Science.gov

Sample records for interbody fusion alif

  1. [First experiences using microsurgical techniques for minimally invasive ventral interbody fusion of the lumbar spine (MINI-ALIF)].

    PubMed

    Wolf, O; Meier, U

    1999-06-01

    Minimal invasive techniques recently have become more important in spine surgery. Ventral approaches for lumbar fusion techniques are known for a long time. Their disadvantages are their size and the associated trauma. Since the early nineties two schools of minimal invasive procedures were developed. On one hand surgeons developed laparascopic methods, on the other hand traditional ventral approaches were minimized and combined with microsurgical techniques, in a way that they offer all advantages of minimal invasive procedures. This technique widely known under the acronym MINI-ALIF, which stands for MINImal invasive Antero-Lumbar Interbody Fusion, was developed for retroperitoneal approaches to the segments L2/3, L3/4, L4/5 and for the transperitoneal approach to the segment L5/S1. Its advantages include reduced technical and personnel effort, minimal traumatized tissue, low blood-loss, short operating times and reduced rates of complications. Additionally the surgeon does not need to be experienced in laparascopic methods. The operation technique is explained and discussed from the neurosurgical point of view. PMID:10432570

  2. Injection of Bupivacaine into Disc Space to Detect Painful Nonunion after Anterior Lumbar Interbody Fusion (ALIF) Surgery in Patients with Discogenic Low Back Pain

    PubMed Central

    Kimura, Seiji; Orita, Sumihisa; Inoue, Gen; Eguchi, Yawara; Takaso, Masashi; Ochiai, Nobuyasu; Kuniyoshi, Kazuki; Aoki, Yasuchika; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Kamoda, Hiroto; Suzuki, Miyako; Sakuma, Yoshihiro; Kubota, Gou; Oikawa, Yasuhiro; Inage, Kazuhide; Sainoh, Takeshi; Yamauchi, Kazuyo; Toyone, Tomoaki; Nakamura, Junichi; Kishida, Shunji; Sato, Jun; Takahashi, Kazuhisa

    2014-01-01

    Purpose Bupivacaine is commonly used for the treatment of back pain and the diagnosis of its origin. Nonunion is sometimes observed after spinal fusion surgery; however, whether the nonunion causes pain is controversial. In the current study, we aimed to detect painful nonunion by injecting bupivacaine into the disc space of patients with nonunion after anterior lumbar interbody fusion (ALIF) surgery for discogenic low back pain. Materials and Methods From 52 patients with low back pain, we selected 42 who showed disc degeneration at only one level (L4-L5 or L5-S1) on magnetic resonance imaging and were diagnosed by pain provocation on discography and pain relief by discoblock (the injection of bupivacaine). They underwent ALIF surgery. If the patients showed low back pain and nonunion 2 years after surgery, we injected bupivacaine into the nonunion disc space. Patients showing pain relief after injection of bupivacaine underwent additional posterior fixation using pedicle screws. These patients were followed up 2 years after the revision surgery. Results Of the 42 patient subjects, 7 showed nonunion. Four of them did not show low back pain; whereas 3 showed moderate or severe low back pain. These 3 patients showed pain reduction after injection of bupivacaine into their nonunion disc space and underwent additional posterior fixation. They showed bony union and pain relief 2 years after the revision surgery. Conclusion Injection of bupivacaine into the nonunion disc space after ALIF surgery for discogenic low back pain is useful for diagnosis of the origin of pain. PMID:24532522

  3. [Laparoscopic anterior lumbar interbody spinal fusion].

    PubMed

    Beglaibter, Nahum; Zamir, Oded; Milgrum, Michael; Askenazi, Eli; Grinbaum, Ronit; Floman, Yzhar; Freund, Herbert

    2003-05-01

    The technique of Laparoscopic Anterior Lumbar Interbody Spinal Fusion (ALIF) has been developed in recent years for treating patients with spondylolisthesis, symptomatic degenerative disc disease and as salvage for failed posterior spinal fusion. The authors have performed 23 laparoscopic ALIF procedures with the close cooperation of spine and laparoscopic surgeons. This collaboration resulted in the successful laparoscopic completion of 87% of our cases. Postoperative length of stay was 2 days and patients required only minimal amounts of oral pain medications. Fourteen patients (70%) achieved excellent long term pain relief while 3 patients subsequently required an additional posterior fusion. There was only one major complication of bleeding from an ileac vein. Our results, similar to the results published by others, demonstrate the feasibility and effectiveness of laparoscopic ALIF. Further proof is still necessary to determine whether this procedure carries significant advantages vis-a-vis the open anterior or retroperitoneal approach. PMID:12803051

  4. Posterior lumbar interbody fusion.

    PubMed

    DiPaola, Christian P; Molinari, Robert W

    2008-03-01

    Posterior lumbar interbody fusion (PLIF) and transforaminal lumbar interbody fusion (TLIF) create intervertebral fusion by means of a posterior approach. Both techniques are useful in managing degenerative disk disease, severe instability, spondylolisthesis, deformity, and pseudarthrosis. Successful results have been reported with allograft, various cages (for interbody support), autograft, and recombinant human bone morphogenetic protein-2. Interbody fusion techniques may facilitate reduction and enhance fusion. The rationale for PLIF and TLIF is biomechanically sound. However, clinical outcomes of different anterior and posterior spinal fusion techniques tend to be similar. PLIF has a high complication rate (dural tear, 5.4% to 10%; neurologic injury, 9% to 16%). These findings, coupled with the versatility of TLIF throughout the entire lumbar spine, may make TLIF the ideal choice for an all-posterior interbody fusion. PMID:18316711

  5. Anterior Lumbar Interbody Fusion for the Treatment of Postoperative Spondylodiscitis

    PubMed Central

    Kim, Sung Han; Kang, Moo-Sung; Chin, Dong-Kyu; Kim, Keun-Su; Cho, Yong-Eun

    2014-01-01

    Objective To analyze the clinical courses and outcomes after anterior lumbar interbody fusion (ALIF) for the treatment of postoperative spondylodiscitis. Methods A total of 13 consecutive patients with postoperative spondylodiscitis treated with ALIF at our institute from January, 1994 to August, 2013 were included (92.3% male, mean age 54.5 years old). The outcome data including inflammatory markers (leukocyte count, C-reactive protein, erythrocyte sedimentation rate), the Oswestry Disability Index (ODI), the modified Visual Analogue Scale (VAS), and bony fusion rate using spine X-ray were obtained before and 6 months after ALIF. Results All of the cases were effectively treated with combination of systemic antibiotics and ALIF with normalization of the inflammatory markers. The mean VAS for back and leg pain before ALIF was 6.8±1.1, which improved to 3.2±2.2 at 6 months after ALIF. The mean ODI score before ALIF was 70.0±14.8, which improved to 34.2±27.0 at 6 months after ALIF. Successful bony fusion rate was 84.6% (11/13) and the remaining two patients were also asymptomatic. Conclusion Our results suggest that ALIF is an effective treatment option for postoperative spondylodiscitis. PMID:25371780

  6. Current status of bone graft options for anterior interbody fusion of the cervical and lumbar spine.

    PubMed

    Chau, Anthony Minh Tien; Xu, Lileane Liang; Wong, Johnny Ho-Yin; Mobbs, Ralph Jasper

    2014-01-01

    Anterior cervical discectomy and fusion (ACDF) and anterior lumbar interbody fusion (ALIF) are common surgical procedures for degenerative disc disease of the cervical and lumbar spine. Over the years, many bone graft options have been developed and investigated aimed at complimenting or substituting autograft bone, the traditional fusion substrate. Here, we summarise the historical context, biological basis and current best evidence for these bone graft options in ACDF and ALIF. PMID:23743981

  7. Lateral Lumbar Interbody Fusion.

    PubMed

    Pawar, Abhijit; Hughes, Alexander; Girardi, Federico; Sama, Andrew; Lebl, Darren; Cammisa, Frank

    2015-12-01

    The lateral lumbar interbody fusion (LLIF) is a relatively new technique that allows the surgeon to access the intervertebral space from a direct lateral approach either anterior to or through the psoas muscle. This approach provides an alternative to anterior lumbar interbody fusion with instrumentation, posterior lumbar interbody fusion, and transforaminal lumbar interbody fusion for anterior column support. LLIF is minimally invasive, safe, better structural support from the apophyseal ring, potential for coronal plane deformity correction, and indirect decompression, which have has made this technique popular. LLIF is currently being utilized for a variety of pathologies including but not limited to adult de novo lumbar scoliosis, central and foraminal stenosis, spondylolisthesis, and adjacent segment degeneration. Although early clinical outcomes have been good, the potential for significant neurological and vascular vertebral endplate complications exists. Nevertheless, LLIF is a promising technique with the potential to more effectively treat complex adult de novo scoliosis and achieve predictable fusion while avoiding the complications of traditional anterior surgery and posterior interbody techniques. PMID:26713134

  8. Lateral Lumbar Interbody Fusion

    PubMed Central

    Hughes, Alexander; Girardi, Federico; Sama, Andrew; Lebl, Darren; Cammisa, Frank

    2015-01-01

    The lateral lumbar interbody fusion (LLIF) is a relatively new technique that allows the surgeon to access the intervertebral space from a direct lateral approach either anterior to or through the psoas muscle. This approach provides an alternative to anterior lumbar interbody fusion with instrumentation, posterior lumbar interbody fusion, and transforaminal lumbar interbody fusion for anterior column support. LLIF is minimally invasive, safe, better structural support from the apophyseal ring, potential for coronal plane deformity correction, and indirect decompression, which have has made this technique popular. LLIF is currently being utilized for a variety of pathologies including but not limited to adult de novo lumbar scoliosis, central and foraminal stenosis, spondylolisthesis, and adjacent segment degeneration. Although early clinical outcomes have been good, the potential for significant neurological and vascular vertebral endplate complications exists. Nevertheless, LLIF is a promising technique with the potential to more effectively treat complex adult de novo scoliosis and achieve predictable fusion while avoiding the complications of traditional anterior surgery and posterior interbody techniques. PMID:26713134

  9. Interbody fusion and instrumentation.

    PubMed

    Enker, P; Steffee, A D

    1994-03-01

    Fusion indications in adult degenerative disk disease of the lumbosacral spine include isolated disk resorption, primary and secondary instability, recurrent disk herniation, and pseudarthrosis. Common to these indications are variable proportions of biomechanical insufficiency of the motion segment, instability, deformity, and spinal stenosis. Apart from favorable psychosocial and work related variables, satisfactory outcome is dependent on treatment by a combination of diskectomy, decompression, and deformity correction, in addition to fusion. Isolated intertransverse or interbody fusions show variable fusion rates that are increased by concurrent instrumentation. Persistent pseudarthrosis rates and instrumentation failures have prompted circumferential fusion techniques. Posterior lumbar interbody fusion (PLIF) and segmental pedicle-based plate fixation overcome earlier problems with PLIF by allowing for wide decompression and increased exposure for disk space preparation, minimizing neural injury. Pedicle fixation restores segmental stability and minimizes graft retropulsion. Restoration of anterior column support prolongs instrumentation life, and increases fusion rates irrespective of the number of levels fused. Disk space distraction, with the use of instrumentation as a working tool, permits safer decompression of the intraforaminal zone, a common area of stenosis, and single or multilevel deformity correction to restore coronal, axial, and sagittal alignment and spinal balance. Even though the surgical technique is demanding, fusion rates up to 96% and clinical success up to 86% are achieved. PMID:8131360

  10. PEEK-Halo effect in interbody fusion.

    PubMed

    Phan, Kevin; Hogan, Jarred A; Assem, Yusuf; Mobbs, Ralph J

    2016-02-01

    Recent developments have seen poly[aryl-ether-ether-ketone] (PEEK) being increasingly used in vertebral body fusion. More novel approaches to improve PEEK have included the introduction of titanium-PEEK (Ti-PEEK) composites and coatings. This paper aims to describe a potential complication of PEEK based implants relating to poorer integration with the surrounding bone, producing a "PEEK-Halo" effect which is not seen in Ti-PEEK composite implants. We present images from two patients undergoing anterior lumbar interbody fusion (ALIF). The first patient underwent an L5/S1 ALIF using a PEEK implant whilst the second patient underwent L4/L5 ALIF using a Ti-PEEK composite implant. Evidence of osseointegration was sought using CT imaging and confirmed using histological preparations of a sheep tibia model. The PEEK-Halo effect is demonstrated by a halo effect between the PEEK implant and the bone graft on CT imaging. This phenomenon is secondary to poor osseointegration of PEEK implants. The PEEK-Halo effect was not demonstrated in the second patient who received a Ti-PEEK composite graft. Histological analysis of graft/bone interface surfaces in PEEK versus Ti-PEEK implants in a sheep model further confirmed poorer osseointegration of the PEEK implant. In conclusion, the PEEK-Halo effect is seen secondary to minimal osseointegration of PEEK at the adjacent vertebral endplate following a PEEK implant insertion. This effect is not seen with Ti-PEEK implants, and may support the role of titanium in improving the bone-implant interface of PEEK substrates. PMID:26474500

  11. Mini-Open Anterior Retroperitoneal Lumbar Interbody Fusion: Oblique Lateral Interbody Fusion for Lumbar Spinal Degeneration Disease

    PubMed Central

    Orita, Sumihisa; Yamauchi, Kazuyo; Eguchi, Yawara; Ochiai, Nobuyasu; Kishida, Shunji; Kuniyoshi, Kazuki; Aoki, Yasuchika; Nakamura, Junichi; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Kamoda, Hiroto; Suzuki, Miyako; Kubota, Gou; Sakuma, Yoshihiro; Oikawa, Yasuhiro; Inage, Kazuhide; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Shiga, Yasuhiro; Abe, Koki; Toyone, Tomoaki; Inoue, Gen; Takahashi, Kazuhisa

    2015-01-01

    Purpose Surgery for lumbar spinal degeneration disease is widely performed. While posterior decompression and fusion are popular, anterior lumbar interbody fusion (ALIF) is also used for treatment. Extreme lateral interbody fusion (XLIF) is commonly used for noninvasive ALIF; however, several complications, such as spinal nerve and psoas muscle injury, have been reported. In the current study, we examined the clinical efficacy and complications of oblique lateral interbody fusion (OLIF) for lumbar spinal degeneration disease. Materials and Methods Thirty-five patients with degenerated spondylolisthesis, discogenic pain, and kyphoscoliosis were examined. All patients underwent OLIF surgery (using a cage and bone graft from the iliac crest) with or without posterior decompression, without real-time electromyography monitoring. Posterior screws were used in all patients. Visual analog scale (VAS) score and Oswestry Disability Index (ODI) were evaluated before and 6 months after surgery. Surgical complications were also evaluated. Results Pain scores significantly improved after surgery, compared to those before surgery (p<0.05). There was no patient who underwent revision surgery. There was no spinal nerve, major vessel, peritoneal, or urinary injury. Few patients showed symptoms from psoas invasion. Conclusion OLIF surgery produced good surgical results without any major complication. PMID:26069130

  12. Radiographic Comparison of Lateral Lumbar Interbody Fusion Versus Traditional Fusion Approaches: Analysis of Sagittal Contour Change

    PubMed Central

    Sembrano, Jonathan N.; Horazdovsky, Ryan D.; Santos, Edward Rainier G.; Polly, David W.

    2015-01-01

    Background Lateral approach to lumbar fusion has been gaining popularity in recent years. With increasing awareness of the significance of sagittal balance restoration in spinal surgery, it is important to investigate the potential of this relatively new approach in correcting sagittal deformities in comparison to conventional approaches. The aim of this study was to evaluate sagittal contour changes seen in lateral lumbar interbody fusion and compare them with radiographic changes in traditional approaches to lumbar fusion. Methods Lumbar fusion procedures from January 2008 to December 2009 were reviewed. Four approaches were compared: anterior lumbar interbody fusion (ALIF), lateral lumbar interbody fusion (LLIF), transforaminal interbody fusion (TLIF) and posterior spinal fusion (PSF). Standing pre-operative and 6-week post-operative radiographs were measured in terms of operative level, suprajacent and subjacent level, and regional lumbar lordosis (L1-S1) as well as operative level anterior (ADH) and posterior disc heights (PDH). T-test was used to analyze differences between and within different approaches (α=0.05). Results A total of 147 patients underwent lumbar fusion at 212 levels. Mean operative level segmental lordosis change after each procedure is as follows: ALIF 3.8 ± 6.6° (p < 0.01); LLIF 3.2 ± 3.6° (p<0.01); TLIF 1.9 ± 3.9° (p<0.01); and PSF 0.7 ± 2.9° (p =0.13). Overall lumbar lordosis change after each procedure is as follows: ALIF 4.2 ± 5.8° (p < 0.01); LLIF 2.5 ± 4.1° (p<0.01); TLIF 2.1 ± 6.0 (p = 0.02); PSF -0.5 ± 6.2° (p = 0.66). There were no significant changes in the supradjcent and subjacent level lordosis in all approaches except in ALIF where a significant decrease in supradjecent level lordosis was seen. Mean ADH and PDH significantly increased for all approaches except in PSF where PDH decreased post-operatively. Conclusion LLIF has the ability to improve sagittal contour as well as other interbody approaches and is superior to posterioronly approach in disc height restoration. However, ALIF provides the greatest amount of segmental and overall lumbar lordosis correction. Level of Evidence This is a Level III study. Clinical Relevance Regional lordosis correction may be effectively achieved with LLIF. This approach is a good addition to a surgeon's armamentarium in maintenance or restoration of normal lumbar sagittal alignment. PMID:26114085

  13. Anterior Lumbar Interbody Fusion as a Salvage Technique for Pseudarthrosis following Posterior Lumbar Fusion Surgery.

    PubMed

    Mobbs, Ralph J; Phan, Kevin; Thayaparan, Ganesha K; Rao, Prashanth J

    2016-02-01

    Study Design?Retrospective analysis of prospectively collected observational data. Objective?To assess the safety and efficacy of anterior lumbar interbody fusion (ALIF) as a salvage option for lumbar pseudarthrosis following failed posterior lumbar fusion surgery. Methods?From 2009 to 2013, patient outcome data was collected prospectively over 5 years from 327 patients undergoing ALIF performed by a single surgeon (R.J.M.) with 478 levels performed. Among these, there were 20 cases of failed prior posterior fusion that subsequently underwent ALIF. Visual analog score (VAS), Oswestry Disability Index (ODI), and Short Form 12-item health survey (SF-12) were measured pre- and postoperatively. The verification of fusion was determined by utilizing a fine-cut computed tomography scan at 12-month follow-up. Results?There was a significant difference between the preoperative (7.25??0.8) and postoperative (3.1??2.1) VAS scores (p?ALIF salvage surgery: Physical Health Composite Score (32.18??5.5 versus 41.07??9.67, p?=?0.0003) and Mental Health Composite Score (36.62??12.25 versus 50.89??10.86, p?=?0.0001). Overall, 19 patients (95%) achieved successful fusion. Conclusions?Overall, our results suggest that the ALIF procedure results not only in radiographic improvements in bony fusion but in significant improvements in the patient's physical and mental experience of pain secondary to lumbar pseudarthrosis. Future multicenter registry studies and randomized controlled trials should be conducted to confirm the long-term benefit of ALIF as a salvage option for failed posterior lumbar fusion. PMID:26835197

  14. Extreme lateral interbody fusion with posterior instrumentation for spondylodiscitis.

    PubMed

    Blizzard, Daniel J; Hills, Christopher P; Isaacs, Robert E; Brown, Christopher R

    2015-11-01

    The purpose of this study was to evaluate our initial experience utilizing extreme lateral interbody fusion (XLIF; NuVasive, San Diego, CA, USA) with percutaneous posterior instrumentation to treat 11 spondylodiscitis patients between January 2011 and February 2014. Although medical management is the first line treatment for spondylodiscitis, many patients fail antibiotic therapy and bracing, or present with instability, neurologic deficits, or sepsis, requiring operative debridement and stabilization. High rates of fusion and infection clearance have been reported with anterior lumbar interbody fusion (ALIF), but this approach requires a morbid exposure, associated with non-trivial rates of vascular and peritoneal complications. XLIF is an increasingly popular interbody fusion technique which utilizes a fast and minimally invasive approach, sparing the anterior longitudinal ligament, and allowing sufficient visualization of the intervertebral discs and bodies to debride and place a large, lordotic cage. The outcome measures for this study included lumbar lordosis, sagittal balance, subsidence, fusion, pain, neurological deficit, and microbiology/laboratory evidence of infection. The mean follow-up time was 9.3 months. All patients had improvements in pain and neurological symptoms. The mean lordosis change was 11.0, from 23.1 preoperatively to 34.0 postoperatively. Fusion was confirmed with CT scans in five of six patients. At the last follow-up, all patients had normalization of inflammatory markers, no symptoms of infection, and none required repeat surgical treatment for spondylodiscitis. XLIF with percutaneous posterior instrumentation is a minimally invasive technique with reduced morbidity for lumbar spine fusion which affords adequate exposure to the vertebral bodies and discs to aggressively debride necrotic and infected tissue. This study suggests that XLIF may be a safe and effective alternative to ALIF for the treatment of spondylodiscitis. PMID:26138052

  15. Perioperative complications of threaded cylindrical lumbar interbody fusion devices: anterior versus posterior approach.

    PubMed

    Scaduto, Anthony A; Gamradt, Seth C; Yu, Warren D; Huang, Jerry; Delamarter, Rick B; Wang, Jeffrey C

    2003-12-01

    Few data are available to evaluate approach-related differences in perioperative complications with lumbar interbody fusion devices. Complications occurring in the intraoperative and immediate postoperative period were identified and categorized for 31 consecutive posterior lumbar interbody fusions (PLIFs) and 88 consecutive anterior lumbar interbody fusions (ALIFs). In this study, all lumbar interbody fusions were conducted with threaded cylindrical devices as stand-alone internal fixation devices. Multivariate analysis was used to account for potential covariates and identify factors associated with an increased complication risk. Twenty-two percent of the patients had a perioperative complication. The relative risk of having a perioperative complication was 4.75 times higher for the PLIF group. All intraoperative complications occurred in the PLIF group. The relative risk of having a major postoperative complication was 6.8 times higher in the PLIF group than the ALIF group. Anterior approached patients tended to have visceral (ileus, 6%) and vascular (deep venous thrombosis, 2%) complications. In the posterior group, complications were neurologic and dura related (pseudomeningocele, 16%; epidural hematoma, 3%) and occurred most frequently in patients that had had previous posterior lumbar surgery (31% with major complication). PMID:14657745

  16. Miniopen Oblique Lateral L5-S1 Interbody Fusion: A Report of 2 Cases

    PubMed Central

    Kanno, Keijiro; Orita, Sumihisa; Yamauchi, Kazuyo; Eguchi, Yawara; Aoki, Yasuchika; Nakamura, Junichi; Suzuki, Miyako; Kubota, Gou; Inage, Kazuhide; Sainoh, Takeshi; Sato, Jun; Abe, Koki; Kanamoto, Hiroto; Toyone, Tomoaki; Takahashi, Kazuhisa

    2014-01-01

    Extreme lateral interbody fusion (XLIF) has been widely used for minimally invasive anterior lumbar interbody fusion (ALIF), but an approach to L5-S1 is difficult because of the iliac crest. In the current study, we present 2 cases using minimally invasive oblique lateral interbody fusion (OLIF) of L5-S1. The patients showed foraminal stenosis between L5 and S1 and severe low back and leg pain. The patients were placed in a lateral decubitus position and underwent OLIF surgery (using a cage and bone graft from the iliac crest) without posterior decompression. Posterior screws were used in the patients. Pain scores significantly improved after surgery. There was no spinal nerve, major vessel, peritoneal, or urinary injury. OLIF surgery was minimally invasive and produced good surgical results without complications. PMID:25400963

  17. Anterior Lumbar Interbody Fusion as a Salvage Technique for Pseudarthrosis following Posterior Lumbar Fusion Surgery

    PubMed Central

    Mobbs, Ralph J.; Phan, Kevin; Thayaparan, Ganesha K.; Rao, Prashanth J.

    2015-01-01

    Study Design Retrospective analysis of prospectively collected observational data. Objective To assess the safety and efficacy of anterior lumbar interbody fusion (ALIF) as a salvage option for lumbar pseudarthrosis following failed posterior lumbar fusion surgery. Methods From 2009 to 2013, patient outcome data was collected prospectively over 5 years from 327 patients undergoing ALIF performed by a single surgeon (R.J.M.) with 478 levels performed. Among these, there were 20 cases of failed prior posterior fusion that subsequently underwent ALIF. Visual analog score (VAS), Oswestry Disability Index (ODI), and Short Form 12-item health survey (SF-12) were measured pre- and postoperatively. The verification of fusion was determined by utilizing a fine-cut computed tomography scan at 12-month follow-up. Results There was a significant difference between the preoperative (7.25 ± 0.8) and postoperative (3.1 ± 2.1) VAS scores (p < 0.0001). The ODI scale also demonstrated a statistically significant reduction from preoperative (56.3 ± 16.5) and postoperative (30.4 ± 19.3) scores (p < 0.0001). The SF-12 scores were significantly improved after ALIF salvage surgery: Physical Health Composite Score (32.18 ± 5.5 versus 41.07 ± 9.67, p = 0.0003) and Mental Health Composite Score (36.62 ± 12.25 versus 50.89 ± 10.86, p = 0.0001). Overall, 19 patients (95%) achieved successful fusion. Conclusions Overall, our results suggest that the ALIF procedure results not only in radiographic improvements in bony fusion but in significant improvements in the patient's physical and mental experience of pain secondary to lumbar pseudarthrosis. Future multicenter registry studies and randomized controlled trials should be conducted to confirm the long-term benefit of ALIF as a salvage option for failed posterior lumbar fusion. PMID:26835197

  18. More nerve root injuries occur with minimally invasive lumbar surgery, especially extreme lateral interbody fusion: A review

    PubMed Central

    Epstein, Nancy E.

    2016-01-01

    Background: In the lumbar spine, do more nerve root injuries occur utilizing minimally invasive surgery (MIS) techniques versus open lumbar procedures? To answer this question, we compared the frequency of nerve root injuries for multiple open versus MIS operations including diskectomy, laminectomy with/without fusion addressing degenerative disc disease, stenosis, and/or degenerative spondylolisthesis. Methods: Several of Desai et al. large Spine Patient Outcomes Research Trial studies showed the frequency for nerve root injury following an open diskectomy ranged from 0.13% to 0.25%, for open laminectomy/stenosis with/without fusion it was 0%, and for open laminectomy/stenosis/degenerative spondylolisthesis with/without fusion it was 2%. Results: Alternatively, one study compared the incidence of root injuries utilizing MIS transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) techniques; 7.8% of PLIF versus 2% of TLIF patients sustained root injuries. Furthermore, even higher frequencies of radiculitis and nerve root injuries occurred during anterior lumbar interbody fusions (ALIFs) versus extreme lateral interbody fusions (XLIFs). These high frequencies were far from acceptable; 15.8% following ALIF experienced postoperative radiculitis, while 23.8% undergoing XLIF sustained root/plexus deficits. Conclusions: This review indicates that MIS (TLIF/PLIF/ALIF/XLIF) lumbar surgery resulted in a higher incidence of root injuries, radiculitis, or plexopathy versus open lumbar surgical techniques. Furthermore, even a cursory look at the XLIF data demonstrated the greater danger posed to neural tissue by this newest addition to the MIS lumbar surgical armamentariu. The latter should prompt us as spine surgeons to question why the XLIF procedure is still being offered to our patients? PMID:26904372

  19. Oblique Lumbar Interbody Fusion for Revision of Non-union Following Prior Posterior Surgery: A Case Report.

    PubMed

    Phan, Kevin; Mobbs, Ralph J

    2015-11-01

    We report the case of a 75-year-old lady who presented with a L2-3 non-union 18 months following a L2-3 and L3-4 posterior decompression and transforaminal lumbar interbody fusion. Halo of the L2 pedicle screws on imaging was consistent with a non-union at the L2-3 level. An anterior lumbar interbody fusion (ALIF) approach was originally considered. However, due to the high lumbar approach and patient habitus [body mass index (BMI) > 35], a decision was made to approach the L2-3 level using an oblique technique. This involved dissection anterior to the psoas muscle to access the L2-3 disc space. The psoas, kidney and retroperitoneum were retracted using a Synframe for the oblique trajectory. Removal of the prior trans-foraminal lumbar interbody fusion cage was performed via the oblique approach and insertion of a revised implant. The operation was completed successfully with no perioperative complications noted. Length of stay was 3 days, with the patient achieving rapid pain relief. In the present report, we report the first case using an oblique lumbar interbody fusion (OLIF) approach for revision of a prior posterior fusion non-union at the L2,3 level. The OLIF technique is feasible for revision of a non-union of upper lumbar levels, with satisfactory fusion achieved with acceptable feasibility. PMID:26791588

  20. Lateral Lumbar Interbody Fusion: Indications, Outcomes, and Complications.

    PubMed

    Kwon, Brian; Kim, David Hanwuk

    2016-02-01

    Lateral lumbar interbody fusion is a minimally invasive spinal fusion technique that uses the retroperitoneal approach to the anterior spinal column. Mechanical and technical results of the technique compare favorably with those of anterior lumbar interbody fusion in regard to large graft placement, graft volumes, and early initial stability. Lateral lumbar interbody fusion uses the transpsoas approach and traverses near the lumbar plexus. It is not, however, without its unique complications. Groin pain or numbness is well tolerated and often temporary; however, quadriceps palsy can be long-lasting and debilitating. Rarer but serious complications include vascular and visceral injury. Lateral lumbar interbody fusion has been used successfully to treat common degenerative spinal conditions such as spinal instability, stenosis, scoliosis, and degenerative disk disease. While understanding of the lumbar plexus and the technical challenges of the procedure improves, lateral lumbar interbody fusion will continue to provide safe and successful clinical outcomes with less morbidity than traditional procedures. PMID:26803545

  1. Approach-Related Complications of Anterior Lumbar Interbody Fusion: Results of a Combined Spine and Vascular Surgical Team.

    PubMed

    Mobbs, Ralph J; Phan, Kevin; Daly, Daniel; Rao, Prashanth J; Lennox, Andrew

    2016-03-01

    Study Design Retrospective analysis of prospectively collected cohort data. Objective Anterior lumbar interbody fusion (ALIF) is a commonly performed procedure for the treatment of degenerative diseases of the lumbar spine. Detailed and comprehensive descriptions of intra- and postoperative complications of ALIF are surprisingly limited in the literature. In this report, we describe our experience with a team model for ALIF and report all complications occurring in our patient series. Methods Patients were prospectively enrolled between January 2009 and January 2013 by a combined spine surgeon and vascular surgeon team. All patients underwent an open ALIF using an anterior approach to the lumbosacral spine. Results From the 227 ALIF cases, mean operative blood loss was 103 mL, ranging from 30 to 900 mL. Mean operative time was 78 minutes. The average length of stay was 5.2 days. Intraoperative vascular injury requiring primary repair with suturing occurred in 15 patients (6.6%). There were 2 cases of postoperative retroperitoneal hematoma. Three patients (1.3%) had incisional hernia requiring revision surgery; 7 (3.1%) patients had prolonged ileus (>7 days) managed conservatively. Four patients described retrograde ejaculation. Sympathetic dysfunction occurred in 15 (6.6%) patients. There were 5 (2.2%) cases of superficial wound infection treated with oral antibiotics, with no deep wound infections requiring reoperation or intravenous therapy. There were no mortalities in this series. Conclusions ALIF is a safe procedure when performed by a combined vascular surgeon and spine surgeon team with acceptably low complication rates. Our series confirms that the team approach results in short operative times and length of stay, with rapid control of intraoperative vessel injury and low overall blood loss. PMID:26933616

  2. Approach-Related Complications of Anterior Lumbar Interbody Fusion: Results of a Combined Spine and Vascular Surgical Team

    PubMed Central

    Mobbs, Ralph J.; Phan, Kevin; Daly, Daniel; Rao, Prashanth J.; Lennox, Andrew

    2015-01-01

    Study Design Retrospective analysis of prospectively collected cohort data. Objective Anterior lumbar interbody fusion (ALIF) is a commonly performed procedure for the treatment of degenerative diseases of the lumbar spine. Detailed and comprehensive descriptions of intra- and postoperative complications of ALIF are surprisingly limited in the literature. In this report, we describe our experience with a team model for ALIF and report all complications occurring in our patient series. Methods Patients were prospectively enrolled between January 2009 and January 2013 by a combined spine surgeon and vascular surgeon team. All patients underwent an open ALIF using an anterior approach to the lumbosacral spine. Results From the 227 ALIF cases, mean operative blood loss was 103 mL, ranging from 30 to 900 mL. Mean operative time was 78 minutes. The average length of stay was 5.2 days. Intraoperative vascular injury requiring primary repair with suturing occurred in 15 patients (6.6%). There were 2 cases of postoperative retroperitoneal hematoma. Three patients (1.3%) had incisional hernia requiring revision surgery; 7 (3.1%) patients had prolonged ileus (>7 days) managed conservatively. Four patients described retrograde ejaculation. Sympathetic dysfunction occurred in 15 (6.6%) patients. There were 5 (2.2%) cases of superficial wound infection treated with oral antibiotics, with no deep wound infections requiring reoperation or intravenous therapy. There were no mortalities in this series. Conclusions ALIF is a safe procedure when performed by a combined vascular surgeon and spine surgeon team with acceptably low complication rates. Our series confirms that the team approach results in short operative times and length of stay, with rapid control of intraoperative vessel injury and low overall blood loss. PMID:26933616

  3. The VariLift® Interbody Fusion System: expandable, standalone interbody fusion

    PubMed Central

    Emstad, Erik; del Monaco, Diana Cardenas; Fielding, Louis C; Block, Jon E

    2015-01-01

    Intervertebral fusion cages have been in clinical use since the 1990s. Cages offer the benefits of bone graft containment, restored intervertebral and foraminal height, and a more repeatable, stable procedure compared to interbody fusion with graft material alone. Due to concerns regarding postoperative stability, loss of lordosis, and subsidence or migration of the implant, interbody cages are commonly used with supplemental fixation such as pedicle screw systems or anterior plates. While providing additional stability, supplemental fixation techniques increase operative time, exposure, cost, and morbidity. The VariLift® Interbody Fusion System (VariLift® system) has been developed as a standalone solution to provide the benefits of intervertebral fusion cages without the requirement of supplemental fixation. The VariLift® system, FDA-cleared for standalone use in both the cervical and lumbar spine, is implanted in a minimal profile and then expanded in situ to provide segmental stability, restored lordosis, and a large graft chamber. Preclinical testing and analyses have found that the VariLift® System is durable, and reduces stresses that may contribute to subsidence and migration of other standalone interbody cages. Fifteen years of clinical development with the VariLift® system have demonstrated positive clinical outcomes, continued patient maintenance of segmental stability and lordosis, and no evidence of implant migration. The purpose of this report is to describe the VariLift® system, including implant characteristics, principles of operation, indications for use, patient selection criteria, surgical technique, postoperative care, preclinical testing, and clinical experience. The VariLift® System represents an improved surgical option for a stable interbody fusion without requiring supplemental fixation. PMID:26060414

  4. Analysis of spinal lumbar interbody fusion cage subsidence using Taguchi method, finite element analysis, and artificial neural network

    NASA Astrophysics Data System (ADS)

    Nassau, Christopher John; Litofsky, N. Scott; Lin, Yuyi

    2012-09-01

    Subsidence, when implant penetration induces failure of the vertebral body, occurs commonly after spinal reconstruction. Anterior lumbar interbody fusion (ALIF) cages may subside into the vertebral body and lead to kyphotic deformity. No previous studies have utilized an artificial neural network (ANN) for the design of a spinal interbody fusion cage. In this study, the neural network was applied after initiation from a Taguchi L 18 orthogonal design array. Three-dimensional finite element analysis (FEA) was performed to address the resistance to subsidence based on the design changes of the material and cage contact region, including design of the ridges and size of the graft area. The calculated subsidence is derived from the ANN objective function which is defined as the resulting maximum von Mises stress (VMS) on the surface of a simulated bone body after axial compressive loading. The ANN was found to have minimized the bone surface VMS, thereby optimizing the ALIF cage given the design space. Therefore, the Taguchi-FEA-ANN approach can serve as an effective procedure for designing a spinal fusion cage and improving the biomechanical properties.

  5. Clinical outcome of stand-alone ALIF compared to posterior instrumentation for degenerative disc disease: A pilot study and a literature review.

    PubMed

    Udby, Peter M; Bech-Azeddine, Rachid

    2015-06-01

    The objective of the article was to: a) present results from a case cohort pilot study comparing stand-alone ALIF and TLIF and, b) review the literature on studies comparing the clinical outcome of stand-alone ALIF with posterior instrumentation including TLIF or PLIF, in patients with disabling low back pain resulting from degenerative disc disease. ALIF surgery has previously been linked with certain high risk complications and unfavorable long term fusion results. Newer studies suggest that stand-alone ALIF can possibly be advantageous compared to other types of posterior instrumented interbody fusion for a selected group of DDD patients. The methods and material consisted of a cohort pilot study of patients, with DDD treated with stand-alone ALIF or TLIF followed by a literature review conducted through a comprehensive PubMed database search of the English literature. Studies comparing stand-alone ALIF with posterior instrumented interbody fusion were selected and reviewed. Results from the pilot study, n = 21, showed a reduced perioperative blood loss, shorter operative time and a trend towards better pain reduction and decreased use of opioid analgesics in patients undergoing stand-alone ALIF compared to posterior instrumented fusion with TLIF. The literature review included three studies, n = 630. All three studies were retrospective cohort studies. The average patient follow-up was 2-years but with heterogeneous selected outcomes. Two of three articles documented significant advantages when using stand-alone ALIF on outcomes such as ODI, VAS, surgical time, blood loss and patient satisfaction. No study found stand-alone ALIF inferior in chosen outcomes including fusion. In conclusion the pilot study and the literature review, finds similar clinical outcomes and fusion rates after stand-alone ALIF and posterior interbody fusion. Stand-alone ALIF was associated with a shorter duration of surgery, less perioperative blood loss and a faster improvement post-operatively. Therefore stand-alone ALIF is a viable and important surgical option, which could be considered first choice as surgical treatment. PMID:25855474

  6. Surgical Results of Lumbar Interbody Fusion Using Calcium Phosphate Cement

    PubMed Central

    HIRASAWA, Motohiro; MURE, Hideo; TOI, Hiroyuki; NAGAHIRO, Shinji

    2014-01-01

    Clinical and radiological outcomes of lumbar interbody fusion using artificial fusion cages filled with calcium phosphate cements (CPCs) were retrospectively reviewed. Between 2002 and 2011, 25 patients underwent lumbar interbody fusion at Tokushima University Hospital, and 22 patients were enrolled in this study. Of these, 5 patients received autologous local bone grafts and 17 received CPC. Japan Orthopedic Association (JOA) score was used for clinical outcome assessments. Lumbar radiography and computed tomography (CT) were performed at 12, 24 months and last follow-up period to assess bony fusion. The mean JOA score of all patients improved from 9.3 before surgery to 21.0 at 24 months after surgery. Fusion had occurred in 5 of 5 patients in the local bone graft group and in 16 of 17 patients in CPC group at 24 months postoperatively. No surgically related complication was occurred in both groups. CPC is a useful and safe graft material for lumbar interbody fusion. PMID:25169138

  7. Minimally invasive anterior lumbar interbody fusion for adult degenerative scoliosis with 1 or 2 dislocated levels.

    PubMed

    Flouzat-Lachaniette, Charles-Henri; Ratte, Louis; Poignard, Alexandre; Auregan, Jean-Charles; Queinnec, Steffen; Hernigou, Philippe; Allain, Jrme

    2015-12-01

    OBJECT Frequent complications of posterolateral instrumented fusion have been reported after treatment of degenerative scoliosis in elderly patients. Considering that in some cases, most of the symptomatology of adult degenerative scoliosis (ADS) is a consequence of the segmental instability at the dislocated level, the use of minimally invasive anterior lumbar interbody fusion (ALIF) to manage symptoms can be advocated to reduce surgical morbidity. The purpose of this study was to evaluate the midterm outcomes of 1- or 2-level minimally invasive ALIFs in ADS patients with 1- or 2-level dislocations. METHODS A total of 47 patients (average age 64 years; range 43-80 years) with 1- or 2-level ALIF performed for ADS (64 levels) in a single institution were included in the study. An independent spine surgeon retrospectively reviewed all the patients' medical records and radiographs to assess operative data and surgery-related complications. Clinical outcome was reported using the Oswestry Disability Index (ODI) and the visual analog scale (VAS) for lumbar and leg pain. Intraoperative data and complications were collected. Fusion and risk for adjacent-level degeneration were assessed. RESULTS The mean follow-up duration was 3 years (range 1-10 years). ODI, and back and leg pain VAS scores were significantly improved at last follow-up. A majority of patients (74%) had a statistically significant improvement in their ODI score of more than 20 points at latest follow-up and 1 had a worsening of his disability. The mean operating time was 166 minutes (range 70-355 minutes). The mean estimated blood loss was 410 ml (range 50-1700 ml). Six (5 major and 1 minor) surgical complications (12.7% of patients) and 13 (2 major and 11 minor) medical complications (27.7% of patients) occurred without death or wound infection. Fusion was achieved in 46 of 47 patients. Surgery resulted in a slight but significant decrease of the Cobb angle, and improved the pelvic parameters and lumbar lordosis, but had no effect on the global sagittal balance. At latest follow-up, 9 patients (19.1%) developed adjacent-segment disease at a mean of 2 years' delay from the index surgery; 4 were symptomatic but treated medically, and none required iterative surgery. CONCLUSIONS Single- or 2-level minimally invasive fusion through a minimally invasive anterior approach in some selected cases of ADS produced a good functional outcome with a high fusion rate. They were associated with a significantly lower rate of complications in this study than the historical control. PMID:26315959

  8. Comparison of Transforaminal Lumbar Interbody Fusion with Direct Lumbar Interbody Fusion: Clinical and Radiological Results

    PubMed Central

    Lee, Young Seok; Park, Seung Won; Chung, Chan

    2014-01-01

    Objective The use of direct lumbar interbody fusion (DLIF) has gradually increased; however, no studies have directly compared DLIF and transforaminal lumbar interbody fusion (TLIF). We compared DLIF and TLIF on the basis of clinical and radiological outcomes. Methods A retrospective review was performed on the medical records and radiographs of 98 and 81 patients who underwent TLIF and DLIF between January 2011 and December 2012. Clinical outcomes were compared with a visual analog scale (VAS) and the Oswestry disability index (ODI). The preoperative and postoperative disc heights, segmental sagittal/coronal angles, and lumbar lordosis were measured on radiographs. Fusion rates, operative time, estimated blood loss (EBL), length of hospital stay, and complications were assessed. Results DLIF was superior to TLIF regarding its ability to restore disc height, foraminal height, and coronal balance (p<0.001). As the extent of surgical level increased, DLIF displayed significant advantages over TLIF considering the operative time and EBL. However, fusion rates at 12 months post-operation were lower for DLIF (87.8%) than for TLIF (98.1%) (p=0.007). The changes of VAS and ODI between the TLIF and DLIF were not significantly different (p>0.05). Conclusion Both DLIF and TLIF are less invasive and thus good surgical options for treating degenerative lumber diseases. DLIF has higher potential in increasing neural foramina and correcting coronal balance, and involves a shorter operative time and reduced EBL, in comparison with TLIF. However, DLIF displayed a lower fusion rate than TLIF, and caused complications related to the transpsoas approach. PMID:25628805

  9. Single-level lumbar pyogenic spondylodiscitis treated with mini-open anterior debridement and fusion in combination with posterior percutaneous fixation via a modified anterior lumbar interbody fusion approach.

    PubMed

    Lin, Yang; Li, Feng; Chen, Wenjian; Zeng, Heng; Chen, Anmin; Xiong, Wei

    2015-12-01

    OBJECT This study evaluated the efficacy and safety of mini-open anterior debridement and lumbar interbody fusion in combination with posterior percutaneous fixation for single-level lumbar pyogenic spondylodiscitis. METHODS This is a retrospective study. Twenty-two patients with single-level lumbar pyogenic spondylodiscitis underwent mini-open anterior debridement and lumbar interbody fusion in combination with posterior percutaneous fixation via a modified anterior lumbar interbody fusion (ALIF) approach. Patients underwent follow-up for 24 to 38 months. Clinical data, etiological examinations, operative time, intraoperative blood loss, American Spinal Injury Association (ASIA) grade, Japanese Orthopaedic Association (JOA) lumbar function score, visual analog scale (VAS) score, Oswestry Disability Index (ODI), postoperative complications, and the bony fusion rate were recorded. RESULTS The mean operative time was 181.1 22.6 minutes (range 155-240 minutes). The mean intraoperative blood loss was 173.2 70.1 ml (range 100-400 ml). Infection was found in lumbar vertebrae L2-3, L3-4, and L4-5 in 2, 6, and 14 patients, respectively. Bacterial cultures were positive in 15 patients, including 4 with Staphylococcus aureus, 6 with Staphylococcus epidermidis, 4 with Streptococcus, and 1 with Escherichia coli. Postoperative complications included urinary retention, constipation, and numbness in the thigh in 5, 3, and 2 patients, respectively. Compared with before surgery, the VAS scores and ODI were significantly lower at the final follow-up, the JOA scores were significantly higher, and the ASIA grades had improved. All patients achieved good intervertebral bony fusion. CONCLUSIONS Mini-open anterior debridement and lumbar interbody fusion in combination with posterior percutaneous fixation via a modified ALIF approach results in little surgical trauma and intraoperative blood loss, acceptable postoperative complications, and is effective and safe for the treatment of single-level lumbar pyogenic spondylodiscitis. This approach could be an alternative to the conventional open surgery. PMID:26340382

  10. Use of an advanced formulation of beta-tricalcium phosphate as a bone extender in interbody lumbar fusion.

    PubMed

    Linovitz, Raymond J; Peppers, Timothy A

    2002-05-01

    Despite numerous advances in the development of bone graft substitutes over the past 20 years, iliac crest autograft remains the gold standard for lumbar spinal fusion. However, donor site morbidity associated with the harvesting of iliac crest autograft remains problematic. Acute and chronic pain, prolonged operative time, bleeding, infection, deformity, and nerve and vascular injury still produce significant postoperative morbidity, even in the presence of careful surgical technique. Although allograft circumvents donor site morbidity, the growing number of spinal fusions performed in the United States and worldwide is creating a shortage of cadaver bone acceptable for use. Additionally, the extensive processing and storage of allograft is expensive. Synthetic materials, such as beta-tricalcium phosphate (beta-TCP), have been developed as alternatives to both autograft and allograft. A novel formulation of ultraporous beta-TCP (Vitoss, Orthovita, Malvern, Pa) offers interconnected microporosity, providing it with good wicking and hydrophilic properties. These properties allow the migration of nutrients, growth factors, and osteogenic cells into the ultraporous beta-TCP scaffold, thereby promoting new bone growth and concurrent scaffold resorption. This study presents a retrospective review of 7 patients who underwent anterior (ALIF) or posterior (PLIF) interbody fusion at 12 levels with a 3- to 6-month follow-up. At the patients' last radiographic examination, all 12 levels were solidly fused with interbody grafting material consisting only of allograft plus a combination of ultraporous beta-TCP and venous blood as an extender. Additionally, all 7 patients had segmental pedicle-screw fixation. PMID:12038846

  11. Biomechanical Characteristics of an Integrated Lumbar Interbody Fusion Device

    PubMed Central

    Voronov, Leonard I.; Vastardis, Georgios; Zelenakova, Julia; Carandang, Gerard; Havey, Robert M.; Waldorff, Erik I.; Zindrick, Michael R.

    2014-01-01

    Introduction We hypothesized that an Integrated Lumbar Interbody Fusion Device (PILLAR SA, Orthofix, Lewisville, TX) will function biomechanically similar to a traditional anterior interbody spacer (PILLAR AL, Orthofix, Lewisville, TX) plus posterior instrumentation (FIREBIRD, Orthofix, Lewisville, TX). Purpose of this study was to determine if an Integrated Interbody Fusion Device (PILLAR SA) can stabilize single motion segments as well as an anterior interbody spacer (PILLAR AL) + pedicle screw construct (FIREBIRD). Methods Eight cadaveric lumbar spines (age: 43.94.3 years) were used. Each specimen's range of motion was tested in flexion-extension (FE), lateral bending (LB), and axial rotation (AR) under intact condition, after L4-L5 PILLAR SA with intervertebral screws and after L4-L5 360 fusion (PILLAR AL + Pedicle Screws and rods (FIREBIRD). Each specimen was tested in flexion (8Nm) and extension (6Nm) without preload (0 N) and under 400N of preload, in lateral bending (6 Nm) and axial rotation (5 Nm) without preload. Results Integrated fusion using the PILLAR SA device demonstrated statistically significant reductions in range of motion of the L4-L5 motion segment as compared to the intact condition for each test direction. PILLAR SA reduced ROM from 8.91.9 to 2.91.1 in FE with 400N follower preload (67.4%), 8.01.7 to 2.51.1 in LB, and 2.21.2 to 0.70.3 in AR. A comparison between the PILLAR SA integrated fusion device versus 360 fusion construct with spacer and bilateral pedicle screws was statistically significant in FE and LB. The 360 fusion yielded motion of 1.00.5 in FE, 1.00.8 in LB (p0.05). Conclusions The PILLAR SA resulted in motions of less than 3 in all modes of motion and was not as motion restricting as the traditional 360 using bilateral pedicle screws. The residual segmental motions compare very favorably with published biomechanical studies of other interbody integrated fusion devices. PMID:25694931

  12. Large volume inside the cage leading incomplete interbody bone fusion and residual back pain after posterior lumbar interbody fusion.

    PubMed

    Takeuchi, Mikinobu; Kamiya, Mitsuhiro; Wakao, Norimitsu; Hirasawa, Atsuhiko; Kawanami, Katsuhisa; Osuka, Koji; Takayasu, Masakazu

    2015-07-01

    The purpose of this study is to compare intervertebral bone fusion and clinical outcomes in L4-5 posterior lumbar interbody fusion (PLIF) using the same posterior instrumentation with four combinations of one of three types of interbody cage with one of two bone grafts, iliac and local or only local. In 67 patients who underwent L4-5 PLIF, 19 patients had the Brantigan cage and iliac and local bone graft, 18 with the TELAMON C cage and iliac and local bone graft, 16 with the TELAMON C cage and local bone graft (TL), and 14 with the OIC PEEK cage and local bone graft. Clinical assessments were based on Japanese Orthopaedic Association (JOA) scores and on the visual analogue scale (VAS). The bone fusion assessments were based on radiography and CT scans according to the Brantigan, Steffee, and Fraser criteria. More than 2 years after surgery, these assessments were made. In the results, the fusion outcome for the group receiving TL was significantly less than those for the other three groups. In TL, multivariate logistic regression analysis showed that the inside volume of the cage of ?2.0 mL was the only significant factor for incomplete fusion. Moreover, the VAS (low back pain) score was significantly higher for TL than for the other three groups. In conclusions, we believe that the large volume inside the cage (?2.0 mL) with local bone graft may lead incomplete interbody bone fusion and residual postsurgical low back pain after PLIF. PMID:25666390

  13. Operative treatment of isthmic spondylolisthesis with posterior stabilization and ALIF. Cages versus autogenous bone grafts.

    PubMed

    Pankowski, Rafal; Smoczynski, Andrzej; Roclawski, Marek; Ceynowa, Marcin; Kloc, Wojciech; Wasilewski, Wojciech; Jende, Piotr; Liczbik, Wieslaw; Beldzinski, Piotr; Libionka, Witold; Pierzak, Olaf; Adamski, Stanislaw; Niedbala, Miroslaw

    2012-01-01

    In the following study the use of cages and autogenous bone grafts were compared in the operative treatment of isthmic spondylolisthesis with the posterior stabilization and Anterior Lumbosacral Interbody Fusion (ALIF). 55 patients were divided into two groups. Autogenous bone grafts were used in the first group (34 patients) and titanium interbody implants (cages) in the second group (21 patients). The mean follow up period in the first group was 8.6 years and 3.4 years in the second group. The radiological outcome was based upon the evaluation of the degree of spondylolisthesis, the angle of the lumbar lordosis, the height of the interbody space and intervertebral foramen and the evaluation of the spinal fusion. The objective clinical outcome assessment was based on Oswestry Disability Index. Subjective clinical evaluation was performed with the use of Visual Analog Pain Score (VAS) and the two questions concerning the evaluation of success of the operative treatment and a possible agreement to the following operation if necessary. The use of autogenous bone grafts alone in ALIF was related to the significant loss of achieved segmental spine anatomy restoration. The implantation of the cages prevented the loss of slippage correction, permanently reconstructed the anatomical conditions in the area of the operated spinal segment. PMID:22744517

  14. Mini-Open Anterior Retroperitoneal Lumbar Interbody Fusion: Oblique Lateral Interbody Fusion for Degenerated Lumbar Spinal Kyphoscoliosis

    PubMed Central

    Mannoji, Chikato; Orita, Sumihisa; Yamauchi, Kazuyo; Eguchi, Yawara; Ochiai, Nobuyasu; Kishida, Shunji; Kuniyoshi, Kazuki; Aoki, Yasuchika; Nakamura, Junichi; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Kamoda, Hiroto; Suzuki, Miyako; Kubota, Gou; Sakuma, Yoshihiro; Oikawa, Yasuhiro; Inage, Kazuhide; Sainoh, Takeshi; Sato, Jun; Shiga, Yasuhiro; Abe, Koki; Fujimoto, Kazuki; Kanamoto, Hiroto; Toyone, Tomoaki; Inoue, Gen; Takahashi, Kazuhisa

    2015-01-01

    Study Design Prospective case series. Purpose To examine the clinical efficacy of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion (OLIF) for degenerated lumbar spinal kyphoscoliosis. Overview of Literature The existing surgical procedures for the treatment of spinal kyphotic deformity, including Smith-Petersen osteotomy, pedicle subtraction osteotomy, and vertebral column resection procedures, are invasive in nature. Extreme lateral interbody fusion to provide less invasive treatment of the deformity has been reported, but complications including spinal nerve and psoas muscle injury have been noted. In the current study, we examined the clinical efficacy and complications of OLIF for degenerated lumbar spinal kyphoscoliosis. Methods Twelve patients with degenerated lumbar spinal kyphoscoliosis were examined. All patients underwent OLIF surgery (using a cage and bone graft from the iliac crest) with open pedicle screws or percutaneous pedicle screws, without real-time monitoring by electromyography. Visual analog scale score and Oswestry disability index were evaluated before and 12 months after surgery, and fusion rate at OLIF cage, correction of the deformity, total blood loss, and surgical complications were also evaluated. Results Pain scores significantly improved after surgery (p<0.05). Fusion rate was found to be 90%, balance parameters also improved after surgery (p<0.05), and average total blood loss was less than 350 mL. There was no spinal nerve, major vessel, peritoneal, or urinary injury, or breakage of instrumentation. Conclusions OLIF surgery for degenerated lumbar spinal kyphoscoliosis is less invasive than other procedures and good surgical results were produced without major complications. PMID:26240716

  15. Theoretical model of a piezoelectric composite spinal fusion interbody implant.

    PubMed

    Tobaben, Nicholas E; Domann, John P; Arnold, Paul M; Friis, Elizabeth A

    2014-04-01

    Failure rates of spinal fusion are high in smokers and diabetics. The authors are investigating the development of a piezoelectric composite biomaterial and interbody device design that could generate clinically relevant levels of electrical stimulation to help improve the rate of fusion for these patients. A lumped parameter model of the piezoelectric composite implant was developed based on a model that has been utilized to successfully predict power generation for piezoceramics. Seven variables (fiber material, matrix material, fiber volume fraction, fiber aspect ratio, implant cross-sectional area, implant thickness, and electrical load resistance) were parametrically analyzed to determine their effects on power generation within reasonable implant constraints. Influences of implant geometry and fiber aspect ratio were independent of material parameters. For a cyclic force of constant magnitude, implant thickness was directly and cross-sectional area inversely proportional to power generation potential. Fiber aspect ratios above 30 yielded maximum power generation potential while volume fractions above 15% showed superior performance. This investigation demonstrates the feasibility of using composite piezoelectric biomaterials in medical implants to generate therapeutic levels of direct current electrical stimulation. The piezoelectric spinal fusion interbody implant shows promise for helping increase success rates of spinal fusion. PMID:23589373

  16. Biomechanical Evaluation of a Novel Autogenous Bone Interbody Fusion Cage for Posterior Lumbar Interbody Fusion in a Cadaveric Model.

    PubMed

    Wang, Le; Huang, Hai; Zhang, Zhenshan; Zhang, Zhi; Zhang, Liang; Li, Jian

    2014-02-27

    Study Design. A human cadaveric biomechanical study of a novel, prefabricated autogenous bone interbody fusion (ABIF) cage.Objective. To evaluate the biomechanical properties of the ABIF cage in a single-level construct with and without transpedicular screw and rod fixation.Summary of Background Data. In current practice, posterior lumbar interbody fusion (PLIF) is generally carried out using synthetic interbody spacers or corticocancellous iliac crest bone graft (ICBG) in combination with posterior instrumentation. However, questions remain concerning the use of synthetic intervertebral implants as well as the morbidity ICBG harvesting. Therefore, ABIF cage has been developed to obviate some of the challenges in conventional PLIF instrumentation and to facilitate the fusion process.Methods. Eighteen adult cadaveric lumbosacral (L3-S1) specimens were tested. Test conditions included single lumbosacral segments across (1) intact, (2) decompressed, (3) intervertebral cage alone, and (4) intervertebral cage with bilateral transpedicular fixation. Range of motion (ROM), neutral zone (NZ) and axial failure load were tested for each condition.Resluts. The ICBG, PEEK cage or ABIF cage alone exhibited a significantly lower (p<0.05) ROM and NZ compared to the decompressed spine. In comparison with the intact spine, all three test conditions without supplemental fixation was able to decrease ROM and NZ to near intact levels. When stabilized with pedicle screws, the ROM was significantly less and the NZ significantly lower (p<0.05) for each group both compared to the intact spine. In axial compression testing, the failure load of PEEK cage was the highest, with no significant difference between the ICBG and the ABIF cage.Conclusion. These data suggest the novel ABIF cage can bear the physiologic intervertebral peak load, similar to ICBG. When combined with pedicle screw and rod fixation, it exhibits similar biomechanical properties as the PEEK cage plus posterior instrumentation. Based on the biomechanical properties of ABIF cage, the prospect of these cages in clinical practice is expected. PMID:24583726

  17. A Comparative Study of Lateral Lumbar Interbody Fusion and Posterior Lumbar Interbody Fusion in Degenerative Lumbar Spondylolisthesis

    PubMed Central

    Hughes, Alexander P.; Sama, Andrew A.; Girardi, Federico P.; Lebl, Darren R.; Cammisa, Frank P.

    2015-01-01

    Study Design Level 4 retrospective review. Purpose To compare the radiographic and clinical outcomes between posterior lumbar interbody fusion (PLIF) and lateral lumbar interbody fusion (LLIF) with posterior segmental spinal instrumentation (SSI) for degenerative lumbar spondylolisthesis. Overview of Literature Both PLIF and LLIF have been performed for degenerative spondylolisthesis with good results, but no study has directly compared these two techniques so far. Methods The electronic medical and radiographic records of 78 matched patients were analyzed. In one group, 39 patients underwent PLIF with SSI at 41 levels (L3-4/L4-5), while in the other group, 39 patients underwent the LLIF procedure at 48 levels (L3-4/L4-5). Radiological outcomes such as restoration of disc height and neuroforaminal height, segmental lumbar lordosis, total lumbar lordosis, incidence of endplate fracture, and subsidence were measured. Perioperative parameters were also recorded in each group. Clinical outcome in both groups was assessed by the short form-12, Oswestry disability index and visual analogue scale scores. The average follow-up period was 16.1 months in the LLIF group and 21 months in the PLIF group. Results The restoration of disc height, foraminal height, and segmental lumbar lordosis was significantly better in the LLIF group (p<0.001). The duration of the operation was similar in both groups, but the average blood loss was significantly lower in the LLIF group (p<0.001). However, clinical outcome scores were similar in both groups. Conclusions Safe, effective interbody fusion can be achieved at multiple levels with neuromonitoring by the lateral approach. LLIF is a viable treatment option in patients with new onset symptoms due to degenerative spondylolisthesis who have had previous lumbar spine surgery, and it results in improved sagittal alignment and indirect foraminal decompression. PMID:26435782

  18. Clinical comparison of Zero-profile interbody fusion device and anterior cervical plate interbody fusion in treating cervical spondylosis

    PubMed Central

    Yan, Bin; Nie, Lin

    2015-01-01

    Objective: the aim of the study was to compare the clinical effect of Zero-profile interbody fusion device (Zero-P) with anterior cervical plate interbody fusion system (PCB) in treating cervical spondylosis. Methods: a total of 98 patients with cervical spondylosis (110 segments) in February 2011 to January 2013 were included in our hospital. All participants were randomly divided into observation group and control group with 49 cases in each group. The observation group was treated with Zero-P, while the control group received PCB treatment. Comparison of the two groups in neurological function score (JOA), pain visual analogue scale (VAS), the neck disability index (NDI), quality of life score (SF-36) and cervical curvature (Cobb angle) change were recorded and analyzed before and after treatment. Results: The observation group was found with 90% excellent and good rate, which was higher than that of the control group (80%). Dysphagia rate in observational group was 16.33% (8/49), which was significantly less than that in control group (46.94%). Operation time and bleeding volume in the observation group was less than those in control group. Postoperative improvements of JOA score, VAS score, and NDI in observational group were also significantly better than that in control group (P<0.05). Conclusion: The clinical effect of Zero-P and PCB for the treatment of cervical spondylosis was quite fair, but Zero-P showed a better therapeutic effect with improvement of life quality. PMID:26550337

  19. Interobserver agreement using computed tomography to assess radiographic fusion criteria with a unique titanium interbody device.

    PubMed

    Slosar, Paul J; Kaiser, Jay; Marrero, Luis; Sacco, Damon

    2015-02-01

    The accuracy of using computed tomography (CT) to assess interbody fusion in patients with titanium implants has been questioned in the past. Radiologists have reported difficulty assessing fusion bone quality because of metal artifact and small graft windows. A new titanium interbody implant with a large footprint and a wide graft aperture has been developed. We conducted a study to determine the interobserver reliability of using CT to assess radiographic fusion variables with the new titanium interbody device. Patients underwent anterior lumbar interbody fusion with the same titanium interbody implant. Reconstructed CT images were obtained randomly at 6, 9, or 12 months. Two independent radiologists reviewed the scans. Interobserver reliability was calculated using the ? statistic. Fifty-six spinal fusion levels (33 patients) were analyzed. The radiologists agreed on 345 of the 392 fusion data points reviewed (? = .88). Agreement for solid fusion formation was 0.77. This interbody device demonstrated minimal artifact and minimal subsidence, and trabecular bone was easily identified throughout the implant in the vast majority of cases reviewed. High interobserver agreement was noted across all radiographic variables assessed. PMID:25658078

  20. Biomechanical comparison of supplemental posterior fixations for two-level anterior lumbar interbody fusion.

    PubMed

    Wang, Mei; Tang, Shu-Jie; McGrady, Linda M; Rao, Raj D

    2013-03-01

    Posterior instrumentations have been used to supplement anterior lumbar interbody fusion with cages. Biomechanical studies on single-level anterior lumbar interbody fusion show that stand-alone cages supplemented with posterior translaminar facet or transfacet screw fixation exhibit comparable stability to those supplemented with pedicle screw/rod fixation, while stability of multilevel anterior lumbar interbody fusion remains mostly unknown. The objectives of this study are to compare the stabilization of three supplemental posterior fixations to two-level anterior lumbar interbody fusion, including translaminar facet fixation, transfacet screw fixation, and pedicle screw/rod fixation. Flexibility tests were conducted on fresh-frozen calf spines with moment up to 8.5 N m in flexion, extension, lateral bending, and axial rotation. Each specimen was tested at three stages: intact, anterior lumbar interbody fusion using Polyetheretherketone (PEEK) interbody cage at L3-L4 and L4-L5, and the same anterior lumbar interbody fusion plus one of the three supplemental posterior fixations. The addition of the supplemental posterior fixation increased stiffness at the fusion levels significantly in flexion (9.9 times), extension (5.4 times), and lateral bending (4.1 times). The pedicle screw/rod and translaminar screw fixations provide approximately 40% higher stiffness than the transfacet screw in lateral bending. The pedicle screw/rod fixation also displayed a trend of superior fixation in extension. Supplemental posterior fixation significantly improved stability of two-level anterior lumbar interbody fusion when compared to the stand-alone cages. Pedicle screw/rod system is still the "gold standard" in providing supplemental stability. However, both translaminar facet screws and transfacet screws are good alternatives to provide adequate fixation. PMID:23662340

  1. Posterior lumbar interbody fusion with facet-screw fixation.

    PubMed

    Stonecipher, T; Wright, S

    1989-04-01

    The optimal surgical construct for lumbar fusion remains controversial. The posterior lumbar interbody fusion (PLIF) operation offers advantages including total nuclear disc excision, restoration of disc-space height, root decompression, limited muscle retraction and injury, and solid mechanical arthrodesis. Major disadvantages have included graft displacement, neurologic injury and nonunion. The use of posterior fixation as an adjunct to PLIF reduces the probability of these complications and increases the chances of fusion. This study examines 35 patients who underwent PLIF and facet-screw fixation. Indications for surgery included disabling low-back pain with discographic/MRI-demonstrated disc derrangement, recurrent disc herniation, and failed inter-transverse process fusions. Follow-up ranged from 6 to 18 months. There were no patients with significant neurologic injury or functional root loss. One patient developed graft displacement and failure of fixation (laminar fracture in markedly obese patient). Three patients had subcutaneous hematomas (no surgical treatment required). None of the cases required blood replacement. The authors have concluded that the addition of facet fixation/fusion to the PLIF operation substantially reduces the complication rate of the procedure. PMID:2718053

  2. Repeated migration of a fusion cage after posterior lumbar interbody fusion.

    PubMed

    Lee, Jun Gue; Lee, Sung Myung; Kim, Seok Won; Shin, Ho

    2013-03-01

    Although posterior lumbar interbody fusion (PLIF) is a widely accepted procedure, perioperative and postoperative complications are still encountered. In particular, cage migration can result in severe sequelae, and revision surgery is technically demanded. Here, we report a rare case of repeated migration of a fusion cage after PLIF. To the best of our knowledge, no report has been previously issued on repeated migration of a fusion cage after PLIF. The authors discuss the radiological and clinical findings of this unusual complication with a review of the literature. PMID:24757453

  3. Direct Lateral Lumbar Interbody Fusion: Clinical and Radiological Outcomes

    PubMed Central

    Lee, Young Seok; Kim, Young Baeg

    2014-01-01

    Objective According to the recent development of minimally invasive spinal surgery, direct lumbar interbody fusion (DLIF) was introduced as an effective option to treat lumbar degenerative diseases. However, comprehensive results of DLIF have not been reported in Korea yet. The object of this study is to summarize radiological and clinical outcomes of our DLIF experience. Methods We performed DLIF for 130 patients from May 2011 to June 2013. Among them, 90 patients, who could be followed up for more than 6 months, were analyzed retrospectively. Clinical outcomes were compared using visual analog scale (VAS) score and Oswestry Disability Index (ODI). Bilateral foramen areas, disc height, segmental coronal and sagittal angle, and regional sagittal angle were measured. Additionally, fusion rate was assessed. Results A total of 90 patients, 116 levels, were underwent DLIF. The VAS and ODI improved statistically significant after surgery. All the approaches for DLIF were done on the left side. The left and right side foramen area changed from 99.5 mm2 and 102.9 mm2 to 159.2 mm2 and 151.2 mm2 postoperatively (p<0.001). Pre- and postoperative segmental coronal and sagittal angles changed statistically significant from 4.1 and 9.9 to 1.1 and 11.1. Fusion rates of 6 and 12 months were 60.9% and 87.8%. Complications occurred in 17 patients (18.9%). However, most of the complications were resolved within 2 months. Conclusion DLIF is not only effective for indirect decompression and deformity correction but also shows satisfactory mechanical stability and fusion rate. PMID:25132930

  4. Posterior lumbar interbody fusion using rhBMP-2.

    PubMed

    Meisel, Hans Jörg; Schnöring, Mark; Hohaus, Christian; Minkus, Yvonne; Beier, Andre; Ganey, Timothy; Mansmann, Ulrich

    2008-12-01

    The use of biological technologies for the treatment of degenerative spinal diseases has undergone rapid clinical and scientific development. BMP strategies have gained wide support for an inherent potential to improve the ossification process. It has been extensively studied in combination with various techniques for spinal stabilisation from both anterior and posterior approach. We studied the fusion process after implantation of rhBMP-2 in 17 patients with degenerative lumbar spine diseases in combination with dorsal fixation with pedicle screws and poly-ether-ether-ketone (PEEK) interbody cages. We used 12 mg rhBMP-2 carried by collagen sponge, 6 mg in every cage. Patient follow up consisted of pre-operative radiographic and clinical evaluation. Similar post-operative evaluations were performed at 3 and 6 months. Clinical assessment demonstrated clear improvement in all patients despite evidence of vertebral endplate osteoclastic activity in the 3-month radiographs. The 6-month radiograph, however, confirmed evidence of fusion, and no untoward results or outcomes were noted. While previous studies have shown exclusively positive results in both fusion rates and process, our study demonstrated an intermediate morphology at 3 months during the ossification process using Induct Os in combination with peek-cages using a PLIF-technique. The transient resorption of bone surrounding the peek cage did not result in subsidence, pain or complication, and fusion was reached in all cases within a 6-month-controlled evaluation. Although there was no negative influence on clinical outcome, the potential for osteoclastic or metabolic resorption bears watching during the post-surgical follow up. PMID:18839225

  5. Sacrum fracture following L5-S1 stand-alone interbody fusion for isthmic spondylolisthesis.

    PubMed

    Phan, Kevin; Mobbs, Ralph J

    2015-11-01

    We report a 72-year-old man with a rare sacral fracture following stand-alone L5-S1 anterior lumbar interbody fusion for isthmic spondylolisthesis. The man underwent a minimally invasive management strategy using posterior percutaneous pedicle fixation and partial reduction of the deformity. We also discuss the current literature on fusion procedures for isthmic spondylolisthesis. PMID:26100158

  6. Clinical and Radiological Outcomes of Segmental Spinal Fusion in Transforaminal Lumbar Interbody Fusion with Spinous Process Tricortical Autograft

    PubMed Central

    Tangviriyapaiboon, Teera

    2014-01-01

    Study Design A retrospective study. Purpose To investigate clinical and radiological outcomes when using spinous process as a tricortical autograft for segmental spinal fusion in transforaminal lumbar interbody fusion (TLIF). Overview of Literature Interbody spinal fusion is one of the important procedures in spinal surgery. Many types of autografts are harvested at the expense of complications. Clinical and radiographic results of patients who underwent TLIF with intraoperative harvested spinous process autograft in Prasat Neurological Institue, Bangkok, Thailand, were assessed as new technical innovation. Methods Between October 2005 to July 2009, 30 cases of patients who underwent TLIF with spinous process tricortical autograft were included. Clinical evaluations were assessed by visual analog scales (VAS) and Prolo functional and economic scores at the preoperation and postoperation and at 2 years postoperation. Static and dynamic plain radiograph of lumbar spine were reviewed for achievement of fusion. Results Initial successful fusion time in lumbar interbody fusion with spinous process tricortical autograft was 4.72 months (range, 3.8-6.1 months) postoperation and 100% fusion rate was reported at 2 years. Our initial successful fusion time in lumbar interbody fusion was compared to the other types of grafts in previous literatures. Conclusions The use of intraoperative harvested spinous process tricortical autograft has overcome many disadvantages of harvesting autograft with better initial successful fusion time (4.72 months). VAS and Prolo scores showed some improvement in the outcomes between the preoperative and postoperative periods. PMID:24761199

  7. Viscoelastic Disc Arthroplasty Provides Superior Back and Leg Pain Relief in Patients with Lumbar Disc Degeneration Compared to Anterior Lumbar Interbody Fusion

    PubMed Central

    Rischke, Burkhard; Smith, Eric

    2015-01-01

    Background Lumbar disc degeneration (LDD) is one of the most frequently diagnosed spinal diseases. The symptoms these disorders cause are anticipated to increase as the population in Western countries ages. Purpose Compare back and leg pain alleviation in patients with LDD and a viscoelastic disc prosthesis documented in the SWISSspine registry versus patients with anterior lumbar interbody fusion documented in the Spine Tango registry. Study Design Prospectively collected clinical and outcome data in two independent spine registries. Outcome Measures were back and leg pain relief on 0 to 10 numerical rating scales. Materials and Methods The analysis included a single surgeon series of 48 patients with viscoelastic total disc replacement (VTDR) from the SWISSspine registry which were compared to 131 patients with anterior lumbar interbody fusion (ALIF) from the Spine Tango registry. Two linear multivariate regression models were built to assess the associations of patient characteristics with back and leg pain relief. The following covariates were included in the models: patient age and sex, disc herniation as additional diagnosis, number of treated segments, level of treated segment, treatment type (VTDR, ALIF), preoperative back and leg pain levels and follow-up interval. Results Both models showed VTDR to be associated with significantly higher back (2.76 points; 95% confidence interval (CI) 1.78 - 3.73; p < 0.001) and leg pain (2.12 points; 95% CI 1.12 to 3.13; p < 0.001) relief than ALIF. Other influential factors for higher back pain relief were female sex compared with male sex (1.03 additional points; 95% CI 0.27 to 1.78; p = 0.008), monosegmental surgery compared with bisegmental surgery (1.02 additional points; 95% CI 0.21 to 1.83; p = 0.014), and higher back pain at baseline (0.87 points additional pain relief per level of preoperative back pain; 95% CI 0.70 to 1.03; p < 0.001). Other influential factors for leg pain relief were monosegmental surgery (0.93 additional points; 95% CI 0.10 to 1.77; p = 0.029) and higher leg pain at baseline (0.83 points additional pain relief per level of preoperative leg pain; 95% CI 0.70 to 0.96). In both models the L3/4 segment showed 2.36 points (95% CI -4.27 to -0.45; p = 0.016) and 3.69 points (95% CI -5.66 to -1.71; p < 0.001) less pain relief than L5/S1. Discussion Significantly higher back and leg pain relief were observed after viscoelastic total disc replacement in comparison with anterior lumbar interbody fusion. The new less rigid materials used in the second generation total disc replacements (TDRs) may make artificial disc replacement an increasingly attractive option for patients with degenerative lumbar disc disease. Further controlled and long-term follow-up studies are required for more detailed comparisons of the outcomes of these types of disc implants. The Freedom Lumbar Disc is limited by U.S. federal law to investigational use only. PMID:26196033

  8. [The comparison of the use of cages with the use of autogenous bone grafts in the operative treatment of the isthmic spondylolisthesis by the posterior stabilisation and ALIF].

    PubMed

    Pankowski, Rafa?; Smoczy?ski, Andrzej; Jasklski, Dawid; Roc?awski, Marek; Samson, Lucjan; Piotrowski, Maciej

    2009-01-01

    In the following study the use of cages and autogenous bone grafts were comparised in the operative treatment of isthmic spondylolisthesis by the posterior stabilization and anterior lumbosacral interbody fusion. 55 patients were divided into two groups. Patients underwent ALIF with the use of autogenous bone grafts in the first group (34) and with the use of titanium interbody implants (cages) in the second group (21). The mean follow up period in the first group was 8.6 years and in the second group was 3.4 years. The objective clinical outcome assessment was based on Oswestry disability questionnaire. Subjective clinical evaluation was conducted with the use of visual analog pain score and two questions concerning the evaluation of success of the operative treatment and a possible agreement to the following operation if necessary. The radiological results were based upon the evaluation of the degree of spondylolisthesis, the angle of the lumbar lordosis, the height of the interbody space and intervertebral foramen and the evaluation of the spinal fusion. The usage of autogenous bone grafts alone in ALIF was related to the significant loss of achieved segmental spine anatomy restoration. The implantation of the cages prevented the loss of slippage correction, permanently reconstructed the anatomical conditions in the area of the operated spinal segment. PMID:19514478

  9. Complications and Morbidities of Mini-open Anterior Retroperitoneal Lumbar Interbody Fusion: Oblique Lumbar Interbody Fusion in 179 Patients

    PubMed Central

    Mac-Thiong, Jean-Marc; Hilmi, Radwan; Roussouly, Pierre

    2012-01-01

    Study Design A retrospective study including 179 patients who underwent oblique lumbar interbody fusion (OLIF) at one institution. Purpose To report the complications associated with a minimally invasive technique of a retroperitoneal anterolateral approach to the lumbar spine. Overview of Literature Different approaches to the lumbar spine have been proposed, but they are associated with an increased risk of complications and a longer operation. Methods A total of 179 patients with previous posterior instrumented fusion undergoing OLIF were included. The technique is described in terms of: the number of levels fused, operative time and blood loss. Persurgical and postsurgical complications were noted. Results Patients were age 54.1 ± 10.6 with a BMI of 24.8 ± 4.1 kg/m2. The procedure was performed in the lumbar spine at L1-L2 in 4, L2-L3 in 54, L3-L4 in 120, L4-L5 in 134, and L5-S1 in 6 patients. It was done at 1 level in 56, 2 levels in 107, and 3 levels in 16 patients. Surgery time and blood loss were, respectively, 32.5 ± 13.2 minutes and 57 ± 131 ml per level fused. There were 19 patients with a single complication and one with two complications, including two patients with postoperative radiculopathy after L3-5 OLIF. There was no abdominal weakness or herniation. Conclusions Minimally invasive OLIF can be performed easily and safely in the lumbar spine from L2 to L5, and at L1-2 for selected cases. Up to 3 levels can be addressed through a 'sliding window'. It is associated with minimal blood loss and short operations, and with decreased risk of abdominal wall weakness or herniation. PMID:22708012

  10. Acute Contralateral Radiculopathy after Unilateral Transforaminal Lumbar Interbody Fusion

    PubMed Central

    Jang, Kyoung-Min; Kim, Young-Baeg; Park, Yong-Sook; Nam, Taek-Kyun; Lee, Young-Seok

    2015-01-01

    Objective Cases of contralateral radiculopathy after a transforaminal lumbar interbody fusion with a single cage (unilateral TLIF) had been reported, but the phenomenon has not been explained satisfactorily. The purpose of this study was to determine its incidence, causes, and risk factors. Methods We did retrospective study with 546 patients who underwent a unilateral TLIF, and used CT and MRI to study the causes of contralateral radicular symptoms that appeared within a week postoperatively. Clinical and radiological results were compared by dividing the patients into the symptomatic group and asymptomatic group. Results Contralateral symptoms occurred in 32 (5.9%) of the patients underwent unilateral TLIF. The most common cause of contralateral symptoms was a contralateral foraminal stenosis in 22 (68.8%), screw malposition in 4 (12.5%), newly developed herniated nucleus pulposus in 3 (9.3%), hematoma in 1 (3.1%), and unknown origin in 2 patients (6.3%). 16 (50.0%) of the 32 patients received revision surgery. There was no difference in visual analogue scale and Oswestry disability index between the two groups at discharge. Both preoperative and postoperative contralateral foraminal areas were significantly smaller, and postoperative segmental angle was significantly greater in the symptomatic group comparing to those of the asymptomatic group (p<0.05). Conclusion The incidence rate is not likely to be small (5.9%). If unilateral TLIF is performed for cases when preoperative contralateral foraminal stenosis already exists or when a large restoration of segmental lordosis is required, the probability of developing contralateral radiculopathy is increased and caution from the surgeon is needed. PMID:26587189

  11. Comparison of posterior versus transforaminal lumbar interbody fusion using finite element analysis

    PubMed Central

    Tang, Shujie

    2015-01-01

    Objectives: To compare the influence of posterior lumbar interbody fusion (PLIF) and transforaminal lumbar interbody fusion (TLIF) on adjacent segment degeneration. Methods: The study was carried out in the Traumatology and Orthopedics Laboratory, Department of Traditional Chinese Medicine, Medical School, Jinan University, Guangzhou, China, between December 2013 and November 2014. A normal, healthy finite element model of L3-5 was developed, a PLIF and a TLIF model were modified from the normal model, and interbody fusions were performed in the L4-5 segment. An 800 N compressive loading plus 10 Nm moments simulating flexion, extension, lateral bending, and axial rotation were imposed on the L3 superior endplate. Intradiscal pressure and intersegmental rotation in L3-4 were investigated. Results: The values of intradiscal pressure and intersegmental rotation in the PLIF or TLIF model were higher than those in the normal, healthy model, but the values in the TLIF model were relatively lower than those in the PLIF model in all directions. Conclusion: Posterior lumbar interbody fusion has more adverse influence on the superior adjacent segment than TLIF. PMID:26219453

  12. Extension CT scan: its suitability for assessing fusion after posterior lumbar interbody fusion.

    PubMed

    Nakashima, Hiroaki; Yukawa, Yasutsugu; Ito, Keigo; Horie, Yumiko; Machino, Masaaki; Kanbara, Shunsuke; Morita, Daigo; Imagama, Shiro; Ishiguro, Naoki; Kato, Fumihiko

    2011-09-01

    Posterior lumbar interbody fusion (PLIF) is a popular procedure for treating lumbar canal stenosis with spinal instability, and several reports concerning fusion assessment methods exist. However, there are currently no definitive criteria for diagnosing a successful interbody fusion in the lumbar spine. We suggested evaluating fusion status using computed tomography (CT) in extension position to detect pseudoarthrosis more precisely. The purpose of this study was to evaluate its usefulness for determining bone union quality after PLIF. Eighty-one patients who underwent PLIF at 97 levels were retrospectively enrolled. The study population included 48 men and 33 women (mean age 58.9 years, range 21-85 years). Patients were followed up for more than 12 months after surgery. The mean follow-up period was 27.6 months (range 14-49 months). Fusion status was evaluated using three ways: flexion-extension radiographs, CT images in flexion and extension position. In the flexion-extension radiographs, mobility of more than 3, a remaining clear zone, or an uncertain bone connection constituted an incomplete union. For CT images, a remaining clear zone, a gas pattern, or an uncertain bone connection constituted an incomplete union. Flexion-extension radiographs demonstrated a solid fusion in 90.7% of the 97 levels at 10.7 months postoperatively. When fusion was demonstrated on flexion-extension radiographs, the rate of fusion affirmed by flexion CT and extension CT was 87.6 and 69.1% of the levels assessed, respectively. The rate of pseudoarthrosis detected on extension CT images was significantly higher than that on flexion-extension radiographs (P < 0.001) and flexion CT (P < 0.01). The rate of fusion achieved on extension CT was 85.6% at 15.1 months postoperatively. Extension CT could detect pseudoarthrosis more clearly than flexion-extension radiography and flexion CT. The CT images are influenced by body position and dilating anterior disc space in extension CT contributes to detect pseudoarthrodesis. Thus, extension CT was a useful method for assessing fusion status after PLIF. PMID:21380745

  13. Transforaminal lumbar interbody fusion in symptomatic low-grade isthmic spondylolisthesis.

    PubMed

    Ahsan, M K; Sakeb, N; Rahman, M G; Zaman, N; Karim, R; Jannat, S N

    2014-07-01

    Isthmic spondylolisthesis (IS) is the most common spondylolytic disorders and one of the most common causes of low back pain and sciatica in adolescents and adults. Although the initial management is conservative, surgery is often the ultimate solution. Interbody fusion has been found superior and replaced the gold standard postero-lateral fusion. Transforaminal Lumbar Interbody Fusion (TLIF) has been associated with fewer complications and has become the choice of surgery. This study was done to evaluate the clinical, radiological and functional outcome of TLIF in Low Grade Isthmic Spondylolisthesis (LGIS). The clinical records of 46 consecutive patients within the age range of 31 to 60 years, who had symptomatic unstable Low Grade Isthmic Spondylolisthesis (LGIS) with or without unilateral radiculopathy in Bangabandhu Sheik Mujib Medical University (BSMMU) and private settings, from April 2007 to March 2012 were reviewed with 2 year completed follow-up. Patients were evaluated for pain by Visual Analogue Score (VAS), Disability by Oswestry Disability Index (ODI), radiological fusion by Brantigan and Steffee criteria, reduction of listhesis by Taillard's method and the overall functional outcome by the Macnab's criteria. Pain (Low back and leg), disability, neurological status had highly significant (p<0.001, paired t test) improvement. Forty two (91.30%) cases achieved satisfactory radiological fusion with overall 30% reduction of slip. Satisfactory outcome was reached in 45(97.83%) cases. Transforaminal Lumbar Interbody Fusion results in significant improvement of clinical, radiological and functional debility of symptomatic LGIS in adults. PMID:25178598

  14. Treatment of Surgical Site Infection in Posterior Lumbar Interbody Fusion

    PubMed Central

    Lee, Jung Su; Chang, Byung Kwon; Lee, Jae Il

    2015-01-01

    Study Design A retrospective observational and case control study. Purpose To identify appropriate treatment options according to the types of surgical site infections (SSI) in instrumented posterior lumbar interbody fusion (PLIF). Overview of Literature There has been no agreement or consensus with regard to this matter. Methods Thirty-two consecutive SSIs were included and followed for more than one year. The elapsed time to diagnosis (ETD) according to the type of SSI was analyzed. The treatment options for each type and consequent clinical results were reviewed. The risk factors of removing the implants were analyzed. Results There were 6/32 (19%) superficial incisional, 6/32 (19%) deep incisional, and 20/32 (62%) organ/space infection cases (SII, DII, and O/SI, respectively) (p=0.002). ETD was 8.5±2.3 days in SII, 8.7±2.3 days in DII, and 164.5±131.1 days in O/SI (p=0.013). All cases of SII and DII retained implants and were treated by repeated irrigation and secondary closure. Among O/SIs, 10/20 were treated conservatively. Nine out of ten underwent posterior one stage simultaneous revision (POSSR) and in one case, the cage was removed anteriorly. Those who had ETDs longer than 3 months showed a significant risk of implant removal (p=0.008, odds ratio [OR]=40.3). The Oswestry disability index (ODI) improved from 47.3% to 33.8% in SII, from 55.0% to 32.3% in DII, and from 53.4% to 42.1% in O/SI (p=0.002). There was no difference among the three groups (p=0.106); however, there was a partial correlation between ETD and final ODI (r=0.382, p=0.034). Conclusions Latent O/SI was the most common type of SSI in PLIF. In cases of SII and DII, early aggressive wound management and secondary closure was effective and implant removal was not necessary. In some cases of O/SI, implant removal was unavoidable. However, implant removal could be averted by an earlier diagnosis. POSSR was feasible and safe. Functional outcomes were improved; however, disability increased as ETD increased. PMID:26713114

  15. Posterior lumbar interbody fusion using cages, combined with instrumented posterolateral fusion: a study of 75 cases.

    PubMed

    Periasamy, Kumar; Shah, Kalpesh; Wheelwright, Eugene F

    2008-04-01

    Posterior lumbar interbody fusion (PLIF) with cages can be combined with decompression of the spinal canal and with instrumented posterolateral fusion (IPLF) with pedicle screws, through a single posterior incision. The authors wanted to assess retrospectively the clinical and radiological outcome of PLIF + IPLF performed by the senior author. Between July 1997 and December 2003, 75 patients underwent PLIF with cages and IPLF with transpedicular instrumentation, for either degenerative disc disease, stenosis, spondylolisthesis or post-discectomy syndrome. The clinical outcome was evaluated according to the criteria of Kirkaldy-Willis. Flexion/extension radiographs and CT-scans were obtained in cases where there was any doubt about the fixation/fusion status. The mean age was 48.7 years (range: 30 to 75). The mean duration of follow-up was 29.17 months (range: 12 to 67). The clinical outcome was excellent or good in 85.3% of the patients. There were 4/75 patients (5.3%) who failed to return to their original occupation. Four posterolateral fusions were uncertain, but all anterior fusions succeeded: thus circumferential fusion was obtained in 71 out of 75 cases, or 94.6%. Three patients sustained a neurological complication, but only one was left with a partial drop foot. The results were comparable with similar studies. Therefore the authors recommend further use of PLIF + IPLF in painful lumbar degenerative spinal disease where conservative management has failed. PMID:18564483

  16. Extraforaminal lumbar interbody fusion for cage migration after screw removal: a case report.

    PubMed

    Kim, Myung Hoon; Kim, Seok Won; Kim, Sung Hoon; Kim, Hyeun Sung

    2013-06-01

    The use of titanium cages for posterior lumbar interbody fusion (PLIF) has gained popularity because it offers the advantages of anterior column support and stabilization. However, cage migration into the spinal canal may have severe or disastrous consequences. Here, the authors report an unexpected case of posterior migration of fusion cages after screw removal in a patient that underwent PLIF 12 months previously. Removal of the offending cages through revision extraforaminal lumbar interbody fusion (ELIF) with percutaneous screw fixation successfully managed this complication. As far as the authors' knowledge, this is the first case report to describe this sort of complication, and cautions that care must be taken to prevent cage migration. PMID:24757471

  17. Computational comparison of three posterior lumbar interbody fusion techniques by using porous titanium interbody cages with 50% porosity.

    PubMed

    Lee, Yung-Heng; Chung, Chi-Jen; Wang, Chih-Wei; Peng, Yao-Te; Chang, Chih-Han; Chen, Chih-Hsien; Chen, Yen-Nien; Li, Chun-Ting

    2016-04-01

    This study investigated the biomechanical response of porous cages and lumbar spine segments immediately after surgery and after bone fusion, in addition to the long-term effects of various posterior lumbar interbody fusion (PLIF) techniques, by using the finite element method. Lumbar L3-L4 models based on three PLIF techniques (a single cage at the center of the intervertebral space, a single cage half-anterior to the intervertebral space, and two cages bilateral to the intervertebral space) with and without bone ingrowth were used to determine the biomechanical response of porous cages and lumbar segments instrumented with porous titanium cages (cage porosity=50%, pore diameter=1mm). The results indicated that bone fusion enhanced the stability of the lumbar segments with porous cages without any posterior instrumentation and reduced the peak von Mises stress in the cortical bones and porous cages. Two cages placed bilateral to the intervertebral space achieved the highest structural stability in the lumbar segment and lowest von Mises stress in the cages under both bone fusion conditions. Under identical loading (2-Nm), the range of motion in the single cage at the center of the intervertebral space with bone fusion decreased by 11% (from 1.18° to 1.05°) during flexion and by 66.5% (from 4.46° to 1.5°) during extension in the single cage half-anterior to the intervertebral space with bone fusion compared with no-fusion models. Thus, two porous titanium cages with 50% porosity can achieve high stability of a lumbar segment with PLIF. If only one cage is available, placing the cage half-anterior to the intervertebral space is recommended for managing degenerated lumbar segments. PMID:26874064

  18. Creativity and ALife.

    PubMed

    Boden, Margaret A

    2015-01-01

    Three forms of creativity are exemplified in biology and studied in ALife. Combinational creativity exists as the first step in genetic algorithms. Exploratory creativity is seen in models using cellular automata or evolutionary programs. Transformational creativity can result from evolutionary programming. Even radically novel forms can do so, given input from outside the program itself. Transformational creativity appears also in reaction-diffusion models of morphogenesis. That there are limits to biological creativity is suggested by ALife work bearing on instances of biological impossibility. PMID:26280076

  19. Perioperative complications of minimally invasive surgery (MIS): comparison of MIS and open interbody fusion techniques.

    PubMed

    Bagan, Bradley; Patel, Nimesh; Deutsch, Harel; Harrop, James; Sharan, Ashwini; Vaccaro, Alexander R; Ratliff, John K

    2008-01-01

    The risk of perioperative complications while adopting minimally invasive spine surgery techniques may slow the acceptance of this technology. We assess the perioperative complication rate with minimally invasive single- and two-level interbody fusions and compare this incidence with a contemporaneous cohort of open single- and two-level open interbody fusions, with all procedures completed by a single surgeon in a single practice group. We compiled all open and MIS interbody fusion cases completed during the study period. Sofamor-Danek X-Tube and Stryker Luxor minimally invasive systems were used on all patients. Medical records were reviewed to assess any adverse events occurring in the perioperative period. Care was taken to include all medical and surgical adverse events and complications occurring within 30 days of surgery. Over the study period, 28 minimally invasive lumbar fusions were identified: 24 single- and 4 two-level cases. Both TLIF and PLIF techniques were used. This cohort was compared with a group of 19 single- and two-level open interbody fusion cases completed over the same period. The complication rate for the MIS cohort was 18%, with 7 complications occurring in 5 patients. In the open group, 8 complications occurred in 7 patients, an incidence of 37%. A standard distribution of complications occurred, and the difference between the two groups was not statistically significant. Limiting our analysis to severe complications yielded rates of 7% and 21% for the two groups, also not significantly divergent. Perioperative complications are not more common in well-selected MIS patients. Allowing for proper patient selection, MIS techniques have a favorable complication profile. PMID:18802914

  20. Vertebral osteolytic defect due to cellulose particles derived from gauze fibers after posterior lumbar interbody fusion.

    PubMed

    Takenaka, Shota; Mukai, Yoshihiro; Hosono, Noboru; Tateishi, Kosuke; Fuji, Takeshi

    2014-12-01

    Vertebral cystic lesions may be observed in pseudarthroses after lumbar fusion surgery. The authors report a rare case of pseudarthrosis after spinal fusion, accompanied by an expanding vertebral osteolytic defect induced by cellulose particles. A male patient originally presented at the age of 69 years with leg and low-back pain caused by a lumbar isthmic spondylolisthesis. He underwent a posterior lumbar interbody fusion, and his neurological symptoms and pain resolved within a year but recurred 14 months after surgery. Radiological imaging demonstrated a cystic lesion on the inferior endplate of L-5 and the superior endplate of S-1, which rapidly enlarged into a vertebral osteolytic defect. The patient underwent revision surgery, and his low-back pain resolved. A histopathological examination demonstrated foreign body-type multinucleated giant cells, containing 10-?m particles, in the sample collected just below the defect. Micro-Fourier transform infrared spectroscopy revealed that the foreign particles were cellulosic, presumably originating from cotton gauze fibers that had contaminated the interbody cages used during the initial surgery. Vertebral osteolytic defects that occur after interbody fusion are generally presumed to be the result of infection. This case suggests that some instances of vertebral osteolytic defects may be aseptically induced by foreign particles. Hence, this possibility should be carefully considered in such cases, to help prevent contamination of the morselized bone used for autologous grafts by foreign materials, such as gauze fibers. PMID:25259557

  1. A novel minimally invasive technique for lumbar decompression, realignment, and navigated interbody fusion.

    PubMed

    Reinshagen, Clemens; Ruess, Daniel; Walcott, Brian P; Molcanyi, Marek; Goldbrunner, Roland; Rieger, Bernhard

    2015-09-01

    We present a novel, minimally invasive, navigation-guided approach for surgical treatment of degenerative spondylolisthesis (DS) that is a hybrid of the two most common techniques, posterior interbody fusion (PLIF) and transforaminal interbody fusion (TLIF). DS is an acquired condition with intersegmental instability of one or more lumbar motion segments. Seven patients with single level lumbar DS underwent lumbar arthrodesis utilizing the hybrid technique (HLIF) in our center. Using a standard unilateral midline approach a decompression and partial facetectomy on one side was performed, allowing for implantation of a specially designed interbody cage. Pedicle screws were placed using neuronavigation in a vertical vector on the side of the partial facetectomy and dorsolaterally (percutaneous) on the contralateral side. Patient and operative data, numeric rating scale (NRS) pain scores, core outcome measures index (COMI) and Oswestry disability index (ODI) were recorded preoperatively as well as 6 weeks, 3 months, 6 months and 1 year after surgery. All patients completed the 1 year follow-up. There was significant postoperative improvement of NRS, COMI and ODI scores at all postoperative follow-up time points (p<0.05). The radiological assessments of realignment showed a reduction of listhesis from an average of 21.04% (standard deviation [SD] 5.1) preoperatively to 9.14% (SD 4.0) postoperatively (p<0.001). The average blood loss was 492 ml. Post-procedure CT scans demonstrated correct implant placement in all but one patient who required a revision of a single pedicle screw. HLIF allows thorough decompression as well as realignment and interbody fusion for patients with DS and may help reduce tissue trauma in comparison to other minimally invasive lumbar fusion techniques. PMID:26100155

  2. Intraoperative antepulsion of a posterior lumbar interbody fusion cage: three case reports

    PubMed Central

    Ceylan, Davut; Yaldiz, Can; Asil, Kiyasettin; Kaçira, Tibet; Tatarli, Necati; Can, Aytaç

    2015-01-01

    Spinal fusion surgery techniques develop together with technologic advancements. New complications are seen as the result of new techniques and these may be very severe due to spinal cord and vascular structures in the lumbar region. The posterior lumbar interbody fusion cage (PLIFC) was shown to enhance spinal fusion and to prevent pseudoarthrosis due to its basic dynamic characteristics. PLIFC migrations are usually observed during the postoperative period, just after the mobilization of the patient and usually toward spinal canal. Migration to the retroperitoneal region is a extremely rare condition in the literature. In this article we discussed three cases of PLIFC antepulsion into the retroperitoneal region during the intraoperative period. PMID:26175832

  3. Simultaneous Lateral Interbody Fusion and Posterior Percutaneous Instrumentation: Early Experience and Technical Considerations

    PubMed Central

    Drazin, Doniel; Kim, Terrence T.; Johnson, J. Patrick

    2015-01-01

    Lumbar fusion surgery involving lateral lumbar interbody graft insertion with posterior instrumentation is traditionally performed in two stages requiring repositioning. We describe a novel technique to complete the circumferential procedure simultaneously without patient repositioning. Twenty patients diagnosed with worsening back pain with/without radiculopathy who failed exhaustive conservative management were retrospectively reviewed. Ten patients with both procedures simultaneously from a single lateral approach and 10 control patients with lateral lumbar interbody fusion followed by repositioning and posterior percutaneous instrumentation were analyzed. Pars fractures, mobile grade 2 spondylolisthesis, and severe one-level degenerative disk disease were matched between the two groups. In the simultaneous group, avoiding repositioning leads to lower mean operative times: 130 minutes (versus control 190 minutes; p = 0.009) and lower intraoperative blood loss: 108 mL (versus 93 mL; NS). Nonrepositioned patients were hospitalized for an average of 4.1 days (versus 3.8 days; NS). There was one complication in the control group requiring screw revision. Lateral interbody fusion and percutaneous posterior instrumentation are both readily accomplished in a single lateral decubitus position. In select patients with adequately sized pedicles, performing simultaneous procedures decreases operative time over sequential repositioning. Patient outcomes were excellent in the simultaneous group and comparable to procedures done sequentially. PMID:26649303

  4. Posterior lumbar interbody fusion combined with instrumented postero-lateral fusion: 5-year results in 60 patients.

    PubMed

    Freeman, B J; Licina, P; Mehdian, S H

    2000-02-01

    The technique of posterior lumbar interbody fusion allows decompression of the spinal canal and interbody fusion through one posterior incision. A number of techniques exist to achieve additional posterior stability. The literature reports wide variation in outcomes for these different techniques. We assessed retrospectively the clinical and radiological outcome of posterior lumbar interbody fusion (PLIF) supplemented with an instrumented postero-lateral fusion (IPLF) using a pedicle screw system. Between July 1987 and April 1997, 60 patients underwent PLIF + IPLF. Clinical outcome was measured with physical examination in the outpatient setting and a patient questionnaire (patient satisfaction, analgesic use, return to work, Oswestry Disability Index). Radiological outcome was assessed with serial radiographs. If doubt existed regarding fixation, flexion/extension radiographs and plain tomograms were performed. The mean age was 44 years (range 19-69 years). The average follow-up was 5.3 years (range 1-10 years). Eighty percent of patients returned sufficiently completed questionnaires; 83% of these patients rated their outcome as good or excellent. Fifty percent of patients were able to return to full-time employment. All patients showed radiographic evidence of stable fixation. Four patients sustained a neurological complication, three of which resolved completely. The combination of PLIF with IPLF demonstrates clinical success, a stable circumferential fixation and a low complication rate. PMID:10766076

  5. Instrumented transforaminal lumbar interbody fusion with bioabsorbable polymer implants and iliac crest autograft.

    PubMed

    Coe, Jeffrey D

    2004-03-15

    Object. The purpose of this study was to evaluate the clinical and radiographic results in 31 patients from one center who underwent instrumented transforaminal lumbar interbody fusion (TLIF) for primarily degenerative indications. Methods. Bioabsorbable polymer spacers manufactured with a copolymer of 70:30 poly(L-lactide-co-D,L-lactide) and filled with iliac crest autograft bone were used for the TLIF procedure. In this paper the details of this procedure, intermediate (1- to 2-year) clinical and radiographic outcomes, and the basic science and rationale for the use of bioabsorbable polymers are discussed. At a mean of 18.4 months of follow up, 30 patients (96.8%) were judged to have attained solid fusions and 25 patients (81%) had good to excellent results. Three patients (9.7%) experienced complications, none of which were directly or indirectly attributable to the use of the bioabsorbable polymer implant. Only one implant in one patient (3.2%) demonstrated mechanical failure on insertion, and that patient experienced no clinical sequelae. Conclusions. This is the first clinical series to be published in which the mean follow-up duration equals or exceeds the biological life expectancy of this material (12-18 months). Both the clinical and radiographic results of this study support the use of interbody devices manufactured from biodegradable polymers for structural interbody support in the TLIF procedure. PMID:15198499

  6. Transforaminal lumbar interbody fusion using unilateral pedicle screws and a translaminar screw.

    PubMed

    Sethi, Anil; Lee, Sandra; Vaidya, Rahul

    2009-03-01

    Lumbar spinal fusion is advancing with minimally invasive techniques, bone graft alternatives, and new implants. This has resulted in significant reductions of operative time, duration of hospitalization, and higher success in fusion rates. However, costs have increased as many new technologies are expensive. This study was carried out to investigate the clinical outcomes and fusion rates of a low implant load construct of unilateral pedicle screws and a translaminar screw in transforaminal lumbar interbody fusion (TLIF) which reduced the cost of the posterior implants by almost 50%. Nineteen consecutive patients who underwent single level TLIF with this construct were included in the study. Sixteen patients had a TLIF allograft interbody spacer placed, while in three a polyetheretherketone (PEEK) cage was used. Follow-up ranged from 15 to 54 months with a mean of 32 months. A clinical and radiographic evaluation was carried out preoperatively and at multiple time points following surgery. An overall improvement in Oswestry scores and visual analogue scales for leg and back pain (VAS) was observed. Three patients underwent revision surgery due to recurrence of back pain. All patients showed radiographic evidence of fusion from 9 to 26 months (mean 19) following surgery. This study suggests that unilateral pedicle screws and a contralateral translaminar screw are a cheaper and viable option for single level lumbar fusion. PMID:19015896

  7. [The results of decompression and anterior lumbar interbody fusion with the use of interbody cages for the treatment of degenerative lumbar spondylolisthesis].

    PubMed

    Luczkiewicz, Piotr; Smoczy?ski, Andrzej; Smoczy?ski, Maciej; Pankowski, Rafa?; Piotrowski, Maciej

    2006-01-01

    In this paper we reviewed 28 patients who had been treated surgically for lumbar degenerative spondylolisthesis. They were operated between 1998-2003. The decompression and anterior lumbar interbody fusion with the use of interbody cages, was performed in all of them. The outcome was assessed using rating system of Prolo and VAPS. The disc height, degree of slippage and segmental lordosis were measured, on the radiographs, before surgery, after 6 weeks and at the time of final follow-up. In all cases spinal fusion was achieved. The disc height, degree of slipage and segmental lordosis were improved and these results were stable in time. A significant decrease in radicular pain and low back pain were seen but the relation between clinical and radiological autcomes was not observed. PMID:17131721

  8. Complete cage migration/subsidence into the adjacent vertebral body after posterior lumbar interbody fusion.

    PubMed

    Corniola, Marco V; Jägersberg, Max; Stienen, Martin N; Gautschi, Oliver P

    2015-03-01

    A variety of implant-related short and long-term complications after lumbar fusion surgery are recognized. Mid to long-term complications due to cage migration and/or cage subsidence are less frequently reported. Here, we report a patient with a complete cage migration into the superior adjacent vertebral body almost 20 years after the initial posterior lumbar interbody fusion procedure. In this patient, the cage migration/subsidence was clinically silent, but a selective decompression for adjacent segment degenerative lumbar spinal stenosis was performed. We discuss the risk factors for cage migration/subsidence in view of the current literature. PMID:25455736

  9. Mini posterior lumbar interbody fusion with presacral screw stabilization in early lumbosacral instability

    PubMed Central

    Shetty, Arjun; Kini, Abhishek R; Chacko, A; Sunil, Upadhyaya; Vinod, K; Geover, Lobo

    2015-01-01

    Background: Surgical options for the management of early lumbosacral spondylolisthesis and degenerative disc disease with instability vary from open lumbar interbody fusion with transpedicular fixation to a variety of minimal access fusion and fixation procedures. We have used a combination of micro discectomy and axial lumbosacral interbody fusion with presacral screw fixation to treat symptomatic patients with lumbosacral spondylolisthesis or lumbosacral degenerative disc disease, which needed surgical stabilization. This study describes the above technique along with analysis of results. Materials and Methods: Twelve patients with symptomatic lumbosacral (L5-S1) instability and degenerative lumbosacral disc disease were treated by micro discectomy and interbody fusion using presacral screw stabilization. Patients with history of bowel, bladder dysfunction and local anorectal diseases were excluded from this study. Postoperatively all patients were evaluated neurologically and radiologically for screw position, fusion and stability. Oswestry disability index was used to evaluate results. Results: We had nine females and three males with a mean age of 47.33 years (range 26–68 years). Postoperative assessment revealed three patients to have screw placed in anterior 1/4th of the 1st sacral body, in rest nine the screws were placed in the posterior 3/4th of sacral body. At 2 years followup, eight patients (67%) showed evidence of bridging trabeculae at bone graft site and none of the patients showed evidence of instability or implant failure. Conclusion: Presacral screw fixation along with micro discectomy is an effective procedure to manage early symptomatic lumbosacral spondylolisthesis and degenerative disc disease with instability. PMID:26015626

  10. Does Transforaminal Lumbar Interbody Fusion Have Advantages over Posterolateral Lumbar Fusion for Degenerative Spondylolisthesis?

    PubMed Central

    Fujimori, Takahito; Le, Hai; Schairer, William W.; Berven, Sigurd H.; Qamirani, Erion; Hu, Serena S.

    2014-01-01

    Study Design Retrospective cohort study. Objective To compare the clinical and radiographic outcomes of transforaminal lumbar interbody fusion (TLIF) and posterolateral lumbar fusion (PLF) in the treatment of degenerative spondylolisthesis. Methods This study compared 24 patients undergoing TLIF and 32 patients undergoing PLF with instrumentation. The clinical outcomes were assessed by visual analog scale (VAS) for low back pain and leg pain, physical component summary (PCS) of the 12-item Short-Form Health Survey, and the Oswestry Disability Index (ODI). Radiographic parameters included slippage of the vertebra, local disk lordosis, the anterior and posterior disk height, lumbar lordosis, and pelvic parameters. Results The improvement of VAS of leg pain was significantly greater in TLIF than in PLF unilaterally (3.4 versus 1.0; p = 0.02). The improvement of VAS of low back pain was significantly greater in TLIF than in PLF (3.8 versus 2.2; p = 0.02). However, there was no significant difference in improvement of ODI or PCS between TLIF and PLF. Reduction of slippage and the postoperative disk height was significantly greater in TLIF than in PLF. There was no significant difference in local disk lordosis, lumbar lordosis, or pelvic parameters. The fusion rate was 96% in TLIF and 84% in PLF (p = 0.3). There was no significant difference in fusion rate, estimated blood loss, adjacent segmental degeneration, or complication rate. Conclusions TLIF was superior to PLF in reduction of slippage and restoring disk height and might provide better improvement of leg pain. However, the health-related outcomes were not significantly different between the two procedures. PMID:25844282

  11. Combined magnetic fields provide robust coverage for interbody and posterolateral lumbar spinal fusion sites.

    PubMed

    Stippick, Timothy Wade; Sheller, Michael Richard

    2016-01-01

    Electromagnetic fields generated by spinal bone growth stimulation devices have been computationally modelled to determine coverage of the lumbar spinal vertebrae. The underlying assumption of these models was that the electric field, but not the magnetic field, was therapeutically relevant. However, there are no published studies examining the therapeutic coverage of spinal fusion sites by stimulators utilizing combined magnetic fields. To assess the coverage, an anatomical model of the vertebrae and discs of the lumbar spine was developed to represent interbody and posterolateral fusion sites. Computer simulations of the induced electromagnetic fields were analysed to determine coverage of the fusion sites. For both interbody and posterolateral fusion models, combined magnetic fields provided 100% coverage of the fusion sites for all intervertebral disc spaces and for all posterior planes from L1 to L5, respectively. Within the vertebral column, the magnitude of the electric field reached a maximum value of 3.6נ10(-4)V/m, which is several orders of magnitude less than any reported study demonstrating a biological effect. Given its clinical efficacy,a bone growth stimulator utilizing combined magnetic fields must rely on the action of its magnetic field rather than its electric field for a therapeutic effect. PMID:26044553

  12. A randomized double-blind prospective study of the efficacy of pulsed electromagnetic fields for interbody lumbar fusions

    SciTech Connect

    Mooney, V. )

    1990-07-01

    A randomized double-blind prospective study of pulsed electromagnetic fields for lumbar interbody fusions was performed on 195 subjects. There were 98 subjects in the active group and 97 subjects in the placebo group. A brace containing equipment to induce an electromagnetic field was applied to patients undergoing interbody fusion in the active group, and a sham brace was used in the control group. In the active group there was a 92% success rate, while the control group had a 65% success rate (P greater than 0.005). The effectiveness of bone graft stimulation with the device is thus established.

  13. Non-Union Rate With Stand-Alone Lateral Lumbar Interbody Fusion

    PubMed Central

    Watkins, Robert; Watkins, Robert; Hanna, Robert

    2014-01-01

    Abstract Retrospective radiographic analysis. To determine the fusion rate of stand-alone lateral lumbar interbody fusion (LLIF). Biomechanical studies have indicated that LLIF may be more stable than anterior or transforaminal lumbar interbody fusion. Early clinical reports of stand-alone LLIF have shown success in obtaining fusion and indirectly decompressing nerve roots. A consecutive case series of stand-alone LLIF was analyzed with chart and radiographic review. Non-union was determined by symptomatology consistent with non-union and absence of bridging bone on the CT scan. Thirty-nine levels of stand alone LLIF were performed in 23 patients. Eleven patients received 1-level surgery, 7 patients received 2-level surgery, 3 patients received 3-level surgery, and 1 patient received 4-level surgery. Excluding 1 infected case, we analyzed 37 levels of stand alone LLIF in 22 patients. Non-union incidence was 7 levels in 6 patients. Non-union rate was 7/37 (19%) per level and 6/22 (27%) per patient. While our study population was relatively low, a non-union rate of 19% to 27% is concerning for modern spine surgery. Currently in our practice, we occasionally still perform stand-alone LLIF utilizing 22?mm wide grafts in low-demand levels in non-smoking and non-osteoporotic patients. However, in a majority of patients, we provide supplemental fixation: bilateral pedicle screws in most patients and unilateral pedicle screws or spinous process plates in some patients. PMID:25546670

  14. Prevalence and Risk Factors of Deep Vein Thrombosis in Patients Undergoing Lumbar Interbody Fusion Surgery

    PubMed Central

    Yang, Si-Dong; Ding, Wen-Yuan; Yang, Da-Long; Shen, Yong; Zhang, Ying-Ze; Feng, Shi-Qing; Zhao, Feng-Dong

    2015-01-01

    Abstract This cross-sectional study was designed to obtain the current prevalence of deep vein thrombosis (DVT) and analyze related risk factors in patients undergoing lumbar interbody fusion. Medical record data were collected from Department of Spinal Surgery, The Third Hospital of Hebei Medical University, between July 2014 and March 2015. Both univariate analysis and binary logistic regression analysis were performed to determine risk factors for DVT. A total of 995 patients were admitted into this study, including 484 men and 511 women, aged from 14 to 89 years old (median 50, IQR 19). The detection rate of lower limb DVT by ultrasonography was 22.4% (223/995) in patients undergoing lumbar interbody fusion. Notably, average VAS (visual analog scale) score in the first 3 days after surgery in the DVT group was more than that in the non-DVT group (Z = −21.69, P < 0.001). The logistic regression model was established as logit P = −13.257 + 0.056∗X1 − 0.243∗X8 + 2.085∗X10 + 0.001∗X12, (X1 = age; X8 = HDL; X10 = VAS; X12 = blood transfusion; x2 = 677.763, P < 0.001). In conclusion, advanced age, high postoperative VAS scores, and blood transfusion were risk factors for postoperative lower limb DVT. As well, the logistic regression model may contribute to an early evaluation postoperatively to ascertain the risk of lower limb DVT in patients undergoing lumbar interbody fusion surgery. PMID:26632909

  15. Time-sequential changes of differentially expressed miRNAs during the process of anterior lumbar interbody fusion using equine bone protein extract, rhBMP-2 and autograft

    NASA Astrophysics Data System (ADS)

    Chen, Da-Fu; Zhou, Zhi-Yu; Dai, Xue-Jun; Gao, Man-Man; Huang, Bao-Ding; Liang, Tang-Zhao; Shi, Rui; Zou, Li-Jin; Li, Hai-Sheng; Bünger, Cody; Tian, Wei; Zou, Xue-Nong

    2014-03-01

    The precise mechanism of bone regeneration in different bone graft substitutes has been well studied in recent researches. However, miRNAs regulation of the bone formation has been always mysterious. We developed the anterior lumbar interbody fusion (ALIF) model in pigs using equine bone protein extract (BPE), recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS), and autograft as bone graft substitute, respectively. The miRNA and gene expression profiles of different bone graft materials were examined using microarray technology and data analysis, including self-organizing maps, KEGG pathway and Biological process GO analyses. We then jointly analyzed miRNA and mRNA profiles of the bone fusion tissue at different time points respectively. Results showed that miRNAs, including let-7, miR-129, miR-21, miR-133, miR-140, miR-146, miR-184, and miR-224, were involved in the regulation of the immune and inflammation response, which provided suitable inflammatory microenvironment for bone formation. At late stage, several miRNAs directly regulate SMAD4, Estrogen receptor 1 and 5-hydroxytryptamine (serotonin) receptor 2C for bone formation. It can be concluded that miRNAs play important roles in balancing the inflammation and bone formation.

  16. [Anterior cervical fusion with tantalum interbody implants. Clinical and radiological results in a prospective study].

    PubMed

    Vicario, C; Lopez-Oliva, F; Snchez-Lorente, T; Zimmermann, M; Asenjo-Siguero, J J; Ladero, F; Ibarzbal, A

    2006-04-01

    Anterior cervical discectomy and interbody fusion (ACDF) is a widely accepted surgical technique in the treatment of cervical disc disease. Tantalum cages have been recently introduced in spine surgery for interbody fusion because of the advantages of their mechanical properties. We present the results of a prospective clinical and radiological study on 24 consecutive patients who underwent an ACDF with tantalum cages. Clinical evaluation was assessed preoperatively and after surgery by a questionnaire that included a Visual Analogic Scale (VAS) of neck and arm pain, the Oswestry Disability Index and the Zung Depression Scale. Results were classified by Odom's criteria. Radiological evaluation included flexion-extension X-rays, and changes in distance between spinous processes and Cobb angle were measured. Postoperatively patients were reviewed 3 and 12 months after surgery. A statistical significative improvement in all clinical data was reported. According to Odom's criteria in 75% of patients the results were considered like excellent or good. Only one case of radiological and clinical pseudoarthrosis was confirmed. No significative differences were reported 3 and 12 months after surgery. Tantalum cages are a very promising and usefull alternative among implants available for ACDF. Compatibility with MRI postoperative studies and the unnecessariness of autograft are some of their advantages. PMID:16721480

  17. Incidence of graft extrusion following minimally invasive transforaminal lumbar interbody fusion.

    PubMed

    Bakhsheshian, Joshua; Khanna, Ryan; Choy, Winward; Lawton, Cort D; Nixon, Alex T; Wong, Albert P; Koski, Tyler R; Liu, John C; Song, John K; Dahdaleh, Nader S; Smith, Zachary A; Fessler, Richard G

    2016-02-01

    Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) has been scrutinized for having a complex learning curve. Careful assessment of MI-TLIF complications and critical analyses of prevention may aid a safe adoption of this technique. The current report focuses on the incidence of interbody cage extrusions following MI-TLIF in a series of 513 patients. The authors discuss their experience with graft extrusions and provide methods to minimize this complication. This study retrospectively reviewed 513 prospectively followed patients who underwent MI-TLIF over a 10year period. The inclusion criteria consisted of all patients who underwent one to three level MI-TLIF, from whom the incidence of cage extrusion was analyzed. Cage extrusion was defined as an interbody graft migrating outside the cephalad and caudal vertebral body posterior margin. Cage extrusions were diagnosed by comparing the intraoperative radiographs to the postoperative radiographs. Patients with >10° coronal curves, significant sagittal malalignment, infection, and preoperative instrumentation failure were excluded. Of 513 patients undergoing MI-TLIF, five patients (0.97%) were diagnosed with cage migrations. The mean follow-up duration was 13.6±standard deviation of 8.8months. Complications included asymptomatic cage migration alone (two patients) neurological decline (two patients) and epidural hematoma (one patient). On average, cage migrations cost a university hospital an additional $US17,217 for revision treatment. While the incidence of cage migrations is low (0.97%), it can lead to postoperative complications that require revision surgery and increased hospital costs. The risk for this significant complication can be minimized with proper technique and patient selection. PMID:26578209

  18. Clinical and Radiological Results of Microsurgical Posterior Lumbar Interbody Fusion and Decompression without Posterior Instrumentation for Lateral Recess Stenosis

    PubMed Central

    Şişman, Lokman; Türkmen, Faik; Efe, Duran; Pekince, Oğuzhan; Göncü, Recep Gani; Sever, Cem

    2015-01-01

    Study Design A single-center, retrospective patient review of clinical and radiological outcomes of microsurgical posterior lumbar interbody fusion and decompression, without posterior instrumentation, for the treatment of lateral recess stenosis. Purpose This study documented the clinical and radiological results of microsurgical posterior lumbar interbody fusion and decompression of the lateral recess using interbody cages without posterior instrumentation for the treatment of lateral recess stenosis. Overview of Literature Although microsurgery has some advantages, various complications have been reported following microsurgical decompression, including cage migration, pseudoarthrosis, neurologic deficits, and persistent pain. Methods A total of 34 patients (13 men, 21 women), with a mean age of 56.65±9.1 years (range, 40-77 years) confirmed spinal stability, and preoperative radiological findings of lateral recess stenosis, were included in the study. Interbody polyetheretherketone cages and auto grafts were used in all patients. Posterior instrumentation was not used because of limited resection of the posterior lumbar structures. Preoperative and postoperative radiographs, computed tomography scans, and magnetic resonance imaging were assessed and compared to images taken at the final follow-up. Functional recovery was also evaluated according to the Macnab criteria at the final follow-up. Results The average follow-up time was 35.05±8.65 months (range, 24-46 months). The clinical results, operative time, intraoperative blood loss, and duration of hospital stay were similar to previously published results; the fusion rate (85.2%) was decreased and the migration rate (5.8%) was increased, compared with prior reports. Conclusions Although microsurgery has some advantages, migration and pseudoarthrosis remain challenges to achieving adequate lumbar interbody fusion. PMID:26435789

  19. Comparison of complication rates of minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion: a systematic review of the literature.

    PubMed

    Joseph, Jacob R; Smith, Brandon W; La Marca, Frank; Park, Paul

    2015-10-01

    OBJECT Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) and lateral lumbar interbody fusion (LLIF) are 2 currently popular techniques for lumbar arthrodesis. The authors compare the total risk of each procedure, along with other important complication outcomes. METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Relevant studies (up to May 2015) that reported complications of either MI-TLIF or LLIF were identified from a search in the PubMed database. The primary outcome was overall risk of complication per patient. Secondary outcomes included risks of sensory deficits, temporary neurological deficit, permanent neurological deficit, intraoperative complications, medical complications, wound complications, hardware failure, subsidence, and reoperation. RESULTS Fifty-four studies were included for analysis of MI-TLIF, and 42 studies were included for analysis of LLIF. Overall, there were 9714 patients (5454 in the MI-TLIF group and 4260 in the LLIF group) with 13,230 levels fused (6040 in the MI-TLIF group and 7190 in the LLIF group). A total of 1045 complications in the MI-TLIF group and 1339 complications in the LLIF group were reported. The total complication rate per patient was 19.2% in the MI-TLIF group and 31.4% in the LLIF group (p < 0.0001). The rate of sensory deficits and temporary neurological deficits, and permanent neurological deficits was 20.16%, 2.22%, and 1.01% for MI-TLIF versus 27.08%, 9.40%, and 2.46% for LLIF, respectively (p < 0.0001, p < 0.0001, p = 0.002, respectively). Rates of intraoperative and wound complications were 3.57% and 1.63% for MI-TLIF compared with 1.93% and 0.80% for LLIF, respectively (p = 0.0003 and p = 0.034, respectively). No significant differences were noted for medical complications or reoperation. CONCLUSIONS While there was a higher overall complication rate with LLIF, MI-TLIF and LLIF both have acceptable complication profiles. LLIF had higher rates of sensory as well as temporary and permanent neurological symptoms, although rates of intraoperative and wound complications were less than MI-TLIF. Larger, prospective comparative studies are needed to confirm these findings as the current literature is of relative poor quality. PMID:26424344

  20. Hybrid Biosynthetic Autograft Extender for Use in Posterior Lumbar Interbody Fusion: Safety and Clinical Effectiveness

    PubMed Central

    Chedid, Mokbel K; Tundo, Kelly M; Block, Jon E; Muir, Jeffrey M

    2015-01-01

    Autologous iliac crest bone graft is the preferred option for spinal fusion, but the morbidity associated with bone harvest and the need for graft augmentation in more demanding cases necessitates combining local bone with bone substitutes. The purpose of this study was to document the clinical effectiveness and safety of a novel hybrid biosynthetic scaffold material consisting of poly(D,L-lactide-co-glycolide) (PLGA, 75:25) combined by lyophilization with unmodified high molecular weight hyaluronic acid (10-12% wt:wt) as an extender for a broad range of spinal fusion procedures. We retrospectively evaluated all patients undergoing single- and multi-level posterior lumbar interbody fusion at an academic medical center over a 3-year period. A total of 108 patients underwent 109 procedures (245 individual vertebral levels). Patient-related outcomes included pain measured on a Visual Analog Scale. Radiographic outcomes were assessed at 6 weeks, 3-6 months, and 1 year postoperatively. Radiographic fusion or progression of fusion was documented in 221 of 236 index levels (93.6%) at a mean (±SD) time to fusion of 10.2+4.1 months. Single and multi-level fusions were not associated with significantly different success rates. Mean pain scores (+SD) for all patients improved from 6.8+2.5 at baseline to 3.6+2.9 at approximately 12 months. Improvements in VAS were greatest in patients undergoing one- or two-level fusion, with patients undergoing multi-level fusion demonstrating lesser but still statistically significant improvements. Overall, stable fusion was observed in 64.8% of vertebral levels; partial fusion was demonstrated in 28.8% of vertebral levels. Only 15 of 236 levels (6.4%) were non-fused at final follow-up PMID:26161161

  1. Anterior column realignment following lateral interbody fusion for sagittal deformity correction.

    PubMed

    Pimenta, Luiz; Fortti, Fernanda; Oliveira, Leonardo; Marchi, Luis; Jensen, Rubens; Coutinho, Etevaldo; Amaral, Rodrigo

    2015-07-01

    Degenerative and iatrogenic diseases may lead to loss of lordosis or even kyphotic thoracolumbar deformity and sagittal misalignment. Traditional surgery with three-column osteotomies is associated with important neurologic risks and postoperative morbidity. In a novel technique, the lateral transpsoas interbody fusion (LTIF) is complemented with the sacrifice of the anterior longitudinal ligament and anterior portion of the annulus followed by the insertion of a hyperlordotic interbody cage. This is a less invasive lateral technique named anterior column realignment (ACR) and aims to correct sagittal misalignment in adult spinal deformity (ASD), with or without the addition of minor posterior osteotomies. In this article, we provide an account of the evolution to the ACR technique, the literature, and the Brazilian experience in the treatment of adult spinal deformity with this novel advanced application of LTIF. In the presence of ASD, the risk-to-benefit ratio of a surgical correction must be evaluated. Less invasive surgical strategies can be alternatives to treat the deformity and provide better quality of life to the patient. ACR is an advanced application of lateral transpsoas approach, up to date has shown to be reliable and effective when used for ASD, and may minimize complications and morbidity from traditional surgical procedures. Long-term follow-up and comparative studies are needed to evaluate real benefit. PMID:25971442

  2. Postoperative Flat Back: Contribution of Posterior Accessed Lumbar Interbody Fusion and Spinopelvic Parameters

    PubMed Central

    Kim, Jin Kwon; Kim, Deok Ryeng; Kim, Joo Seung

    2014-01-01

    Objective Posterior accessed lumbar interbody fusion (PALIF) has a clear objective to restore disc height and spinal alignment but surgeons may occasionally face the converse situation and lose lumbar lordosis. We analyzed retrospective data for factors contributing to a postoperative flat back. Methods A total of 105 patients who underwent PALIF for spondylolisthesis and stenosis were enrolled. The patients were divided according to surgical type [posterior lumbar inter body fusion (PLIF) vs. unilateral transforaminal lumbar interbody fusion (TLIF)], number of levels (single vs. multiple), and diagnosis (spondylolisthesis vs. stenosis). We measured perioperative index level lordosis, lumbar lordosis, pelvic tilt, sacral slope, pelvic incidence, and disc height in standing lateral radiographs. The change and variance in each parameter and comparative group were analyzed with the paired and Student t-test (p<0.05), correlation coefficient, and regression analysis. Results A significant perioperative reduction was observed in index-level lordosis following TLIF at the single level and in patients with spondylolisthesis (p=0.002, p=0.005). Pelvic tilt and sacral slope were significantly restored following PLIF multilevel surgery (p=0.009, p=0.003). Sacral slope variance was highly sensitive to perioperative variance of index level lordosis in high sacral sloped pelvis. Perioperative variance of index level lordosis was positively correlated with disc height variance (R2=0.286, p=0.0005). Conclusion Unilateral TLIF has the potential to cause postoperative flat back. PLIF is more reliable than unilateral TLIF to restore spinopelvic parameters following multilevel surgery and spondylolisthesis. A high sacral sloped pelvis is more vulnerable to PALIF in terms of a postoperative flat back. PMID:25371781

  3. Multilevel extreme lateral interbody fusion (XLIF) and osteotomies for 3-dimensional severe deformity: 25 consecutive cases

    PubMed Central

    McAfee, Paul C.; Shucosky, Erin; Chotikul, Liana; Salari, Ben; Chen, Lun; Jerrems, Dan

    2013-01-01

    Background This is a retrospective review of 25 patients with severe lumbar nerve root compression undergoing multilevel anterior retroperitoneal lumbar interbody fusion and posterior instrumentation for deformity. The objective is to analyze the outcomes and clinical results from anterior interbody fusions performed through a lateral approach and compare these with traditional surgical procedures. Methods A consecutive series of 25 patients (78 extreme lateral interbody fusion [XLIF] levels) was identified to illustrate the primary advantages of XLIF in correcting the most extreme of the 3-dimensional deformities that fulfilled the following criteria: (1) a minimum of 40 of scoliosis; (2) 2 or more levels of translation, anterior spondylolisthesis, and lateral subluxation (subluxation in 2 planes), causing symptomatic neurogenic claudication and severe spinal stenosis; and (3) lumbar hypokyphosis or flat-back syndrome. In addition, the majority had trunks that were out of balance (central sacral vertical line ?2 cm from vertical plumb line) or had sagittal imbalance, defined by a distance between the sagittal vertical line and S1 of greater than 3 cm. There were 25 patients who had severe enough deformities fulfilling these criteria that required supplementation of the lateral XLIF with posterior osteotomies and pedicle screw instrumentation. Results In our database, with a mean follow-up of 24 months, 85% of patients showed evidence of solid arthrodesis and no subsidence on computed tomography and flexion/extension radiographs. The complication rate remained low, with a perioperative rate of 2.4% and postoperative rate of 12.2%. The lateral listhesis and anterior spondylolisthetic subluxation were anatomically reduced with minimally invasive XLIF. The main finding in these 25 cases was our isolation of the major indication for supplemental posterior surgery: truncal decompensation in patients who are out of balance by 2 cm or more, in whom posterior spinal osteotomies and segmental pedicle screw instrumentation were required at follow up. No patients were out of sagittal balance (sagittal vertical line <3 cm from S1) postoperatively. Segmental instrumentation with osteotomies was also more effective for restoration of physiologic lumbar lordosis compared with anterior stand-alone procedures. Conclusions This retrospective study supports the finding that clinical outcomes (coronal/sagittal alignment) improve postoperatively after minimally invasive surgery with multilevel XLIF procedures and are improved compared with larger extensile thoracoabdominal anterior scoliosis procedures. PMID:25694908

  4. Transforaminal Lumbar Interbody Fusion for Lumbar Degenerative Disorders: Mini-open TLIF and Corrective TLIF

    PubMed Central

    HARA, Masahito; NISHIMURA, Yusuke; NAKAJIMA, Yasuhiro; UMEBAYASHI, Daisuke; TAKEMOTO, Masaya; YAMAMOTO, Yuu; HAIMOTO, Shoichi

    Minimally invasive transforaminal lumbar interbody fusion (TLIF) as a short fusion is widely accepted among the spine surgeons. However in the long fusion for degenerative kyphoscoliosis, corrective spinal fixation by an open method is thought to be frequently selected. Our objective is to study whether the mini-open TLIF and corrective TLIF contribute to the improvement of the spinal segmental and global alignment. We divided the patients who performed lumbar fixation surgery into three groups. Group 1 (G1) consisted of mini-open TLIF procedures without complication. Group 2 (G2) consisted of corrective TLIF without complication. Group 3 (G3) consisted of corrective TLIF with instrumentation-related complication postoperatively. In all groups, the lumbar lordosis (LL) highly correlated with developing surgical complications. LL significantly changed postoperatively in all groups, but was not corrected in the normal range in G3. There were statistically significant differences in preoperative and postoperative LL and mean difference between the pelvic incidence (PI) and LL between G3 and other groups. The most important thing not to cause the instrumentation-related failure is proper correction of the sagittal balance. In the cases with minimal sagittal imbalance with or without coronal imbalance, short fusion by mini-open TLIF or long fusion by corrective TLIF contributes to good clinical results if the lesion is short or easily correctable. However, if the patients have apparent sagittal imbalance with or without coronal imbalance, we should perform proper correction of the sagittal spinal alignment introducing various technologies. PMID:26119895

  5. A Randomized Controlled Trial Comparing Transforaminal Lumbar Interbody Fusion and Uninstrumented Posterolateral Fusion in the Degenerative Lumbar Spine.

    PubMed

    Jalalpour, Kourosh; Neumann, Pavel; Johansson, Christer; Hedlund, Rune

    2015-08-01

    Study Design?Randomized controlled trial. Objective?Despite a large number of publications of outcomes after spinal fusion surgery, there is still no consensus on the efficacy of the several different fusion methods. The aim of this study was to determine whether transforaminal lumbar interbody fusion (TLIF) results in an improved clinical outcome compared with uninstrumented posterolateral fusion (PLF) in the surgical treatment for chronic low back pain. Methods?This study included 135 patients with degenerative disk disease (n?=?96) or postdiskectomy syndrome (n?=?39). Inclusion criteria were at least 1?year of back pain with or without leg pain in patients aged 20 to 65 with one- or two-level disease. Exclusion criteria were sequestration of disk hernia, psychosocial instability, isthmic spondylolisthesis, drug abuse, and previous spine surgery other than diskectomy. Pain was assessed by visual analog scale (pain index). Functional disability was quantified by the disability rating index and Oswestry Disability Index. The global outcome was assessed by the patient and classified as much better, better, unchanged, or worse. The patients were randomized to conventional uninstrumented PLF (n?=?67) or TLIF (n?=?68). PLF was performed in a standardized fashion using autograft. TLIF was performed with pedicle titanium screw fixation and a porous tantalum interbody spacer with interbody and posterolateral autograft. The clinical outcome measurements were obtained preoperatively and at 12 and 24 months postoperatively. The 2-year follow-up rate was 98%. Results?The two treatment groups improved significantly from preoperatively to 2 years' follow-up. At final follow-up, the results in the TLIF group were significantly superior to those in the PLF group in pain index (2.0 versus 3.9, p?=?0.007) and in disability rating index (22 versus 36, p?=?0.003). The Oswestry Disability Index was better in the TLIF group (20 versus 28, p?=?0.110, not significant). The global assessment was clearly superior in the TLIF group: 63% of patients scored "much better" in the TLIF group as compared with 48% in the PLF group (p?=?0.017). Conclusions?The results of the current study support the use of TLIF rather than uninstrumented PLF in the surgical treatment of the degenerative lumbar spine. The less optimal outcome after uninstrumented PLF may be explained by the much higher reoperation rate. PMID:26225282

  6. A Randomized Controlled Trial Comparing Transforaminal Lumbar Interbody Fusion and Uninstrumented Posterolateral Fusion in the Degenerative Lumbar Spine

    PubMed Central

    Jalalpour, Kourosh; Neumann, Pavel; Johansson, Christer; Hedlund, Rune

    2015-01-01

    Study Design Randomized controlled trial. Objective Despite a large number of publications of outcomes after spinal fusion surgery, there is still no consensus on the efficacy of the several different fusion methods. The aim of this study was to determine whether transforaminal lumbar interbody fusion (TLIF) results in an improved clinical outcome compared with uninstrumented posterolateral fusion (PLF) in the surgical treatment for chronic low back pain. Methods This study included 135 patients with degenerative disk disease (n = 96) or postdiskectomy syndrome (n = 39). Inclusion criteria were at least 1 year of back pain with or without leg pain in patients aged 20 to 65 with one- or two-level disease. Exclusion criteria were sequestration of disk hernia, psychosocial instability, isthmic spondylolisthesis, drug abuse, and previous spine surgery other than diskectomy. Pain was assessed by visual analog scale (pain index). Functional disability was quantified by the disability rating index and Oswestry Disability Index. The global outcome was assessed by the patient and classified as much better, better, unchanged, or worse. The patients were randomized to conventional uninstrumented PLF (n = 67) or TLIF (n = 68). PLF was performed in a standardized fashion using autograft. TLIF was performed with pedicle titanium screw fixation and a porous tantalum interbody spacer with interbody and posterolateral autograft. The clinical outcome measurements were obtained preoperatively and at 12 and 24 months postoperatively. The 2-year follow-up rate was 98%. Results The two treatment groups improved significantly from preoperatively to 2 years' follow-up. At final follow-up, the results in the TLIF group were significantly superior to those in the PLF group in pain index (2.0 versus 3.9, p = 0.007) and in disability rating index (22 versus 36, p = 0.003). The Oswestry Disability Index was better in the TLIF group (20 versus 28, p = 0.110, not significant). The global assessment was clearly superior in the TLIF group: 63% of patients scored “much better” in the TLIF group as compared with 48% in the PLF group (p = 0.017). Conclusions The results of the current study support the use of TLIF rather than uninstrumented PLF in the surgical treatment of the degenerative lumbar spine. The less optimal outcome after uninstrumented PLF may be explained by the much higher reoperation rate. PMID:26225282

  7. A Meta-Analysis of Unilateral versus Bilateral Pedicle Screw Fixation in Minimally Invasive Lumbar Interbody Fusion

    PubMed Central

    Liu, Zheng; Fei, Qi; Wang, Bingqiang; Lv, Pengfei; Chi, Cheng; Yang, Yong; Zhao, Fan; Lin, Jisheng; Ma, Zhao

    2014-01-01

    Study Design Meta-analysis. Background Bilateral pedicle screw fixation (PS) after lumbar interbody fusion is a widely accepted method of managing various spinal diseases. Recently, unilateral PS fixation has been reported as effective as bilateral PS fixation. This meta-analysis aimed to comparatively assess the efficacy and safety of unilateral PS fixation and bilateral PS fixation in the minimally invasive (MIS) lumbar interbody fusion for one-level degenerative lumbar spine disease. Methods MEDLINE/PubMed, EMBASE, BIOSIS Previews, and Cochrane Library were searched through March 30, 2014. Randomized controlled trials (RCTs) and controlled clinical trials (CCTs) on unilateral versus bilateral PS fixation in MIS lumbar interbody fusion that met the inclusion criteria and the methodological quality standard were retrieved and reviewed. Data on participant characteristics, interventions, follow-up period, and outcomes were extracted from the included studies and analyzed by Review Manager 5.2. Results Six studies (5 RCTs and 1 CCT) involving 298 patients were selected. There were no significant differences between unilateral and bilateral PS fixation procedures in fusion rate, complications, visual analogue score (VAS) for leg pain, VAS for back pain, Oswestry disability index (ODI). Both fixation procedures had similar length of hospital stay (MD = 0.38, 95% CI = −0.83 to 1.58; P = 0.54). In contrast, bilateral PS fixation was associated with significantly more intra-operative blood loss (P = 0.002) and significantly longer operation time (P = 0.02) as compared with unilateral PS fixation. Conclusions Unilateral PS fixation appears as effective and safe as bilateral PS fixation in MIS lumbar interbody fusion but requires less operative time and causes less blood loss, thus offering a simple alternative approach for one-level lumbar degenerative disease. PMID:25375315

  8. Arthroscopic discectomy and interbody fusion of the thoracic spine: A report of ipsilateral 2-portal approach

    PubMed Central

    Osman, Said G.; Schwartz, Jeremy A.; Marsolais, E. B.

    2012-01-01

    Background The standard approach to the thoracic disc is through thoracotomy. The video-assisted thoracoscopic approach has been used as an alternative to the open approach for nearly 20 years, and more recently, extracavitary, posterolateral approaches have been introduced. Both the transthoracic procedures involve deflating the lung for access to the spine, and postoperative thoracic drainage is necessary; postoperative morbidity can be significant. The retropleural procedures are in their infancy, but the published results are promising. The purpose of this study is to introduce the posterolateral arthroscopic thoracic decompression and fusion procedure, which is extrapleural, less disruptive to normal anatomy, and cost-effective. Methods Fifteen consecutive patients who underwent arthroscopic decompression and interbody fusion of the thoracic spine were prospectively studied according to the hospital's institutional review board protocol. The Short Form 36 and visual analog scale questionnaires were completed preoperatively and postoperatively. Paired t tests were used for statistical analysis. The patient was placed in the prone position on a radiolucent table, and instrumentation was performed under fluoroscopic control. Two portals were developed ipsilaterally (one for the arthroscope and the other for instruments) on the side of disc herniation, and a single portal was used on the contralateral side. Various instruments were used for disc excision and exploration of the spinal canal. Fusion was accomplished with bilateral corticocancellous dowels obtained from the iliac crests. Infiltration of the access channel and facet injections of the contiguous joints were performed with bupivacaine, for immediate postoperative pain control. Results Fifteen patients with a mean age of 54 years were followed up for 28 months postoperatively. The overall back pain score decreased from 7.2 (SD, 1.5) to 3 (SD, 2) after the procedure (P < .005). Eleven patients were satisfied with their current lifestyle postoperatively as opposed to one preoperatively. Two patients had reoccurrences. Hospital stay averaged 18.5 hours. The operating room cost and the cost of hospital stay was 51.9% of the cost of anterior open discectomy. Conclusions The extrapleural, biportal, ipsilateral arthroscopic approach for the decompression and interbody fusion of the thoracic spine is feasible, cost-effective, less traumatic, and associated with minimal complications. The best results were obtained in patients with single-level thoracic disc herniation. The technique is applicable for most thoracic disc herniations. PMID:25694878

  9. Posterior lumbar interbody fusion and posterolateral fusion: Analogous procedures in decreasing the index of disability in patients with spondylolisthesis

    PubMed Central

    Alijani, Babak; Emamhadi, Mohamahreza; Behzadnia, Hamid; Aramnia, Ali; Chabok, Shahrokh Yousefzadeh; Ramtinfar, Sara; Leili, Ehsan Kazemnejad; Golmohamadi, Shabnam

    2015-01-01

    Objective: The purpose of this study was to evaluate the disability in patients with spondylolisthesis who assigned either to posterolateral fusion (PLF) or posterior lumbar interbody fusion (PLIF) and to compare it between two groups. Methods: In a prospective observational study, 102 surgical candidates with low-grade degenerative and isthmic spondylolisthesis enrolled from 2012 to 2014, and randomly assigned into two groups: PLF and PLIF. Evaluation of disability has been done by a questionnaire using Oswestry Disability Index (ODI). The questionnaire was completed by all patients before the surgery, the day after surgery, after 6 months and after 1-year. Results: There were no statistically significant differences in terms of age and sex distribution and pre-operation ODI between groups (P > 0.05). Comparison of the mean ODI scores of two groups over the whole study period showed no significant statistical difference (P = 0.074). ODIs also showed no significant differences between two groups the day after surgery, 6th months and 1-year after surgery (P = 0.385, P = 0.093, P = 0.122 and P = 433) respectively. Analyzing the course of ODI over the study period, showed a significant descending pattern for either of groups (P < 0.0001). Conclusion: Both surgical fusion techniques (PLF and PLIF) were efficient to lessen the disability of patients with spondylolisthesis, and none of the fusion techniques were related to a better outcome in terms of disability. PMID:25767584

  10. Lifestyle-Related Diseases Affect Surgical Outcomes after Posterior Lumbar Interbody Fusion.

    PubMed

    Sakaura, Hironobu; Miwa, Toshitada; Yamashita, Tomoya; Kuroda, Yusuke; Ohwada, Tetsuo

    2016-02-01

    Study Design?Retrospective study. Objective?Hyperlipidemia (HL) and hypertension (HT) lead to systemic atherosclerosis. Not only atherosclerosis but also bone fragility and/or low bone mineral density result from diabetes mellitus (DM) and chronic kidney disease (CKD). The purpose of this study was to examine whether these lifestyle-related diseases affected surgical outcomes after posterior lumbar interbody fusion (PLIF). Methods?The subjects comprised 122 consecutive patients who underwent single-level PLIF for degenerative lumbar spinal disorders. The clinical results were assessed using the Japanese Orthopaedic Association (JOA) score before surgery and at 2 years postoperatively. The fusion status was graded as union in situ, collapsed union, or nonunion at 2 years after surgery. The abdominal aorta calcification (AAC) score was assessed using preoperative lateral radiographs of the lumbar spine. Results?HL did not significantly affect the JOA score recovery rate. On the other hand, HT and CKD (stage 3 to 4) had a significant adverse effect on the recovery rate. The recovery rate was also lower in the DM group than in the non-DM group, but the difference was not significant. The AAC score was negatively correlated with the JOA score recovery rate. The fusion status was not significantly affected by HL, HT, DM, or CKD; however, the AAC score was significantly higher in the collapsed union and nonunion group than in the union in situ group. Conclusions?At 2 years after PLIF, the presence of HT, CKD, and AAC was associated with significantly worse clinical outcomes, and advanced AAC significantly affected fusion status. PMID:26835195

  11. Lifestyle-Related Diseases Affect Surgical Outcomes after Posterior Lumbar Interbody Fusion

    PubMed Central

    Sakaura, Hironobu; Miwa, Toshitada; Yamashita, Tomoya; Kuroda, Yusuke; Ohwada, Tetsuo

    2015-01-01

    Study Design?Retrospective study. Objective?Hyperlipidemia (HL) and hypertension (HT) lead to systemic atherosclerosis. Not only atherosclerosis but also bone fragility and/or low bone mineral density result from diabetes mellitus (DM) and chronic kidney disease (CKD). The purpose of this study was to examine whether these lifestyle-related diseases affected surgical outcomes after posterior lumbar interbody fusion (PLIF). Methods?The subjects comprised 122 consecutive patients who underwent single-level PLIF for degenerative lumbar spinal disorders. The clinical results were assessed using the Japanese Orthopaedic Association (JOA) score before surgery and at 2 years postoperatively. The fusion status was graded as union in situ, collapsed union, or nonunion at 2 years after surgery. The abdominal aorta calcification (AAC) score was assessed using preoperative lateral radiographs of the lumbar spine. Results?HL did not significantly affect the JOA score recovery rate. On the other hand, HT and CKD (stage 3 to 4) had a significant adverse effect on the recovery rate. The recovery rate was also lower in the DM group than in the non-DM group, but the difference was not significant. The AAC score was negatively correlated with the JOA score recovery rate. The fusion status was not significantly affected by HL, HT, DM, or CKD; however, the AAC score was significantly higher in the collapsed union and nonunion group than in the union in situ group. Conclusions?At 2 years after PLIF, the presence of HT, CKD, and AAC was associated with significantly worse clinical outcomes, and advanced AAC significantly affected fusion status. PMID:26835195

  12. Unilateral versus bilateral pedicle screw instrumentation for single-level minimally invasive transforaminal lumbar interbody fusion.

    PubMed

    Shen, Xiaolong; Zhang, Hailong; Gu, Xin; Gu, Guangfei; Zhou, Xu; He, Shisheng

    2014-09-01

    Minimally invasive transforaminal lumbar interbody fusion (MIS TLIF) has become an increasingly popular method of lumbar arthrodesis. However, there are few published studies comparing the clinical outcomes between unilateral and bilateral instrumented MIS TLIF. Sixty-five patients with degenerative lumbar spine disease were enrolled in this study. Thirty-one patients were randomized to the unilateral group and 34 to the bilateral group. Recorded demographic data included sex, age, preoperative diagnosis, and degenerated segment. Operative time, blood loss, hospital stay length, complication rates, and fusion rates were also evaluated. The Oswestry Disability Index (ODI) score and Visual Analog Scale (VAS) pain score data were obtained. All patients were asked to follow-up at 3 and 6 months after surgery, and once every 6 months thereafter. The mean follow-up was 26.6 months (range 18-36 months). The two groups were similar in sex, age, preoperative diagnosis, and operated level. The unilateral group had significantly shorter operative time, lower blood loss, and shorter hospital time than the bilateral group. The average postoperative ODI and VAS scores improved significantly in each group. No significant differences were found between the two groups in relation to ODI and VAS. All patients showed evidence of fusion at 12 months postoperatively. The total fusion rate, screw failure, and general complication rate were not significantly different. Results showed that single-level MIS TLIF with unilateral pedicle screw fixation would be sufficient in the management of preoperatively stable patients with lumbar degenerative disease. It seems that MIS TLIF with unilateral pedicle screw instrumentation is a better choice for single-level degenerative lumbar spine disease. PMID:24814852

  13. Instrumented transforaminal lumbar interbody fusion in surgical treatment of recurrent disc herniation

    PubMed Central

    Omidi-Kashani, Farzad; Ghayem Hasankhani, Ebrahim; Noroozi, Hamid Reza

    2014-01-01

    Background: The incidence of recurrence in patients undergoing primary discectomy due to lumbar disc herniation (LDH), is regularly reported as 5-15%. In this study we aimed to evaluate surgical outcome of instrumented transforaminal lumbar interbody fusion (TLIF) in the patients suffering from recurrent LDH. Methods: We retrospectively studied 51 patients (30 female, 21 male) from August 2007 to October 2011. The mean age and follow-up of the patients was 46.4±14.8 (ranged; 29-77 years old) and 31.4±6.8 (ranged; 25-50 months), respectively. Clinical improvement was assessed by Oswestry Disability Index (ODI), visual analogue scale (VAS), and subjective satisfaction rate, while fusion was appraised radiologically. Data analysis was by one sample Kolmogorov-Smirnov, paired t, and Mann-Whitney tests. Results: Surgery could significantly improve mean leg and lumbar VAS and ODI from preoperative 7.4±2.5, 7.8±3.1, and 72.1±21.5 to postoperative 3.4±3.6, 3.5±2.6, and 27.5±18.0, respectively at the last follow-up visit. Subjective satisfaction rate was excellent in 24 patients (47.1%), good in 14 (27.5%), fair 11 (21.6%), and poor in two (3.9%). We had one patient with iatrogenic partial L5 nerve root injury and one with unknown late onset refractory postoperative back pain. Fusion rate was 100% and instrument failure was nil. Conclusion: In surgical treatment of the patients with recurrent LDH, bilaterally instrumented TLIF is a relatively safe and effective procedure and can be associated with least instrument failure and highest fusion rate while no postoperative bracing is also needed. PMID:25679003

  14. A novel synthetic material for spinal fusion: a prospective clinical trial of porous bioactive titanium metal for lumbar interbody fusion.

    PubMed

    Fujibayashi, Shunsuke; Takemoto, Mitsuru; Neo, Masashi; Matsushita, Tomiharu; Kokubo, Tadashi; Doi, Kenji; Ito, Tatsuya; Shimizu, Akira; Nakamura, Takashi

    2011-09-01

    The objective of this study was to establish the efficacy and safety of porous bioactive titanium metal for use in a spinal fusion device, based on a prospective human clinical trial. A high-strength spinal interbody fusion device was manufactured from porous titanium metal. A bioactive surface was produced by simple chemical and thermal treatment. Five patients with unstable lumbar spine disease were treated surgically using this device in a clinical trial approved by our Ethics Review Committee and the University Hospital Medical Information Network. Clinical and radiological results were reported at the minimum follow-up period of 1 year. The optimal mechanical strength and interconnected structure of the porous titanium metal were adjusted for the device. The whole surface of porous titanium metal was treated uniformly and its bioactive ability was confirmed before clinical use. Successful bony union was achieved in all cases within 6 months without the need for autologous iliac crest bone grafting. Two specific findings including an anchoring effect and gap filling were evident radiologically. All clinical parameters improved significantly after the operation and no adverse effects were encountered during the follow-up period. Although a larger and longer-term follow-up clinical study is mandatory to reach any firm conclusions, the study results show that this porous bioactive titanium metal is promising material for a spinal fusion device. PMID:21369760

  15. Clinical and Radiological Comparison of Posterolateral Fusion and Posterior Interbody Fusion Techniques for Multilevel Lumbar Spinal Stabilization In Manual Workers

    PubMed Central

    Çakar, Albert; Hüseyinoğlu, Nergiz; Hüseyinoğlu, Urfettin; Çelik, Recep

    2014-01-01

    Study Design Eighty-four patients who had been treated for degenerative spinal diseases between January 2006 and June 2009 were reviewed retrospectively. Purpose We aimed to compare the clinical and radiologic findings of manual workers who underwent posterolateral fusion (PLF) or posterior interbody fusion (PLIF) involving fusion of 3 or more levels of the spine. Overview of Literature Previous studies have concluded that there is no significant difference between the clinical outcome of PLF and PLIF techniques. Methods After standard decompression, 42 patients underwent PLF and the other 42 patients underwent PLIF. Radiologic findings, Oswestry disability index (ODI) scores, and visual analogue scale (VAS) scores were assessed preoperatively and at 6-month intervals postoperatively and return to work times/rates were assessed for 48 months. Results Patients who underwent PLF had significantly shorter surgical time and less blood loss. According to the 48-month clinical results, ODI and VAS scores were reduced significantly in the two groups, but the PLIF group showed better results than the PLF group at the last follow-up. Return to work rate was 63% in the PLF group and 87% in the PLIF group. Union rates were found to be 81% and 89%, respectively, after 24 months (p=0.154). Conclusions PLIF is a preferable technique with respect to stability and correction, but the result does not depend on only the fusion rates. Discectomy and fusion mass localization should be considered for achieving clinical success with the fusion technique. Before performing PLIF, the association of the long operative time and high blood loss with mortality and morbidity should be taken into consideration, particularly in the elderly and disabled patients. PMID:25346809

  16. Neurogenic Shock Immediately following Posterior Lumbar Interbody Fusion: Report of Two Cases.

    PubMed

    Matsumoto, Tomiya; Okuda, Shinya; Haku, Takamitsu; Maeda, Kazuya; Maeno, Takafumi; Yamashita, Tomoya; Yamasaki, Ryoji; Kuratsu, Shigeyuki; Iwasaki, Motoki

    2015-08-01

    Study Design?Case report. Objective?To present two cases of neurogenic shock that occurred immediately following posterior lumbar interbody fusion (PLIF) and that appeared to have been caused by the vasovagal reflex after dural injury and incarceration of the cauda equina. Case Report?We present two cases of neurogenic shock that occurred immediately following PLIF. One patient had bradycardia, and the other developed cardiac arrest just after closing the surgical incision and opening the drainage tube. Cardiopulmonary resuscitation was performed immediately, and the patients recovered successfully, but they showed severe motor loss after awakening. The results of laboratory data, chest X-ray, electrocardiogram, computed tomography, and echocardiography ruled out pulmonary embolism, hemorrhagic shock, and cardiogenic shock. Although the reasons for the postoperative shock were obscure, reoperation was performed to explore the cause of paralysis. At reoperation, a cerebrospinal fluid collection and the incarceration of multiple cauda equina rootlets through a small dural tear were observed. The incarcerated cauda equina rootlets were reduced, and the dural defect was closed. In both cases, the reoperation was uneventful. From the intraoperative findings at reoperation, it was thought that the pathology was neurogenic shock via the vasovagal reflex. Conclusion?Incarceration of multiple cauda equina rootlets following the accidental dural tear by suction drainage caused a sudden decrease of cerebrospinal fluid pressure and traction of the cauda equina, which may have led to the vasovagal reflex. PMID:26225287

  17. Neurogenic Shock Immediately following Posterior Lumbar Interbody Fusion: Report of Two Cases

    PubMed Central

    Matsumoto, Tomiya; Okuda, Shinya; Haku, Takamitsu; Maeda, Kazuya; Maeno, Takafumi; Yamashita, Tomoya; Yamasaki, Ryoji; Kuratsu, Shigeyuki; Iwasaki, Motoki

    2014-01-01

    Study Design Case report. Objective To present two cases of neurogenic shock that occurred immediately following posterior lumbar interbody fusion (PLIF) and that appeared to have been caused by the vasovagal reflex after dural injury and incarceration of the cauda equina. Case Report We present two cases of neurogenic shock that occurred immediately following PLIF. One patient had bradycardia, and the other developed cardiac arrest just after closing the surgical incision and opening the drainage tube. Cardiopulmonary resuscitation was performed immediately, and the patients recovered successfully, but they showed severe motor loss after awakening. The results of laboratory data, chest X-ray, electrocardiogram, computed tomography, and echocardiography ruled out pulmonary embolism, hemorrhagic shock, and cardiogenic shock. Although the reasons for the postoperative shock were obscure, reoperation was performed to explore the cause of paralysis. At reoperation, a cerebrospinal fluid collection and the incarceration of multiple cauda equina rootlets through a small dural tear were observed. The incarcerated cauda equina rootlets were reduced, and the dural defect was closed. In both cases, the reoperation was uneventful. From the intraoperative findings at reoperation, it was thought that the pathology was neurogenic shock via the vasovagal reflex. Conclusion Incarceration of multiple cauda equina rootlets following the accidental dural tear by suction drainage caused a sudden decrease of cerebrospinal fluid pressure and traction of the cauda equina, which may have led to the vasovagal reflex. PMID:26225287

  18. Accidental Durotomy in Minimally Invasive Transforaminal Lumbar Interbody Fusion: Frequency, Risk Factors, and Management

    PubMed Central

    Volz, Florian; Krüger, Marie T.; Kogias, Evangelos; Rölz, Roland; Sircar, Ronen; Hubbe, Ulrich

    2015-01-01

    Purpose. To assess the frequency, risk factors, and management of accidental durotomy in minimally invasive transforaminal lumbar interbody fusion (MIS TLIF). Methods. This single-center study retrospectively investigates 372 patients who underwent MIS TLIF and were mobilized within 24 hours after surgery. The frequency of accidental durotomies, intraoperative closure technique, body mass index, and history of previous surgery was recorded. Results. We identified 32 accidental durotomies in 514 MIS TLIF levels (6.2%). Analysis showed a statistically significant relation of accidental durotomies to overweight patients (body mass index ≥25 kg/m2; P = 0.0493). Patient age older than 65 years tended to be a positive predictor for accidental durotomies (P = 0.0657). Mobilizing patients on the first postoperative day, we observed no durotomy-associated complications. Conclusions. The frequency of accidental durotomies in MIS TLIF is low, with overweight being a risk factor for accidental durotomies. The minimally invasive approach seems to minimize durotomy-associated complications (CSF leakage, pseudomeningocele) because of the limited dead space in the soft tissue. Patients with accidental durotomy can usually be mobilized within 24 hours after MIS TLIF without increased risk. The minimally invasive TLIF technique might thus be beneficial in the prevention of postoperative immobilization-associated complications such as venous thromboembolism. This trial is registered with DRKS00006135. PMID:26075294

  19. Comparison of Posterior Lumbar Interbody Fusion and Posterolateral Lumbar Fusion in Monosegmental Vacuum Phenomenon within an Intervertebral Disc

    PubMed Central

    An, Ki-Chan; Kong, Gyu-Min; Park, Dae-Hyun; Youn, Ji-Hong; Lee, Woon-Seong

    2016-01-01

    Study Design Retrospective. Purpose To compare the clinical and radiological outcomes of posterolateral lumbar interbody fusion (PLIF) and posterolateral lumbar fusion (PLF) in monosegmental vacuum phenomenon within an intervertebral disc. Overview of Literature The vacuum phenomenon within an intervertebral disc is a serious form of degenerative disease that destabilizes the intervertebral body. Outcomes of PLIF and PLF in monosegmental vacuum phenomenon are unclear. Methods Monosegmental instrumented PLIF and PLF was performed on 84 degenerative lumbar disease patients with monosegmental vacuum phenomenon (PLIF, n=38; PLF, n=46). Minimum follow-up was 24 months. Clinical outcomes of leg and back pain were assessed using visual analogue scales for leg pain (LVAS) and back pain (BVAS), and the Oswestry disability index (ODI). The radiographic outcome was the estimated bony union rate. Results LVAS, BVAS, and ODI improved in both groups. There was no significant difference in the degree of these improvements between PLIF and PLF patients (p>0.05). Radiological union rate was 91.1% in PLIF group and 89.4% in PLF group at postoperative 24 months (p>0.05). Conclusions No significant differences in clinical results and union rates were found between PLIF and PLF patients. Selection of the operation technique will reflect the surgeon's preferences and patient condition. PMID:26949464

  20. Open and Minimally Invasive Transforaminal Lumbar Interbody Fusion: Comparison of Intermediate Results and Complications

    PubMed Central

    Hee, Hwan Tak

    2015-01-01

    Study Design Prospective study. Purpose To compare clinical and radiological outcomes of open vs. minimally invasive transforaminal lumbar interbody fusion (MI-TLIF). Overview of Literature MI-TLIF promises smaller incisions and less soft tissue dissection resulting in lower morbidity and faster recovery; however, it is technically challenging. Methods Twenty-five patients with MI-TLIF were compared with 25 matched open TLIF controls. A minimum 2 year follow-up and a statistical analysis of perioperative and long-term outcomes were performed. Potential complications were recorded. Results The mean ages for the open and MI-TLIF cases were 44.4 years (range, 19-69 years) and 43.6 years (range, 20-69 years), respectively. The male:female ratio was 13:12 for both groups. Average follow-up was 26.9 months for the MI-TLIF group and 29.3 months for the open group. Operative duration was significantly longer in the MI-TLIF group than that in the open group (p<0.05). No differences in estimated blood loss, duration to ambulation, or length of stay were found. Significant improvements in the Oswestry disability index and EQ-5D functional scores were observed at 6-, 12-, and 24-months in both groups, but no significant difference was detected between the groups. Fusion rates were comparable. Cage sizes were significantly smaller in the MI-TLIF group at the L5/S1 level (p<0.05). One patient had residual spinal stenosis at the MI-TLIF level, and one patient who underwent two-level MI-TLIF developed a deep vein thrombosis resulting in a pulmonary embolism. Conclusions MI-TLIF and open TLIF had comparable long-term benefits. Due to technical constraints, patients should be advised on the longer operative time and potential undersizing of cages at the L5S1 level. PMID:25901228

  1. Transforaminal Lumbar Interbody Fusion for Management of Recurrent Lumbar Disc Herniation

    PubMed Central

    2016-01-01

    Study Design Retrospective study. Purpose To study the surgical outcome of transforaminal lumbar interbody fusion (TLIF) combined with trans-pedicular screws fixation for management of selected cases of recurrent lumbar disc herniation. Overview of Literature Recurrent lumbar disc herniation is a major cause of surgical failure, occurring in 5%–11% of cases. The optimal technique for treatment is controversial. Some authors believe that repeated simple discectomy is the treatment of choice, but approach-related complications can be considerable. Other surgeons prefer more removal of posterior elements (as lamina and facet joints) with posterior fusion. Methods The study included 15 patients who presented with symptomatic recurrent lumbar disc herniation who underwent reoperation through posterior trans-pedicular screws and TLIF in our department from April 2008 to May 2010, with a 24-month follow-up. Japanese Orthopedic Association Scale (JOA) was used for low back pain. The results of surgery were also evaluated with the MacNab classification. Results The mean JOA score showed significant improvement, increasing from 9.5 before surgery to 24.0 at the end of follow-up (p<0.001). Clinical outcome was excellent in 7 patients (46% of cases), good in 6 patients (40%) and fair in only 2 patients (14%). There was a significant difference (p<0.05) between patients presenting with recurrent disc at the ipsilateral side and those at the contralateral side. Conclusions In spite of the small number of patients and the short follow-up period, the good clinical and radiological outcome achieved in this study encourage the belief that TLIF is an effective option for the treatment of selected cases of recurrent lumbar disc herniation. PMID:26949458

  2. Minimally Invasive Extraforaminal Lumbar Interbody Fusion for Revision Surgery: A Technique through Kambin's Triangle

    PubMed Central

    Lee, Jun Gue; Kim, Hyeun Sung

    2015-01-01

    Objective The purpose of this study was to evaluate the clinical outcomes of minimally invasive extraforaminal lumbar interbody fusion (ELIF) for revision surgery. Methods From January 2011 to December 2012, 12 patients who underwent minimally invasive ELIF through the Kambin's triangle for revision surgery were included in this study. All patients underwent the surgical procedure in the following sequence: (1) epidural anesthesia, (2) exposing the Kambin's triangle toward the lateral part of the dura (partial resection of the superior articular process), (3) bilateral cage insertion for reinforcement of stabilization and fusion, and (4) percutaneous transpedicular screwing. Clinical outcomes were assessed using the visual analogue scale (VAS), and Oswestry disability index (ODI). Imaging and clinical findings including surgical techniques, clinical outcomes, and related complications were depicted and analyzed. Results The mean age of the patients (5 men, 7 women) was 60.7±13.4 years, and the mean follow-up period was 27.1±4.9 months. The mean VAS (back and leg) score improved significantly at final follow-up. The mean ODI score decreased as follows: preoperative, 76.78±6.08; 3 months after the surgery, 37.74±6.67; and at final follow-up, 29.91±2.98. Two patients presented with transient nerve root irritation, but there were no cases of incidental dural tear or serious infection. No significant neurological deterioration or major complication was noted in any of the patients. Conclusion Minimally invasive ELIF for revision surgery is an effective surgical option with a low complication rate. PMID:26834815

  3. Yemen's light, sweet Alif crude assayed

    SciTech Connect

    Rhodes, A.K.

    1994-05-23

    Crude oil from Yemen's Alif field has been assayed. The light sweet crude, also known as Marib, is part of the Marib al-Jawf concession in northern Yemen. Alif field was discovered in 1984 by Hunt Oil Co. The field was declared commercial in November 1985. Alif production averaged 118,500 b/d in 1992. Physical and chemical properties are listed for the whole crude and its fractions.

  4. BMP-2-induced Neuroforaminal Bone Growth in the Setting of a Minimally Invasive Transforaminal Lumbar Interbody Fusion.

    PubMed

    Ahn, Junyoung; Tabaraee, Ehsan; Singh, Kern

    2015-06-01

    Minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) has become a popular alternative to traditional methods of lumbar decompression and fusion. When compared with the open technique, the minimally invasive approach can result in decreased pain and blood loss as well as a shorter length of hospitalization. However, the narrower working channel through the tubular retractor increases the difficulty of decortication and bone grafting. Therefore, recombinant human bone morphogenetic proteins (rhBMP-2) is often utilized (although this is off-label) to create a more favorable interbody fusion environment. Recently, the use of rhBMP-2 has been associated with excessive bone growth in an MIS-TLIF. If this bone growth compresses the neighboring neural structures, patients may present with either new or recurrent radicular pain. Computed tomographic (CT) imaging can demonstrate heterotopic bone growth extending from the disk space into either the ipsilateral neuroforamen or lateral recess, which may result in the compression of the exiting or traversing root, respectively. The purpose of this article and the accompanying video is to demonstrate a technique for defining and resecting rhBMP-2-induced heterotopic bone growth following a previous MIS-TLIF. PMID:25978140

  5. Usefulness of Contralateral Indirect Decompression through Minimally Invasive Unilateral Transforaminal Lumbar Interbody Fusion

    PubMed Central

    Yoo, Jae-Sung; Lee, Jun-Yeul

    2014-01-01

    Study Design Retrospective study. Purpose This study aims to investigate the clinical and radiological results of contralateral indirect decompression through minimally invasive unilateral transforaminal lumbar interbody fusion (MI-TLIF). Overview of Literature Several studies have proposed that blood loss and operation time could be reduced through a unilateral approach, although many surgeons have forecast that satisfactory foraminal decompression is difficult to achieve through a unilateral approach. Methods The study included 30 subjects who had undergone single-level MI-TLIF. Visual analogue scale (VAS) and Oswestry disability index (ODI) were analyzed for clinical assessment. Disc height, segmental lordosis, and lumbar lordosis angle were examined for radiological assessment. The degree of contralateral indirect decompression was evaluated through a comparative analysis, with a magnetic resonance imaging (MRI) performed preoperatively and at one year postoperatively. Results Intraoperative blood loss volume was 308.75 mL in the unilateral approach group (UAP), and 575.00 mL in the bilateral approach group (BAP), showing a statistically significant difference. Operation time was 139.50 minutes in the UAP group, and 189.00 minutes in the BAP group, exhibiting a statistically significant difference (p<0.05). On the other hand, no significant difference was found in VAS, ODI, disc height, lordosis angles and the degree of nerve decompression in the vertebral foramen, using MRI, between the two groups (p>0.05). Conclusions Satisfactory results were acquired with MI-TLIF conducted through the unilateral approach of contralateral indirect decompression, in alignment with the bilateral approach. Therefore, contralateral indirect decompression is thought to be a useful procedure in reducing the operation time and volume of blood loss. PMID:25187862

  6. Posterior Lumbar Interbody Fusion Using Compressive Bone Graft with Allograft and Autograft in the Pyogenic Discitis

    PubMed Central

    An, Ki Chan; Kim, Tae Hyoung; Kim, Jin Suck; Park, Dae Hyoun; Kim, Jeon Gyo; Sung, Tae Woo

    2012-01-01

    Study Design This is a retrospective study. Purpose To evaluate the advantages and effects of posterior lumbar interbody fusion (PLIF) using allograft and posterior instrumentation in the lumbar pyogenic discitis, which are resistant to antibiotics. Overview of Literature To present preliminary results of PLIF using a compressive bone graft with allograft and pedicle screw fixation in the lumbar pyogenic discitis. Methods Fifteen patients who had lumbar pyogenic discitis were treated by posterior approach from May 2004 to July 2008. The mean follow-up duration was 27.2 18.68 months. The standing radiographs of the lumbar spine and clinical results were compared and analyzed in order to assess the bony union, the changes in the distance between the two vertebral bodies and the changes in the lordotic angle formed between the fused bodies immediately after surgery and at the final follow-up. Results Fifteen solid unions at an average of 15.2 3.5 weeks after operation. The mean preoperative lordotic angle of the affected segments was 14.3 15.1, compared to 20.3 12.3 after surgery and 19.8 15.2 at last follow-up. For the functional result according to the Kirkaldy-Willis criteria, the outcome was excellent in 9, good in 5, fair in 1, and there were no poor cases. The average visual analogue scale score was decreased from 7.4 before surgery to 3.4 at 2 weeks postoperative. Conclusions The main advantage in the procedure of PLIF using compressive bone graft with allograft and post instrumentation is early ambulation. We believe that this is another good procedure for patients with poor general condition because a further autograft bone harvest is not required. PMID:22439083

  7. Clinical and Radiological Outcomes of a New Cage for Direct Lateral Lumbar Interbody Fusion

    PubMed Central

    Kim, Shin Jae; Lee, Young Seok; Kim, Young Baeg; Hung, Vo Tan

    2014-01-01

    Objective In Korea, direct lateral interbody fusion (DLIF) was started since 2011, using standard cage (6° lordotic angle, 18mm width). Recently, a new wider cage with higher lordotic angle (12°, 22mm) was introduced. The aim of our study is to compare the clinical and radiologic outcomes of the two cage types. Methods We selected patients underwent DLIF, 125 cases used standard cages (standard group) and 38 cases used new cages (wide group). We followed them up for more than 6 months, and their radiological and clinical outcomes were analyzed retrospectively. For radiologic outcomes, lumbar lordotic angle (LLA), segmental lordoic angle (SLA), disc angle (DA), foraminal height change (FH), subsidence and intraoperative endplate destruction (iED) were checked. Clinical outcomes were compared using visual analog scale (VAS) score, Oswestry disability index (ODI) score and complications. Results LLA and SLA showed no significant changes postoperatively in both groups. DA showed significant increase after surgery in the wide group (p<0.05), but not in the standard group. Subsidence was significantly lower in the wide group (p<0.05). There was no difference in clinical outcomes between the two groups. Additional posterior decompression was done more frequently in the wide group. Postoperative change of foraminal height was significantly lower in the wide group (p<0.05). The iED was observed more frequently in the wide group (p<0.05) especially at the anterior edge of cage. Conclusion The new type of cage seems to result in more DA and less subsidence. But indirect foraminal decompression seems to be less effective than standard cage. Intraoperative endplate destruction occurs more frequently due to a steeper lordotic angle of the new cage. PMID:25346760

  8. Outcome of posterior lumbar interbody fusion for L4-L5 degenerative spondylolisthesis

    PubMed Central

    Hayashi, Hiroyuki; Murakami, Hideki; Demura, Satoru; Kato, Satoshi; Kawahara, Norio; Tsuchiya, Hiroyuki

    2015-01-01

    Background: Posterior lumbar interbody fusion (PLIF) has become the standard in the treatment for degenerative spondylolisthesis since improvement of spinal instrumentation However, few published studies have reported long term outcomes of PLIF using a same surgical procedure. The purpose of this study is to evaluate a long term outcome of PLIF using a same surgical procedure for L4-L5 degenerative spondylolisthesis. Materials and Methods: Out of 45 patients who underwent L4-L5 PLIF for degenerative spondylolisthesis between 1995 and 2003, 37 patients (16 males and 21 females) were evaluated in this study. Mean age was 61.8 years. The average followup period was 121 months. We evaluated % slip, lordosis at L4/L5, lumbar lordosis, Japanese Orthopedic Association's (JOA) score and adjacent segment degeneration. Results: The % slip significantly improved from an average of 17.0% before surgery to 9.7% at the last followup. Lordosis at L4/L5 averaged 3.6° before surgery, 8.2° after surgery and 6.9° at the last followup. Although patients experienced some loss of correction at last followup, their lordosis at L4/L5 at last followup still was significantly different from their lordosis at L4/L5 before surgery. Lumbar lordosis did not significantly change. Mean JOA score was 13.4 before surgery and 24.5 at the last followup; mean recovery ratio was 71.2%. Adjacent segment degeneration occurred in 40.5% of patients, almost all of which occurred in the cranial adjacent segment. Three patients (8.1%) required reoperation due to adjacent segment degeneration, at an average of 76 months after their initial surgery. Conclusions: With more than 10-year followup after L4-L5 PLIF for degenerative spondylolisthesis, the adjacent segment degeneration occurred in 40.5% and reoperation was required in 8.1%. PMID:26015627

  9. Comparison of the Dynesys Dynamic Stabilization System and Posterior Lumbar Interbody Fusion for Lumbar Degenerative Disease

    PubMed Central

    Zhang, Yang; Shan, Jian-Lin; Liu, Xiu-Mei; Li, Fang; Guan, Kai; Sun, Tian-Sheng

    2016-01-01

    Background There have been few studies comparing the clinical and radiographic outcomes between the Dynesys dynamic stabilization system and posterior lumbar interbody fusion (PLIF). The objective of this study is to compare the clinical and radiographic outcomes of Dynesys and PLIF for lumbar degenerative disease. Methods Of 96 patients with lumbar degenerative disease included in this retrospectively analysis, 46 were treated with the Dynesys system and 50 underwent PLIF from July 2008 to March 2011. Clinical and radiographic outcomes were evaluated. We also evaluated the occurrence of radiographic and symptomatic adjacent segment degeneration (ASD). Results The mean follow-up time in the Dynesys group was 53.6 ± 5.3 months, while that in the PLIF group was 55.2 ± 6.8 months. At the final follow-up, the Oswestry disability index and visual analogue scale score were significantly improved in both groups. The range of motion (ROM) of stabilized segments in Dynesys group decreased from 7.1 ± 2.2° to 4.9 ± 2.2° (P < 0.05), while that of in PLIF group decreased from 7.3 ± 2.3° to 0° (P < 0.05). The ROM of the upper segments increased significantly in both groups at the final follow-up, the ROM was higher in the PLIF group. There were significantly more radiographic ASDs in the PLIF group than in the Dynesys group. The incidence of complications was comparable between groups. Conclusions Both Dynesys and PLIF can improve the clinical outcomes for lumbar degenerative disease. Compared to PLIF, Dynesys stabilization partially preserves the ROM of the stabilized segments, limits hypermobility in the upper adjacent segment, and may prevent the occurrence of ASD. PMID:26824851

  10. A minimally invasive posterior lumbar interbody fusion using percutaneous long arm pedicle screw system for degenerative lumbar disease

    PubMed Central

    He, Er-Xing; Cui, Ji-Hao; Yin, Zhi-Xun; Li, Chuang; Tang, Cheng; He, Yi-Qian; Liu, Cheng-Wei

    2014-01-01

    The aim of this study is to evaluate the therapeutic efficacy of patients with lumbar degeneration and instability treated with percutaneous pedicle screw fixation and minimally invasive lumbar interbody fusion. Twenty-one patients were selected in our hospital from November, 2012 to March, 2013. The patients with an average age 55.62 years, including 8 vertebral spondylolisthesis, 4 lumbar intervertebral disc herniation, and 9 lumbar spinal canal stenosis cases. All the patients were managed to take the lumbar MRI and radiographs. The comparison of preoperative and postoperative (3 days, 2 weeks, 3 months) VAS and ODI score were analyzed. The results indicated that VAS scores were 7.14 0.79 before operation, and 5.19 0.81 in 3 days after operation, 4 0.84 after 2 weeks, and 2.67 0.66 after 3 months. The pain was relieved, and the postoperative VAS score was lower than that before treatment (P < 0.05). ODI score was 55.8 11.4 before operation, 47.38 9.38 after 3 days, 41.38 8.09 after 2 weeks, 35.76 4.50 after 3 months. ODI score was obviously decreased (P < 0.05). In conclusion, percutaneous pedicle screw fixation combined with minimally invasive interbody fusion is a safe, effective, feasible minimally invasive spine operation, with worthy for spreading. PMID:25550904

  11. Particular Features of Surgical Site Infection in Posterior Lumbar Interbody Fusion

    PubMed Central

    Kim, Jin Hak; Kim, Jin Woo; Kim, Go We

    2015-01-01

    Background Previous reports have observed differences only in infection rates between posterolateral fusion and posterior lumbar interbody fusion (PLIF). There have been no reports that describe the particular features of surgical site infection (SSI) in PLIF. In this study, we endeavor to identify the distinguishing characteristics and risk factors of SSI in PLIF. Methods Our study undertook a review of a case series of an institute. Patients who had undergone PLIF consecutively in the author's hospital were reviewed. Two proactive procedures were introduced during the study period. One was irrigation of the autolocal bone, and the other was the intradiscal space irrigation with a nozzle. Infection rate and risk factors were analyzed. For subgroup analysis, the elapsed time to a diagnosis (ETD), clinical manifestations, hematologic findings, and causative bacteria were examined in patients with SSI. Results In a total of 1,831 cases, there were 30 cases of SSI (1.6%). Long operation time was an independent risk factor (p = 0.008), and local bone irrigation was an independent protective factor (p = 0.001). Two cases of referred SSI were included in the subgroup analysis. There were 6/32 (19%) superficial incisional infections (SII), 6/32 (19%) deep incisional infections (DII), and 20/32 (62%) organ/space infections (O/SI). The difference of incidence among three groups was significant (p = 0.002).The most common bacteria encountered were methicillin-resistant Staphylococcus epidermidis followed by methicillin-resistant S. aureus in incisional infections, and no growth followed by S. epidermidis in O/SI. ETD was 8.5 ± 2.3 days in SII, 8.7 ± 2.3 days in DII and 164.5 ± 131.1 days in O/SI (p = 0.013). Conclusions The rate of SSI in PLIF was 1.6%, with the most common type being O/SI. The causative bacteria of O/SI was of lower virulence than in the incisional infection, and thus diagnosis was delayed due to its latent and insidious feature. Contamination of auto-local bone was presumed attributable to the progression of SSI. Irrigation of auto-local bone helped in the reduction of SSI. PMID:26330956

  12. Transforaminal lumbar interbody fusion rates in patients using a novel titanium implant and demineralized cancellous allograft bone sponge

    PubMed Central

    Girasole, Gerard; Muro, Gerard; Mintz, Abraham; Chertoff, Jason

    2013-01-01

    Background Transforaminal lumbar interbody fusion (TLIF) with grafting and implant options like iliac crest bone graft (ICBG), recombinant bone morphogenetic protein (rhBMP), and polyetheretherketone (PEEK) cages have been reported to achieve extremely high fusion rates. Unfortunately, these options have also been frequently cited in the literature as causing postoperative morbidity and complications at a high cost. Knowing this, we sought to investigate TLIF using an acid-etched, roughened titanium cage that upregulates osteogenesis to see if similar fusion rates to those cited for ICBG, rhBMP, and PEEK cages could be safely achieved with minimal morbidity and complications. Materials and methods A radiographic fusion study of 82 patients who underwent TLIF using an acid-etched, roughened titanium cage with demineralized cancellous bone graft was conducted. Fusion was assessed and graded by an independent radiologist using computed tomography scan with sagittal and coronal reconstructions. Results Fusion rates at 6 months were 41 of 44 (93.2%) and at 12 months were 37 of 38 (97.4%). There were no radiographic device-related complications. Conclusions TLIF with an acid-etched, roughened titanium cage filled with a decalcified bone graft achieved similar fusion rates to historical controls using ICBG, rhBMP, and PEEK. PMID:25580378

  13. Finite Element Analysis of a New Pedicle Screw-Plate System for Minimally Invasive Transforaminal Lumbar Interbody Fusion

    PubMed Central

    Zhou, Yue; Li, Changqing; Liu, Huan

    2015-01-01

    Purpose Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) is increasingly popular for the surgical treatment of degenerative lumbar disc diseases. The constructs intended for segmental stability are varied in MI-TLIF. We adopted finite element (FE) analysis to compare the stability after different construct fixations using interbody cage with posterior pedicle screw-rod or pedicle screw-plate instrumentation system. Methods A L3S1 FE model was modified to simulate decompression and fusion at L4L5 segment. Fixation modes included unilateral plate (UP), unilateral rod (UR), bilateral plate (BP), bilateral rod (BR) and UP+UR fixation. The inferior surface of the S1 vertebra remained immobilized throughout the load simulation, and a bending moment of 7.5 Nm with 400N pre-load was applied on the L3 vertebra to recreate flexion, extension, lateral bending, and axial rotation. Range of motion (ROM) and Von Mises stress were evaluated for intact and instrumentation models in all loading planes. Results All reconstructive conditions displayed decreased motion at L4L5. The pedicle screw-plate system offered equal ROM to pedicle screw-rod system in unilateral or bilateral fixation modes respectively. Pedicle screw stresses for plate system were 2.2 times greater than those for rod system in left lateral bending under unilateral fixation. Stresses for plate were 3.1 times greater than those for rod in right axial rotation under bilateral fixation. Stresses on intervertebral graft for plate system were similar to rod system in unilateral and bilateral fixation modes respectively. Increased ROM and posterior instrumentation stresses were observed in all loading modes with unilateral fixation compared with bilateral fixation in both systems. Conclusions Transforaminal lumbar interbody fusion augmentation with pedicle screw-plate system fixation increases fusion construct stability equally to the pedicle screw-rod system. Increased posterior instrumentation stresses are observed in all loading modes with plate fixation, and bilateral fixation could reduce stress concentration. PMID:26649749

  14. Lateral Pressure and VAS Pain Score Analysis for the Lateral Lumbar Interbody Fusion Procedure

    PubMed Central

    2015-01-01

    Background The lateral lumbar interbody fusion (LLIF) procedure is a minimally invasive procedure that has become widely utilized. The LLIF procedure typically involves bending the table to access the disc spaces of interest due to anatomical constraints. It is unknown if this bending process is painful or what pressures are exhibited on the downside part of the body. The goal of the study was to determine whether sex, height, weight, body mass index, bed angle, or positioning relative to the break of the bed affects the downside skin pressures and VAS pain scores in awake volunteers. Methods Fifty-six volunteers were placed in the lateral decubitus position and pressure sensors were placed at the downside part of their anatomy (shoulder, T10 rib , iliac crest, and greater trochanter). The pressures were checked with the iliac crest or greater trochanter at 0, 10, 20, 30, 40 degree bed angles. VAS scores were checked when the iliac crest or greater trochanter were at the maximum bed break angles. Results A significant positive association was found between increased bed angle and pressure at all five areas on the downside body locations (p<0.0001). The greatest pressures were located at the iliac crest and greater trochanter when these specific locations were centered over the break of the bed (p<0.0001). When the iliac crest was placed at maximal bed break, each unit increase in BMI increased the VAS pain by 0.13 (p<0.0001)and men had 1.96 (p=0.0009)higher VAS scores then women. When the greater trochanter was placed at the maximal bed break, each unit increase in BMI decreased VAS pain by 0.19 (p<0.0001) and women had 1.55 (p=0.0002)higher VAS pain scores then men. Conclusions In awake volunteers, the pressure at the iliac crest or greater trochanter at the break of the bed increases by increasing the bed angle. Women with a lower BMI had high VAS pain scores when their greater trochanter was at maximal bed break. Men with higher BMI had high VAS pain scores when their iliac crest was at maximal bed break. An awareness of the iliac crest or greater trochanter at the break of the bed should be considered to prevent pain and increased pressure based on the patient's sex and BMI. PMID:26512342

  15. The influence of cage positioning and cage type on cage migration and fusion rates in patients with monosegmental posterior lumbar interbody fusion and posterior fixation

    PubMed Central

    Abbushi, Alexander; Čabraja, Mario; Thomale, Ulrich-Wilhelm; Woiciechowsky, Christian

    2009-01-01

    In posterior lumbar interbody fusion, cage migrations and lower fusion rates compared to autologous bone graft used in the anterior lumbar interbody fusion procedure are documented. Anatomical and biomechanical data have shown that the cage positioning and cage type seem to play an important role. Therefore, the aim of the present study was to evaluate the impact of cage positioning and cage type on cage migration and fusion. We created a grid system for the endplates to analyze different cage positions. To analyze the influence of the cage type, we compared “closed” box titanium cages with “open” box titanium cages. This study included 40 patients with 80 implanted cages. After pedicle screw fixation, 23 patients were treated with a “closed box” cage and 17 patients with an “open box” cage. The follow-up period averaged 25 months. Twenty cages (25%) showed a migration into one vertebral endplate of <3 mm and four cages (5%) showed a migration of ≥3 mm. Cage migration was highest in the medio-medial position (84.6%), followed by the postero-lateral (42.9%), and the postero-medial (16%) cage position. Closed box cages had a significantly higher migration rate than open box cages, but fusion rates did not differ. In conclusion, cage positioning and cage type influence cage migration. The medio-medial cage position showed the highest migration rate. Regarding the cage type, open box cages seem to be associated with lower migration rates compared to closed box cages. However, the cage type did not influence bone fusion. PMID:19475436

  16. Lateral Lumbar Interbody Fusion for the Correction of Spondylolisthesis and Adult Degenerative Scoliosis in High-Risk Patients: Early Radiographic Results and Complications

    PubMed Central

    Waddell, Brad; Briski, David; Qadir, Rabah; Godoy, Gustavo; Houston, Allison Howard; Rudman, Ernest; Zavatsky, Joseph

    2014-01-01

    Background Lateral lumbar interbody fusion (LLIF) is not associated with many of the complications seen in other interbody fusion techniques. This study used computed tomography (CT) scans, the radiographic gold standard, to assess interbody fusion rates achieved utilizing the LLIF technique in high-risk patients. Methods We performed a retrospective review of patients who underwent LLIF between January 2008 and July 2013. Forty-nine patients underwent nonstaged or staged LLIF on 119 levels with posterior correction and augmentation. Per protocol, patients received CT scans at their 1-year follow-up. Of the 49 patients, 21 patients with LLIF intervention on 54 levels met inclusion criteria. Two board-certified musculoskeletal radiologists and the senior surgeon (JZ) assessed fusion. Results Of the 21 patients, 6 patients had had previous lumbar surgery, and the cohort's comorbidities included osteoporosis, diabetes, obesity, and smoking, among others. Postoperative complications occurred in 12 (57.1%) patients and included anterior thigh pain and weakness in 6 patients, all of which resolved by 6 months. Two cases of proximal junctional kyphosis occurred, along with 1 case of hardware pullout. Two cases of abdominal atonia occurred. By CT scan assessment, each radiologist found fusion was achieved in 53 of 54 levels (98%). The radiologists' findings were in agreement with the senior surgeon. Conclusion Several studies have evaluated LLIF fusion and reported fusion rates between 88%-96%. Our results demonstrate high fusion rates using this technique, despite multiple comorbidities in the patient population. Spanning the ring apophysis with large LLIF cages along with supplemental posterior pedicle screw augmentation can enhance stability of the fusion segment and increase fusion rates. PMID:24688329

  17. Comparison between Minimally Invasive and Open Transforaminal Lumbar Interbody Fusion: A Meta-Analysis of Clinical Results and Safety Outcomes.

    PubMed

    Lin, Yang; Chen, Wenjian; Chen, Anmin; Li, Feng

    2016-01-01

    Objective?A meta-analysis comparing the efficacy and safety of minimally invasive and open transforaminal lumbar interbody fusion (TLIF) for degenerative lumbar diseases. Methods?A literature search of PubMed, Embase, ScienceDirect, OVID, Google scholar, and Cochrane Library databases was conducted to identify relevant articles published before May 2013. Only studies that directly compared the efficacy and safety of minimally invasive and open TLIF in patients with degenerative lumbar diseases were selected. The main outcomes analyzed were the visual analog scale (VAS), Oswestry Disability Index (ODI), complications, and fusion rates. Also evaluated were intraoperative X-ray exposure, intra-postoperative blood loss, operating time, and hospitalization. Results?The selected 14 studies included 494 patients who received minimally invasive TLIF and 500 patients given open TLIF. According to the Methodological Index for Non-Randomized Studies, the quality scores of the studies ranged from 11 to 19. No significant differences in preoperative VAS or ODI scores, operating time, complication rate, or fusion rate were observed between these two procedures. Compared with open TLIF, minimally invasive TLIF was associated with significantly less blood loss, shorter hospitalization, and lower VAS during follow-up assessment. However, minimally invasive TLIF involved significantly more intraoperative X-ray exposure. Conclusion?Although the clinical efficacy, risk of complications and fusion rate were comparable between the two procedures, minimally invasive TLIF resulted in less blood loss, lower follow-up VAS score, and shorter perioperative hospitalization relative to open TLIF. PMID:26091113

  18. Postoperative Cyst Associated with Bone Morphogenetic Protein Use in Posterior and Transforaminal Lumbar Interbody Fusion Managed Conservatively: Report of Two Cases

    PubMed Central

    Mejía, Diana M; Drazin, Doniel; Anand, Neel

    2016-01-01

    Bone morphogenetic protein use in spinal surgery for off-label indications continues to remain popular. One area where its use has known associated radicular complications is posterior or transforaminal lumbar interbody fusion. These complications include radiculitis, cyst development, and heterotopic ossification, amongst others. Typically, cyst development has been treated surgically. We present two cases of bone morphogenetic protein-related cysts treated medically and thus, present medical treatment as an alternative treatment option. PMID:27014519

  19. Postoperative Cyst Associated with Bone Morphogenetic Protein Use in Posterior and Transforaminal Lumbar Interbody Fusion Managed Conservatively: Report of Two Cases.

    PubMed

    Baron, Eli M; Mejía, Diana M; Drazin, Doniel; Anand, Neel

    2016-01-01

    Bone morphogenetic protein use in spinal surgery for off-label indications continues to remain popular. One area where its use has known associated radicular complications is posterior or transforaminal lumbar interbody fusion. These complications include radiculitis, cyst development, and heterotopic ossification, amongst others. Typically, cyst development has been treated surgically. We present two cases of bone morphogenetic protein-related cysts treated medically and thus, present medical treatment as an alternative treatment option. PMID:27014519

  20. Minimally Invasive Transforaminal Lumbar Interbody Fusion with Unilateral Pedicle Screw Fixation: Comparison between Primary and Revision Surgery

    PubMed Central

    Kang, Moo Sung; Kim, Kyung Hyun; Kuh, Sung Uk; Chin, Dong Kyu; Kim, Keun Su; Cho, Yong Eun

    2014-01-01

    Minimally invasive surgery with a transforaminal lumbar interbody fusion (MIS TLIF) is an important minimally invasive fusion technique for the lumbar spine. Lumbar spine reoperation is challenging and is thought to have greater complication risks. The purpose of this study was to compare MIS TLIF with unilateral screw fixation perioperative results between primary and revision surgeries. This was a prospective study that included 46 patients who underwent MIS TLIF with unilateral pedicle screw. The patients were divided into two groups, primary and revision MIS TLIF, to compare perioperative results and complications. The two groups were similar in age, sex, and level of operation, and were not significantly different in the length of follow-up or clinical results. Although dural tears were more common with the revision group (primary 1; revision 4), operation time, blood loss, total perioperative complication, and fusion rates were not significantly different between the two groups. Both groups showed substantial improvements in VAS and ODI scores one year after surgical treatment. Revision MIS TLIF performed by an experienced surgeon does not necessarily increase the risk of perioperative complication compared with primary surgery. MIS TLIF with unilateral pedicle screw fixation is a valuable option for revision lumbar surgery. PMID:24949483

  1. Endoscopic minimally invasive transforaminal interbody fusion without general anesthesia: initial clinical experience with 1-year follow-up.

    PubMed

    Wang, Michael Y; Grossman, Jay

    2016-02-01

    OBJECTIVE One of the principal goals of minimally invasive surgery has been to speed postoperative recovery. In this case series, the authors used an endoscopic technique for interbody fusion combined with percutaneous screw fixation to obviate the need for general anesthesia. METHODS The first 10 consecutive patients treated with a minimum of 1 year's follow-up were included in this series. The patients were all treated using endoscopic access through Kambin's triangle to allow for neural decompression, discectomy, endplate preparation, and interbody fusion. This was followed by percutaneous pedicle screw and connecting rod placement using liposomal bupivacaine for long-acting analgesia. No narcotics or regional anesthetics were used during surgery. RESULTS All patients underwent the procedure successfully without conversion to open surgery. The patients' average age was 62.2 ± 9.0 years (range 52-78 years). All patients had severe disc height collapse, and 60% had a Grade I spondylolisthesis. The mean operative time was 113.5 ± 6.3 minutes (range 105-120 minutes), and blood loss was 65 ± 38 ml (range 30-190 ml). The mean length of hospital stay was 1.4 ± 1.3 nights. There were no intraoperative or postoperative complications. Comparison of preoperative and final clinical metrics demonstrated that the Oswestry Disability Index improved from 42 ± 11.8 to 13.3 ± 15.1; the 36-Item Short Form Health Survey (SF-36) Physical Component Summary improved from 47.6 ± 3.8 to 49.7 ± 5.4; the SF-36 Mental Component Summary decreased from 47 ± 3.9 to 46.7 ± 3.4; and the EQ-5D improved from 10.7 ± 9.5 to 14.2 ± 1.6. There were no cases of nonunion identified radiographically on follow-up imaging. CONCLUSIONS Endoscopic fusion under conscious sedation may represent a feasible alternative to traditional lumbar spine fusion in select patients. Larger clinical series are necessary to validate that clinical improvements are sustained and that arthrodesis rates are successful when compared with open surgery. This initial experience demonstrates the possible utility of this procedure. PMID:26828882

  2. Intraspinal metalloma causing lumbar stenosis after interbody fusion with cylindrical titanium cages.

    PubMed

    Fernndez-Ballo, Nicomedes; Snchez Marquez, Jos Miguel; Conde Gallego, Esther; Martn Esteban, Ana

    2012-12-01

    Intraspinal metallomas are rare. The authors present a case after implantation of two titanium threaded interbody cages at the L4L5 level, without posterior instrumentation. To their knowledge this is the first case due to intervertebral cages. The lack of additional instrumentation had probably allowed the cages to make contact. Subsequently, friction generated wear debris, which led to the formation of a granuloma, responsible for compression of the dural sac. Intraspinal metallosis should be kept in mind as an infrequent cause of delayed neurological symptoms after spinal surgery with metallic instrumentation. PMID:23409582

  3. A Comparative Radiographic Analysis of Fusion Rate between L4-5 and L5-S1 in a Single Level Posterior Lumbar Interbody Fusion

    PubMed Central

    Han, Sang-Hyun; Hyun, Seung-Jae; Jahng, Tae-Ahn

    2015-01-01

    Objective This study aimed to investigate radiographic fusion rates at L4-5 and L5-S1 after single level posterior lumbar interbody fusion (PLIF) and evaluate the relationship between fusion rates and preoperative disc slope angle (DSA), lumbar lordosis (LL), segmental angle (SA), and pelvic parameters. Methods We conducted a retrospective review of patients who underwent single level PLIF at L4-5 or L5-S1 during May 2003-December 2012 at our institution. 73 patients were finally enrolled. Fusion was assessed by use of the Brantigan-Steffee classification, less than 2mm translation and less than 5 motion on the flexion-extension lateral radiographs. We analyzed the radiographic fusion rates, risk factors, and relationship of fusion rates with DSA, LL, SA, and pelvic parameters. Results There were 59 patients (80.8%) in the L4-5 group and 14 (19.2%) in L5-S1 (average follow-up, 34 months). The radiographic fusion rates were 89.8% in the L4-5 group (53/59) and 42.9% in L5-S1 (6/14) (p<0.001).The preoperative DSA was significantly lesser in the L4-5 group than in the L5-S1 group (13.18.1 vs. 27.26.7, p<0.001). The LL, SA, and pelvic parameters were not related with radiographic fusion rates in both groups. Risk factors for non-union were not identified between the two groups except for the surgery level (p<0.001). Conclusion The radiographic fusion rate at L5-S1 was less than half that at L4-5 after single level PLIF. This may be due to the anatomical and biomechanical differences between the two levels. More vigorous effort to achieve successful fusion at L5-S1 should be considered. PMID:26217384

  4. Anterior cervical interbody fusion using polyetheretherketone cage filled with autologous and synthetic bone graft substrates for cervical spondylosis: comparative analysis between PolyBone and iliac bone.

    PubMed

    Park, Jin Hoon; Roh, Sung Woo

    2013-01-01

    Clinical and radiological outcomes of cervical interbody fusion using a polyetheretherketone cage filled with PolyBone() (Kyungwon Medical Co., Ltd., Seoul, Korea), beta-tricalcium phosphate material, and autologous iliac bone were retrospectively compared in 47 patients who underwent anterior cervical discectomy and fusion (ACDF) between January 2007 and April 2008. Of these, 23 received iliac bone grafts and 24 received PolyBone. Numeric rating scale and neck disability index were used for clinical outcome assessments. Cervical radiography was performed immediately postoperatively, and at 1, 3, 6, 12, and 24 months postoperatively. Computed tomography (CT) was performed at 12 and 24 months postoperatively. Change in segmental lordosis, disk height, and fusion were compared at 12 and 24 months postoperatively. Clinical outcomes were similar between both groups. CT and radiography at 12 months showed that fusion had occurred in 22 patients in the iliac bone group and in 19 in the PolyBone recipients. Fusion was also identified in 22 patients in both iliac bone and PolyBone groups at 24 months postoperatively. The clinical outcomes of ACDF using PolyBone and iliac bone were similar, with similar cervical interbody fusion rates at 24 months postoperatively. However, the time taken for fusion was apparently longer in the PolyBone group. PMID:23438658

  5. Lateral retroperitoneal transpsoas interbody fusion in a patient with achondroplastic dwarfism.

    PubMed

    Staub, Blake N; Holman, Paul J

    2015-02-01

    The authors present the first reported use of the lateral retroperitoneal transpsoas approach for interbody arthrodesis in a patient with achondroplastic dwarfism. The inherent anatomical abnormalities of the spine present in achondroplastic dwarfism predispose these patients to an increased incidence of spinal deformity as well as neurogenic claudication and potential radicular symptoms. The risks associated with prolonged general anesthesia and intolerance of significant blood loss in these patients makes them ideal candidates for minimally invasive spinal surgery. The patient in this case was a 51-year-old man with achondroplastic dwarfism who had a history of progressive claudication and radicular pain despite previous extensive lumbar laminectomies. The lateral retroperitoneal transpsoas approach was used for placement of interbody cages at L1/2, L2/3, L3/4, and L4/5, followed by posterior decompression and pedicle screw instrumentation. The patient tolerated the procedure well with no complications. Postoperatively his claudicatory and radicular symptoms resolved and a CT scan revealed solid arthrodesis with no periimplant lucencies. PMID:25415482

  6. Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process.

    PubMed

    Lin, Chia-Ying; Wirtz, Tobias; LaMarca, Frank; Hollister, Scott J

    2007-11-01

    A topology optimized lumbar interbody fusion cage was made of Ti-Al6-V4 alloy by the rapid prototyping process of selective laser melting (SLM) to reproduce designed microstructure features. Radiographic characterizations and the mechanical properties were investigated to determine how the structural characteristics of the fabricated cage were reproduced from design characteristics using micro-computed tomography scanning. The mechanical modulus of the designed cage was also measured to compare with tantalum, a widely used porous metal. The designed microstructures can be clearly seen in the micrographs of the micro-CT and scanning electron microscopy examinations, showing the SLM process can reproduce intricate microscopic features from the original designs. No imaging artifacts from micro-CT were found. The average compressive modulus of the tested caged was 2.97+/-0.90 GPa, which is comparable with the reported porous tantalum modulus of 3 GPa and falls between that of cortical bone (15 GPa) and trabecular bone (0.1-0.5 GPa). The new porous Ti-6Al-4V optimal-structure cage fabricated by SLM process gave consistent mechanical properties without artifactual distortion in the imaging modalities and thus it can be a promising alternative as a porous implant for spine fusion. PMID:17415762

  7. The anatomic rationale for transforaminal endoscopic interbody fusion: a cadaveric analysis.

    PubMed

    Hardenbrook, Mitchell; Lombardo, Sergio; Wilson, Miles C; Telfeian, Albert E

    2016-02-01

    OBJECTIVE The authors describe a cadaveric analysis to determine the ideal dimensions and trajectory for considering endoscopic transforaminal interbody implantation. METHODS The soft tissues of 8 human cadavers were removed from L-1 to the sacrum, exposing the posterior bony elements. Facetectomies were performed bilaterally at each lumbar level with resection of the pars interarticularis, revealing the pedicles, nerve roots, and interbody disc space. Each level was digitally photographed with a marker for scale and evaluated with digital analysis software. The traversing and exiting nerve roots and pedicle margins were identified, and the distances between these structures and their relationships to the surrounding structures were documented. RESULTS The dimensions of 2 areas were measured: the working triangle and safe zone. The working triangle is the triangle between the exiting and traversing nerve roots above the superior margin of the inferior pedicle. The safe zone is the trapezoid bounded by the widths of the superior and inferior pedicles between the exiting and traversing nerve roots. The mean surface area for the working triangle was 1.83 cm(2), with L5-S1 having the largest area at 2.19 cm(2). The mean surface area of the safe zone was 1.19 cm(2), with L5-S1 having the largest area at 1.26 cm(2). At the medial border of the pedicle extending superiorly, there were no nerve structures within 1.19 cm at any level. On the lateral border of the pedicle, the exiting nerve root was closer superiorly, with the closest being 0.3 cm. CONCLUSIONS The working triangle is a relatively large area. The safe zone, just superior to the pedicle, is free of nerve structures. By utilizing the superior border of the pedicle, the disc space can be accessed within this safe zone without risk of injury to the nerves. A thorough understanding of foraminal anatomy is fundamental for considering how to safely access the disc space, thereby utilizing less invasive endoscopic techniques, and is an important first step in considering what shapes and sizes of interbody implants and retractors are feasible for use in the foramen. PMID:26828881

  8. Percutaneous Transforaminal Lumbar Interbody Fusion (pTLIF) with a Posterolateral Approach for the Treatment of Degenerative Disk Disease: Feasibility and Preliminary Results

    PubMed Central

    Morgenstern, Christian

    2015-01-01

    Background Interbody fusion by open discectomy is the usual treatment for degenerative disk disease but requires a relatively long recovery period. The transforaminal posterolateral approach is a well-known standard in endoscopic spine surgery that allows direct access to the disk with progressive tissue dilation. The aim of this study was to assess the feasibility of percutaneous transforaminal interbody fusion (pTLIF) with insertion of an expandable or a standard rigid interbody implant for patients with degenerative disk disease with or without spondylolisthesis and for revision surgery. Methods Between 2009 and 2014, the pTLIF procedure was performed in 30 patients. Ten patients underwent insertion of a rigid implant (group A) and the remaining 20 underwent insertion of an expandable titanium interbody implant as the initial procedure (n = 10) (group B) or after failed back surgery (n = 10) (group C). Patient outcomes were scored with visual analogic scale (VAS), Oswestry disability index (ODI) and modified Macnab criteria. Results The mean follow-up period was 38 (17) (range 11 to 67) months. The outcome was excellent in 18, good in 10 and fair in 2. No poor results and no major complications were reported. No differences in VAS and ODI scores according to the study group were found. Median postoperative time until hospital discharge was 26 hours (20 to 68 hours). Postoperative values for VAS and ODI scores improved significantly (p<0.05) compared to preoperative data in all study groups. Conclusions These preliminary results have shown the feasibility and efficacy of the pTLIF procedure using a posterolateral approach for the treatment of degenerative disk disease with or without spondylolisthesis up to grade 2 and in revision surgery. No significant differences in outcome were observed between an expandable and a rigid cage. Median postoperative time until hospital discharge was faster compared to standard TLIF (26 hours vs. 9.3 days). PMID:26484004

  9. Demineralized Bone Matrix, as a Graft Enhancer of Auto-Local Bone in Posterior Lumbar Interbody Fusion

    PubMed Central

    Moon, Sang Ho; Kim, Tae Woo; Boo, Kyung Hwan; Hong, Sung Won

    2014-01-01

    Study Design A case controlled study with prospective data collection. Purpose To evaluate the early influence and the final consequence of demineralized bone matrix (DBM) on auto-local bone as a graft enhancer in posterior lumbar interbody fusion (PLIF). Overview of Literature DBM is known as an osteoinductive material; however, it has not been clearly recognized to enhance auto-local bone with a small amount. Methods Patients who had a PLIF were allocated into two groups. Group I (70 cases) used auto-local bone chips and group II (44 cases) used DBM as an additive to auto-local bone, 1 mL per a segment. Group selection was alternated. Early assessment was performed by computed tomography at 6 months and final assessment was done by simple radiography after 24 months at least. The degree of bone formation was assessed by 4 grade scale. Results The subjects of both groups were homogenous and had similar Oswestry Disability Index at final assessment. The ratio of auto-local bone chips and DBM was 6:1. The degree of bone formation at 6 months after surgery was superior in group II. However, there was no significant difference between the two groups at the final assessment. Conclusions DBM was not recognized to enhance auto-local bone with small amount. PMID:24761193

  10. Hemothorax caused by the trocar tip of the rod inserter after minimally invasive transforaminal lumbar interbody fusion: case report.

    PubMed

    Maruo, Keishi; Tachibana, Toshiya; Inoue, Shinichi; Arizumi, Fumihiro; Yoshiya, Shinichi

    2016-03-01

    Minimally invasive surgery (MIS) for transforaminal lumbar interbody fusion (MIS-TLIF) is widely used for lumbar degenerative diseases. In the paper the authors report a unique case of a hemothorax caused by the trocar tip of the rod inserter after MIS-TLIF. A 61-year-old woman presented with thigh pain and gait disturbance due to weakness in her lower right extremity. She was diagnosed with a lumbar disc herniation at L1-2 and the MIS-TLIF procedure was performed. Immediately after surgery, the patient's thigh pain resolved and she remained stable with normal vital signs. The next day after surgery, she developed severe anemia and her hemoglobin level decreased to 7.6 g/dl, which required blood transfusions. A chest radiograph revealed a hemothorax. A CT scan confirmed a hematoma of the left paravertebral muscle. A chest tube was placed to treat the hemothorax. After 3 days of drainage, there was no active bleeding. The patient was discharged 14 days after surgery without leg pain or any respiratory problems. This complication may have occurred due to injury of the intercostal artery by the trocar tip of the rod inserter. A hemothorax after spine surgery is a rare complication, especially in the posterior approach. The rod should be caudally inserted in the setting of the thoracolumbar spine. PMID:26588499

  11. Clinical outcomes of single-level lumbar artificial disc replacement compared with transforaminal lumbar interbody fusion in an Asian population

    PubMed Central

    Lee, Wei Ting; Liu, Gabriel; Thambiah, Joseph; Wong, Hee Kit

    2015-01-01

    INTRODUCTION The objective of this study was to examine the clinical outcome of single-level lumbar artificial disc replacement (ADR) compared to that of transforaminal lumbar interbody fusion (TLIF) for the treatment of symptomatic degenerative disc disease (DDD) in an Asian population. METHODS This was a retrospective review of 74 patients who had surgery performed for discogenic lower backs that involved only the L4/5 and L5/S1 levels. All the patients had lumbar DDD without radiculopathy or spondylolithesis, and concordant pain with discogram at the pathological level. The patients were divided into two groups those who underwent ADR and those who underwent TLIF. RESULTS A trend suggesting that the ADR group had better perioperative outcomes (less blood loss, shorter operating time, shorter hospital stay and shorter time to ambulation) than the TLIF group was observed. However, a trend indicating that surgical-approach-related complications occurred more frequently in the ADR group than the TLIF group was also observed. The rate of revision surgery was comparable between the two groups. CONCLUSION Our findings suggest that for the treatment of discogenic lower back pain, lumbar ADR has better perioperative outcomes and a similar revision rate when compared with TLIF. However, the use of ADR was associated with a higher incidence of surgical-approach-related complications. More studies with bigger cohort sizes and longer follow-up periods are needed to determine the long-term efficacy and safety of ADR in lumbar DDD. PMID:25917472

  12. Clinical and radiological outcome of anteriorposterior fusion versus transforaminal lumbar interbody fusion for symptomatic disc degeneration: a retrospective comparative study of 133 patients

    PubMed Central

    Schwender, James D.; Safriel, Yair; Gilbert, Thomas J.; Mehbod, Amir A.; Denis, Francis; Transfeldt, Ensor E.; Wroblewski, Jill M.

    2009-01-01

    Abundant data are available for direct anterior/posterior spine fusion (APF) and some for transforaminal lumbar interbody fusion (TLIF), but only few studies from one institution compares the two techniques. One-hundred and thirty-three patients were retrospectively analyzed, 68 having APF and 65 having TLIF. All patients had symptomatic disc degeneration of the lumbar spine. Only those with one or two-level surgeries were included. Clinical chart and radiologic reviews were done, fusion solidity assessed, and functional outcomes determined by pre- and postoperative SF-36 and postoperative Oswestry Disability Index (ODI), and a satisfaction questionnaire. The minimum follow-up was 24 months. The mean operating room time and hospital length of stay were less in the TLIF group. The blood loss was slightly less in the TLIF group (409 vs. 480 cc.). Intra-operative complications were higher in the APF group, mostly due to vein lacerations in the anterior retroperitoneal approach. Postoperative complications were higher in the TLIF group due to graft material extruding against the nerve root or wound drainage. The pseudarthrosis rate was statistically equal (APF 17.6% and TLIF 23.1%) and was higher than most published reports. Significant improvements were noted in both groups for the SF-36 questionnaires. The mean ODI scores at follow-up were 33.5 for the APF and 39.5 for the TLIF group. The patient satisfaction rate was equal for the two groups. PMID:19125304

  13. Do obese patients have worse outcomes after direct lateral interbody fusion compared to non-obese patients?

    PubMed

    Adogwa, Owoicho; Farber, S Harrison; Fatemi, Parastou; Desai, Rupen; Elsamadicy, Aladine; Cheng, Joseph; Bagley, Carlos; Gottfried, Oren; Isaacs, Robert E

    2016-03-01

    Obese patients undergoing lumbar spinal fusion surgery are a challenge to the operating surgeon. Direct lateral interbody fusion (DLIF) has been performed for degenerative disease of the lumbar spine with good outcomes; nevertheless, how obese patients fare compared to non-obese patients after DLIF remains unknown. The primary aim of this study is to compare rates of postoperative complications and long-term outcomes between obese and non-obese patients undergoing DLIF. Sixty-three patients (obese: 29, non-obese: 34) undergoing index DLIF for degenerative disease of the spine between 2010 and 2012 at our institution were retrospectively enrolled. We analyzed data on demographics, postoperative complications, back and leg pain, and functional disability over 2years. Patients completed the Oswestry Disability Index (ODI) and Visual Analog Scale (VAS) back and leg pain numerical rating scores before surgery, then at 12 and 24months after surgery. Outcomes and complication rates were compared between the cohorts. The cohorts were similar at baseline. Postoperative complications rates were similar between obese and non-obese patients. There was no statistically significant difference in the incidence of durotomy (p=0.91), anterior thigh numbness (p=0.60), cerebrospinal fluid leak (p=0.91), postoperative infection (p=0.37), or bleeding requiring transfusion (p=0.16). No patient experienced a nerve injury or psoas hematoma. Both cohorts had similar 2year improvement in VAS for back pain, leg pain, and ODI. Our study demonstrates that obese and non-obese patients undergoing DLIF have similar complication profiles; hence, a patient's weight should not be a contraindication to DLIF. PMID:26549673

  14. Short-Term Results of Transforaminal Lumbar Interbody Fusion Using Pedicle Screw with Cortical Bone Trajectory Compared with Conventional Trajectory

    PubMed Central

    Miyakoshi, Naohisa; Hongo, Michio; Ishikawa, Yoshinori; Kudo, Daisuke; Shimada, Yoichi

    2015-01-01

    Study Design Case-control study. Purpose To evaluate clinical and radiological results of transforaminal lumbar interbody fusion (TLIF) performed with cortical bone trajectory (CBT) pedicle screw insertion with those of TLIF using 'conventional' or percutaneous pedicle screw insertion. Overview of Literature CBT is a new trajectory for pedicle screw insertion in the lumbar spine; clinical and radiological results of TLIF using pedicle screws inserted with CBT are unclear. Methods In total, 26 patients (11 males, 15 females) were enrolled in this retrospective study and divided into three groups: TLIF with pedicle screw insertion by conventional minimally invasive methods via the Wiltse approach (M-TLIF, n=10), TLIF with percutaneous pedicle screw insertion (P-TLIF, n=6), and TLIF with pedicle screw insertion with CBT (CBT-TLIF, n=10). Surgical results and preand postoperative radiological findings were evaluated and compared. Results Intraoperative blood loss was significantly less with CBT-TLIF (p=0.03) than with M-TLIF. Postoperative lordotic angles did not differ significantly among the three groups. Complete fusions were obtained in 10 of 12 levels (83%) with M-TLIF, in seven levels (100%) with P-TLIF, and in 10 of 11 levels (91%) with CBT-TLIF. On postoperative computed tomography, correct positioning was seen in 84.1% of M-TLIF screws, 88.5% of P-TLIF screws, and 90% of CBT-TLIF screws. Conclusions CBT-TLIF resulted in less blood loss and a shorter operative duration than M-TLIF or P-TLIF. Postoperative rates of bone union, maintenance of lordotic angles, and accuracy of pedicle screw positions were similar among the three groups. PMID:26097661

  15. Biomechanical Analysis of a Newly Developed Shape Memory Alloy Hook in a Transforaminal Lumbar Interbody Fusion (TLIF) In Vitro Model

    PubMed Central

    Wang, Xi; Xu, Jing; Zhu, Yuexing; Li, Jiukun; Zhou, Si; Tian, Shunliang; Xiang, Yucheng; Liu, Xingmo; Zheng, Ying; Pan, Tao

    2014-01-01

    Objective The objective of this biomechanical study was to evaluate the stability provided by a newly developed shape memory alloy hook (SMAH) in a cadaveric transforaminal lumbar interbody fusion (TLIF) model. Methods Six human cadaveric spines (L1-S2) were tested in an in vitro flexibility experiment by applying pure moments of ±8 Nm in flexion/extension, left/right lateral bending, and left/right axial rotation. After intact testing, a TLIF was performed at L4-5. Each specimen was tested for the following constructs: unilateral SMAH (USMAH); bilateral SMAH (BSMAH); unilateral pedicle screws and rods (UPS); and bilateral pedicle screws and rods (BPS). The L3–L4, L4–L5, and L5-S1 range of motion (ROM) were recorded by a Motion Analysis System. Results Compared to the other constructs, the BPS provided the most stability. The UPS significantly reduced the ROM in extension/flexion and lateral bending; the BSMAH significantly reduced the ROM in extension/flexion, lateral bending, and axial rotation; and the USMAH significantly reduced the ROM in flexion and left lateral bending compared with the intact spine (p<0.05). The USMAH slightly reduced the ROM in extension, right lateral bending and axial rotation (p>0.05). Stability provided by the USMAH compared with the UPS was not significantly different. ROMs of adjacent segments increased in all fixed constructs (p>0.05). Conclusions Bilateral SMAH fixation can achieve immediate stability after L4–5 TLIF in vitro. Further studies are required to determine whether the SMAH can achieve fusion in vivo and alleviate adjacent segment degeneration. PMID:25474112

  16. Microendoscopy-assisted minimally invasive transforaminal lumbar interbody fusion for lumbar degenerative disease: short-term and medium-term outcomes

    PubMed Central

    Yang, Yang; Liu, Bin; Rong, Li-Min; Chen, Rui-Qiang; Dong, Jian-Wen; Xie, Pei-Gen; Zhang, Liang-Ming; Feng, Feng

    2015-01-01

    Objective: To evaluate short-term and medium-term outcomes of microendoscopy-assisted minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) and open TLIF for lumbar degenerative disease. Methods: In this prospective, randomized control study, 50 cases received microendoscopy-assisted MIS-TLIF (MIS group), while another well-matched 50 cases accepted open TLIF (open group). Parameters between both groups, including surgical duration, intraoperative blood loss and radiologic exposure, postoperative analgesic usage and ambulatory time, visual analogue scale (VAS) for back and leg, functional scores, self-evaluation of surgical outcome (modified MacNab criteria), interbody fusion rate, adjacent segment degeneration (ASD) rate, as well as complication incidence were compared at 1 month and 24 months postoperatively. Results: Intraoperative blood loss and postoperative analgesic usage were significantly reduced in MIS group (P<0.05). Patients undergoing microendoscopy-assisted MIS-TLIF were able to ambulate earlier postoperatively than those receiving open TLIF (P<0.05). However, it showed prolonged surgical duration and enhanced radiologic exposure in MIS group (P<0.05). At 1 month postoperatively, MIS group was associated with more improvement of VAS and functional scores compared with open group (P<0.05). While at 24 months postoperatively, both groups revealed similar VAS and functional scores (P>0.05). Excellent and perfect scale rating by modified MacNab criteria, interbody fusion rate, ASD rate and complication incidence between both groups were nearly the same (P>0.05). Conclusions: Microendoscopy-assisted MIS-TLIF owns advantages of less iatrogenic injury, decreased blood loss, reduced analgesic usage and earlier rehabilitation, while it has drawbacks of more surgical duration and radiologic exposure. It is superior than open TLIF in terms of short-term clinical outcomes and has similar medium-term clinical outcomes.

  17. Prospective Randomized Controlled Trial of The Stabilis Stand Alone Cage (SAC) Versus Bagby and Kuslich (BAK) Implants for Anterior Lumbar Interbody Fusion

    PubMed Central

    Lavelle, William; McLain, Robert F.; Rufo-Smith, Candace; Gurd, David P.

    2014-01-01

    Background Degenerative disc disease is common and debilitating for many patients. If conservative extensive care fails, anterior lumbar interbody fusion has proven to be an alternative form of surgical management. The Stabilis Stand Alone Cage(SAC) was introduced as a method to obtain stability and fusion. The purpose of this study was to determine whether the Stabilis Stand Alone Cage (SAC) is comparable in safety and efficacy to the Bagby and Kuslich (BAK) device. Methods As part of a prospective, randomized, controlled FDA trial, 73 patients underwent anterior interbody fusion using either the SAC(56%) or the BAK device (44%). Results Background characteristics were similar between the two groups. There was no significant difference between the SAC and BAK groups in mean operative time or mean blood loss during surgery. Adverse event rates did not differ between the groups. Assessment of plain radiographs could not confirm solid fusion in 63% of control and 71% of study patients. Functional scores from Owestry and SF-36 improved in both groups by the two-year follow-up. There were no significant differences between the SAC and BAK patients with respect to outcome. Conclusions Both the Stabilis Stand Alone Cage and the BAK Cage provided satisfactory improvement in function and pain relief, despite less than expected radiographic fusion rates. The apparent incongruency between fusion rates and functional outcomes suggests that either radiographs underestimate the true incidence of fusion, or that patients are obtaining good pain relief and improved function despite a lower rate of fusion than previously reported. This was a Level III study. PMID:25694930

  18. Perioperative Surgical Complications and Learning Curve Associated with Minimally Invasive Transforaminal Lumbar Interbody Fusion: A Single-Institute Experience

    PubMed Central

    Lee, Soo Bin; Seok, Sang Ok; Jo, Byung Woo; Ha, Joong Won

    2015-01-01

    Background As surgical complications tend to occur more frequently in the beginning stages of a surgeon's career, knowledge of perioperative complications is important to perform a safe procedure, especially if the surgeon is a novice. We sought to identify and describe perioperative complications and their management in connection with minimally invasive transforaminal lumbar interbody fusion (TLIF). Methods We performed a retrospective chart review of our first 124 patients who underwent minimally invasive TLIF. The primary outcome measure was adverse events during the perioperative period, including neurovascular injury, implant-related complications, and wound infection. Pseudarthroses and adjacent segment pathologies were not included in this review. Adverse events that were not specifically related to spinal surgery and did not affect recovery were also excluded. Results Perioperative complications occurred in 9% of patients (11/124); including three cases of temporary postoperative neuralgia, two deep wound infections, two pedicle screw misplacements, two cage migrations, one dural tear, and one grafted bone extrusion. No neurologic deficits were reported. Eight complications occurred in the first one-third of the series and only 3 complications occurred in the last two-thirds of the series. Additional surgeries were performed in 6% of patients (7/124); including four reoperations (two for cage migrations, one for a misplaced screw, and one for an extruded graft bone fragment) and three hardware removals (one for a misplaced screw and two for infected cages). Conclusions We found perioperative complications occurred more often in the early period of a surgeon's experience with minimally invasive TLIF. Implant-related complications were common and successfully managed by additional surgeries in this series. We suggest greater caution should be exercised to avoid the potential complications, especially when surgeon is a novice to this procedure. PMID:25729524

  19. Comparison of SpineJet XL and Conventional Instrumentation for Disk Space Preparation in Unilateral Transforaminal Lumbar Interbody Fusion

    PubMed Central

    Huh, Han-Yong; Ji, Cheol; Ryu, Kyeong-Sik

    2010-01-01

    Objective Although unilateral transforaminal lumbar interbody fusion (TLIF) is widely used because of its benefits, it does have some technical limitations. Removal of disk material and endplate cartilage is difficult, but essential, for proper fusion in unilateral surgery, leading to debate regarding the surgery's limitations in removing the disk material on the contralateral side. Therefore, authors have conducted a randomized, comparative cadaver study in order to evaluate the efficiency of the surgery when using conventional instruments in the preparation of the disk space and when using the recently developed high-pressure water jet system, SpineJet XL. Methods Two spine surgeons performed diskectomies and disk preparations for TLIF in 20 lumbar disks. All cadaver/surgeon/level allocations for preparation using the SpineJet XL (HydroCision Inc., Boston, MA, USA) or conventional tools were randomized. All assessments were performed by an independent spine surgeon who was unaware of the randomizations. The authors measured the areas (cm2) and calculated the proportion (%) of the disk surfaces. The duration of the disk preparation and number of instrument insertions and withdrawals required to complete the disk preparation were recorded for all procedures. Results The proportion of the area of removed disk tissue versus that of potentially removable disk tissue, the proportion of the area of removed endplate cartilage, and the area of removed disk tissue in the contralateral posterior portion showed 74.5 17.2%, 18.5 12.03%, and 67.55 16.10%, respectively, when the SpineJet XL was used, and 52.6 16.9%, 22.8 17.84%, and 51.64 19.63%, respectively, when conventional instrumentations were used. The results also showed that when the SpineJet XL was used, the proportion of the area of removed disk tissue versus that of potentially removable disk tissue and the area of removed disk tissue in the contralateral posterior portion were statistically significantly high (p < 0.001, p < 0.05, respectively). Also, compared to conventional instrumentations, the duration required to complete disk space preparation was shorter, and the frequency of instrument use and the numbers of insertions/withdrawals were lower when the SpineJet XL was used. Conclusion The present study demonstrates that hydrosurgery using the SpineJet XL unit allows for the preparation of a greater portion of disk space and that it is less traumatic and allows for more precise endplate preparation without damage to the bony endplate. Furthermore, the SpineJet XL appears to provide tangible benefits in terms of disk space preparation for graft placement, particularly when using the unilateral TLIF approach. PMID:20539797

  20. Systematic Review of Thigh Symptoms after Lateral Transpsoas Interbody Fusion for Adult Patients with Degenerative Lumbar Spine Disease

    PubMed Central

    Gammal, Isaac D.; Bendo, John A.

    2015-01-01

    Background Lateral transpsoas interbody fusion (LTIF) is a minimally invasive technique for achieving lumbar spinal fusion. While it has many advantages over open techniques it carries with it a distinct set of risks, most commonly post-operative ipsilateral thigh pain, weakness and sensory disturbances. It is vital for both the surgeon and patient to understand the risks for and outcomes of injury associated with this procedure. We conducted a systematic review of the literature to evaluate the incidence, risks, and long-term clinical outcomes of post-operative thigh symptoms in patients treated with LTIF. Methods We conducted a search of MEDLINE, EMBASE, CINAHL, Scopus, Web of Science and the Cochrane Collaboration Library, using keywords and MeSH terms, for English-language literature published through September 2014, as well as reference lists from key articles. Studies were then manually filtered to retrieve articles that met inclusion criteria. We were interested in studies that reported postoperative lower extremity symptoms after LTIF, such as pain, weakness and changes in sensation. The strength of evidence was determined based on precepts outlined by the Grades of Recommendation Assessment, Development and Evaluation Working Group (GRADE). Results A total of 392 articles were initially retrieved, with 24 ultimately meeting criteria for inclusion. The incidence of any post-operative thigh symptom varied, ranging as high as 60.7%, with 9.3% of patients experiencing a motor deficit related to direct nerve injury. Several studies reported cases of persistent symptoms at 6 months follow up. Additionally, inclusion of the L4-5 disc space and a longer duration of surgery were both identified as risks for developing postoperative thigh symptoms. Conclusion The risk of postoperative thigh symptoms after LTIF is high. Thigh pain, paresthesias and weakness were the most commonly reported symptoms. While most patients’ symptoms resolved by 6 months follow up, several studies reported patients with symptoms persistent as far as 12 months removed from surgery. Surgery at the L4-5 disc space and longer surgical duration place the patient at greater risk for developing postoperative and long-term thigh symptoms. PMID:26767154

  1. Posterior lumbar interbody fusion with instrumented posterolateral fusion in adult spondylolisthesis: description and association of clinico-surgical variables with prognosis in a series of 36 cases

    PubMed Central

    Gomez-Moreta, Juan A.; Hernandez-Vicente, Javier

    2015-01-01

    Background We present our experience in the treatment of patients with isthmic or degenerative spondylolisthesis, by means of a posterior lumbar interbody fusion (PLIF) and instrumented posterolateral fusion (IPLF), and we compare them with those published in the literature. We analyse whether there exists any statistical association between the clinical characteristics of the patient, radiological characteristics of the disease and our surgical technique, with the complications and the clinical-radiological prognosis of the cases. Method We designed a prospective study. A total of 36 cases were operated. The patients included were 14 men and 22 women, with an average age of 57.17±27.32 years. Our technique consists of PLIF+IPLF, using local bone for the fusion. The clinical results were evaluated with the Visual Analogical Scale (VAS) and the Kirkaldy-Willis criteria. The radiological evaluation followed the Bratingan (PLIF) and Lenke (IPLF) methodology. A total of 42 variables were statistically analysed by means of SPSS18. We used the Paired Student's T-test, logistic regression and Pearson's Chi-square-test. Results The spondylolisthesis was isthmic in 15 cases and degenerative in 21 cases. The postoperative evaluations had excellent or good results in 94.5% (n = 34), with a statistically significant improvement in the back pain and sciatica (p < 0.01). The rate of circumferential fusion reached was approximately 92%. We had 13.88% of transitory morbility and 0% of mortality associated with our technique. A greater age, degree of listhesis or length of illness before the intervention, weakly correlated with worse clinical results (p< -0.2). In our series, the logistical regression showed that the clinical characteristics of the patient, radiological characteristics of the lesion and our surgical technique were not associated with greater postoperative complications. Conclusion Although a higher level of training is necessary, we believe that the described technique is a very effective decision in cases of spondylolisthesis, isthmic or degenerative, refractory to conservative treatment, for the obtaining the best clinical results and rates of fusion, with similar risks to those of the other published techniques. Our statistical analysis could contribute to improve outcomes after surgery. PMID:26196029

  2. Comparison of Clinical and Radiological Results of Posterolateral Fusion and Posterior Lumbar Interbody Fusion in the Treatment of L4 Degenerative Lumbar Spondylolisthesis

    PubMed Central

    Kuraishi, Shugo; Mukaiyama, Keijiro; Shimizu, Masayuki; Ikegami, Shota; Futatsugi, Toshimasa; Hirabayashi, Hiroki; Ogihara, Nobuhide; Hashidate, Hiroyuki; Tateiwa, Yutaka; Kinoshita, Hisatoshi; Kato, Hiroyuki

    2016-01-01

    Study Design Multicenter analysis of two groups of patients surgically treated for degenerative L4 unstable spondylolisthesis. Purpose To compare the clinical and radiographic outcomes of posterolateral fusion (PLF) and posterior lumbar interbody fusion (PLIF) for degenerative L4 unstable spondylolisthesis. Overview of Literature Surgery for lumbar degenerative spondylolisthesis is widely performed. However, few reports have compared the outcome of PLF to that of PLIF for degenerative L4 unstable spondylolisthesis. Methods Patients with L4 unstable spondylolisthesis with Meyerding grade II or more, slip of >10° or >4 mm upon maximum flexion and extension bending, and posterior opening of >5 degree upon flexion bending were studied. Patients were treated from January 2008 to January 2010. Patients who underwent PLF (n=12) and PLIF (n=19) were followed-up for >2 years. Radiographic findings and clinical outcomes evaluated by the Japanese Orthopaedic Association (JOA) score were compared between the two groups. Radiographic evaluation included slip angle, translation, slip angle and translation during maximum flexion and extension bending, intervertebral disc height, lumbar lordotic angle, and fusion rate. Results JOA scores of the PLF group before surgery and at final follow-up were 12.3±4.8 and 24.1±3.7, respectively; those of the PLIF group were 14.7±4.8 and 24.2±7.8, respectively, with no significant difference between the two groups. Correction of slip estimated from postoperative slip angle, translation, and maintenance of intervertebral disc height in the PLIF group was significantly (p<0.05) better than those in the PLF group. However, there was no significant difference in lumbar lordotic angle, slip angle and translation angle upon maximum flexion, or extension bending. Fusion rates of the PLIF and PLF groups had no significant difference. Conclusions The L4–L5 level posterior instrumented fusion for unstable spondylolisthesis using both PLF and PLIF could ameliorate clinical symptoms when local stability is achieved. PMID:26949470

  3. Effect of soft tissue thickness over the posterior border of the vertebral body and disc space on cage placement during posterior lumbar interbody fusion: a cadaveric study.

    PubMed

    Yang, Jae Hyuk; Kasat, Niraj Sharad; Whang, Jin Ho; Kim, Min Keun; Min, Kyueng-Whan; Hong, Jae Young; Modi, Hitesh N; Suh, Seung Woo

    2012-11-01

    In the present study, we investigated whether there is a difference between visual depth (VD) and radiological image depth (RD) of cages (i.e., structural interbody support devices) placed in disc spaces during posterior lumbar interbody fusion and whether soft tissues covering the posterior border of the vertebral body and associated disc space are the cause of any observed differences. Using digital calipers, cages were inserted at a depth of 5 mm from the soft tissues covering the posterior border of the vertebral body and disc space under direct vision; this depth was defined as VD. After insertion, RD was measured in triplicate. The reliability of RD measurements was evaluated using an intraclass coefficient test. To identify the cause of differences between VD and RD, the thicknesses of soft tissues were measured microscopically. A total of 40 lumbar intervertebral disc spaces with cages were evaluated. The mean RD of cages was 3.12 mm, while the mean difference between the VD and RD of cages (DVRD) was 1.91 mm. On histological examination, the mean thickness of the soft tissue was 2.02 mm. Comparative analysis between histological values and DVRD showed no statistical difference (P = 1.14, 1.55, 0.06). There was a significant difference between VD and RD during cage placement, and soft tissue structure appeared to be responsible for the DVRD of inserted cages. Therefore, cages should be inserted deeper to account for differences between visual and radiological image depths. PMID:22508190

  4. Biomechanical analysis of an expandable lateral cage and a static transforaminal lumbar interbody fusion cage with posterior instrumentation in an in vitro spondylolisthesis model.

    PubMed

    Mantell, Matthew; Cyriac, Mathew; Haines, Colin M; Gudipally, Manasa; O'Brien, Joseph R

    2016-01-01

    OBJECT Insufficient biomechanical data exist from comparisons of the stability of expandable lateral cages with that of static transforaminal lumbar interbody fusion (TLIF) cages. The purpose of this biomechanical study was to compare the relative rigidity of L4-5 expandable lateral interbody constructs with or without additive pedicle screw fixation with that of L4-5 static TLIF cages in a novel cadaveric spondylolisthesis model. METHODS Eight human cadaver spines were used in this study. A spondylolisthesis model was created at the L4-5 level by creating 2 injuries. First, in each cadaver, a nucleotomy from 2 channels through the anterior side was created. Second, the cartilage of the facet joint was burred down to create a gap of 4 mm. Light-emitting-diode tracking markers were placed at L-3, L-4, L-5, and S-1. Specimens were tested in the following scenarios: intact model, bilateral pedicle screws, expandable lateral 18-mm-wide cage (alone, with unilateral pedicle screws [UPSs], and with bilateral pedicle screws [BPSs]), expandable lateral 22-mm-wide cage (alone, with UPSs, and with BPSs), and TLIF (alone, with UPSs, and with BPSs). Four of the spines were tested with the expandable lateral cages (18-mm cage followed by the 22-mm cage), and 4 of the spines were tested with the TLIF construct. All these constructs were tested in flexion-extension, axial rotation, and lateral bending. RESULTS The TLIF-alone construct was significantly less stable than the 18- and 22-mm-wide lateral lumbar interbody fusion (LLIF) constructs and the TLIF constructs with either UPSs or BPSs. The LLIF constructs alone were significantly less stable than the TLIF construct with BPSs. However, there was no significant difference between the 18-mm LLIF construct with UPSs and the TLIF construct with BPSs in any of the loading modes. CONCLUSIONS Expandable lateral cages with UPSs provide stability equivalent to that of a TLIF construct with BPSs in a degenerative spondylolisthesis model. PMID:26384133

  5. Clinical outcomes of lumbar degenerative disc disease treated with posterior lumbar interbody fusion allograft spacer: a prospective, multicenter trial with 2-year follow-up.

    PubMed

    Arnold, Paul M; Robbins, Stephen; Paullus, Wayne; Faust, Stephen; Holt, Richard; McGuire, Robert

    2009-07-01

    The clinical benefits and complications of posterior lumbar interbody fusion (PLIF) have been studied over the past 60 years. In recent years, spine surgeons have had the option of treating low back pain caused by degenerative disc disease using PLIF with machined allograft spacers and posterior pedicle fixation. The purpose of this clinical series was to assess the clinical benefits of using a machined PLIF allograft spacer and posterior pedicle fixation to treat degenerative disc disease, both in terms of fusion rates and patient outcomes, and to compare these results with those in previous studies using autograft and metal interbody fusion devices. Results were also compared with results from studies using transverse process fusion. This prospective, nonrandomized clinical series was conducted at 10 US medical centers. Eighty-nine (55 male, 34 female) patients underwent PLIF with a presized, machined allograft spacer and posterior pedicle fixation between January 2000 and April 2003. Their outcomes were compared with outcomes in previous series described in the literature. All patients had experienced at least 6 months of low back pain that had been unresponsive to nonsurgical treatment. Physical examinations were performed before surgery, after surgery, and at 4 follow-up visits (6 weeks, 6 months, 12 months, 24 months). At each interval, we obtained radiographs and patient outcome measures, including SF-36 Bodily Pain Score, visual analog scale pain rating, and Oswestry Disability Index. The primary outcome was fusion results at 12 and 24 months; the secondary outcomes were pain, disability, function/quality of life, and satisfaction. One-level PLIFs were performed in 65 patients, and 2-level PLIFs in 24 patients. Flexion-extension radiographs at 12 and 24 months revealed a 98% fusion rate. Of the 72 patients who reached the 12-month follow-up, 86% reported decreased pain and disability as measured with the Oswestry Disability Index. Decreased pain as measured with the SF-36 Bodily Pain Score was reported by 74% of patients who reached the 12-month follow-up. The graft-related complication rate among all patients who underwent PLIF was 1.61%. When performed with machined allograft spacers and posterior pedicle fixation, PLIF is a safe and effective surgical treatment for low back pain caused by degenerative disc disease. The patients in this clinical series had outcomes equal or superior to the outcomes in previous series. PMID:19714280

  6. Minimally Invasive Unilateral vs. Bilateral Pedicle Screw Fixation and Lumbar Interbody Fusion in Treatment of Multi-Segment Lumbar Degenerative Disorders

    PubMed Central

    Liu, Xiaoyang; Li, Guangrun; Wang, Jiefeng; Zhang, Heqing

    2015-01-01

    Background The choice for instrumentation with minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) in treatment of degenerative lumbar disorders (DLD) remains controversial. The goal of this study was to investigate clinical outcomes in consecutive patients with multi-segment DLD treated with unilateral pedicle screw (UPS) vs. bilateral pedicle screw (BPS) instrumented TLIF. Material/Methods Eighty-four consecutive patients who had multi-level MIS-TLIF were retrospectively reviewed. All data were collected to compare the clinical outcomes between the 2 groups. Results Both groups showed similar clinical function scores in VAS and ODI. The two groups differed significantly in operative time (P<0.001), blood loss (P<0.001), and fusion rate (P=0.043), respectively. Conclusions This study demonstrated similar clinical outcomes between UPS fixation and BPS procedure after MIS-TLIF for multi-level DLD. Moreover, UPS technique was superior in operative time and blood loss, but represented lower fusion rate than the BPS construct did. PMID:26603050

  7. A comparison of radiostereometric analysis and computed tomography for the assessment of lumbar spinal fusion in a sheep model.

    PubMed

    Humadi, Ali; Freeman, Brian J C; Moore, Rob J; Callary, Stuart; Halldin, Klas; David, Vikram; Maclaurin, William; Tauro, Paul; Schoenwaelder, Mark

    2013-10-01

    Study Design?Prospective animal study. Objective?The aim of this animal study is to evaluate the accuracy of radiostereometric analysis (RSA) compared with computed tomographic (CT) scan in the assessment of spinal fusion after anterior lumbar interbody fusion (ALIF) using histology as a gold standard. Methods?Three non-adjacent ALIFs (L1-L2, L3-L4, and L5-L6) were performed in nine sheep. The sheep were divided into three groups of three sheep. All the animals were humanely killed immediately after having the last scheduled RSA. The lumbar spine was removed and in vitro fine cut CT and histopathology were performed. Results?Using histological assessment as the gold standard for assessing fusion, RSA demonstrated better results (100% sensitivity and 66.7% specificity; positive predictive value [PPV]?=?27.3%, negative predictive value [NPV] =100.0%) compared with CT (66.7% sensitivity and 60.0% specificity [PPV?=?16.7%, NPV?=?93.8%]). Conclusions?RSA demonstrated higher sensitivity and specificity when compared with CT. Furthermore, RSA has the advantage of much lower radiation exposure compared with fine cut CT. Further studies are required to see if RSA remains superior to CT scan for the assessment spinal fusion in the clinical setting. [Table: see text]. PMID:24436705

  8. Theater and ALife Art: Modeling Open and Closed Systems.

    PubMed

    Norman, Sally Jane

    2015-01-01

    The live art of theater remains curiously missing from ALife art history, despite the fact that its very existence is poised on the cusp of the living and the artificial, and on the modeling of life as artefact-what can be called the containment-versus-continuity dilemma. How far one seeks to affirm autonomy of the creative artwork or, in contrast, how far one seeks to affirm its continuity with its supposed real-life contexts is a question that has forever haunted theater, and that has naturally come to haunt ALife and ALife arts. Investigation of the boundary separating observers from modeled systems is as core to research into the live art of theater as to ALife research. This brief article seeks to open up discussion on links between ALife, ALife art, and the live art of theater, through key thematic threads that traverse these domains: their modeling of universes, the open or closed nature of the resultant modeled systems, and their implications with respect to observers, definitions, and instantiations of life regarding non-life or death as well as attributions of liveness to emergent synthetic biology and metamaterials. PMID:26280075

  9. Prospective Analysis of a New Bone Graft in Lumbar Interbody Fusion: Results of a 2- Year Prospective Clinical and Radiological Study

    PubMed Central

    Raskin, Yannic

    2015-01-01

    Background This study examined the efficacy and safety of bone graft material ABM/P-15 (iFACTOR) for use in posterior lumbar interbody fusion. ABM/P-15 has been used safely for more than a decade in dental applications. Methods Forty patients underwent PLIF surgery, with each patient as control. Assessments up to 24 months included radiographs, CT scan, VAS, and ODI. Primary success criteria were fusion and safety. Results Intra-cage bridging bone occurred earlier with ABM/P-15 than autograft (97.73% vs. 59.09% at 6 months). On average pain decreased 29 points and function improved 43 points. Radio dense material outside the disk space occurred more frequently with ABM/P-15 than autograft, without clinical consequence. Conclusions This study suggests that ABM/P-15 has equal or greater efficacy at 6 and 12 months. Pain improvements exceeded success criteria at all time points. Functional improvement exceeded success criteria at all time points. Clinical Relevance This study explores the safety and efficacy of an osteobiologic peptide enhanced bone graft material as a viable alternative to autograft and its attendant risks. PMID:25709887

  10. Surgical Data and Early Postoperative Outcomes after Minimally Invasive Lumbar Interbody Fusion: Results of a Prospective, Multicenter, Observational Data-Monitored Study

    PubMed Central

    Pereira, Paulo; Buzek, David; Franke, Jörg; Senker, Wolfgang; Kosmala, Arkadiusz; Hubbe, Ulrich; Manson, Neil; Rosenberg, Wout; Assietti, Roberto; Martens, Frederic; Barbanti Brodano, Giovanni; Scheufler, Kai-Michael

    2015-01-01

    Minimally invasive lumbar interbody fusion (MILIF) offers potential for reduced operative morbidity and earlier recovery compared with open procedures for patients with degenerative lumbar disorders (DLD). Firm conclusions about advantages of MILIF over open procedures cannot be made because of limited number of large studies of MILIF in a real-world setting. Clinical effectiveness of MILIF in a large, unselected real-world patient population was assessed in this Prospective, monitored, international, multicenter, observational study. Objective: To observe and document short-term recovery after minimally invasive interbody fusion for DLD. Materials and Methods: In a predefined 4-week analysis from this study, experienced surgeons (≥30 MILIF surgeries pre-study) treated patients with DLD by one- or two-level MILIF. The primary study objective was to document patients’ short-term post-interventional recovery (primary objective) including back/leg pain (visual analog scale [VAS]), disability (Oswestry Disability Index [ODI]), health status (EQ-5D) and Patient satisfaction. Results: At 4 weeks, 249 of 252 patients were remaining in the study; the majority received one-level MILIF (83%) and TLIF was the preferred approach (94.8%). For one-level (and two-level) procedures, surgery duration was 128 (182) min, fluoroscopy time 115 (154) sec, and blood-loss 164 (233) mL. Time to first ambulation was 1.3 days and time to study-defined surgery recovery was 3.2 days. Patients reported significantly (P < 0.0001) reduced back pain (VAS: 2.9 vs 6.2), leg pain (VAS: 2.5 vs 5.9), and disability (ODI: 34.5% vs 45.5%), and a significantly (P < 0.0001) improved health status (EQ-5D index: 0.61 vs 0.34; EQ VAS: 65.4 vs 52.9) 4 weeks postoperatively. One adverse event was classified as related to the minimally invasive surgical approach. No deep site infections or deaths were reported. Conclusions: For experienced surgeons, MILIF for DLD demonstrated early benefits (short time to first ambulation, early recovery, high patient satisfaction and improved patient-reported outcomes) and low major perioperative morbidity at 4 weeks postoperatively. PMID:25811615

  11. Novel Pedicle Screw and Plate System Provides Superior Stability in Unilateral Fixation for Minimally Invasive Transforaminal Lumbar Interbody Fusion: An In Vitro Biomechanical Study

    PubMed Central

    Zhu, Qingan; Zhou, Yue; Li, Changqing; Liu, Huan; Huang, Zhiping; Shang, Jin

    2015-01-01

    Purpose This study aims to compare the biomechanical properties of the novel pedicle screw and plate system with the traditional rod system in asymmetrical posterior stabilization for minimally invasive transforaminal lumbar interbody fusion (MI-TLIF). We compared the immediate stabilizing effects of fusion segment and the strain distribution on the vertebral body. Methods Seven fresh calf lumbar spines (L3-L6) were tested. Flexion/extension, lateral bending, and axial rotation were induced by pure moments of 5.0 Nm and the range of motion (ROM) was recorded. Strain gauges were instrumented at L4 and L5 vertebral body to record the strain distribution under flexion and lateral bending (LB). After intact kinematic analysis, a right sided TLIF was performed at L4-L5. Then each specimen was tested for the following constructs: unilateral pedicle screw and rod (UR); unilateral pedicle screw and plate (UP); UR and transfacet pedicle screw (TFS); UP and TFS; UP and UR. Results All instrumented constructs significantly reduced ROM in all motion compared with the intact specimen, except the UR construct in axial rotation. Unilateral fixation (UR or UP) reduced ROM less compared with the bilateral fixation (UP/UR+TFS, UP+UR). The plate system resulted in more reduction in ROM compared with the rod system, especially in axial rotation. UP construct provided more stability in axial rotation compared with UR construct. The strain distribution on the left and right side of L4 vertebral body was significantly different from UR and UR+TFS construct under flexion motion. The strain distribution on L4 vertebral body was significantly influenced by different fixation constructs. Conclusions The novel plate could provide sufficient segmental stability in axial rotation. The UR construct exhibits weak stability and asymmetrical strain distribution in fusion segment, while the UP construct is a good alternative choice for unilateral posterior fixation of MI-TLIF. PMID:25807513

  12. Effects of Lordotic Angle of a Cage on Sagittal Alignment and Clinical Outcome in One Level Posterior Lumbar Interbody Fusion with Pedicle Screw Fixation

    PubMed Central

    Lee, Ji-Ho; Lee, Dong-Oh; Lee, Jae Hyup; Shim, Hee Jong

    2015-01-01

    This study aims to assess the differences in the radiological and clinical results depending on the lordotic angles of the cage in posterior lumbar interbody fusion (PLIF). We reviewed 185 segments which underwent PLIF using two different lordotic angles of 4 and 8 of a polyetheretherketone (PEEK) cage. The segmental lordosis and total lumbar lordosis of the 4 and 8 cage groups were compared preoperatively, as well as on the first postoperative day, 6th and 12th months postoperatively. Clinical assessment was performed using the ODI and the VAS of low back pain. The pre- and immediate postoperative segmental lordosis angles were 12.9 and 12.6 in the 4 group and 12 and 12.0 in the 8 group. Both groups exhibited no significant different segmental lordosis angle and total lumbar lordosis over period and time. However, the total lumbar lordosis significantly increased from six months postoperatively compared with the immediate postoperative day in the 8 group. The ODI and the VAS in both groups had no differences. Cages with different lordotic angles of 4 and 8 showed insignificant results clinically and radiologically in short-level PLIF surgery. Clinical improvements and sagittal alignment recovery were significantly observed in both groups. PMID:25685795

  13. Effects of lordotic angle of a cage on sagittal alignment and clinical outcome in one level posterior lumbar interbody fusion with pedicle screw fixation.

    PubMed

    Lee, Ji-Ho; Lee, Dong-Oh; Lee, Jae Hyup; Shim, Hee Jong

    2015-01-01

    This study aims to assess the differences in the radiological and clinical results depending on the lordotic angles of the cage in posterior lumbar interbody fusion (PLIF). We reviewed 185 segments which underwent PLIF using two different lordotic angles of 4 and 8 of a polyetheretherketone (PEEK) cage. The segmental lordosis and total lumbar lordosis of the 4 and 8 cage groups were compared preoperatively, as well as on the first postoperative day, 6th and 12th months postoperatively. Clinical assessment was performed using the ODI and the VAS of low back pain. The pre- and immediate postoperative segmental lordosis angles were 12.9 and 12.6 in the 4 group and 12 and 12.0 in the 8 group. Both groups exhibited no significant different segmental lordosis angle and total lumbar lordosis over period and time. However, the total lumbar lordosis significantly increased from six months postoperatively compared with the immediate postoperative day in the 8 group. The ODI and the VAS in both groups had no differences. Cages with different lordotic angles of 4 and 8 showed insignificant results clinically and radiologically in short-level PLIF surgery. Clinical improvements and sagittal alignment recovery were significantly observed in both groups. PMID:25685795

  14. Comparison Between Posterior Short-segment Instrumentation Combined With Lateral-approach Interbody Fusion and Traditional Wide-open Anterior-Posterior Surgery for the Treatment of Thoracolumbar Fractures.

    PubMed

    Li, Xiang; Zhang, Junwei; Tang, Hehu; Lu, Zhen; Liu, Shujia; Chen, Shizheng; Hong, Yi

    2015-11-01

    The aim of the study was to compare the radiographic and clinical outcomes between posterior short-segment pedicle instrumentation combined with lateral-approach interbody fusion and traditional anterior-posterior (AP) surgery for the treatment of thoracolumbar fractures.Lateral-approach interbody fusion has achieved satisfactory results for thoracic and lumbar degenerative disease. However, few studies have focused on the use of this technique for the treatment of thoracolumbar fractures.Inclusion and exclusion criteria were established. All patients who meet the above criteria were prospectively treated by posterior short-segment instrumentation and secondary-staged minimally invasive lateral-approach interbody fusion, and classified as group A. A historical group of patients who were treated by traditional wide-open AP approach was used as a control group and classified as group B. The radiological and clinical outcomes were compared between the 2 groups.There were 12 patients in group A and 18 patients in group B. The mean operative time and intraoperative blood loss of anterior reconstruction were significantly higher in group B than those in group A (127.1??21.7 vs 197.5??47.7?min, P?interbody fusion, can achieve similar clinical results with significant less operative time, blood loss, and surgical complication. This procedure seems to be a reasonable treatment option for selective patients with thoracolumbar fractures. PMID:26554800

  15. The Memory Metal Spinal System in a Posterior Lumbar Interbody Fusion (PLIF) Procedure: A Prospective, Non-Comparative Study to Evaluate the Safety and Performance

    PubMed Central

    Kok, D; Grevitt, M; Wapstra, FH; Veldhuizen, AG

    2012-01-01

    Study Design: A prospective, non-comparative study of 27 patients to evaluate the safety and performance of the Memory Metal Spinal System used in a PLIF procedure in the treatment of spondylolisthesis, symptomatic spinal stenosis or degenerative disc disease (DDD). Objective: To evaluate the clinical performance, radiological outcome and safety of the Memory Metal Spinal System, used in a PLIF procedure, in the treatment of spondylolisthesis, symptomatic spinal stenosis or degenerative disc disease in human subjects. Summary of Background Data: Spinal systems that are currently available for correction of spinal deformities or degeneration such as lumbar spondylosis or degenerative disc disease, use components manufactured from stainless steel or titanium and typically comprise two spinal rods with associated connection devices. The Memory Metal Spinal System consists of a single square spinal rod made from a nickel titanium alloy (Nitinol) used in conjunction with connection devices. Nitinol is characterized by its shape memory effect and is a more flexible material than either stainless steel or titanium. With current systems there is loss of achieved reposition due to the elastic properties of the spine. By using a memory metal in this new system the expectation was that this loss of reposition would be overcome due to the metals inherent shape memory properties. Furthermore, we expect a higher fusion rate because of the elastic properties of the memory metal. Methods: Twenty-seven subjects with primary diagnosis of spondylolisthesis, symptomatic spinal stenosis or degenerative disc disease (DDD) were treated with the Memory Metal Spinal System in conjunction with the Brantigan IF Cage in two consecutive years. Clinical performance of the device was evaluated over 2 years using the Oswestry Disability Index (ODI), Short Form 36 questionnaire (SF-36) and pain visual analogue scale (VAS) scores. Safety was studied by collection of adverse events intra-operative and during the followup. Interbody fusion status was assessed using radiographs and a CT scan. Results: The mean pre-operative ODI score of 40.9 (14.52) significantly improved to 17.7 (16.76) at 24 months postoperative. Significant improvement in the physical component from the SF36 questionnaire was observed with increases from the baseline result of 42.4 to 72.7 at 24 months (p<.0001); The emotional component in the SF36 questionnaires mean scores highlighted a borderline significant increase from 56.5 to 81.7 at 24 months (p=0.0441). The average level of leg pain was reduced by more than 50% postoperation (VAS values reduced from 5.7 (2.45) to 2.2 (2.76) at 24 month post-operation with similar results observed for back pain. CT indicated interbody fusion rate was not significantly faster compared to other devices in literature. No device related adverse events were recorded in this study. Conclusions: The Memory Metal Spinal System, different from other devices on the market with regard to material and the one rod configuration, is safe and performed very well by improving clinically important outcomes in the treatment of spondylolisthesis, symptomatic spinal stenosis or degenerative disc disease. In addition the data compares favorably to that previously reported for other devices in the literature. PMID:22754599

  16. Dynamic stabilization for L4-5 spondylolisthesis: comparison with minimally invasive transforaminal lumbar interbody fusion with more than 2 years of follow-up.

    PubMed

    Kuo, Chao-Hung; Chang, Peng-Yuan; Wu, Jau-Ching; Chang, Hsuan-Kan; Fay, Li-Yu; Tu, Tsung-Hsi; Cheng, Henrich; Huang, Wen-Cheng

    2016-01-01

    OBJECTIVE In the past decade, dynamic stabilization has been an emerging option of surgical treatment for lumbar spondylosis. However, the application of this dynamic construct for mild spondylolisthesis and its clinical outcomes remain uncertain. This study aimed to compare the outcomes of Dynesys dynamic stabilization (DDS) with minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) for the management of single-level spondylolisthesis at L4-5. METHODS This study retrospectively reviewed 91 consecutive patients with Meyerding Grade I spondylolisthesis at L4-5 who were managed with surgery. Patients were divided into 2 groups: DDS and MI-TLIF. The DDS group was composed of patients who underwent standard laminectomy and the DDS system. The MI-TLIF group was composed of patients who underwent MI-TLIF. Clinical outcomes were evaluated by visual analog scale for back and leg pain, Oswestry Disability Index, and Japanese Orthopaedic Association scores at each time point of evaluation. Evaluations included radiographs and CT scans for every patient for 2 years after surgery. RESULTS A total of 86 patients with L4-5 spondylolisthesis completed the follow-up of more than 2 years and were included in the analysis (follow-up rate of 94.5%). There were 64 patients in the DDS group and 22 patients in the MI-TLIF group, and the overall mean follow-up was 32.7 months. Between the 2 groups, there were no differences in demographic data (e.g., age, sex, and body mass index) or preoperative clinical evaluations (e.g., visual analog scale back and leg pain, Oswestry Disability Index, and Japanese Orthopaedic Association scores). The mean estimated blood loss of the MI-TLIF group was lower, whereas the operation time was longer compared with the DDS group (both p < 0.001). For both groups, clinical outcomes were significantly improved at 6, 12, 18, and 24 months after surgery compared with preoperative clinical status. Moreover, there were no differences between the 2 groups in clinical outcomes at each evaluation time point. Radiological evaluations were also similar and the complication rates were equally low in both groups. CONCLUSIONS At 32.7 months postoperation, the clinical and radiological outcomes of DDS were similar to those of MI-TLIF for Grade I degenerative spondylolisthesis at L4-5. DDS might be an alternative to standard arthrodesis in mild lumbar spondylolisthesis. However, unlike fusion, dynamic implants have issues of wearing and loosening in the long term. Thus, the comparable results between the 2 groups in this study require longer follow-up to corroborate. PMID:26721577

  17. Posterior lumbar interbody fusion using non resorbable poly-ether-ether-ketone versus resorbable poly-L-lactide-co-D,L-lactide fusion devices. Clinical outcome at a minimum of 2-year follow-up.

    PubMed

    Jiya, Timothy U; Smit, T; van Royen, B J; Mullender, M

    2011-04-01

    Previous papers on resorbable poly-L-lactide-co-D,L-lactide (PLDLLA) cages in spinal fusion have failed to report adequately on patient-centred clinical outcome measures. Also comparison of PLDLLA cage with a traditionally applicable counterpart has not been previously reported. This is the first randomized prospective study that assesses clinical outcome of PLDLLA cage compared with a poly-ether-ether-ketone (PEEK) implant. Twenty-six patients were randomly assigned to undergo instrumented posterior lumbar interbody fusion (PLIF) whereby either a PEEK cage or a PLDLLA cage was implanted. Clinical outcome based on visual analogue scale scores for leg pain and back pain, as well as Oswestry Disability Index (ODI) and SF-36 questionnaires were documented and analysed. When compared with preoperative values, all clinical parameters have significantly improved in the PEEK group at 2 years after surgery with the exception of SF-36 general health, SF-36 mental health and SF-36 role emotional scores. No clinical parameter showed significant improvement at 2 years after surgery compared with preoperative values in the PLDLLA patient group. Only six patients (50%) in the PLDLLA group showed improvement in the VAS scores for leg and back pain as well as the ODI, as opposed to 10 patients (71%) in the PEEK group. One-third of the patients in the PLDLLA group actually reported worsening of their pain scores and ODI. Three cases of mild to moderate osteolysis were seen in the PLDLLA group. Following up on our preliminary report, these 2-year results confirm the superiority of the PEEK implant to the resorbable PLDLLA implant in aiding spinal fusion and alleviating symptoms following PLIF in patients with degenerative spondylolisthesis associated with either canal stenosis or foramen stenosis or both and emanating from a single lumbar segment. PMID:20842388

  18. Static and dynamic fatigue behavior of topology designed and conventional 3D printed bioresorbable PCL cervical interbody fusion devices.

    PubMed

    Knutsen, Ashleen R; Borkowski, Sean L; Ebramzadeh, Edward; Flanagan, Colleen L; Hollister, Scott J; Sangiorgio, Sophia N

    2015-09-01

    Recently, as an alternative to metal spinal fusion cages, 3D printed bioresorbable materials have been explored; however, the static and fatigue properties of these novel cages are not well known. Unfortunately, current ASTM testing standards used to determine these properties were designed prior to the advent of bioresorbable materials for cages. Therefore, the applicability of these standards for bioresorbable materials is unknown. In this study, an image-based topology and a conventional 3D printed bioresorbable poly(?)-caprolactone (PCL) cervical cage design were tested in compression, compression-shear, and torsion, to establish their static and fatigue properties. Difficulties were in fact identified in establishing failure criteria and in particular determining compressive failure load. Given these limitations, under static loads, both designs withstood loads of over 650 N in compression, 395 N in compression-shear, and 0.25 Nm in torsion, prior to yielding. Under dynamic testing, both designs withstood 5 million (5M) cycles of compression at 125% of their respective yield forces. Geometry significantly affected both the static and fatigue properties of the cages. The measured compressive yield loads fall within the reported physiological ranges; consequently, these PCL bioresorbable cages would likely require supplemental fixation. Most importantly, supplemental testing methods may be necessary beyond the current ASTM standards, to provide more accurate and reliable results, ultimately improving preclinical evaluation of these devices. PMID:26072198

  19. PEEK Cages in Lumbar Fusion: Mid-term Clinical Outcome and Radiological Fusion.

    PubMed

    Schimmel, Janneke J P; Poeschmann, Marcel S; Horsting, Phillip P; Schnfeld, Dirk H W; van Limbeek, Jacques; Pavlov, Paul W

    2012-08-18

    STUDY DESIGN:: Historical cohort analysis. OBJECTIVE:: Evaluation of mid-term clinical outcome and radiological fusion in patients treated with a polyetheretherketone (PEEK) cage. SUMMARY OF BACKGROUND DATA:: Anterior Lumbar Interbody Fusion (ALIF) can be a good alternative in chronic low back pain when conservative treatment fails. Although titanium alloy cages give good fusion rates, disadvantages are the subsidence of the cage in the adjacent vertebrae and problematic radiological evaluation of fusion. PEEK cages, such as the Synfix-LR cage (Synthes, Switzerland) should overcome this. METHODS:: From December 2004 until August 2007 a total of 95 patients (21 double-level, 74 single-level) with degenerative disc disease from L3-S1 were operated by a single surgeon. The number of reoperations was counted. Radiological fusion on CT-scan was scored with a new scoring system by an independent skeletal radiologist and orthopaedic surgeon. Intra-observer agreement and specificity were assessed. Clinical improvement was measured by the ODI score. The median duration of clinical follow-up was 47.7 months (range 29.9-61.6 months). RESULTS:: In total 26 patients were reoperated after a median of 17.6 months (range 6.7-46.9) of the initial surgery. In total 23 patients (18 single-level, 5 double-level) were reoperated for symptomatic pseudarthrosis. A moderate agreement (?=0.36) and a specificity of 70% and 37% for the radiologist and orthopaedic surgeon, respectively, were found for scoring bony bridging. The ODI score improved after initial surgery, but reoperated patients reported a significantly lower improvement. CONCLUSIONS:: A high number of reoperations after an ALIF-procedure with the Synfix-LR cage was found, mainly due to symptomatic pseudarthrosis. The absence of posterior fixation in combination with lower stiffness and the hydrophobic characteristics of PEEK probably leads to insufficient initial stability, creating suboptimal conditions for bony bridging, and thus solid fusion. The proposed ease of the evaluation of radiological fusion could not be supported. Clinicians should be alert on pseudarthrosis when patients treated with the Synfix-LR cage presented with persisted or aggravated complaints. PMID:22907069

  20. A Comparison of Radiostereometric Analysis and Computed Tomography for the Assessment of Lumbar Spinal Fusion in a Sheep Model

    PubMed Central

    Humadi, Ali; Freeman, Brian J. C.; Moore, Rob J.; Callary, Stuart; Halldin, Klas; David, Vikram; Maclaurin, William; Tauro, Paul; Schoenwaelder, Mark

    2013-01-01

    Study Design?Prospective animal study. Objective?The aim of this animal study is to evaluate the accuracy of radiostereometric analysis (RSA) compared with computed tomographic (CT) scan in the assessment of spinal fusion after anterior lumbar interbody fusion (ALIF) using histology as a gold standard. Methods?Three non-adjacent ALIFs (L1L2, L3L4, and L5L6) were performed in nine sheep. The sheep were divided into three groups of three sheep. All the animals were humanely killed immediately after having the last scheduled RSA. The lumbar spine was removed and in vitro fine cut CT and histopathology were performed. Results?Using histological assessment as the gold standard for assessing fusion, RSA demonstrated better results (100% sensitivity and 66.7% specificity; positive predictive value [PPV]?=?27.3%, negative predictive value [NPV] =100.0%) compared with CT (66.7% sensitivity and 60.0% specificity [PPV?=?16.7%, NPV?=?93.8%]). Conclusions?RSA demonstrated higher sensitivity and specificity when compared with CT. Furthermore, RSA has the advantage of much lower radiation exposure compared with fine cut CT. Further studies are required to see if RSA remains superior to CT scan for the assessment spinal fusion in the clinical setting. Assessment of Class of Evidence (CoE) for individual studies of diagnostic test evaluation Methodological principle Study design Prospective cohort design X Retrospective cohort design Casecontrol design Broad spectrum of patients with expected condition a Appropriate reference standard used X Adequate description of test and reference for replication X Blinded comparison with appropriate reference X Reference standard performed independently of test X Evidence level II Note: Blank box indicates criterion not met, could not be determined, or information not reported by author or was not reported. aThis study contained nine animal subjects. PMID:24436705

  1. Combined transforaminal lumbar interbody fusion with posterolateral instrumented fusion for degenerative disc disease can be a safe and effective treatment for lower back pain

    PubMed Central

    Deukmedjian, Ara J; Cianciabella, Augusto J; Cutright, Jason; Deukmedjian, Arias

    2015-01-01

    Background: Lumbar fusion is a proven treatment for chronic lower back pain (LBP) in the setting of symptomatic spondylolisthesis and degenerative scoliosis; however, fusion is controversial when the primary diagnosis is degenerative disc disease (DDD). Our objective was to evaluate the safety and effectiveness of lumbar fusion in the treatment of LBP due to DDD. Materials and Methods: Two-hundred and five consecutive patients with single or multi-level DDD underwent lumbar decompression and instrumented fusion for the treatment of chronic LBP between the years of 2008 and 2011. The primary outcome measures in this study were back and leg pain visual analogue scale (VAS), patient reported % resolution of preoperative back pain and leg pain, reoperation rate, perioperative complications, blood loss and hospital length of stay (LOS). Results: The average resolution of preoperative back pain per patient was 84% (n = 205) while the average resolution of preoperative leg pain was 90% (n = 190) while a mean follow-up period of 528 days (1.5 years). Average VAS for combined back and leg pain significantly improved from a preoperative value of 9.0 to a postoperative value of 1.1 (P ≤ 0.0001), a change of 7.9 points for the cohort. The average number of lumbar disc levels fused per patient was 2.3 (range 1-4). Median postoperative LOS in the hospital was 1.2 days. Average blood loss was 108 ml perfused level. Complications occurred in 5% of patients (n = 11) and the rate of reoperation for symptomatic adjacent segment disease was 2% (n = 4). Complications included reoperation at index level for symptomatic pseudoarthrosis with hardware failure (n = 3); surgical site infection (n = 7); repair of cerebrospinal fluid leak (n = 1), and one patient death at home 3 days after discharge. Conclusion: Lumbar fusion for symptomatic DDD can be a safe and effective treatment for medically refractory LBP with or without leg pain. PMID:26692696

  2. Extreme Lateral Interbody Fusion Procedure

    MedlinePLUS

    ... by Dr. Fernando Vale, vice chief of the Neurosciences Department at Tampa General Hospital. Dr. Vale will ... perform this operation. Of course, everything requires a learning curve. This is something that is done many ...

  3. ISASS Policy Statement - Cervical Interbody

    PubMed Central

    Singh, Kern; Qureshi, Sheeraz

    2014-01-01

    Morgan Lorio, MD, FACS, Chair, ISASS Task Force on Coding & Reimbursement In 2011, CPT code 22551 was revised to combine or bundle CPT codes 63075 and 22554 when both procedures were performed at the same site/same surgical session. The add on code +22552 is used to report each additional interspace. 2014 heralded a downward pressure on this now prime target code (for non-coverage?) 22551 through an egregious insurer attempt to redefine cervical arthrodesis, effectively removing spine surgeon choice and altering best practice without clinical evidence. Currently, spine surgeons are equally split on the use of allograft versus cages for cervical arthrodesis. Structural allograft, CPT code 20931, is reported once per same surgical session, regardless of the number of allografts used. CPT code 22851 which is designated solely for cage use, has a higher reimbursement than structural allograft, and may be reported for each inner space. Hence, the rationale behind why some payers wrongly consider spine cages NOT medically necessary for cervical fusion. A timely consensus paper summarizing spine surgeon purview on the logical progressive evolution of cervical interbody fusion for ISASS/IASP membership was strategically identified as an advocacy focus by the ISASS Task Force. ISASS appreciates the authors charge with gratitude. This article has both teeth and transparent clinical real-world merit. PMID:25694945

  4. Transdural retrieval of a retropulsed lumbar interbody cage: Technical case report

    PubMed Central

    Zaidi, Hasan Aqdas; Shah, Ashish; Kakarla, Udaya Kumar

    2016-01-01

    The purpose of this case report was to describe a novel method to retrieve a herniated lumbar interbody cage. Transforaminal lumbar interbody fusion (TLIF) is an increasingly popular method of spinal fixation and fusion. Unexpected retropulsion of an interbody is a rare event that can result in intractable pain or motor compromise necessitating surgical retrieval of the interbody. Both anterior and posterior approaches to removing migrated cages may be associated with significant surgical morbidity and mortality. A 60-year-old woman underwent an L4-S1 TLIF coupled with pedicle screw fixation at a previous hospital 5 years prior to admission. She noted sudden-onset bilateral lower extremity weakness and right-sided foot drop. Magnetic resonance imaging and radiographs were notable for purely centrally herniated interbody. A posterior, midline transdural approach was used to retrieve the interbody. Situated in between nerve rootlets to the ventral canal, this virgin corridor allowed us to easily visualize and protect neurological structures while safely retrieving the interbody. The patient experienced an immediate improvement in symptoms and was discharged on postoperative day 3. At 12-month follow-up, she had no evidence of cerebrospinal fluid (CSF) leak and had returned to normal activities of daily living. While the risk of CSF leak may be higher with a transdural approach, we maintain that avoiding unnecessary retraction of the nerve roots may outweigh this risk. To our knowledge, this is the first case report of a transdural approach for the retrieval of a retropulsed lumbar interbody cage. PMID:26889290

  5. The SNAP trial: a double blind multi-center randomized controlled trial of a silicon nitride versus a PEEK cage in transforaminal lumbar interbody fusion in patients with symptomatic degenerative lumbar disc disorders: study protocol

    PubMed Central

    2014-01-01

    Background Polyetheretherketone (PEEK) cages have been widely used in the treatment of lumbar degenerative disc disorders, and show good clinical results. Still, complications such as subsidence and migration of the cage are frequently seen. A lack of osteointegration and fibrous tissues surrounding PEEK cages are held responsible. Ceramic implants made of silicon nitride show better biocompatible and osteoconductive qualities, and therefore are expected to lower complication rates and allow for better fusion. Purpose of this study is to show that fusion with the silicon nitride cage produces non-inferior results in outcome of the Roland Morris Disability Questionnaire at all follow-up time points as compared to the same procedure with PEEK cages. Methods/Design This study is designed as a double blind multi-center randomized controlled trial with repeated measures analysis. 100 patients (18–75 years) presenting with symptomatic lumbar degenerative disorders unresponsive to at least 6 months of conservative treatment are included. Patients will be randomly assigned to a PEEK cage or a silicon nitride cage, and will undergo a transforaminal lumbar interbody fusion with pedicle screw fixation. Primary outcome measure is the functional improvement measured by the Roland Morris Disability Questionnaire. Secondary outcome parameters are the VAS leg, VAS back, SF-36, Likert scale, neurological outcome and radiographic assessment of fusion. After 1 year the fusion rate will be measured by radiograms and CT. Follow-up will be continued for 2 years. Patients and clinical observers who will perform the follow-up visits will be blinded for type of cage used during follow-up. Analyses of radiograms and CT will be performed independently by two experienced radiologists. Discussion In this study a PEEK cage will be compared with a silicon nitride cage in the treatment of symptomatic degenerative lumbar disc disorders. To our knowledge, this is the first randomized controlled trial in which the silicon nitride cage is compared with the PEEK cage in patients with symptomatic degenerative lumbar disc disorders. Trial registration NCT01557829 PMID:24568365

  6. Comparison between Two Different Cervical Interbody Fusion Cages in One Level Stand-alone ACDF: Carbon Fiber Composite Frame Cage Versus Polyetheretherketone Cage

    PubMed Central

    Yoo, Minwook; Kim, Wook-Ha; Hyun, Seung-Jae; Jahng, Tae-Ahn; Kim, Hyun-Jib

    2014-01-01

    Objective The authors conducted a retrospective study to compare the implantation of carbon fiber composite frame cages (CFCFCs) to the implantation of polyetheretherketone (PEEK) cages after anterior cervical discectomy for cervical degenerative disc disease. In addition, the predictive factors that influenced fusion or subsidence were investigated. Methods A total of 58 patients with single-level degenerative disc disease were treated with anterior cervical discectomy and implantation of stand-alone cages; CFCFCs were used in 35 patients, and PEEK cages were used in 23 patients. Preoperative and postoperative radiological and clinical assessments were performed. Results During the mean follow-up period of 41 months, fusion occurred in 43 patients (74.1%), and subsidence developed in 18 patients (31.0%). Pain decreased in all patients, and the patients' satisfaction rate was 75.9%. Neither fusion nor subsidence was related to the clinical outcome. There were no significant differences in the clinical and radiological outcomes between the CFCFC and the PEEK cage groups. Smoking history (p=0.023) was significantly associated with pseudarthrosis, and cage height (?7mm) (p=0.037) were significantly associated with subsidence. Conclusion The clinical and radiological results were similar between the CFCFC and the PEEK cage groups. Fusion or subsidence did not affect the clinical outcomes. Smoking history and cage height (?7mm) were predictive factors for pseudarthrosis or subsidence in anterior cervical discectomy and fusion with stand-alone cages. PMID:25346758

  7. Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations.

    PubMed

    Jutte, P C; Castelein, R M

    2002-12-01

    Pedicle screw fixation is technically demanding and associated with high complication rates. The aim of this study was to identify and quantify the pedicle screw-related complications in 105 consecutive operations. We retrospectively analysed 105 consecutive primary operations. We found complications of varying severity in 54% of the patients. Deep infections were found in 4.7%, all successfully cured by debridement and antibiotics. There were no permanent neurological complications related to the screws. One serious neurological sequela, a T10 paraplegia, was unrelated to screw placement between L3 and S1. Screw misplacement was found in 6.5% of the screws. Screw breakage occurred in 12.4% of the patients, inevitably leading to loss of correction. Reduced spondylolisthesis L5-S1 without anterior support was found to be especially prone to screw breakage. The study confirmed that pedicle screw placement is a technically demanding procedure with a high complication rate. Fortunately, most complications are not severe. Infections can be dealt with by thorough debridement and parenteral antibiotics. Neurological sequelae can be minimised by careful tactile technique. To avoid screw breakage and subsequent loss of correction, anterior support should be provided, through either posterior or anterior lumbar interbody fusion (PLIF or ALIF) techniques, in reduced spondylolisthesis L5-S1. PMID:12522719

  8. Lumbar interbody fusion with porous biphasic calcium phosphate enhanced by recombinant bone morphogenetic protein-2/silk fibroin sustained-released microsphere: an experimental study on sheep model.

    PubMed

    Chen, Liang; Liu, Hai-Long; Gu, Yong; Feng, Yu; Yang, Hui-Lin

    2015-03-01

    Biphasic calcium phosphate (BCP) has been investigated extensively as a bone substitute nowadays. However, the bone formation capacity of BCP is limited owing to lack of osteoinduction. Silk fibroin (SF) has a structure similar to type I collagen, and could be developed to a microsphere for the sustained-release of rhBMP-2. In our previous report, bioactivity of BCP could be enhanced by rhBMP-2/SF microsphere (containing 0.5 g rhBMP-2) in vitro. However, the bone regeneration performance of the composite in vivo was not investigated. Thus, the purpose of this study was to evaluate the efficacy of BCP/rhBMP-2/SF in a sheep lumbar fusion model. A BCP and rhBMP-2/SF microsphere was developed, and then was integrated into a BCP/rhBMP-2/SF composite. BCP, BCP/rhBMP-2 and BCP/rhBMP-2/SF were implanted randomly into the disc spaces of 30 sheep at the levels of L1/2, L3/4 and L5/6. After sacrificed, the fusion segments were evaluated by manual palpation, CT scan, biomechanical testing and histology at 3 and 6 months, respectively. The composite demonstrated a burst-release of rhBMP-2 (39.1 2.8 %) on the initial 4 days and a sustained-release (accumulative 81.3 4.9 %) for more than 28 days. The fusion rates, semi-quantitative CT scores, fusion stiffness in bending in all directions and histologic scores of BCP/rhBMP-2/SF were significantly greater than BCP and BCP/rhBMP-2 at each time point, respectively (P < 0.05). These findings indicate that the SF microspheres containing a very low dose of rhBMP-2 improve fusion in sheep using BCP constructs. PMID:25690620

  9. Dynamic stabilization using the Dynesys system versus posterior lumbar interbody fusion for the treatment of degenerative lumbar spinal disease: a clinical and radiological outcomes-based meta-analysis.

    PubMed

    Lee, Chang-Hyun; Jahng, Tae-Ahn; Hyun, Seung-Jae; Kim, Chi Heon; Park, Sung-Bae; Kim, Ki-Jeong; Chung, Chun Kee; Kim, Hyun-Jib; Lee, Soo-Eon

    2016-01-01

    OBJECTIVE The Dynesys, a pedicle-based dynamic stabilization (PDS) system, was introduced to overcome the drawbacks of fusion procedures. Nevertheless, the theoretical advantages of PDS over fusion have not been clearly confirmed. The aim of this study was to compare clinical and radiological outcomes of patients who underwent PDS using the Dynesys system with those who underwent posterior lumbar interbody fusion (PLIF). METHODS The authors searched PubMed, Embase, Web of Science, and the Cochrane Database. Studies that reported outcomes of patients who underwent PDS or PLIF for the treatment of degenerative lumbar spinal disease were included. The primary efficacy end points were perioperative outcomes. The secondary efficacy end points were changes in the Oswestry Disability Index (ODI) and back and leg pain visual analog scale (VAS) scores and in range of motion (ROM) at the treated and adjacent segments. A meta-analysis was performed to calculate weighted mean differences (WMDs), 95% confidence intervals, Q statistics, and I(2) values. Forest plots were constructed for each analysis group. RESULTS Of the 274 retrieved articles, 7 (which involved 506 participants [Dynesys, 250; PLIF, 256]) met the inclusion criteria. The Dynesys group showed a competitive advantage in mean surgery duration (20.73 minutes, 95% CI 8.76-32.70 minutes), blood loss (81.87 ml, 95% CI 45.11-118.63 ml), and length of hospital stay (1.32 days, 95% CI 0.23-2.41 days). Both the Dynesys and PLIF groups experienced improved ODI and VAS scores after 2 years of follow-up. Regarding the ODI and VAS scores, no statistically significant difference was noted according to surgical procedure (ODI: WMD 0.12, 95% CI -3.48 to 3.72; back pain VAS score: WMD -0.15; 95% CI -0.56 to 0.26; leg pain VAS score: WMD -0.07; 95% CI -0.47 to 0.32). The mean ROM at the adjacent segment increased in both groups, and there was no substantial difference between them (WMD 1.13; 95% CI -0.33 to 2.59). Although the United States is the biggest market for Dynesys, no eligible study from the United States was found, and 4 of 8 enrolled studies were performed in China. The results must be interpreted with caution because of publication bias. During Dynesys implantation, surgeons have to decide the length of the spacer and cord pretension. These values are debatable and can vary according to the surgeon's experience and the patient's condition. Differences between the surgical procedures were not considered in this study. CONCLUSIONS Fusion still remains the method of choice for advanced degeneration and gross instability. However, spinal degenerative disease with or without Grade I spondylolisthesis, particularly in patients who require a quicker recovery, will likely constitute the main indication for PDS using the Dynesys system. PMID:26721581

  10. Sequential Changes of Plasma C-Reactive Protein, Erythrocyte Sedimentation Rate and White Blood Cell Count in Spine Surgery : Comparison between Lumbar Open Discectomy and Posterior Lumbar Interbody Fusion

    PubMed Central

    Choi, Man Kyu; Kim, Kee D; Ament, Jared D.

    2014-01-01

    Objective C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) are often utilized to evaluate for postoperative infection. Abnormal values may be detected after surgery even in case of non-infection because of muscle injury, transfusion, which disturbed prompt perioperative management. The purpose of this study was to evaluate and compare the perioperative CRP, ESR, and white blood cell (WBC) counts after spine surgery, which was proved to be non-infection. Methods Twenty patients of lumbar open discectomy (LOD) and 20 patients of posterior lumbar interbody fusion (PLIF) were enrolled in this study. Preoperative and postoperative prophylactic antibiotics were administered routinely for 7 days. Blood samples were obtained one day before surgery and postoperative day (POD) 1, POD3, and POD7. Using repeated measures ANOVA, changes in effect measures over time and between groups over time were assessed. All data analysis was conducted using SAS v.9.1. Results Changes in CRP, within treatment groups over time and between treatment groups over time were both statistically significant F(3,120)=5.05, p=0.003 and F(1,39)=7.46, p=0.01, respectively. Most dramatic changes were decreases in the LOD group on POD3 and POD7. Changes in ESR, within treatment groups over time and between treatment groups over time were also found to be statistically significant, F(3,120)=6.67, p=0.0003 and F(1,39)=3.99, p=0.01, respectively. Changes in WBC values also were be statistically significant within groups over time, F(3,120)=40.52, p<0.001, however, no significant difference was found in between groups WBC levels over time, F(1,39)=0.02, p=0.89. Conclusion We found that, dramatic decrease of CRP was detected on POD3 and POD7 in LOD group of non-infection and dramatic increase of ESR on POD3 and POD7 in PLIF group of non-infection. We also assumed that CRP would be more effective and sensitive parameter especially in LOD than PLIF for early detection of infectious complications. Awareness of the typical pattern of CRP, ESR, and WBC may help to evaluate the early postoperative course. PMID:25368764

  11. Lateral Transpsoas Fusion: Indications and Outcomes

    PubMed Central

    Patel, Vishal C.; Park, Daniel K.; Herkowitz, Harry N.

    2012-01-01

    Spinal fusion historically has been used extensively, and, recently, the lateral transpsoas approach to the thoracic and lumbar spine has become an increasingly common method to achieve fusion. Recent literature on this approach has elucidated its advantage over more traditional anterior and posterior approaches, which include a smaller tissue dissection, potentially lower blood loss, no need for an access surgeon, and a shorter hospital stay. Indications for the procedure have now expanded to include degenerative disc disease, spinal stenosis, degenerative scoliosis, nonunion, trauma, infection, and low-grade spondylolisthesis. Lateral interbody fusion has a similar if not lower rate of complications compared to traditional anterior and posterior approaches to interbody fusion. However, lateral interbody fusion has unique complications that include transient neurologic symptoms, motor deficits, and neural injuries that range from 1 to 60% in the literature. Additional studies are required to further evaluate and monitor the short- and long-term safety, efficacy, outcomes, and complications of lateral transpsoas procedures. PMID:23213303

  12. Stabilizing Effects of a Particulate Demineralized Bone Matrix in the L4 Interbody Space with and without PEEK Cage - A Literature Review and Preliminary Results of a Cadaveric Biomechanical Study.

    PubMed

    Bruce, C; Chin, K R; Cumming, V; Crawford, N R

    2013-11-01

    We reviewed the biological elements supporting the usefulness of a specifically designed particulate form of demineralized bone matrix (DBM) with spinal fusion, and report some limitations of its use described in the medical literature and in the interbody space using a cadaveric biomechanical model. A literature review and description of the techniques used to augment spinal fusion are presented, including a more thorough review of recent findings of cadaveric biomechanical flexibility studies using DBM alone at different percentage fills of the existing disc space and DBM with a polyetheretherketone (PEEK) interbody cage. The need for DBM was established by reviewing limitations of autografts and allografts in spinal fusion. Demineralized bone matrix used alone did not increase stability post discectomy at L4-L5, but was demonstrated to exhibit satisfactory stability when used with a PEEK interbody cage. There may be a future role for DBM that hardens and fills disc space more rigidly, overcoming this limitation to its use. PMID:25014862

  13. Segmental Stiffness Achieved by Three Types of Fixation for Unstable Lumbar Spondylolytic Motion Segments

    PubMed Central

    Choma, Theodore; Pfeiffer, Ferris; Vallurupalli, Santaram; Mannering, Irene; Pak, Youngju

    2012-01-01

    Objective?The objective of this study was to compare the relative stability in lumbar spondylolysis (SP) of a rigid anterior plate (with a novel compression slot) versus traditional posterior pedicle screw (PS) fixation. Summary of Background Data?Arthrodesis has been a mainstay of treatment for symptomatic isthmic spondylolisthesis in adults. Posterior PS fixation has become a commonly used adjunct. Some have advocated anterior lumbar interbody fixation (ALIF) plate as an alternative. The relative stability afforded by ALIF in SP has not been well characterized, nor has the contribution afforded by a compression screw slot in an ALIF plate. Methods?Calf spine segments were characterized in the normal state, after sectioning the pars (SP model), then after reconstruction with an interbody spacer and either PS/rods, or an ALIF plate, or both. Results?ALIF plate conferred stability on the spondylolytic segment only comparable to that of the normal functional spinal unit (FSU). Posterior fixation was more stable than anterior fixation in all testing modes. Addition of an ALIF plate conferred a significant additional stability in those that already had posterior fixation. The utilization of an anterior compression screw conferred additional stability in extension testing only. Conclusions?ALIF plate reconstruction in the setting of SP may not confer enough segmental stability to predictably encourage fusion beyond that of the uninstrumented intact FSU. The utilization of an integral compression screw in an ALIF plate may not confer clinically significant additional construct stability in SP. PMID:24353951

  14. [Anterior and posterior stabilization of the lumbosacral spine with the usage of interbody cages in the operational treatment of the isthmic spondylolisthesis].

    PubMed

    Pankowski, Rafa?; Smoczy?ski, Andrzej; Smoczy?ski, Maciej; Luczkiewicz, Piotr; Piotrowski, Maciej

    2006-01-01

    In the following work results of the operational treatment of the isthmic spondylolisthesis by the posterior stabilization and anterior lumbosacral interbody fusion with the use of interbody implants--cages was taken under evaluation. The test group consisted of 21 patients (13 male and 8 male). The follow up period exceeded 2 years. The objective clinical outcome assessment was based on Oswestry disability questionnaire. Subjective clinical evaluation was done by the visual analog pain score and two questions concerning the evaluation of success of the operative treatment and a possible agreement to a following operation if necessary. The radiological results were done upon evaluation of the degree of the spondylolisthesis, the angle of the lumbosacral lordosis, the height of the interbody space and intervertebral foramen and the evaluation of the spinal fusion. The conclusion was that the usage of the distraction of the lumbosacral spine in the operational treatment of the isthmic spondylolisthesis result in the reduction of the slippage and the dynamic decompression of the compressed neural roots. The usage of the interbody cages prevented the loss of slippage correction, permanently reconstructed the anatomical conditions in the area of the operated spinal segment and helped to achieve good and very good clinical results in over 95% of patients. The fusion rate was 100%. The restoration of the correct height of the intervertebral foramen in the slip segment caused an improvement of the neurologic state. The usage of two level stabilization in the operative treatment of the isthmic spondylolisthesis prevented the initiation of the secondary degenerative changes adjacent to the fusion. PMID:17128767

  15. Anterolateral radical debridement and interbody bone grafting combined with transpedicle fixation in the treatment of thoracolumbar spinal tuberculosis.

    PubMed

    Cheng, Zhaohui; Wang, Jian; Zheng, Qixin; Wu, Yongchao; Guo, Xiaodong

    2015-04-01

    This retrospective cohort study was conducted to evaluate the clinical outcomes of radical anterolateral debridement and autogenous ilium with rib or titanium cage interbody autografting with transpedicle fixation for the treatment of thoracolumbar tuberculosis. Spinal tuberculosis operation aims to remove the lesions and necrotic tissues, remove spinal cord compression, and reconstruct spinal stability. However, traditional operation methods cannot effectively correct cyrtosis or stabilize the spine. In addition, the patient needs to stay in bed for a long time and may have many complications. So far, the best surgical method and fixation method for spinal tuberculosis remain controversial. There were a total of 43 patients, 16 involving spinal cord injury, from January 2004 to January 2011. The patients were surgically treated for radical anterolateral debridement via posterolateral incision and autogenous ilium with rib or titanium cage interbody autografting and single-stage transpedicle fixation. All the patients were followed up to determine the stages of intervertebral bone fusion and the corrections of spinal kyphosis with the restoration of neurological deficit. The erythrocyte sedimentation rate (ESR) of these patients decreased to normal levels for a mean of 2.8 months. The function of feeling, motion, and sphincter in 16 paraplegia cases gradually recovered after 1 week to 3 months postoperatively, and the American Spinal Injury Association scores significantly increased at the final follow-up. Intervertebral bone fusions were all achieved postoperatively. No internal fixation devices were loose, extracted, or broken. There was no correction degree loss during the follow-up. The method of radical anterolateral debridement and autogenous ilium with rib or titanium cage interbody autografting and single-stage transpedicle fixation was effective for the treatment of thoracolumbar tuberculosis, correcting kyphotic deformity, and reconstructing spinal stability, obtaining successful intervertebral bony fusion and promoting the recovery of paraplegia. These results showed satisfactory clinical outcomes. PMID:25860219

  16. Anterolateral Radical Debridement and Interbody Bone Grafting Combined With Transpedicle Fixation in the Treatment of Thoracolumbar Spinal Tuberculosis

    PubMed Central

    Cheng, Zhaohui; Wang, Jian; Zheng, Qixin; Wu, Yongchao; Guo, Xiaodong

    2015-01-01

    Abstract This retrospective cohort study was conducted to evaluate the clinical outcomes of radical anterolateral debridement and autogenous ilium with rib or titanium cage interbody autografting with transpedicle fixation for the treatment of thoracolumbar tuberculosis. Spinal tuberculosis operation aims to remove the lesions and necrotic tissues, remove spinal cord compression, and reconstruct spinal stability. However, traditional operation methods cannot effectively correct cyrtosis or stabilize the spine. In addition, the patient needs to stay in bed for a long time and may have many complications. So far, the best surgical method and fixation method for spinal tuberculosis remain controversial. There were a total of 43 patients, 16 involving spinal cord injury, from January 2004 to January 2011. The patients were surgically treated for radical anterolateral debridement via posterolateral incision and autogenous ilium with rib or titanium cage interbody autografting and single-stage transpedicle fixation. All the patients were followed up to determine the stages of intervertebral bone fusion and the corrections of spinal kyphosis with the restoration of neurological deficit. The erythrocyte sedimentation rate (ESR) of these patients decreased to normal levels for a mean of 2.8 months. The function of feeling, motion, and sphincter in 16 paraplegia cases gradually recovered after 1 week to 3 months postoperatively, and the American Spinal Injury Association scores significantly increased at the final follow-up. Intervertebral bone fusions were all achieved postoperatively. No internal fixation devices were loose, extracted, or broken. There was no correction degree loss during the follow-up. The method of radical anterolateral debridement and autogenous ilium with rib or titanium cage interbody autografting and single-stage transpedicle fixation was effective for the treatment of thoracolumbar tuberculosis, correcting kyphotic deformity, and reconstructing spinal stability, obtaining successful intervertebral bony fusion and promoting the recovery of paraplegia. These results showed satisfactory clinical outcomes. PMID:25860219

  17. Surgical treatment of internal disc disruption: an outcome study of four fusion techniques.

    PubMed

    Vamvanij, V; Fredrickson, B E; Thorpe, J M; Stadnick, M E; Yuan, H A

    1998-10-01

    Surgical treatment for internal disc disruption remains controversial in terms of efficacy of spinal fusion and optimal fusion method. The present study was carried out in 56 consecutive patients, with the diagnosis confirmed by computed tomographic (CT) discography, who were operated with one of four different lumbar fusion procedures. Outcomes were determined by postoperative pain questionnaires, independent clinical assessment, and radiographic evaluation. Simultaneous anterior interbody fusion using BAK cage and posterior facet fusion provided the highest rate of fusion (88%) and clinical satisfaction (63%). Pain scores were also significantly lower than facet screw augmented posterolateral fusion, and anterior interbody fusion with fibula allograft, but not significantly different from pedicle screw instrumented posterolateral fusion. Patients who achieved successful lumbar fusion had better clinical outcomes and a better chance of work resumption. PMID:9811096

  18. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  19. Expandable Polyaryl-Ether-Ether-Ketone Spacers for Interbody Distraction in the Lumbar Spine.

    PubMed

    Alimi, Marjan; Shin, Benjamin; Macielak, Michael; Hofstetter, Christoph P; Njoku, Innocent; Tsiouris, Apostolos J; Elowitz, Eric; Hrtl, Roger

    2015-06-01

    Study Design?Retrospective case series. Objective?StaXx XD (Spine Wave, Inc., Shelton, CT, United States) is an expandable polyaryl-ether-ether-ketone (PEEK) wafer implant utilized in the treatment of lumbar degenerative disease. PEEK implants have been successfully used as interbody devices. Few studies have focused on expandable PEEK devices. The aim of the current study is to determine the radiographic and clinical outcome of expandable PEEK cages utilized for transforaminal lumbar interbody fusion in patients with lumbar degenerative diseases. Methods?Forty-nine patients who underwent lumbar interbody fusion with implantation of expandable PEEK cages and posterior instrumentation were included. The clinical outcome was evaluated using the visual analog scale (VAS) and the Oswestry Disability Index (ODI). Radiographic parameters including disk height, foraminal height, listhesis, local disk angle of the index level/levels, regional lumbar lordosis, and graft subsidence were measured preoperatively, postoperatively, and at latest follow-up. Results?At an average follow-up of 19.3 months, the minimum clinically important difference for the ODI and VAS back, buttock, and leg were achieved in 64, 52, 58, and 52% of the patients, respectively. There was statistically significant improvement in VAS back (6.42 versus 3.11, p?

  20. Expandable Polyaryl-Ether-Ether-Ketone Spacers for Interbody Distraction in the Lumbar Spine

    PubMed Central

    Alimi, Marjan; Shin, Benjamin; Macielak, Michael; Hofstetter, Christoph P.; Njoku, Innocent; Tsiouris, Apostolos J.; Elowitz, Eric; Härtl, Roger

    2015-01-01

    Study Design Retrospective case series. Objective StaXx XD (Spine Wave, Inc., Shelton, CT, United States) is an expandable polyaryl-ether-ether-ketone (PEEK) wafer implant utilized in the treatment of lumbar degenerative disease. PEEK implants have been successfully used as interbody devices. Few studies have focused on expandable PEEK devices. The aim of the current study is to determine the radiographic and clinical outcome of expandable PEEK cages utilized for transforaminal lumbar interbody fusion in patients with lumbar degenerative diseases. Methods Forty-nine patients who underwent lumbar interbody fusion with implantation of expandable PEEK cages and posterior instrumentation were included. The clinical outcome was evaluated using the visual analog scale (VAS) and the Oswestry Disability Index (ODI). Radiographic parameters including disk height, foraminal height, listhesis, local disk angle of the index level/levels, regional lumbar lordosis, and graft subsidence were measured preoperatively, postoperatively, and at latest follow-up. Results At an average follow-up of 19.3 months, the minimum clinically important difference for the ODI and VAS back, buttock, and leg were achieved in 64, 52, 58, and 52% of the patients, respectively. There was statistically significant improvement in VAS back (6.42 versus 3.11, p < 0.001), VAS buttock (4.66 versus 1.97, p = 0.002), VAS leg (4.55 versus 1.96, p < 0.001), and ODI (21.7 versus 12.1, p < 0.001) scores. There was a significant increase in the average disk height (6.49 versus 8.18 mm, p = 0.037) and foraminal height (15.6 versus 18.53 mm, p = 0.0001), and a significant reduction in the listhesis (5.13 versus 3.15 mm, p = 0.005). The subsidence of 0.66 mm (7.4%) observed at the latest follow-up was not significant (p = 0.35). Conclusions Midterm results indicate that expandable PEEK spacers can effectively and durably restore disk and foraminal height and improve the outcome without significant subsidence. PMID:26131383

  1. Biomechanical effects of polyaxial pedicle screw fixation on the lumbosacral segments with an anterior interbody cage support

    PubMed Central

    Chen, Shih-Hao; Mo Lin, Ruey; Chen, Hsiang-Ho; Tsai, Kai-Jow

    2007-01-01

    Background Lumbosacral fusion is a relatively common procedure that is used in the management of an unstable spine. The anterior interbody cage has been involved to enhance the stability of a pedicle screw construct used at the lumbosacral junction. Biomechanical differences between polyaxial and monoaxial pedicle screws linked with various rod contours were investigated to analyze the respective effects on overall construct stiffness, cage strain, rod strain, and contact ratios at the vertebra-cage junction. Methods A synthetic model composed of two ultrahigh molecular weight polyethylene blocks was used with four titanium pedicle screws (two in each block) and two rods fixation to build the spinal construct along with an anterior interbody cage support. For each pair of the construct fixed with polyaxial or monoaxial screws, the linked rods were set at four configurations to simulate 0, 7, 14, and 21 lordosis on the sagittal plane, and a compressive load of 300 N was applied. Strain gauges were attached to the posterior surface of the cage and to the central area of the left connecting rod. Also, the contact area between the block and the cage was measured using prescale Fuji super low pressure film for compression, flexion, lateral bending and torsion tests. Results Our main findings in the experiments with an anterior interbody cage support are as follows: 1) large segmental lordosis can decrease the stiffness of monoaxial pedicle screws constructs; 2) polyaxial screws rather than monoaxial screws combined with the cage fixation provide higher compression and flexion stiffness in 21 segmental lordosis; 3) polyaxial screws enhance the contact surface of the cage in 21 segmental lordosis. Conclusion Polyaxial screws system used in conjunction with anterior cage support yields higher contact ratio, compression and flexion stiffness of spinal constructs than monoaxial screws system does in the same model when the spinal segment is set at large lordotic angles. Polyaxial pedicle screw fixation performs nearly equal percentages of vertebra-cage contact among all constructs with different sagittal alignments, therefore enhances the stabilization effect of interbody cages in the lumbosacral area. PMID:17349057

  2. Use of Aortic Endograft for Repair of Intraoperative Iliocaval Injury during Anterior Spine Exposure.

    PubMed

    Chou, Elizabeth L; Colvard, Benjamin D; Lee, Jason T

    2016-02-01

    Vascular injury during anterior lumbar interbody fusion (ALIF) is a well-documented occurrence. Most vascular injuries continue to be managed with direct open repair. We report the outcome of a 61-year-old woman who experienced inferior vena cava and left common iliac vein injury during a difficult exposure for multilevel ALIF. The distal cava and common iliac vein were repaired with a Gore Excluder cuff and limb. The endovascular repair permitted control of the injury without more morbid maneuvers such as iliac artery transection. Thus endovascular repair of intraoperative caval injury is a valuable option in emergent situations with low morbidity and good durability. PMID:26597236

  3. Outcomes of Two Different Techniques Using the Lateral Approach for Lumbar Interbody Arthrodesis

    PubMed Central

    Cheng, Ivan; Briseño, Michael R.; Arrigo, Robert T.; Bains, Navpreet; Ravi, Shashank; Tran, Andrew

    2015-01-01

    Study Design Retrospective cohort study. Objective To determine the short-term outcomes of two different lateral approaches to the lumbar spine. Methods This was a retrospective review performed with four fellowship-trained spine surgeons from a single institution. Two different approach techniques were identified. (1) Traditional transpsoas (TP) approach: dissection was performed through the psoas performed using neuromonitored sequential dilation. (2) Direct visualization (DV) approach: retractors are placed superficial to the psoas followed by directly visualized dissection through psoas. Outcome measures included radiographic fusion and adverse event (AE) rate. Results In all, 120 patients were identified, 79 women and 41 men. Average age was 64.2 years (22 to 86). When looking at all medical and surgical AEs, 31 patients (25.8%) had one or more AEs; 22 patients (18.3%) had a total of 24 neurologically related AEs; 15 patients (12.5%) had anterior/lateral thigh dysesthesias; 6 patients (5.0%) had radiculopathic pain; and 3 patients (2.5%) had postoperative weakness. Specifically, for neurologic AEs, the DV group had a rate of 28.0% and the TP group had a rate of 14.2% (p < 0.18). When looking at the rate of neurologic AEs in patients undergoing single-level fusions only, the DV group rate was 28.6% versus 10.2% for the TP group (p < 0.03). Conclusion Overall, 18.3% of patients sustained a postoperative neurologic AE following lateral interbody fusions. The TP approach had a statistically lower rate of neurologic-specific AE for single-level fusions. PMID:26225280

  4. Iatrogenic Baastrup's Syndrome: A Potential Complication Following Anterior Interbody Lumbar Spinal Surgery

    PubMed Central

    Russo, Glenn S.; Castro, Carlos A.

    2015-01-01

    Background Baastrup's Syndrome is a condition that occurs when there is abnormal contact between two adjacent spinous processes resulting in back pain. An alteration in lumbar spinal alignment and/or adjacent segment compensatory motion is thought to be potential causative factors. The objective of this study was to present a case series of what appears to be iatrogenic Baastrup's Syndrome as a mid-to-late term complication following anterior lumbar interbody surgery. Methods A retrospective chart review was performed of all patients undergoing anterior lumbar surgery for either fusion or disc replacement to determine the prevalence of Baastrup's Syndrome. Results Over a 12-year period, 855 patients who had undergone an anterior approach for lumbar spine surgery were identified. Of them 8 patients with evidence of Baastrup's Syndrome were found; this demonstrated a prevalence of 0.9%. Diagnostic injection was a helpful clinical tool in confirming the diagnosis of iatrogenic Baastrup's Syndrome. The partial removal of the impinging spinous processes resulted in excellent clinical relief. Conclusions Iatrogenic Baastrup's Syndrome may be an iatrogenic result of anterior lumbar surgery in small group of patients. Spinous process excision is a suggested treatment option. Further studies are necessary to explore the above phenomenon. This study is a Level 3 retrospective case series. PMID:26767158

  5. Midline Lumbar Fusion with Cortical Bone Trajectory Screw

    PubMed Central

    MIZUNO, Masaki; KURAISHI, Keita; UMEDA, Yasuyuki; SANO, Takanori; TSUJI, Masanori; SUZUKI, Hidenori

    2014-01-01

    A novel cortical bone trajectory (CBT) screw technique provides an alternative fixation technique for lumbar spine. Trajectory of CBT screw creates a caudo-cephalad path in sagittal plane and a medio-lateral path in axial plane, and engages cortical bone in the pedicle. The theoretical advantage is that it provides enhanced screw grip and interface strength. Midline lumbar fusion (MIDLF) is composed of posterior mid-line approach, microsurgical laminectomy, and CBT screw fixation. We adopted the MIDLF technique for lumbar spondylolisthesis. Advantages of this technique include that decompression and fusion are available in the same field, and it minimizes approach-related damages. To determine whether MIDLF with CBT screw is as effective as traditional approach and it is minimum invasive technique, we studied the clinical and radiological outcomes of MIDLF. Our results indicate that MIDLF is effective and minimum invasive technique. Evidence of effectiveness of MIDLF is that patients had good recovery score, and that CBT screw technique was safety in clinical and stable in radiological. MIDLF with CBT screw provides the surgeon with additional options for fixation. This technique is most likely to be useful for treating lumbar spondylolisthesis in combination with midline decompression and insertion of an interbody graft, such as the transforaminal lumbar interbody fusion or posterior lumbar interbody fusion techniques. PMID:25169139

  6. Early Radiographic and Clinical Outcomes Study Evaluating an Integrated Screw and Interbody Spacer for One- and Two-Level ACDF

    PubMed Central

    Lane, Paul D.; Cox, Jacob L.; Gaskins, Roger B.; Billys, James B.; Castellvi, Antonio E.

    2015-01-01

    Background Multiple techniques and implants can be used in ACDF, the newest of which are integrated cage and screw constructs. These devices may be beneficial over anterior plate constructs due to a negligible anterior profile that may reduce dysphagia. The goal of this study is to review the early radiographical and clinical results associated with a low profile integrated intervertebral cage in one- and two-level anterior column fusions. Methods Fusion rates, incidence of hardware failure and deformity correction were assessed through 1 year. Patientreported scores, including VAS for neck pain, and improvements in axial neck pain and neurologic deficit from the preoperative baseline were quantified at 3, 6 and 12 months post-operatively. The incidence of dysphagia was recorded. Results Lordosis and disc space height at the operated levels increased an average of 4.5° and 3.3mm after device placement (p<0.001). Sagittal plane correction was maintained at 1 year. VAS improved from an average of 5.1 preoperatively to 3.1 immediately postoperatively and was maintained at 12 months. At 3 months, patient-reported improvements in axial neck pain and neurologic deficit were 85% and 93%, respectively. Reported improvements were sustained for both parameters at 12 months (77% and 86%, respectively). Fusion was noted in 93% of the operated levels. There were two documented cases of dysphagia that lasted more than 5 weeks, both following two level ACDFs with the test device (3.5% rate of chronic dysphagia). Conclusions The low profile integrated device improved lordosis at the operated level that was maintained at 1 year. Fusion rates with the new device are consistent with ACDF using anterior plating. In combination with improvements in pain and a minimal rate of dysphagia, study findings support the use of integrated interbody spacers for use in one- and two-level ACDF procedures. Level of Evidence Level IV, Case Series. PMID:26273557

  7. More nerve root injuries occur with minimally invasive lumbar surgery: Let's tell someone

    PubMed Central

    Epstein, Nancy E.

    2016-01-01

    Background: In a recent study entitled: “More nerve root injuries occur with minimally invasive lumbar surgery, especially extreme lateral interbody fusion (XLIF): A review”, Epstein documented that more nerve root injuries occurred utilizing minimally invasive surgery (MIS) versus open lumbar surgery for diskectomy, decompression of stenosis (laminectomy), and/or fusion for instability. Methods: In large multicenter Spine Patient Outcomes Research Trial reviews performed by Desai et al., nerve root injury with open diskectomy occurred in 0.13–0.25% of cases, occurred in 0% of laminectomy/stenosis with/without fusion cases, and just 2% for open laminectomy/stenosis/degenerative spondylolisthesis with/without fusion. Results: In another MIS series performed largely for disc disease (often contained nonsurgical disc herniations, therefore unnecessary procedures) or spondylolisthesis, the risk of root injury was 2% for transforaminal lumbar interbody fusion (TLIF) versus 7.8% for posterior lumbar interbody fusion (PLIF). Furthermore, the high frequencies of radiculitis/nerve root/plexus injuries incurring during anterior lumbar interbody fusions (ALIF: 15.8%) versus extreme lumbar interbody fusions (XLIF: 23.8%), addressing disc disease, failed back surgery, and spondylolisthesis, were far from acceptable. Conclusions: The incidence of nerve root injuries following any of the multiple MIS lumbar surgical techniques (TLIF/PLIF/ALIF/XLIF) resulted in more nerve root injuries when compared with open conventional lumbar surgical techniques. Considering the majority of these procedures are unnecessarily being performed for degenerative disc disease alone, spine surgeons should be increasingly asked why they are offering these operations to their patients? PMID:26904373

  8. Study ethnomathematics of aboge (alif, rebo, wage) calendar as determinant of the great days of Islam and traditional ceremony in Cirebon Kasepuhan Palace

    NASA Astrophysics Data System (ADS)

    Syahrin, Muhammad Alfi; Turmudi, Puspita, Entit

    2016-02-01

    This research attempts to show about the relationship between mathematics and culture. Paradigm that emerged currently, that mathematics is an abstract concept and difficult, therefore mathematics is not favored by most students. In the reality, indirectly mathematics is present in a culture of a society. Ethnomathematics study is a study to examine how does a group of people in a particular culture understand, express, and use the concepts and practices of culture that depicted mathematically. This research was conducted in Cirebon precisely in Kasepuhan Palace, which was in RW 04, Kasepuhan village, Lemah Wungkuk district, Cirebon city, West Java. The focus of the study and research purposes was the application of aboge (alif rebo wage) calendar as the calculation of days and the calendar rules determine the time of days, great days of Islam and traditional ceremony in Kasepuhan Palace. Qualitative methods with the principles of ethnography such as studies in ethnomathematics i.e observation, interviews, documentation and fieldnotes were used in this research. The findings of this ethnomathematics study show that the determining great days of Islam and the days of palace traditional ceremony have a close relationship with the counts and principles in mathematics. This study provides recommendations that mathematics is closely related to culture due to ethnomathematics.

  9. Technical Note - Lateral Approach to the Lumbar Spine for the Removal of Interbody Cages.

    PubMed

    Moisi, Marc; Page, Jeni; Paulson, David; Oskouian, Rod J

    2015-05-01

    Revision surgery to address the migration or fracture of a lumbar interbody cage can be technically challenging.Scar tissue and fibrosis, among other anatomic barriers, can make removal of the cage a complicated procedure, potentially increasing postoperative pain as well as the probability of neurologic deficits.Use of the lateral surgical technique for removal of the cage can avoid these potential complications.In this case report, we describe the removal of interbody cages through a lateral approach in three patients without the necessity of additional posterior hardware revision. PMID:26180692

  10. Stability and Load Sharing Characteristics of a Posterior Dynamic Stabilization Device

    PubMed Central

    Cook, Daniel J.; Yeager, Matthew S.; Thampi, Shankar S.; Whiting, Donald M.

    2015-01-01

    Background Lumbar interbody fusion is a common treatment for a variety of spinal pathologies. It has been hypothesized that insufficient mechanical loading of the interbody graft can prevent proper fusion of the joint. The purpose of this study was to evaluate the mechanical stability and anterior column loading sharing characteristics of a posterior dynamic system compared to titanium rods in an anterior lumbar interbody fusion (ALIF) model. Methods Range of motion, interpedicular kinematics and interbody graft loading were measured in human cadaveric lumbar segments tested under a pure moment flexibility testing protocol. Results Both systems provided significant fixation compared to the intact condition and to an interbody spacer alone in flexion extension and lateral bending. No significant differences in fixation were detected between the devices. A significant decrease in graft loading was detected in flexion for the titanium rod treatment compared to spacer alone. No significant differences in graft loading were detected between the spacer alone and posterior dynamic system or between the posterior dynamic system and the titanium rod. Conclusions The results of this study indicate that the posterior dynamic system provides similar fixation compared to that of a titanium rod, however, studies designed to evaluate the efficacy of fixation in a cadaver model may not be sufficiently powered to establish differences in load sharing using the techniques described here. PMID:26131403

  11. A Clinical Investigation of Contralateral Neurological Symptom after Transforaminal Lumbar Interbody Fusion (TLIF)

    PubMed Central

    Bai, Jiayue; Zhang, Wei; Zhang, Xin; Sun, Yapeng; Ding, Wenyuan; Shen, Yong

    2015-01-01

    Background The aim of this study was to analyze treatment outcomes and morbidity of contralateral neurological symptom in patients after TLIF surgery and to explore its possible causes. Material/Methods A retrospective study was conducted involving a total of 476 patients who underwent TILF from 2009 to 2012 in our hospital. These cases were divided into a symptomatic group (Group S) and a non-symptomatic group. The differences in contralateral foramen area and disc-height index(DHI) before and after surgery were compared between Group S and a random sample of 40 cases of non-symptomatic group patients (group N). In addition, according to whether the patient underwent second surgery, Group S patients were further divided into a transient neurologic symptoms group (Group T) and an operations exploration group (Group O). The time of symptom appearance, duration, and symptomatic severity (JOA VAS score) were compared between Group T and O. Results Among the 476 patients, 18 had postoperative contralateral neurological symptoms; thus, the morbidity was 3.7815%. The indicators in Group S were lower than in Group N in the differences in contralateral foramen area and disc-height index(DHI) before and after surgery (p<0.05). Five patients (Group O) in Group S had second surgery because of invalid conservative treatment. The surgical exploration rate was 1.0504%. Compared with Group T, the symptoms of Group O patients appeared earlier, persisted longer, and were more serious (p<0.05). Conclusions Contralateral neurological symptom is a potential complication after TLIF, and its causes are diverse. Surgical explorations should be conducted early for those patients with the complication who present with obvious nerve damage. PMID:26109143

  12. First report of major vascular injury due to lateral transpsoas approach leading to fatality.

    PubMed

    Assina, Rachid; Majmundar, Neil J; Herschman, Yehuda; Heary, Robert F

    2014-11-01

    Extreme lateral interbody fusion (XLIF) has gained popularity among spine surgeons for treating multiple conditions of the lumbar spine. In contrast to the anterior lumbar interbody fusion (ALIF) approach, the minimally invasive XLIF approach affords wide access to the lumbar disc space without an access surgeon and causes minimal tissue disruption. The XLIF approach offers many advantages over other lumbar spine approaches, with a reportedly low complication profile. The authors describe the first fatality reported in the literature following an XLIF approach. They describe the case of a 50-year-old woman who suffered a fatal intraoperative injury to the great vessels during a lateral transpsoas approach to the L4-5 disc space. PMID:25192374

  13. Computational analyses of different intervertebral cages for lumbar spinal fusion.

    PubMed

    Bashkuev, Maxim; Checa, Sara; Postigo, Sergio; Duda, Georg; Schmidt, Hendrik

    2015-09-18

    Lumbar spinal fusion is the most common approach for treating spinal disorders such as degeneration or instability. Although this procedure has been performed for many years, there are still important challenges that must be overcome and questions that need to be addressed regarding the high rates of non-union. The present finite element model study aimed to investigate the influence of different cage designs on the fusion process. An axisymmetric finite element model of a spinal segment with an interbody fusion cage was used. The fusion process was based on an existing mechano-regulation algorithm for tissue formation. With this model, the following principal concepts of cage design were investigated: (1) different cage geometries with constant compressive stiffness and (2) cage designs optimized to provide the ideal mechanical stimulus for bone formation, first at the beginning of fusion and then throughout the entire fusion process. The cage geometry substantially influenced the fusion outcome. A cage that created an optimized initial mechanical stimulus did not necessarily lead to accelerated fusion, but rather resulted in delayed fusion or non-union. In contrast, a cage made of a degradable material produced a significantly higher amount of bone and resulted in higher segmental stiffness. However, different compressive loads (250, 500 and 1000 N) substantially affected the amount of newly formed bone tissue. The results of the present study suggest that aiming for an optimal initial mechanical stimulus may be misleading because the initial mechanical environment is not preserved throughout the bone modeling process. PMID:26162547

  14. Spinal fusion

    MedlinePLUS

    ... Anterior spinal fusion; Spine surgery - spinal fusion; Low back pain - fusion; Herniated disk - fusion ... If you had chronic back pain before surgery, you will likely still have some pain afterward. Spinal fusion is unlikely to take away all your pain ...

  15. Minimally Invasive Versus Open Lumbar Fusion: A Comparison of Blood Loss, Surgical Complications, and Hospital Course

    PubMed Central

    Patel, Amar A.; Zfass-Mendez, Matthew; Lebwohl, Nathan H.; Wang, Michael Y.; Green, Barth A.; Levi, Allan D.; Vanni, Steven; Williams, Seth K.

    2015-01-01

    Background Perioperative blood loss is a frequent concern in spine surgery and often necessitates the use of allogeneic transfusion. Minimally invasive technique (MIS) is an option that minimizes surgical trauma and therefore intra-operative bleeding. The purpose of this study is to evaluate the blood loss, surgical complications, and duration of inpatient hospitalization in patients undergoing open posterolateral lumbar fusion (PLF), open posterior lumbar interbody fusion (PLIF) with PLF, or MIS transforaminal lumbar interbody fusion (MIS TLIF). Methods Operative reports and perioperative data of patients undergoing single-level, primary open PLF (n=41), open PLIF/PLF (n=42), and MIS TLIF (n=71) were retrospectively evaluated. Patient demographics, operative blood loss, use of transfusion products, complications, and length of stay were tabulated. Patient data was controlled for age, BMI, and gender for statistical analysis. Results Patients undergoing open PLF and open PLIF/PLF respectively experienced a significantly higher blood loss (p<0.001), higher volume of blood transfusion (p<0.001), higher volume of cell saver transfusion (p<0.001), and more surgical complications (dural injury, wound infections, screw malposition) (p=0.02) than those undergoing MIS TLIF. There was no statistically significant difference in duration of hospital stay (p=0.11). Conclusions MIS TLIF provides interbody fusion with less intraoperative blood loss and subsequently a lower transfusion rate compared to open techniques, but this did not influence length of hospital stay. MIS TLIF is at least as safe as open techniques with respect to dural tear, wound infection, and screw placement. Level of Evidence Level III, Therapeutic PMID:26361455

  16. Older literature review of increased risk of adjacent segment degeneration with instrumented lumbar fusions

    PubMed Central

    Epstein, Nancy E.

    2016-01-01

    Background: Adjacent segment degeneration (ASD) following lumbar spine surgery occurs in up to 30% of cases, and descriptions of such changes are not new. Here, we review some of the older literature concerning the rate of ASD, typically more severe cephalad than caudad, and highly correlated with instrumented fusions. Therefore, for degenerative lumbar disease without frank instability, ASD would be markedly reduced by avoiding instrumented fusions. Methods: In a prior review, the newer literature regarding the frequency of ASD following lumbar instrumented fusions (e.g., transforaminal or posterior lumbar interbody fusions [TLIF/PLIF] fusions or occasionally, posterolateral fusions [PLFs]) was presented. Some studies cited an up to an 18.5% incidence of ASD following instrumented versus noninstrumented fusions/decompressions alone (5.6%). A review of the older literature similarly documents a higher rate of ASD following instrumented fusions performed for degenerative lumbar disease alone. Results: More frequent and more severe ASD follows instrumented lumbar fusions performed for degenerative lumbar disease without instability. Alternatively, this entity should be treated with decompressions alone or with noninstrumented fusions, without the addition of instrumentation. Conclusions: Too many studies assume that TLIF, PLIF, and even PLF instrumented fusions are the “gold standard of care” for dealing with degenerative disease of the lumbar spine without documented instability. It is time to correct that assumption, and reassess the older literature along with the new to confirm that decompression alone and noninstrumented fusion avoid significant morbidity and even potentially mortality attributed to unnecessary instrumentation. PMID:26904370

  17. Early experience with endoscopic revision of lumbar spinal fusions.

    PubMed

    McGrath, Lynn B; Madhavan, Karthik; Chieng, Lee Onn; Wang, Michael Y; Hofstetter, Christoph P

    2016-02-01

    Approximately half a million spinal fusion procedures are performed annually in the US. It is estimated that up to one-third of arthrodesis constructs require revision surgeries. In this study the authors present endoscopic treatment strategies targeting 3 types of complications following arthrodesis surgery: 1) adjacent-level foraminal stenosis; 2) foraminal stenosis at an arthrodesis segment; and 3) stenosis caused by a displaced interbody cage. A retrospective chart review of 11 patients with a mean age of 68 15 years was performed (continuous variables are shown as the mean SEM). All patients had a history of lumbar arthrodesis surgery and suffered from unilateral radiculopathy. Endoscopic revision surgeries were done as outpatient procedures, and there were no intraoperative or perioperative complications. The cohort included 3 patients with foraminal stenosis at the level of previous arthrodesis. They presented with unilateral radicular leg pain (visual analog scale [VAS] score: 7.3 2.1) and were severely disabled, as evidenced by an Oswestry Disability Index (ODI) of 46 4.9. Transforaminal endoscopic foraminotomies were performed, and at a mean follow-up time of 9.0 2.5 months VAS was reduced by an average of 6.3. The cohort also includes 7 patients suffering unilateral radiculopathy due to adjacent-level foraminal stenosis. Preoperative VAS for leg pain of the symptomatic side was 6.0 1.6, VAS for back pain was 5.2 1.7, and ODI was 40 6.33. Endoscopic decompression led to reduction of the ipsilateral leg VAS score by an average of 5, resulting in leg pain of 1 0.5 at an average of 8 months of follow-up. The severity of back pain remained stable (VAS 4.2 1.4). Two of these patients required revision surgery for recurrent symptoms. Finally, this study includes 1 patient who presented with weakness and pain due to retropulsion of an L5/S1 interbody spacer. The patient underwent an endoscopic interlaminar approach with partial resection of the interbody cage, which resulted in complete resolution of her radicular symptoms. Endoscopic surgery may be a useful adjunct for management of certain arthrodesis-related complications. Endoscopic foraminal decompression of previously fused segments and resection of displaced interbody cages appears to have excellent outcomes, whereas decompression of adjacent segments remains challenging and requires further investigation. PMID:26828879

  18. Ectopic bone formation with joint impingement after posterior lumbar fusion with rhBMP-2.

    PubMed

    Bannwarth, M; Kleiber, J C; Marlier, B; Eap, C; Duntze, J; Litre, C F

    2016-04-01

    Recombinant human bone morphogenetic protein-2 (rhBMP-2) was recently licensed for local administration during posterior lumbar fusion. In this indication, considerable uncertainty remains about the nature and mechanisms of the many adverse effects of rhBMP-2, such as ectopic bone formation. We report a case of ectopic bone formation with impingement on a facet joint and incapacitating low back pain after minimally invasive transforaminal L5-S1 interbody fusion with local application of rhBMP-2 (InductOs(®)). Revision surgery was eventually performed to alleviate the symptoms by removing the ectopic bone. Caution is in order regarding the use of rhBMP-2 during posterior lumbar fusion. Every effort should be made to minimise the risk of complications. PMID:26947733

  19. Is Hydronephrosis a Complication after Anterior Lumbar Surgery?

    PubMed

    Parks, Ruth M; Behrbalk, Eyal; Mosharraf, Syed; Mller, Roger M; Boszczyk, Bronek M

    2015-12-01

    Study Design?Prospective follow-up design. Objective?Ureteral injury is a recognized complication following gynecologic surgery and can result in hydronephrosis. Anterior lumbar surgery includes procedures like anterior lumbar interbody fusion (ALIF) and total disk replacement (TDR). Anterior approaches to the spine require mobilization of the great vessels and visceral organs. The vascular supply to the ureter arising from the iliac arteries may be compromised during midline retraction of the ureter, which could theoretically lead to ureter ischemia and stricture with subsequent hydronephrosis formation. Methods?Potential candidates with previous ALIF or TDR via anterior retroperitoneal access between January 2008 and March 2012 were chosen from those operated on by a single surgeon in a university hospital setting (n?=?85). Renal ultrasound evaluation of hydronephrosis was performed on all participants. Simple descriptive and inferential statistics were used to generate results. Results?A total of 37 voluntary participants were recruited (23 male, 14 female subjects; average age 51.8 years). The prevalence of hydronephrosis in our population was 0.0% (95% confidence interval 0 to 8.1%). Conclusions?Retraction of the ureter across the midline in ALIF and TDR does not result in an increase in hydronephrosis and appears to be a safe surgical technique. PMID:26682096

  20. Is Hydronephrosis a Complication after Anterior Lumbar Surgery?

    PubMed Central

    Parks, Ruth M.; Behrbalk, Eyal; Mosharraf, Syed; Mller, Roger M.; Boszczyk, Bronek M.

    2015-01-01

    Study Design?Prospective follow-up design. Objective?Ureteral injury is a recognized complication following gynecologic surgery and can result in hydronephrosis. Anterior lumbar surgery includes procedures like anterior lumbar interbody fusion (ALIF) and total disk replacement (TDR). Anterior approaches to the spine require mobilization of the great vessels and visceral organs. The vascular supply to the ureter arising from the iliac arteries may be compromised during midline retraction of the ureter, which could theoretically lead to ureter ischemia and stricture with subsequent hydronephrosis formation. Methods?Potential candidates with previous ALIF or TDR via anterior retroperitoneal access between January 2008 and March 2012 were chosen from those operated on by a single surgeon in a university hospital setting (n?=?85). Renal ultrasound evaluation of hydronephrosis was performed on all participants. Simple descriptive and inferential statistics were used to generate results. Results?A total of 37 voluntary participants were recruited (23 male, 14 female subjects; average age 51.8 years). The prevalence of hydronephrosis in our population was 0.0% (95% confidence interval 0 to 8.1%). Conclusions?Retraction of the ureter across the midline in ALIF and TDR does not result in an increase in hydronephrosis and appears to be a safe surgical technique. PMID:26682096

  1. A prospective, multi-center clinical and radiographic outcomes evaluation of ChronOS strip for lumbar spine fusion.

    PubMed

    Kanter, Adam S; Gandhoke, Gurpreet S; Welch, William C; Arnold, Paul M; Cheng, Joseph S; Okonkwo, David O

    2016-03-01

    This prospective clinical study evaluated the use of a composite bone void filler (ChronOS Strip, DePuy Synthes, West Chester, PA, USA), combined with bone marrow aspirate plus local autologous bone, in a series of patients undergoing instrumented posterolateral spinal fusion with interbody support. Seventy-six patients were enrolled and treated per protocol at 13 clinical sites. At 24months, 55/76 patients (72%) were evaluated, with 49/76 (65%) having sufficient data to determine the primary endpoint. The primary endpoint, posterolateral fusion success, was achieved in 48/54 (88.9%) patients at 12months and in 45/49 (91.8%) patients at 24months. At all follow-up time points, statistically significant improvements were observed when compared to baseline in back and leg pain and functional status as measured by visual analog scale, Oswestry Disability Index and 12-Item Short Form health surveys. This prospective multi-center series provides evidence that the composite bone void filler, when applied posterolaterally with instrumentation, bone marrow aspirate and/or local autologous bone and concomitant interbody support, can be used to achieve a successful posterolateral fusion, resulting in improvements in clinical outcomes in patients with degenerative disc disease. PMID:26602602

  2. Complication with Removal of a Lumbar Spinal Locking Plate

    PubMed Central

    Crawford, Brooke; Lenarz, Christopher; Watson, J. Tracy; Alander, Dirk

    2015-01-01

    Introduction. The use of locking plate technology for anterior lumbar spinal fusion has increased stability of the vertebral fusion mass over traditional nonconstrained screw and plate systems. This case report outlines a complication due to the use of this construct. Case. A patient with a history of L2 corpectomy and anterior spinal fusion presented with discitis at the L4/5 level and underwent an anterior lumbar interbody fusion (ALIF) supplemented with a locking plate placed anterolaterally for stability. Fifteen months after the ALIF procedure, he returned with a hardware infection. He underwent debridement of the infection site and removal of hardware. Results. Once hardware was exposed, removal of the locking plate screws was only successful in one out of four screws using a reverse thread screw removal device. Three of the reverse thread screw removal devices broke in attempt to remove the subsequent screws. A metal cutting drill was then used to break hoop stresses associated with the locking device and the plate was removed. Conclusion. Anterior locking plates add significant stability to an anterior spinal fusion mass. However, removal of this hardware can be complicated by the inherent properties of the design with significant risk of major vascular injury. PMID:25838956

  3. Nuclear Fusion

    NASA Astrophysics Data System (ADS)

    Veres, G.

    This chapter is devoted to the fundamental concepts of nuclear fusion. To be more precise, it is devoted to the theoretical basics of fusion reactions between light nuclei such as hydrogen, helium, boron, and lithium. The discussion is limited because our purpose is to focus on laboratory-scale fusion experiments that aim at gaining energy from the fusion process. After discussing the methods of calculating the fusion cross section, it will be shown that sustained fusion reactions with energy gain must happen in a thermal medium because, in beam-target experiments, the energy of the beam is randomized faster than the fusion rate. Following a brief introduction to the elements of plasma physics, the chapter is concluded with the introduction of the most prominent fusion reactions ongoing in the Sun.

  4. Mirror fusion

    NASA Astrophysics Data System (ADS)

    Harrison, M. A.; McGregor, C. K.

    1980-07-01

    Progress reported in the mirror fusion energy program covers (1) fusion, plasma theory, and computation; (2) magnetic mirror system and tandem mirror experiments; (3) superconducting magnetic development; (4) fusion reactor materials; (5) experiments in the mirror fusion test facility; and (6) design and construction of the facility. Topics covered include fiber optic communication links; desorption of deuterium and contaminants; neutral beam injection; operating point for the Yin-Yang cell; and reverse field pinch.

  5. Magnetic resonance imaging on disc degeneration changes after implantation of an interspinous spacer and fusion of the adjacent segment

    PubMed Central

    Liu, Xiaokang; Liu, Yingjie; Lian, Xiaofeng; Xu, Jianguang

    2015-01-01

    The aim of the study was to investigate the changes of the lumbar intervertebral disc degeneration by magnetic resonance imaging (MRI) after the implantation of interspinous device and the fusion of the adjacent segment. A total of 62 consecutive patients suffering L5/S1 lumbar disc herniation (LDH) with concomitant disc space narrowing or low-grade instability up to 5 mm translational slip in L5/S1 level were treated with lumbar interbody fusion (LIF) via posterior approach. Thirty-four of these patients (Coflex group) received an additional implantation of the interspinous spacer device (Coflex) in the level L4/L5, while the rest of 28 patients (fusion group) underwent the fusion surgery alone. Clinical and radiographic examinations were performed at pre- and postoperative visits to compare the clinical outcomes and the changes of the L4/L5 vertebral disc degeneration on MRI in both Coflex and fusion group. Although both Coflex and fusion group showed improvements of the clinical outcomes assessed by the Oswestry Disability Index (ODI) after surgery, patients in Coflex group had more significant amelioration (P < 0.05) compared to fusion group. During follow up, the postoperative disc degeneration changes in Coflex group assessed by the relative signal intensity (RSI) differed from those in fusion group (P < 0.05). The supplemental implantation of Coflex after the fusion surgery could delay the disc degeneration of the adjacent segment. PMID:26131210

  6. Anterior cervical interbody constructs: effect of a repetitive compressive force on the endplate.

    PubMed

    Ordway, Nathaniel R; Rim, Byeong Cheol; Tan, Rong; Hickman, Rebecca; Fayyazi, Amir H

    2012-04-01

    Graft subsidence following anterior cervical reconstruction can result in the loss of sagittal balance and recurring foraminal stenosis. This study examined the implant-endplate interface using a cyclic fatigue loading protocol in an attempt to model the subsidence seen in vivo. The superior endplate from 30 cervical vertebrae (C3 to T1) were harvested and biomechanically tested in axial compression with one of three implants: Fibular allograft; titanium mesh cage packed with cancellous chips; and trabecular metal. Each construct was cyclically loaded from 50 to 250?N for 10,000 cycles. Nondestructive cyclic loading of the cervical endplate-implant construct resulted in a stiffer construct independent of the type of the interbody implant tested. The trabecular metal construct demonstrated significantly more axial stability and significantly less subsidence in comparison to the titanium mesh construct. Although the allograft construct resulted in more subsidence than the trabecular metal construct, the difference was not significant and no difference was found when comparing axial stability. For all constructs, the majority of the subsidence during the cyclic testing occurred during the first 500 cycles and was followed by a more gradual settling in the remaining 9,500 cycles. PMID:22002745

  7. Changes in Neuroforaminal Height with 2 Level Axial Presacral Lumbar Interbody Fusion at L4-S1

    PubMed Central

    Marawar, Satyajit; Jung, Jin; Sun, Mike

    2014-01-01

    Background The objective was to examine the changes in neuroforaminal height at L4-L5 and L5-S1 after insertion and graduated foraminal distraction using the 2 level transsacral implant in a cadaveric model. Methods Discectomy and transsacral instrumentation was performed in six fresh human cadavers at L4-S1. The neuroforaminal height was measured at L4-L5 and L5-S1 before and after insertion of the implant and then at each stage of manual distraction. Results Mean L4-5 neuroforaminal height increased from 18.2 3.1mm to 20.3 2.9mm (11%) on the left and from 18.82.8mm to 20.6 2.3mm (12%) on the right (P<0.05). Mean L5-S1 neuroforaminal height increased from 15.73.0mm to 18.4 2.8mm (17%) on the left and from 15.6 2.1mm to 18.3 1.8mm (17%) on the right (P<0.05). When the neuroforaminal height was plotted against amount of rotation of the screw driver it was found that the neuroforaminal height at L5-S1 increased by 1mm on average for every complete revolution of the screw driver. At least 2 full rotations of the screw driver were achieved in all cadavers. Conclusions The transsacral screw construct distracted the disc space and neuroforaminal height in a cadaveric spine model without soft tissue envelope. During the initial process, manual control of disc space distraction predictably correlated with the increase in the neuroforaminal height to a maximum. However, further research is needed to look at variables affecting disc space pliability, implant subsidence, in vivo application, and clinical benefit of this procedure. PMID:25694937

  8. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-04-20

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  9. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-02-22

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  10. Fusion Implementation

    SciTech Connect

    J.A. Schmidt

    2002-02-20

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.

  11. "Polarized" Fusion

    NASA Astrophysics Data System (ADS)

    Schieck, Hans Paetz Gen.

    Increasing energy demand in view of limited supply, as well as environmental and nuclear-safety concerns leading to increased emphasis on renewable energy sources such as solar or wind energy are expected to focus public and scientific interest increasingly also on fusion energy. With the decision to build ITER (low-density magnetic confinement) and also continuing research on (high-density) inertial-confinement fusion (cf. the inauguration of the laser fusion facility at the Lawrence Livermore National Laboratory) prospects of fusion energy have probably entered a new era.

  12. Plasma fusion and cold fusion

    SciTech Connect

    Hideo, Kozima

    1996-12-31

    Fundamental problems of plasma fusion (controlled thermonuclear fusion) due to the contradicting demands of the magnetic confinement of plasma and suppression of instabilities occurring on and in plasma are surveyed in contrast with problems of cold fusion. Problems in cold fusion due to the complicated constituents and types of force are explained. Typical cold fusion events are explained by a model based on the presence of trapped neutrons in cold fusion materials. The events include Pons-Fleishmann effect, tritium anomaly, helium 4 production, and nuclear transmutation. Fundamental hypothesis of the model is an effectiveness of a new concept--neutron affinity of elements. The neutron affinity is defined and some bases supporting it are explained. Possible justification of the concept by statistical approach is given.

  13. Postoperative posterior lumbar muscle changes and their relationship to segmental motion preservation or restriction: a randomized prospective study.

    PubMed

    Strube, Patrick; Putzier, Michael; Streitparth, Florian; Hoff, Eike K; Hartwig, Tony

    2016-01-01

    OBJECT To date, it remains unclear whether the preservation of segmental motion by total disc replacement (TDR) or motion restriction by stand-alone anterior lumbar interbody fusion (ALIF) have an influence on postoperative degeneration of the posterior paraspinal muscles or the associated clinical results. Therefore, the purpose of the present prospective randomized study was to evaluate the clinical parameters and 3D quantitative radiological changes in the paraspinal muscles of the lumbar spine in surgically treated segments and superior adjacent segments after ALIF and TDR. METHODS A total of 50 patients with chronic low-back pain caused by single-level intervertebral disc degeneration (Pfirrmann Grade ? III) and/or osteochondrosis (Modic Type ? 2) without symptomatic facet joint degeneration (Fujiwara Grade ? 2, infiltration test) of the segments L4-5 or L5-S1 were randomly assigned to 2 treatment groups. Twenty-five patients were treated with a stand-alone ALIF and the remaining 25 patients underwent TDR. For ALIF and TDR, a retroperitoneal approach was used. At 1 week and at 12 months after surgery, CT was used to analyze paraspinal lumbar muscle tissue volume and relative fat content. Residual muscle tissue volume at 12 months and change in the relative fat content were compared between the groups. In addition, clinical parameters (visual analog scale [VAS] for low-back pain and Oswestry Disability Index [ODI] Questionnaire Version 2 for function) were compared. RESULTS Compared with 1 week after surgery, the radiological analysis at 12 months revealed a small decrease in the posterior muscle volume (the mean decrease was < 2.5%), along with a small increase in the relative fat content (the mean increase was < 1.9%), in both groups at the index and superior adjacent segments. At the adjacent segment, the ALIF group presented significantly less muscle tissue volume atrophy and a smaller increase in fat content compared with the TDR group. At final follow-up, the clinical parameters related to pain and function were significantly improved in both groups compared with 1 week postsurgery, but there were no differences between the groups. CONCLUSIONS Motion restriction via stand-alone ALIF and motion preservation via TDR both present small changes in the posterior lumbar paraspinal muscles with regard to volume atrophy or fatty degeneration at the index and superior adjacent segments. Therefore, although the clinical outcome was not affected by the observed muscular changes, the authors concluded that the expected negative influence of motion restriction on the posterior muscles compared with motion preservation does not occur on a clinically relevant level. PMID:26360146

  14. Magnetic resonance imaging artifact following anterior cervical discectomy and fusion with a trabecular metal cage.

    PubMed

    Elliott, Cameron A; Fox, Richard; Ashforth, Robert; Gourishankar, Sita; Nataraj, Andrew

    2016-03-01

    OBJECT This study was undertaken to evaluate the impact of postoperative MRI artifact on the assessment of ongoing spinal cord or nerve root compression after anterior cervical discectomy and fusion (ACDF) using a trabecular tantalum cage or bone autograft or allograft. METHODS The authors conducted a retrospective review of postoperative MRI studies of patients treated surgically for cervical disc degenerative disease or cervical instability secondary to trauma. Standard ACDF with either a trabecular tantalum cage or interbody bone graft had been performed. Postoperative MR images were shown twice in random order to each of 3 assessors (2 spine surgeons, 1 neuroradiologist) to determine whether the presence of a tantalum interbody cage and/or anterior cervical fixation plate or screws imparted MRI artifact significant enough to prevent reliable postoperative assessment of ongoing spinal cord or nerve root compression. RESULTS A total of 63 patients were identified. One group of 29 patients received a tantalum interbody cage, with 13 patients (45%) undergoing anterior plate fixation. A second group of 34 patients received bone auto- or allograft, with 23 (68%) undergoing anterior plate fixation. The paramagnetic implant construct artifact had minimal impact on visualization of postoperative surgical level spinal cord compression. In the cage group, 98% (171/174) of the cases were rated as assessable versus 99% in the bone graft group (201/204), with high intraobserver reliability. In contrast, for the assessment of ongoing surgical level nerve root compression, the presence of a tantalum cage significantly decreased visualization of nerve roots to 70% (121/174) in comparison with 85% (173/204) in the bone graft group (p < 0.001). When sequences using turbo spin echo (TSE), a T2-weighted axial sequence, were acquired, nerve roots were rated as assessable in 88% (69/78) of cases; when only axial T2-weighted sequences were available, the nerve roots were rated as assessable in 54% (52/96) of cases (p < 0.01). The presence of anterior plate fixation had minimal impact on visualization of the spinal cord (99% [213/216] for plated cases vs 98% [159/162] for nonplated cases; p = 1.0) or nerve roots (79% [170/216] for plated cases vs 77% [124/162] for nonplated cases; p = 0.62). CONCLUSIONS Interbody fusion with tantalum cage following anterior cervical discectomy imparts significant paramagnetic artifact, which significantly decreases visualization and assessment of ongoing surgical level nerve root, but not spinal cord, compression. Anterior plate constructs do not affect visualization of these structures. TSE T2-weighted sequences significantly improve nerve root visualization and should be performed as part of a standard postoperative protocol when imaging the cervical spine following interbody implantation of materials with potential for paramagnetic artifact. PMID:26613279

  15. Exploratory meta-analysis on dose-related efficacy and morbidity of bone morphogenetic protein in spinal arthrodesis surgery.

    PubMed

    Hofstetter, Christoph P; Hofer, Anna S; Levi, Allan D

    2016-03-01

    OBJECT Bone morphogenetic protein (BMP) is frequently used for spinal arthrodesis procedures in an "off-label" fashion. Whereas complications related to BMP usage are well recognized, the role of dosage is less clear. The objective of this meta-analysis was to assess dose-dependent effectiveness (i.e., bone fusion) and morbidity of BMP used in common spinal arthrodesis procedures. A quantitative exploratory meta-analysis was conducted on studies reporting fusion and complication rates following anterior cervical discectomy and fusion (ACDF), posterior cervical fusion (PCF), anterior lumbar interbody fusion (ALIF), transforaminal lumbar interbody fusion (TLIF), posterior lumbar interbody fusion (PLIF), and posterolateral lumbar fusion (PLF) supplemented with BMP. METHODS A literature search was performed to identify studies on BMP in spinal fusion procedures reporting fusion and/or complication rates. From the included studies, a database for each spinal fusion procedure, including patient demographic information, dose of BMP per level, and data regarding fusion rate and complication rates, was created. The incidence of fusion and complication rates was calculated and analyzed as a function of BMP dose. The methodological quality of all included studies was assessed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Data were analyzed using a random-effects model. Event rates are shown as percentages, with a 95% CI. RESULTS Forty-eight articles met the inclusion criteria: ACDF (n = 7), PCF (n = 6), ALIF (n = 9), TLIF/PLIF (n = 17), and PLF (n = 9), resulting in a total of 5890 patients. In ACDF, the lowest BMP concentration analyzed (0.2-0.6 mg/level) resulted in a fusion rate similar to the highest dose (1.1-2.1 mg/level), while permitting complication rates comparable to ACDF performed without BMP. The addition of BMP to multilevel constructs significantly (p < 0.001) increased the fusion rate (98.4% [CI 95.4%-99.4%]) versus the control group fusion rate (85.8% [CI 77.4%-91.4%]). Studies on PCF were of poor quality and suggest that BMP doses of ≤ 2.1 mg/level resulted in similar fusion rates as higher doses. Use of BMP in ALIF increased fusion rates from 79.1% (CI 57.6%-91.3%) in the control cohort to 96.9% (CI 92.3%-98.8%) in the BMP-treated group (p < 0.01). The rate of complications showed a positive correlation with the BMP dose used. Use of BMP in TLIF had only a minimal impact on fusion rates (95.0% [CI 92.8%-96.5%] vs 93.0% [CI 78.1%-98.0%] in control patients). In PLF, use of ≥ 8.5 mg BMP per level led to a significant increase of fusion rate (95.2%; CI 90.1%-97.8%) compared with the control group (75.3%; CI 64.1%-84.0%, p < 0.001). BMP did not alter the rate of complications when used in PLF. CONCLUSIONS The BMP doses used for various spinal arthrodesis procedures differed greatly between studies. This study provides BMP dosing recommendations for the most common spine procedures. PMID:26613283

  16. Fusion Power.

    ERIC Educational Resources Information Center

    Dingee, David A.

    1979-01-01

    Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)

  17. Cell fusion.

    PubMed Central

    Podbilewicz, Benjamin

    2006-01-01

    Selective cell fusion is a natural part of development. It is found in sexually reproducing organisms that require fertilization to propagate and in muscles, placenta, bones, lens of the eye and stem cells. Cell fusion is particularly important in the development of C. elegans: in addition to 300 sperm and oocytes that fuse during fertilization, 300 of the 1090 somatic cells born, fuse throughout development. Studies of cell fusion in C. elegans have shown that although different types of cells fuse, cell membrane merger is initiated through a common mechanism involving the action of one gene, eff-1. In worms with mutations that inactivate eff-1, almost none of the 300 somatic cells that normally fuse do so, but appear to differentiate, attach and behave in the same way as fusing cells. Such worms develop and survive but have numerous morphological, behavioral and fertility defects associated to cell fusion failure in the epidermis, pharynx, male tail, vulva and uterus. Cell fusion in embryonic dorsal epithelial cells has been analyzed in great detail by confocal microscopy using membrane fluorescent probes, apical junction markers and cytoplasmic aqueous fluorescent probes allowing the direct observation of membrane disappearance, pore expansion and cytoplasmic content mixing. The complete elimination of the membranes between two fusing cells takes about 30 min and involves vesiculation of the fusing membranes. Genetic and cell biological evidence indicates that eff-1 activity is both necessary and sufficient to fuse epithelial and myoepithelial cells in vivo. Based on electron microscopic analyses of intermediates of cell fusion in eff-1 mutants, it appears that eff-1 is required for both initiation and expansion of fusion pores, similar to the fusogen of Influenza virus. While only one gene encoding a novel candidate component of the cell membrane fusion machinery has been found, the nematode's cell fusion program is under the control of many cell-specific transcriptional regulators. A large number of these conserved regulators prevent cell fusion by repressing eff-1 activity. For example, if either ceh-16/engrailed or the GATA factor EGL-18/ELT-5 is inactivated, the lateral epidermal cells that normally do not fuse in the embryo will fuse causing embryonic lethality. And if either the Hox protein lin-39/Deformed or its cofactor ceh-20/Extradenticle is inactivated, the ventral epidermal vulval precursor cells that normally do not fuse in the larvae will fuse and the hermaphrodite will have no vulva. In addition, there is evidence for coordinated and complex regulation of lin-39 in the ventral epidermis by Ras, Wnt, Rb/E2F, NuRD and lin-15 pathways. It appears that in many cells that normally do not fuse, specific transcription complexes repress eff-1 expression preventing cell fusion. ref-2 (REgulator of Fusion-2) encodes a Zn-finger protein that is required to generate ventral Pn.p cells and to keep them unfused both in males and hermaphrodites. ref-2 is necessary, but not sufficient, to maintain Pn.p cells unfused. This review shows that far from cell fusion being an unusual phenomenon, there is the clear prospect that animal cells in all tissues are intrinsically programmed to fuse, and are only prevented from fusing by transcriptional and post-transcriptional control mechanisms. There are three major questions that remain open for future research: (1) How does eff-1 fuse cells? (2) How do Ras, Wnt, Rb, NuRD, E2F, heterochronic and other pathways control cell fusion? (3) What are the implications of cell fusion beyond worms? PMID:18050486

  18. Laser fusion

    SciTech Connect

    Smit, W.A.; Boskma, P.

    1980-12-01

    Unrestricted laser fusion offers nations an opportunity to circumvent arms control agreements and develop thermonuclear weapons. Early laser weapons research sought a clean radiation-free bomb to replace the fission bomb, but this was deceptive because a fission bomb was needed to trigger the fusion reaction and additional radioactivity was induced by generating fast neutrons. As laser-implosion experiments focused on weapons physics, simulating weapons effects, and applications for new weapons, the military interest shifted from developing a laser-ignited hydrogen bomb to more sophisticated weapons and civilian applications for power generation. Civilian and military research now overlap, making it possible for several countries to continue weapons activities and permitting proliferation of nuclear weapons. These countries are reluctant to include inertial confinement fusion research in the Non-Proliferation Treaty. 16 references. (DCK)

  19. Polarized fusion

    NASA Astrophysics Data System (ADS)

    Engels, R.; Grigoryev, K.; Kochenda, L.; Kravtsov, P.; Mikirtytchiants, M.; Rathmann, F.; Paetz gen. Schieck, H.; Strher, H.; Trofimov, V.; Vasilyev, A.; Vznuzdaev, M.

    2014-01-01

    Since more than 50 years it has been discussed to increase the gain of nuclear fusion reactors with the use of polarized fuel. For example, the total cross sections of the fusion reactions d + t ? 4He + n or 3He + d ? 4He + p are increased by a factor of about 1.5 if the spins of both incoming particles are aligned. But before polarized fuel can be used for energy production in the different types of reactors, a number of questions must be answered. In this contribution we give an overview on our various activities in this field of research.

  20. Anterior lumbar interbody surgery for spondylosis results from a classically-trained neurosurgeon.

    PubMed

    Chatha, Gurkirat; Foo, Stacy W L; Lind, Christopher R P; Budgeon, Charley; Bannan, Paul E

    2014-09-01

    Anterior lumbar surgery for degenerative disc disease (DDD) is a relatively novel technique that can prevent damage to posterior osseous, muscular and ligamentous spinal elements. This study reports the outcomes and complications in 286 patients who underwent fusion - with artificial disc implants or combined fusion and artificial disc implants - by a single-operator neurosurgeon, with up to 24 months of follow-up. The visual analogue scale (VAS), Oswestry Disability Index (ODI), Short Form 36 (SF36) and prospective log of adverse events were used to assess the clinical outcome. Radiographic assessments of implant position and bony fusion were analysed. Intraoperative and postoperative complications were also recorded. Irrespective of pre-surgical symptoms (back pain alone or back and leg pain combined), workers' compensation status and type of surgical implant, clinically significant improvements in VAS, ODI and SF36 were primarily observed at 3 and/or 6 month follow-up, and improvements were maintained at 24 months after surgery. A 94% fusion rate was obtained; the overall complication was 9.8% which included 3.5% with vascular complications. The anterior lumbar approach can be used for treating DDD for both back pain and back and leg pain with low complication rates. With appropriate training, single-operator neurosurgeons can safely perform these surgeries. PMID:24786717

  1. Pedicle-Screw-Based Dynamic Systems and Degenerative Lumbar Diseases: Biomechanical and Clinical Experiences of Dynamic Fusion with Isobar TTL

    PubMed Central

    Barrey, Cédric; Perrin, Gilles; Champain, Sabina

    2013-01-01

    Dynamic systems in the lumbar spine are believed to reduce main fusion drawbacks such as pseudarthrosis, bone rarefaction, and mechanical failure. Compared to fusion achieved with rigid constructs, biomechanical studies underlined some advantages of dynamic instrumentation including increased load sharing between the instrumentation and interbody bone graft and stresses reduction at bone-to-screw interface. These advantages may result in increased fusion rates, limitation of bone rarefaction, and reduction of mechanical complications with the ultimate objective to reduce reoperations rates. However published clinical evidence for dynamic systems remains limited. In addition to providing biomechanical evaluation of a pedicle-screw-based dynamic system, the present study offers a long-term (average 10.2 years) insight view of the clinical outcomes of 18 patients treated by fusion with dynamic systems for degenerative lumbar spine diseases. The findings outline significant and stable symptoms relief, absence of implant-related complications, no revision surgery, and few adjacent segment degenerative changes. In spite of sample limitations, this is the first long-term report of outcomes of dynamic fusion that opens an interesting perspective for clinical outcomes of dynamic systems that need to be explored at larger scale. PMID:25031874

  2. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  3. Cold fusion: Alchemist's dream

    NASA Astrophysics Data System (ADS)

    Clayton, E. D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalyzed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalyzed cold fusion; vibrational mechanisms in excited states of D2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D2 fusion at low energies; fusion of deuterons into He-4; secondary D+T fusion within the hydrogenated metal lattice; helium-3 to helium-4 ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of helium-3/helium-4.

  4. The role of sacral slope in lumbosacral fusion: a biomechanical study.

    PubMed

    Drazin, Doniel; Hussain, Mir; Harris, Jonathan; Hao, John; Phillips, Matt; Kim, Terrence T; Johnson, J Patrick; Bucklen, Brandon

    2015-12-01

    OBJECT Abnormal sacral slope (SS) has shown to increase progression of spondylolisthesis, yet there exists a paucity in biomechanical studies investigating its role in the correction of adult spinal deformity, its influence on lumbosacral shear, and its impact on the instrumentation selection process. This in vitro study investigates the effect of SS on 3 anterior lumbar interbody fusion constructs in a biomechanics laboratory. METHODS Nine healthy, fresh-frozen, intact human lumbosacral vertebral segments were tested by applying a 550-N axial load to specimens with an initial SS of 20 on an MTS Bionix test system. Testing was repeated as SS was increased to 50, in 10 increments, through an angulated testing fixture. Specimens were instrumented using a standalone integrated spacer with self-contained screws (SA), an interbody spacer with posterior pedicle screws (PPS), and an interbody spacer with anterior tension band plate (ATB) in a randomized order. Stiffness was calculated from the linear portion of the load-deformation curve. Ultimate strength was also recorded on the final construct of all specimens (n = 3 per construct) with SS of 40. RESULTS Axial stiffness (N/mm) of the L5-S1 motion segment was measured at various angles of SS: for SA 292.9 142.8 (20), 277.2 113.7 (30), 237.0 108.7 (40), 170.3 74.1 (50); for PPS 371.2 237.5 (20), 319.8 167.2 (30), 280.4 151.7 (40), 233.0 117.6 (50); and for ATB 323.9 210.4 (20), 307.8 125.4 (30), 249.4 126.7 (40), 217.7 99.4 (50). Axial compression across the disc space decreased with increasing SS, indicating that SS beyond 40 threshold shifted L5-S1 motion into pure shear, instead of compression-shear, defining a threshold. Trends in ultimate load and displacement differed from linear stiffness with SA > PPS > ATB. CONCLUSIONS At larger SSs, bilateral pedicle screw constructs with spacers were the most stable; however, none of the constructs were significantly stiffer than intact segments. For load to failure, the integrated spacer performed the best; this may be due to angulations of integrated plate screws. Increasing SS significantly reduced stiffness, which indicates that surgeons need to consider using more aggressive fixation techniques. PMID:26273763

  5. Current strategies for the restoration of adequate lordosis during lumbar fusion

    PubMed Central

    Barrey, Cédric; Darnis, Alice

    2015-01-01

    Not restoring the adequate lumbar lordosis during lumbar fusion surgery may result in mechanical low back pain, sagittal unbalance and adjacent segment degeneration. The objective of this work is to describe the current strategies and concepts for restoration of adequate lordosis during fusion surgery. Theoretical lordosis can be evaluated from the measurement of the pelvic incidence and from the analysis of spatial organization of the lumbar spine with 2/3 of the lordosis given by the L4-S1 segment and 85% by the L3-S1 segment. Technical aspects involve patient positioning on the operating table, release maneuvers, type of instrumentation used (rod, screw-rod connection, interbody cages), surgical sequence and the overall surgical strategy. Spinal osteotomies may be required in case of fixed kyphotic spine. AP combined surgery is particularly efficient in restoring lordosis at L5-S1 level and should be recommended. Finally, not one but several strategies may be used to achieve the need for restoration of adequate lordosis during fusion surgery. PMID:25621216

  6. Osteoconductive hydroxyapatite coated PEEK for spinal fusion surgery

    NASA Astrophysics Data System (ADS)

    Hahn, Byung-Dong; Park, Dong-Soo; Choi, Jong-Jin; Ryu, Jungho; Yoon, Woon-Ha; Choi, Joon-Hwan; Kim, Jong-Woo; Ahn, Cheol-Woo; Kim, Hyoun-Ee; Yoon, Byung-Ho; Jung, In-Kwon

    2013-10-01

    Polyetheretherketone (PEEK) has attracted much interest as biomaterial for interbody fusion cages due to its similar stiffness to bone and good radio-transparency for post-op visualization. Hydroxyapatite (HA) coating stimulates bone growth to the medical implant. The objective of this work is to make an implant consisting of biocompatible PEEK with an osteoconductive HA surface for spinal or orthopedic applications. Highly dense and well-adhered HA coating was developed on medical-grade PEEK using aerosol deposition (AD) without thermal degradation of the PEEK. The HA coating had a dense microstructure with no cracks or pores, and showed good adhesion to PEEK at adhesion strengths above 14.3 MPa. The crystallinity of the HA coating was remarkably enhanced by hydrothermal annealing as post-deposition heat-treatment. In addition, in vitro and in vivo biocompatibility of PEEK, in terms of cell adhesion morphology, cell proliferation, differentiation, and bone-to-implant contact ratio, were remarkably enhanced by the HA coating through AD.

  7. Anterior extrusion of fusion cage in posttraumatic cervical disk disease.

    PubMed

    Amelot, Aymeric; Bouazza, Schahrazed; George, Bernard; Orabi, Mikael; Bresson, Damien

    2015-03-01

    Anterior interbody fusion of the cervical spine (ACDF) with bone grafts or cages has become the gold standard for treating cervical disk disease. Several technical modifications have been developed, but currently no consensus exists regarding the optimal technique. In addition, there is also evidence that complications are frequently associated with this procedure. A frequent cause for implant failure in monosegmental ACDF is cage migration into the vertebral end plates or the spinal canal. We report a patient admitted for sudden quadriparesis with complete motor deficit caused by posttraumatic cervical disk protrusion at C4-C5, resulting in spinal compression. ACDF using a titanium stand-alone cage was performed and cured the patient. At the 1-year follow-up visit, imaging showed asymptomatic anterior complete extrusion of the cage out of the disk space. To our knowledge, such an anterior cage migration without trauma has not been reported in the literature to date, and we tried to find technical reasons to explain this complication. PMID:25306206

  8. Flexibility and fatigue evaluation of oblique as compared with anterior lumbar interbody cages with integrated endplate fixation.

    PubMed

    Freeman, Andrew L; Camisa, William J; Buttermann, Glenn R; Malcolm, James R

    2016-01-01

    OBJECT This study was undertaken to quantify the in vitro range of motion (ROM) of oblique as compared with anterior lumbar interbody devices, pullout resistance, and subsidence in fatigue. METHODS Anterior and oblique cages with integrated plate fixation (IPF) were tested using lumbar motion segments. Flexibility tests were conducted on the intact segments, cage, cage + IPF, and cage + IPF + pedicle screws (6 anterior, 7 oblique). Pullout tests were then performed on the cage + IPF. Fatigue testing was conducted on the cage + IPF specimens for 30,000 cycles. RESULTS No ROM differences were observed in any test group between anterior and oblique cage constructs. The greatest reduction in ROM was with supplemental pedicle screw fixation. Peak pullout forces were 637 ± 192 N and 651 ± 127 N for the anterior and oblique implants, respectively. The median cage subsidence was 0.8 mm and 1.4 mm for the anterior and oblique cages, respectively. CONCLUSIONS Anterior and oblique cages similarly reduced ROM in flexibility testing, and the integrated fixation prevented device displacement. Subsidence was minimal during fatigue testing, most of which occurred in the first 2500 cycles. PMID:26407089

  9. Cervical spondylodiscitis associated with oesophageal perforation: a rare complication after anterior cervical fusion.

    PubMed

    Korovessis, Panagiotis; Repantis, Thomas; Vitsas, Vasilis; Vardakastanis, Konstantinos

    2013-11-01

    Anterior cervical instrumented fusion is a commonly performed spinal surgery with relatively low complication rate. Especially, spinal infections are very rare and often associated with oesophageal perforation secondary to hardware migration. We present a rare complication of cervical spondylodiscitis in a 24-year-old man after an anterior cervical fusion. He had sustained a C5/C6 fracture dislocation associated with incomplete tetraplegia and he was treated by a combined staged posterior (lateral mass screws) and anterior (plate, PEEK) cervical fusion with an uneventful postoperative course with exception of light dysphagia for liquids. Three months after surgery, the patient developed fever and severe dysphagia. A barium-swallow study was indicative for oesophageal perforation, while MRI of the neck demonstrated spondylodiscitis C5/C6 accompanied by a prevertebral and epidural abscess. The treatment consisted of surgical debridement and evacuation of the abscesses, removal of the anterior spinal implants and insertion of a mesh cage with iliac bone graft. The weakened oesophagus posterior wall was enhanced with resorbable interrupted sutures and a 6-week course of antibiotics was administered. Dysphagia improved significantly while interbody fusion occurred 5 months following revision surgery. Five years postoperatively motor and sensor function had returned to normal limits. Dysphagia or deterioration of preexisted dysphagia in the late postoperative setting should be considered carefully and evaluated for oesophageal perforation and complicated spinal infection. In the case of not completed fusion, removal of the implants followed by meticulous debridement and insertion of titanium mesh cage, filled with autogenous bone graft lead to successful fusion and infection eradication. PMID:23412223

  10. Using Provocative Discography and Computed Tomography to Select Patients with Refractory Discogenic Low Back Pain for Lumbar Fusion Surgery

    PubMed Central

    Tong, Henry C; Fahim, Daniel K; Perez-Cruet, Mick

    2016-01-01

    Background Context Controversy remains over the use of provocative discography in conjunction with computed tomography (CT) to locate symptomatic intervertebral discs in patients with chronic, low back pain (LBP). The current study explores the relationship between discogenic pain and disc morphology using discography and CT, respectively, and investigates the efficacy of this combined method in identifying surgical candidates for lumbar fusion by evaluating outcomes. Methods 43 consecutive patients between 2006 and 2013 who presented with refractory low back pain and underwent discography and CT were enrolled in the study. For this study, "refractory LBP" was defined as pain symptoms that persisted or worsened after 6 months of non-operative treatments. Concordant pain was defined as discography-provoked LBP of similar character and location with an intensity of ≥ 8/10. Fusion candidates demonstrated positive-level discography and concordant annular tears on CT at no more than two contiguous levels, and at least one negative control disc with intact annulus. Surgical outcomes were statistically analyzed using Visual Analog Scale (VAS), Oswestry Disability Index (ODI), and Short Form-36 (SF-36) for back-related pain and disability preoperatively, and 2 weeks, 3, 6, 12, and 24 months postoperatively. Results Annular tears were found in 87 discs. Concordant pain was reported by 9 (20.9%) patients at L3-L4, 21 (50.0%) at L4-L5, and 34 (82.9%) at L5-S1; pain occurred significantly more often in discs with annular tears than those without (p<0.001). Painless discs were independent of annulus status (p=0.90). 18 (42%) of the original 43 patients underwent lumbar fusion at L3-L4 (n=1(6%)), L4-L5 (n=6 (33%)), L5-S1 (n=5 (28%)), and two-level L4-S1 (n=6 (33%)) via a minimally invasive transforaminal lumbar interbody fusion (MITLIF) approach with the aim to replace the nucleus pulposus with bone graft material. Median follow-up time was 18 months (range: 12–78 months). VAS, ODI, and SF-36 scores demonstrated significant improvements at 10 out of 12 postoperative time points compared with preoperative baseline. Conclusions Lumbar discography with post-discography CT can be an effective method to evaluate patients with discogenic back pain refractory to non-operative treatments. Those patients with one- or two-level high concordant pain scores with associated annular tears and negative control disc represent good surgical candidates for lumbar interbody spinal fusion.

  11. Single-stage Anterior and Posterior Fusion Surgery for Correction of Cervical Kyphotic Deformity Using Intervertebral Cages and Cervical Lateral Mass Screws: Postoperative Changes in Total Spine Sagittal Alignment in Three Cases with a Minimum Follow-up of Five Years

    PubMed Central

    OGIHARA, Satoshi; KUNOGI, Junichi

    The surgical treatment of cervical kyphotic deformity remains challenging. As a surgical method that is safer and avoids major complications, the authors present a procedure of single-stage anterior and posterior fusion to correct cervical kyphosis using anterior interbody fusion cages without plating, as illustrated by three consecutive cases. Case 1 was a 78-year-old woman who presented with a dropped head caused by degeneration of her cervical spine. Case 2 was a 54-year-old woman with athetoid cerebral palsy. She presented with cervical myelopathy and cervical kyphosis. Case 3 was a 71-year-old woman with cervical kyphotic deformity following a laminectomy. All three patients underwent anterior release and interbody fusion with cages and posterior fusion with cervical lateral mass screw (LMS) fixation. Postoperative radiographs showed that correction of kyphosis was 39 in case 1, 43 in case 2, and 39 in case 3. In all three cases, improvement of symptoms was established without major perioperative complications, solid fusion was achieved, and no loss of correction was observed at a minimum follow-up of 61 months. We also report that preoperative total spine sagittal malalignment was improved after corrective surgery for cervical kyphosis and was maintained at the latest follow-up in all three cases. The combination of anterior fusion cages and LMS is considered a safe and effective procedure in cases of severe cervical kyphotic deformity. Preoperative total spine sagittal malalignment improved, accompanied by correction of cervical kyphosis, and was maintained at last follow-up in all three cases. PMID:26119893

  12. Comparison between Instrumented Mini-TLIF and Instrumented Circumferential Fusion in Adult Low-Grade Lytic Spondylolisthesis : Can Mini-TLIF with PPF Replace Circumferential Fusion?

    PubMed Central

    Kim, Dong-Hyun; Lee, Sang-Ho

    2009-01-01

    Objective To evaluate clinical and radiological results of two different fusion techniques in adult low-grade isthmic spondylolisthesis. Methods Between November 2003 and December 2004, 46 consecutive patients underwent instrumented mini-transforaminal lumbar interbody fusion (mini-TLIF) (group I) at Wooridul Spine Hospital, Seoul, Korea. Between February 2003 and October 2006, 32 consecutive patients underwent instrumented circumferential fusion (group II) at Leon Wiltse Memorial Hospital, Suwon, Korea. The mean follow-up periods were 29.7 and 26.1 months, respectively. Results Mean visual analog scale (VAS) scores for back and leg pain decreased, respectively, from 6.98 and 6.33 to 2.3 and 2.2 in group I and from 7.38 and 6.00 to 1.7 and 1.0 in group II. Mean Oswestry disability index (ODI) improved from 51.85% to 14.4% in group I and from 60% to 9.1% in group II. In both groups, VAS and ODI scores significantly changed from pre- to postoperatively (p<0.001), but postoperative outcome between groups was statistically not significant. Radiologic evidence of fusion was noted in 95.7% and 100% of the patients in group I and II, respectively. In both groups, changes in disc height, segmental lordosis, degree of listhesis, and whole lumbar lordosis between the pre- and postoperative periods were significant except whole lumbar lordosis in both groups. Conclusion Clinical and functional outcomes demonstrate no significant differences between groups in treating back and leg pain of adult patients with low-grade isthmic spondylolisthesis. However, in terms of operative data (i.e. operation time and hospital stay), instrumented mini-TLIF demonstrated better results. PMID:19274115

  13. The First Clinical Trial of Beta-Calcium Pyrophosphate as a Novel Bone Graft Extender in Instrumented Posterolateral Lumbar Fusion

    PubMed Central

    Lee, Jae Hyup; Jeung, Ul-Oh; Park, Kun-Woo; Kim, Min-Seok; Lee, Choon-Ki

    2011-01-01

    Background Porous β-calcium pyrophosphate (β-CPP) was developed to improve the fusion success of posterolateral lumbar fusion (PLF). The possibility of accomplishing PLF using a mixture of porous β-CPP and iliac bone was studied. This paper reports the radiologic results of PLF using the β-CPP plus autograft for lumbar degenerative disease as a bone graft extender. Methods A prospective, case-matched, radiographic study evaluating the results of short segment lumbar fusion using a β-CPP plus autograft was performed to compare the efficacy of β-CPP plus autograft with that of an autograft alone for short segment lumbar fusion. Thirty one consecutive patients (46 levels) underwent posterolateral fusion with pedicle screw fixation and additional posterior lumbar interbody fusion. In all patients, 3 mL of β-CPP plus 3 mL of autogenous bone graft was placed randomly in one side of a posterolateral gutter, and 6 mL of autogenous iliac bone graft was placed on the other. The fusion rates, volumes of fusion masses, and bone absorption percentage were evaluated postoperatively using simple radiographs and 3 dimensional computed tomography (3D-CT) scans. Results The control sides treated with an autograft showed significantly better Lenke scores than the study sides treated with β-CPP at 3 and 6 months postoperatively, but there was no difference between the two sides at 12 months. The fusion rates (confirmed by 3D-CT) were 87.0% in the β-CPP group and 89.1% in the autograft group, which were not significantly different. The fusion mass volumes and bone absorption percentage at 12 months postoperatively were 2.49 mL (58.4%) and 1.89 mL (69.5%) for the β-CPP and autograft groups, respectively, and mean fusion mass volume was significantly higher in the β-CPP group. Conclusions β-CPP combined with an autograft is as effective as autologous bone for grafting during instrumented posterolateral spinal fusion. These findings suggest that β-CPP bone chips can be used as a novel bone graft extender for short-segment posterolateral spinal fusion. PMID:21909472

  14. Fusion energy

    SciTech Connect

    Not Available

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  15. Review of fusion synfuels

    SciTech Connect

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  16. Cold fusion research

    SciTech Connect

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  17. Magneto-Inertial Fusion

    DOE PAGESBeta

    Wurden, G. A.; Hsu, S. C.; Intrator, T. P.; Grabowski, T. C.; Degnan, J. H.; Domonkos, M.; Turchi, P. J.; Campbell, E. M.; Sinars, D. B.; Herrmann, M. C.; et al

    2015-11-17

    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans.

  18. Arthroscopic partial wrist fusion.

    PubMed

    Ho, Pak-Cheong

    2008-12-01

    The wide intraarticular exposure of the wrist joint under arthroscopic view provides an excellent ground for various forms of partial wrist fusion. Combining with percutaneous fixation technique, arthroscopic partial wrist fusion can potentially generate the best possible functional outcome by preserving the maximal motion pertained with each type of partial wrist fusion because the effect of extraarticular adhesion associated with open surgery can be minimized. From November 1997 to May 2008, the author had performed 12 cases of arthroscopic partial wrist fusion, including scaphotrapeziotrapezoid fusion in 3, scaphoidectomy and 4-corner fusion in 4, radioscapholunate fusion in 3, radiolunate fusion in 1, and lunotriquetral fusion in 1 case. Through the radiocarpal or midcarpal joint, the corresponding articular surfaces were denuded of cartilage using arthroscopic burr and curette. Carpal bones involved in the fusion process were then transfixed with K wires percutaneously after alignment corrected and confirmed under fluoroscopic control. Autogenous cancellous bone graft or bone substitute were inserted and impacted to the fusion site through cannula under direct arthroscopic view. Final fixation could be by multiple K wires or cannulated screw system. Early mobilization was encouraged. Surgical complications were minor, including pin tract infection, skin burn, and delay union in 1 case. Uneventful radiologic union was obtained in 9 cases, stable fibrous union in 2, and nonunion in 1. The average follow-up period was 70 months. Symptom was resolved or improved, and functional motion was gained in all cases. All surgical scars were almost invisible, and aesthetic outcome was excellent. PMID:19060685

  19. Adaptive fusion processor

    NASA Astrophysics Data System (ADS)

    Dasarathy, Belur V.

    1995-07-01

    An adaptive learning fusion processor, capable of fusion of a mix of information at the data, feature, and decision levels, acquired from multiple sources (sensors as well as feature extractors and/or decision processors) is presented. Four alternative approaches: a self- partitioning neural net, an adaptive fusion process, an evidential reasoning approach, and a concurrence seeking approach were initially evaluated from a conceptual viewpoint followed by some limited simulation and testing. Based on this assessment, an adaptive fusion processor employing innovative advances of the nearest neighbor concept was selected for detailed implementation and testing using real-world field data. Results show the benefits of fusion in terms of improved performance as compared to those obtainable from the individual component information streams being input to the fusion processor and clearly bring out the feasibility and effectiveness of the new multi-level fusion concepts.

  20. Outcomes and Complications following Posterior Long Lumbar Fusions Exceeding Three Levels

    PubMed Central

    NISHIMURA, Yusuke; HARA, Masahito; NAKAJIMA, Yasuhiro; HAIMOTO, Shoichi; YAMAMOTO, Yuu; WAKABAYASHI, Toshihiko

    2014-01-01

    The outcomes and complications of posterior-only lumbar instrumented long fusions exceeding three segments with selective segmental transforaminal lumbar interbody fusion for the treatment of degenerative lumbar scoliosis, kyphosis, or both combined with spondylolisthesis were analyzed to investigate risk factors associated with surgical instrumentation failure. Fifteen consecutive patients with degenerative lumbar scoliosis, kyphosis, or both combined with spondylolisthesis were studied retrospectively. There were 5 male and 10 female patients, with a mean age of 71.8 years. All the patients were followed for a mean duration of 19.4 months postoperatively. Radiographic evaluation included coronal Cobb angle, lumbar lordosis (LL) angle, pelvic incidence (PI), and pelvic tilt (PT). The clinical outcomes were assessed by means of Japanese Orthopedic Association (JOA) score. Patients were divided into two groups: group 17 patients with surgical complications; group 28 patients without complications. The preoperative and postoperative coronal Cobb's angle were not significantly different between groups 1 and 2. The LL highly correlated with developing surgical complications. There were statistically significant differences in preoperative and postoperative LL and the mean difference between PI and the LL (PILL) between groups 1 and 2. Linear correlation and regression analysis showed that there was no correlation between JOA score and the coronal Cobb angle in degenerative scoliosis patients. However, we found a positive correlation between JOA and LL. Our series of long lumbar fusions had a high complication and instrumentation failure. Creating adequate LL angle in harmony with PI was a key to prevent surgical complications and attain neurological improvement. PMID:25169031

  1. Degenerative Spondylolisthesis: Does Fusion Method Influence Outcome? Four-Year Results of the Spine Patient Outcomes Research Trial (SPORT)

    PubMed Central

    Abdu, William A.; Lurie, Jon D.; Spratt, Kevin F.; Tosteson, Anna N.A.; Zhao, Wenyan; Tosteson, Tor D.; Herkowitz, Harry; Longely, Michael; Boden, Scott D.; Emery, Sanford; Weinstein, James N.

    2013-01-01

    Study Design Clinical trial sub-group analysis Objective To compare outcomes of different fusion techniques treating degenerative spondylolisthesis (DS). Summary of Background Data Surgery has been shown to be more effective than non-operative treatment out to four years.1,2 Questions remain regarding the differential effect of fusion technique. METHODS Surgical candidates from 13 centers in 11 states with at least 12 weeks of symptoms and confirmatory imaging showing stenosis and DS were studied. In addition to standard decompressive laminectomy, one of three fusion techniques was employed at the surgeons discretion: posterolateral in situ fusion (PLF); posterolateral instrumented fusion with pedicle screws (PPS); or PPS plus interbody fusion (360). Main outcome measures were the SF-36 Bodily Pain (BP) and Physical Function (PF) scales and the modified Oswestry Disability Index (ODI) assessed at 6 weeks, 3 months, 6 months, and yearly to 4 years. The as-treated analysis combined the randomized and observational cohorts using mixed longitudinal models adjusting for potential confounders. RESULTS Of 380 surgical patients, 21% (N= 80) received a PLF; 56% (N=213) received a PPS; 17% (N=63) received a 360; and 6% (N=23) had decompression only without fusion. Early outcomes varied, favoring PLF compared to PPS at 6 weeks (PF: 12.73 vs. 6.22, p<0.020) and 3 months (PF: 25.24 vs.18.95, p<0.025) and PPS compared to 360 at 6 weeks (ODI: ?14.46 vs. ?9.30, p<0.03) and 3 months (ODI: ?22.30 vs. ?16.78, p<0.02). At two years, 360 had better outcomes: BP: 39.08 vs. 29.17 PLF, p<0.011; and vs. 29.13 PPS, p<0.002; PF; 31.93 vs. 23.27 PLF, p<0.021; and vs. 25.29 PPS, p<0.036. However, these differences were not maintained at 3- and 4-year follow-up, when there were no statistically significant differences between the three fusion groups. CONCLUSIONS In patients with degenerative spondylolisthesis and associated spinal stenosis, no consistent differences in clinical outcomes were seen among fusion groups over four years. PMID:19755935

  2. Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion.

    PubMed

    Wu, Su-Hua; Li, Yi; Zhang, Yong-Quan; Li, Xiao-Kang; Yuan, Chao-Fan; Hao, Yu-Lin; Zhang, Zhi-Yong; Guo, Zheng

    2013-12-01

    Interbody fusion cages made of poly-ether-ether-ketone (PEEK) have been widely used in clinics for spinal disorders treatment; however, they do not integrate well with surrounding bone tissue. Ti-6Al-4V (Ti) has demonstrated greater osteoconductivity than PEEK, but the traditional Ti cage is generally limited by its much greater elastic modulus (110?GPa) than natural bone (0.05-30?GPa). In this study, we developed a porous Ti cage using electron beam melting (EBM) technique to reduce its elastic modulus and compared its spinal fusion efficacy with a PEEK cage in a preclinical sheep anterior cervical fusion model. A porous Ti cage possesses a fully interconnected porous structure (porosity: 68??5.3%; pore size: 710??42??m) and a similar Young's modulus as natural bone (2.5??0.2?GPa). When implanted in vivo, the porous Ti cage promoted fast bone ingrowth, achieving similar bone volume fraction at 6 months as the PEEK cage without autograft transplantation. Moreover, it promoted better osteointegration with higher degree (2-10x) of bone-material binding, demonstrated by histomorphometrical analysis, and significantly higher mechanical stability (P?

  3. Clear Zone Formation around Screws in the Early Postoperative Stages after Posterior Lumbar Fusion Using the Cortical Bone Trajectory Technique

    PubMed Central

    Iwatsuki, Koichi; Ohnishi, Yu-Ichiro; Ohkawa, Toshika; Yoshimine, Toshiki

    2015-01-01

    Study Design Retrospective study. Purpose To evaluate the initial fixation using the cortical bone trajectory (CBT) technique for posterior lumbar fusion through assessment of the clear zones around the screws and the risk factors involved. Overview of Literature Postoperative radiolucent zones (clear zones) are an indicator of poor conventional pedicle screw fixation. Methods Between January 2013 and April 2014, 19 patients (8 men and 11 women) underwent posterior lumbar interbody fusion or posterior lumbar fusion using the CBT technique. A total of 109 screws were used for evaluation with measurement of the maximum insertional torque of last two screw rotations. Clear zone-positivity on plain radiographs was investigated 6 months after surgery. The relation between intraoperative insertional torque and clear zone-positivity was investigated by one-way analysis of variance. In addition, the correlation between clear zone-positivity and gender, age (<75 years old or >75 years old), or operative stabilization level (<2 or >3 vertebral levels) was evaluated using the chi-square test. Results Clear zones were observed around six screws (5.50%) in five patients (26.3%). The mean insertional torque (4.00±2.09 inlbs) of clear zone-positive screws was lower than that of clear zone-negative screws (8.12±0.50 in-lbs), but the difference was not significant. There was a significant correlation between clear zone-positivity and operative level of stabilization. Conclusions The low incidence of clear zone-positive screws indicates good initial fixation using the CBT technique. Multilevel fusions may be risk factors for clear zone generation. PMID:26713120

  4. Mechanics of membrane fusion

    PubMed Central

    Chernomordik, Leonid V; Kozlov, Michael M

    2008-01-01

    Diverse membrane fusion reactions in biology involve close contact between two lipid bilayers, followed by the local distortion of the individual bilayers and reformation into a single, merged membrane. We consider the structures and energies of the fusion intermediates identified in experimental and theoretical work on protein-free lipid bilayers. On the basis of this analysis, we then discuss the conserved fusion-through-hemifusion pathway of merger between biological membranes and propose that the entire progression, from the close juxtaposition of membrane bilayers to the expansion of a fusion pore, is controlled by protein-generated membrane stresses. PMID:18596814

  5. Nuclear fusion inside condense matters

    NASA Astrophysics Data System (ADS)

    He, Jing-Tang

    2007-03-01

    This article describes in detail the nuclear fusion inside condense matters—the Fleischmann-Pons effect, the reproducibility of cold fusions, self-consistentcy of cold fusions and the possible applications.

  6. Mirror fusion - Another path to fusion power

    NASA Astrophysics Data System (ADS)

    Werne, R. W.; Fisher, D. K.; Hirschfeld, F.

    1981-07-01

    Developments in the mirror program at Lawrence Livermore National Laboratory are discussed. Major innovations discussed in the mirror approach include the mirror concept, and the minimum-B field (magnetic well) assuring gross magnetohydrodynamic stability. Also presented are the tandem mirror, and the thermal barrier, which greatly enhances plasma potential confinement. The Mirror Fusion Test Facility objectives include construction and operation of a Nb-Ti superconducting magnet system, long pulsed, high-current, high-voltage, neutral beams, and a large-scale cryopanel vacuum pump. With commercialization and government support, the program hopes to make mirror fusion an important energy option.

  7. Fusion Science Education Outreach

    NASA Astrophysics Data System (ADS)

    Danielson, C. A.; DIII-D Education Group

    1996-11-01

    This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.

  8. Controlled Nuclear Fusion.

    ERIC Educational Resources Information Center

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature

  9. Fusion Power Deployment

    SciTech Connect

    J.A. Schmidt; J.M. Ogden

    2002-02-06

    Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment.

  10. Affine fusion tadpoles

    NASA Astrophysics Data System (ADS)

    Urichuk, Andrew

    Fusion dimensions are integer-valued quantities equal to the dimensions of the spaces of conformal blocks, which describe the interactions of a conformal field theory (CFT). Our focus was on the Wess-Zumino-Witten models, a particularly interesting type of CFT, whose primary fields correspond to representations of affine Lie groups. Arguably, affine fusion tadpoles are the simplest g ? 1 fusion dimension, having only a single incoming field and g = 1. We study the symmetries of the SU(N) tadpole and Verlinde formula with the intention of finding a non-negative-integer decomposition. Such a decomposition might be indicative of a combinatorial atom for fusion, which could suggest a new combinatorial account of fusion dimensions. From produced tables we found that tadpole values appeared to be polynomial in the level k. Several conjectures were made and we sketch a method obtaining general forms of SU(N) tadpoles via dominant weight sums.

  11. Nuclear fusion: The issues

    SciTech Connect

    Griffin, R.D.

    1993-01-22

    The taming of fusion energy, has proved one of the most elusive quests of modern science. For four decades, the United States has doggedly pursued energy's holy grail, pumping more than $9 billion into research and reactor prototypes. This year, the federal government is slated to spend $339 million on fusion, more than the combined amount the government will spend for research on oil, natural gas, solar power, wind power, geothermal energy, biofuels and conservation. This article summarizes the technical, political in terms of international cooperation, economic, planning, etc. issues surrounding the continued development of fusion as a possible power source for the next century. Brief descriptions of how fusion works and of the design of a tokamak fusion machine are included.

  12. Anterior cervical fusion with a bio-resorbable composite cage (beta TCP-PLLA): clinical and radiological results from a prospective study on 20 patients.

    PubMed

    Debusscher, F; Aunoble, S; Alsawad, Y; Clement, D; Le Huec, Jean-Charles

    2009-09-01

    A resorbable composite material (40% PLLA and 60% beta TCP) with a high breaking strength and capacity to withstand plastic and elastic strain has been developed for cervical interbody fusion. This is a prospective study to evaluate clinical and radiological results of 20 patients implanted with 27 cages (mean follow-up, 27 months). Clinical (neck disability index, VAS, neurological evaluation) and radiological (anteroposterior, lateral, bending X-rays) data were assessed before and after surgery. At the end of the study, CT scan was performed to evaluate fusion, resorption of the cage and density of the new tissue substituting the cage. The mean patient age was 50.3 years (range, 18-79 years). The average improvement was 55% for neck pain, 83% for arm pain and 65% for NDI, with 85% good or excellent results at final outcomes. Radiologically, lordosis was significantly improved (mean gain of 5.4 degrees and 3.7 degrees for overall and segmental lordosis, respectively). This correction was conserved in 95% of cases. Fusion was obtained in 96% (CT evaluation). Resorption was started in all cases and completed in an average of 36 months after surgery. The mean density of tissue substituting the cage was 659 UH with a range, of 455-911 UH (compatible with bone nature). Over time, the amount of bony tissue increased and the graft remodelled with an increase in density value. This demonstrates a biological activity and changing bone mineral content of this tissue. The new composite cage under investigation provides long-term fusion without loss of correction or inflammatory reaction. The ceramic block guarantees the maintenance of the disc height and its slow resorption allows long-term fusion and stability with good and reliable clinical and radiological outcomes. PMID:19533180

  13. A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model.

    PubMed

    Li, Yi; Wu, Zhi-gang; Li, Xiao-kang; Guo, Zheng; Wu, Su-hua; Zhang, Yong-quan; Shi, Lei; Teoh, Swee-hin; Liu, Yu-chun; Zhang, Zhi-yong

    2014-07-01

    Titanium (Ti) based spinal fusion cages are frequently used in the clinics for the treatment of spinal degeneration and related diseases, however, their further clinical application is generally harassed by several drawbacks such as stress shielding, non-biodegradability and additional bone grafting procedure. Our earlier work has demonstrated the efficacy of a biodegradable macro-porous polycaprolactone-tricalcium phosphate (PCL-TCP) composite scaffold in promoting bony tissue ingrowth as well as its ability to sustain mechanical loads upon implantation into an orthotopic defect site. In this study, we investigated the use of PCL-TCP scaffold as an autograft-free spinal fusion cage in a preclinical sheep model over 12 months, and compared the fusion efficacy against Ti cages incorporated with autografts. Results showed that despite PCL-TCP scaffold as an autograft-free cage attaining a slower fusion rate at early stage (6 month), it achieved similar degree of spinal fusion efficacy as Ti cages aided with autograft at 12 month post-operation as evidenced by the radiographic and histological evaluation. PCL-TCP cages alone demonstrated better bone ingrowth with 2.6 fold higher bone/interspace ratio (B/I) and more homogeneous bone tissue distribution compared with that of the Ti cages (88.103.63% vs. 33.742.78%, p<0.05) as seen from the histological and micro-CT analysis. Moreover, besides the bone tissue ingrowth, a quantitative approach was illustrated to accurately evaluate the osteointegration of fusion cage with surrounding bone tissue, and showed a 1.36 fold higher degree of osteointegration occurred in PCL-TCP cage group than Ti cage group (CS/PC: 79.313.15% vs 58.442.43%, p<0.05). Furthermore, biomechanical analysis showed comparable mechanical strength of fused segments in both groups in terms of the range of motion and stiffness at 12 month (p>0.05). The degradation profile of the PCL-TCP cages was noted to increase in tandem with new bone ingrowth into the pores, while maintaining good structural integrity necessary for supporting the spinal interbody segments. Therefore, with the better osteointegration, more bone tissue ingrowth as well as its favorable biodegradable and radiolucent properties, PCL-TCP cage has been demonstrated to be a promising candidate as an autograft-free fusion cage for clinical application. PMID:24743032

  14. Spherical torus fusion reactor

    DOEpatents

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  15. Whither fusion research

    SciTech Connect

    Hirsch, R.L.

    1986-06-01

    The author maintains that the magnetic fusion program is ready for a dramatic change of course. The author's criteria for a desirable fusion power reactor are: it must produce power at a competitive price; it must work with high reliability and maintenance must be easy, fast and low cost, and that the fusion reactor must be safe and not damage the environment. The author's feelings are based on years of observation of the utility industry in general and commercial nuclear power development in particular. The author's views on the undesirability of tokamaks are discussed. Two concepts discussed as alternatives are the Reversed Field Pinch (RFP) and the spheromak.

  16. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are somewhat different from those for terrestrial electrical power generation. Thus fusion schemes that are initially attractive for electrical power generation might not necessarily be attractive also for propulsion and vice versa, though the underlying fusion science and engineering enjoy much overlap. Parallel efforts to develop these qualitatively differently fusion schemes for the two applications could benefit greatly from each other due to the synergy in the underlying physics and engineering. Pulsed approaches to fusion have not been explored to the same degree as steady-state or long-pulse approaches to fusion in the fusion power research program. The concerns early on were several. One was that the pulsed power components might not have the service lifetimes meeting the requirements of a practical power generating plant. Another was that, for many pulsed fusion schemes, it was not clear whether the destruction of hardware per pulse could be minimized or eliminated or recycled to such an extent as to make economical electrical power generation feasible, Significant development of the underlying pulsed power component technologies have occurred in the last two decades because of defense and other energy requirements. The state of development of the pulsed power technologies are sufficiently advanced now to make it compelling to visit or re-visit pulsed fusion approaches for application to propulsion where the cost of energy is not so demanding a factor as in the case of terrestrial power application. For propulsion application, the overall mass of the fusion system is the critical factor. Producing fusion reactions require extreme states of matter. Conceptually, these extreme states of matter are more readily realizable in the pulsed states, at least within appropriate bounds, than in the steady states. Significant saving in system mass may result in such systems. Magnetic fields are effective in confining plasma energy, whereas inertial compression is an effective way of heating and containing the plasma. Intensive research in developing magnetic energy containme

  17. Label Fusion Strategy Selection

    PubMed Central

    Robitaille, Nicolas; Duchesne, Simon

    2012-01-01

    Label fusion is used in medical image segmentation to combine several different labels of the same entity into a single discrete label, potentially more accurate, with respect to the exact, sought segmentation, than the best input element. Using simulated data, we compared three existing label fusion techniquesSTAPLE, Voting, and Shape-Based Averaging (SBA)and observed that none could be considered superior depending on the dissimilarity between the input elements. We thus developed an empirical, hybrid technique called SVS, which selects the most appropriate technique to apply based on this dissimilarity. We evaluated the label fusion strategies on two- and three-dimensional simulated data and showed that SVS is superior to any of the three existing methods examined. On real data, we used SVS to perform fusions of 10 segmentations of the hippocampus and amygdala in 78 subjects from the ICBM dataset. SVS selected SBA in almost all cases, which was the most appropriate method overall. PMID:22518113

  18. On cold fusion

    SciTech Connect

    Spinrad, B.I. )

    1990-03-01

    This paper argues that a high negative voltage on a metal into which deuterium is soaked might enhance fusion reactions. The author discusses how this may have been the way Fleischmann and Pons achieved their results.

  19. Fusion-breeder program

    SciTech Connect

    Moir, R.W.

    1982-11-19

    The various approaches to a combined fusion-fission reactor for the purpose of breeding /sup 239/Pu and /sup 233/U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed. (MOW)

  20. Cold nuclear fusion

    SciTech Connect

    Tsyganov, E. N.

    2012-02-15

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  1. Glossary of fusion energy

    SciTech Connect

    Whitson, M.O.

    1985-02-01

    The Glossary of Fusion Energy is an attempt to present a concise, yet comprehensive collection of terms that may be beneficial to scientists and laymen who are directly or tangentially concerned with this burgeoning energy enterprise. Included are definitions of terms in theoretical plasma physics, controlled thermonuclear fusion, and some related physics concepts. Also, short descriptions of some of the major thermonuclear experiments currently under way in the world today are included.

  2. Congenital alveolar fusion.

    PubMed

    Gupta, Rahul K; Jadhav, Vinay; Gupta, Abhaya; Sanghvi, Beejal; Shah, Hemanshi; Parelkar, Sandesh

    2008-08-01

    Congenital fusion of the jaws is rare. It may be unilateral or bilateral and may involve only the soft tissues or both the hard and soft tissues. This anomaly may be seen separately or in association with other syndromes. Congenital alveolar fusion restricts mouth opening, causing problems with feeding, swallowing, and respiration. Case 1 had membranous bands between the alveoli that required tracheostomy for stabilization, followed by osteotomy for release. Postoperatively, both patients had adequate mouth opening. PMID:18675628

  3. Fusion Development Facility Mission

    NASA Astrophysics Data System (ADS)

    Stambaugh, R. D.; Chan, V. S.; Garofalo, A. M.; Smith, J. P.; Wong, C. P. C.

    2008-11-01

    A Fusion Development Facility (FDF) is proposed to fill the gaps between ITER and current experiments and a fusion demonstration power plant (DEMO). FDF should carry forward Advanced Tokamak physics and enable development of fusion's energy applications. Near term advanced tokamak physics will be used to achieve steady-state with burn, producing 100-250 MW fusion power with modest energy gain (Q<5) in a modest sized device (between DIII-D and JET). FDF will further develop all elements of AT physics for an advanced performance DEMO. With neutron flux at the outboard midplane of 1-2 MW/m^2, continuous operation for periods up to two weeks, and a goal of a duty factor of 0.3 on a year, FDF can produce fluences of 3-6 MW-yr/m^2 in ten years of operation. The development of blankets suitable for tritium, electricity, and hydrogen production will be done in port modules. The most promising candidates will be deployed as full blankets in FDF. FDF will have a goal of demonstrating closure of the fusion fuel cycle, producing its own tritium. FDF, ITER, IFMIF, and other AT devices will provide the basis for a fusion DEMO power plant of the ARIES-AT type.

  4. Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2002-01-01

    Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.

  5. ITER Fusion Energy

    ScienceCinema

    Dr. Norbert Holtkamp

    2010-01-08

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  6. Improvements of image fusion methods

    NASA Astrophysics Data System (ADS)

    Ben-Shoshan, Yotam; Yitzhaky, Yitzhak

    2014-03-01

    Fusion of images from different imaging modalities, obtained by conventional fusion methods, may cause artifacts, including destructive superposition and brightness irregularities, in certain cases. This paper proposes two methods for improving image multimodal fusion quality. Based on the finding that a better fusion can be achieved when the images have a more positive correlation, the first method is a decision algorithm that runs at the preprocessing fusion stage and determines whether a complementary gray level of one of the input images should be used instead of the original one. The second method is suitable for multiresolution fusion, and it suggests choosing only one image from the lowest-frequency sub-bands in the pyramids, instead of combining values from both sub-bands. Experimental results indicate that the proposed fusion enhancement can reduce fusion artifacts. Quantitative fusion quality measures that support this conclusion are shown.

  7. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are somewhat different from those for terrestrial electrical power generation. Thus fusion schemes that are initially attractive for electrical power generation might not necessarily be attractive also for propulsion and vice versa, though the underlying fusion science and engineering enjoy much overlap. Parallel efforts to develop these qualitatively differently fusion schemes for the two applications could benefit greatly from each other due to the synergy in the underlying physics and engineering. Pulsed approaches to fusion have not been explored to the same degree as steady-state or long-pulse approaches to fusion in the fusion power research program. The concerns early on were several. One was that the pulsed power components might not have the service lifetimes meeting the requirements of a practical power generating plant. Another was that, for many pulsed fusion schemes, it was not clear whether the destruction of hardware per pulse could be minimized or eliminated or recycled to such an extent as to make economical electrical power generation feasible, Significant development of the underlying pulsed power component technologies have occurred in the last two decades because of defense and other energy requirements. The state of development of the pulsed power technologies are sufficiently advanced now to make it compelling to visit or re-visit pulsed fusion approaches for application to propulsion where the cost of energy is not so demanding a factor as in the case of terrestrial power application. For propulsion application, the overall mass of the fusion system is the critical factor. Producing fusion reactions require extreme states of matter. Conceptually, these extreme states of matter are more readily realizable in the pulsed states, at least within appropriate bounds, than in the steady states. Significant saving in system mass may result in such systems. Magnetic fields are effective in confining plasma energy, whereas inertial compression is an effective way of heating and containing the plasma. Intensive research in developing magnetic energy containment and inertial plasma compression are being pursued in distinctively different fusion experiments in the terrestrial fusion power program. Fusion schemes that attempt to combine the favorable attributes of these two aspects into one single integrated fusion scheme appear to have benefits that are worth exploring for propulsion application.

  8. Myoblast fusion in Drosophila

    SciTech Connect

    Haralalka, Shruti; Abmayr, Susan M.

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  9. Fusion, magnetic confinement

    SciTech Connect

    Berk, H.L.

    1992-08-06

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or {sup 3}He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied.

  10. Simulation of Fusion Plasmas

    ScienceCinema

    Holland, Chris [UC San Diego, San Diego, California, United States

    2010-01-08

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  11. Ceramics for fusion applications

    SciTech Connect

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al/sub 2/O/sub 3/, MgAl/sub 2/O/sub 4/, BeO, Si/sub 3/N/sub 4/ and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications.

  12. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M. (Oak Ridge, TN)

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  13. CRYOGENICS FOR FUSION

    SciTech Connect

    Dauguet, P.; Bonneton, M.; Fauve, E.; Bernhardt, J. M.; Beauvisage, J.; Andrieu, F.; Gistau-Baguer, G. M.; Boissin, J. C.

    2008-03-16

    Fusion of Hydrogen to produce energy is one of the technologies under study to meet the mankind raising need in energy and as a substitute to fossil fuels for the future. This technology is under investigation for more than 30 years already, with, for example, the former construction of the experimental reactors Tore Supra, DIII-D and JET. With the construction of ITER to start, the next step to 'fusion for energy' will be done. In these projects, an extensive use of cryogenic systems is requested. Air Liquide has been involved as cryogenic partner in most of former and presently constructed fusion reactors. In the present paper, a review of the cryogenic systems we delivered to Tore Supra, JET, IPR and KSTAR will be presented.

  14. Peaceful Uses of Fusion

    DOE R&D Accomplishments Database

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  15. HEAVY ION INERTIAL FUSION

    SciTech Connect

    Keefe, D.; Sessler, A.M.

    1980-07-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at.

  16. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  17. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schmidt, George R.; Santarius, John F.; Turchi, Peter J.; Siemon, Richard E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For efficient and affordable human exploration of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion obviously cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the fission energy to heat a low atomic weight propellant produces propellant velocity of the order of 10 kinds. Alternatively the fission energy can be converted into electricity that is used to accelerate particles to high exhaust velocity. However, the necessary power conversion and conditioning equipment greatly increases the mass of the propulsion system. Fundamental considerations in waste heat rejection and power conditioning in a fission electric propulsion system place a limit on its jet specific power to the order of about 0.2 kW/kg. If fusion can be developed for propulsion, it appears to have the best of all worlds - it can provide the largest absolute amount of energy, the propellant exhaust velocity (> 100 km/s), and the high specific jet power (> 10 kW/kg). An intermediate step towards fusion propulsion might be a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. There are similarities as well as differences between applying fusion to propulsion and to terrestrial electrical power generation. The similarities are the underlying plasma and fusion physics, the enabling component technologies, the computational and the diagnostics capabilities. These physics and engineering capabilities have been demonstrated for a fusion reactor gain (Q) of the order of unity (TFTR: 0.25, JET: 0.65, JT-60: Q(sub eq) approx. 1.25). These technological advances made it compelling for considering fusion for propulsion.

  18. Fusion welding process

    DOEpatents

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  19. Atomic data for fusion

    SciTech Connect

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  20. Fusion's $372-Million Mothball

    SciTech Connect

    Booth, W.

    1987-10-09

    Lawrence Livermore National Laboratory's Mirror Fusion Test Facility (MFTF-B) was built to prove that a design using magnetic mirrors could compete in an international race to produce a commercial fusion reactor. The MFTF-B was to be used to propel the magnetic mirror program into a real contest against Livermore's arch rival: the Princeton Plasma Physics Laboratory and its tokamak machine. On 21 February 1986, after 9 years of construction and $372 million, MTFT-B was officially dedicated. However, due to budget restriction DOE demanded the facility be put on standby the very next day.

  1. Cold fusion before Congress

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    Stanley Pons and Martin Fleischmann took their cold fusion show to Capitol Hill last week, saying they were “as sure as sure can be” that the heat produced in their experiments at the University of Utah is the result of some form of nuclear fusion and vigorously defending themselves against charges that they have set the scientific world on its ear by creating a good battery.The two chemists asked for “tens of millions of dollars” in federal funds to move directly into commercial development of energy devices based on the new discovery, but provided no more than tantalizing hints at what is going on in their experiments.

  2. Fusion technology status and requirements

    SciTech Connect

    Thomassen, K.I.

    1982-01-26

    This paper summarizes the status of fusion technology and discusses the requirements to be met in order to build a demonstration fusion plant. Strategies and programmatic considerations in pursuing engineering feasibility are also outlined.

  3. Multisensor data fusion algorithm development

    SciTech Connect

    Yocky, D.A.; Chadwick, M.D.; Goudy, S.P.; Johnson, D.K.

    1995-12-01

    This report presents a two-year LDRD research effort into multisensor data fusion. We approached the problem by addressing the available types of data, preprocessing that data, and developing fusion algorithms using that data. The report reflects these three distinct areas. First, the possible data sets for fusion are identified. Second, automated registration techniques for imagery data are analyzed. Third, two fusion techniques are presented. The first fusion algorithm is based on the two-dimensional discrete wavelet transform. Using test images, the wavelet algorithm is compared against intensity modulation and intensity-hue-saturation image fusion algorithms that are available in commercial software. The wavelet approach outperforms the other two fusion techniques by preserving spectral/spatial information more precisely. The wavelet fusion algorithm was also applied to Landsat Thematic Mapper and SPOT panchromatic imagery data. The second algorithm is based on a linear-regression technique. We analyzed the technique using the same Landsat and SPOT data.

  4. Human-Centered Fusion Framework

    SciTech Connect

    Posse, Christian; White, Amanda M.; Beagley, Nathaniel

    2007-05-16

    In recent years the benefits of fusing signatures extracted from large amounts of distributed and/or heterogeneous data sources have been largely documented in various problems ranging from biological protein function prediction to cyberspace monitoring. In spite of significant progress in information fusion research, there is still no formal theoretical framework for defining various types of information fusion systems, defining and analyzing relations among such types, and designing information fusion systems using a formal method approach. Consequently, fusion systems are often poorly understood, are less than optimal, and/or do not suit user needs. To start addressing these issues, we outline a formal humancentered fusion framework for reasoning about fusion strategies. Our approach relies on a new taxonomy for fusion strategies, an alternative definition of information fusion in terms of parameterized paths in signature related spaces, an algorithmic formalization of fusion strategies and a library of numeric and dynamic visual tools measuring the impact as well as the impact behavior of fusion strategies. Using a real case of intelligence analysis we demonstrate that the proposed framework enables end users to rapidly 1) develop and implement alternative fusion strategies, 2) understand the impact of each strategy, 3) compare the various strategies, and 4) perform the above steps without having to know the mathematical foundations of the framework. We also demonstrate that the human impact on a fusion system is critical in the sense that small changes in strategies do not necessarily correspond to small changes in results.

  5. Bubble fusion: Preliminary estimates

    SciTech Connect

    Krakowski, R.A.

    1995-02-01

    The collapse of a gas-filled bubble in disequilibrium (i.e., internal pressure {much_lt} external pressure) can occur with a significant focusing of energy onto the entrapped gas in the form of pressure-volume work and/or acoustical shocks; the resulting heating can be sufficient to cause ionization and the emission of atomic radiations. The suggestion that extreme conditions necessary for thermonuclear fusion to occur may be possible has been examined parametrically in terms of the ratio of initial bubble pressure relative to that required for equilibrium. In this sense, the disequilibrium bubble is viewed as a three-dimensional ``sling shot`` that is ``loaded`` to an extent allowed by the maximum level of disequilibrium that can stably be achieved. Values of this disequilibrium ratio in the range 10{sup {minus}5}--10{sup {minus}6} are predicted by an idealized bubble-dynamics model as necessary to achieve conditions where nuclear fusion of deuterium-tritium might be observed. Harmonic and aharmonic pressurizations/decompressions are examined as means to achieve the required levels of disequilibrium required to create fusion conditions. A number of phenomena not included in the analysis reported herein could enhance or reduce the small levels of nuclear fusions predicted.

  6. Fusion reactor materials

    SciTech Connect

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  7. Mars manned fusion spaceship

    NASA Technical Reports Server (NTRS)

    Hedrick, James; Buchholtz, Brent; Ward, Paul; Freuh, Jim; Jensen, Eric

    1991-01-01

    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium-3. Helium-3 can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.

  8. Mars manned fusion spaceship

    SciTech Connect

    Hedrick, J.; Buchholtz, B.; Ward, P.; Freuh, J.; Jensen, E.

    1991-01-01

    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium. Helium can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.

  9. Directions for improved fusion reactors

    SciTech Connect

    Krakowski, R.A.; Miller, R.L.; Delene, J.G.

    1986-01-01

    Conceptual fusion reactor studies over the past 10 to 15 years have projected systems that may be too large, complex, and costly to be of commercial interest. One main direction for improved fusion reactors points towards smaller, higher-power-density approaches. First-order economic issues (i.e., unit direct cost and cost of electricity) are used to support the need for more compact fusion reactors. A generic fusion physics/engineering/costing model is used to provide a quantiative basis for these arguments for specific fusion concepts.

  10. The path to fusion power.

    PubMed

    Llewellyn Smith, Chris; Ward, David

    2007-04-15

    Fusion is potentially an environmentally responsible and intrinsically safe source of essentially limitless power. It should be possible to build viable fusion power stations, and it looks as if the cost of fusion power will be reasonable. But time is needed to further develop the technology and to test in power station conditions the materials that would be used in their construction. Assuming no major adverse surprises, an orderly fusion development programme could lead to a prototype fusion power station putting electricity into the grid within 30 years, with commercial fusion power following some 10 or more years later. In the second half of the century, fusion could therefore be an important part of the portfolio of measures that are needed to cope with rising demand for energy in an environmentally responsible manner. In this paper, we describe the basics of fusion, its potential attractions, the status of fusion R&D, the remaining challenges and how they will be tackled at the International Tokamak Experimental Reactor and the proposed International Fusion Materials Irradiation Facility, and the timetable for the subsequent commercialization of fusion power. PMID:17272246

  11. Research on fusion neutron sources

    SciTech Connect

    Gryaznevich, M. P.

    2012-06-19

    The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. 'Fusion for Neutrons' (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

  12. Physics of magnetic confinement fusion

    NASA Astrophysics Data System (ADS)

    Wagner, F.

    2013-06-01

    Fusion is the energy source of the universe. The local conditions in the core of the Sun allow the transfer of mass into energy, which is finally released in the form of radiation. Technical fusion melts deuterons and tritons to helium releasing large amounts of energy per fusion process. Because of the conditions for fusion, which will be deduced, the fusion fuel is in the plasma state. Here we report on the confinement of fusion plasmas by magnetic fields. Different confinement concepts — tokamaks and stellarators — will be introduced and described. The first fusion reactor, ITER, and the most modern stellarator, Wendelstein 7-X, are under construction. Their basic features and objectives will be presented.

  13. The Need for Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Cassibry, Jason

    2005-01-01

    Fusion propulsion is inevitable if the human race remains dedicated to exploration of the solar system. There are fundamental reasons why fusion surpasses more traditional approaches to routine crewed missions to Mars, crewed missions to the outer planets, and deep space high speed robotic missions, assuming that reduced trip times, increased payloads, and higher available power are desired. A recent series of informal discussions were held among members from government, academia, and industry concerning fusion propulsion. We compiled a sufficient set of arguments for utilizing fusion in space. If the U.S. is to lead the effort and produce a working system in a reasonable amount of time, NASA must take the initiative, relying on, but not waiting for, DOE guidance. In this talk those arguments for fusion propulsion are presented, along with fusion enabled mission examples, fusion technology trade space, and a proposed outline for future efforts.

  14. 50 years of fusion research

    NASA Astrophysics Data System (ADS)

    Meade, Dale

    2010-01-01

    Fusion energy research began in the early 1950s as scientists worked to harness the awesome power of the atom for peaceful purposes. There was early optimism for a quick solution for fusion energy as there had been for fission. However, this was soon tempered by reality as the difficulty of producing and confining fusion fuel at temperatures of 100 million C in the laboratory was appreciated. Fusion research has followed two main pathsinertial confinement fusion and magnetic confinement fusion. Over the past 50 years, there has been remarkable progress with both approaches, and now each has a solid technical foundation that has led to the construction of major facilities that are aimed at demonstrating fusion energy producing plasmas.

  15. Unconventional approaches to fusion

    SciTech Connect

    Brunelli, B.; Leotta, G.G.

    1982-01-01

    This volume is dedicated to unconventional approaches to fusionthose thermonuclear reactors that, in comparison with Tokamak and other main lines, have received little attention in the worldwide scientific community. Many of the approaches considered are still in the embryonic stages. The authors-an international group of active nuclear scientists and engineers-focus on the parameters achieved in the use of these reactors and on the meaning of the most recent physical studies and their implications for the future. They also compare these approaches with conventional ones, the Tokamak in particular, stressing the non-plasma-physics requirements of fusion reactors. Unconventional compact toroids, linear systems, and multipoles are considered, as are the ''almost conventional'' fusion machines: stellarators, mirrors, reversed-field pinches, and EBT.

  16. Fusion pumped laser

    DOEpatents

    Pappas, D.S.

    1987-07-31

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  17. Experiments in cold fusion

    SciTech Connect

    Palmer, E.P.

    1986-03-28

    The work of Steve Jones and others in muon-catalyzed cold fusion of deuterium and hydrogen suggests the possibility of such fusion catalyzed by ions, or combinations of atoms, or more-or-less free electrons in solid and liquid materials. A hint that this might occur naturally comes from the heat generated in volcanic action in subduction zones on the earth. It is questionable whether the potential energy of material raised to the height of a midocean ridge and falling to the depth of an ocean trench can produce the geothermal effects seen in the volcanoes of subduction zones. If the ridge, the trench, the plates, and the asthenosphere are merely visible effects of deeper density-gradient driven circulations, it is still uncertain that observed energy-concentration effects fit the models.

  18. Computational fusion magnetohydrodynamics

    SciTech Connect

    Grimm, R.C.

    1984-01-01

    Simple magnetohydrodynamic models provide the framework for much of our understanding of the macroscopic behavior of magnetically confined laboratory plasmas. In even the simplest of models, however, the many different time and spatial scales, the multidimensionality, and the nonlinearity of the equations make finding solutions difficult. In realistic geometries obtaining quantitative results to aid our understanding, to interpret experiment, and to design new devices, involves the development of large scale numerical codes. During the past decade considerable effort has been extended in the fusion community to develop equilibrium, linear stability, and nonlinear time evolution codes in two and three dimensions, some of which have had a considerable impact on the fusion program. An overview of the various types of codes and numerical methods is given. Emphasis is on the spectrum of linear perturbations and ideal MHD stability, boundary layer methods and resistive MHD stability, and modeling of nonlinear, time evolution resistive MHD phenomena in tokamak configurations.

  19. (Fusion energy research)

    SciTech Connect

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  20. Fusion development and technology

    SciTech Connect

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development.

  1. Modular Aneutronic Fusion Engine

    SciTech Connect

    Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

    2012-05-11

    NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

  2. Mitochondrial fission and fusion

    PubMed Central

    Scott, Iain; Youle, Richard J.

    2016-01-01

    Mitochondria are highly dynamic cellular organelles, with the ability to change size, shape and position over the course of a few seconds. Many of these changes are related to the ability of mitochondria to undergo the highly co-ordinated processes of fission (division of a single organelle into two or more independent structures) or fusion (the opposing reaction). These actions occur simultaneously and continuously in many cell types, and the balance between them regulates the overall morphology of mitochondria within any given cell. Fission and fusion are active processes which require many specialized proteins, including mechanical enzymes that physically alter mitochondrial membranes, and adaptor proteins that regulate the interaction of these mechanical proteins with organelles. Although not fully understood, alterations in mitochondrial morphology appear to be involved in several activities that are crucial to the health of cells. In the present chapter we discuss the mechanisms behind mitochondrial fission and fusion, and discuss the implications of changes in organelle morphology during the life of a cell. PMID:20533902

  3. Stabilized Spheromak Fusion Reactors

    SciTech Connect

    Fowler, T

    2007-04-03

    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  4. Data fusion handoff within a federation of fusion systems

    NASA Astrophysics Data System (ADS)

    Shea, Peter J.; Roskamp, Bryce

    2007-09-01

    As the military continues to move forward with an increased number of sensor and fusion systems, it becomes necessary for these systems to be able to communicate efficiently and effectively. In these environments there are multiple sensor and fusion systems that in the past have operated independently of one another. As an increasing number of systems become available, eventually an overlap in the coverage area occurs between these fusion systems. This results in a need for coordination between these semi-autonomous fusion systems. Short of a complete redesign of all the fusion systems, a solution is required to address the handoff of data between these systems. The primary goal of this paper is to describe a data fusion handoff capability that is able to augment these existing systems. This is accomplished by the use of a Handoff Manager that is added to each fusion system. The Handoff Manager is responsible for developing a global representation the track information displayed onboard its own fusion system that is common with the other members of the federation of fusion systems. This is accomplished by using a global track numbering scheme that requires communication and adjudication between the multiple Handoff Manager components that are present on the different fusion systems within the federation. This paper will define the data fusion handoff problem and describe our approach for handling the data fusion handoff problem within the context of overlapping and non-overlapping sensor environments. We will conclude with a discussion of results for a sample problem and of the path forward.

  5. Biomechanical evaluation of an endplate-conformed polycaprolactone-hydroxyapatite intervertebral fusion graft and its comparison with a typical nonconformed cortical graft.

    PubMed

    Agarwal, Aakash; Palepu, Vivek; Agarwal, Anand K; Goel, Vijay K; Yildirim, Eda D

    2013-06-01

    In the thoracolumbar region, between 7% and 30% of spinal fusion failures are at risk for pseudarthrosis. From a biomechanical perspective, the nonconformity of the intervertebral graft to the endplate surface could contribute to pseudarthrosis, given suboptimal stress distributions. The objective of this study was to quantify the effect of endplate-graft conformation on endplate stress distribution, maximum Von Mises stress development, and stability. The study design used an experimentally validated finite element (FE) model of the L4-L5 functional spinal unit to simulate two types of interbody grafts (cortical bone and polycaprolactone (PCL)-hydroxyapatite (HA) graft), with and without endplate-conformed surfaces. Two case studies were completed. In Case Study I, the endplate-conformed grafts and nonconformed grafts were compared under without posterior instrumentation condition, while in Case Study II, the endplate-conformed and nonconformed grafts were compared with posterior instrumentation. In both case studies, the results suggested that the increased endplate-graft conformity reduced the maximum stress on the endplate, created uniform stress distribution on endplate surfaces, and reduced the range of motion of L4-L5 segments by increasing the contact surface area between the graft and the endplate. The stress distributions in the endplate suggest that the load sharing is greater with the endplate-conformed PCL-HA graft, which might reduce the graft subsidence possibility. PMID:23699717

  6. Sensor fusion for synthetic vision

    NASA Technical Reports Server (NTRS)

    Pavel, M.; Larimer, J.; Ahumada, A.

    1991-01-01

    Display methodologies are explored for fusing images gathered by millimeter wave sensors with images rendered from an on-board terrain data base to facilitate visually guided flight and ground operations in low visibility conditions. An approach to fusion based on multiresolution image representation and processing is described which facilitates fusion of images differing in resolution within and between images. To investigate possible fusion methods, a workstation-based simulation environment is being developed.

  7. EDITORIAL: The Nuclear Fusion Award The Nuclear Fusion Award

    NASA Astrophysics Data System (ADS)

    Kikuchi, M.

    2011-01-01

    The Nuclear Fusion Award ceremony for 2009 and 2010 award winners was held during the 23rd IAEA Fusion Energy Conference in Daejeon. This time, both 2009 and 2010 award winners were celebrated by the IAEA and the participants of the 23rd IAEA Fusion Energy Conference. The Nuclear Fusion Award is a paper prize to acknowledge the best distinguished paper among the published papers in a particular volume of the Nuclear Fusion journal. Among the top-cited and highly-recommended papers chosen by the Editorial Board, excluding overview and review papers, and by analyzing self-citation and non-self-citation with an emphasis on non-self-citation, the Editorial Board confidentially selects ten distinguished papers as nominees for the Nuclear Fusion Award. Certificates are given to the leading authors of the Nuclear Fusion Award nominees. The final winner is selected among the ten nominees by the Nuclear Fusion Editorial Board voting confidentially. 2009 Nuclear Fusion Award nominees For the 2009 award, the papers published in the 2006 volume were assessed and the following papers were nominated, most of which are magnetic confinement experiments, theory and modeling, while one addresses inertial confinement. Sabbagh S.A. et al 2006 Resistive wall stabilized operation in rotating high beta NSTX plasmas Nucl. Fusion 46 635-44 La Haye R.J. et al 2006 Cross-machine benchmarking for ITER of neoclassical tearing mode stabilization by electron cyclotron current drive Nucl. Fusion 46 451-61 Honrubia J.J. et al 2006 Three-dimensional fast electron transport for ignition-scale inertial fusion capsules Nucl. Fusion 46 L25-8 Ido T. et al 2006 Observation of the interaction between the geodesic acoustic mode and ambient fluctuation in the JFT-2M tokamak Nucl. Fusion 46 512-20 Plyusnin V.V. et al 2006 Study of runaway electron generation during major disruptions in JET Nucl. Fusion 46 277-84 Pitts R.A. et al 2006 Far SOL ELM ion energies in JET Nucl. Fusion 46 82-98 Berk H.L. et al 2006 Explanation of the JET n = 0 chirping mode Nucl. Fusion 46 S888-97 Urano H. et al 2006 Confinement degradation with beta for ELMy HH-mode plasmas in JT-60U tokamak Nucl. Fusion 46 781-7 Izzo V.A. et al 2006 A numerical investigation of the effects of impurity penetration depth on disruption mitigation by massive high-pressure gas jet Nucl. Fusion 46 541-7 Inagaki S. et al 2006 Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas Nucl. Fusion 46 133-41 Watanabe T.-H. et al 2006 Velocity-space structures of distribution function in toroidal ion temperature gradient turbulence Nucl. Fusion 46 24-32 2010 Nuclear Fusion Award nominees For the 2010 award, the papers published in the 2007 volume were assessed and the following papers were nominated, all of which are magnetic confinement experiments and theory. Rice J.E. et al 2007 Inter-machine comparison of intrinsic toroidal rotation in tokamaks Nucl. Fusion 47 1618-24 Lipschultz B. et al 2007 Plasma-surface interaction, scrape-off layer and divertor physics: implications for ITER Nucl. Fusion 47 1189-205 Loarer T. et al 2007 Gas balance and fuel retention in fusion devices Nucl. Fusion 47 1112-20 Garcia O.E et al 2007 Fluctuations and transport in the TCV scrape-off layer Nucl. Fusion 47 667-76 Zonca F. et al 2007 Electron fishbones: theory and experimental evidence Nucl. Fusion 47 1588-97 Maggi C.F. et al 2007 Characteristics of the H-mode pedestal in improved confinement scenarios in ASDEX Upgrade, DIII-D, JET and JT-60U Nucl. Fusion 47 535-51 Yoshida M. et al 2007 Momentum transport and plasma rotation profile in toroidal direction in JT-60U L-mode plasmas Nucl. Fusion 47 856-63 Zohm H. et al 2007 Control of MHD instabilities by ECCD: ASDEX Upgrade results and implications for ITER Nucl. Fusion 47 228-32 Snyder P.B. et al 2007 Stability and dynamics of the edge pedestal in the low collisionality regime: physics mechanisms for steady-state ELM-free operation Nucl. Fusion 47 961-8 Urano H. et al 2007 H-mode pedestal structure in the variation of toroidal rotation and toroidal field ripple in JT-60U Nucl. Fusion 47 706-13 Günter S. et al 2007 Interaction of energetic particles with large and small scale instabilities Nucl. Fusion 47 920-8

  8. High Level Information Fusion (HLIF) with nested fusion loops

    NASA Astrophysics Data System (ADS)

    Woodley, Robert; Gosnell, Michael; Fischer, Amber

    2013-05-01

    Situation modeling and threat prediction require higher levels of data fusion in order to provide actionable information. Beyond the sensor data and sources the analyst has access to, the use of out-sourced and re-sourced data is becoming common. Through the years, some common frameworks have emerged for dealing with information fusion—perhaps the most ubiquitous being the JDL Data Fusion Group and their initial 4-level data fusion model. Since these initial developments, numerous models of information fusion have emerged, hoping to better capture the human-centric process of data analyses within a machine-centric framework. 21st Century Systems, Inc. has developed Fusion with Uncertainty Reasoning using Nested Assessment Characterizer Elements (FURNACE) to address challenges of high level information fusion and handle bias, ambiguity, and uncertainty (BAU) for Situation Modeling, Threat Modeling, and Threat Prediction. It combines JDL fusion levels with nested fusion loops and state-of-the-art data reasoning. Initial research has shown that FURNACE is able to reduce BAU and improve the fusion process by allowing high level information fusion (HLIF) to affect lower levels without the double counting of information or other biasing issues. The initial FURNACE project was focused on the underlying algorithms to produce a fusion system able to handle BAU and repurposed data in a cohesive manner. FURNACE supports analyst's efforts to develop situation models, threat models, and threat predictions to increase situational awareness of the battlespace. FURNACE will not only revolutionize the military intelligence realm, but also benefit the larger homeland defense, law enforcement, and business intelligence markets.

  9. Forcing free fusion of stereograms.

    PubMed

    Cecchetto, Stefano; Kramer, Peter

    2010-01-01

    n order to read articles that either are on stereopsis, or use stereopsis as a tool, it is virtually inescapable to learn to fuse stereograms without the help of a stereoscope or special glasses (free fusion). For a few, this is easy. For many, it is frustratingly difficult, leading some to turn their backs on stereopsis altogether. Here, we show how presenting a stereogram on a transparency-rather than on paper-with a fixation cross behind it (for uncrossed fusion), or presenting a fixation cross on a transparency with a paper stereogram behind it (for crossed fusion), can force free fusion towards greater success. PMID:20301854

  10. Fusion by Diffusion Model Revisited

    NASA Astrophysics Data System (ADS)

    Cap, T.; Siwek-Wilczyńska, K.; Wilczyński, J.

    A complete set of 27 excitation functions for synthesis of superheavy nuclei produced in cold fusion reactions was analyzed in terms of the "Fusion by Diffusion Model" of Światecki et al., modified to account for the angular momentum dependence of the fusion hindrance factor. The data on cold fusion reactions originate from experiments carried out at GSI Darmstadt, RIKEN Tokyo and LBNL Berkeley in which 208Pb and 209Bi targets were bombarded with the variety of projectiles ranging from 48,50Ti to 70Zn.

  11. OCULUS Sea Track Fusion Service

    NASA Astrophysics Data System (ADS)

    Panagiotou, Stylianos C.; Rizogiannis, Constantinos; Katsoulis, Stavros; Lampropoulos, Vassilis; Kanellopoulos, Sotirios; Thomopoulos, Stelios C. A.

    2015-06-01

    Oculus Sea is a complete solution regarding maritime surveillance and communications at Local as well as Central Command and Control level. It includes a robust and independent track fusion service whose main functions include: 1) Interaction with the User to suggest the fusion of two or more tracks, confirm Track ID and Vessel Metadata creation for the fused track, and suggest de-association of two tracks 2) Fusion of same vessel tracks arriving simultaneously from multiple radar sensors featuring track Association, track Fusion of associated tracks to produce a more accurate track, and Multiple tracking filters and fusion algorithms 3) Unique Track ID Generator for each fused track 4) Track Dissemination Service. Oculus Sea Track Fusion Service adopts a system architecture where each sensor is associated with a Kalman estimator/tracker that obtains an estimate of the state vector and its respective error covariance matrix. Finally, at the fusion center, association and track state estimation fusion are carried out. The expected benefits of this system include multi-sensor information fusion, enhanced spatial resolution, and improved target detection.

  12. Economic potential of inertial fusion

    SciTech Connect

    Nuckolls, J.H.

    1984-04-01

    Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents.

  13. Cold nuclear fusion

    NASA Astrophysics Data System (ADS)

    Tsyganov, E. N.; Bavizhev, M. D.; Buryakov, M. G.; Dabagov, S. B.; Golovatyuk, V. M.; Lobastov, S. P.

    2015-07-01

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction's theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300-700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of 4He∗.

  14. COLLABORATIVE: FUSION SIMULATION PROGRAM

    SciTech Connect

    Chang, Choong Seock

    2012-06-05

    New York University, Courant Institute of Mathematical Sciences, participated in the “Fusion Simulation Program (FSP) Planning Activities” [http://www.pppl.gov/fsp], with C.S. Chang as the institutional PI. FSP’s mission was to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. Specific institutional goal of the New York University was to participate in the planning of the edge integrated simulation, with emphasis on the usage of large scale HPCs, in connection with the SciDAC CPES project which the PI was leading. New York University successfully completed its mission by participating in the various planning activities, including the edge physics integration, the edge science drivers, and the mathematical verification. The activity resulted in the combined report that can be found in http://www.pppl.gov/fsp/Overview.html. Participation and presentations as part of this project are listed in a separation file.

  15. Physics of Fusion Welding

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    1986-01-01

    Applicabilities and limitations of three techniques analyzed. NASA technical memorandum discusses physics of electron-beam, gas/ tungsten-arc, and laser-beam welding. From comparison of capabilities and limitations of each technique with regard to various welding conditions and materials, possible to develop criteria for selecting best welding technique in specific application. All three techniques classified as fusion welding; small volume of workpiece melted by intense heat source. Heat source moved along seam, leaving in wake solid metal that joins seam edges together.

  16. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L. (Princeton, NJ)

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  17. The future of fusion

    NASA Astrophysics Data System (ADS)

    Sheffield, John

    2001-05-01

    The population of the world is increasing, mainly in the developing world, and is projected to saturate within about 100 years at up to twice the present population of 6 billion people (Bos et al., World Population Projections: 1994-95 Edition, Published for the World Bank). Studies (Goldemberg and Johansson (Eds.), Energy as an Instrument for Socio-Economic Development United Nations Development Programme, New York, 1995, p. 9; United Nations Statistical Yearbooks, 10th issue; 1965; 20th issue; 1975, 22nd issue, 1977; 32nd issue, 1987; and 39th issue 1994, United Nations Publications; Sheffield, J. Technol. Forecasting Social Change 59 (1998) 55.) show that, historically, the population growth rate has varied inversely as the annual per capita energy use in most parts of the developing world, where per capita energy use is typically less than 1 t of oil equivalent energy per year. However, in areas with more than 2-3 t of oil equivalent of energy use per year per person, the growth rate is around zero. If this trend continues, a stable world population will require, allowing for energy efficiency improvements, some 2-3 times the present annual energy use. There is an abundance of energy in the world both exploited and potential to meet this need - fossil, fission, and renewables - but it is not evenly distributed, some are costly, and there are issues of environmental pollution in present use, that may limit use. Fusion energy is a potential longer-term source with attractive environmental features. It is the least-developed energy option and still faces a challenging development path, but there are many areas of the world that would benefit hugely from its deployment from the later part of the 21st century onward, and it is important to consider how it might be deployed. Most fusion power plant options considered today show an economy of scale, owing to the fixed distance needed for shielding fusion neutrons, tritium breeding and handling the heat loads. One interesting approach is to use the power plant to co-produce electricity and hydrogen to facilitate the introduction of lower cost of electricity, multi-gigawatt power plants (Sheffield et al., A study of options for the deployment of large fusion power plants, 2000, to be published).

  18. XC cell fusion by murine leukemia viruses: fusion from without.

    PubMed

    Ogura, H

    1976-12-01

    Concentrated murine leukemia virus (MuLV) or MuLV producing cells induce XC cell fusion within an hour leading to syncytia formation. While MuLV inactivated by UV irradiation, beta-propiolactone or hydroxylamine treatment still caused cell fusion, Bromelin- or trypsin treated MuLV was no longer able to fuse XC cells. Though sonicated MuLV induced no XC cell fusion, it interfered with cell fusion as caused by untreated MuLV. XC cells infected by diluted MuLV of a titer lower than 1 X 10(5) PFU/ml formed no syncytia although they produced MuLV. The cell fusion mechanism is discussed. PMID:187916

  19. Utility requirements for fusion

    SciTech Connect

    Vondrasek, R.J.

    1982-02-01

    This report describes work done and results obtained during performance of Task 1 of a study of Utility Requirements and Criteria for Fusion Options. The work consisted of developing a list of utility requirements for fusion optics containing definition of the requirements and showing their relative importance to the utility industry. The project team members developed a preliminary list which was refined by discussions and literature searches. The refined list was recast as a questionnaire which was sent to a substantial portion of the utility industry in this country. Forty-three questionnaire recipients responded including thirty-two utilities. A workshop was held to develop a revised requirements list using the survey responses as a major input. The list prepared by the workshop was further refined by a panel consisting of vice presidents of the three project team firms. The results of the study indicate that in addition to considering the cost of energy for a power plant, utilities consider twenty-three other requirements. Four of the requirements were judged to be vital to plant acceptability: Plant Capital Cost, Financial Liability, Plant Safety and Licensability.

  20. Magnetless magnetic fusion

    SciTech Connect

    Beklemishev, A.D. |; Tajima, T.

    1994-02-01

    The authors propose a concept of thermonuclear fusion reactor in which the plasma pressure is balanced by direct gas-wall interaction in a high-pressure vessel. The energy confinement is achieved by means of the self-contained toroidal magnetic configuration sustained by an external current drive or charged fusion products. This field structure causes the plasma pressure to decrease toward the inside of the discharge and thus it should be magnetohydrodynamically stable. The maximum size, temperature and density profiles of the reactor are estimated. An important feature of confinement physics is the thin layer of cold gas at the wall and the adjacent transitional region of dense arc-like plasma. The burning condition is determined by the balance between these nonmagnetized layers and the current-carrying plasma. They suggest several questions for future investigation, such as the thermal stability of the transition layer and the possibility of an effective heating and current drive behind the dense edge plasma. The main advantage of this scheme is the absence of strong external magnets and, consequently, potentially cheaper design and lower energy consumption.

  1. Inertial confinement fusion

    SciTech Connect

    Powers, L.; Condouris, R.; Kotowski, M.; Murphy, P.W.

    1992-01-01

    This issue of the ICF Quarterly contains seven articles that describe recent progress in Lawrence Livermore National Laboratory's ICF program. The Department of Energy recently initiated an effort to design a 1--2 MJ glass laser, the proposed National Ignition Facility (NIF). These articles span various aspects of a program which is aimed at moving forward toward such a facility by continuing to use the Nova laser to gain understanding of NIF-relevant target physics, by developing concepts for an NIF laser driver, and by envisioning a variety of applications for larger ICF facilities. This report discusses research on the following topics: Stimulated Rotational Raman Scattering in Nitrogen; A Maxwell Equation Solver in LASNEX for the Simulation of Moderately Intense Ultrashort Pulse Experiments; Measurements of Radial Heat-Wave Propagation in Laser-Produced Plasmas; Laser-Seeded Modulation Growth on Directly Driven Foils; Stimulated Raman Scattering in Large-Aperture, High-Fluence Frequency-Conversion Crystals; Fission Product Hazard Reduction Using Inertial Fusion Energy; Use of Inertial Confinement Fusion for Nuclear Weapons Effects Simulations.

  2. Collaborations in fusion research

    SciTech Connect

    Barnes, D.; Davis, S.; Roney, P.

    1995-01-01

    This paper reviews current experimental collaborative efforts in the fusion community and extrapolates to operational scenarios for the Tokamak Physics Experiment (TPX) and the International Thermonuclear Experimental Reactor (ITER). Current requirements, available technologies and tools, and problems, issues and concerns are discussed. This paper specifically focuses on the issues that apply to experimental operational collaborations. Special requirements for other types of collaborations, such as theoretical or design and construction efforts, will not be addressed. Our current collaborative efforts have been highly successful, even though the tools in use will be viewed as primitive by tomorrow`s standards. An overview of the tools and technologies in today`s collaborations can be found in the first section of this paper. The next generation of fusion devices will not be primarily institutionally based, but will be national (TPX) and international (ITER) in funding, management, operation and in ownership of scientific results. The TPX will present the initial challenge of real-time remotely distributed experimental data analysis for a steady state device. The ITER will present new challenges with the possibility of several remote control rooms all participating in the real-time operation of the experimental device. A view to the future of remote collaborations is provided in the second section of this paper.

  3. Clean steels for fusion

    SciTech Connect

    Gelles, D.S.

    1995-03-01

    Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels.

  4. Helium Find Thaws the Cold Fusion Trail.

    ERIC Educational Resources Information Center

    Pennisi, E.

    1991-01-01

    Reported is a study of cold fusion in which trace amounts of helium, possible evidence of an actual fusion reaction, were found. Research methodology is detailed. The controversy over the validity of experimental results with cold fusion are reviewed. (CW)

  5. The status of cold fusion

    NASA Astrophysics Data System (ADS)

    Storms, E.

    This report attempts to update the status of the phenomenon of cold fusion. The new field is continuing to grow as a variety of nuclear reactions are discovered to occur in a variety of chemical environments at modest temperatures. However, it must be cautioned that most scientists consider cold fusion as something akin to UFO's, ESP, and numerology.

  6. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  7. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  8. Fusion Policy Advisory Committee (FPAC)

    SciTech Connect

    Not Available

    1990-09-01

    This document is the final report of the Fusion Policy Advisory Committee. The report conveys the Committee's views on the matters specified by the Secretary in his charge and subsequent letters to the Committee, and also satisfies the provisions of Section 7 of the Magnetic Fusion Energy Engineering Act of 1980, Public Law 96-386, which require a triennial review of the conduct of the national Magnetic Fusion Energy program. Three sub-Committee's were established to address the large number of topics associated with fusion research and development. One considered magnetic fusion energy, a second considered inertial fusion energy, and the third considered issues common to both. For many reasons, the promise of nuclear fusion as a safe, environmentally benign, and affordable source of energy is bright. At the present state of knowledge, however, it is uncertain that this promise will become reality. Only a vigorous, well planned and well executed program of research and development will yield the needed information. The Committee recommends that the US commit to a plan that will resolve this critically important issue. It also outlines the first steps in a development process that will lead to a fusion Demonstration Power Plant by 2025. The recommended program is aggressive, but we believe the goal is reasonable and attainable. International collaboration at a significant level is an important element in the plan.

  9. Radioactive wastes from fusion reactors.

    PubMed

    Parkfr, F L

    1968-01-01

    Calculation of the amount of tritium released from a hypothetical fusion reactor shows that it is 2 x 10(5) the amount released by generation of an equivalent amount of electricity by a fission reactor. Release of the tritium generated by a power economy, if the nuclear power were all fusion, would result in unacceptable worldwide dosages by the year 2000. PMID:17737473

  10. Data fusion qualitative sensitivity analysis

    SciTech Connect

    Clayton, E.A.; Lewis, R.E.

    1995-09-01

    Pacific Northwest Laboratory was tasked with testing, debugging, and refining the Hanford Site data fusion workstation (DFW), with the assistance of Coleman Research Corporation (CRC), before delivering the DFW to the environmental restoration client at the Hanford Site. Data fusion is the mathematical combination (or fusion) of disparate data sets into a single interpretation. The data fusion software used in this study was developed by CRC. The data fusion software developed by CRC was initially demonstrated on a data set collected at the Hanford Site where three types of data were combined. These data were (1) seismic reflection, (2) seismic refraction, and (3) depth to geologic horizons. The fused results included a contour map of the top of a low-permeability horizon. This report discusses the results of a sensitivity analysis of data fusion software to variations in its input parameters. The data fusion software developed by CRC has a large number of input parameters that can be varied by the user and that influence the results of data fusion. Many of these parameters are defined as part of the earth model. The earth model is a series of 3-dimensional polynomials with horizontal spatial coordinates as the independent variables and either subsurface layer depth or values of various properties within these layers (e.g., compression wave velocity, resistivity) as the dependent variables.

  11. Is there hope for fusion

    NASA Astrophysics Data System (ADS)

    Fowler, T. Kenneth

    1990-04-01

    From the outset in the 1950's, fusion research has been motivated by environmental concerns as well as long-term fuel supply issues. Compared to fossil fuels both fusion and fission would produce essentially zero emissions to the atmosphere. Compared to fission, fusion reactors should offer high demonstrability of public protection from accidents and a substantial amelioration of the radioactive waste problem. Fusion still requires lengthy development, the earliest commercial deployment being likely to occur around 2025 to 2050. However, steady scientific progress is being made and there is a wide consensus that it is time to plan large-scale engineering development. A major international effort, called the International Thermonuclear Experimental Reactor (ITER), is being carried out under IAEA auspices to design the world's first fusion engineering test reactor, which could be constructed in the 1990's.

  12. Information integration for data fusion

    SciTech Connect

    Bray, O.H.

    1997-01-01

    Data fusion has been identified by the Department of Defense as a critical technology for the U.S. defense industry. Data fusion requires combining expertise in two areas - sensors and information integration. Although data fusion is a rapidly growing area, there is little synergy and use of common, reusable, and/or tailorable objects and models, especially across different disciplines. The Laboratory-Directed Research and Development project had two purposes: to see if a natural language-based information modeling methodology could be used for data fusion problems, and if so, to determine whether this methodology would help identify commonalities across areas and achieve greater synergy. The project confirmed both of the initial hypotheses: that the natural language-based information modeling methodology could be used effectively in data fusion areas and that commonalities could be found that would allow synergy across various data fusion areas. The project found five common objects that are the basis for all of the data fusion areas examined: targets, behaviors, environments, signatures, and sensors. Many of the objects and the specific facts related to these objects were common across several areas and could easily be reused. In some cases, even the terminology remained the same. In other cases, different areas had their own terminology, but the concepts were the same. This commonality is important with the growing use of multisensor data fusion. Data fusion is much more difficult if each type of sensor uses its own objects and models rather than building on a common set. This report introduces data fusion, discusses how the synergy generated by this LDRD would have benefited an earlier successful project and contains a summary information model from that project, describes a preliminary management information model, and explains how information integration can facilitate cross-treaty synergy for various arms control treaties.

  13. Muon catalyzed fusion

    SciTech Connect

    Breunlich, W.H.; Cargnelli, M.; Marton, J.; Naegele, N.; Pawlek, P.; Scrinzi, A.; Werner, J.; Zmeskal, J.; Bistirlich, J.; Crowe, K.M.

    1986-01-01

    This paper presents an overview of the program and results of our experiment performed by a European-American collatoration at the Swiss Institute of Nuclear Research. Systematic investigations of the low temperature region (23K to 300K) reveal a surprisingly rich physics of mesoatomic and mesomolecular processes, unparalleled in other systems of isotopic hydrogen mixtures. A dramatic density dependence of the reaction rates is found. The rich structure in the time spectra of the fusion neutrons observed at low gas density yields first evidence for new effects, most likely strong contributions from reactions of hot muonic atoms. The important question of muon losses due to He sticking is investigated by different methods and over a wide range of tritium concentrations.

  14. Fusion reactor pumped laser

    DOEpatents

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  15. Fusion Power Demonstration III

    SciTech Connect

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

  16. Fusion pumped laser

    DOEpatents

    Pappas, Daniel S. (Los Alamos, NM)

    1989-01-01

    Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.

  17. Fusion pumped light source

    DOEpatents

    Pappas, Daniel S. (Los Alamos, NM)

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  18. Microwave superheaters for fusion

    SciTech Connect

    Campbell, R.B.; Hoffman, M.A.; Logan, B.G.

    1987-10-16

    The microwave superheater uses the synchrotron radiation from a thermonuclear plasma to heat gas seeded with an alkali metal to temperatures far above the temperature of material walls. It can improve the efficiency of the Compact Fusion Advanced Rankine (CFAR) cycle described elsewhere in these proceedings. For a proof-of-principle experiment using helium, calculations show that a gas superheat ..delta..T of 2000/sup 0/K is possible when the wall temperature is maintained at 1000/sup 0/K. The concept can be scaled to reactor grade systems. Because of the need for synchrotron radiation, the microwave superheater is best suited for use with plasmas burning an advanced fuel such as D-/sup 3/He. 5 refs.

  19. Multiple shell fusion targets

    DOEpatents

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  20. LiWall Fusion - The New Concept of Magnetic Fusion

    SciTech Connect

    L.E. Zakharov

    2011-01-12

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  1. Prospects for bubble fusion

    SciTech Connect

    Nigmatulin, R.I.; Lahey, R.T. Jr.

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  2. Soldier systems sensor fusion

    NASA Astrophysics Data System (ADS)

    Brubaker, Kathryne M.

    1998-08-01

    This paper addresses sensor fusion and its applications in emerging Soldier Systems integration and the unique challenges associated with the human platform. Technology that,provides the highest operational payoff in a lightweight warrior system must not only have enhanced capabilities, but have low power components resulting in order of magnitude reductions coupled with significant cost reductions. These reductions in power and cost will be achieved through partnership with industry and leveraging of commercial state of the art advancements in microelectronics and power sources. As new generation of full solution fire control systems (to include temperature, wind and range sensors) and target acquisition systems will accompany a new generation of individual combat weapons and upgrade existing weapon systems. Advanced lightweight thermal, IR, laser and video senors will be used for surveillance, target acquisition, imaging and combat identification applications. Multifunctional sensors will provide embedded training features in combat configurations allowing the soldier to 'train as he fights' without the traditional cost and weight penalties associated with separate systems. Personal status monitors (detecting pulse, respiration rate, muscle fatigue, core temperature, etc.) will provide commanders and highest echelons instantaneous medical data. Seamless integration of GPS and dead reckoning (compass and pedometer) and/or inertial sensors will aid navigation and increase position accuracy. Improved sensors and processing capability will provide earlier detection of battlefield hazards such as mines, enemy lasers and NBC (nuclear, biological, chemical) agents. Via the digitized network the situational awareness database will automatically be updated with weapon, medical, position and battlefield hazard data. Soldier Systems Sensor Fusion will ultimately establish each individual soldier as an individual sensor on the battlefield.

  3. Analytical performance evaluation for autonomous sensor fusion

    NASA Astrophysics Data System (ADS)

    Chang, K. C.

    2008-04-01

    A distributed data fusion system consists of a network of sensors, each capable of local processing and fusion of sensor data. There has been a great deal of work in developing distributed fusion algorithms applicable to a network centric architecture. Currently there are at least a few approaches including naive fusion, cross-correlation fusion, information graph fusion, maximum a posteriori (MAP) fusion, channel filter fusion, and covariance intersection fusion. However, in general, in a distributed system such as the ad hoc sensor networks, the communication architecture is not fixed. Each node has knowledge of only its local connectivity but not the global network topology. In those cases, the distributed fusion algorithm based on information graph type of approach may not scale due to its requirements to carry long pedigree information for decorrelation. In this paper, we focus on scalable fusion algorithms and conduct analytical performance evaluation to compare their performance. The goal is to understand the performance of those algorithms under different operating conditions. Specifically, we evaluate the performance of channel filter fusion, Chernoff fusion, Shannon Fusion, and Battachayya fusion algorithms. We also compare their results to Nave fusion and "optimal" centralized fusion algorithms under a specific communication pattern.

  4. Poxvirus entry and membrane fusion

    SciTech Connect

    Moss, Bernard . E-mail: bmoss@nih.gov

    2006-01-05

    The study of poxvirus entry and membrane fusion has been invigorated by new biochemical and microscopic findings that lead to the following conclusions: (1) the surface of the mature virion (MV), whether isolated from an infected cell or by disruption of the membrane wrapper of an extracellular virion, is comprised of a single lipid membrane embedded with non-glycosylated viral proteins; (2) the MV membrane fuses with the cell membrane, allowing the core to enter the cytoplasm and initiate gene expression; (3) fusion is mediated by a newly recognized group of viral protein components of the MV membrane, which are conserved in all members of the poxvirus family; (4) the latter MV entry/fusion proteins are required for cell to cell spread necessitating the disruption of the membrane wrapper of extracellular virions prior to fusion; and furthermore (5) the same group of MV entry/fusion proteins are required for virus-induced cell-cell fusion. Future research priorities include delineation of the roles of individual entry/fusion proteins and identification of cell receptors.

  5. Fission-fusion neutron source

    NASA Astrophysics Data System (ADS)

    Yu, Jinnan; Yu, Gang

    2009-04-01

    In order to meet the requirements of fusion power reactors and nuclear waste treatment, a concept of fission-fusion neutron source is proposed, which consists of a LiD assembly located in the heavy water region of the China Advanced Research Reactor. This assembly of LiD fuel rods will be irradiated with slow neutrons and will produce fusion neutrons in the central hole via the reaction 6Li(n, ?). More precisely, tritium ions with a high energy of 2.739 MeV will be produced in LiD by the impinging slow neutrons. The tritium ions will in turn bombard the deuterium ions present in the LiD assembly, which will induce fusion reaction and then the production of 14 MeV neutrons. The fusion reaction rate will increase with the accumulation of tritium in LiD by the reaction between tritium and deuteron recoils produced by the 14 MeV neutrons. When the concentration of tritium reaches 0.5 10 22 and the fraction of fusion reactions between tritium and deuteron recoils approaches 1, the 14 MeV neutron flux is doubled and redoubled, an so forth, approaching saturation in which the tritium produced at a time t is exhausted by the fusion reactions to keep constant the tritium concentration in LiD.

  6. Fusion Simulation Project Workshop Report

    NASA Astrophysics Data System (ADS)

    Kritz, Arnold; Keyes, David

    2009-03-01

    The mission of the Fusion Simulation Project is to develop a predictive capability for the integrated modeling of magnetically confined plasmas. This FSP report adds to the previous activities that defined an approach to integrated modeling in magnetic fusion. These previous activities included a Fusion Energy Sciences Advisory Committee panel that was charged to study integrated simulation in 2002. The report of that panel [Journal of Fusion Energy 20, 135 (2001)] recommended the prompt initiation of a Fusion Simulation Project. In 2003, the Office of Fusion Energy Sciences formed a steering committee that developed a project vision, roadmap, and governance concepts [Journal of Fusion Energy 23, 1 (2004)]. The current FSP planning effort involved 46 physicists, applied mathematicians and computer scientists, from 21 institutions, formed into four panels and a coordinating committee. These panels were constituted to consider: Status of Physics Components, Required Computational and Applied Mathematics Tools, Integration and Management of Code Components, and Project Structure and Management. The ideas, reported here, are the products of these panels, working together over several months and culminating in a 3-day workshop in May 2007.

  7. Future of Inertial Fusion Energy

    SciTech Connect

    Nuckolls, J H; Wood, L L

    2002-09-04

    In the past 50 years, fusion R&D programs have made enormous technical progress. Projected billion-dollar scale research facilities are designed to approach net energy production. In this century, scientific and engineering progress must continue until the economics of fusion power plants improves sufficiently to win large scale private funding in competition with fission and non-nuclear energy systems. This economic advantage must be sustained: trillion dollar investments will be required to build enough fusion power plants to generate ten percent of the world's energy. For Inertial Fusion Energy, multi-billion dollar driver costs must be reduced by up to an order of magnitude, to a small fraction of the total cost of the power plant. Major cost reductions could be achieved via substantial improvements in target performance-both higher gain and reduced ignition energy. Large target performance improvements may be feasible through a combination of design innovations, e.g., ''fast ignition,'' propagation down density gradients, and compression of fusion fuel with a combination of driver and chemical energy. The assumptions that limit projected performance of fusion targets should be carefully examined. The National Ignition Facility will enable development and testing of revolutionary targets designed to make possible economically competitive fusion power plants.

  8. Simulation Science for Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Skoric, M. M.; Sudo, S.

    2008-07-01

    The world fusion effort has recently entered a new age with the construction of ITER in Cadarache, France, which will be the first magnetic confinement fusion plasma experiment dominated by the self-heating of fusion reactions. In order to operate and control burning plasmas and future demo fusion reactors, an advanced ability for comprehensive computer simulations that are fully verified and validated against experimental data will be necessary. The ultimate goal is to develop the capability to predict reliably the behavior of plasmas in toroidal magnetic confinement devices on all relevant time and space scales. In addition to developing a sophisticated integrated simulation codes, directed advanced research in fusion physics, applied mathematics and computer science is envisaged. In this talk we review the basic strategy and main research efforts at the Department of Simulation Science of the National Institute for Fusion Science (NIFS)- which is the Inter University Institute and the coordinating Center of Excellence for academic fusion research in Japan. We overview a simulation research at NIFS, in particular relation to experiments in the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility (see Motojima et al. 2003). Our main goal is understanding and systemizing the rich hierarchy of physical mechanisms in fusion plasmas, supported by exploring a basic science of complexity of plasma as a highly nonlinear, non-equilibrium, open system. The aim is to establish a simulation science as a new interdisciplinary field by fostering collaborative research in utilizing the large-scale supercomputer simulators. A concept of the hierarchy-renormalized simulation modelling will be invoked en route toward the LHD numerical test reactor. Finally, a perspective role is given on the ITER Broad Approach program at Rokkasho Center, as an integrated part of ITER and Development of Fusion Energy Agreement.

  9. Control of mechanically activated polymersome fusion: Factors affecting fusion

    DOE PAGESBeta

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the sizemore » of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.« less

  10. 91039: Magnetic fusion: The DOE fusion energy sciences program

    SciTech Connect

    Rowberg, R.E.

    1997-01-24

    For over 40 years, the U.S. has been trying to harness the energy source of the hydrogen bomb to produce electricity. Controlling fusion, the nuclear reaction that powers the sun, requires confining and heating deuterium and tritium nuclei to the point where they will collide (a D-T reaction) producing nuclear energy in a sustained, regulated way. One path to this goal, called magnetic fusion energy (MFE), is to use very strong magnetic fields to confine a deuterium and tritium plasma while heating it to fusion temperatures. The potential benefits from fusion are enormous. The fuel resources are vast. Radioactive waste would be generated from a D-T reaction, but the long term buildup would be orders of magnitude less than that of a comparable fission reactor.

  11. Control of mechanically activated polymersome fusion: Factors affecting fusion

    SciTech Connect

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the size of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.

  12. The path to fusion power†

    PubMed Central

    Smith, Chris Llewellyn; Cowley, Steve

    2010-01-01

    The promise, status and challenges of developing fusion power are outlined. The key physics and engineering principles are described and recent progress quantified. As the successful demonstration of 16 MW of fusion in 1997 in the Joint European Torus showed, fusion works. The central issue is therefore to make it work reliably and economically on the scale of a power station. We argue that to meet this challenge in 30 years we must follow the aggressive programme known as the ‘Fast Track to Fusion’. This programme is described in some detail. PMID:20123748

  13. Economic analysis of fusion breeders

    SciTech Connect

    Delene, J.G.

    1985-01-01

    This paper presents a study of the economic performance of Fission/Fusion Hybrid devices. This work takes fusion breeder cost estimates and applies methodology and cost factors used in the fission reactor programs to compare fusion breeders with Liquid Metal Fast Breeder Reactors (LMFBR). The results of the analysis indicate that the Hybrid will be in the same competitive range as proposed LMFBRs and have the potential to provide economically competitive power in a future of rising uranium prices. The sensitivity of the results to variations in key parameters is included.

  14. Advanced fusion concepts: project summaries

    SciTech Connect

    1980-12-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

  15. Fusion materials irradiations at MaRIE's fission fusion facility

    SciTech Connect

    Pitcher, Eric J

    2010-10-06

    Los Alamos National Laboratory's proposed signature facility, MaRIE, will provide scientists and engineers with new capabilities for modeling, synthesizing, examining, and testing materials of the future that will enhance the USA's energy security and national security. In the area of fusion power, the development of new structural alloys with better tolerance to the harsh radiation environments expected in fusion reactors will lead to improved safety and lower operating costs. The Fission and Fusion Materials Facility (F{sup 3}), one of three pillars of the proposed MaRIE facility, will offer researchers unprecedented access to a neutron radiation environment so that the effects of radiation damage on materials can be measured in-situ, during irradiation. The calculated radiation damage conditions within the F{sup 3} match, in many respects, that of a fusion reactor first wall, making it well suited for testing fusion materials. Here we report in particular on two important characteristics of the radiation environment with relevancy to radiation damage: the primary knock-on atom spectrum and the impact of the pulse structure of the proton beam on temporal characteristics of the atomic displacement rate. With respect to both of these, analyses show the F{sup 3} has conditions that are consistent with those of a steady-state fusion reactor first wall.

  16. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing

    PubMed Central

    Weirather, Jason L.; Afshar, Pegah Tootoonchi; Clark, Tyson A.; Tseng, Elizabeth; Powers, Linda S.; Underwood, Jason G.; Zabner, Joseph; Korlach, Jonas; Wong, Wing Hung; Au, Kin Fai

    2015-01-01

    We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion genes. PMID:26040699

  17. Enabling Technology in Support of Fusion Science

    NASA Astrophysics Data System (ADS)

    Baker, Charles C.

    1999-03-01

    This paper summarizes remarks made at Fusion Power Associates annual meeting, July 17, 2000 in San Diego. It describes the U.S. Department of Energy Office of Fusion Enegy Sciences programs in plasma and fusion technology in support of the U. S. fusion energy sciences program.

  18. Mulitvariate Visualization with Data Fusion

    SciTech Connect

    Wong, Pak C.; Foote, Harlan P.; Kao, David L.; Leung, Lai R.; Thomas, James J.

    2002-12-31

    We discuss a fusion-based visualization method to analyze a 2D flow field together with its related scalars. The primary difference between a conventional visualization and a fusion-based visuali-zation is that the former draws on a single image whereas the latter draws on multiple see-through layers, which are then over-laid on each other to form the final visualization. We propose uniquely designed colormaps to highlight flow features that would not be shown with conventional colormaps. We present fusion techniques that integrate multiple single-purpose flow visualiza-tion techniques into the same viewing space. Our highly flexible fusion approach allows scientists to explore multiple parameters concurrently by mixing and matching images without frequently reconstructing new visualizations from its data for every possible combination. Sample datasets collected from a climate modeling study are used to demonstrate our approach

  19. Mulitvariate Visualization with Data Fusion

    SciTech Connect

    Wong, Pak C.; Foote, Harlan P.; Kao, David L.; Leung, Lai R.; Thomas, James J.

    2002-12-26

    We discuss a fusion-based visualization method to analyze a 2D flow field together with its related scalars. The primary difference between a conventional visualization and a fusion-based visuali-zation is that the former draws on a single image whereas the latter draws on multiple see-through layers, which are then over-laid on each other to form the final visualization. We propose uniquely designed colormaps to highlight flow features that would not be shown with conventional colormaps. We present fusion techniques that integrate multiple single-purpose flow visualiza-tion techniques into the same viewing space. Our highly flexible fusion approach allows scientists to explore multiple parameters concurrently by mixing and matching images without frequently reconstructing new visualizations from its data for every possible combination. Sample datasets collected from a climate modeling study are used to demonstrate our approach

  20. Fusion of the ear bones

    MedlinePLUS

    Fusion of the ear bones is the joining of the bones of the inner ear. These are the incus, malleus, and stapes bones. Related topics include: Chronic ear infection Otosclerosis Middle ear malformations

  1. Osmotic control of bilayer fusion.

    PubMed Central

    Fisher, L R; Parker, N S

    1984-01-01

    We have used photography and capacitance measurement to monitor the steps in the interaction and eventual fusion of optically black lipid bilayers (BLMs), hydrostatically bulged to approximately hemispherical shape and pushed together mechanically. A necessary first step is drainage of aqueous solution from between the bilayers to allow close contact of the bilayers. The drainage can be controlled by varying the osmotic difference across the bilayers. If the differences are such as to remove water from between the bilayers, fusion occurs after a time that depends on the net osmotic difference and the area of contact. If there is an osmotic flow of water into the space between the bilayers, fusion never occurs. In the fusion process, a single central bilayer forms from the original apposed pair of bilayers. The central bilayer may later burst to allow mixing of the two volumes originally bounded by the separate bilayer; the topological equivalent of exocytosis. Images FIGURE 2 PMID:6541065

  2. Overview of fusion reactor safety

    SciTech Connect

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Use of deuterium-tritium burning fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control, (2) neutron activation of structural materials, fluid streams and reactor hall environment, (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions, (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices, and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power.

  3. Pulsed Power Driven Fusion Energy

    SciTech Connect

    SLUTZ,STEPHEN A.

    1999-11-22

    Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

  4. Overview of fusion reactor safety

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Crocker, J. G.

    Use of deuterium-tritium fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control; (2) neutron activation of structural materials, fluid streams and reactor hall environment; (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions; (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices; and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power.

  5. Polarization: A Must for Fusion

    NASA Astrophysics Data System (ADS)

    Didelez, J. P.; Deutsch, C.; Guidal, M.

    2012-10-01

    Recent realistic simulations confirm that the polarization of the fuel would improve significantly the DT fusion efficiency. We have proposed an experiment to test the persistence of the polarization in a fusion process, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the neutrons and the change in the corresponding total cross section are related to the polarization persistence. The experimental polarization of DT fuel is a technological challenge. Possible paths for Magnetic Confinement Fusion (MCF) and for Inertial Confinement Fusion (ICF) are reviewed. For MCF, polarized gas can be used. For ICF, cryogenic targets are required. We consider both, the polarization of gas and the polarization of solid DT, emphasizing the Dynamic Nuclear polarization (DNP) of HD and DT molecules.

  6. Fusion power and the environment.

    PubMed

    Flakus, F N

    1975-09-01

    Fusion reactor design concepts are being pursued in the research and development programme of various countries and studies are being undertaken on the possible environmental impact of fusion power reactors. The paper reviews and summarizes the results of such environmental impact studies. Attention is restricted to deuterium-tritium fusion reactor concepts and a preliminary environmental impact assessment is presented. The possible inventory tritium and radioactive materials in the neutron-activated blanket structure of fusion power reactors is described and potential hazards posed by this radioactive materials inventory are discussed. Non-radiological implications and accident considerations are outlined. In conclusion, various areas still awaiting further investigation and research work are identified. The paper contains 8 tables and 50 references. PMID:1212270

  7. Laser fusion monthly -- August 1980

    SciTech Connect

    Ahlstrom, H.G.

    1980-08-01

    This report documents the monthly progress for the laser fusion research at Lawrence Livermore National Laboratory. First it gives facilities report for both the Shiva and Argus projects. Topics discussed include; laser system for the Nova Project; the fusion experiments analysis facility; optical/x-ray streak camera; Shiva Dante System temporal response; 2{omega}{sub 0} experiment; and planning for an ICF engineering test facility.

  8. Magnetic fusion 1985: what next

    SciTech Connect

    Fowler, T.K.

    1985-03-01

    Recent budget reductions for magnetic fusion have led to a re-examination of program schedules and objectives. Faced with delays and postponement of major facilities as previously planned, some have called for a near-term focus on science, others have stressed technology. This talk will suggest a different focus as the keynote for this conference, namely, the applications of fusion. There is no doubt that plasma science is by now mature and fusion technology is at the forefront. This has and will continue to benefit many fields of endeavor, both in actual new discoveries and techniques and in attracting and training scientists and engineers who move on to make significant contributions in science, defense and industry. Nonetheless, however superb the science or how challenging the technology, these are means, not ends. To maintain its support, the magnetic fusion program must also offer the promise of power reactors that could be competitive in the future. At this conference, several new reactor designs will be described that claim to be smaller and economically competitive with fission reactors while retaining the environmental and safety characteristics that are the hallmark of fusion. The American Nuclear Society is an appropriate forum in which to examine these new designs critically, and to stimulate better ideas and improvements. As a preview, this talk will include brief discussions of new tokamak, tandem mirror and reversed field pinch reactor designs to be presented in later sessions. Finally, as a preview of the session on fusion breeders, the talk will explore once again the economic implications of a new nuclear age, beginning with improved fission reactors fueled by fusion breeders, then ultimately evolving to reactors based solely on fusion.

  9. Mirror fusion test facility status

    NASA Astrophysics Data System (ADS)

    Fowler, T. K.; Thomassen, K. I.

    1981-11-01

    A review of the mirror fusion test facility (MFTF) physics and project status is given. The tandem mirror concept is the leading alternative to the Tokamak magnetic fusion program. Mirror reactors have two advantages: steady state rather than pulsed operation, and a simpler shape, a straight tube as compared with the doughnut shape of the Tokamak. Progress is made in identifying promising configurational improvements and in assessing their impact on the MFTF-B design.

  10. Simulation science for fusion plasmas

    NASA Astrophysics Data System (ADS)

    Sudo, S.; kori?, M. M.; Watanabe, T.-H.; Todo, Y.; Ishizawa, A.; Miura, H.; Ishizaki, R.; Ito, A.; Ohtani, H.; Usami, S.; Nakamura, H.; Ito, Atsushi; Ishiguro, S.; Tomita, Y.; Takayama, A.; Sato, M.; Yamamoto, T.; Den, M.; Sakagami, H.; Horiuchi, R.; Okamura, S.; Nakajima, N.

    2008-10-01

    The world fusion effort has embarked into a new age with the construction of ITER in Cadarache, France, which will be the first magnetic confinement fusion plasma experiment dominated by the self-heating of fusion reactions. In order to operate and control burning plasmas and next generation demo fusion reactors, an advanced capability for comprehensive integrated computer simulations that are fully verified and validated against experimental data will be necessary. The ultimate goal is to predict reliably the behaviour of plasmas in toroidal magnetic confinement devices on all relevant scales, both in time and space. In addition to developing a sophisticated integrated simulation codes, directed advanced research in fusion physics, applied mathematics, computer science and software is envisaged. In this paper we review the basic strategy and main research efforts at the Department of Simulation Science of the National Institute for Fusion Science (NIFS)- which is the Inter University Institute and the coordinating Center of Excellence for academic fusion research in Japan. We overview a simulation research at NIFS, in particular relation to experiments in the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility (see Motojima et al. [1]). Our main goal is understanding and systemizing the rich hierarchy of physical mechanisms in fusion plasmas, supported by exploring a basic science of complexity of plasma as a highly nonlinear, non-equilibrium, open system. The aim is to establish a simulation science as a new interdisciplinary field by fostering collaborative research in utilizing the large-scale supercomputer simulators. A concept of the hierarchy-renormalized simulation modelling will be invoked en route toward the LHD numerical test reactor.

  11. Magnetic mirror fusion power systems

    NASA Astrophysics Data System (ADS)

    Gordon, J. D.; Logan, B. G.

    1983-09-01

    The magnetic mirror plasma confinement concept has characteristics conducive to attractive central station power plants; namely linear geometry, high fusion power density, steady state, and direct conversion of plasma energy to electricity. Recent advances in mirror physics-tandem mirror plugs with thermal barriers, enhanced microstability from sloshing ions, drift pumping have improved performance to the point where technically viable commercial reactors can be designed now and economic power production is envisioned by evolution and maturation of fusion technology.

  12. Migration of a broken scalpel into the heart after spine surgery.

    PubMed

    De Praetere, Herbert; Vanden Eycken, Caroline; Meuris, Bart; Herijgers, Paul

    2014-04-01

    Iatrogenic vascular problems during posterior lumbar interbody fusion are a rare entity. Migration of a broken scalpel towards the heart has, to our knowledge, never been reported. We present the successful surgical retrieval of a broken scalpel from the heart after posterior lumbar interbody fusion without the use of a cardiopulmonary bypass. PMID:24435837

  13. Prospects for Tokamak Fusion Reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  14. Tritium accountancy in fusion systems

    SciTech Connect

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S.; Moore, M.L.

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  15. TRITIUM ACCOUNTANCY IN FUSION SYSTEMS

    SciTech Connect

    Klein, J. E.; Farmer, D. A.; Moore, M. L.; Tovo, L. L.; Poore, A. S.; Clark, E. A.; Harvel, C. D.

    2014-03-06

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MC&A) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MC&A requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBAs) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material subaccounts (MSAs) are established along with key measurement points (KMPs) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSAs. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breading, burn-up, and retention of tritium in the fusion device. The concept of “net” tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines.

  16. Successful anterior fusion following posterior cervical fusion for revision of anterior cervical discectomy and fusion pseudarthrosis.

    PubMed

    Elder, Benjamin D; Sankey, Eric W; Theodros, Debebe; Bydon, Mohamad; Rory Goodwin, C; Lo, Sheng-Fu; Kosztowski, Thomas A; Belzberg, Allen J; Wolinsky, Jean-Paul; Sciubba, Daniel M; Gokaslan, Ziya L; Bydon, Ali; Witham, Timothy F

    2016-02-01

    Pseudarthrosis occurs after approximately 2-20% of anterior cervical discectomy and fusion (ACDF) procedures; it is unclear if posterior or anterior revision should be pursued. In this study, we retrospectively evaluate the outcomes in 22 patients with pseudarthrosis following ACDF and revision via posterior cervical fusion (PCF). Baseline demographics, preoperative symptoms, operative data, time to fusion failure, symptoms of pseudarthrosis, and revision method were assessed. Fusion outcome and clinical outcome were determined at last follow-up (LFU). Thirteen females (59%) and 9 (41%) males experienced pseudarthrosis at a median of 11 (range: 3-151)months after ACDF. Median age at index surgery was 51 (range: 33-67)years. All patients with pseudarthrosis presented with progressive neck pain, with median visual analog scale (VAS) score of 8 (range: 0-10), and/or myeloradiculopathy. Patients with pseudarthrosis <12months compared to >12months after index surgery were older (p=0.013), had more frequent preoperative neurological deficits (p=0.064), and lower baseline VAS scores (p=0.006). Fusion was successful after PCF in all patients, with median time to fusion of 10 (range: 2-14)months. Eighteen patients fused both anteriorly and posteriorly, two patients fused anteriorly only, and two patients fused posteriorly only. Median VAS neck score at LFU significantly improved from the time of pseudarthrosis (p=0.012). While uncommon, pseudarthrosis may occur after ACDF. All patients achieved successful fusion after subsequent posterior cervical fusion, with 91% fusing a previous anterior pseudarthrosis after posterior stabilization. Neck pain significantly improved by LFU in the majority of patients in this study. PMID:26482460

  17. Interkingdom gene fusions

    PubMed Central

    Wolf, Yuri I; Kondrashov, Alexey S; Koonin, Eugene V

    2000-01-01

    Background: Genome comparisons have revealed major lateral gene transfer between the three primary kingdoms of life - Bacteria, Archaea, and Eukarya. Another important evolutionary phenomenon involves the evolutionary mobility of protein domains that form versatile multidomain architectures. We were interested in investigating the possibility of a combination of these phenomena, with an invading gene merging with a pre-existing gene in the recipient genome. Results: Complete genomes of fifteen bacteria, four archaea and one eukaryote were searched for interkingdom gene fusions (IKFs); that is, genes coding for proteins that apparently consist of domains originating from different primary kingdoms. Phylogenetic analysis supported 37 cases of IKF, each of which includes a 'native' domain and a horizontally acquired 'alien' domain. IKFs could have evolved via lateral transfer of a gene coding for the alien domain (or a larger protein containing this domain) followed by recombination with a native gene. For several IKFs, this scenario is supported by the presence of a gene coding for a second, stand-alone version of the alien domain in the recipient genome. Among the genomes investigated, the greatest number of IKFs has been detected in Mycobacterium tuberculosis, where they are almost always accompanied by a stand-alone alien domain. For most of the IKF cases detected in other genomes, the stand-alone counterpart is missing. Conclusions: The results of comparative genome analysis show that IKF formation is a real, but relatively rare, evolutionary phenomenon. We hypothesize that IKFs are formed primarily via the proposed two-stage mechanism, but other than in the Actinomycetes, in which IKF generation seems to be an active, ongoing process, most of the stand-alone intermediates have been eliminated, perhaps because of functional redundancy. PMID:11178267

  18. SKIDS data fusion project

    NASA Astrophysics Data System (ADS)

    Greenway, Phil

    1992-04-01

    The European Community's strategic research initiative in information technology (ESPRIT) has been in place for nearly five years. An early example of the pan-European collaborative projects being conducted under this initiative is 'SKIDS': Signal and Knowledge Integration with Decisional Control for Multisensory Systems. This four year project, which is approaching completion, aims to build a real-time multisensor perception machine. This machine will be capable of performing data fusion, interpretation, situation assessment, and resource allocation tasks, under the constraints of both time and resource availability, and in the presence of uncertain data. Of the many possible applications, the surveillance and monitoring of a semi-automated 'factory environment' has been chosen as a challenging and representative test scenario. This paper presents an overview of the goals and objectives of the project, the makeup of the consortium, and roles of the members within it, and the main technical achievements to data. In particular, the following are discussed: relevant application domains, and the generic requirements that can be inferred from them; sensor configuration, including choice, placement, etc.; control paradigms, including the possible trade-offs between centralized, hierarchical, and decentralized approaches; the corresponding hardware architectural choices, including the need for parallel processing; and the appropriate software architecture and infra-structure required to support the chosen task oriented approach. Specific attention is paid to the functional decomposition of the system and how the requirements for control impact the organization of the identified interpretation tasks. Future work and outstanding problems are considered in some concluding remarks. By virtue of limited space, this paper is descriptive rather than explanatory.

  19. Fusion Plasma Theory project summaries

    SciTech Connect

    Not Available

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  20. Kinetic advantage of controlled intermediate nuclear fusion

    SciTech Connect

    Guo Xiaoming

    2012-09-26

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  1. Kinetic advantage of controlled intermediate nuclear fusion

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoming

    2012-09-01

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  2. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m‑2s‑1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge with the International Fusion Materials Irradiation Facility (IFMIF) under discussion at the time. Worldwide technological efforts are maturing soundly and the time for a fusion-relevant neutron source has arrived according to world fusion roadmaps; if decisions are taken we could count the next decade with a powerful source of 14 MeV neutrons thanks to the expected significant results of the Engineering Validation and Engineering Design Activity (EVEDA) phase of the IFMIF project. The accelerator know-how has matured in all possible aspects since the times of FMIT conception in the 1970s; today, operating 125 mA deuteron beam at 40 MeV in CW with high availabilities seems feasible thanks to the understanding of the beam halo physics and the three main technological breakthroughs in accelerator technology: (1) the ECR ion source for light ions developed at Chalk River Laboratories in the early 1990s, (2) the RFQ operation of H+ in CW with 100 mA demonstrated by LEDA in LANL in the late 1990s, and (3) the growing maturity of superconducting resonators for light hadrons and low β beams achieved in recent years.

  3. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge with the International Fusion Materials Irradiation Facility (IFMIF) under discussion at the time. Worldwide technological efforts are maturing soundly and the time for a fusion-relevant neutron source has arrived according to world fusion roadmaps; if decisions are taken we could count the next decade with a powerful source of 14 MeV neutrons thanks to the expected significant results of the Engineering Validation and Engineering Design Activity (EVEDA) phase of the IFMIF project. The accelerator know-how has matured in all possible aspects since the times of FMIT conception in the 1970s; today, operating 125 mA deuteron beam at 40 MeV in CW with high availabilities seems feasible thanks to the understanding of the beam halo physics and the three main technological breakthroughs in accelerator technology: (1) the ECR ion source for light ions developed at Chalk River Laboratories in the early 1990s, (2) the RFQ operation of H+ in CW with 100 mA demonstrated by LEDA in LANL in the late 1990s, and (3) the growing maturity of superconducting resonators for light hadrons and low β beams achieved in recent years.

  4. A Model for Membrane Fusion

    NASA Astrophysics Data System (ADS)

    Ngatchou, Annita

    2010-01-01

    Pheochromocytoma is a tumor of the adrenal gland which originates from chromaffin cells and is characterized by the secretion of excessive amounts of neurotransmitter which lead to high blood pressure and palpitations. Pheochromocytoma contain membrane bound granules that store neurotransmitter. The release of these stored molecules into the extracellular space occurs by fusion of the granule membrane with the cell plasma membrane, a process called exocytosis. The molecular mechanism of this membrane fusion is not well understood. It is proposed that the so called SNARE proteins [1] are the pillar of vesicle fusion as their cleavage by clostridial toxin notably, Botulinum neurotoxin and Tetanus toxin abrogate the secretion of neurotransmitter [2]. Here, I describe how physical principles are applied to a biological cell to explore the role of the vesicle SNARE protein synaptobrevin-2 in easing granule fusion. The data presented here suggest a paradigm according to which the movement of the C-terminal of synaptobrevin-2 disrupts the lipid bilayer to form a fusion pore through which molecules can exit.

  5. Fusion neutronics experiments and analysis

    SciTech Connect

    Not Available

    1992-01-01

    UCLA has led the neutronics R D effort in the US for the past several years through the well-established USDOE/JAERI Collaborative Program on Fusion Neutronics. Significant contributions have been made in providing solid bases for advancing the neutronics testing capabilities in fusion reactors. This resulted from the hands-on experience gained from conducting several fusion integral experiments to quantify the prediction uncertainties of key blanket design parameters such as tritium production rate, activation, and nuclear heating, and when possible, to narrow the gap between calculational results and measurements through improving nuclear data base and codes capabilities. The current focus is to conduct the experiments in an annular configuration where the test assembly totally surrounds a simulated line source. The simulated line source is the first-of-a-kind in the scope of fusion integral experiments and presents a significant contribution to the world of fusion neutronics. The experiments proceeded through Phase IIIA to Phase IIIC in these line source simulation experiments started in 1989.

  6. Fusion under a complex barrier

    NASA Astrophysics Data System (ADS)

    Sahu, Basudeb; Jamir, I.; Lyngdoh, E. F. P.; Shastry, C. S.

    1998-04-01

    The mechanism of fusion of two heavy nuclei is formulated within the concept of transmission across a mildly absorptive effective fusion barrier (EFB). The intensity of transmitted waves across such a barrier could be represented by the product TRPS where TR stands for the transmission coefficient across the corresponding real barrier and PS is a factor of survival probability against absorption under the complex barrier. The justification of this result and the physical basis of the above EFB transmission model of fusion, which is complementary to the definition of fusion based on absorption in the interior region known as the direct reaction model (DRM), are demonstrated in the case of a complex square well potential with a complex rectangular barrier. Based on a WKB approach, expressions for TR for different partial waves utilizing a realistic nucleus-nucleus potential are derived. Using the resulting expressions for the fusion cross section (?F), the experimental values of ?F and the corresponding data of the average angular momentum of the fused body are explained satisfactorily over a wide range of energy around the Coulomb barrier in various heavy ion systems such as 16O+152,154Sm, 58,64Ni+58,64Ni, 64Ni+92Zr, and 64Ni+100Mo.

  7. Hot fusion or cold fusion, best route to the SHEs?

    NASA Astrophysics Data System (ADS)

    Loveland, Walter

    2010-02-01

    Elements 102-113 have been synthesized using cold fusion reactions (Pb or Bi target nuclei, massive projectiles., E*=13 MeV, high survival probabilities,significant fusion hindrance). The production cross sections decrease with increasing ZCN with a cross section of 27 fb being measured for element 113. Synthesis of elements 102-108 by hot fusion reactions (actinide target nuclei, intermediate mass projectiles, E*=30-50 MeV, low survival probability, small fusion hindrance) shows decreasing production cross sections for Z=102 to Z=108 and then the cross sections level out at a few pb out to Z=118. Upper limit cross sections for the production of Z=120 nuclei in hot fusion reactions are ˜ 0.1 pb. How should one go forward to make nuclei with Z > 120 or with large neutron numbers, N ˜ 184? The cross section for the production of an evaporation residue, σEVR, is σEVR=σCNWsur where σCN is the complete fusion cross section and Wsur is the survival probability of the completely fused system. The complete fusion cross section can be written as σCN=∑J=0^J σcapture (Ec.m.,J)PCN( Ec.m.,J) where σcapture(Ec.m.,J) is the capture cross section and PCN is the probability that the projectile-target system will evolve inside the fission saddle point to form a completely fused system rather than reseparating (quasifission). I have used this formalism to make estimates of the best reactions to make new heavy nuclei using stable and radioactive beams. I conclude that stable beams offer the best opportunities to make new chemical elements and that radioactive beams offer new opportunities to make nuclei to study the atomic physics and chemistry of the heaviest elements. The radioactive beam reactions involve the light neutron-rich projectiles interacting in hot fusion reactions. If time permits I will also discuss recent experiments to make heavy nuclei using multi-nucleon transfer reactions. )

  8. Nuclear Fusion prize laudation Nuclear Fusion prize laudation

    NASA Astrophysics Data System (ADS)

    Burkart, W.

    2011-01-01

    Clean energy in abundance will be of critical importance to the pursuit of world peace and development. As part of the IAEA's activities to facilitate the dissemination of fusion related science and technology, the journal Nuclear Fusion is intended to contribute to the realization of such energy from fusion. In 2010, we celebrated the 50th anniversary of the IAEA journal. The excellence of research published in the journal is attested to by its high citation index. The IAEA recognizes excellence by means of an annual prize awarded to the authors of papers judged to have made the greatest impact. On the occasion of the 2010 IAEA Fusion Energy Conference in Daejeon, Republic of Korea at the welcome dinner hosted by the city of Daejeon, we celebrated the achievements of the 2009 and 2010 Nuclear Fusion prize winners. Steve Sabbagh, from the Department of Applied Physics and Applied Mathematics, Columbia University, New York is the winner of the 2009 award for his paper: 'Resistive wall stabilized operation in rotating high beta NSTX plasmas' [1]. This is a landmark paper which reports record parameters of beta in a large spherical torus plasma and presents a thorough investigation of the physics of resistive wall mode (RWM) instability. The paper makes a significant contribution to the critical topic of RWM stabilization. John Rice, from the Plasma Science and Fusion Center, MIT, Cambridge is the winner of the 2010 award for his paper: 'Inter-machine comparison of intrinsic toroidal rotation in tokamaks' [2]. The 2010 award is for a seminal paper that analyzes results across a range of machines in order to develop a universal scaling that can be used to predict intrinsic rotation. This paper has already triggered a wealth of experimental and theoretical work. I congratulate both authors and their colleagues on these exceptional papers. W. Burkart Deputy Director General Department of Nuclear Sciences and Applications International Atomic Energy Agency, Vienna, Austria References [1] Sabbagh S. et al 2006 Nucl. Fusion 46 635-44 [2] Rice J.E. et al 2007 Nucl. Fusion 47 1618-24

  9. Fusion of Plant Protoplasts by Electric Fields

    PubMed Central

    Bates, George W.; Gaynor, John J.; Shekhawat, Narpat S.

    1983-01-01

    The electrical fusion technique of Zimmermann and Scheurich (1981 Planta 151: 26-32) has been used to fuse mesophyll protoplasts of Avena, Zea, Vigna, Petunia, and Amaranthus. Electrical fusion proves to be a simple, effective, and general fusion technique that can be controlled to form either dikaryons or large multinucleate fusion bodies. In addition, we show that Vigna mesophyll protoplasts that are subjected to the electrical fields used in this technique are viable in culture. The construction of the fusion chambers, necessary electrical equipment, and the fusion protocol are described in sufficient detail for reproduction of the technique. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:16663128

  10. The Path to Magnetic Fusion Energy

    SciTech Connect

    Prager, Stewart

    2011-05-04

    When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

  11. [Fusion tags technology and their applications].

    PubMed

    Li, Yong-Jin; Chen, Yuan-Yuan; Bi, Li-Jun

    2006-07-01

    Fusion tags are originally developed to facilitate the purification of recombinant protein from crude extracts. In recent years, the discovery of different tags and the development of fusion strategy make the function of fusion tags diversified. However, there was no a cure-all fusion tag for different applications. We here give an overview of fusion tag technology and the different applications of fusion tags, including the purification, detection and oriented immobilization of recombinant protein, the visualization of bioevent in vivo, the enhancement of the yield of protein, the improvement of the solubility and stability of the expressed protein. PMID:16894881

  12. Tissue fusion over nonadhering surfaces

    PubMed Central

    Nier, Vincent; Deforet, Maxime; Duclos, Guillaume; Yevick, Hannah G.; Cochet-Escartin, Olivier; Marcq, Philippe; Silberzan, Pascal

    2015-01-01

    Tissue fusion eliminates physical voids in a tissue to form a continuous structure and is central to many processes in development and repair. Fusion events in vivo, particularly in embryonic development, often involve the purse-string contraction of a pluricellular actomyosin cable at the free edge. However, in vitro, adhesion of the cells to their substrate favors a closure mechanism mediated by lamellipodial protrusions, which has prevented a systematic study of the purse-string mechanism. Here, we show that monolayers can cover well-controlled mesoscopic nonadherent areas much larger than a cell size by purse-string closure and that active epithelial fluctuations are required for this process. We have formulated a simple stochastic model that includes purse-string contractility, tissue fluctuations, and effective friction to qualitatively and quantitatively account for the dynamics of closure. Our data suggest that, in vivo, tissue fusion adapts to the local environment by coordinating lamellipodial protrusions and purse-string contractions. PMID:26199417

  13. Fusion power for space propulsion.

    NASA Technical Reports Server (NTRS)

    Roth, R.; Rayle, W.; Reinmann, J.

    1972-01-01

    Principles of operation, interplanetary orbit-to-orbit mission capabilities, technical problems, and environmental safeguards are examined for thermonuclear fusion propulsion systems. Two systems examined include (1) a fusion-electric concept in which kinetic energy of charged particles from the plasma is converted into electric power (for accelerating the propellant in an electrostatic thrustor) by the van de Graaf generator principle and (2) the direct fusion rocket in which energetic plasma lost from the reactor has a suitable amount of added propellant to obtain the optimum exhaust velocity. The deuterium-tritium and the deuterium/helium-3 reactions are considered as suitable candidates, and attention is given to problems of cryogenic refrigeration systems, magnet shielding, and high-energy particle extraction and guidance.

  14. (Meeting on fusion reactor materials)

    SciTech Connect

    Jones, R.H. ); Klueh, R.L.; Rowcliffe, A.F.; Wiffen, F.W. ); Loomis, B.A. )

    1990-11-01

    During his visit to the KfK, Karlsruhe, F. W. Wiffen attended the IEA 12th Working Group Meeting on Fusion Reactor Materials. Plans were made for a low-activation materials workshop at Culham, UK, for April 1991, a data base workshop in Europe for June 1991, and a molecular dynamics workshop in the United States in 1991. At the 11th IEA Executive Committee on Fusion Materials, discussions centered on the recent FPAC and Colombo panel review in the United States and EC, respectively. The Committee also reviewed recent progress toward a neutron source in the United States (CWDD) and in Japan (ESNIT). A meeting with D. R. Harries (consultant to J. Darvas) yielded a useful overview of the EC technology program for fusion. Of particular interest to the US program is a strong effort on a conventional ferritic/martensitic steel for fist wall/blanket operation beyond NET/ITER.

  15. Fusion Blanket Development in FDF

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.; Smith, J. P.; Stambaugh, R. D.

    2008-11-01

    To satisfy the electricity and tritium self-sufficiency missions of a Fusion Development Facility (FDF), suitable blanket designs will need to be evaluated, selected and developed. To demonstrate closure of the fusion fuel cycle, 2-3 main tritium breeding blankets will be used to cover most of the available chamber surface area in order to reach the project goal of achieving a tritium breeding ratio, TBR > 1. To demonstrate the feasibility of electricity and tritium production for subsequent devices such as the fusion demonstration power reactor (DEMO), several advanced test blankets will need to be selected and tested on the FDF to demonstrate high coolant outlet temperature necessary for efficient electricity production. Since the design goals for the main and test blankets are different, the design criteria of these blankets will also be different. The considerations in performing the evaluation of blanket and structural material options in concert with the maintenance approach for the FDF will be reported in this paper.

  16. PCA-based image fusion

    NASA Astrophysics Data System (ADS)

    Kumar, S. Senthil; Muttan, S.

    2006-05-01

    IMAGE FUSION is 'the combination of two or more different images to form a fused image by using a fusion algorithm'. In this paper, an algorithm is designed in which extracts the pixels from the stacked images. Principal component analysis is carried out which aims at reducing a large set of variables to a small set that still containing most of the information that was available in the large set. The technique of principal component analysis enables us to create and use a reduced set of variables, which are called principal factors. A reduced set is much easier to analyze and interpret. In this paper, fusion of images obtained from a visible camera and that from an infrared camera is been done.

  17. Laser fusion experiments at LLL

    SciTech Connect

    Ahlstrom, H.G.

    1980-06-16

    These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

  18. Cell fusion in Neurospora crassa.

    PubMed

    Herzog, Stephanie; Schumann, Marcel R; Fleiner, Andr

    2015-12-01

    In recent years, the filamentous fungus Neurospora crassa has advanced as a model organism for studying eukaryotic cell-cell communication and fusion. Cell merger in this fungus employs an unusual mode of communication, in which the fusion partners appear to switch between signal sending and receiving. Many molecular factors mediating this intriguing mechanism and the subsequent membrane merger have been identified. It has become apparent that conserved factors, such as MAP kinases, NADPH oxidases and the STRIPAK complex, together with fungal specific proteins are wired into an intricate signaling network. Here, we will present an overview of recent findings on the molecular mechanism mediating fusion in N.crassa and will discuss the current working model. PMID:26340439

  19. Superconducting magnets for fusion applications

    SciTech Connect

    Henning, C.D.

    1987-07-02

    Fusion magnet technology has made spectacular advances in the past decade; to wit, the Mirror Fusion Test Facility and the Large Coil Project. However, further advances are still required for advanced economical fusion reactors. Higher fields to 14 T and radiation-hardened superconductors and insulators will be necessary. Coupled with high rates of nuclear heating and pulsed losses, the next-generation magnets will need still higher current density, better stability and quench protection. Cable-in-conduit conductors coupled with polyimide insulations and better steels seem to be the appropriate path. Neutron fluences up to 10/sup 19/ neutrons/cm/sup 2/ in niobium tin are achievable. In the future, other amorphous superconductors could raise these limits further to extend reactor life or decrease the neutron shielding and corresponding reactor size.

  20. Fusion power from lunar resources

    SciTech Connect

    Kulcinski, G.L. . Fusion Technology Inst.); Schmitt, H.H.

    1992-07-01

    This paper reports that the moon contains an enormous energy source in {sup 3}He deposited by the solar wind. Fusion of only 100 kg of {sup 3}He with deuterium in thermonuclear fusion power plants can produce {gt} 1000 MW (electric) of electrical energy, and the lunar resource base is estimated at 1 {times} 10{sup 9} kg of {sup 3}He. This fuel can supply {gt}1000 yr of terrestrial electrical energy demand. The methods for extracting this fuel and the other solar wind volatiles are described. Alternate uses of D-{sup 3}He fusion in direct thrust rockets will enable more ambitious deep-space missions to be conducted. The capability of extracting hydrogen, water, nitrogen, and other carbon-containing molecules will open up the moon to a much greater level of human settlement than previously thought.

  1. Z-Pinch Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Miernik, Janie

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Shorter trips are better for humans in the harmful radiation environment of deep space. Nuclear propulsion and power plants can enable high Ispand payload mass fractions because they require less fuel mass. Fusion energy research has characterized the Z-Pinch dense plasma focus method. (1) Lightning is form of pinched plasma electrical discharge phenomena. (2) Wire array Z-Pinch experiments are commonly studied and nuclear power plant configurations have been proposed. (3) Used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, nuclear weapon x-rays are simulated through Z-Pinch phenomena.

  2. Fusion bonding and alignment fixture

    DOEpatents

    Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  3. Method for vacuum fusion bonding

    DOEpatents

    Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

    2001-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  4. Mitochondrial Fission, Fusion, and Stress

    PubMed Central

    Youle, Richard J.; van der Bliek, Alexander M.

    2016-01-01

    Mitochondrial fission and fusion play critical roles in maintaining functional mitochondria when cells experience metabolic or environmental stresses. Fusion helps mitigate stress by mixing the contents of partially damaged mitochondria as a form of complementation. Fission is needed to create new mitochondria, but it also contributes to quality control by enabling the removal of damaged mitochondria and can facilitate apoptosis during high levels of cellular stress. Disruptions in these processes affect normal development, and they have been implicated in neurodegenerative diseases, such as Parkinsons. PMID:22936770

  5. Structural materials for fusion reactors

    NASA Astrophysics Data System (ADS)

    Victoria, M.; Baluc, N.; Sptig, P.

    2001-08-01

    In order to preserve the conditions for an environmentally safe machine, at present the selection of materials for the structural components of fusion reactors is made not only on the basis of adequate mechanical properties, behaviour under irradiation, and compatibility with other materials and cooling media, but also on their radiological properties, i.e. radioactivity, decay heat and radiotoxicity. These conditions strongly limit the number of suitable materials to a few families of alloys, generically known as low activation materials. The criteria for making decisions about such materials, the alloys resulting from the application of these ideas and the main issues and problems with their use in a fusion environment are discussed.

  6. Electromagnetic computations for fusion devices

    SciTech Connect

    Turner, L.R.

    1989-09-01

    Among the difficulties in making nuclear fusion a useful energy source, two important ones are producing the magnetic fields needed to drive and confine the plasma, and controlling the eddy currents induced in electrically conducting components by changing fields. All over the world, researchers are developing electromagnetic codes and employing them to compute electromagnetic effects. Ferromagnetic components of a fusion reactor introduce field distortions. Eddy currents are induced in the vacuum vessel, blanket and other torus components of a tokamak when the plasma current disrupts. These eddy currents lead to large forces, and 3-D codes are being developed to study the currents and forces. 35 refs., 6 figs.

  7. Robust fusion of uncertain information.

    PubMed

    Chen, Haifeng; Meer, Peter

    2005-06-01

    A technique is presented to combine n data points, each available with point-dependent uncertainty, when only a subset of these points come from N < n sources, where N is unknown. We detect the significant modes of the underlying multivariate probability distribution using a generalization of the nonparametric mean shift procedure. The number of detected modes automatically defines N, while the belonging of a point to the basin of attraction of a mode provides the fusion rule. The robust data fusion algorithm was successfully applied to two computer vision problems: estimating the multiple affine transformations, and range image segmentation. PMID:15971926

  8. Fusion Breeder Program interim report

    SciTech Connect

    Moir, R.; Lee, J.D.; Neef, W.

    1982-06-11

    This interim report for the FY82 Fusion Breeder Program covers work performed during the scoping phase of the study, December, 1981-February 1982. The goals for the FY82 study are the identification and development of a reference blanket concept using the fission suppression concept and the definition of a development plan to further the fusion breeder application. The context of the study is the tandem mirror reactor, but emphasis is placed upon blanket engineering. A tokamak driver and blanket concept will be selected and studied in more detail during FY83.

  9. Calculation of fusion product angular correlation coefficients for fusion plasmas

    SciTech Connect

    Murphy, T.J.

    1987-08-01

    The angular correlation coefficients for fusion products are calculated in the cases of Maxwellian and beam-target plasmas. Measurement of these coefficients as a localized ion temperature or fast-ion diagnostic is discussed. 8 refs., 7 figs., 1 tab.

  10. A Plan for the Development of Fusion Energy. Final Report to Fusion Energy Sciences Advisory Committee, Fusion Development Path Panel

    SciTech Connect

    None, None

    2003-03-05

    This report presents a plan for the deployment of a fusion demonstration power plant within 35 years, leading to commercial application of fusion energy by mid-century. The plan is derived from the necessary features of a demonstration fusion power plant and from the time scale defined by President Bush. It identifies critical milestones, key decision points, needed major facilities and required budgets.

  11. Cold fusion catalyzed by muons and electrons

    SciTech Connect

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed.

  12. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  13. Role of atomic collisions in fusion

    SciTech Connect

    Post, D.E.

    1982-04-01

    Atomic physics issues have played a large role in controlled fusion research. A general discussion of the present role of atomic processes in both magnetic and inertial controlled fusion work is presented.

  14. Z-Pinch Fusion for Energy Applications

    SciTech Connect

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  15. Fusion and Breakup of Weakly Bound Nuclei

    SciTech Connect

    Gomes, P. R. S.; Lubian, J.; Padron, I.; Crema, E.; Chamon, L. C.; Hussein, M. S.; Canto, L. F.

    2006-08-14

    We discuss the influence of the breakup process of weakly bound nuclei on the fusion cross section. The complete fusion for heavy targets is found to be suppressed due to the incomplete fusion following the breakup, whereas this effect is negligible for light targets. The total fusion cross sections for stable projectiles are not affected by the breakup process, whereas it is suppressed for halo projectiles. The non capture breakup is the dominant process at sub-barrier energies.

  16. A Review of Data Fusion Techniques

    PubMed Central

    2013-01-01

    The integration of data and knowledge from several sources is known as data fusion. This paper summarizes the state of the data fusion field and describes the most relevant studies. We first enumerate and explain different classification schemes for data fusion. Then, the most common algorithms are reviewed. These methods and algorithms are presented using three different categories: (i) data association, (ii) state estimation, and (iii) decision fusion. PMID:24288502

  17. Exo-endo cellulase fusion protein

    DOEpatents

    Bower, Benjamin S. (Palo Alto, CA); Larenas, Edmund A. (Palo Alto, CA); Mitchinson, Colin (Palo Alto, CA)

    2012-01-17

    The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

  18. Membrane Fusion through Point Defects in Bilayers

    NASA Astrophysics Data System (ADS)

    Hui, S. W.; Stewart, T. P.; Boni, L. T.; Yeagle, P. L.

    1981-05-01

    Fusion between bilayers of mixed egg phosphatidylcholine and soybean phosphatidylethanolamine was induced by freezing and thawing. Contact points between bilayers were observed by freeze fracture electron microscopy, and isotropic molecular motional averaging was detected by phosphorus-31 nuclear magnetic resonance under fusion conditions. A molecular model of point defect structure is proposed as an intermediate stage of fusion.

  19. Video image fusion process using fuzzy technique

    NASA Astrophysics Data System (ADS)

    Ranjan, Rahul; Singh, Harpreet; Meitzler, Thomas; Sohn, E. J.; Singh, Kuldip

    2006-05-01

    Image fusion techniques have been used for variety of applications like medical imaging, navigation, homeland security and most importantly in military requirements. Different techniques for image fusion are there and already being extended for real time video fusion. In this paper, a new technique for video image fusion has been given. We exploit fuzzy techniques for image fusion. This approach has already been implemented for multi image fusion for different applications. In the fuzzy approach, pixel of one image is fused with the corresponding pixel value of other image. Fusion is based on the associated rules and membership grades of the frames. For the video image fusion, frames are extracted from the two incoming videos and registered. Size and distortion of the frames are checked for the suitability of the fusion process. After frame wise fusion using fuzzy approach, they are sequenced back for video display. Various other issues like real time implementation, scene effect, adaptation required according to application and image alignments have been discussed. We hope that algorithm developed for video image fusion process in this paper will prove to be very effective for real time image sensor fusion process.

  20. Membrane fusion during phage lysis

    PubMed Central

    Berry, Joel; Kongari, Rohit; Cahill, Jesse; Young, Ry

    2015-01-01

    In general, phages cause lysis of the bacterial host to effect release of the progeny virions. Until recently, it was thought that degradation of the peptidoglycan (PG) was necessary and sufficient for osmotic bursting of the cell. Recently, we have shown that in Gram-negative hosts, phage lysis also requires the disruption of the outer membrane (OM). This is accomplished by spanins, which are phage-encoded proteins that connect the cytoplasmic membrane (inner membrane, IM) and the OM. The mechanism by which the spanins destroy the OM is unknown. Here we show that the spanins of the paradigm coliphage lambda mediate efficient membrane fusion. This supports the notion that the last step of lysis is the fusion of the IM and OM. Moreover, data are provided indicating that spanin-mediated fusion is regulated by the meshwork of the PG, thus coupling fusion to murein degradation by the phage endolysin. Because endolysin function requires the formation of μm-scale holes by the phage holin, the lysis pathway is seen to require dramatic dynamics on the part of the OM and IM, as well as destruction of the PG. PMID:25870259

  1. Magnetic fusion: progress -> stagnation -> degradation

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid

    2012-10-01

    ``The theory of the failure of magnetic fusion,'' created in 2004 and presented to APS-2007 introduced the notion of the ``difficult'' and ``complicated'' stages of the program and described them details. At the first phase the emerging fusion science was created under strong leadership. Progress was visible on year to year basis, and the program was easy to manage. The complicated phase started in the late 1980s, when the plasma physics appeared to be incapable to implement the mission of ITER to test nuclear components of a fusion reactor. Then, the failure of TFTR (PPPL, USA) and JET (Culham, UK) in the mid 1990 to demonstrate QDT=1 and the blindness of their leaders to already visible means to resolve the problem, were a clear indication of an irreversible stagnation. In fact, right after 2007, it became clear that in the case of a large system of human ``particles'' (scientists) two phases have a continuation. The internal degrees of freedom, otherwise protected from external perturbations by a strong dedication to the scientific method, are now eroding and collapsing. The loss of science in addressing confinement, stability, power extraction, fueling, stationary regimes issues makes the current program irrelevant to fusion energy. A fresh approach should be taken.

  2. Seismic data fusion anomaly detection

    NASA Astrophysics Data System (ADS)

    Harrity, Kyle; Blasch, Erik; Alford, Mark; Ezekiel, Soundararajan; Ferris, David

    2014-06-01

    Detecting anomalies in non-stationary signals has valuable applications in many fields including medicine and meteorology. These include uses such as identifying possible heart conditions from an Electrocardiography (ECG) signals or predicting earthquakes via seismographic data. Over the many choices of anomaly detection algorithms, it is important to compare possible methods. In this paper, we examine and compare two approaches to anomaly detection and see how data fusion methods may improve performance. The first approach involves using an artificial neural network (ANN) to detect anomalies in a wavelet de-noised signal. The other method uses a perspective neural network (PNN) to analyze an arbitrary number of "perspectives" or transformations of the observed signal for anomalies. Possible perspectives may include wavelet de-noising, Fourier transform, peak-filtering, etc.. In order to evaluate these techniques via signal fusion metrics, we must apply signal preprocessing techniques such as de-noising methods to the original signal and then use a neural network to find anomalies in the generated signal. From this secondary result it is possible to use data fusion techniques that can be evaluated via existing data fusion metrics for single and multiple perspectives. The result will show which anomaly detection method, according to the metrics, is better suited overall for anomaly detection applications. The method used in this study could be applied to compare other signal processing algorithms.

  3. Proton Collimators for Fusion Reactors

    NASA Technical Reports Server (NTRS)

    Miley, George H.; Momota, Hiromu

    2003-01-01

    Proton collimators have been proposed for incorporation into inertial-electrostatic-confinement (IEC) fusion reactors. Such reactors have been envisioned as thrusters and sources of electric power for spacecraft and as sources of energetic protons in commercial ion-beam applications.

  4. Fusion blanket inherent safety assessment

    SciTech Connect

    Sze, D.K.; Jung, J.; Cheng, E.T.

    1986-01-01

    The inherent safety aspect of TPSS reactor blankets has been investigated. The idea is to design the blanket so safe that cost savings can be realized such as through non-nuclear grading construction. If the blanket materials are carefully selected, inherent safety is feasible for fusion reactor blankets up to 5 to 10 MW/m/sup 2/ neutron wall loading.

  5. Theoretical atomic physics for fusion

    SciTech Connect

    Pindzola, M.S.

    1992-01-01

    The understanding of electron-ion collision processes in high temperature plasmas remains a key factor in the ultimate development of nuclear fusion as a viable energy source for the nation. Our 1990--1992 research proposal delineated 3 main areas of research in electron-ion scattering theory. Summaries our 1992 efforts in each of these research areas are presented.

  6. Inertial confinement fusion (ICF) review

    SciTech Connect

    Hammer, D.; Dyson, F.; Fortson, N.; Novick, B.; Panofsky, W.; Rosenbluth, M.; Treiman, S.; York, H.

    1996-03-01

    During its 1996 winter study JASON reviewed the DOE Inertial Confinement Fusion (ICF) program. This included the National Ignition Facility (NIF) and proposed studies. The result of the review was to comment on the role of the ICF program in support of the DOE Science Based Stockpile Stewardship program.

  7. Virtual experiment of pyroelectric fusion

    NASA Astrophysics Data System (ADS)

    Nasseri, Mohammad Mehdi

    2015-11-01

    The virtual experiment of pyroelectric fusion was conducted by Geant4 simulator. Despite the limitations of the code for simulating the pyroelectric fusion experiment precisely, the following interesting results were obtained. Two crystals were separated by a certain distance. A constant electric field with varying intensities was applied between the crystals. As initial particles, deuterium ions were emitted to deuterated polypropylene (CD2). This virtual experiment showed that the number of ions that hit the target, for different distances between the crystals, increases with the increase of the intensity of the electric field; however, further increase of the electric field results in the reduction of the number of hit ions, which attains a constant value of about 57% of the initial number of ions. For a (D, D) fusion reaction to occur, the distance between the two crystals should be <1.5 cm and for a (D, T) fusion reaction to occur, this distance could be up to 2 cm. The energy spectra of ions for low and high electric fields were narrow and long and wide and short, respectively.

  8. Membrane fusion during phage lysis.

    PubMed

    Rajaure, Manoj; Berry, Joel; Kongari, Rohit; Cahill, Jesse; Young, Ry

    2015-04-28

    In general, phages cause lysis of the bacterial host to effect release of the progeny virions. Until recently, it was thought that degradation of the peptidoglycan (PG) was necessary and sufficient for osmotic bursting of the cell. Recently, we have shown that in Gram-negative hosts, phage lysis also requires the disruption of the outer membrane (OM). This is accomplished by spanins, which are phage-encoded proteins that connect the cytoplasmic membrane (inner membrane, IM) and the OM. The mechanism by which the spanins destroy the OM is unknown. Here we show that the spanins of the paradigm coliphage lambda mediate efficient membrane fusion. This supports the notion that the last step of lysis is the fusion of the IM and OM. Moreover, data are provided indicating that spanin-mediated fusion is regulated by the meshwork of the PG, thus coupling fusion to murein degradation by the phage endolysin. Because endolysin function requires the formation of ?m-scale holes by the phage holin, the lysis pathway is seen to require dramatic dynamics on the part of the OM and IM, as well as destruction of the PG. PMID:25870259

  9. Magnetic fusion and project ITER

    SciTech Connect

    Park, H.K.

    1992-01-01

    It has already been demonstrated that our economics and international relationship are impacted by an energy crisis. For the continuing prosperity of the human race, a new and viable energy source must be developed within the next century. It is evident that the cost will be high and will require a long term commitment to achieve this goal due to a high degree of technological and scientific knowledge. Energy from the controlled nuclear fusion is a safe, competitive, and environmentally attractive but has not yet been completely conquered. Magnetic fusion is one of the most difficult technological challenges. In modem magnetic fusion devices, temperatures that are significantly higher than the temperatures of the sun have been achieved routinely and the successful generation of tens of million watts as a result of scientific break-even is expected from the deuterium and tritium experiment within the next few years. For the practical future fusion reactor, we need to develop reactor relevant materials and technologies. The international project called International Thermonuclear Experimental Reactor (ITER)'' will fulfill this need and the success of this project will provide the most attractive long-term energy source for mankind.

  10. Magnetic fusion and project ITER

    SciTech Connect

    Park, H.K.

    1992-09-01

    It has already been demonstrated that our economics and international relationship are impacted by an energy crisis. For the continuing prosperity of the human race, a new and viable energy source must be developed within the next century. It is evident that the cost will be high and will require a long term commitment to achieve this goal due to a high degree of technological and scientific knowledge. Energy from the controlled nuclear fusion is a safe, competitive, and environmentally attractive but has not yet been completely conquered. Magnetic fusion is one of the most difficult technological challenges. In modem magnetic fusion devices, temperatures that are significantly higher than the temperatures of the sun have been achieved routinely and the successful generation of tens of million watts as a result of scientific break-even is expected from the deuterium and tritium experiment within the next few years. For the practical future fusion reactor, we need to develop reactor relevant materials and technologies. The international project called ``International Thermonuclear Experimental Reactor (ITER)`` will fulfill this need and the success of this project will provide the most attractive long-term energy source for mankind.

  11. Progress in pulsed power fusion

    SciTech Connect

    Quintenz, J.P.; Adams, R.G.; Bailey, J.E.

    1996-07-01

    Pulsed power offers and efficient, high energy, economical source of x-rays for inertial confinement fusion (ICF) research. We are pursuing two main approaches to ICF driven with pulsed power accelerators: intense light ion beams and z-pinches. This paper describes recent progress in each approach and plans for future development.

  12. Tritium breeding in fusion reactors

    SciTech Connect

    Abdou, M.A.

    1982-10-01

    Key technological problems that influence tritium breeding in fusion blankets are reviewed. The breeding potential of candidate materials is evaluated and compared to the tritium breeding requirements. The sensitivity of tritium breeding to design and nuclear data parameters is reviewed. A framework for an integrated approach to improve tritium breeding prediction is discussed with emphasis on nuclear data requirements.

  13. Membrane Fusion Proteins as Nanomachines

    NASA Astrophysics Data System (ADS)

    Tamm, Lukas

    2009-03-01

    Membrane fusion is key to fertilization, virus infection, and neurotransmission. Specific proteins work like nanomachines to stitch together fluid, yet highly ordered lipid bilayers. The energy gained from large exothermic conformational changes of these proteins is utilized to fuse lipid bilayers that do not fuse spontaneously. Structural studies using x-ray crystallography and NMR spectroscopy have yielded detailed information about architecture and inner workings of these molecular machines. The question now is: how is mechanical energy gained from such protein transformations harnessed to transform membrane topology? To answer this question, we have determined that a boomerang-shaped structure of the influenza fusion peptide is critical to generate a high-energy binding intermediate in the target membrane and to return the ``boomerang'' to its place of release near the viral membrane for completion of the fusion cycle. In presynaptic exocytosis, receptor and acceptor SNAREs are zippered to form a helical bundle that is arrested shortly before the membrane. Ca binding to interlocked synaptotagmin releases the fusion block. Structural NMR and single molecule fluorescence data are combined to arrive at and further refine this picture.

  14. Prospects for fusion neutron NPLs

    NASA Astrophysics Data System (ADS)

    Petra, M.; Miley, G. H.; Batyrbekov, E.; Jassby, D. L.; McArthur, D.

    1996-05-01

    To date, nuclear pumped lasers (NPLs) have been driven by neutrons from pulsed research fission reactors. However, future applications using either a Magnetic Confinement Fusion (MCF) neutron source or an Inertial Confinement Fusion (ICF) source appear attractive. One unique combination proposed earlier would use a neutron feedback NPL driver in an ICF power plant. 14-MeV D-T neutrons (and 2.5-MeV D-D neutrons) provide a unique opportunity for a neutron recoil pumped NPL. Alternatively, these neutrons can be thermalized to provide thermal-neutron induced reactions for pumping. Initial experience with a fusion-pumped NPL can possibly be obtained using the D-T burn experiments in progress/planning at the Tokamak Fusion Test Reactor (TFTR) and Joint European Torus (JET) tokamak devices or at the planned National Ignition Facility (NIF) high-gain ICF target experimental facility. With neutron fluxes presently available, peak thermalized fluxes at a test laser in the shield region could exceed 1014 n/cm2/sec. Several low-threshold NPLs might be utilized in such an experiment, including the He-Ne-H2 NPL and the Ar-Xe NPL. Experimental set-ups for both the tokamak and the NIF will be described.

  15. Fusion probability in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2015-03-01

    Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range 5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: has been shown to vary with entrance channel mass asymmetry, ? (or charge product, ZpZt ), as well as with fissility of the CN, ?CN. No parameter has been found to be adequate as a single scaling variable to determine . Approximate boundaries have been obtained from where starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross sections over a wider energy range for many more reactions is desired for accurate determination of and more insight into the dynamics of fusion in the heavy mass region.

  16. Magnetized Target Fusion: Prospects for Low-Cost Fusion Energy

    NASA Technical Reports Server (NTRS)

    Siemon, Richard E.; Turchi, Peter J.; Barnes, Daniel C.; Degnan, James; Parks, Paul; Ryutov, Dmitri D.; Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    Magnetized Target Fusion (MTF) has attracted renewed interest in recent years because it has the potential to resolve one of the major problems with conventional fusion energy research - the high cost of facilities to do experiments and in general develop practical fusion energy. The requirement for costly facilities can be traced to fundamental constraints. The Lawson condition implies large system size in the case of conventional magnetic confinement, or large heating power in the case of conventional inertial confinement. The MTF approach is to use much higher fuel density than with conventional magnetic confinement (corresponding to megabar pressures), which results in a much-reduced system size to achieve Lawson conditions. Intrinsically the system must be pulsed because the pressures exceed the strength of any known material. To facilitate heating the fuel (or "target") to thermonuclear conditions with a high-power high-intensity source of energy, magnetic fields are used to insulate the high-pressure fuel from material surroundings (thus "magnetized target"). Because of magnetic insulation, the required heating power intensity is reduced by many orders of magnitude compared to conventional inertial fusion, even with relatively poor energy confinement in the magnetic field, such as that characterized by Bohm diffusion. In this paper we show semi-quantitatively why MTF-should allow fusion energy production without costly facilities within the same generally accepted physical constraints used for conventional magnetic and inertial fusion. We also briefly discuss potential applications of this technology ranging from nuclear rockets for space propulsion to a practical commercial energy system. Finally, we report on the exploratory research underway, and the interesting physics issues that arise in the MTF regime of parameters. Experiments at Los Alamos are focused on formation of a suitable plasma target for compression, utilizing the knowledge base for compact toroids called Field-Reversed Configurations. As reported earlier, it appears that the existing pulsed-power Shiva Star facility at the Air Force Research Laboratory in Albuquerque, NM can satisfy the heating requirements by means of imploding a thin metal cylinder (called a "liner") surrounding an FRC of the type presently being developed. The proposed next step is an integrated liner-on-plasma experiment in which an FRC would be heated to 10 keV by the imploding liner.

  17. Assessment method to fusion effect based on structural similarity comparison in fusion images

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Jin, Weiqi; Xue, Rui

    2010-08-01

    Image fusion can integrate several images of the same scene captured by several different sensors with different features and resolutions at different time into one image. Research on quality assessment of fusion images is meaningful for image processing course in order to improve the registration technology and fusion algorithm. Structural similarity metric describes differences between two images by means of three variables, luminance, contrast, and spatial similarity, which show the better evaluating capability than others objective metrics. A new assessment method to fusion effect based on structural similarity comparison among fusion images is provided in paper. Fusion algorithms including weighing method, principal component analysis, different pyramid methods and multi-resolution wavelet filtering is used to create fusion images. Then the mutual structural similarity metric among fusion images obtained by different fusion algorithms is used to evaluate the fusion effect. In some extent, the low structural similarity comparison denotes the low quality fusion effect. Meanwhile, the experiment show also the fusion effect determined by structural similarity comparison is accordant with the subjective evaluation. Besides, the experiment explain the method based on different pyramid methods and multi-resolution wavelet filtering have the better fusion effect than weighing method and principal component analysis method. Furthermore, the experiment also prove the whole image fusion system should choose the different fusion algorithm to adjust to the different task requirement and applied circumstance in order to acquire the optimum scene interpreting effect.

  18. An introduction to multisensor data fusion

    SciTech Connect

    Hall, D.L.; Llinas, J.

    1997-01-01

    Multisensor data fusion is an emerging technology applied to Department of Defense (DoD) areas such as automated target recognition, battlefield surveillance, and guidance and control of autonomous vehicles, and to non-DoD applications such as monitoring of complex machinery, medical diagnosis, and smart buildings. Techniques for multisensor data fusion are drawn from a wide range of areas including artificial intelligence, pattern recognition, statistical estimation, and other areas. This paper provides a tutorial on data fusion, introducing data fusion applications, process models, and identification of applicable techniques. Comments are made on the state-of-the-art in data fusion.

  19. Fusion - An energy source for synthetic fuels

    NASA Astrophysics Data System (ADS)

    Fillo, J. A.; Powell, J.; Steinberg, M.

    1980-05-01

    An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  20. Fusion reactor nucleonics: status and needs

    SciTech Connect

    Lee, J.D.; Engholm, B.A.; Dudziak, D.J.; Haight, R.C.

    1980-01-01

    The national fusion technology effort has made a good start at addressing the basic nucleonics issues, but only a start. No fundamental nucleonics issues are seen as insurmountable barriers to the development of commercial fusion power. To date the fusion nucleonics effort has relied almost exclusively on other programs for nuclear data and codes. But as we progress through and beyond ETF type design studies the fusion program will need to support a broad based nucleonics effort including code development, sensitivity studies, integral experiments, data acquisition etc. It is clear that nucleonics issues are extremely important to fusion development and that we have only scratched the surface.

  1. Review of Japanese fusion program and role of inertial fusion

    NASA Astrophysics Data System (ADS)

    Motojima, O.

    2007-08-01

    The high compression of 600 times liquid density and the recent fast heating of a compressed core to 1-keV temperature have provided proof-of-principle of the fast ignition concept, and these results have significantly contributed to approve first phase of the Fast Ignition Realization EXperiment (FIREX) project. The goal of FIREX-I is to demonstrate fast heating of a fusion fuel up to the ignition temperature of 5-10 keV. Although the fuel size of FIREX-I is too small to ignite, sufficient heating will provide the scientific viability of ignition-and-burn by increasing the laser energy thereby the fuel size. Based on the result of FIREX-I, the decision of the start of FIREX-II to achieve ignition-and-burn can be made. The FIREX program is under the collaboration of the Institute of Laser Engineering and the National Institute for Fusion Science.

  2. Fusion energy calorimeter for the tokamak fusion test reactor

    SciTech Connect

    Jassby, D.L.; Imel, G.R.

    1981-04-01

    One and two-dimensional neutronic analyses treating the transport and scattering of neutrons and the production and transport of gamma rays in the TFTR demonstrate that the fusion energy production in a D-T pulse in the TFTR can be determined with an uncertainty of +- 15% or less, simply by integrating the measured profile of temperature increase along the central radial axis of a large hydrocarbon moderator that fills the bay between adjacent toroidal-field coils, just outside the vacuum vessel. Limitations in thermopile temperature measurements dictate a minimum fusion-neutron fluence at the vacuum vessel of the order of 10/sup 12/ n/cm/sup 2/ per pulse (a source strength of 10/sup 18/ n/pulse in TFTR), in order that this simple calorimeter can provide useful accuracy.

  3. Henipavirus membrane fusion and viral entry.

    PubMed

    Aguilar, Hector C; Iorio, Ronald M

    2012-01-01

    Nipah (NiV) and Hendra (HeV) viruses cause cell-cell fusion (syncytia) in brain, lung, heart, and kidney tissues, leading to encephalitis, pneumonia, and often death. Membrane fusion is essential to both viral entry and virus-induced cell-cell fusion, a hallmark of henipavirus infections. Elucidiation of the mechanism(s) of membrane fusion is critical to understanding henipavirus pathobiology and has the potential to identify novel strategies for the development of antiviral therapeutic agents. Henipavirus membrane fusion requires the coordinated actions of the viral attachment (G) and fusion (F) glycoproteins. Current henipavirus fusion models posit that attachment of NiV or HeV G to its cell surface receptors releases F from its metastable pre-fusion conformation to mediate membrane fusion. The identification of ephrinB2 and ephrinB3 as henipavirus receptors has paved the way for recent advances in our understanding of henipavirus membrane fusion. These advances highlight mechanistic similarities and differences between membrane fusion for the henipavirus and other genera within the Paramyxoviridae family. Here, we review these mechanisms and the current gaps in our knowledge in the field. PMID:22427111

  4. Rabies virus-induced membrane fusion pathway.

    PubMed

    Gaudin, Y

    2000-08-01

    Fusion of rabies virus with membranes is triggered at low pH and is mediated by the viral glycoprotein (G). The rabies virus-induced fusion pathway was studied by investigating the effects of exogenous lipids having various dynamic molecular shapes on the fusion process. Inverted cone-shaped lysophosphatidylcholines (LPCs) blocked fusion at a stage subsequent to fusion peptide insertion into the target membrane. Consistent with the stalk-hypothesis, LPC with shorter alkyl chains inhibited fusion at lower membrane concentrations and this inhibition was compensated by the presence of oleic acid. However, under suboptimal fusion conditions, short chain LPCs, which were translocated in the inner leaflet of the membranes, considerably reduced the lag time preceding membrane merging, resulting in faster kinetics of fusion. This indicated that the rate limiting step for fusion is the formation of a fusion pore in a diaphragm of restricted hemifusion. The previously described cold-stabilized prefusion complex was also characterized. This intermediate is at a well-advanced stage of the fusion process when the hemifusion diaphragm is destabilized, but lipid mixing is still restricted, probably by a ring-like complex of glycoproteins. I provide evidence that this state has a dynamic character and that its lipid organization can reverse back to two lipid bilayers. PMID:10931871

  5. Security on the US Fusion Grid

    SciTech Connect

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  6. Data security on the national fusion grid

    SciTech Connect

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  7. Fusion technologies for Laser Inertial Fusion Energy (LIFE)

    NASA Astrophysics Data System (ADS)

    Kramer, K. J.; Latkowski, J. F.; Abbott, R. P.; Anklam, T. P.; Dunne, A. M.; El-Dasher, B. S.; Flowers, D. L.; Fluss, M. J.; Lafuente, A.; Loosmore, G. A.; Morris, K. R.; Moses, E.; Reyes, S.

    2013-11-01

    The Laser Inertial Fusion-based Energy (LIFE) engine design builds upon on going progress at the National Ignition Facility (NIF) and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Fission Fusion Hybrids: a nearer term application of Fusion

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2011-10-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power at a much lower level of technical development than a competitive fusion power plant. For waste incineration, hybrids burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs). The number of hybrids needed is 5-10 times less than the corresponding number of fast reactors (FRs). The highly sub-critical hybrids, with a thermal/epithermal spectrum, incinerate > 95% of the waste in decades rather than the centuries needed for FRs. For fuel production, hybrids can produce fuel for 3-4 times as many LWRs with no fuel reprocessing. Thorium fuel rods exposed to neutrons in the hybrid reach fissile concentrations that enable efficient burning in LWR without the proliferation risks of reprocessing. The proliferation risks of this method are far less than other fuel breeding approaches, including today's gas centrifuge. With this cycle, US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius ~ 2.5-3.5 m), which is made feasible by the super-X divertor.

  9. Polyetheretherketone as a biomaterial for spinal applications.

    PubMed

    Toth, Jeffrey M; Wang, Mei; Estes, Bradley T; Scifert, Jeffrey L; Seim, Howard B; Turner, A Simon

    2006-01-01

    Threaded lumbar interbody spinal fusion devices (TIBFD) made from titanium have been reported to be 90% effective for single-level lumbar interbody fusion, although radiographic determination of fusion has been intensely debated in the literature. Using blinded radiographic, biomechanic, histologic, and statistical measures, we evaluated a radiolucent polyetheretherketone (PEEK)-threaded interbody fusion device packed with autograft or rhBMP-2 on an absorbable collagen sponge in 13 sheep at 6 months. Radiographic fusion, increased spinal level biomechanical stiffness, and histologic fusion were demonstrated for the PEEK cages filled with autograft or rhBMP-2 on a collagen sponge. No device degradation or wear debris was observed. Only mild chronic inflammation consisting of a few macrophages was observed in peri-implant tissues. Based on these results, the polymeric biomaterial PEEK may be a useful biomaterial for interbody fusion cages due to the polymer's increased radiolucency and decreased stiffness. PMID:16115677

  10. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    SciTech Connect

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-15

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  11. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    NASA Astrophysics Data System (ADS)

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-01

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage (100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  12. Interpreting inertial fusion neutron spectra

    NASA Astrophysics Data System (ADS)

    Munro, David H.

    2016-03-01

    A burning laser fusion plasma produces a neutron spectrum first described by Brysk (1973 Plasma Phys. Control. Fusion 15 611). This and more recent work deals with the spectrum produced by a single fluid element. The distribution of temperatures and velocities in multiple fluid elements combine in any real spectrum; we derive formulas for how the neutron spectrum averages these contributions. The single element momentum spectrum is accurately Gaussian, but the multi-element spectrum exhibits higher moments. In particular, the skew and kurtosis are likely to be large enough to measure. Even the single fluid element spectrum may exhibit measurable directional anisotropy, so that instruments with different lines of sight should see different yields, mean velocities, mean temperatures, and higher moments. Finally, we briefly discuss how scattering in the imploded core modifies the neutron spectrum by changing the relative weighting of fuel regions with different temperatures and velocities.

  13. Interplanetary propulsion using inertial fusion

    NASA Technical Reports Server (NTRS)

    Orth, C. D.; Hogan, W. J.; Hoffman, N.; Murray, K.; Klein, G.; Diaz, F. C.

    1987-01-01

    Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed.

  14. Mirror fusion vacuum technology developments

    SciTech Connect

    Batzer, T.H.; Call, W.R.

    1983-11-21

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10/sup 7/ to 10/sup 8/ l/s for D/sub 2/, T/sub 2/ and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility.

  15. Trust metrics in information fusion

    NASA Astrophysics Data System (ADS)

    Blasch, Erik

    2014-05-01

    Trust is an important concept for machine intelligence and is not consistent across many applications. In this paper, we seek to understand trust from a variety of factors: humans, sensors, communications, intelligence processing algorithms and human-machine displays of information. In modeling the various aspects of trust, we provide an example from machine intelligence that supports the various attributes of measuring trust such as sensor accuracy, communication timeliness, machine processing confidence, and display throughput to convey the various attributes that support user acceptance of machine intelligence results. The example used is fusing video and text whereby an analyst needs trust information in the identified imagery track. We use the proportional conflict redistribution rule as an information fusion technique that handles conflicting data from trusted and mistrusted sources. The discussion of the many forms of trust explored in the paper seeks to provide a systems-level design perspective for information fusion trust quantification.

  16. Investigation of condensed matter fusion

    SciTech Connect

    Jones, S.E.; Berrondo, M.; Czirr, J.B.; Decker, D.L.; Harrison, K.; Jensen, G.L.; Palmer, E.P.; Rees, L.B.; Taylor, S.; Vanfleet, H.B.; Wang, J.C.; Bennion, D.N.; Harb, J.N.; Pitt, W.G.; Thorne, J.M.; Anderson, A.N.; McMurtry, G.; Murphy, N.; Goff, F.E.

    1990-12-01

    Work on muon-catalyzed fusion led to research on a possible new type of fusion occurring in hydrogen isotopes embedded in metal lattices. While the nuclear-product yields observed to date are so small as to require careful further checking, rates observed over short times appear sufficiently large to suggest that significant neutrons and triton yields could be realized -- if the process could be understood and controlled. During 1990, we have developed two charged-particle detection systems and three new neutron detectors. A segmented, high-efficiency neutron counter was taken into 600 m underground in a mine in Colorado for studies out of the cosmic-ray background. Significant neutron emissions were observed in this environment in both deuterium-gas-loaded metals and in electrolytic cells, confirming our earlier observations.

  17. Prospects for toroidal fusion reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.D.

    1994-06-01

    Work on the International Thermonuclear Experimental Reactor (ITER) tokamak has refined understanding of the realities of a deuterium-tritium (D-T) burning magnetic fusion reactor. An ITER-like tokamak reactor using ITER costs and performance would lead to a cost of electricity (COE) of about 130 mills/kWh. Advanced tokamak physics to be tested in the Toroidal Physics Experiment (TPX), coupled with moderate components in engineering, technology, and unit costs, should lead to a COE comparable with best existing fission systems around 60 mills/kWh. However, a larger unit size, {approximately}2000 MW(e), is favored for the fusion system. Alternative toroidal configurations to the conventional tokamak, such as the stellarator, reversed-field pinch, and field-reversed configuration, offer some potential advantage, but are less well developed, and have their own challenges.

  18. Nuclear Fusion in Dense Matter

    SciTech Connect

    Sawyer, R. F.

    2010-05-14

    The standard theory of nuclear fusion rates in strongly interacting plasmas can be (correctly) derived only when the energy release Q is large compared to other energies in the problem. We exhibit a result for rates that provides a basis for calculating the finite Q corrections. Crude estimates indicate a significant defect in the conventional results for some regions of high density and strong plasma coupling. We also lay some groundwork for a path integral calculation of the new effects.

  19. FUSION WELDING METHOD AND APPARATUS

    DOEpatents

    Wyman, W.L.; Steinkamp, W.I.

    1961-01-17

    An apparatus for the fusion welding of metal pieces at a joint is described. The apparatus comprises a highvacuum chamber enclosing the metal pieces and a thermionic filament emitter. Sufficient power is applied to the emitter so that when the electron emission therefrom is focused on the joint it has sufficient energy to melt the metal pieces, ionize the metallic vapor abcve the molten metal, and establish an arc discharge between the joint and the emitter.

  20. Fusion for Earth and Space

    SciTech Connect

    Williams, Pharis E

    2009-03-16

    The compact reactor concept (Williams, 2007) has the potential to provide clean, safe and unlimited supply of energy for Earth and Space applications. The concept is a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for individual home and space power. The concept also would make it possible for each plant or remote location to have it's own power source, on site, without the need for a connection to the power grid. This would minimize, or eliminate, power blackouts. The concept could replace large fission reactors and fossil fuel power plants plus provide energy for ships, locomotives, trucks and autos. It would make an ideal source of energy for space power applications and for space propulsion.

  1. Image fusion with IKONOS images

    NASA Astrophysics Data System (ADS)

    Schneider, Mario J.; Pereira Bellon, Olga R.; Araki, Hideo

    2003-04-01

    The techniques for fusion of satellite images with different spatial resolutions aims to enhance the image quality, that allows a better visual interpretation. Ideally, the resulting image must keep the spectral resolution, leading to a more precise image segmentation and classification. Many different methods have been proposed to perform image fusion for medium resolution images (e.g., Landsat TM and SPOT). The launching of IKONOS satellite became possible the obtaining of high spatial resolution images (1 meter in panchromatic mode). These images have spatial information for mapping applications and analysis of urban areas. However, the multispectral images, that provide the most relevant information for thematic applications, are obtained with spatial resolution of 4 meters. This work compares the experimental results of 5 traditional methods (Band Substitution, IHS Transformation, HSV Transformation, Principal Component Substitution and High-Pass Filtering) applied to fusion of multispectral and panchromatic images of IKONOS, and evaluates the applicability of these methods for high resolution images. The analysis of the results are done by: 1) visual inspection, 2) statistical comparison by correlation coefficient, and 3) classification of the resulting image. The test area corresponds to an urban region with different types of land cover.

  2. Fission fusion hybrids- recent progress

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2012-03-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power, and can do this at a much lower level of technical development than a competitive fusion power plant- so it could be a nearer term application. For waste incineration, hybrids can burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs) with far fewer hybrid reactors than a comparable system within the realm of fission alone. For fuel production, hybrids can produce fuel for 4 times as many LWRs with NO fuel reprocessing. For both waste incineration or fuel production, the most severe kind of nuclear accident- runaway criticality- can be excluded, unlike either fast reactors or typical accelerator based reactors. The proliferation risks for hybrid fuel production are, we strongly believe, far less than any other fuel production method, including today's gas centrifuges. US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius 2.5-3.5 m), which is made feasible by the super-X divertor.

  3. Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). This device would operate at much higher plasma densities and with much larger LD ratios than previous mirror machines. Several advantages accrue from such a design. First, the high LA:) ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. Second, the high plasma density will result in the plasma behaving much more Re a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with "loss cone" microinstabilities. An experimental GDM device is currently being constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. Initial experiments are expected to commence in the late fall of 2000.

  4. Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Emrich, Bill; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies with out requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma "b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.

  5. Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Astrophysics Data System (ADS)

    Emrich, Bill

    2000-10-01

    A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies without requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma ``b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.

  6. Gasdynamic mirror fusion propulsion experiment

    NASA Astrophysics Data System (ADS)

    Emrich, William J.

    2001-02-01

    Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). This device would operate at much higher plasma densities and with much larger L/D ratios than previous mirror machines. Several advantages accrue from such a design. First, the high L/D ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. Second, the high plasma density will result in the plasma behaving much more like a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with ``loss cone'' microinstabilities. An experimental GDM device is currently being constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. Initial experiments are expected to commence in the late fall of 2000. .

  7. Inertial fusion experiments and theory

    NASA Astrophysics Data System (ADS)

    Mima, Kunioki; Tikhonchuk, V.; Perlado, M.

    2011-09-01

    Inertial fusion research is approaching a critical milestone, namely the demonstration of ignition and burn. The world's largest high-power laser, the National Ignition Facility (NIF), is under operation at the Lawrence Livermore National Laboratory (LLNL), in the USA. Another ignition machine, Laser Mega Joule (LMJ), is under construction at the CEA/CESTA research centre in France. In relation to the National Ignition Campaign (NIC) at LLNL, worldwide studies on inertial fusion applications to energy production are growing. Advanced ignition schemes such as fast ignition, shock ignition and impact ignition, and the inertial fusion energy (IFE) technology are under development. In particular, the Fast Ignition Realization Experiment (FIREX) at the Institute of Laser Engineering (ILE), Osaka University, and the OMEGA-EP project at the Laboratory for Laser Energetics (LLE), University Rochester, and the HiPER project in the European Union (EU) for fast ignition and shock ignition are progressing. The IFE technology research and development are advanced in the frameworks of the HiPER project in EU and the LIFE project in the USA. Laser technology developments in the USA, EU, Japan and Korea were major highlights in the IAEA FEC 2010. In this paper, the status and prospects of IFE science and technology are described.

  8. National mirror fusion program plan

    SciTech Connect

    Not Available

    1980-01-01

    Experiments are under way in the Tandem Mirror Experiment (TMX) facility at Livermore, which was built to test the principles of the new tandem-mirror concept. Recently this idea has been greatly improved by incorporating a new element called the thermal barrier, a concept that promises a higher power gain factor (Q = 10 to 20) with much less demanding neutral-beam and magnet technology and a higher fusion power density in the reactor. In addition to the tandem-mirror experiments in TMX, a new attempt will be made in the Beta II facility during FY 1980 to create and sustain a field-reversed mirror configuration, which is a different mirror fusion approach that could lead to early commercialization of small reactors. The plan presented here is designed to exploit the results of these and other mirror experiments and theoretical developments toward a variety of applications. The main objective is electric power generation. Other applications being studied include a hybrid fusion reactor that breeds fuel for fission reactors and a reactor for producing synthetic fuel (H/sub 2/) by means of thermochemical processes.

  9. An improved ash fusion test

    SciTech Connect

    Coin, C.D.A.; Kahraman, H.; Peifenstein, A.P.

    1996-12-31

    A new method of measurement of ash fusion temperatures has been developed using essentially the same equipment as is used for measurement of ash fusibility under Standards such as AS1038.15-87 and ASTM D1857-87. However, unlike the standard method the new method produces quantitative results of progressive dimensional changes during heating and melting of the ash. Further, the new method has much improved precision in determination of the temperatures at which these changes take place. Repeatability and reproducibility of the results are much improved and have scope for further improvement. Correspondence between the index points of current ash fusion tests [Initial Deformation, Sphere, Hemisphere and Flow] with reference points in the new method is poor, particularly in relation to ID temperatures and initial dimensional changes. The temperatures of significant movement in the new test appear to be systematic and therefore are likely to correspond to mineralogical melting points. As slagging and fouling mechanisms depend on relative melting of mineral phases, the new test should provide a significant improvement on the current ash-fusion method.

  10. Observations of membrane fusion in a liposome dispersion: the missing fusion intermediate?

    PubMed Central

    Foldvari, Marianna

    2015-01-01

    Early intermediate structures of liposome-liposome fusion events were captured by freeze-fracture electron microscopic (EM) technique. The images show the morphology of the fusion interface at several different stages of the fusion event. One of the intermediates was captured at a serendipitous stage of two vesicles membranes (both leaflets) merging and their contents starting to intermix clearly showing the fusion interface with a previously unseen fusion rim. From the morphological information a hypothetical sequence of the fusion event and corresponding lipid structural arrangements are described. PMID:26069726

  11. Measles virus fusion: role of the cysteine-rich region of the fusion glycoprotein.

    PubMed Central

    Wild, T F; Fayolle, J; Beauverger, P; Buckland, R

    1994-01-01

    Measles virus (MV) fusion requires the participation of both the fusion (F) and hemagglutinin (H) glycoproteins. The canine distemper virus fusion protein (CDVF) cannot substitute for the measles virus fusion protein (MVF) in this process. Introduction of restriction enzyme sites into the cDNAs of CDVF and MVF by site-directed mutagenesis facilitated the production of chimeric F proteins which were tested for their capacity to give fusion when coexpressed with MVH. Fusion resulted when the amino-terminal half of the MVF cysteine-rich region was transferred to CDVF. PMID:7933140

  12. Multiscale Medical Image Fusion in Wavelet Domain

    PubMed Central

    Khare, Ashish

    2013-01-01

    Wavelet transforms have emerged as a powerful tool in image fusion. However, the study and analysis of medical image fusion is still a challenging area of research. Therefore, in this paper, we propose a multiscale fusion of multimodal medical images in wavelet domain. Fusion of medical images has been performed at multiple scales varying from minimum to maximum level using maximum selection rule which provides more flexibility and choice to select the relevant fused images. The experimental analysis of the proposed method has been performed with several sets of medical images. Fusion results have been evaluated subjectively and objectively with existing state-of-the-art fusion methods which include several pyramid- and wavelet-transform-based fusion methods and principal component analysis (PCA) fusion method. The comparative analysis of the fusion results has been performed with edge strength (Q), mutual information (MI), entropy (E), standard deviation (SD), blind structural similarity index metric (BSSIM), spatial frequency (SF), and average gradient (AG) metrics. The combined subjective and objective evaluations of the proposed fusion method at multiple scales showed the effectiveness and goodness of the proposed approach. PMID:24453868

  13. A local approach for focussed Bayesian fusion

    NASA Astrophysics Data System (ADS)

    Sander, Jennifer; Heizmann, Michael; Goussev, Igor; Beyerer, Jrgen

    2009-04-01

    Local Bayesian fusion approaches aim to reduce high storage and computational costs of Bayesian fusion which is separated from fixed modeling assumptions. Using the small world formalism, we argue why this proceeding is conform with Bayesian theory. Then, we concentrate on the realization of local Bayesian fusion by focussing the fusion process solely on local regions that are task relevant with a high probability. The resulting local models correspond then to restricted versions of the original one. In a previous publication, we used bounds for the probability of misleading evidence to show the validity of the pre-evaluation of task specific knowledge and prior information which we perform to build local models. In this paper, we prove the validity of this proceeding using information theoretic arguments. For additional efficiency, local Bayesian fusion can be realized in a distributed manner. Here, several local Bayesian fusion tasks are evaluated and unified after the actual fusion process. For the practical realization of distributed local Bayesian fusion, software agents are predestinated. There is a natural analogy between the resulting agent based architecture and criminal investigations in real life. We show how this analogy can be used to improve the efficiency of distributed local Bayesian fusion additionally. Using a landscape model, we present an experimental study of distributed local Bayesian fusion in the field of reconnaissance, which highlights its high potential.

  14. Pharmacokinetics of Recombinant Bifunctional Fusion Proteins

    PubMed Central

    Chen, Xiaoying; Zaro, Jennica L.; Shen, Wei-Chiang

    2013-01-01

    Introduction The development of biotechnology has enabled the creation of various recombinant fusion proteins as a new class of biotherapeutics. The uniqueness of fusion proteins lies in their ability to fuse two or more protein domains, providing vast opportunities to generate novel combinations of functions. Pharmacokinetic (PK) studies, which are critical components in preclinical and clinical drug development, have not been fully explored for fusion proteins. The lack of general PK models and study guidelines has become a bottleneck for translation of fusion proteins from basic research to the clinic. Areas covered This article reviews the current status of PK studies for fusion proteins, covering the processes that affect PK. According to their PK properties, a classification of fusion proteins is suggested along with examples from the clinic or under development. Current limitations and future perspectives for PK of fusion proteins are also discussed. Expert opinion A PK model for bifunctional fusion proteins is presented to highlight the importance of mechanistic studies for a thorough understanding of the PK properties of fusion proteins. The model suggests investigating the receptor binding and subsequent intracellular disposition of individual domains, which can have dramatic impact on the PK of fusion proteins. PMID:22428984

  15. Fusion Nuclear Science Pathways Assessment

    SciTech Connect

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  16. Materials issues in fusion reactors

    NASA Astrophysics Data System (ADS)

    Suri, A. K.; Krishnamurthy, N.; Batra, I. S.

    2010-02-01

    The world scientific community is presently engaged in one of the toughest technological tasks of the current century, namely, exploitation of nuclear fusion in a controlled manner for the benefit of mankind. Scientific feasibility of controlled fusion of the light elements in plasma under magnetic confinement has already been proven. International efforts in a coordinated and co-operative manner are presently being made to build ITER - the International Thermonuclear Experimental Reactor - to test, in this first step, the concept of 'Tokamak' for net fusion energy production. To exploit this new developing option of making energy available through the route of fusion, India too embarked on a robust fusion programme under which we now have a working tokamak - the Aditya and a steady state tokamak (SST-1), which is on the verge of functioning. The programme envisages further development in terms of making SST-2 followed by a DEMO and finally the fusion power reactor. Further, with the participation of India in the ITER program in 2005, and recent allocation of half - a - port in ITER for placing our Lead - Lithium Ceramic Breeder (LLCB) based Test Blanket Module (TBM), meant basically for breeding tritium and extracting high grade heat, the need to understand and address issues related to materials for these complex systems has become all the more necessary. Also, it is obvious that with increasing power from the SST stages to DEMO and further to PROTOTYPE, the increasing demands on performance of materials would necessitate discovery and development of new materials. Because of the 14.1 MeV neutrons that are generated in the D+T reaction exploited in a tokamak, the materials, especially those employed for the construction of the first wall, the diverter and the blanket segments, suffer crippling damage due to the high He/dpa ratios that result due to the high energy of the neutrons. To meet this challenge, the materials that need to be developed for the tokamaks are steels for the first wall and other structurals, copper alloys for the heat sink, and beryllium for facing the plasma. For the TBMs, the materials that need to be developed include beryllium and/or beryllium-titanium alloys for neutron multiplication, lithium-bearing compounds for tritium generation, and the liquid metal coolants like lead-lithium eutectic in which lead acts as a neutron multiplier and lithium as a tritium breeder. The other materials that need attention of the materials scientists include superconductors made of NbTi, Nb3Sn and Nb3Al for the tokamaks, coatings or ceramic inserts to offset the effect of corrosion and the MHD in liquid metal cooled TBMs, and a host of other materials like nano-structured materials, special adhesives and numerous other alloys and compounds. Apart from this, the construction of the tokamaks would necessitate development of methodologies of joining the selected materials. This presentation would deal with the issues related to the development, characterization and qualification of both the structural as well as the functional materials required to carry forward the challenging task of harnessing fusion energy for use of mankind in engineered systems.

  17. Study of fusion Q-value rule in sub-barrier fusion of heavy ions

    NASA Astrophysics Data System (ADS)

    Liu, Xing-Xing; Zhang, Gao-Long; Zhang, Huan-Qiao

    2015-07-01

    A vast body of fusion data has been analyzed for different projectiles and target nuclei. It is indicated that the sub-barrier fusion depends on the fusion Q-value. In terms of a recently introduced fusion Q-value rule and an energy scaling reduction procedure, the experimental fusion excitation functions are reduced and compared with each other. It is found that the reduced fusion excitations of selected fusion systems show a similar trend. The fusion data for massive nuclei are in agreement with the Q-value rule. In the fusion process, the Q contribution should be considered. Within this approach, the sub-barrier fusion cross sections of most fusion systems can be predicted without involving any structure effects of colliding nuclei. Instances of disagreement are presented in a few fusion systems. The use of the energy scaling as a criterion of possible experimental data inconsistency is discussed. More precise experimental fusion data need to be measured. Supported by National Nature Science Foundation of China (11475013, 11035007, 11175011), State Key Laboratory of Software Development Environment (SKLSDE-2014ZX-08), Fundamental Research Funds for the Central Universities and the Key Laboratory of High Precision Nuclear Spectroscopy, Institute of Modern Physics, Chinese Academy of Sciences

  18. Perioperative outcomes and adverse events of minimally invasive versus open posterior lumbar fusion: meta-analysis and systematic review.

    PubMed

    Goldstein, Christina L; Macwan, Kevin; Sundararajan, Kala; Rampersaud, Y Raja

    2016-03-01

    OBJECT The objective of this study was to determine the clinical comparative effectiveness and adverse event rates of posterior minimally invasive surgery (MIS) compared with open transforaminal or posterior lumbar interbody fusion (TLIF/PLIF). METHODS A systematic review of the Medline, EMBASE, PubMed, Web of Science, and Cochrane databases was performed. A hand search of reference lists was conducted. Studies were reviewed by 2 independent assessors to identify randomized controlled trials (RCTs) or comparative cohort studies including at least 10 patients undergoing MIS or open TLIF/PLIF for degenerative lumbar spinal disorders and reporting at least 1 of the following: clinical outcome measure, perioperative clinical or process measure, radiographic outcome, or adverse events. Study quality was assessed using the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) protocol. When appropriate, a meta-analysis of outcomes data was conducted. RESULTS The systematic review and reference list search identified 3301 articles, with 26 meeting study inclusion criteria. All studies, including 1 RCT, were of low or very low quality. No significant difference regarding age, sex, surgical levels, or diagnosis was identified between the 2 cohorts (856 patients in the MIS cohort, 806 patients in the open cohort). The meta-analysis revealed changes in the perioperative outcomes of mean estimated blood loss, time to ambulation, and length of stay favoring an MIS approach by 260 ml (p < 0.00001), 3.5 days (p = 0.0006), and 2.9 days (p < 0.00001), respectively. Operative time was not significantly different between the surgical techniques (p = 0.78). There was no significant difference in surgical adverse events (p = 0.97), but MIS cases were significantly less likely to experience medical adverse events (risk ratio [MIS vs open] = 0.39, 95% confidence interval 0.23-0.69, p = 0.001). No difference in nonunion (p = 0.97) or reoperation rates (p = 0.97) was observed. Mean Oswestry Disability Index scores were slightly better in the patients undergoing MIS (n = 346) versus open TLIF/PLIF (n = 346) at a median follow-up time of 24 months (mean difference [MIS - open] = 3.32, p = 0.001). CONCLUSIONS The result of this quantitative systematic review of clinical comparative effectiveness research examining MIS versus open TLIF/PLIF for degenerative lumbar pathology suggests equipoise in patient-reported clinical outcomes. Furthermore, a meta-analysis of adverse event data suggests equivalent rates of surgical complications with lower rates of medical complications in patients undergoing minimally invasive TLIF/PLIF compared with open surgery. The quality of the current comparative evidence is low to very low, with significant inherent bias. PMID:26565767

  19. Nuclear Fusion Award 2009 speech Nuclear Fusion Award 2009 speech

    NASA Astrophysics Data System (ADS)

    Sabbagh, Steven Anthony

    2011-01-01

    This is an exceptional moment in my career, and so I want to thank all of my teachers, colleagues and mentors who have made this possible. From my co-authors and myself, many thanks to the International Atomic Energy Agency, IOP Publishing, the Nuclear Fusion journal team, and the selection committee for the great honor of receiving this award. Also gratitude to Kikuchi-sensei, not only for the inventive and visionary creation of this award, but also for being a key mentor dating back to his efforts in producing high neutron output in JT-60U. It was also a great honor to receive the award directly from IAEA Deputy Director General Burkart during the 23rd IAEA Fusion Energy Conference in Daejeon. Receiving the award at this venue is particularly exciting as Daejeon is home to the new, next-generation KSTAR tokamak device that will lead key magnetic fusion research areas going forward. I would also like to thank the mayor of Daejeon, Dr Yum Hong-Chul, and all of the meeting organizers for giving us all a truly spectacular and singular welcoming event during which the award was presented. The research leading to the award would not have been possible without the support of the US Department of Energy, and I thank the Department for the continued funding of this research. Special mention must be made to a valuable co-author who is no longer with us, Professor A. Bondeson, who was a significant pioneer in resistive wall mode (RWM) research. I would like to thank my wife, Mary, for her infinite patience and encouragement. Finally, I would like to personally thank all of you that have approached and congratulated me directly. There are no units to measure how important your words have been in this regard. When notified that our paper had been shortlisted for the 2009 Nuclear Fusion Award, my co-authors responded echoing how I felthonored to be included in such a fine collection of research by colleagues. It was unfathomablewould this paper follow the brilliant work of Dr Todd Evans, another significant mentor of mine, as winner of this prestigious award? Then, it happened. The paper covers several key topics related to high beta tokamak physics. For me, the greatest satisfaction in receiving this award is because it was the first Nuclear Fusion Award to recognize research on the National Spherical Torus Experiment (NSTX) located at the Princeton Plasma Physics Laboratory. The achievement of record stability parameters in a mega-Ampere class spherical torus (ST) device reported in the paper represents a multi-year effort, contributed to by the entire research team. Research to maintain such plasmas for an indefinite period continues today. Understanding RWM stabilization physics is crucial for this goal, and leveraging the high beta ST operating space uniquely tests theory for application to future STs and to tokamaks in general, including advanced operational scenarios of ITER. For instance, the RWM was found to have significant amplitude in components with the toroidal mode number greater than unity. This has important implications for general active RWM control. Evidence that the RWM passive stabilization physics and marginal stability criterion are indeed more complex than originally thought was shown in this paper. Present work shows the greater complexity has a direct impact on how we should extrapolate RWM stabilization to future devices. The paper also reported the qualitative observation of neoclassical toroidal viscosity (NTV), followed by a companion paper by our group in 2006 reporting the quantitative observation of this effect and comparison to theory. The physics of this interesting and important phenomenon was introduced to me by Professor J. Callen (who has given an overview talk at this conference including this subject) and Professor Kerchung Shaing of the University of Wisconsin, to whom I am quite indebted. The paper also reported the first measurement of resonant field amplification at high beta in the NSTX, following work of the Columbia University group at DIII-D during that period. My greatest hope in our stability physics research effort is that our insight in this portion of the much larger research effort, of which we all partake, to make fusion reactors a practical reality, will give new and future researchers the input and motivation to amplify our work and create realities that we had thought were just out of reach. Receiving the 2009 IAEA Nuclear Fusion Award is a substantial honor that greatly motivates me to continue to support the international nuclear fusion research effort at the highest level possible. So, please allow me to raise this beautiful trophy high, here today, to best remember this fine honor. Thank you. Steven Anthony Sabbagh 2009 Nuclear Fusion Award winner Columbia University, New York, NY, USA

  20. Is Fusion Inhibited for Weakly Bound Nuclei?

    SciTech Connect

    Takahashi, J.; Munhoz, M.; Szanto, E.M.; Carlin, N.; Added, N.; Suaide, A.A.; de Moura, M.M.; Liguori Neto, R.; Szanto de Toledo, A.; Canto, L.F.

    1997-01-01

    Complete fusion of light radioactive nuclei is predicted to be hindered at near-barrier energies. This feature is investigated in the case of the least bound stable nuclei. Evaporation residues resulting from the {sup 6,7}Li+{sup 9}Be and {sup 6,7}Li+{sup 12}C fusion reactions have been measured in order to study common features in reactions involving light weakly bound nuclei. The experimental excitation functions revealed that the fusion cross section is significantly smaller than the total reaction cross section and also smaller than the fusion cross section expected from the available systematics. A clear correlation between the fusion probability and nucleon (cluster) separation energy has been established.The results suggest that the breakup process has a strong influence on the hindrance of the fusion cross section. {copyright} {ital 1996} {ital The American Physical Society}

  1. Performance modeling for multisensor data fusion

    NASA Astrophysics Data System (ADS)

    Chang, Kuo Chu; Song, Ying; Liggins, Martin E., II

    2003-08-01

    In the past, in multisensor fusion community, the research goal has been primarily focused on establishing a computational approach for fusion processing and algorithm. However, it would be very useful to be able to characterize the relationship between sensed information inputs available to the fusion system and the quality of fused information output. This will not only help us understand the fusion system performance but also provide high level performance bounds given sensor mix and quality for system control such as sensor resource allocation and estimate information requirements. This paper presents a fusion performance model (FPM) for a general multisensor fusion system. The model includes both kinematics and classification component and focuses on the two performance measures: positional error and classification error. The performance model is based on Bayesian theory and a combination of simulation and analytical approaches. Simulation results that validate the analytical performance predictions are also included.

  2. Incomplete fusion dynamics by spin distribution measurements

    SciTech Connect

    Singh, D.; Ali, R.; Ansari, M. Afzal; Singh, Pushpendra P.; Sharma, M. K.; Singh, B. P.; Babu, K. Surendra; Sinha, Rishi K.; Kumar, R.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.

    2010-02-15

    Spin distributions for various evaporation residues populated via complete and incomplete fusion of {sup 16}O with {sup 124}Sn at 6.3 MeV/nucleon have been measured, using charged particles (Z=1,2)-{gamma} coincidence technique. Experimentally measured spin distributions of the residues produced as incomplete fusion products associated with 'fast'{alpha}- and 2{alpha}-emission channels observed in the 'forward cone' are found to be distinctly different from those of the residues produced as complete fusion products. Moreover, 'fast'{alpha}-particles that arise from larger angular momentum in the entrance channel are populated at relatively higher driving input angular momentum than those produced through complete fusion. The incomplete fusion residues are populated in a limited, higher-angular-momentum range, in contrast to the complete fusion products, which are populated over a broad spin range.

  3. Lunar Helium-3 and Fusion Power

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Office of Exploration sponsored the NASA Lunar Helium-3 and Fusion Power Workshop. The meeting was held to understand the potential of using He-3 from the moon for terrestrial fusion power production. It provided an overview, two parallel working sessions, a review of sessions, and discussions. The lunar mining session concluded that mining, beneficiation, separation, and return of He-3 from the moon would be possible but that a large scale operation and improved technology