteins and 20,405 interactions. A computational method of rating two-hybrid interaction confidence was developed to refine this draft map to a higher confidence map of 4679 proteins and 4780 interactions. Statistical modeling of the network showed two levels of organization: a short-range organization, presumably corresponding to multiprotein complexes, and a more global organization, presumably corresponding to intercomplex connections. The network recapitulated known pathways, extended pathways, and uncovered previously unknown pathway components. This map serves as a starting point for a systems biology modeling of multicellular organisms, including humans.

  2. Computational Methods to Predict Protein Interaction Partners

    NASA Astrophysics Data System (ADS)

    Valencia, Alfonso; Pazos, Florencio

    In the new paradigm for studying biological phenomena represented by Systems Biology, cellular components are not considered in isolation but as forming complex networks of relationships. Protein interaction networks are among the first objects studied from this new point of view. Deciphering the interactome (the whole network of interactions for a given proteome) has been shown to be a very complex task. Computational techniques for detecting protein interactions have become standard tools for dealing with this problem, helping and complementing their experimental counterparts. Most of these techniques use genomic or sequence features intuitively related with protein interactions and are based on "first principles" in the sense that they do not involve training with examples. There are also other computational techniques that use other sources of information (i.e. structural information or even experimental data) or are based on training with examples.

  3. Protein interactions in concentrated ribonuclease solutions

    NASA Astrophysics Data System (ADS)

    Boyer, Mireille; Roy, Marie-Odile; Jullien, Magali; Bonneté, Françoise; Tardieu, Annette

    1999-01-01

    To investigate the protein interactions involved in the crystallization process of ribonuclease A, dynamic light scattering (DLS) and small angle X-ray scattering experiments (SAXS) were performed on concentrated solutions. Whereas the translational diffusion coefficient obtained from DLS is sensitive to thermodynamic and hydrodynamic interactions and permits to calculate an interaction parameter, the shape of the SAXS curves is related to the type of interaction (attractive or repulsive). We compared the effect of pH on protein interactions in the case of two types of crystallizing agents: a mixture of salts (3 M sodium chloride plus 0.2 M ammonium sulfate) and an organic solvent (ethanol). The results show that in the presence of ethanol, as in low salt, protein interactions become more attractive as the pH increases from 4 to 8 and approaches the isoelectric point. In contrast, a reverse effect is observed in high salt conditions: the strength of attractive interactions decreases as the pH increases. The range of the pH effect can be related to ionization of histidine residues, particularly those located in the active site of the protein. The present observations point out the important role played by localized charges in crystallization conditions, whatever the precipitating agent.

  4. Protein-protein interactions and prediction: a comprehensive overview.

    PubMed

    Sowmya, Gopichandran; Ranganathan, Shoba

    2014-01-01

    Molecular function in cellular processes is governed by protein-protein interactions (PPIs) within biological networks. Selective yet specific association of these protein partners contributes to diverse functionality such as catalysis, regulation, assembly, immunity, and inhibition in a cell. Therefore, understanding the principles of protein-protein association has been of immense interest for several decades. We provide an overview of the experimental methods used to determine PPIs and the key databases archiving this information. Structural and functional information of existing protein complexes confers knowledge on the principles of PPI, based on which a classification scheme for PPIs is then introduced. Obtaining high-quality non-redundant datasets of protein complexes for interaction characterisation is an essential step towards deciphering their underlying binding principles. Analysis of physicochemical features and their documentation has enhanced our understanding of the molecular basis of protein-protein association. We describe the diverse datasets created/collected by various groups and their key findings inferring distinguishing features. The currently available interface databases and prediction servers have also been compiled. PMID:23855658

  5. Inferring high-confidence human protein-protein interactions

    PubMed Central

    2012-01-01

    Background As numerous experimental factors drive the acquisition, identification, and interpretation of protein-protein interactions (PPIs), aggregated assemblies of human PPI data invariably contain experiment-dependent noise. Ascertaining the reliability of PPIs collected from these diverse studies and scoring them to infer high-confidence networks is a non-trivial task. Moreover, a large number of PPIs share the same number of reported occurrences, making it impossible to distinguish the reliability of these PPIs and rank-order them. For example, for the data analyzed here, we found that the majority (>83%) of currently available human PPIs have been reported only once. Results In this work, we proposed an unsupervised statistical approach to score a set of diverse, experimentally identified PPIs from nine primary databases to create subsets of high-confidence human PPI networks. We evaluated this ranking method by comparing it with other methods and assessing their ability to retrieve protein associations from a number of diverse and independent reference sets. These reference sets contain known biological data that are either directly or indirectly linked to interactions between proteins. We quantified the average effect of using ranked protein interaction data to retrieve this information and showed that, when compared to randomly ranked interaction data sets, the proposed method created a larger enrichment (~134%) than either ranking based on the hypergeometric test (~109%) or occurrence ranking (~46%). Conclusions From our evaluations, it was clear that ranked interactions were always of value because higher-ranked PPIs had a higher likelihood of retrieving high-confidence experimental data. Reducing the noise inherent in aggregated experimental PPIs via our ranking scheme further increased the accuracy and enrichment of PPIs derived from a number of biologically relevant data sets. These results suggest that using our high-confidence protein interactions

  6. Predicting protein-peptide interactions from scratch

    NASA Astrophysics Data System (ADS)

    Yan, Chengfei; Xu, Xianjin; Zou, Xiaoqin; Zou lab Team

    Protein-peptide interactions play an important role in many cellular processes. The ability to predict protein-peptide complex structures is valuable for mechanistic investigation and therapeutic development. Due to the high flexibility of peptides and lack of templates for homologous modeling, predicting protein-peptide complex structures is extremely challenging. Recently, we have developed a novel docking framework for protein-peptide structure prediction. Specifically, given the sequence of a peptide and a 3D structure of the protein, initial conformations of the peptide are built through protein threading. Then, the peptide is globally and flexibly docked onto the protein using a novel iterative approach. Finally, the sampled modes are scored and ranked by a statistical potential-based energy scoring function that was derived for protein-peptide interactions from statistical mechanics principles. Our docking methodology has been tested on the Peptidb database and compared with other protein-peptide docking methods. Systematic analysis shows significantly improved results compared to the performances of the existing methods. Our method is computationally efficient and suitable for large-scale applications. Nsf CAREER Award 0953839 (XZ) NIH R01GM109980 (XZ).

  7. Topology of Protein Interaction Network Shapes Protein Abundances and Strengths of Their Functional and Nonspecific Interactions

    SciTech Connect

    Maslov, S.; Heo, M.; Shakhnovich, E.

    2011-03-08

    How do living cells achieve sufficient abundances of functional protein complexes while minimizing promiscuous nonfunctional interactions? Here we study this problem using a first-principle model of the cell whose phenotypic traits are directly determined from its genome through biophysical properties of protein structures and binding interactions in a crowded cellular environment. The model cell includes three independent prototypical pathways, whose topologies of protein-protein interaction (PPI) subnetworks are different, but whose contributions to the cell fitness are equal. Model cells evolve through genotypic mutations and phenotypic protein copy number variations. We found a strong relationship between evolved physical-chemical properties of protein interactions and their abundances due to a 'frustration' effect: Strengthening of functional interactions brings about hydrophobic interfaces, which make proteins prone to promiscuous binding. The balancing act is achieved by lowering concentrations of hub proteins while raising solubilities and abundances of functional monomers. On the basis of these principles we generated and analyzed a possible realization of the proteome-wide PPI network in yeast. In this simulation we found that high-throughput affinity capture-mass spectroscopy experiments can detect functional interactions with high fidelity only for high-abundance proteins while missing most interactions for low-abundance proteins.

  8. Protein-protein interactions in reversibly assembled nanopatterns.

    PubMed

    Rakickas, Tomas; Gavutis, Martynas; Reichel, Annett; Piehler, Jacob; Liedberg, Bo; Valiokas, Ramūnas

    2008-10-01

    We describe herein a platform to study protein-protein interactions and to form functional protein complexes in nanoscopic surface domains. For this purpose, we employed multivalent chelator (MCh) templates, which were fabricated in a stepwise procedure combining dip-pen nanolithography (DPN) and molecular recognition-directed assembly. First, we demonstrated that an atomic force microscope (AFM) tip inked with an oligo(ethylene glycol) (OEG) disulfide compound bearing terminal biotin groups can be used to generate biotin patterns on gold achieving line widths below 100 nm, a generic platform for fabrication of functional nanostructures via the highly specific biotin-streptavidin recognition. Subsequently, we converted such biotin/streptavidin patterns into functional MCh patterns for reversible assembly of histidine-tagged (His-tagged) proteins via the attachment of a tris-nitriloacetic acid (trisNTA) biotin derivative. Fluorescence microscopy confirmed reversible immobilization of the receptor subunit ifnar2-His10 and its interaction with interferon-alpha2 labeled with fluorescent quantum dots in a 7 x 7 dot array consisting of trisNTA spots with a diameter of approximately 230 nm. Moreover, we carried out characterization of the specificity, stability, and reversibility as well as quantitative real-time analysis of protein-protein interactions at the fabricated nanopatterns by imaging surface plasmon resonance. Our work offers a route for construction and analysis of functional protein-based nanoarchitectures. PMID:18788824

  9. Predicting protein-protein interactions based only on sequences information.

    PubMed

    Shen, Juwen; Zhang, Jian; Luo, Xiaomin; Zhu, Weiliang; Yu, Kunqian; Chen, Kaixian; Li, Yixue; Jiang, Hualiang

    2007-03-13

    Protein-protein interactions (PPIs) are central to most biological processes. Although efforts have been devoted to the development of methodology for predicting PPIs and protein interaction networks, the application of most existing methods is limited because they need information about protein homology or the interaction marks of the protein partners. In the present work, we propose a method for PPI prediction using only the information of protein sequences. This method was developed based on a learning algorithm-support vector machine combined with a kernel function and a conjoint triad feature for describing amino acids. More than 16,000 diverse PPI pairs were used to construct the universal model. The prediction ability of our approach is better than that of other sequence-based PPI prediction methods because it is able to predict PPI networks. Different types of PPI networks have been effectively mapped with our method, suggesting that, even with only sequence information, this method could be applied to the exploration of networks for any newly discovered protein with unknown biological relativity. In addition, such supplementary experimental information can enhance the prediction ability of the method. PMID:17360525

  10. Building protein interaction maps for Down's syndrome.

    PubMed

    Gardiner, Katheleen; Davisson, Muriel T; Crnic, Linda S

    2004-08-01

    Now that the complete sequences for human chromosome 21 and the orthologous mouse genomic regions are known, reasonably complete, conserved, protein-coding gene catalogues are also available. The central issue now facing Down's syndrome researchers is the correlation of increased expression of specific, normal, chromosome 21 genes with the development of specific deficits in learning and memory. Because of the number of candidate genes involved, the number of alternative splice variants of individual genes and the number of pathways in which these genes function, a pathway analysis approach will be critical to success. Here, three examples, both gene specific and pathway related, that would benefit from pathway analysis are discussed: (1) the potential roles of eight chromosome 21 proteins in RNA processing pathways; (2) the chromosome 21 protein intersectin 1 and its domain composition, alternative splicing, protein interactions and functions; and (3) the interactions of ten chromosome 21 proteins with components of the mitogen-activated protein kinase and the calcineurin signalling pathways. A productive approach to developing gene-phenotype correlations in Down's syndrome will make use of known and predicted functions and interactions of chromosome 21 genes to predict pathways that may be perturbed by their increased levels of expression. Investigations may then be targeted in animal models to specific interactions, intermediate steps or end-points of such pathways and the downstream - perhaps amplified - consequences of gene dosage directly assessed. Once pathway perturbations have been identified, the potential for rational design of therapeutics becomes practical. PMID:15355596

  11. Interaction prediction using conserved network motifs in protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Albert, Reka

    2005-03-01

    High-throughput protein interaction detection methods are strongly affected by false positive and false negative results. Focused experiments are needed to complement the large-scale methods by validating previously detected interactions but it is often difficult to decide which proteins to probe as interaction partners. Developing reliable computational methods assisting this decision process is a pressing need in bioinformatics. This talk will describe the recent developments in analyzing and understanding protein interaction networks, then present a method that uses the conserved properties of the protein network to identify and validate interaction candidates. We apply a number of machine learning algorithms to the protein connectivity information and achieve a surprisingly good overall performance in predicting interacting proteins. Using a ``leave-one-ou approach we find average success rates between 20-50% for predicting the correct interaction partner of a protein. We demonstrate that the success of these methods is based on the presence of conserved interaction motifs within the network. A reference implementation and a table with candidate interacting partners for each yeast protein are available at http://www.protsuggest.org

  12. Protein-protein and protein-salt interactions in aqueous protein solutions containing concentrated electrolytes

    SciTech Connect

    Curtis, R.A.; Blanch, H.W.; Prausnitz, J.M.

    1998-01-05

    Protein-protein and protein-salt interactions have been obtained for ovalbumin in solutions of ammonium sulfate and for lysozyme in solutions of ammonium sulfate, sodium chloride, potassium isothiocyanate, and potassium chloride. The two-body interactions between ovalbumin molecules in concentrated ammonium-sulfate solutions can be described by the DLVO potentials plus a potential that accounts for the decrease in free volume available to the protein due to the presence of the salt ions. The interaction between ovalbumin and ammonium sulfate is unfavorable, reflecting the kosmotropic nature of sulfate anions. Lysozyme-lysozyme interactions cannot be described by the above potentials because anion binding to lysozyme alters these interactions. Lysozyme-isothiocyanate complexes are strongly attractive due to electrostatic interactions resulting from bridging by the isothiocyanate ion. Lysozyme-lysozyme interactions in sulfate solutions are more repulsive than expected, possibly resulting from a larger excluded volume of a lysozyme-sulfate bound complex or perhaps, hydration forces between the lysozyme-sulfate complexes.

  13. [Chemical libraries dedicated to protein-protein interactions].

    PubMed

    Sperandio, Olivier; Villoutreix, Bruno O; Morelli, Xavier; Roche, Philippe

    2015-03-01

    The identification of complete networks of protein-protein interactions (PPI) within a cell has contributed to major breakthroughs in understanding biological pathways, host-pathogen interactions and cancer development. As a consequence, PPI have emerged as a new class of promising therapeutic targets. However, they are still considered as a challenging class of targets for drug discovery programs. Recent successes have allowed the characterization of structural and physicochemical properties of protein-protein interfaces leading to a better understanding of how they can be disrupted with small molecule compounds. In addition, characterization of the profiles of PPI inhibitors has allowed the development of PPI-focused libraries. In this review, we present the current efforts at developing chemical libraries dedicated to these innovative targets. PMID:25855285

  14. Effects of Dispositional Ability Conceptions, Manipulated Learning Environments, and Intrinsic Motivation on Persistence and Performance: An Interaction Approach

    ERIC Educational Resources Information Center

    Li, Weidong; Lee, Amelia M.; Solmon, Melinda

    2008-01-01

    The present study used an interaction approach to investigate how individuals' dispositions about ability as incremental or fixed (entity), manipulated learning environments, and intrinsic motivation affect persistence and performance on a challenging, novel motor skill. Seventy-two female college students who were assigned to either an…

  15. KFC Server: interactive forecasting of protein interaction hot spots.

    PubMed

    Darnell, Steven J; LeGault, Laura; Mitchell, Julie C

    2008-07-01

    The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model-a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein-protein or protein-DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org. PMID:18539611

  16. Prediction of protein-protein interactions based on protein-protein correlation using least squares regression.

    PubMed

    Huang, De-Shuang; Zhang, Lei; Han, Kyungsook; Deng, Suping; Yang, Kai; Zhang, Hongbo

    2014-01-01

    In order to transform protein sequences into the feature vectors, several works have been done, such as computing auto covariance (AC), conjoint triad (CT), local descriptor (LD), moran autocorrelation (MA), normalized moreaubroto autocorrelation (NMB) and so on. In this paper, we shall adopt these transformation methods to encode the proteins, respectively, where AC, CT, LD, MA and NMB are all represented by '+' in a unified manner. A new method, i.e. the combination of least squares regression with '+' (abbreviated as LSR(+)), will be introduced for encoding a protein-protein correlation-based feature representation and an interacting protein pair. Thus there are totally five different combinations for LSR(+), i.e. LSRAC, LSRCT, LSRLD, LSRMA and LSRNMB. As a result, we combined a support vector machine (SVM) approach with LSR(+) to predict protein-protein interactions (PPI) and PPI networks. The proposed method has been applied on four datasets, i.e. Saaccharomyces cerevisiae, Escherichia coli, Homo sapiens and Caenorhabditis elegans. The experimental results demonstrate that all LSR(+) methods outperform many existing representative algorithms. Therefore, LSR(+) is a powerful tool to characterize the protein-protein correlations and to infer PPI, whilst keeping high performance on prediction of PPI networks. PMID:25059329

  17. Annotation and retrieval in protein interaction databases

    NASA Astrophysics Data System (ADS)

    Cannataro, Mario; Hiram Guzzi, Pietro; Veltri, Pierangelo

    2014-06-01

    Biological databases have been developed with a special focus on the efficient retrieval of single records or the efficient computation of specialized bioinformatics algorithms against the overall database, such as in sequence alignment. The continuos production of biological knowledge spread on several biological databases and ontologies, such as Gene Ontology, and the availability of efficient techniques to handle such knowledge, such as annotation and semantic similarity measures, enable the development on novel bioinformatics applications that explicitly use and integrate such knowledge. After introducing the annotation process and the main semantic similarity measures, this paper shows how annotations and semantic similarity can be exploited to improve the extraction and analysis of biologically relevant data from protein interaction databases. As case studies, the paper presents two novel software tools, OntoPIN and CytoSeVis, both based on the use of Gene Ontology annotations, for the advanced querying of protein interaction databases and for the enhanced visualization of protein interaction networks.

  18. Potential disruption of protein-protein interactions by graphene oxide

    NASA Astrophysics Data System (ADS)

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-01

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  19. Potential disruption of protein-protein interactions by graphene oxide.

    PubMed

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-14

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications. PMID:27306022

  20. Studying protein-protein interactions: progress, pitfalls and solutions.

    PubMed

    Hayes, Sheri; Malacrida, Beatrice; Kiely, Maeve; Kiely, Patrick A

    2016-08-15

    Signalling proteins are intrinsic to all biological processes and interact with each other in tightly regulated and orchestrated signalling complexes and pathways. Characterization of protein binding can help to elucidate protein function within signalling pathways. This information is vital for researchers to gain a more comprehensive knowledge of cellular networks which can then be used to develop new therapeutic strategies for disease. However, studying protein-protein interactions (PPIs) can be challenging as the interactions can be extremely transient downstream of specific environmental cues. There are many powerful techniques currently available to identify and confirm PPIs. Choosing the most appropriate range of techniques merits serious consideration. The aim of this review is to provide a starting point for researchers embarking on a PPI study. We provide an overview and point of reference for some of the many methods available to identify interactions from in silico analysis and large scale screening tools through to the methods used to validate potential PPIs. We discuss the advantages and disadvantages of each method and we also provide a workflow chart to highlight the main experimental questions to consider when planning cell lysis to maximize experimental success. PMID:27528744

  1. Transient DNA / RNA-protein interactions.

    PubMed

    Blanco, Francisco J; Montoya, Guillermo

    2011-05-01

    The great pace of biomolecular structure determination has provided a plethora of protein structures, but not as many structures of nucleic acids or of their complexes with proteins. The recognition of DNA and RNA molecules by proteins may produce large and relatively stable assemblies (such as the ribosome) or transient complexes (such as DNA clamps sliding through the DNA). These transient interactions are most difficult to characterize, but even in 'stable' complexes captured in crystal structures, the dynamics of the whole or part of the assembly pose great technical difficulties in understanding their function. The development and refinement of powerful experimental and computational tools have made it possible to learn a great deal about the relevance of these fleeting events for numerous biological processes. We discuss here the most recent findings and the challenges that lie ahead in the quest for a better understanding of protein-nucleic acid interactions. PMID:21410646

  2. Peptiderive server: derive peptide inhibitors from protein-protein interactions.

    PubMed

    Sedan, Yuval; Marcu, Orly; Lyskov, Sergey; Schueler-Furman, Ora

    2016-07-01

    The Rosetta Peptiderive protocol identifies, in a given structure of a protein-protein interaction, the linear polypeptide segment suggested to contribute most to binding energy. Interactions that feature a 'hot segment', a linear peptide with significant binding energy compared to that of the complex, may be amenable for inhibition and the peptide sequence and structure derived from the interaction provide a starting point for rational drug design. Here we present a web server for Peptiderive, which is incorporated within the ROSIE web interface for Rosetta protocols. A new feature of the protocol also evaluates whether derived peptides are good candidates for cyclization. Fast computation times and clear visualization allow users to quickly assess the interaction of interest. The Peptiderive server is available for free use at http://rosie.rosettacommons.org/peptiderive. PMID:27141963

  3. A Method for Predicting Protein-Protein Interaction Types

    PubMed Central

    Silberberg, Yael

    2014-01-01

    Protein-protein interactions (PPIs) govern basic cellular processes through signal transduction and complex formation. The diversity of those processes gives rise to a remarkable diversity of interactions types, ranging from transient phosphorylation interactions to stable covalent bonding. Despite our increasing knowledge on PPIs in humans and other species, their types remain relatively unexplored and few annotations of types exist in public databases. Here, we propose the first method for systematic prediction of PPI type based solely on the techniques by which the interaction was detected. We show that different detection methods are better suited for detecting specific types. We apply our method to ten interaction types on a large scale human PPI dataset. We evaluate the performance of the method using both internal cross validation and external data sources. In cross validation, we obtain an area under receiver operating characteristic (ROC) curve ranging from 0.65 to 0.97 with an average of 0.84 across the predicted types. Comparing the predicted interaction types to external data sources, we obtained significant agreements for phosphorylation and ubiquitination interactions, with hypergeometric p-value = 2.3e−54 and 5.6e−28 respectively. We examine the biological relevance of our predictions using known signaling pathways and chart the abundance of interaction types in cell processes. Finally, we investigate the cross-relations between different interaction types within the network and characterize the discovered patterns, or motifs. We expect the resulting annotated network to facilitate the reconstruction of process-specific subnetworks and assist in predicting protein function or interaction. PMID:24625764

  4. Targeting Protein-Protein Interactions for Parasite Control

    PubMed Central

    Taylor, Christina M.; Fischer, Kerstin; Abubucker, Sahar; Wang, Zhengyuan; Martin, John; Jiang, Daojun; Magliano, Marc; Rosso, Marie-Noëlle; Li, Ben-Wen; Fischer, Peter U.; Mitreva, Makedonka

    2011-01-01

    Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs) offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific ortholgous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank). EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite) and B. malayi (H. sapiens parasite), which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly applicable. PMID

  5. Targeting Protein–Protein Interactions in the HIF System

    PubMed Central

    Abboud, Martine I.; Hancock, Rebecca L.

    2016-01-01

    Abstract Animals respond to chronic hypoxia by increasing the levels of a transcription factor known as the hypoxia‐inducible factor (HIF). HIF upregulates multiple genes, the products of which work to ameliorate the effects of limited oxygen at cellular and systemic levels. Hypoxia sensing by the HIF system involves hydroxylase‐catalysed post‐translational modifications of the HIF α‐subunits, which 1) signal for degradation of HIF‐α and 2) limit binding of HIF to transcriptional coactivator proteins. Because the hypoxic response is relevant to multiple disease states, therapeutic manipulation of the HIF‐mediated response has considerable medicinal potential. In addition to modulation of catalysis by the HIF hydroxylases, the HIF system manifests other possibilities for therapeutic intervention involving protein–protein and protein–nucleic acid interactions. Recent advances in our understanding of the structural biology and biochemistry of the HIF system are facilitating medicinal chemistry efforts. Herein we give an overview of the HIF system, focusing on structural knowledge of protein–protein interactions and how this might be used to modulate the hypoxic response for therapeutic benefit. PMID:26997519

  6. Manipulations of amyloid precursor protein cleavage disrupt the circadian clock in aging Drosophila.

    PubMed

    Blake, Matthew R; Holbrook, Scott D; Kotwica-Rolinska, Joanna; Chow, Eileen S; Kretzschmar, Doris; Giebultowicz, Jadwiga M

    2015-05-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by severe cognitive deterioration. While causes of AD pathology are debated, a large body of evidence suggests that increased cleavage of Amyloid Precursor Protein (APP) producing the neurotoxic Amyloid-β (Aβ) peptide plays a fundamental role in AD pathogenesis. One of the detrimental behavioral symptoms commonly associated with AD is the fragmentation of sleep-activity cycles with increased nighttime activity and daytime naps in humans. Sleep-activity cycles, as well as physiological and cellular rhythms, which may be important for neuronal homeostasis, are generated by a molecular system known as the circadian clock. Links between AD and the circadian system are increasingly evident but not well understood. Here we examined whether genetic manipulations of APP-like (APPL) protein cleavage in Drosophila melanogaster affect rest-activity rhythms and core circadian clock function in this model organism. We show that the increased β-cleavage of endogenous APPL by the β-secretase (dBACE) severely disrupts circadian behavior and leads to reduced expression of clock protein PER in central clock neurons of aging flies. Our data suggest that behavioral rhythm disruption is not a product of APPL-derived Aβ production but rather may be caused by a mechanism common to both α and β-cleavage pathways. Specifically, we show that increased production of the endogenous Drosophila Amyloid Intracellular Domain (dAICD) caused disruption of circadian rest-activity rhythms, while flies overexpressing endogenous APPL maintained stronger circadian rhythms during aging. In summary, our study offers a novel entry point toward understanding the mechanism of circadian rhythm disruption in Alzheimer's disease. PMID:25766673

  7. Quantitative study of protein-protein interactions by quartz nanopipettes

    NASA Astrophysics Data System (ADS)

    Tiwari, Purushottam Babu; Astudillo, Luisana; Miksovska, Jaroslava; Wang, Xuewen; Li, Wenzhi; Darici, Yesim; He, Jin

    2014-08-01

    In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions.In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with

  8. Learning compliant manipulation through kinesthetic and tactile human-robot interaction.

    PubMed

    Kronander, Klas; Billard, Aude

    2014-01-01

    Robot Learning from Demonstration (RLfD) has been identified as a key element for making robots useful in daily lives. A wide range of techniques has been proposed for deriving a task model from a set of demonstrations of the task. Most previous works use learning to model the kinematics of the task, and for autonomous execution the robot then relies on a stiff position controller. While many tasks can and have been learned this way, there are tasks in which controlling the position alone is insufficient to achieve the goals of the task. These are typically tasks that involve contact or require a specific response to physical perturbations. The question of how to adjust the compliance to suit the need of the task has not yet been fully treated in Robot Learning from Demonstration. In this paper, we address this issue and present interfaces that allow a human teacher to indicate compliance variations by physically interacting with the robot during task execution. We validate our approach in two different experiments on the 7 DoF Barrett WAM and KUKA LWR robot manipulators. Furthermore, we conduct a user study to evaluate the usability of our approach from a non-roboticists perspective. PMID:25248219

  9. Experimental evolution of protein–protein interaction networks

    PubMed Central

    Kaçar, Betül; Gaucher, Eric A.

    2013-01-01

    The modern synthesis of evolutionary theory and genetics has enabled us to discover underlying molecular mechanisms of organismal evolution. We know that in order to maximize an organism's fitness in a particular environment, individual interactions among components of protein and nucleic acid networks need to be optimized by natural selection, or sometimes through random processes, as the organism responds to changes and/or challenges in the environment. Despite the significant role of molecular networks in determining an organism's adaptation to its environment, we still do not know how such inter- and intra-molecular interactions within networks change over time and contribute to an organism's evolvability while maintaining overall network functions. One way to address this challenge is to identify connections between molecular networks and their host organisms, to manipulate these connections, and then attempt to understand how such perturbations influence molecular dynamics of the network and thus influence evolutionary paths and organismal fitness. In the present review, we discuss how integrating evolutionary history with experimental systems that combine tools drawn from molecular evolution, synthetic biology and biochemistry allow us to identify the underlying mechanisms of organismal evolution, particularly from the perspective of protein interaction networks. PMID:23849056

  10. Prediction and redesign of protein-protein interactions.

    PubMed

    Lua, Rhonald C; Marciano, David C; Katsonis, Panagiotis; Adikesavan, Anbu K; Wilkins, Angela D; Lichtarge, Olivier

    2014-01-01

    Understanding the molecular basis of protein function remains a central goal of biology, with the hope to elucidate the role of human genes in health and in disease, and to rationally design therapies through targeted molecular perturbations. We review here some of the computational techniques and resources available for characterizing a critical aspect of protein function - those mediated by protein-protein interactions (PPI). We describe several applications and recent successes of the Evolutionary Trace (ET) in identifying molecular events and shapes that underlie protein function and specificity in both eukaryotes and prokaryotes. ET is a part of analytical approaches based on the successes and failures of evolution that enable the rational control of PPI. PMID:24878423

  11. The Arabidopsis ESCRT protein-protein interaction network.

    PubMed

    Shahriari, Mojgan; Richter, Klaus; Keshavaiah, Channa; Sabovljevic, Aneta; Huelskamp, Martin; Schellmann, Swen

    2011-05-01

    In yeast, endosomal sorting of monoubiquitylated transmembrane proteins is performed by a subset of the 19 "class E vacuolar protein sorting" proteins. The core machinery consists of 11 proteins that are organised in three complexes termed ESCRT I-III (endosomal sorting complex required for transport I-III) and is conserved in eukaryotic cells. While the pathway is well understood in yeast and animals, the plant ESCRT system is largely unexplored. At least one sequence homolog for each ESCRT component can be found in the Arabidopsis genome. Generally, sequence conservation between yeast/animals and the Arabidopsis proteins is low. To understand details about participating proteins and complex organization we have performed a systematic pairwise yeast two hybrid analysis of all Arabidopsis proteins showing homology to the ESCRT core machinery. Positive interactions were validated using bimolecular fluorescence complementation. In our experiments, most putative ESCRT components exhibited interactions with other ESCRT components that could be shown to occur on endosomes suggesting that despite their low homology to their yeast and animal counterparts they represent functional components of the plant ESCRT pathway. PMID:21442383

  12. Functional manipulation of a calcium-binding protein from Entamoeba histolytica guided by paramagnetic NMR.

    PubMed

    Rout, Ashok K; Patel, Sunita; Somlata; Shukla, Manish; Saraswathi, Deepa; Bhattacharya, Alok; Chary, Kandala V R

    2013-08-01

    EhCaBP1, one of the calcium-binding proteins from Entamoeba histolytica, is a two-domain EF-hand protein. The two domains of EhCaBP1 are structurally and functionally different from each other. However, both domains are required for structural stability and a full range of functional diversity. Analysis of sequence and structure of EhCaBP1 and other CaBPs indicates that the C-terminal domain of EhCaBP1 possesses a unique structure compared with other family members. This had been attributed to the absence of a Phe-Phe interaction between highly conserved Phe residues at the -4 position in EF-hand III (F[-4]; Tyr(81)) and at the 13th position in EF-hand IV (F[+13]; Phe(129)) of the C-terminal domain. Against this backdrop, we mutated the Tyr residue at the -4th position of EF III to the Phe residue (Y81F), to bring in the Phe-Phe interaction and understand the nature of structural and functional changes in the protein by NMR spectroscopy, molecular dynamics (MD) simulation, isothermal titration calorimetry (ITC), and biological assays, such as imaging and actin binding. The Y81F mutation in EhCaBP1 resulted in a more compact structure for the C-terminal domain of the mutant as in the case of calmodulin and troponin C. The compact structure is favored by the presence of a π-π interaction between Phe(81) and Phe(129) along with several hydrophobic interactions of Phe(81), which are not seen in the wild-type protein. Furthermore, the biological assays reveal preferential membrane localization of the mutant, loss of its colocalization with actin in the phagocytic cups, whereas retaining its ability to bind G- and F-actin. PMID:23782698

  13. Manipulation of the host protein acetylation network by human immunodeficiency virus type 1

    PubMed Central

    Jeng, Mark Y.; Ali, Ibraheem; Ott, Melanie

    2016-01-01

    Over the last 15 years, protein acetylation has emerged as a globally important post-translational modification that fine-tunes major cellular processes in many life forms. This dynamic regulatory system is critical both for complex eukaryotic cells and for the viruses that infect them. HIV-1 accesses the host acetylation network by interacting with several key enzymes, thereby promoting infection at multiple steps during the viral life cycle. Inhibitors of host histone deacetylases and bromodomain-containing proteins are now being pursued as therapeutic strategies to enhance current antiretroviral treatment. As more acetylation-targeting compounds are reaching clinical trials, it is timely to review the role of reversible protein acetylation in HIV-infected CD4+ T cells. PMID:26329395

  14. Self diffusion of interacting membrane proteins.

    PubMed Central

    Abney, J R; Scalettar, B A; Owicki, J C

    1989-01-01

    A two-dimensional version of the generalized Smoluchowski equation is used to analyze the time (or distance) dependent self diffusion of interacting membrane proteins in concentrated membrane systems. This equation provides a well established starting point for descriptions of the diffusion of particles that interact through both direct and hydrodynamic forces; in this initial work only the effects of direct interactions are explicitly considered. Data describing diffusion in the presence of hard-core repulsions, soft repulsions, and soft repulsions with weak attractions are presented. The effect that interactions have on the self-diffusion coefficient of a real protein molecule from mouse liver gap junctions is also calculated. The results indicate that self diffusion is always inhibited by direct interactions; this observation is interpreted in terms of the caging that will exist at finite protein concentration. It is also noted that, over small distance scales, the diffusion coefficient is determined entirely by the very strong Brownian forces; therefore, as a function of displacement the self-diffusion coefficient decays (rapidly) from its value at infinite dilution to its steady-state interaction-averaged value. The steady-state self-diffusion coefficient describes motion over distance scales that range from approximately 10 nm to cellular dimensions and is the quantity measured in fluorescence recovery after photobleaching experiments. The short-ranged behavior of the diffusion coefficient is important on the interparticle-distance scale and may therefore influence the rate at which nearest-neighbor collisional processes take place. The hard-disk theoretical results presented here are in excellent agreement with lattice Monte-Carlo results obtained by other workers. The concentration dependence of experimentally measured diffusion coefficients of antibody-hapten complexes bound to the membrane surface is consistent with that predicted by the theory. The

  15. Dynamic interactions of proteins in complex networks

    SciTech Connect

    Appella, E.; Anderson, C.

    2009-10-01

    Recent advances in techniques such as NMR and EPR spectroscopy have enabled the elucidation of how proteins undergo structural changes to act in concert in complex networks. The three minireviews in this series highlight current findings and the capabilities of new methodologies for unraveling the dynamic changes controlling diverse cellular functions. They represent a sampling of the cutting-edge research presented at the 17th Meeting of Methods in Protein Structure Analysis, MPSA2008, in Sapporo, Japan, 26-29 August, 2008 (http://www.iapsap.bnl.gov). The first minireview, by Christensen and Klevit, reports on a structure-based yeast two-hybrid method for identifying E2 ubiquitin-conjugating enzymes that interact with the E3 BRCA1/BARD1 heterodimer ligase to generate either mono- or polyubiquitinated products. This method demonstrated for the first time that the BRCA1/BARD1 E3 can interact with 10 different E2 enzymes. Interestingly, the interaction with multiple E2 enzymes displayed unique ubiquitin-transfer properties, a feature expected to be common among other RING and U-box E3s. Further characterization of new E3 ligases and the E2 enzymes that interact with them will greatly enhance our understanding of ubiquitin transfer and facilitate studies of roles of ubiquitin and ubiquitin-like proteins in protein processing and trafficking. Stein et al., in the second minireview, describe recent progress in defining the binding specificity of different peptide-binding domains. The authors clearly point out that transient peptide interactions mediated by both post-translational modifications and disordered regions ensure a high level of specificity. They postulate that a regulatory code may dictate the number of combinations of domains and post-translational modifications needed to achieve the required level of interaction specificity. Moreover, recognition alone is not enough to obtain a stable complex, especially in a complex cellular environment. Increasing

  16. Modulation of opioid receptor function by protein-protein interactions.

    PubMed

    Alfaras-Melainis, Konstantinos; Gomes, Ivone; Rozenfeld, Raphael; Zachariou, Venetia; Devi, Lakshmi

    2009-01-01

    Opioid receptors, MORP, DORP and KORP, belong to the family A of G protein coupled receptors (GPCR), and have been found to modulate a large number of physiological functions, including mood, stress, appetite, nociception and immune responses. Exogenously applied opioid alkaloids produce analgesia, hedonia and addiction. Addiction is linked to alterations in function and responsiveness of all three opioid receptors in the brain. Over the last few years, a large number of studies identified protein-protein interactions that play an essential role in opioid receptor function and responsiveness. Here, we summarize interactions shown to affect receptor biogenesis and trafficking, as well as those affecting signal transduction events following receptor activation. This article also examines protein interactions modulating the rate of receptor endocytosis and degradation, events that play a major role in opiate analgesia. Like several other GPCRs, opioid receptors may form homo or heterodimers. The last part of this review summarizes recent knowledge on proteins known to affect opioid receptor dimerization. PMID:19273296

  17. Motif mediated protein-protein interactions as drug targets.

    PubMed

    Corbi-Verge, Carles; Kim, Philip M

    2016-01-01

    Protein-protein interactions (PPI) are involved in virtually every cellular process and thus represent an attractive target for therapeutic interventions. A significant number of protein interactions are frequently formed between globular domains and short linear peptide motifs (DMI). Targeting these DMIs has proven challenging and classical approaches to inhibiting such interactions with small molecules have had limited success. However, recent new approaches have led to the discovery of potent inhibitors, some of them, such as Obatoclax, ABT-199, AEG-40826 and SAH-p53-8 are likely to become approved drugs. These novel inhibitors belong to a wide range of different molecule classes, ranging from small molecules to peptidomimetics and biologicals. This article reviews the main reasons for limited success in targeting PPIs, discusses how successful approaches overcome these obstacles to discovery promising inhibitors for human protein double minute 2 (HDM2), B-cell lymphoma 2 (Bcl-2), X-linked inhibitor of apoptosis protein (XIAP), and provides a summary of the promising approaches currently in development that indicate the future potential of PPI inhibitors in drug discovery. PMID:26936767

  18. Docking and scoring protein interactions: CAPRI 2009.

    PubMed

    Lensink, Marc F; Wodak, Shoshana J

    2010-11-15

    Protein docking algorithms are assessed by evaluating blind predictions performed during 2007-2009 in Rounds 13-19 of the community-wide experiment on critical assessment of predicted interactions (CAPRI). We evaluated the ability of these algorithms to sample docking poses and to single out specific association modes in 14 targets, representing 11 distinct protein complexes. These complexes play important biological roles in RNA maturation, G-protein signal processing, and enzyme inhibition and function. One target involved protein-RNA interactions not previously considered in CAPRI, several others were hetero-oligomers, or featured multiple interfaces between the same protein pair. For most targets, predictions started from the experimentally determined structures of the free (unbound) components, or from models built from known structures of related or similar proteins. To succeed they therefore needed to account for conformational changes and model inaccuracies. In total, 64 groups and 12 web-servers submitted docking predictions of which 4420 were evaluated. Overall our assessment reveals that 67% of the groups, more than ever before, produced acceptable models or better for at least one target, with many groups submitting multiple high- and medium-accuracy models for two to six targets. Forty-one groups including four web-servers participated in the scoring experiment with 1296 evaluated models. Scoring predictions also show signs of progress evidenced from the large proportion of correct models submitted. But singling out the best models remains a challenge, which also adversely affects the ability to correctly rank docking models. With the increased interest in translating abstract protein interaction networks into realistic models of protein assemblies, the growing CAPRI community is actively developing more efficient and reliable docking and scoring methods for everyone to use. PMID:20806235

  19. RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction.

    PubMed

    Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

    2014-07-01

    Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA-RNA/RNA-protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA-RNA interactions and 1619 RNA-protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA-RNA/RNA-protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA-RNA/RNA-protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network. PMID:24803509

  20. Dynamic regulation of lipid-protein interactions.

    PubMed

    Martfeld, Ashley N; Rajagopalan, Venkatesan; Greathouse, Denise V; Koeppe, Roger E

    2015-09-01

    We review the importance of helix motions for the function of several important categories of membrane proteins and for the properties of several model molecular systems. For voltage-gated potassium or sodium channels, sliding, tilting and/or rotational movements of the S4 helix accompanied by a swapping of cognate side-chain ion-pair interactions regulate the channel gating. In the seven-helix G protein-coupled receptors, exemplified by the rhodopsins, collective helix motions serve to activate the functional signaling. Peptides which initially associate with lipid-bilayer membrane surfaces may undergo dynamic transitions from surface-bound to tilted-transmembrane orientations, sometimes accompanied by changes in the molecularity, formation of a pore or, more generally, the activation of biological function. For single-span membrane proteins, such as the tyrosine kinases, an interplay between juxtamembrane and transmembrane domains is likely to be crucial for the regulation of dimer assembly that in turn is associated with the functional responses to external signals. Additionally, we note that experiments with designed single-span transmembrane helices offer fundamental insights into the molecular features that govern protein-lipid interactions. This article is part of a Special Issue entitled: Lipid-protein interactions. PMID:25666872

  1. Applications of the Restriction Free (RF) cloning procedure for molecular manipulations and protein expression.

    PubMed

    Unger, Tamar; Jacobovitch, Yossi; Dantes, Ada; Bernheim, Reut; Peleg, Yoav

    2010-10-01

    Molecular manipulations, including DNA cloning and mutagenesis are basic tools used on a routine basis in all life-science disciplines. Over the last decade new methodologies have emerged that facilitated and expanded the applications for DNA cloning and mutagenesis. Ligation-Independent Cloning (LIC) techniques were developed and replaced the classical Ligation Dependent Cloning (LDC) platform. Restriction Free (RF) cloning was originally developed for introduction of foreign DNA into a plasmid at any predetermined position. RF cloning is based on PCR amplification of a DNA fragment, which serves as a mega-primer for the linear amplification of the vector and insert. Here we present several novel applications of the Restriction Free (RF) cloning platform for DNA cloning and mutagenesis. The new applications include simultaneous cloning of several DNA fragments into distinct positions within an expression vector, simultaneous multi-component assembly, and parallel cloning of the same PCR product into a series of different vectors. In addition, we have expanded the application of the RF cloning platform for multiple alterations of the target DNA, including simultaneous multiple-site mutagenesis and simultaneous introduction of deletions and insertions at different positions. We further demonstrate the robustness of the new applications for facilitating recombinant protein expression in the Escherichia coli system. PMID:20600952

  2. Multifunctional proteins revealed by overlapping clustering in protein interaction network

    PubMed Central

    Chapple, Charles E.; Guénoche, Alain; Brun, Christine

    2012-01-01

    Motivation: Multifunctional proteins perform several functions. They are expected to interact specifically with distinct sets of partners, simultaneously or not, depending on the function performed. Current graph clustering methods usually allow a protein to belong to only one cluster, therefore impeding a realistic assignment of multifunctional proteins to clusters. Results: Here, we present Overlapping Cluster Generator (OCG), a novel clustering method which decomposes a network into overlapping clusters and which is, therefore, capable of correct assignment of multifunctional proteins. The principle of OCG is to cover the graph with initial overlapping classes that are iteratively fused into a hierarchy according to an extension of Newman's modularity function. By applying OCG to a human protein–protein interaction network, we show that multifunctional proteins are revealed at the intersection of clusters and demonstrate that the method outperforms other existing methods on simulated graphs and PPI networks. Availability: This software can be downloaded from http://tagc.univ-mrs.fr/welcome/spip.php?rubrique197 Contact: brun@tagc.univ-mrs.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22080466

  3. Dynamic network analysis of protein interactions

    NASA Astrophysics Data System (ADS)

    Almaas, Eivind; Deri, Joya

    2007-03-01

    Network approaches have recently become a popular tool to study complex systems such as cellular metabolism and protein interactions. A substantial number of analyses of the protein interaction network (PIN) of the yeast Saccharomyces cerevisiae have considered this network as a static entity, not taking the network's dynamic nature into account. Here, we examine the time-variation of gene regulation superimposed on the PIN by defining mRNA expression profiles throughout the cell cycle as node weights. To characterize these network dynamics, we have both developed a set of novel network measures as well as studied previously published measures for weighted networks. We expect that our approach will provide a deeper understanding of protein regulation during the cell cycle.

  4. Identification of Protein-Protein Interactions and Topologies in Living Cells with Chemical Cross-linking and Mass Spectrometry*S⃞

    PubMed Central

    Zhang, Haizhen; Tang, Xiaoting; Munske, Gerhard R.; Tolic, Nikola; Anderson, Gordon A.; Bruce, James E.

    2009-01-01

    We present results from a novel strategy that enables concurrent identification of protein-protein interactions and topologies in living cells without specific antibodies or genetic manipulations for immuno-/affinity purifications. The strategy consists of (i) a chemical cross-linking reaction: intact cell labeling with a novel class of chemical cross-linkers, protein interaction reporters (PIRs); (ii) two-stage mass spectrometric analysis: stage 1 identification of PIR-labeled proteins and construction of a restricted database by two-dimensional LC/MSMS and stage 2 analysis of PIR-labeled peptides by multiplexed LC/FTICR-MS; and (iii) data analysis: identification of cross-linked peptides and proteins of origin using accurate mass and other constraints. The primary advantage of the PIR approach and distinction from current technology is that protein interactions together with topologies are detected in native biological systems by stabilizing protein complexes with new covalent bonds while the proteins are present in the original cellular environment. Thus, weak or transient interactions or interactions that require properly folded, localized, or membrane-bound proteins can be labeled and identified through the PIR approach. This strategy was applied to Shewanella oneidensis bacterial cells, and initial studies resulted in identification of a set of protein-protein interactions and their contact/binding regions. Furthermore most identified interactions involved membrane proteins, suggesting that the PIR approach is particularly suited for studies of membrane protein-protein interactions, an area under-represented with current widely used approaches. PMID:18936057

  5. Intracellular protein interaction mapping with FRET hybrids

    PubMed Central

    You, Xia; Nguyen, Annalee W.; Jabaiah, Abeer; Sheff, Mark A.; Thorn, Kurt S.; Daugherty, Patrick S.

    2006-01-01

    A quantitative methodology was developed to identify protein interactions in a broad range of cell types by using FRET between fluorescent proteins. Genetic fusions of a target receptor to a FRET acceptor and a large library of candidate peptide ligands to a FRET donor enabled high-throughput optical screening for optimal interaction partners in the cytoplasm of Escherichia coli. Flow cytometric screening identified a panel of peptide ligands capable of recognizing the target receptors in the intracellular environment. For both SH3 and PDZ domain-type target receptors, physiologically meaningful consensus sequences were apparent among the isolated ligands. The relative dissociation constants of interacting partners could be measured directly by using a dilution series of cell lysates containing FRET hybrids, providing a previously undescribed high-throughput approach to rank the affinity of many interaction partners. FRET hybrid interaction screening provides a powerful tool to discover protein ligands in the cellular context with potential applications to a wide variety of eukaryotic cell types. PMID:17130455

  6. Functional module identification in protein interaction networks by interaction patterns

    PubMed Central

    Wang, Yijie; Qian, Xiaoning

    2014-01-01

    Motivation: Identifying functional modules in protein–protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of ‘higher than expected connectivity’, those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks. Results: In this article, we propose a novel optimization formulation LCP2 (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP2 by random walk. A spectral approximate algorithm SLCP2 is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP2 to a new algorithm (greedy algorithm for LCP2) GLCP2 to identify overlapping functional modules. We compare SLCP2 and GLCP2 with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP2 outperform all other compared algorithms. Availability and implementation: All data and code are available at http://www.cse.usf.edu/∼xqian/fmi/slcp2hop

  7. The centrality of cancer proteins in human protein-protein interaction network: a revisit.

    PubMed

    Xiong, Wei; Xie, Luyu; Zhou, Shuigeng; Liu, Hui; Guan, Jihong

    2014-01-01

    Topological analysis of protein-protein interaction (PPI) networks has been widely applied to the investigation on cancer mechanisms. However, there is still a debate on whether cancer proteins exhibit more topological centrality compared to the other proteins in the human PPI network. To resolve this debate, we first identified four sets of human proteins, and then mapped these proteins into the yeast PPI network by homologous genes. Finally, we compared these proteins' properties in human and yeast PPI networks. Experiments over two real datasets demonstrated that cancer proteins tend to have higher degree and smaller clustering coefficient than non-cancer proteins. Experimental results also validated that cancer proteins have larger betweenness centrality compared to the other proteins on the STRING dataset. However, on the BioGRID dataset, the average betweenness centrality of cancer proteins is larger than that of disease and control proteins, but smaller than that of essential proteins. PMID:24878726

  8. Tools for controlling protein interactions with light

    PubMed Central

    Tucker, Chandra L.; Vrana, Justin D.; Kennedy, Matthew J.

    2014-01-01

    Genetically-encoded actuators that allow control of protein-protein interactions with light, termed ‘optical dimerizers’, are emerging as new tools for experimental biology. In recent years, numerous new and versatile dimerizer systems have been developed. Here we discuss the design of optical dimerizer experiments, including choice of a dimerizer system, photoexcitation sources, and coordinate use of imaging reporters. We provide detailed protocols for experiments using two dimerization systems we previously developed, CRY2/CIB and UVR8/UVR8, for use controlling transcription, protein localization, and protein secretion with light. Additionally, we provide instructions and software for constructing a pulse-controlled LED light device for use in experiments requiring extended light treatments. PMID:25181301

  9. Protein Phosphatase 1α Interacting Proteins in the Human Brain

    PubMed Central

    Esteves, Sara L.C.; Domingues, Sara C.; da Cruz e Silva, Odete A.B.; da Cruz e Silva, Edgar F.

    2012-01-01

    Abstract Protein Phosphatase 1 (PP1) is a major serine/threonine-phosphatase whose activity is dependent on its binding to regulatory subunits known as PP1 interacting proteins (PIPs), responsible for targeting PP1 to a specific cellular location, specifying its substrate or regulating its action. Today, more than 200 PIPs have been described involving PP1 in panoply of cellular mechanisms. Moreover, several PIPs have been identified that are tissue and event specific. In addition, the diversity of PP1/PIP complexes can further be achieved by the existence of several PP1 isoforms that can bind preferentially to a certain PIP. Thus, PP1/PIP complexes are highly specific for a particular function in the cell, and as such, they are excellent pharmacological targets. Hence, an in-depth survey was taken to identify specific PP1α PIPs in human brain by a high-throughput Yeast Two-Hybrid approach. Sixty-six proteins were recognized to bind PP1α, 39 being novel PIPs. A large protein interaction databases search was also performed to integrate with the results of the PP1α Human Brain Yeast Two-Hybrid and a total of 246 interactions were retrieved. PMID:22321011

  10. Predicting Disease-Related Proteins Based on Clique Backbone in Protein-Protein Interaction Network

    PubMed Central

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases. PMID:25013377

  11. The interactions of peripheral membrane proteins with biological membranes

    SciTech Connect

    Johs, Alexander; Whited, A. M.

    2015-01-01

    The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approaches continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.

  12. The interactions of peripheral membrane proteins with biological membranes

    DOE PAGESBeta

    Johs, Alexander; Whited, A. M.

    2015-01-01

    The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approachesmore » continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.« less

  13. Using support vector machine for improving protein-protein interaction prediction utilizing domain interactions

    SciTech Connect

    Singhal, Mudita; Shah, Anuj R.; Brown, Roslyn N.; Adkins, Joshua N.

    2010-10-02

    Understanding protein interactions is essential to gain insights into the biological processes at the whole cell level. The high-throughput experimental techniques for determining protein-protein interactions (PPI) are error prone and expensive with low overlap amongst them. Although several computational methods have been proposed for predicting protein interactions there is definite room for improvement. Here we present DomainSVM, a predictive method for PPI that uses computationally inferred domain-domain interaction values in a Support Vector Machine framework to predict protein interactions. DomainSVM method utilizes evidence of multiple interacting domains to predict a protein interaction. It outperforms existing methods of PPI prediction by achieving very high explanation ratios, precision, specificity, sensitivity and F-measure values in a 10 fold cross-validation study conducted on the positive and negative PPIs in yeast. A Functional comparison study using GO annotations on the positive and the negative test sets is presented in addition to discussing novel PPI predictions in Salmonella Typhimurium.

  14. Phenylboronate chromatography selectively separates glycoproteins through the manipulation of electrostatic, charge transfer, and cis-diol interactions.

    PubMed

    Carvalho, Rimenys J; Woo, James; Aires-Barros, M Raquel; Cramer, Steven M; Azevedo, Ana M

    2014-10-01

    Phenylboronate chromatography (PBC) has been applied for several years, however details regarding the mechanisms of interactions between the ligand and biomolecules are still scarce. The goal of this work is to investigate the various chemical interactions between proteins and their ligands, using a protein library containing both glycosylated and nonglycosylated proteins. Differences in the adsorption of these proteins over a pH range from 4 to 9 were related to two main properties: charge and presence of glycans. Acidic or neutral proteins were strongly adsorbed below pH 8 although the uncharged trigonal form of phenylboronate (PB) is less susceptible to forming electrostatic and cis-diol interactions with proteins. The glycosylated proteins were only adsorbed above pH 8 when the electrostatic repulsion between the boronate anion and the protein surface was mitigated (at 200 mM NaCl). All basic proteins were highly adsorbed above pH 8 with PB also acting as a cation-exchanger with binding occurring through electrostatic interactions. Batch adsorption performed at acidic conditions in the presence of Lewis base showed that charge-transfer interactions are critical for protein retention. This study demonstrates the multimodal interaction of PBC, which can be a selective tool for separation of different classes of proteins. PMID:25130283

  15. Manipulation of cellular light from green fluorescent protein by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    He, Hao; Li, Shiyang; Wang, Shaoyang; Hu, Minglie; Cao, Youjia; Wang, Chingyue

    2012-10-01

    Green fluorescent protein (GFP) is one of the most widely studied and exploited proteins in biochemistry and cell biology. It emits fluorescence following optical excitation, which is usually provided by a laser. Here, we report that fluorescence from enhanced GFP can be `turned off' by exposing cells to laser light. A short flash of femtosecond laser light is shown to deplete calcium in the endoplasmic reticulum of cells. Calcium-release-activated calcium channels are then activated by stromal interaction molecule 1 (STIM1). The rise in intracellular Ca2+ depolarizes mitochondria and increases the leakage of reactive oxygen species, which then permanently bleach the GFP. This controllable optical scheme for reactive oxygen species generation can also be used to modulate the photoconversion of GFP fluorescence from green to red emission and provide a mechanism for influencing cellular molecular dynamics.

  16. Ultra-fast optical manipulation of single proteins binding to the actin cytoskeleton

    NASA Astrophysics Data System (ADS)

    Capitanio, Marco; Gardini, Lucia; Pavone, Francesco Saverio

    2014-02-01

    In the last decade, forces and mechanical stresses acting on biological systems are emerging as regulatory factors essential for cell life. Emerging evidences indicate that factors such as applied forces or the rigidity of the extracellular matrix (ECM) determine the shape and function of cells and organisms1. Classically, the regulation of biological systems is described through a series of biochemical signals and enzymatic reactions, which direct the processes and cell fate. However, mechanotransduction, i.e. the conversion of mechanical forces into biochemical and biomolecular signals, is at the basis of many biological processes fundamental for the development and differentiation of cells, for their correct function and for the development of pathologies. We recently developed an in vitro system that allows the investigation of force-dependence of the interaction of proteins binding the actin cytoskeleton, at the single molecule level. Our system displays a delay of only ~10 μs between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 μs. Our assay allows direct measurements of load-dependence of lifetimes of single molecular bonds and conformational changes of single proteins and molecular motors. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.

  17. Ribo-Proteomics Approach to Profile RNA-Protein and Protein-Protein Interaction Networks.

    PubMed

    Yeh, Hsin-Sung; Chang, Jae-Woong; Yong, Jeongsik

    2016-01-01

    Characterizing protein-protein and protein-RNA interaction networks is a fundamental step to understanding the function of an RNA-binding protein. In many cases, these interactions are transient and highly dynamic. Therefore, capturing stable as well as transient interactions in living cells for the identification of protein-binding partners and the mapping of RNA-binding sequences is key to a successful establishment of the molecular interaction network. In this chapter, we will describe a method for capturing the molecular interactions in living cells using formaldehyde as a crosslinker and enriching a specific RNA-protein complex from cell extracts followed by mass spectrometry and Next-Gen sequencing analyses. PMID:26965265

  18. Michigan molecular interactions r2: from interacting proteins to pathways.

    PubMed

    Tarcea, V Glenn; Weymouth, Terry; Ade, Alex; Bookvich, Aaron; Gao, Jing; Mahavisno, Vasudeva; Wright, Zach; Chapman, Adriane; Jayapandian, Magesh; Ozgür, Arzucan; Tian, Yuanyuan; Cavalcoli, Jim; Mirel, Barbara; Patel, Jignesh; Radev, Dragomir; Athey, Brian; States, David; Jagadish, H V

    2009-01-01

    Molecular interaction data exists in a number of repositories, each with its own data format, molecule identifier and information coverage. Michigan molecular interactions (MiMI) assists scientists searching through this profusion of molecular interaction data. The original release of MiMI gathered data from well-known protein interaction databases, and deep merged this information while keeping track of provenance. Based on the feedback received from users, MiMI has been completely redesigned. This article describes the resulting MiMI Release 2 (MiMIr2). New functionality includes extension from proteins to genes and to pathways; identification of highlighted sentences in source publications; seamless two-way linkage with Cytoscape; query facilities based on MeSH/GO terms and other concepts; approximate graph matching to find relevant pathways; support for querying in bulk; and a user focus-group driven interface design. MiMI is part of the NIH's; National Center for Integrative Biomedical Informatics (NCIBI) and is publicly available at: http://mimi.ncibi.org. PMID:18978014

  19. Protein-protein interactions of mitochondrial-associated protein via bioluminescence resonance energy transfer

    PubMed Central

    Koshiba, Takumi

    2015-01-01

    Protein-protein interactions are essential biological reactions occurring at inter- and intra-cellular levels. The analysis of their mechanism is generally required in order link to understand their various cellular functions. Bioluminescence resonance energy transfer (BRET), which is based on an enzymatic activity of luciferase, is a useful tool for investigating protein-protein interactions in live cells. The combination of the BRET system and biomolecular fluorescence complementation (BiFC) would provide us a better understanding of the hetero-oligomeric structural states of protein complexes. In this review, we discuss the application of BRET to the protein-protein interactions of mitochondrial-associated proteins and discuss its physiological relevance. PMID:27493852

  20. Turning the spotlight on protein-lipid interactions in cells

    PubMed Central

    Peng, Tao; Yuan, Xiaoqiu; Hang, Howard C.

    2014-01-01

    Protein function is largely dependent on coordinated and dynamic interactions of the protein with biomolecules including other proteins, nucleic acids and lipids. While powerful methods for global profiling of protein-protein and protein-nucleic acid interactions are available, proteome-wide mapping of protein-lipid interactions is still challenging and rarely performed. The emergence of bifunctional lipid probes with photoactivatable and clickable groups offers new chemical tools for globally profiling protein-lipid interactions under cellular contexts. In this review, we summarize recent advances in the development of bifunctional lipid probes for studying protein-lipid interactions. We also highlight how in vivo photocrosslinking reactions contribute to the characterization of lipid-binding proteins and lipidation-mediated protein-protein interactions. PMID:25129056

  1. Schizophrenia interactome with 504 novel protein-protein interactions.

    PubMed

    Ganapathiraju, Madhavi K; Thahir, Mohamed; Handen, Adam; Sarkar, Saumendra N; Sweet, Robert A; Nimgaonkar, Vishwajit L; Loscher, Christine E; Bauer, Eileen M; Chaparala, Srilakshmi

    2016-01-01

    Genome-wide association studies of schizophrenia (GWAS) have revealed the role of rare and common genetic variants, but the functional effects of the risk variants remain to be understood. Protein interactome-based studies can facilitate the study of molecular mechanisms by which the risk genes relate to schizophrenia (SZ) genesis, but protein-protein interactions (PPIs) are unknown for many of the liability genes. We developed a computational model to discover PPIs, which is found to be highly accurate according to computational evaluations and experimental validations of selected PPIs. We present here, 365 novel PPIs of liability genes identified by the SZ Working Group of the Psychiatric Genomics Consortium (PGC). Seventeen genes that had no previously known interactions have 57 novel interactions by our method. Among the new interactors are 19 drug targets that are targeted by 130 drugs. In addition, we computed 147 novel PPIs of 25 candidate genes investigated in the pre-GWAS era. While there is little overlap between the GWAS genes and the pre-GWAS genes, the interactomes reveal that they largely belong to the same pathways, thus reconciling the apparent disparities between the GWAS and prior gene association studies. The interactome including 504 novel PPIs overall, could motivate other systems biology studies and trials with repurposed drugs. The PPIs are made available on a webserver, called Schizo-Pi at http://severus.dbmi.pitt.edu/schizo-pi with advanced search capabilities. PMID:27336055

  2. Mapping Protein Interactions between Dengue Virus and Its Human and Insect Hosts

    PubMed Central

    Doolittle, Janet M.; Gomez, Shawn M.

    2011-01-01

    Background Dengue fever is an increasingly significant arthropod-borne viral disease, with at least 50 million cases per year worldwide. As with other viral pathogens, dengue virus is dependent on its host to perform the bulk of functions necessary for viral survival and replication. To be successful, dengue must manipulate host cell biological processes towards its own ends, while avoiding elimination by the immune system. Protein-protein interactions between the virus and its host are one avenue through which dengue can connect and exploit these host cellular pathways and processes. Methodology/Principal Findings We implemented a computational approach to predict interactions between Dengue virus (DENV) and both of its hosts, Homo sapiens and the insect vector Aedes aegypti. Our approach is based on structural similarity between DENV and host proteins and incorporates knowledge from the literature to further support a subset of the predictions. We predict over 4,000 interactions between DENV and humans, as well as 176 interactions between DENV and A. aegypti. Additional filtering based on shared Gene Ontology cellular component annotation reduced the number of predictions to approximately 2,000 for humans and 18 for A. aegypti. Of 19 experimentally validated interactions between DENV and humans extracted from the literature, this method was able to predict nearly half (9). Additional predictions suggest specific interactions between virus and host proteins relevant to interferon signaling, transcriptional regulation, stress, and the unfolded protein response. Conclusions/Significance Dengue virus manipulates cellular processes to its advantage through specific interactions with the host's protein interaction network. The interaction networks presented here provide a set of hypothesis for further experimental investigation into the DENV life cycle as well as potential therapeutic targets. PMID:21358811

  3. Identification of essential proteins based on ranking edge-weights in protein-protein interaction networks.

    PubMed

    Wang, Yan; Sun, Huiyan; Du, Wei; Blanzieri, Enrico; Viero, Gabriella; Xu, Ying; Liang, Yanchun

    2014-01-01

    Essential proteins are those that are indispensable to cellular survival and development. Existing methods for essential protein identification generally rely on knock-out experiments and/or the relative density of their interactions (edges) with other proteins in a Protein-Protein Interaction (PPI) network. Here, we present a computational method, called EW, to first rank protein-protein interactions in terms of their Edge Weights, and then identify sub-PPI-networks consisting of only the highly-ranked edges and predict their proteins as essential proteins. We have applied this method to publicly-available PPI data on Saccharomyces cerevisiae (Yeast) and Escherichia coli (E. coli) for essential protein identification, and demonstrated that EW achieves better performance than the state-of-the-art methods in terms of the precision-recall and Jackknife measures. The highly-ranked protein-protein interactions by our prediction tend to be biologically significant in both the Yeast and E. coli PPI networks. Further analyses on systematically perturbed Yeast and E. coli PPI networks through randomly deleting edges demonstrate that the proposed method is robust and the top-ranked edges tend to be more associated with known essential proteins than the lowly-ranked edges. PMID:25268881

  4. Notable Aspects of Glycan-Protein Interactions.

    PubMed

    Cohen, Miriam

    2015-01-01

    This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host's immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses). PMID:26340640

  5. Notable Aspects of Glycan-Protein Interactions

    PubMed Central

    Cohen, Miriam

    2015-01-01

    This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses). PMID:26340640

  6. Heparan sulfate and heparin interactions with proteins

    PubMed Central

    Meneghetti, Maria C. Z.; Hughes, Ashley J.; Rudd, Timothy R.; Nader, Helena B.; Powell, Andrew K.; Yates, Edwin A.; Lima, Marcelo A.

    2015-01-01

    Heparan sulfate (HS) polysaccharides are ubiquitous components of the cell surface and extracellular matrix of all multicellular animals, whereas heparin is present within mast cells and can be viewed as a more sulfated, tissue-specific, HS variant. HS and heparin regulate biological processes through interactions with a large repertoire of proteins. Owing to these interactions and diverse effects observed during in vitro, ex vivo and in vivo experiments, manifold biological/pharmacological activities have been attributed to them. The properties that have been thought to bestow protein binding and biological activity upon HS and heparin vary from high levels of sequence specificity to a dependence on charge. In contrast to these opposing opinions, we will argue that the evidence supports both a level of redundancy and a degree of selectivity in the structure–activity relationship. The relationship between this apparent redundancy, the multi-dentate nature of heparin and HS polysaccharide chains, their involvement in protein networks and the multiple binding sites on proteins, each possessing different properties, will also be considered. Finally, the role of cations in modulating HS/heparin activity will be reviewed and some of the implications for structure–activity relationships and regulation will be discussed. PMID:26289657

  7. The influence of protein-protein interactions on the organization of proteins within thylakoid membranes.

    PubMed

    Tremmel, I G; Weis, E; Farquhar, G D

    2005-04-01

    The influence of attractive protein-protein interactions on the organization of photosynthetic proteins within the thylakoid membrane was investigated. Protein-protein interactions were simulated using Monte Carlo techniques and the influence of different interaction energies was examined. It was found that weak interactions led to protein clusters whereas strong interactions led to ramified chains. An optimum curve for the relationship between interaction energy and the number of contact sites emerged. With increasing particle densities the effect decreased. In a mixture of interacting and noninteracting particles the distance between the noninteracting particles was increased and there seemed to be much more free space around them. In thylakoids, this could lead to a more homogeneous distribution of the noninteracting but rate-limiting cytochrome bf complexes. Due to the increased free space between cytochrome bf, obstruction of binding sites--occurring unavoidably in a random distribution--may be drastically reduced. Furthermore, protein-protein interactions in thylakoids may lead to a decrease in plastoquinone diffusion. PMID:15665125

  8. Imaging Protein Protein Interactions inside Living Cells via Interaction-Dependent Fluorophore Ligation

    PubMed Central

    Slavoff, Sarah A.; Liu, Daniel S.; Cohen, Justin D.; Ting, Alice Y.

    2012-01-01

    We report a new method, Interaction-Dependent PRobe Incorporation Mediated by Enzymes, or ID-PRIME, for imaging protein protein interactions (PPIs) inside living cells. ID-PRIME utilizes a mutant of Escherichia coli lipoic acid ligase, LplAW37V, which can catalyze the covalent ligation of a coumarin fluorophore onto a peptide recognition sequence called LAP1. The affinity between the ligase and LAP1 is tuned such that, when each is fused to a protein partner of interest, LplAW37V labels LAP1 with coumarin only when the protein partners to which they are fused bring them together. Coumarin labeling in the absence of such interaction is low or undetectable. Characterization of ID-PRIME in living mammalian cells shows that multiple protein protein interactions can be imaged (FRB FKBP, Fos Jun, and neuroligin PSD-95), with as little as 10 min of coumarin treatment. The signal intensity and detection sensitivity are similar to those of the widely used fluorescent protein complementation technique (BiFC) for PPI detection, without the disadvantage of irreversible complex trapping. ID-PRIME provides a powerful and complementary approach to existing methods for visualization of PPIs in living cells with spatial and temporal resolution. PMID:22098454

  9. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network

    PubMed Central

    2014-01-01

    Background MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers is a widespread property of plant MADS domain proteins, or it is specific to few of these transcriptional regulators remains unclear. Results We analyzed the structure of the network of physical interactions among MADS domain proteins in Arabidopsis thaliana. We determined the abundance of subgraphs that represent the connection pattern expected for a MADS domain protein heterotetramer. These subgraphs were significantly more abundant in the MADS domain protein interaction network than in randomized analogous networks. Importantly, these subgraphs are not significantly frequent in a protein interaction network of TCP plant transcription factors, when compared to expectation by chance. In addition, we found that MADS domain proteins in tetramer-like subgraphs are more likely to be expressed jointly than proteins in other subgraphs. This effect is mainly due to proteins in the monophyletic MIKC clade, as there is no association between tetramer-like subgraphs and co-expression for proteins outside this clade. Conclusions Our results support that the tendency to form functional tetramers is widespread in the MADS domain protein-protein interaction network. Our observations also suggest that this trend is prevalent, or perhaps exclusive, for proteins in the MIKC clade. Because it is possible to retrodict several experimental results from our analyses, our work can be an important aid to make new predictions and facilitates experimental research on plant MADS domain proteins. PMID:24468197

  10. Characterization of Protein Complexes and Subcomplexes in Protein-Protein Interaction Databases

    PubMed Central

    Zaki, Nazar; Mohamed, Elfadil A.; Mora, Antonio

    2015-01-01

    The identification and characterization of protein complexes implicated in protein-protein interaction data are crucial to the understanding of the molecular events under normal and abnormal physiological conditions. This paper provides a novel characterization of subcomplexes in protein interaction databases, stressing definition and representation issues, quantification, biological validation, network metrics, motifs, modularity, and gene ontology (GO) terms. The paper introduces the concept of “nested group” as a way to represent subcomplexes and estimates that around 15% of those nested group with the higher Jaccard index may be a result of data artifacts in protein interaction databases, while a number of them can be found in biologically important modular structures or dynamic structures. We also found that network centralities, enrichment in essential proteins, GO terms related to regulation, imperfect 5-clique motifs, and higher GO homogeneity can be used to identify proteins in nested complexes. PMID:25722891

  11. Light-Scattering Studies of Protein Solutions: Role of Hydration in Weak Protein-Protein Interactions

    PubMed Central

    Paliwal, A.; Asthagiri, D.; Abras, D.; Lenhoff, A. M.; Paulaitis, M. E.

    2005-01-01

    We model the hydration contribution to short-range electrostatic/dispersion protein interactions embodied in the osmotic second virial coefficient, B2, by adopting a quasi-chemical description in which water molecules associated with the protein are identified through explicit molecular dynamics simulations. These water molecules reduce the surface complementarity of highly favorable short-range interactions, and therefore can play an important role in mediating protein-protein interactions. Here we examine this quasi-chemical view of hydration by predicting the interaction part of B2 and comparing our results with those derived from light-scattering measurements of B2 for staphylococcal nuclease, lysozyme, and chymotrypsinogen at 25°C as a function of solution pH and ionic strength. We find that short-range protein interactions are influenced by water molecules strongly associated with a relatively small fraction of the protein surface. However, the effect of these strongly associated water molecules on the surface complementarity of short-range protein interactions is significant, and must be taken into account for an accurate description of B2. We also observe remarkably similar hydration behavior for these proteins despite substantial differences in their three-dimensional structures and spatial charge distributions, suggesting a general characterization of protein hydration. PMID:15980182

  12. An Interactive, Versatile, Three-Dimensional Display, Manipulation and Plotting System for Biomedical Research

    ERIC Educational Resources Information Center

    Feldmann, Richard J.; And Others

    1972-01-01

    Computer graphics provides a valuable tool for the representation and a better understanding of structures, both small and large. Accurate and rapid construction, manipulation, and plotting of structures, such as macromolecules as complex as hemoglobin, are performed by a collection of computer programs and a time-sharing computer. (21 references)…

  13. Algorithmic approaches to protein-protein interaction site prediction.

    PubMed

    Aumentado-Armstrong, Tristan T; Istrate, Bogdan; Murgita, Robert A

    2015-01-01

    Interaction sites on protein surfaces mediate virtually all biological activities, and their identification holds promise for disease treatment and drug design. Novel algorithmic approaches for the prediction of these sites have been produced at a rapid rate, and the field has seen significant advancement over the past decade. However, the most current methods have not yet been reviewed in a systematic and comprehensive fashion. Herein, we describe the intricacies of the biological theory, datasets, and features required for modern protein-protein interaction site (PPIS) prediction, and present an integrative analysis of the state-of-the-art algorithms and their performance. First, the major sources of data used by predictors are reviewed, including training sets, evaluation sets, and methods for their procurement. Then, the features employed and their importance in the biological characterization of PPISs are explored. This is followed by a discussion of the methodologies adopted in contemporary prediction programs, as well as their relative performance on the datasets most recently used for evaluation. In addition, the potential utility that PPIS identification holds for rational drug design, hotspot prediction, and computational molecular docking is described. Finally, an analysis of the most promising areas for future development of the field is presented. PMID:25713596

  14. Deciphering Supramolecular Structures with Protein-Protein Interaction Network Modeling

    PubMed Central

    Tsuji, Toshiyuki; Yoda, Takao; Shirai, Tsuyoshi

    2015-01-01

    Many biological molecules are assembled into supramolecules that are essential to perform complicated functions in the cell. However, experimental information about the structures of supramolecules is not sufficient at this point. We developed a method of predicting and modeling the structures of supramolecules in a biological network by combining structural data of the Protein Data Bank (PDB) and interaction data in IntAct databases. Templates for binary complexes in IntAct were extracted from PDB. Modeling was attempted by assembling binary complexes with superposed shared subunits. A total of 3,197 models were constructed, and 1,306 (41% of the total) contained at least one subunit absent from experimental structures. The models also suggested 970 (25% of the total) experimentally undetected subunit interfaces, and 41 human disease-related amino acid variants were mapped onto these model-suggested interfaces. The models demonstrated that protein-protein interaction network modeling is useful to fill the information gap between biological networks and structures. PMID:26549015

  15. Targeting protein-protein interactions as an anticancer strategy

    PubMed Central

    Ivanov, Andrei A.; Khuri, Fadlo R.; Fu, Haian

    2013-01-01

    The emergence and convergence of cancer genomics, targeted therapies, and network oncology have significantly expanded the landscape of protein-protein interaction (PPI) networks in cancer for therapeutic discovery. Extensive biological and clinical investigations have led to the identification of protein interaction hubs and nodes that are critical for the acquisition and maintaining characteristics of cancer essential for cell transformation. Such cancer enabling PPIs have become promising therapeutic targets. With technological advances in PPI modulator discovery and validation of PPI-targeting agents in clinical settings, targeting PPI interfaces as an anticancer strategy has become a reality. Future research directed at genomics-based PPI target discovery, PPI interface characterization, PPI-focused chemical library design, and patient-genomic subpopulation-driven clinical studies is expected to accelerate the development of the next generation of PPI-based anticancer agents for personalized precision medicine. Here we briefly review prominent PPIs that mediate cancer-acquired properties, highlight recognized challenges and promising clinical results in targeting PPIs, and outline emerging opportunities. PMID:23725674

  16. Parallel Force Assay for Protein-Protein Interactions

    PubMed Central

    Aschenbrenner, Daniela; Pippig, Diana A.; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E.

    2014-01-01

    Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay. PMID:25546146

  17. The critical protein interactions and structures that elicit growth deregulation in cancer and viral replication

    PubMed Central

    Ou, Horng D.; May, Andrew P.

    2010-01-01

    One of the greatest challenges in biomedicine is to define the critical targets and network interactions that are subverted to elicit growth deregulation in human cells. Understanding and developing rational treatments for cancer requires a definition of the key molecular targets and how they interact to elicit the complex growth deregulation phenotype. Viral proteins provide discerning and powerful probes to understand both how cells work and how they can be manipulated using a minimal number of components. The small DNA viruses have evolved to target inherent weaknesses in cellular protein interaction networks to hijack the cellular DNA and protein replication machinery. In the battle to escape the inevitability of senescence and programmed cell death, cancers have converged on similar mechanisms, through the acquisition and selection of somatic mutations that drive unchecked cellular replication in tumors. Understanding the dynamic mechanisms through which a minimal number of viral proteins promote host cells to undergo unscheduled and pathological replication is a powerful strategy to identify critical targets that are also disrupted in cancer. Viruses can therefore be used as tools to probe the system-wide protein-protein interactions and structures that drive growth deregulation in human cells. Ultimately this can provide a path for developing system context-dependent therapeutics. This review will describe ongoing experimental approaches using viruses to study pathways deregulated in cancer, with a particular focus on viral cellular protein-protein interactions and structures. PMID:21061422

  18. The critical protein interactions and structures that elicit growth deregulation in cancer and viral replication.

    PubMed

    Ou, Horng D; May, Andrew P; O'Shea, Clodagh C

    2011-01-01

    One of the greatest challenges in biomedicine is to define the critical targets and network interactions that are subverted to elicit growth deregulation in human cells. Understanding and developing rational treatments for cancer requires a definition of the key molecular targets and how they interact to elicit the complex growth deregulation phenotype. Viral proteins provide discerning and powerful probes to understand both how cells work and how they can be manipulated using a minimal number of components. The small DNA viruses have evolved to target inherent weaknesses in cellular protein interaction networks to hijack the cellular DNA and protein replication machinery. In the battle to escape the inevitability of senescence and programmed cell death, cancers have converged on similar mechanisms, through the acquisition and selection of somatic mutations that drive unchecked cellular replication in tumors. Understanding the dynamic mechanisms through which a minimal number of viral proteins promote host cells to undergo unscheduled and pathological replication is a powerful strategy to identify critical targets that are also disrupted in cancer. Viruses can therefore be used as tools to probe the system-wide protein-protein interactions and structures that drive growth deregulation in human cells. Ultimately this can provide a path for developing system context-dependent therapeutics. This review will describe ongoing experimental approaches using viruses to study pathways deregulated in cancer, with a particular focus on viral cellular protein-protein interactions and structures. PMID:21061422

  19. From Topology to Phenotype in Protein-Protein Interaction Networks

    NASA Astrophysics Data System (ADS)

    Pržulj, Nataša

    We have recently witnessed an explosion in biological network data along with the development of computational approaches for their analyses. This new interdisciplinary research area is an integral part of systems biology, promising to provide new insights into organizational principles of life, as well as into evolution and disease. However, there is a danger that the area might become hindered by several emerging issues. In particular, there is typically a weak link between biological and computational scientists, resulting in the use of simple computational techniques of limited potential to explain these complex biological data. Hence, there is a danger that the community might view the topological features of network data as mere statistics, ignoring the value of the information contained in these data. This might result in the imposition of scientific doctrines, such as scale-free-centric (on the modelling side) and genome-centric (on the biological side) opinions onto this nascent research area. In this chapter, we take a network science perspective and present a brief, high-level overview of the area, commenting on possible challenges ahead. We focus on protein-protein interaction networks (PINs) in which nodes correspond to proteins in a cell and edges to physical bindings between the proteins.

  20. Module organization and variance in protein-protein interaction networks

    PubMed Central

    Lin, Chun-Yu; Lee, Tsai-Ling; Chiu, Yi-Yuan; Lin, Yi-Wei; Lo, Yu-Shu; Lin, Chih-Ta; Yang, Jinn-Moon

    2015-01-01

    A module is a group of closely related proteins that act in concert to perform specific biological functions through protein–protein interactions (PPIs) that occur in time and space. However, the underlying module organization and variance remain unclear. In this study, we collected module templates to infer respective module families, including 58,041 homologous modules in 1,678 species, and PPI families using searches of complete genomic database. We then derived PPI evolution scores and interface evolution scores to describe the module elements, including core and ring components. Functions of core components were highly correlated with those of essential genes. In comparison with ring components, core proteins/PPIs were conserved across multiple species. Subsequently, protein/module variance of PPI networks confirmed that core components form dynamic network hubs and play key roles in various biological functions. Based on the analyses of gene essentiality, module variance, and gene co-expression, we summarize the observations of module organization and variance as follows: 1) a module consists of core and ring components; 2) core components perform major biological functions and collaborate with ring components to execute certain functions in some cases; 3) core components are more conserved and essential during organizational changes in different biological states or conditions. PMID:25797237

  1. Activities of the Sex-lethal protein in RNA binding and protein:protein interactions.

    PubMed Central

    Samuels, M; Deshpande, G; Schedl, P

    1998-01-01

    The Drosophila sex determination gene Sex-lethal (Sxl) controls its own expression, and the expression of downstream target genes such as transformer , by regulating pre-mRNA splicing and mRNA translation. Sxl codes an RNA-binding protein that consists of an N-terminus of approximately 100 amino acids, two 90 amino acid RRM domains, R1 and R2, and an 80 amino acid C-terminus. In the studies reported here we have examined the functional properties of the different Sxl protein domains in RNA binding and in protein:protein interactions. The two RRM domains are responsible for RNA binding. Specificity in the recognition of target RNAs requires both RRM domains, and proteins which consist of the single domains or duplicated domains have anomalous RNA recognition properties. Moreover, the length of the linker between domains can affect RNA recognition properties. Our results indicate that the two RRM domains mediate Sxl:Sxl protein interactions, and that these interactions probably occur both in cis and trans. We speculate that cis interactions between R1 and R2 play a role in RNA recognition by the Sxl protein, while trans interactions stabilize complex formation on target RNAs that contain two or more closely spaced binding sites. Finally, we show that the interaction of Sxl with the snRNP protein Snf is mediated by the R1 RRM domain. PMID:9592147

  2. Slim-Filter: an interactive windows-based application for illumina genome analyzer data assessment and manipulation

    PubMed Central

    2012-01-01

    Background The emergence of Next Generation Sequencing technologies has made it possible for individual investigators to generate gigabases of sequencing data per week. Effective analysis and manipulation of these data is limited due to large file sizes, so even simple tasks such as data filtration and quality assessment have to be performed in several steps. This requires (potentially problematic) interaction between the investigator and a bioinformatics/computational service provider. Furthermore, such services are often performed using specialized computational facilities. Results We present a Windows-based application, Slim-Filter designed to interactively examine the statistical properties of sequencing reads produced by Illumina Genome Analyzer and to perform a broad spectrum of data manipulation tasks including: filtration of low quality and low complexity reads; filtration of reads containing undesired subsequences (such as parts of adapters and PCR primers used during the sample and sequencing libraries preparation steps); excluding duplicated reads (while keeping each read’s copy number information in a specialized data format); and sorting reads by copy numbers allowing for easy access and manual editing of the resulting files. Slim-Filter is organized as a sequence of windows summarizing the statistical properties of the reads. Each data manipulation step has roll-back abilities, allowing for return to previous steps of the data analysis process. Slim-Filter is written in C++ and is compatible with fasta, fastq, and specialized AS file formats presented in this manuscript. Setup files and a user’s manual are available for download at the supplementary web site ( https://www.bioinfo.uh.edu/Slim_Filter/). Conclusion The presented Windows-based application has been developed with the goal of providing individual investigators with integrated sequencing reads analysis, curation, and manipulation capabilities. PMID:22800377

  3. Developing algorithms for predicting protein-protein interactions of homology modeled proteins.

    SciTech Connect

    Martin, Shawn Bryan; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2006-01-01

    The goal of this project was to examine the protein-protein docking problem, especially as it relates to homology-based structures, identify the key bottlenecks in current software tools, and evaluate and prototype new algorithms that may be developed to improve these bottlenecks. This report describes the current challenges in the protein-protein docking problem: correctly predicting the binding site for the protein-protein interaction and correctly placing the sidechains. Two different and complementary approaches are taken that can help with the protein-protein docking problem. The first approach is to predict interaction sites prior to docking, and uses bioinformatics studies of protein-protein interactions to predict theses interaction site. The second approach is to improve validation of predicted complexes after docking, and uses an improved scoring function for evaluating proposed docked poses, incorporating a solvation term. This scoring function demonstrates significant improvement over current state-of-the art functions. Initial studies on both these approaches are promising, and argue for full development of these algorithms.

  4. Protein Cross-Linking Capillary Electrophoresis for Protein-Protein Interaction Analysis.

    PubMed

    Ouimet, Claire M; Shao, Hao; Rauch, Jennifer N; Dawod, Mohamed; Nordhues, Bryce; Dickey, Chad A; Gestwicki, Jason E; Kennedy, Robert T

    2016-08-16

    Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs. PMID:27434096

  5. Ortholog-based protein-protein interaction prediction and its application to inter-species interactions

    PubMed Central

    Lee, Sheng-An; Chan, Cheng-hsiung; Tsai, Chi-Hung; Lai, Jin-Mei; Wang, Feng-Sheng; Kao, Cheng-Yan; Huang, Chi-Ying F

    2008-01-01

    Background The rapid growth of protein-protein interaction (PPI) data has led to the emergence of PPI network analysis. Despite advances in high-throughput techniques, the interactomes of several model organisms are still far from complete. Therefore, it is desirable to expand these interactomes with ortholog-based and other methods. Results Orthologous pairs of 18 eukaryotic species were expanded and merged with experimental PPI datasets. The contributions of interologs from each species were evaluated. The expanded orthologous pairs enable the inference of interologs for various species. For example, more than 32,000 human interactions can be predicted. The same dataset has also been applied to the prediction of host-pathogen interactions. PPIs between P. falciparum calmodulin and several H. sapiens proteins are predicted, and these interactions may contribute to the maintenance of host cell Ca2+ concentration. Using comparisons with Bayesian and structure-based approaches, interactions between putative HSP40 homologs of P. falciparum and the H. sapiens TNF receptor associated factor family are revealed, suggesting a role for these interactions in the interference of the human immune response to P. falciparum. Conclusion The PPI datasets are available from POINT and POINeT . Further development of methods to predict host-pathogen interactions should incorporate multiple approaches in order to improve sensitivity, and should facilitate the identification of targets for drug discovery and design. PMID:19091010

  6. Detection and identification of protein interactions of S100 proteins by ProteinChip technology.

    PubMed

    Lehmann, Roland; Melle, Christian; Escher, Niko; von Eggeling, Ferdinand

    2005-01-01

    The aim of this work was to establish an approach for identification of protein interactions. This assay used an anti-S100A8 antibody coupled on beads and incubated with cell extract. The bead eluates were analyzed using ProteinChip technology and subsequently subjected to an appropriate digestion. Molecular masses of digestion fragments were determined by SELDI-MS, and database analysis revealed S100A10 as interacting protein. This result was confirmed by co-immunoprecipitation and immunocapturing. Using S100A10 as new bait, a specific interaction with S100A7 was detectable. PMID:16212425

  7. Profiling of Protein Interaction Networks of Protein Complexes Using Affinity Purification and Quantitative Mass Spectrometry*

    PubMed Central

    Kaake, Robyn M.; Wang, Xiaorong; Huang, Lan

    2010-01-01

    Protein-protein interactions are important for nearly all biological processes, and it is known that aberrant protein-protein interactions can lead to human disease and cancer. Recent evidence has suggested that protein interaction interfaces describe a new class of attractive targets for drug development. Full characterization of protein interaction networks of protein complexes and their dynamics in response to various cellular cues will provide essential information for us to understand how protein complexes work together in cells to maintain cell viability and normal homeostasis. Affinity purification coupled with quantitative mass spectrometry has become the primary method for studying in vivo protein interactions of protein complexes and whole organism proteomes. Recent developments in sample preparation and affinity purification strategies allow the capture, identification, and quantification of protein interactions of protein complexes that are stable, dynamic, transient, and/or weak. Current efforts have mainly focused on generating reliable, reproducible, and high confidence protein interaction data sets for functional characterization. The availability of increasing amounts of information on protein interactions in eukaryotic systems and new bioinformatics tools allow functional analysis of quantitative protein interaction data to unravel the biological significance of the identified protein interactions. Existing studies in this area have laid a solid foundation toward generating a complete map of in vivo protein interaction networks of protein complexes in cells or tissues. PMID:20445003

  8. Fluorescence Studies of Protein Crystallization Interactions

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori; Forsythe, Elizabeth

    1999-01-01

    We are investigating protein-protein interactions in under- and over-saturated crystallization solution conditions using fluorescence methods. The use of fluorescence requires fluorescent derivatives where the probe does not markedly affect the crystal packing. A number of chicken egg white lysozyme (CEWL) derivatives have been prepared, with the probes covalently attached to one of two different sites on the protein molecule; the side chain carboxyl of ASP 101, within the active site cleft, and the N-terminal amine. The ASP 101 derivatives crystallize while the N-terminal amine derivatives do not. However, the N-terminal amine is part of the contact region between adjacent 43 helix chains, and blocking this site does would not interfere with formation of these structures in solution. Preliminary FRET data have been obtained at pH 4.6, 0.1M NaAc buffer, at 5 and 7% NaCl, 4 C, using the N-terminal bound pyrene acetic acid (PAA, Ex 340 nm, Em 376 nm) and ASP 101 bound Lucifer Yellow (LY, Ex 425 nm, Em 525 nm) probe combination. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10 (exp 5) M respectively), and all experiments were carried out at approximately Csat or lower total protein concentration. The data at both salt concentrations show a consistent trend of decreasing fluorescence yield of the donor species (PAA) with increasing total protein concentration. This decrease is apparently more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations (reflected in the lower solubility). The estimated average distance between protein molecules at 5 x 10 (exp 6) M is approximately 70 nm, well beyond the range where any FRET can be expected. The calculated RO, where 50% of the donor energy is transferred to the acceptor, for the PAA-CEWL * LY-CEWL system is 3.28 nm, based upon a PAA-CEWL quantum efficiency of 0.41.

  9. Modulation of nociceptive ion channels and receptors via protein-protein interactions: implications for pain relief

    PubMed Central

    Rouwette, Tom; Avenali, Luca; Sondermann, Julia; Narayanan, Pratibha; Gomez-Varela, David; Schmidt, Manuela

    2015-01-01

    In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles. PMID:26039491

  10. Effect of thermal manipulation during embryogenesis on liver heat shock protein expression in chronic heat stressed colored broiler chickens.

    PubMed

    Vinoth, A; Thirunalasundari, T; Tharian, Jenny Anne; Shanmugam, M; Rajkumar, U

    2015-10-01

    Thermal manipulation during embryogenesis has been shown to improve thermo tolerance in broilers. Heat shock proteins are a family of proteins produced in response to variety of stress and protect cells from damage. The aim of this study was to evaluate the effect of thermal manipulation (TM) during embryogenesis on HSP gene and protein expression in the embryos and in chronic heat stressed 42nd day old chicks. On 15th day of incubation, fertile eggs from two breeds-Naked neck (NN) and Punjab Broiler-2 (PB-2) were randomly divided in to two groups, namely Control (C) eggs were incubated under standard incubation conditions and Thermal Conditioning (TC) eggs were exposed to higher incubation temperature (40.5°C) for 3h on 15th, 16th and 17th day of incubation. The chicks so obtained from each group were further subdivided and reared from 15th-42nd day as normal (N; 25±1°C, 70% RH) and heat exposed (HE; 35±1°C, 50% RH) resulting in four treatment groups (CN, CHE, TCN and TCHE). Embryos of two groups (C and TC) on 17th day and birds from four treatment groups on 42nd day were sacrificed. Liver was collected for analysis of gene expression by real-time PCR and protein expression by Western blot of Heat Shock Proteins (HSP 90 alpha, HSP 90 beta, HSP 70, HSP 60, HSP 27 and ubiquitin). The plasma collected on 42nd day was analyzed for biochemical parameters. Thermal challenging of embryos of both the breeds caused significant (P≤0.05) increase in all the HSPs gene and protein expression. The TCHE chicks had significantly (P≤0.05) lower HSPs gene and protein expressions and oxidative stress compared to CHE groups in both NN and PB-2. Based on these findings it can be concluded that TM during incubation provides adaptation to broiler chicks during chronic heat stress. PMID:26590469

  11. Prediction of Protein-Protein Interaction Sites Based on Naive Bayes Classifier

    PubMed Central

    Geng, Haijiang; Lu, Tao; Lin, Xiao; Liu, Yu; Yan, Fangrong

    2015-01-01

    Protein functions through interactions with other proteins and biomolecules and these interactions occur on the so-called interface residues of the protein sequences. Identifying interface residues makes us better understand the biological mechanism of protein interaction. Meanwhile, information about the interface residues contributes to the understanding of metabolic, signal transduction networks and indicates directions in drug designing. In recent years, researchers have focused on developing new computational methods for predicting protein interface residues. Here we creatively used a 181-dimension protein sequence feature vector as input to the Naive Bayes Classifier- (NBC-) based method to predict interaction sites in protein-protein complexes interaction. The prediction of interaction sites in protein interactions is regarded as an amino acid residue binary classification problem by applying NBC with protein sequence features. Independent test results suggested that Naive Bayes Classifier-based method with the protein sequence features as input vectors performed well. PMID:26697220

  12. Using visual cues of contact to improve interactive manipulation of virtual objects in industrial assembly/maintenance simulations.

    PubMed

    Sreng, Jean; Lécuyer, Anatole; Mégard, Christine; Andriot, Claude

    2006-01-01

    This paper describes a set of visual cues of contact designed to improve the interactive manipulation of virtual objects in industrial assembly/maintenance simulations. These visual cues display information of proximity, contact and effort between virtual objects when the user manipulates a part inside a digital mock-up. The set of visual cues encloses the apparition of glyphs (arrow, disk, or sphere) when the manipulated object is close or in contact with another part of the virtual environment. Light sources can also be added at the level of contact points. A filtering technique is proposed to decrease the number of glyphs displayed at the same time. Various effects--such as change in color, change in size, and deformation of shape- can be applied to the glyphs as a function of proximity with other objects or amplitude of the contact forces. A preliminary evaluation was conducted to gather the subjective preference of a group of participants during the simulation of an automotive assembly operation. The collected questionnaires showed that participants globally appreciated our visual cues of contact. The changes in color appeared to be preferred concerning the display of distances and proximity information. Size changes and deformation effects appeared to be preferred in terms of perception of contact forces between the parts. Last, light sources were selected to focus the attention of the user on the contact areas. PMID:17080829

  13. Protein-protein interactions in plant mitogen-activated protein kinase cascades.

    PubMed

    Zhang, Tong; Chen, Sixue; Harmon, Alice C

    2016-02-01

    Mitogen-activated protein kinases (MAPKs) form tightly controlled signaling cascades that play essential roles in plant growth, development, and defense. However, the molecular mechanisms underlying MAPK cascades are still elusive, due largely to our poor understanding of how they relay the signals. Extensive effort has been devoted to characterization of MAPK-substrate interactions to illustrate phosphorylation-based signaling. The diverse MAPK substrates identified also shed light on how spatiotemporal-specific protein-protein interactions function in distinct MAPK cascade-mediated biological processes. This review surveys various technologies used for characterizing MAPK-substrate interactions and presents case studies of MPK4 and MPK6, highlighting the multiple functions of MAPKs. Mass spectrometry-based approaches in identifying MAPK-interacting proteins are emphasized due to their increasing utility and effectiveness. The potential for using MAPKs and their substrates in enhancing plant stress tolerance is also discussed. PMID:26646897

  14. The Foundations of Protein-Ligand Interaction

    NASA Astrophysics Data System (ADS)

    Klebe, Gerhard

    For the specific design of a drug we must first answer the question: How does a drug achieve its activity? An active ingredient must, in order to develop its action, bind to a particular target molecule in the body. Usually this is a protein, but also nucleic acids in the form of RNA and DNA can be target structures for active agents. The most important condition for binding is at first that the active agent exhibits the correct size and shape in order to optimally fit into a cavity exposed to the surface of the protein, the "bindingpocket". It is further necessary for the surface properties of the ligand and protein to be mutually compatible to form specific interactions. In 1894 Emil Fischer compared the exact fit of a substrate for the catalytic centre of an enzyme with the picture of a "lock-and-key". Paul Ehrlich coined in 1913 "Corpora non agunt nisi fixata", literally "bodies do not work when they are not bound". He wanted to imply that active agents that are meant to kill bacteria or parasites must be "fixed" by them, i.e. linked to their structures. Both concepts form the starting point for any rational concept in the development of active pharmaceutical ingredients. In many respects they still apply today. A drug must, after being administered, reach its target and interact with a biological macromolecule. Specific agents have a large affinity and sufficient selectivity to bind to the macromolecule's active site. This is the only way they can develop the desired biological activity without side-effects.

  15. Probing High-density Functional Protein Microarrays to Detect Protein-protein Interactions.

    PubMed

    Fasolo, Joseph; Im, Hogune; Snyder, Michael P

    2015-01-01

    High-density functional protein microarrays containing ~4,200 recombinant yeast proteins are examined for kinase protein-protein interactions using an affinity purified yeast kinase fusion protein containing a V5-epitope tag for read-out. Purified kinase is obtained through culture of a yeast strain optimized for high copy protein production harboring a plasmid containing a Kinase-V5 fusion construct under a GAL inducible promoter. The yeast is grown in restrictive media with a neutral carbon source for 6 hr followed by induction with 2% galactose. Next, the culture is harvested and kinase is purified using standard affinity chromatographic techniques to obtain a highly purified protein kinase for use in the assay. The purified kinase is diluted with kinase buffer to an appropriate range for the assay and the protein microarrays are blocked prior to hybridization with the protein microarray. After the hybridization, the arrays are probed with monoclonal V5 antibody to identify proteins bound by the kinase-V5 protein. Finally, the arrays are scanned using a standard microarray scanner, and data is extracted for downstream informatics analysis to determine a high confidence set of protein interactions for downstream validation in vivo. PMID:26274875

  16. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins.

    PubMed

    Anyaogu, Diana Chinyere; Mortensen, Uffe Hasbro

    2015-12-01

    The medical use of pharmaceutical proteins is rapidly increasing and cheap, fast and efficient production is therefore attractive. Microbial production hosts are promising candidates for development and production of pharmaceutical proteins. However, as most therapeutic proteins are secreted proteins, they are frequently N-glycosylated. This hampers production in microbes as these hosts glycosylate proteins differently. The resulting products may therefore be immunogenic, unstable and show reduced efficacy. Recently, successful glycoengineering of microbes has demonstrated that it is possible to produce proteins with humanlike glycan structures setting the stage for production of pharmaceutical proteins in bacteria, yeasts and algae. PMID:26340101

  17. Methods for Mapping of Interaction Networks Involving Membrane Proteins

    SciTech Connect

    Hooker, Brian S.; Bigelow, Diana J.; Lin, Chiann Tso

    2007-11-23

    Numerous approaches have been taken to study protein interactions, such as tagged protein complex isolation followed by mass spectrometry, yeast two-hybrid methods, fluorescence resonance energy transfer, surface plasmon resonance, site-directed mutagenesis, and crystallography. Membrane protein interactions pose significant challenges due to the need to solubilize membranes without disrupting protein-protein interactions. Traditionally, analysis of isolated protein complexes by high-resolution 2D gel electrophoresis has been the main method used to obtain an overall picture of proteome constituents and interactions. However, this method is time consuming, labor intensive, detects only abundant proteins and is not suitable for the coverage required to elucidate large interaction networks. In this review, we discuss the application of various methods to elucidate interactions involving membrane proteins. These techniques include methods for the direct isolation of single complexes or interactors as well as methods for characterization of entire subcellular and cellular interactomes.

  18. Essential protein identification based on essential protein-protein interaction prediction by Integrated Edge Weights.

    PubMed

    Jiang, Yuexu; Wang, Yan; Pang, Wei; Chen, Liang; Sun, Huiyan; Liang, Yanchun; Blanzieri, Enrico

    2015-07-15

    Essential proteins play a crucial role in cellular survival and development process. Experimentally, essential proteins are identified by gene knockouts or RNA interference, which are expensive and often fatal to the target organisms. Regarding this, an alternative yet important approach to essential protein identification is through computational prediction. Existing computational methods predict essential proteins based on their relative densities in a protein-protein interaction (PPI) network. Degree, betweenness, and other appropriate criteria are often used to measure the relative density. However, no matter what criterion is used, a protein is actually ordered by the attributes of this protein per se. In this research, we presented a novel computational method, Integrated Edge Weights (IEW), to first rank protein-protein interactions by integrating their edge weights, and then identified sub PPI networks consisting of those highly-ranked edges, and finally regarded the nodes in these sub networks as essential proteins. We evaluated IEW on three model organisms: Saccharomyces cerevisiae (S. cerevisiae), Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegans). The experimental results showed that IEW achieved better performance than the state-of-the-art methods in terms of precision-recall and Jackknife measures. We had also demonstrated that IEW is a robust and effective method, which can retrieve biologically significant modules by its highly-ranked protein-protein interactions for S. cerevisiae, E. coli, and C. elegans. We believe that, with sufficient data provided, IEW can be used to any other organisms' essential protein identification. A website about IEW can be accessed from http://digbio.missouri.edu/IEW/index.html. PMID:25892709

  19. Protein-protein interactions of PDE4 family members - Functions, interactions and therapeutic value.

    PubMed

    Klussmann, Enno

    2016-07-01

    The second messenger cyclic adenosine monophosphate (cAMP) is ubiquitous and directs a plethora of functions in all cells. Although theoretically freely diffusible through the cell from the site of its synthesis it is not evenly distributed. It rather is shaped into gradients and these gradients are established by phospodiesterases (PDEs), the only enzymes that hydrolyse cAMP and thereby terminate cAMP signalling upstream of cAMP's effector systems. Miles D. Houslay has devoted most of his scientific life highly successfully to a particular family of PDEs, the PDE4 family. The family is encoded by four genes and gives rise to around 20 enzymes, all with different functions. M. Houslay has discovered many of these functions and realised early on that PDE4 family enzymes are attractive drug targets in a variety of human diseases, but not their catalytic activity as that is encoded in conserved domains in all family members. He postulated that targeting the intracellular location would provide the specificity that modern innovative drugs require to improve disease conditions with fewer side effects than conventional drugs. Due to the wealth of M. Houslay's work, this article can only summarize some of his discoveries and, therefore, focuses on protein-protein interactions of PDE4. The aim is to discuss functions of selected protein-protein interactions and peptide spot technology, which M. Houslay introduced into the PDE4 field for identifying interacting domains. The therapeutic potential of PDE4 interactions will also be discussed. PMID:26498857

  20. Intricate protein-protein interactions in the cyanobacterial circadian clock.

    PubMed

    Egli, Martin

    2014-08-01

    The cyanobacterial circadian clock consists of a post-translational oscillator (PTO) and a PTO-dependent transcription-translation feedback loop (TTFL). The PTO can be reconstituted in vitro with the KaiA, KaiB, and KaiC proteins, enabling detailed biochemical and biophysical investigations. Both the CI and the CII halves of the KaiC hexamer harbor ATPases, but only the C-terminal CII ring exhibits kinase and phospho-transferase activities. KaiA stimulates the kinase and KaiB associates with KaiC during the dephosphorylation phase and sequesters KaiA. Recent research has led to conflicting models of the KaiB-KaiC interaction, precluding a clear understanding of KaiB function and KaiABC clock mechanism. PMID:24936066

  1. Intricate Protein-Protein Interactions in the Cyanobacterial Circadian Clock*

    PubMed Central

    Egli, Martin

    2014-01-01

    The cyanobacterial circadian clock consists of a post-translational oscillator (PTO) and a PTO-dependent transcription-translation feedback loop (TTFL). The PTO can be reconstituted in vitro with the KaiA, KaiB, and KaiC proteins, enabling detailed biochemical and biophysical investigations. Both the CI and the CII halves of the KaiC hexamer harbor ATPases, but only the C-terminal CII ring exhibits kinase and phospho-transferase activities. KaiA stimulates the kinase and KaiB associates with KaiC during the dephosphorylation phase and sequesters KaiA. Recent research has led to conflicting models of the KaiB-KaiC interaction, precluding a clear understanding of KaiB function and KaiABC clock mechanism. PMID:24936066

  2. A logical molecular circuit for programmable and autonomous regulation of protein activity using DNA aptamer-protein interactions.

    PubMed

    Han, Da; Zhu, Zhi; Wu, Cuichen; Peng, Lu; Zhou, Leiji; Gulbakan, Basri; Zhu, Guizhi; Williams, Kathryn R; Tan, Weihong

    2012-12-26

    Researchers increasingly envision an important role for artificial biochemical circuits in biological engineering, much like electrical circuits in electrical engineering. Similar to electrical circuits, which control electromechanical devices, biochemical circuits could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expressions in vivo. (1) As a consequence of their relative robustness and potential applicability for controlling a wide range of in vitro chemistries, synthetic cell-free biochemical circuits promise to be useful in manipulating the functions of biological molecules. Here, we describe the first logical circuit based on DNA-protein interactions with accurate threshold control, enabling autonomous, self-sustained and programmable manipulation of protein activity in vitro. Similar circuits made previously were based primarily on DNA hybridization and strand displacement reactions. This new design uses the diverse nucleic acid interactions with proteins. The circuit can precisely sense the local enzymatic environment, such as the concentration of thrombin, and when it is excessively high, a coagulation inhibitor is automatically released by a concentration-adjusted circuit module. To demonstrate the programmable and autonomous modulation, a molecular circuit with different threshold concentrations of thrombin was tested as a proof of principle. In the future, owing to tunable regulation, design modularity and target specificity, this prototype could lead to the development of novel DNA biochemical circuits to control the delivery of aptamer-based drugs in smart and personalized medicine, providing a more efficient and safer therapeutic strategy. PMID:23194304

  3. A logical molecular circuit for programmable and autonomous regulation of protein activity using DNA aptamer-protein interactions

    PubMed Central

    Han, Da; Zhu, Zhi; Wu, Cuichen; Peng, Lu; Zhou, Leiji; Gulbakan, Basri; Zhu, Guizhi; Williams, Kathryn R.; Tan, Weihong

    2013-01-01

    Researchers increasingly envision an important role for artificial biochemical circuits in biological engineering, much like electrical circuits in electrical engineering. Similar to electrical circuits, which control electromechanical devices, biochemical circuits could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expressions in vivo.1 As a consequence of their relative robustness and potential applicability for controlling a wide range of in vitro chemistries, synthetic cell-free biochemical circuits promise to be useful in manipulating the functions of biological molecules. Here we describe the first logical circuit based on DNA-protein interactions with accurate threshold control, enabling autonomous, self-sustained and programmable manipulation of protein activity in vitro. Similar circuits made previously were based primarily on DNA hybridization and strand displacement reactions. This new design uses the diverse nucleic acid interactions with proteins. The circuit can precisely sense the local enzymatic environment, such as the concentration of thrombin, and when it is excessively high, a coagulation inhibitor is automatically released by a concentration-adjusted circuit module. To demonstrate the programmable and autonomous modulation, a molecular circuit with different threshold concentrations of thrombin was tested as a proof of principle. In the future, owing to tunable regulation, design modularity and target specificity, this prototype could lead to the development of novel DNA biochemical circuits to control the delivery of aptamer-based drugs in smart and personalized medicine, providing a more efficient and safer therapeutic strategy. PMID:23194304

  4. Specificity and non-specificity in RNA–protein interactions

    PubMed Central

    Jankowsky, Eckhard; Harris, Michael E.

    2016-01-01

    Gene expression is regulated by complex networks of interactions between RNAs and proteins. Proteins that interact with RNA have been traditionally viewed as either specific or non-specific; specific proteins interact preferentially with defined RNA sequence or structure motifs, whereas non-specific proteins interact with RNA sites devoid of such characteristics. Recent studies indicate that the binary “specific vs. non-specific” classification is insufficient to describe the full spectrum of RNA–protein interactions. Here, we review new methods that enable quantitative measurements of protein binding to large numbers of RNA variants, and the concepts aimed as describing resulting binding spectra: affinity distributions, comprehensive binding models and free energy landscapes. We discuss how these new methodologies and associated concepts enable work towards inclusive, quantitative models for specific and non-specific RNA–protein interactions. PMID:26285679

  5. Methods for the analysis of protein-chromatin interactions.

    PubMed

    Brickwood, Sarah J; Myers, Fiona A; Chandler, Simon P

    2002-01-01

    The analysis of protein interactions with chromatin is vital for the understanding of DNA sequence recognition in vivo. Chromatin binding requires the interaction of proteins with DNA lying on the macromolecular protein surface of nucleosomes, a situation that can alter factor binding characteristics substantially when compared with naked DNA. It is therefore important to study these protein-DNA interactions in the context of a chromatin substrate, the more physiologically relevant binding situation. In this article we review techniques used in the investigation of protein interactions with defined nucleosomal templates. PMID:11876294

  6. The Use of Interactive Raster Graphics in the Display and Manipulation of Multidimensional Data

    NASA Technical Reports Server (NTRS)

    Anderson, D. C.

    1981-01-01

    Techniques for the review, display, and manipulation of multidimensional data are developed and described. Multidimensional data is meant in this context to describe scalar data associated with a three dimensional geometry or otherwise too complex to be well represented by traditional graphs. Raster graphics techniques are used to display a shaded image of a three dimensional geometry. The use of color to represent scalar data associated with the geometries in shaded images is explored. Distinct hues are associated with discrete data ranges, thus emulating the traditional representation of data with isarithms, or lines of constant numerical value. Data ranges are alternatively associated with a continuous spectrum of hues to show subtler data trends. The application of raster graphics techniques to the display of bivariate functions is explored.

  7. Interaction and localization diversities of global and local hubs in human protein-protein interaction networks.

    PubMed

    Kiran, M; Nagarajaram, H A

    2016-08-16

    Hubs, the highly connected nodes in protein-protein interaction networks (PPINs), are associated with several characteristic properties and are known to perform vital roles in cells. We defined two classes of hubs, global (housekeeping) and local (tissue-specific) hubs. These two categories of hubs are distinct from each other with respect to their abundance, structure and function. However, how distinct are the spatial expression pattern and other characteristics of their interacting partners is still not known. Our investigations revealed that the partners of the local hubs compared with those of global hubs are conserved across the tissues in which they are expressed. Partners of local hubs show diverse subcellular localizations as compared with the partners of global hubs. We examined the nature of interacting domains in both categories of hubs and found that they are promiscuous in global hubs but not so in local hubs. Deletion of some of the local and global hubs has an impact on the characteristic path length of the network indicating that those hubs are inter-modular in nature. Our present study has, therefore, shed further light on the characteristic features of the local and global hubs in human PPIN. This knowledge of different topological aspects of hubs with regard to their types and subtypes is essential as it helps in better understanding of roles of hub proteins in various cellular processes under various conditions including those caused by host-pathogen interactions and therefore useful in prioritizing targets for drug design and repositioning. PMID:27400769

  8. Evolution of protein interactions: from interactomes to interfaces.

    PubMed

    Andreani, Jessica; Guerois, Raphael

    2014-07-15

    Protein-protein interactions lie at the heart of most cellular processes. Many experimental and computational studies aim to deepen our understanding of these interactions and improve our capacity to predict them. In this respect, the evolutionary perspective is most interesting, since the preservation of structure and function puts constraints on the evolution of proteins and their interactions. However, uncovering these constraints remains a challenge, and the description and detection of evolutionary signals in protein-protein interactions is currently a very active field of research. Here, we review recent works dissecting the mechanisms of protein-protein interaction evolution and exploring how to use evolutionary information to predict interactions, both at the global level of the interactome and at the detailed level of protein-protein interfaces. We first present to what extent protein-protein interactions are found to be conserved within interactomes and which properties can influence their conservation. We then discuss the evolutionary and co-evolutionary pressures applied on protein-protein interfaces. Finally, we describe how the computational prediction of interfaces can benefit from evolutionary inputs. PMID:24853495

  9. Non-photic manipulations induce expression of Fos protein in the suprachiasmatic nucleus and intergeniculate leaflet in the rat.

    PubMed

    Edelstein, K; Amir, S

    1995-09-01

    Expression of Fos protein in the suprachiasmatic nucleus (SCN) and intergeniculate leaflet (IGL) is considered a cellular correlate of light-induced phase-shift of circadian rhythms in rodents. Non-photic stimuli also induce phase shifts, but their effects on Fos expression have not been established. We examined induction of Fos protein in SCN and IGL regions, in response to cage change, intraperitoneal saline injection, and restraint stress. Fos immunoreactivity was observed in SCN and IGL regions, with greater expression observed in IGL during the light phase of the light-dark cycle. Results suggest that cells in SCN and IGL respond to several types of non-photic manipulations and that expression of Fos in these regions is not light-specific. PMID:8535846

  10. Probing calmodulin protein-protein interactions using high-content protein arrays.

    PubMed

    O'Connell, David J; Bauer, Mikael; Linse, Sara; Cahill, Dolores J

    2011-01-01

    The calcium ion (Ca(2+)) is a ubiquitous second messenger that is crucial for the regulation of a wide variety of cellular processes. The diverse transient signals transduced by Ca(2+) are mediated by intracellular -Ca(2+)-binding proteins. Calcium ions shuttle into and out of the cytosol, transported across membranes by channels, exchangers, and pumps that regulate flux across the ER, mitochondrial and plasma membranes. Calcium regulates both rapid events, such as cytoskeleton remodelling or release of vesicle contents, and slower ones, such as transcriptional changes. Moreover, sustained cytosolic calcium elevations can lead to unwanted cellular activation or apoptosis. Calmodulin represents the most significant of the Ca(2+)-binding proteins and is an essential regulator of intracellular processes in response to extracellular stimuli mediated by a rise in Ca(2+) ion concentration. To profile novel protein-protein interactions that calmodulin participates in, we probed a high-content recombinant human protein array with fluorophore-labelled calmodulin in the presence of Ca(2+). This protein array contains 37,200 redundant proteins, incorporating over 10,000 unique human proteins expressed from a human brain cDNA library. We describe the identification of a high affinity interaction between calmodulin and the single-pass transmembrane proteins STIM1 and STIM2 that localise to the ER. Translocation of STIM1 and STIM2 from the endoplasmic reticulum to the plasma membrane is a key step in store operated calcium entry in the cell. PMID:21901608