Science.gov

Sample records for interface based model

  1. Systems Engineering Interfaces: A Model Based Approach

    NASA Technical Reports Server (NTRS)

    Fosse, Elyse; Delp, Christopher

    2013-01-01

    Currently: Ops Rev developed and maintains a framework that includes interface-specific language, patterns, and Viewpoints. Ops Rev implements the framework to design MOS 2.0 and its 5 Mission Services. Implementation de-couples interfaces and instances of interaction Future: A Mission MOSE implements the approach and uses the model based artifacts for reviews. The framework extends further into the ground data layers and provides a unified methodology.

  2. Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)

    NASA Technical Reports Server (NTRS)

    Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim

    2016-01-01

    The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.

  3. Approximation of skewed interfaces with tensor-based model reduction procedures: Application to the reduced basis hierarchical model reduction approach

    NASA Astrophysics Data System (ADS)

    Ohlberger, Mario; Smetana, Kathrin

    2016-09-01

    In this article we introduce a procedure, which allows to recover the potentially very good approximation properties of tensor-based model reduction procedures for the solution of partial differential equations in the presence of interfaces or strong gradients in the solution which are skewed with respect to the coordinate axes. The two key ideas are the location of the interface either by solving a lower-dimensional partial differential equation or by using data functions and the subsequent removal of the interface of the solution by choosing the determined interface as the lifting function of the Dirichlet boundary conditions. We demonstrate in numerical experiments for linear elliptic equations and the reduced basis-hierarchical model reduction approach that the proposed procedure locates the interface well and yields a significantly improved convergence behavior even in the case when we only consider an approximation of the interface.

  4. Dynamic Distribution and Layouting of Model-Based User Interfaces in Smart Environments

    NASA Astrophysics Data System (ADS)

    Roscher, Dirk; Lehmann, Grzegorz; Schwartze, Veit; Blumendorf, Marco; Albayrak, Sahin

    The developments in computer technology in the last decade change the ways of computer utilization. The emerging smart environments make it possible to build ubiquitous applications that assist users during their everyday life, at any time, in any context. But the variety of contexts-of-use (user, platform and environment) makes the development of such ubiquitous applications for smart environments and especially its user interfaces a challenging and time-consuming task. We propose a model-based approach, which allows adapting the user interface at runtime to numerous (also unknown) contexts-of-use. Based on a user interface modelling language, defining the fundamentals and constraints of the user interface, a runtime architecture exploits the description to adapt the user interface to the current context-of-use. The architecture provides automatic distribution and layout algorithms for adapting the applications also to contexts unforeseen at design time. Designers do not specify predefined adaptations for each specific situation, but adaptation constraints and guidelines. Furthermore, users are provided with a meta user interface to influence the adaptations according to their needs. A smart home energy management system serves as running example to illustrate the approach.

  5. Motor-model-based dynamic scaling in human-computer interfaces.

    PubMed

    Muñoz, Luis Miguel; Casals, Alícia; Frigola, Manel; Amat, Josep

    2011-04-01

    This paper presents a study on how the application of scaling techniques to an interface affects its performance. A progressive scaling factor based on the position and velocity of the cursor and the targets improves the efficiency of an interface, thereby reducing the user's workload. The study uses several human-motor models to interpret human intention and thus contribute to defining and adapting the scaling parameters to the execution of the task. Two techniques addressed to vary the control-display ratio are compared, and a new method for aiding in the task of steering is proposed. PMID:21411399

  6. Development and Implementation of an Extensible Interface-Based Spatiotemporal Geoprocessing and Modeling Toolbox

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Ames, D. P.

    2011-12-01

    This poster presents an object oriented and interface-based spatiotemporal data processing and modeling toolbox that can be extended by third parties to include complete suites of new tools through the implementation of simple interfaces. The resulting software implementation includes both a toolbox and workflow designer or "model builder" constructed using the underlying open source DotSpatial library and MapWindow desktop GIS. The unique contribution of this research and software development activity is in the creation and use of an extensibility architecture for both specific tools (through a so-called "ITool" interface) and batches of tools (through a so-called "IToolProvider" interface.) This concept is introduced to allow for seamless integration of geoprocessing tools from various sources (e.g. distinct libraries of spatiotemporal processing code) - including online sources - within a single user environment. In this way, the IToolProvider interface allows developers to wrap large existing collections of data analysis code without having to re-write it for interoperability. Additionally, developers do not need to design the user interfaces for loading, displaying or interacting with their specific tools, but rather can simply implement the provided interfaces and have their tools and tool collections appear in the toolbox alongside other tools. The demonstration software presented here is based on an implementation of the interfaces and sample tool libraries using the C# .NET programming language. This poster will include a summary of the interfaces as well as a demonstration of the system using the Whitebox Geospatial Analysis Tools (GAT) as an example case of a large number of existing tools that can be exposed to users through this new system. Vector analysis tools which are native in DotSpatial are linked to the Whitebox raster analysis tools in the model builder environment for ease of execution and consistent/repeatable use. We expect that this

  7. NURBS- and T-spline-based isogeometric cohesive zone modeling of interface debonding

    NASA Astrophysics Data System (ADS)

    Dimitri, R.; De Lorenzis, L.; Wriggers, P.; Zavarise, G.

    2014-08-01

    Cohesive zone (CZ) models have long been used by the scientific community to analyze the progressive damage of materials and interfaces. In these models, non-linear relationships between tractions and relative displacements are assumed, which dictate both the work of separation per unit fracture surface and the peak stress that has to be reached for the crack formation. This contribution deals with isogeometric CZ modeling of interface debonding. The interface is discretized with generalized contact elements which account for both contact and cohesive debonding within a unified framework. The formulation is suitable for non-matching discretizations of the interacting surfaces in presence of large deformations and large relative displacements. The isogeometric discretizations are based on non uniform rational B-splines as well as analysis-suitable T-splines enabling local refinement. Conventional Lagrange polynomial discretizations are also used for comparison purposes. Some numerical examples demonstrate that the proposed formulation based on isogeometric analysis is a computationally accurate and efficient technology to solve challenging interface debonding problems in 2D and 3D.

  8. Continuity-based model interfacing for plant-wide simulation: a general approach.

    PubMed

    Volcke, Eveline I P; van Loosdrecht, Mark C M; Vanrolleghem, Peter A

    2006-08-01

    In plant-wide simulation studies of wastewater treatment facilities, often existing models from different origin need to be coupled. However, as these submodels are likely to contain different state variables, their coupling is not straightforward. The continuity-based interfacing method (CBIM) provides a general framework to construct model interfaces for models of wastewater systems, taking into account conservation principles. In this contribution, the CBIM approach is applied to study the effect of sludge digestion reject water treatment with a SHARON-Anammox process on a plant-wide scale. Separate models were available for the SHARON process and for the Anammox process. The Benchmark simulation model no. 2 (BSM2) is used to simulate the behaviour of the complete WWTP including sludge digestion. The CBIM approach is followed to develop three different model interfaces. At the same time, the generally applicable CBIM approach was further refined and particular issues when coupling models in which pH is considered as a state variable, are pointed out. PMID:16846629

  9. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    PubMed

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740

  10. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    PubMed Central

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740

  11. MaxMod: a hidden Markov model based novel interface to MODELLER for improved prediction of protein 3D models.

    PubMed

    Parida, Bikram K; Panda, Prasanna K; Misra, Namrata; Mishra, Barada K

    2015-02-01

    Modeling the three-dimensional (3D) structures of proteins assumes great significance because of its manifold applications in biomolecular research. Toward this goal, we present MaxMod, a graphical user interface (GUI) of the MODELLER program that combines profile hidden Markov model (profile HMM) method with Clustal Omega program to significantly improve the selection of homologous templates and target-template alignment for construction of accurate 3D protein models. MaxMod distinguishes itself from other existing GUIs of MODELLER software by implementing effortless modeling of proteins using templates that bear modified residues. Additionally, it provides various features such as loop optimization, express modeling (a feature where protein model can be generated directly from its sequence, without any further user intervention) and automatic update of PDB database, thus enhancing the user-friendly control of computational tasks. We find that HMM-based MaxMod performs better than other modeling packages in terms of execution time and model quality. MaxMod is freely available as a downloadable standalone tool for academic and non-commercial purpose at http://www.immt.res.in/maxmod/. PMID:25636267

  12. Establishing a Novel Modeling Tool: A Python-Based Interface for a Neuromorphic Hardware System

    PubMed Central

    Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz

    2008-01-01

    Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated. PMID:19562085

  13. Horizontal annular flow modelling using a compositional based interface capturing approach

    NASA Astrophysics Data System (ADS)

    Pavlidis, Dimitrios; Xie, Zhizhua; Percival, James; Gomes, Jefferson; Pain, Chris; Matar, Omar

    2014-11-01

    Progress on a consistent approach for interface-capturing in which each component represents a different phase/fluid is described. The aim is to develop a general multi-phase modelling approach based on fully-unstructured meshes that can exploit the latest mesh adaptivity methods, and in which each fluid phase may have a number of components. The method is compared against experimental results for a collapsing water column test case and a convergence study is performed. A number of numerical test cases are undertaken to demonstrate the method's ability to model arbitrary numbers of phases with arbitrary equations of state. The method is then used to simulate horizontal annular flows. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  14. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface.

    PubMed

    Shah, Pranjul; Fritz, Joëlle V; Glaab, Enrico; Desai, Mahesh S; Greenhalgh, Kacy; Frachet, Audrey; Niegowska, Magdalena; Estes, Matthew; Jäger, Christian; Seguin-Devaux, Carole; Zenhausern, Frederic; Wilmes, Paul

    2016-01-01

    Changes in the human gastrointestinal microbiome are associated with several diseases. To infer causality, experiments in representative models are essential, but widely used animal models exhibit limitations. Here we present a modular, microfluidics-based model (HuMiX, human-microbial crosstalk), which allows co-culture of human and microbial cells under conditions representative of the gastrointestinal human-microbe interface. We demonstrate the ability of HuMiX to recapitulate in vivo transcriptional, metabolic and immunological responses in human intestinal epithelial cells following their co-culture with the commensal Lactobacillus rhamnosus GG (LGG) grown under anaerobic conditions. In addition, we show that the co-culture of human epithelial cells with the obligate anaerobe Bacteroides caccae and LGG results in a transcriptional response, which is distinct from that of a co-culture solely comprising LGG. HuMiX facilitates investigations of host-microbe molecular interactions and provides insights into a range of fundamental research questions linking the gastrointestinal microbiome to human health and disease. PMID:27168102

  15. A microfluidics-based in vitro model of the gastrointestinal human–microbe interface

    PubMed Central

    Shah, Pranjul; Fritz, Joëlle V.; Glaab, Enrico; Desai, Mahesh S.; Greenhalgh, Kacy; Frachet, Audrey; Niegowska, Magdalena; Estes, Matthew; Jäger, Christian; Seguin-Devaux, Carole; Zenhausern, Frederic; Wilmes, Paul

    2016-01-01

    Changes in the human gastrointestinal microbiome are associated with several diseases. To infer causality, experiments in representative models are essential, but widely used animal models exhibit limitations. Here we present a modular, microfluidics-based model (HuMiX, human–microbial crosstalk), which allows co-culture of human and microbial cells under conditions representative of the gastrointestinal human–microbe interface. We demonstrate the ability of HuMiX to recapitulate in vivo transcriptional, metabolic and immunological responses in human intestinal epithelial cells following their co-culture with the commensal Lactobacillus rhamnosus GG (LGG) grown under anaerobic conditions. In addition, we show that the co-culture of human epithelial cells with the obligate anaerobe Bacteroides caccae and LGG results in a transcriptional response, which is distinct from that of a co-culture solely comprising LGG. HuMiX facilitates investigations of host–microbe molecular interactions and provides insights into a range of fundamental research questions linking the gastrointestinal microbiome to human health and disease. PMID:27168102

  16. Downsizer - A Graphical User Interface-Based Application for Browsing, Acquiring, and Formatting Time-Series Data for Hydrologic Modeling

    USGS Publications Warehouse

    Ward-Garrison, Christian; Markstrom, Steven L.; Hay, Lauren E.

    2009-01-01

    The U.S. Geological Survey Downsizer is a computer application that selects, downloads, verifies, and formats station-based time-series data for environmental-resource models, particularly the Precipitation-Runoff Modeling System. Downsizer implements the client-server software architecture. The client presents a map-based, graphical user interface that is intuitive to modelers; the server provides streamflow and climate time-series data from over 40,000 measurement stations across the United States. This report is the Downsizer user's manual and provides (1) an overview of the software design, (2) installation instructions, (3) a description of the graphical user interface, (4) a description of selected output files, and (5) troubleshooting information.

  17. A reference model based interface terminology for generic observations in Anatomic Pathology Structured Reports

    PubMed Central

    2014-01-01

    Background Current terminology systems for structured reporting in pathology are more or less focused on tumor pathology. They have not been compiled in a systematic approach, therefore they gather terms of very different granularity. Generic models for terminology development could help in establishing reference terminologies for all fields of anatomic pathology. The core principle of those models is the ontological structure of native speaking terminology. By analyzing the PathLex interface a generic terminology model will be derived. Methods For each element template of PathLex its possible generic nature and its value set was analyzed, looking for the uniqueness or multiplicity of the values in the value sets. The generic terms were mapped to SNOMED-CT terms using "ArtDecor". Results The 488 PathLex element templates for Anatomic Pathology (AP) observations can be reduced to 53 generic templates, leaving out only 17 templates very specific for organ and/or disease. Among those 53 templates 28 are describing UICC-TNM staging, ICD-O-classification, and grading. Further 15 templates describe the results from marker investigations. Almost all of the terms, used in those templates could be mapped to SNOMED CT. All of the generic elements have their "organ specific" counterparts by assigning them to one of 20 organs and invasive or noninvasive cancer, respectively. Studying the structure of generic and specific terms it becomes obvious that any AP observation - occurs always in a context - consists of three basic elements (target of observation, property of observation, additional qualifiers, added by value sets for coded data). Conclusions If a machine-readable terminology is aimed to preserve all the information of native speaking, then two principal solutions exist: - ystematic consideration of all the aspects mentioned above in each single term - ocusing on the generic elements of terms and combining this with the structure of communication, reflecting the non

  18. A micromechanically-based, three-dimensional interface finite element for the modelling of the periodontal ligament.

    PubMed

    Genna, Francesco

    2006-08-01

    Some ideas are presented for the implementation of an interface finite element capable to model in 3-dimensions several mechanical features of the periodontal ligament. Such an element is based on a simple 2-cable micromechanical model, able to reproduce the periodontal ligament stiffness and strength under any loading condition, including the pure torsion of a tooth. A single cable represents a sufficiently populated sample of collagen fibres, each with an initially crimped geometry; a single collagen fibre can provide a mechanical response, in tension, only when it is completely uncoiled. The macroscopic interface behaviour is obtained by statistical integrations over the uncoiled length of each collagen fibre, up to the fibre failure. Such a model can reproduce the periodontal ligament anisotropy due to the variable fibre orientation along the tooth root, its different behaviour in tension/compression/shear, its different behaviour for extrusive/intrusive loading, and so forth. Some numerical examples illustrate the potentialities of this interface element, quite simple in essence but rather complete from an engineering viewpoint. PMID:17144047

  19. Volume-based solvation models out-perform area-based models in combined studies of wild-type and mutated protein-protein interfaces

    PubMed Central

    Bougouffa, Salim; Warwicker, Jim

    2008-01-01

    Background Empirical binding models have previously been investigated for the energetics of protein complexation (ΔG models) and for the influence of mutations on complexation (i.e. differences between wild-type and mutant complexes, ΔΔG models). We construct binding models to directly compare these processes, which have generally been studied separately. Results Although reasonable fit models were found for both ΔG and ΔΔG cases, they differ substantially. In a dataset curated for the absence of mainchain rearrangement upon binding, non-polar area burial is a major determinant of ΔG models. However this ΔG model does not fit well to the data for binding differences upon mutation. Burial of non-polar area is weighted down in fitting of ΔΔG models. These calculations were made with no repacking of sidechains upon complexation, and only minimal packing upon mutation. We investigated the consequences of more extensive packing changes with a modified mean-field packing scheme. Rather than emphasising solvent exposure with relatively extended sidechains, rotamers are selected that exhibit maximal packing with protein. This provides solvent accessible areas for proteins that are much closer to those of experimental structures than the more extended sidechain regime. The new packing scheme increases changes in non-polar burial for mutants compared to wild-type proteins, but does not substantially improve agreement between ΔG and ΔΔG binding models. Conclusion We conclude that solvent accessible area, based on modelled mutant structures, is a poor correlate for ΔΔG upon mutation. A simple volume-based, rather than solvent accessibility-based, model is constructed for ΔG and ΔΔG systems. This shows a more consistent behaviour. We discuss the efficacy of volume, as opposed to area, approaches to describe the energetic consequences of mutations at interfaces. This knowledge can be used to develop simple computational screens for binding in comparative

  20. A comprehensive physiologically based pharmacokinetic knowledgebase and web-based interface for rapid model ranking and querying

    EPA Science Inventory

    Published physiologically based pharmacokinetic (PBPK) models from peer-reviewed articles are often well-parameterized, thoroughly-vetted, and can be utilized as excellent resources for the construction of models pertaining to related chemicals. Specifically, chemical-specific pa...

  1. A Diffuse Interface Model with Immiscibility Preservation

    PubMed Central

    Tiwari, Arpit; Freund, Jonathan B.; Pantano, Carlos

    2013-01-01

    A new, simple, and computationally efficient interface capturing scheme based on a diffuse interface approach is presented for simulation of compressible multiphase flows. Multi-fluid interfaces are represented using field variables (interface functions) with associated transport equations that are augmented, with respect to an established formulation, to enforce a selected interface thickness. The resulting interface region can be set just thick enough to be resolved by the underlying mesh and numerical method, yet thin enough to provide an efficient model for dynamics of well-resolved scales. A key advance in the present method is that the interface regularization is asymptotically compatible with the thermodynamic mixture laws of the mixture model upon which it is constructed. It incorporates first-order pressure and velocity non-equilibrium effects while preserving interface conditions for equilibrium flows, even within the thin diffused mixture region. We first quantify the improved convergence of this formulation in some widely used one-dimensional configurations, then show that it enables fundamentally better simulations of bubble dynamics. Demonstrations include both a spherical bubble collapse, which is shown to maintain excellent symmetry despite the Cartesian mesh, and a jetting bubble collapse adjacent a wall. Comparisons show that without the new formulation the jet is suppressed by numerical diffusion leading to qualitatively incorrect results. PMID:24058207

  2. Mechanics and hydraulics of unsaturated soils: what makes interfaces an indispensable part of a physically-based model

    NASA Astrophysics Data System (ADS)

    Nikooee, E.; Hassanizadeh, S. M.

    2014-12-01

    The foundations of the current theories for hydraulics and mechanics of unsaturated soils have been mainly based on the empirically introduced equations. There are various characteristics of unsaturated soils for which lots of different empirical equations have been proposed such as hydraulic conductivity, water retention curve, and effective stress parameter. One of the remarkable challenges which all current models face is hysteresis, i.e., for a certain matric suction, values of saturation, hydraulic conductivity and effective stress parameter in drying state and wetting are different. Conventional models of hydraulic and mechanical behaviour of unsaturated soils try to account for the hysteresis phenomenon by means of different empirical equations for each hydraulic path. Hassanizadeh and Gray (1993) claimed that the hysteresis in capillary pressure-saturation curves can be modelled through the inclusion of air-water interfaces as a new independent variable [1]. It has recently been stated that the same conjecture can be made for suction stress [2]. Therefore, it seems to better portray hydraulic and mechanical behaviour of unsaturated soils, interfaces are required as an indispensable part of the framework [3, 4]. This presentation aims at introducing the drawbacks of current theories of hydraulics and mechanics of unsaturated soils. For this purpose, the role of interfaces in the mechanics and hydraulics of unsaturated soils is explained and different possibilities to account for the contribution of interfaces are discussed. Finally, current challenges and future research directions are set forth. References[1] Hassanizadeh, S.M. & Gray, W.G.: Thermodynamic basis of capillary pressure in porous media. Water Resour.Res. 29(1993), 3389-3405.[2] Nikooee, E., Habibagahi, G., Hassanizadeh, S.M. & Ghahramani, A.: Effective Stress in unsaturated Soils: a thermodynamic approach based on the interfacial energy and hydromechanical coupling. Transport porous Med. 96

  3. Alloy Interface Interdiffusion Modeled

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Garces, Jorge E.; Abel, Phillip B.

    2003-01-01

    With renewed interest in developing nuclear-powered deep space probes, attention will return to improving the metallurgical processing of potential nuclear fuels so that they remain dimensionally stable over the years required for a successful mission. Previous work on fuel alloys at the NASA Glenn Research Center was primarily empirical, with virtually no continuing research. Even when empirical studies are exacting, they often fail to provide enough insight to guide future research efforts. In addition, from a fundamental theoretical standpoint, the actinide metals (which include materials used for nuclear fuels) pose a severe challenge to modern electronic-structure theory. Recent advances in quantum approximate atomistic modeling, coupled with first-principles derivation of needed input parameters, can help researchers develop new alloys for nuclear propulsion.

  4. Interface transferring mechanism and error modification of FRP-OFBG strain sensor based on standard linear viscoelastic model

    NASA Astrophysics Data System (ADS)

    Li, Jilong; Zhou, Zhi; Ou, Jinping

    2006-03-01

    This paper presents the interface transferring mechanism and error modification of the Fiber Reinforced Polymer-Optical Fiber Bragg Grating (FRP-OFBG) sensing tendons, which including GFRP (Glass Fiber Reinforced Polymer) and CFRP (Carbon Fiber Reinforced Polymer), using standard linear viscoelastic model. The optical fiber is made up of glass, quartz or plastic, et al, which creep strain is very small at room temperature. So the tensile creep compliance of optical fiber is independent of time at room temperature. On the other hand, the FRP (GFRP or CFRP) is composed of a kind of polymeric matrix (epoxy resins or the others) with glass, carbon or aramid fibers, which shear creep strain is dependent of time at room temperature. Hence, the standard linear viscoelastic model is employed to describe the shear creep compliance of FRP along the fiber direction. The expression of interface strain transferring mechanism of FRP-OFBG sensors is derived based on the linear viscoelastic theory and the analytic solution of the error rate is given by the inverse Laplace transform. The effects of FRP viscoelasticity on the error rate of FRP-OFBG sensing tendons are included in the above expression. And the transient and steady-state error modified coefficient of FRP-OFBG sensors are obtained using initial value and final value theorems. Finally, a calculated example is given to explain the correct of theoretical prediction.

  5. A learning scheme for reach to grasp movements: on EMG-based interfaces using task specific motion decoding models.

    PubMed

    Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J; Manolakos, Elias S

    2013-09-01

    A learning scheme based on random forests is used to discriminate between different reach to grasp movements in 3-D space, based on the myoelectric activity of human muscles of the upper-arm and the forearm. Task specificity for motion decoding is introduced in two different levels: Subspace to move toward and object to be grasped. The discrimination between the different reach to grasp strategies is accomplished with machine learning techniques for classification. The classification decision is then used in order to trigger an EMG-based task-specific motion decoding model. Task specific models manage to outperform "general" models providing better estimation accuracy. Thus, the proposed scheme takes advantage of a framework incorporating both a classifier and a regressor that cooperate advantageously in order to split the task space. The proposed learning scheme can be easily used to a series of EMG-based interfaces that must operate in real time, providing data-driven capabilities for multiclass problems, that occur in everyday life complex environments. PMID:25055370

  6. Overview of the Graphical User Interface for the GERM Code (GCR Event-Based Risk Model

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Cucinotta, Francis A.

    2010-01-01

    The descriptions of biophysical events from heavy ions are of interest in radiobiology, cancer therapy, and space exploration. The biophysical description of the passage of heavy ions in tissue and shielding materials is best described by a stochastic approach that includes both ion track structure and nuclear interactions. A new computer model called the GCR Event-based Risk Model (GERM) code was developed for the description of biophysical events from heavy ion beams at the NASA Space Radiation Laboratory (NSRL). The GERM code calculates basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at NSRL for the purpose of simulating space radiobiological effects. For mono-energetic beams, the code evaluates the linear-energy transfer (LET), range (R), and absorption in tissue equivalent material for a given Charge (Z), Mass Number (A) and kinetic energy (E) of an ion. In addition, a set of biophysical properties are evaluated such as the Poisson distribution of ion or delta-ray hits for a specified cellular area, cell survival curves, and mutation and tumor probabilities. The GERM code also calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle. The contributions from primary ion and nuclear secondaries are evaluated. The GERM code accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections, and has been used by the GERM code for application to thick target experiments. The GERM code provides scientists participating in NSRL experiments with the data needed for the interpretation of their

  7. Overview of the Graphical User Interface for the GERMcode (GCR Event-Based Risk Model)

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2010-01-01

    The descriptions of biophysical events from heavy ions are of interest in radiobiology, cancer therapy, and space exploration. The biophysical description of the passage of heavy ions in tissue and shielding materials is best described by a stochastic approach that includes both ion track structure and nuclear interactions. A new computer model called the GCR Event-based Risk Model (GERM) code was developed for the description of biophysical events from heavy ion beams at the NASA Space Radiation Laboratory (NSRL). The GERMcode calculates basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at NSRL for the purpose of simulating space radiobiological effects. For mono-energetic beams, the code evaluates the linear-energy transfer (LET), range (R), and absorption in tissue equivalent material for a given Charge (Z), Mass Number (A) and kinetic energy (E) of an ion. In addition, a set of biophysical properties are evaluated such as the Poisson distribution of ion or delta-ray hits for a specified cellular area, cell survival curves, and mutation and tumor probabilities. The GERMcode also calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle. The contributions from primary ion and nuclear secondaries are evaluated. The GERMcode accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections, and has been used by the GERMcode for application to thick target experiments. The GERMcode provides scientists participating in NSRL experiments with the data needed for the interpretation of their

  8. Microprocessor-based interface for oceanography

    NASA Technical Reports Server (NTRS)

    Hansen, G. R.

    1979-01-01

    Ocean floor imaging system incorporates five identical microprocessor-based interface units each assigned to specific sonar instrument to simplify system. Central control module based on same microprocessor eliminates need for custom tailoring hardware interfaces for each instrument.

  9. A graphical interface based model for wind turbine drive train dynamics

    SciTech Connect

    Manwell, J.F.; McGowan, J.G.; Abdulwahid, U.; Rogers, A.; McNiff, B.

    1996-12-31

    This paper presents a summary of a wind turbine drive train dynamics code that has been under development at the University of Massachusetts, under National Renewable Energy Laboratory (NREL) support. The code is intended to be used to assist in the proper design and selection of drive train components. This work summarizes the development of the equations of motion for the model, and discusses the method of solution. In addition, a number of comparisons with analytical solutions and experimental field data are given. The summary includes conclusions and suggestions for future work on the model. 13 refs., 10 figs.

  10. The Research on Automatic Construction of Domain Model Based on Deep Web Query Interfaces

    NASA Astrophysics Data System (ADS)

    JianPing, Gu

    The integration of services is transparent, meaning that users no longer face the millions of Web services, do not care about the required data stored, but do not need to learn how to obtain these data. In this paper, we analyze the uncertainty of schema matching, and then propose a series of similarity measures. To reduce the cost of execution, we propose the type-based optimization method and schema matching pruning method of numeric data. Based on above analysis, we propose the uncertain schema matching method. The experiments prove the effectiveness and efficiency of our method.

  11. A virtual reality interface for pre-planning of surgical operations based on a customized model of the patient

    NASA Astrophysics Data System (ADS)

    Witkowski, Marcin; Lenar, Janusz; Sitnik, Robert; Verdonschot, Nico

    2012-03-01

    We present a human-computer interface that enables the operator to plan a surgical procedure on the musculoskeletal (MS) model of the patient's lower limbs, send the modified model to the bio-mechanical analysis module, and export the scenario parameters to the surgical navigation system. The interface provides the operator with tools for: importing customized MS model of the patient, cutting bones and manipulating/removal of bony fragments, repositioning muscle insertion points, muscle removal and placing implants. After planning the operator exports the modified MS model for bio-mechanical analysis of the functional outcome. If the simulation result is satisfactory the exported scenario data may be directly used during the actual surgery. The advantages of the developed interface are the possibility of installing it in various hardware configurations and coherent operation regardless of the devices used. The hardware configurations proposed to be used with the interface are: (a) a standard computer keyboard and mouse, and a 2-D display, (b) a touch screen as a single device for both input and output, or (c) a 3-D display and a haptic device for natural manipulation of 3-D objects. The interface may be utilized in two main fields. Experienced surgeons may use it to simulate their intervention plans and prepare input data for a surgical navigation system while student or novice surgeons can use it for simulating results of their hypothetical procedure. The interface has been developed in the TLEMsafe project (www.tlemsafe.eu) funded by the European Commission FP7 program.

  12. Reinventing the energy modelling-policy interface

    NASA Astrophysics Data System (ADS)

    Strachan, Neil; Fais, Birgit; Daly, Hannah

    2016-03-01

    Energy modelling has a crucial underpinning role for policy making, but the modelling-policy interface faces several limitations. A reinvention of this interface would better provide timely, targeted, tested, transparent and iterated insights from such complex multidisciplinary tools.

  13. Transport, Interfaces, and Modeling in Amorphous Silicon Based Solar Cells: Final Technical Report, 11 February 2002 - 30 September 2006

    SciTech Connect

    Schiff, E. A.

    2008-10-01

    Results for a-Si characteristics/modeling; photocarrier drift mobilities in a-Si;H, ..mu..c-Si:H, CIGS; hole-conducting polymers as p-layer for a-Si and c-Si; IR spectra of p/i and n/i interfaces in a-Si.

  14. DEVELOPMENT OF A CHEMICAL PROCESS MODELING ENVIRONMENT BASED ON CAPE-OPEN INTERFACE STANDARDS AND THE MICROSOFT .NET FRAMEWORK

    EPA Science Inventory

    Chemical process simulation has long been used as a design tool in the development of chemical plants, and has long been considered a means to evaluate different design options. With the advent of large scale computer networks and interface models for program components, it is po...

  15. Transitions in a probabilistic interface growth model

    NASA Astrophysics Data System (ADS)

    Alves, S. G.; Moreira, J. G.

    2011-04-01

    We study a generalization of the Wolf-Villain (WV) interface growth model based on a probabilistic growth rule. In the WV model, particles are randomly deposited onto a substrate and subsequently move to a position nearby where the binding is strongest. We introduce a growth probability which is proportional to a power of the number ni of bindings of the site i: p_i\\propto n_i^\

  16. A Cross-Cultural Usability Study on the Internationalization of User Interfaces Based on an Empirical Five Factor Model

    ERIC Educational Resources Information Center

    Chakraborty, Joyram

    2009-01-01

    With the internationalization of e-commerce, it is no longer viable to design one user interface for all environments. Web-based applications and services can be accessed from all over the globe. To account for this globalization process, software developers need to understand that simply accounting for language translation of their websites for…

  17. An interface tracking model for droplet electrocoalescence.

    SciTech Connect

    Erickson, Lindsay Crowl

    2013-09-01

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms between approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.

  18. Computational design of patterned interfaces using reduced order models

    PubMed Central

    Vattré, A. J.; Abdolrahim, N.; Kolluri, K.; Demkowicz, M. J.

    2014-01-01

    Patterning is a familiar approach for imparting novel functionalities to free surfaces. We extend the patterning paradigm to interfaces between crystalline solids. Many interfaces have non-uniform internal structures comprised of misfit dislocations, which in turn govern interface properties. We develop and validate a computational strategy for designing interfaces with controlled misfit dislocation patterns by tailoring interface crystallography and composition. Our approach relies on a novel method for predicting the internal structure of interfaces: rather than obtaining it from resource-intensive atomistic simulations, we compute it using an efficient reduced order model based on anisotropic elasticity theory. Moreover, our strategy incorporates interface synthesis as a constraint on the design process. As an illustration, we apply our approach to the design of interfaces with rapid, 1-D point defect diffusion. Patterned interfaces may be integrated into the microstructure of composite materials, markedly improving performance. PMID:25169868

  19. XRLSim model specifications and user interfaces

    SciTech Connect

    Young, K.D.; Breitfeller, E.; Woodruff, J.P.

    1989-12-01

    The two chapters in this manual document the engineering development leading to modification of XRLSim -- an Ada-based computer program developed to provide a realistic simulation of an x-ray laser weapon platform. Complete documentation of the FY88 effort to develop XRLSim was published in April 1989, as UCID-21736:XRLSIM Model Specifications and User Interfaces, by L. C. Ng, D. T. Gavel, R. M. Shectman. P. L. Sholl, and J. P. Woodruff. The FY89 effort has been primarily to enhance the x-ray laser weapon-platform model fidelity. Chapter 1 of this manual details enhancements made to XRLSim model specifications during FY89. Chapter 2 provides the user with changes in user interfaces brought about by these enhancements. This chapter is offered as a series of deletions, replacements, and insertions to the original document to enable XRLSim users to implement enhancements developed during FY89.

  20. Geographic information system/watershed model interface

    USGS Publications Warehouse

    Fisher, Gary T.

    1989-01-01

    Geographic information systems allow for the interactive analysis of spatial data related to water-resources investigations. A conceptual design for an interface between a geographic information system and a watershed model includes functions for the estimation of model parameter values. Design criteria include ease of use, minimal equipment requirements, a generic data-base management system, and use of a macro language. An application is demonstrated for a 90.1-square-kilometer subbasin of the Patuxent River near Unity, Maryland, that performs automated derivation of watershed parameters for hydrologic modeling.

  1. EDITORIAL: Sensors based on interfaces

    NASA Astrophysics Data System (ADS)

    Camassel, Jean; Soukiassian, Patrick G.

    2007-12-01

    Sensors are specific analog devices that convert a physical quantity, like the temperature or external pressure or concentration of carbon monoxide in a confined atmosphere, into an electrical signal. Considered in this way, every sensor is then a part of the artificial interface, which connects the human world to the world of machines. The other side of the interface is represented by actuators. Most often, after processing the data they are used to convert the out-coming electrical power into counteracting physical action. In the last few years, thanks to inexpensive silicon technology, enormous capability for data processing has been developed and the world of machines has become increasingly invasive. The world of sensors has become increasingly complex too. Applications range from classical measurements of the temperature, vibrations, shocks and acceleration to more recent chemical and bio-sensing technologies. Chemical sensors are used to detect the presence of specific, generally toxic, chemical species. To measure their concentration, one uses some specific property, generally a physical one, like the intensity of infrared absorption bands. Bio-sensors are new, more complex, devices that combine a bio-receptor with a physical transducer. The bio-receptor is a molecule (for instance, an enzyme like glucose oxidase) that can recognize a specific target (glucose molecules in the case of glucose oxidase). The enzyme must be fixed on the transducer and, as a consequence of recognition, the transducer must convert the event into a measurable analytical signal. A common feature of many chemical and bio-sensors is that they require a large surface of interaction with the outside world. For that reason and in order to increase efficiency, either nanoparticles or pores or a combination of both, made from various materials including (but not limited to) porous silicon, are often used as the functional transducer interface. The reviews in this Cluster Issue of Journal

  2. Atomistic modeling of dislocation-interface interactions

    SciTech Connect

    Wang, Jian; Valone, Steven M; Beyerlein, Irene J; Misra, Amit; Germann, T. C.

    2011-01-31

    Using atomic scale models and interface defect theory, we first classify interface structures into a few types with respect to geometrical factors, then study the interfacial shear response and further simulate the dislocation-interface interactions using molecular dynamics. The results show that the atomic scale structural characteristics of both heterophases and homophases interfaces play a crucial role in (i) their mechanical responses and (ii) the ability of incoming lattice dislocations to transmit across them.

  3. A graphical, rule based robotic interface system

    NASA Technical Reports Server (NTRS)

    Mckee, James W.; Wolfsberger, John

    1988-01-01

    The ability of a human to take control of a robotic system is essential in any use of robots in space in order to handle unforeseen changes in the robot's work environment or scheduled tasks. But in cases in which the work environment is known, a human controlling a robot's every move by remote control is both time consuming and frustrating. A system is needed in which the user can give the robotic system commands to perform tasks but need not tell the system how. To be useful, this system should be able to plan and perform the tasks faster than a telerobotic system. The interface between the user and the robot system must be natural and meaningful to the user. A high level user interface program under development at the University of Alabama, Huntsville, is described. A graphical interface is proposed in which the user selects objects to be manipulated by selecting representations of the object on projections of a 3-D model of the work environment. The user may move in the work environment by changing the viewpoint of the projections. The interface uses a rule based program to transform user selection of items on a graphics display of the robot's work environment into commands for the robot. The program first determines if the desired task is possible given the abilities of the robot and any constraints on the object. If the task is possible, the program determines what movements the robot needs to make to perform the task. The movements are transformed into commands for the robot. The information defining the robot, the work environment, and how objects may be moved is stored in a set of data bases accessible to the program and displayable to the user.

  4. CAPRI (Computational Analysis PRogramming Interface): A Solid Modeling Based Infra-Structure for Engineering Analysis and Design Simulations

    NASA Technical Reports Server (NTRS)

    Haimes, Robert; Follen, Gregory J.

    1998-01-01

    CAPRI is a CAD-vendor neutral application programming interface designed for the construction of analysis and design systems. By allowing access to the geometry from within all modules (grid generators, solvers and post-processors) such tasks as meshing on the actual surfaces, node enrichment by solvers and defining which mesh faces are boundaries (for the solver and visualization system) become simpler. The overall reliance on file 'standards' is minimized. This 'Geometry Centric' approach makes multi-physics (multi-disciplinary) analysis codes much easier to build. By using the shared (coupled) surface as the foundation, CAPRI provides a single call to interpolate grid-node based data from the surface discretization in one volume to another. Finally, design systems are possible where the results can be brought back into the CAD system (and therefore manufactured) because all geometry construction and modification are performed using the CAD system's geometry kernel.

  5. A Process Based Approach to Modeling Hydrogen Sulfide Emissions Across the Air-Surface Interface of Manure from Concentrated Animal Feeding Operations

    NASA Astrophysics Data System (ADS)

    Rumsey, I. C.; Aneja, V.

    2009-12-01

    Hydrogen sulfide (H2S) emissions from concentrated animal feeding operations (CAFOs) are an important concern due to their contribution to odor and their potential to form PMfine. CAFO manure surface emissions occur from barns floors, during waste storage and treatment, and following land application. There is a need for a process based model, which will provide a method for quantifying emissions in different production, management and environmental conditions. A process based air-surface interface mass transfer model with chemical reactions was developed based on theoretical principles and related published information on H2S emissions. Different approaches were used to calculate the three main components of the model: the dissociation constant, the Henry’s law constant, and the overall mass transport coefficient. The dissociation constant was calculated based on thermodynamic principles and was corrected for the ionic strength of the manure. Similarly, the Henry’s law constant was also calculated based on thermodynamic principles. The overall mass transfer coefficient was developed using a previously published air-surface interface mass transport model, which considered the most important properties affecting mass transport to be the diffusivity of H2S in air, the air viscosity, and the air density. These parameters were modeled using dimensional analysis, which identified the variables that needed to be measured to determine the relevant constant and exponents values. By using the previously published study’s model and their measured constant and exponent values, an appropriate overall mass transfer coefficient was developed. Sensitivity analysis of the process based air-surface interface mass transfer model showed predicted fluxes to be most dependent on manure sulfide concentration and manure pH, and to a smaller extent on wind speed and manure temperature. Model predicted fluxes were compared with measured H2S flux and meteorological and physiochemical

  6. An Agent-Based Interface to Terrestrial Ecological Forecasting

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Nemani, Ramakrishna; Pang, Wan-Lin; Votava, Petr; Etzioni, Oren

    2004-01-01

    This paper describes a flexible agent-based ecological forecasting system that combines multiple distributed data sources and models to provide near-real-time answers to questions about the state of the Earth system We build on novel techniques in automated constraint-based planning and natural language interfaces to automatically generate data products based on descriptions of the desired data products.

  7. Transistor-based interface circuitry

    DOEpatents

    Taubman, Matthew S.

    2004-02-24

    Among the embodiments of the present invention is an apparatus that includes a transistor, a servo device, and a current source. The servo device is operable to provide a common base mode of operation of the transistor by maintaining an approximately constant voltage level at the transistor base. The current source is operable to provide a bias current to the transistor. A first device provides an input signal to an electrical node positioned between the emitter of the transistor and the current source. A second device receives an output signal from the collector of the transistor.

  8. Transistor-based interface circuitry

    DOEpatents

    Taubman, Matthew S.

    2007-02-13

    Among the embodiments of the present invention is an apparatus that includes a transistor, a servo device, and a current source. The servo device is operable to provide a common base mode of operation of the transistor by maintaining an approximately constant voltage level at the transistor base. The current source is operable to provide a bias current to the transistor. A first device provides an input signal to an electrical node positioned between the emitter of the transistor and the current source. A second device receives an output signal from the collector of the transistor.

  9. Large petroleum data bases: The three I's - Integrity, integration, interface

    SciTech Connect

    Stark, P.H. )

    1991-03-01

    Improved cost effectiveness and enhanced productivity are the primary benefits to be gained from the management and application of large petroleum data bases during the 1990s. Achievement of these benefits depends on three critical data base management functions: integrity, integration, and interface. This paper describes strategies and tactics that are being employed to successively manage these functions in US commercial E and P and downstream data bases. Data base integrity is the foundation for successful data base utilization. Rising user expectations demand high data base quality standards. Key activities include (1) the assigning of unique identifiers and standard data codes, (2) the verifying of accurate identification location, and (3) the compiling of complete and accurate technical data. Integration is the hot data base topic for the 1990s. Both data and software must be addressed to realize cost effective systems. This function's activities include (1) the assigning of common standard codes to data bases, (2) the integrating of physical data in master data bases, (3) the capturing and indexing of graphics files through scanned image technology, and (4) the developing of data base connectivity and standard data models. Establishing satisfactory interface between data base and users is required to achieve productivity. User interface with data is facilitated with GIS spatial data management systems. Vendors are cooperating to interface data with workstations and applications. Potential benefits of high quality, integrated data bases, and a GIS user interface are illustrated for case histories in the Austin Chalk and Texas Gulf Coast.

  10. Ray tracing in discontinuous velocity model with implicit Interface

    NASA Astrophysics Data System (ADS)

    Zhang, Jianxing; Yang, Qin; Meng, Xianhai; Li, Jigang

    2016-07-01

    Ray tracing in the velocity model containing complex discontinuities is still facing many challenges. The main difficulty arises from the detection of the spatial relationship between the rays and the interfaces that are usually described in non-linear parametric forms. We propose a novel model representation method that can facilitate the implementation of classical shooting-ray methods. In the representation scheme, each interface is expressed as the zero contour of a signed distance field. A multi-copy strategy is adopted to describe the volumetric properties within blocks. The implicit description of the interface makes it easier to detect the ray-interface intersection. The direct calculation of the intersection point is converted into the problem of judging the signs of a ray segment's endpoints. More importantly, the normal to the interface at the intersection point can be easily acquired according to the signed distance field of the interface. The multiple storage of the velocity property in the proximity of the interface can provide accurate and unambiguous velocity information of the intersection point. Thus, the departing ray path can be determined easily and robustly. In addition, the new representation method can describe velocity models containing very complex geological structures, such as faults, salt domes, intrusions, and pinches, without any simplification. The examples on synthetic and real models validate the robustness and accuracy of the ray tracing based on the proposed model representation scheme.

  11. Unifying binary fluid diffuse-interface models in the sharp-interface limit

    NASA Astrophysics Data System (ADS)

    Sibley, David; Nold, Andreas; Kalliadasis, Serafim

    2013-11-01

    Flows involving free boundaries occur widely in both nature and technological applications, existing at liquid-gas interfaces (e.g. between liquid water and water vapour) or between different immiscible fluids (e.g. oil and water, and termed a binary fluid). To understand the asymptotic behaviour near a contact line, a liquid-gas diffuse-interface model has been investigated recently. In contrast, here we investigate the behaviour between two ostensibly immiscible fluids, a binary fluid, using related models where the interface has a thin but finite thickness. Quantities such as the mass fraction of the two fluid components are modelled as varying smoothly but rapidly in the interfacial region. There has been a wide variety of models used for this situation, based on Cahn-Hilliard or Allen-Cahn theories coupled to hydrodynamic equations, and we consider the effect of these differences using matched asymptotic methods in the important sharp-interface limit, where the interface thickness goes to zero. Our aim is to understand which models represent better the classical hydrodynamic model and associated free-surface boundary conditions.

  12. Microcanonical model for interface formation

    SciTech Connect

    Rucklidge, A.; Zaleski, S.

    1988-04-01

    We describe a new cellular automaton model which allows us to simulate separation of phases. The model is an extension of existing cellular automata for the Ising model, such as Q2R. It conserves particle number and presents the qualitative features of spinodal decomposition. The dynamics is deterministic and does not require random number generators. The spins exchange energy with small local reservoirs or demons. The rate of relaxation to equilibrium is investigated, and the results are compared to the Lifshitz-Slyozov theory.

  13. Modeling Europa's Ice-Ocean Interface

    NASA Astrophysics Data System (ADS)

    Elsenousy, A.; Vance, S.; Bills, B. G.

    2014-12-01

    This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.

  14. Analysing organic transistors based on interface approximation

    SciTech Connect

    Akiyama, Yuto; Mori, Takehiko

    2014-01-15

    Temperature-dependent characteristics of organic transistors are analysed thoroughly using interface approximation. In contrast to amorphous silicon transistors, it is characteristic of organic transistors that the accumulation layer is concentrated on the first monolayer, and it is appropriate to consider interface charge rather than band bending. On the basis of this model, observed characteristics of hexamethylenetetrathiafulvalene (HMTTF) and dibenzotetrathiafulvalene (DBTTF) transistors with various surface treatments are analysed, and the trap distribution is extracted. In turn, starting from a simple exponential distribution, we can reproduce the temperature-dependent transistor characteristics as well as the gate voltage dependence of the activation energy, so we can investigate various aspects of organic transistors self-consistently under the interface approximation. Small deviation from such an ideal transistor operation is discussed assuming the presence of an energetically discrete trap level, which leads to a hump in the transfer characteristics. The contact resistance is estimated by measuring the transfer characteristics up to the linear region.

  15. A Web Interface for Eco System Modeling

    NASA Astrophysics Data System (ADS)

    McHenry, K.; Kooper, R.; Serbin, S. P.; LeBauer, D. S.; Desai, A. R.; Dietze, M. C.

    2012-12-01

    We have developed the Predictive Ecosystem Analyzer (PEcAn) as an open-source scientific workflow system and ecoinformatics toolbox that manages the flow of information in and out of regional-scale terrestrial biosphere models, facilitates heterogeneous data assimilation, tracks data provenance, and enables more effective feedback between models and field research. The over-arching goal of PEcAn is to make otherwise complex analyses transparent, repeatable, and accessible to a diverse array of researchers, allowing both novice and expert users to focus on using the models to examine complex ecosystems rather than having to deal with complex computer system setup and configuration questions in order to run the models. Through the developed web interface we hide much of the data and model details and allow the user to simply select locations, ecosystem models, and desired data sources as inputs to the model. Novice users are guided by the web interface through setting up a model execution and plotting the results. At the same time expert users are given enough freedom to modify specific parameters before the model gets executed. This will become more important as more and more models are added to the PEcAn workflow as well as more and more data that will become available as NEON comes online. On the backend we support the execution of potentially computationally expensive models on different High Performance Computers (HPC) and/or clusters. The system can be configured with a single XML file that gives it the flexibility needed for configuring and running the different models on different systems using a combination of information stored in a database as well as pointers to files on the hard disk. While the web interface usually creates this configuration file, expert users can still directly edit it to fine tune the configuration.. Once a workflow is finished the web interface will allow for the easy creation of plots over result data while also allowing the user to

  16. Molecular modeling of cracks at interfaces in nanoceramic composites

    NASA Astrophysics Data System (ADS)

    Pavia, F.; Curtin, W. A.

    2013-10-01

    Toughness in Ceramic Matrix Composites (CMCs) is achieved if crack deflection can occur at the fiber/matrix interface, preventing crack penetration into the fiber and enabling energy-dissipating fiber pullout. To investigate toughening in nanoscale CMCs, direct atomistic models are used to study how matrix cracks behave as a function of the degree of interfacial bonding/sliding, as controlled by the density of C interstitial atoms, at the interface between carbon nanotubes (CNTs) and a diamond matrix. Under all interface conditions studied, incident matrix cracks do not penetrate into the nanotube. Under increased loading, weaker interfaces fail in shear while stronger interfaces do not fail and, instead, the CNT fails once the stress on the CNT reaches its tensile strength. An analytic shear lag model captures all of the micromechanical details as a function of loading and material parameters. Interface deflection versus fiber penetration is found to depend on the relative bond strengths of the interface and the CNT, with CNT failure occurring well below the prediction of the toughness-based continuum He-Hutchinson model. The shear lag model, in contrast, predicts the CNT failure point and shows that the nanoscale embrittlement transition occurs at an interface shear strength scaling as τs~ɛσ rather than τs~σ typically prevailing for micron scale composites, where ɛ and σ are the CNT failure strain and stress, respectively. Interface bonding also lowers the effective fracture strength in SWCNTs, due to formation of defects, but does not play a role in DWCNTs having interwall coupling, which are weaker than SWCNTs but less prone to damage in the outerwall.

  17. User interface for ground-water modeling: Arcview extension

    USGS Publications Warehouse

    Tsou, M.-S.; Whittemore, D.O.

    2001-01-01

    Numerical simulation for ground-water modeling often involves handling large input and output data sets. A geographic information system (GIS) provides an integrated platform to manage, analyze, and display disparate data and can greatly facilitate modeling efforts in data compilation, model calibration, and display of model parameters and results. Furthermore, GIS can be used to generate information for decision making through spatial overlay and processing of model results. Arc View is the most widely used Windows-based GIS software that provides a robust user-friendly interface to facilitate data handling and display. An extension is an add-on program to Arc View that provides additional specialized functions. An Arc View interface for the ground-water flow and transport models MODFLOW and MT3D was built as an extension for facilitating modeling. The extension includes preprocessing of spatially distributed (point, line, and polygon) data for model input and postprocessing of model output. An object database is used for linking user dialogs and model input files. The Arc View interface utilizes the capabilities of the 3D Analyst extension. Models can be automatically calibrated through the Arc View interface by external linking to such programs as PEST. The efficient pre- and postprocessing capabilities and calibration link were demonstrated for ground-water modeling in southwest Kansas.

  18. Monitoring and Control Interface Based on Virtual Sensors

    PubMed Central

    Escobar, Ricardo F.; Adam-Medina, Manuel; García-Beltrán, Carlos D.; Olivares-Peregrino, Víctor H.; Juárez-Romero, David; Guerrero-Ramírez, Gerardo V.

    2014-01-01

    In this article, a toolbox based on a monitoring and control interface (MCI) is presented and applied in a heat exchanger. The MCI was programed in order to realize sensor fault detection and isolation and fault tolerance using virtual sensors. The virtual sensors were designed from model-based high-gain observers. To develop the control task, different kinds of control laws were included in the monitoring and control interface. These control laws are PID, MPC and a non-linear model-based control law. The MCI helps to maintain the heat exchanger under operation, even if a temperature outlet sensor fault occurs; in the case of outlet temperature sensor failure, the MCI will display an alarm. The monitoring and control interface is used as a practical tool to support electronic engineering students with heat transfer and control concepts to be applied in a double-pipe heat exchanger pilot plant. The method aims to teach the students through the observation and manipulation of the main variables of the process and by the interaction with the monitoring and control interface (MCI) developed in LabVIEW©. The MCI provides the electronic engineering students with the knowledge of heat exchanger behavior, since the interface is provided with a thermodynamic model that approximates the temperatures and the physical properties of the fluid (density and heat capacity). An advantage of the interface is the easy manipulation of the actuator for an automatic or manual operation. Another advantage of the monitoring and control interface is that all algorithms can be manipulated and modified by the users. PMID:25365462

  19. Monitoring and control interface based on virtual sensors.

    PubMed

    Escobar, Ricardo F; Adam-Medina, Manuel; García-Beltrán, Carlos D; Olivares-Peregrino, Víctor H; Juárez-Romero, David; Guerrero-Ramírez, Gerardo V

    2014-01-01

    In this article, a toolbox based on a monitoring and control interface (MCI) is presented and applied in a heat exchanger. The MCI was programed in order to realize sensor fault detection and isolation and fault tolerance using virtual sensors. The virtual sensors were designed from model-based high-gain observers. To develop the control task, different kinds of control laws were included in the monitoring and control interface. These control laws are PID, MPC and a non-linear model-based control law. The MCI helps to maintain the heat exchanger under operation, even if a temperature outlet sensor fault occurs; in the case of outlet temperature sensor failure, the MCI will display an alarm. The monitoring and control interface is used as a practical tool to support electronic engineering students with heat transfer and control concepts to be applied in a double-pipe heat exchanger pilot plant. The method aims to teach the students through the observation and manipulation of the main variables of the process and by the interaction with the monitoring and control interface (MCI) developed in LabVIEW©. The MCI provides the electronic engineering students with the knowledge of heat exchanger behavior, since the interface is provided with a thermodynamic model that approximates the temperatures and the physical properties of the fluid (density and heat capacity). An advantage of the interface is the easy manipulation of the actuator for an automatic or manual operation. Another advantage of the monitoring and control interface is that all algorithms can be manipulated and modified by the users. PMID:25365462

  20. Internet-based interface for STRMDEPL08

    USGS Publications Warehouse

    Reeves, Howard W.; Asher, A. Jeremiah

    2010-01-01

    The core of the computer program STRMDEPL08 that estimates streamflow depletion by a pumping well with one of four analytical solutions was re-written in the Javascript software language and made available through an internet-based interface (web page). In the internet-based interface, the user enters data for one of the four analytical solutions, Glover and Balmer (1954), Hantush (1965), Hunt (1999), and Hunt (2003), and the solution is run for constant pumping for a desired number of simulation days. Results are returned in tabular form to the user. For intermittent pumping, the interface allows the user to request that the header information for an input file for the stand-alone executable STRMDEPL08 be created. The user would add the pumping information to this header information and run the STRMDEPL08 executable that is available for download through the U.S. Geological Survey. Results for the internet-based and stand-alone versions of STRMDEPL08 are shown to match.

  1. A damage mechanics based general purpose interface/contact element

    NASA Astrophysics Data System (ADS)

    Yan, Chengyong

    Most of the microelectronics packaging structures consist of layered substrates connected with bonding materials, such as solder or epoxy. Predicting the thermomechanical behavior of these multilayered structures is a challenging task in electronic packaging engineering. In a layered structure the most complex part is always the interfaces between the strates. Simulating the thermo-mechanical behavior of such interfaces, is the main theme of this dissertation. The most commonly used solder material, Pb-Sn alloy, has a very low melting temperature 180sp°C, so that the material demonstrates a highly viscous behavior. And, creep usually dominates the failure mechanism. Hence, the theory of viscoplasticity is adapted to describe the constitutive behavior. In a multilayered assembly each layer has a different coefficient of thermal expansion. Under thermal cycling, due to heat dissipated from circuits, interfaces and interconnects experience low cycle fatigue. Presently, the state-of-the art damage mechanics model used for fatigue life predictions is based on Kachanov (1986) continuum damage model. This model uses plastic strain as a damage criterion. Since plastic strain is a stress path dependent value, the criterion does not yield unique damage values for the same state of stress. In this dissertation a new damage evolution equation based on the second law of thermodynamic is proposed. The new criterion is based on the entropy of the system and it yields unique damage values for all stress paths to the final state of stress. In the electronics industry, there is a strong desire to develop fatigue free interconnections. The proposed interface/contact element can also simulate the behavior of the fatigue free Z-direction thin film interconnections as well as traditional layered interconnects. The proposed interface element can simulate behavior of a bonded interface or unbonded sliding interface, also called contact element. The proposed element was verified against

  2. RSVP Keyboard: An EEG Based Typing Interface

    PubMed Central

    Orhan, Umut; Hild, Kenneth E.; Erdogmus, Deniz; Roark, Brian; Oken, Barry; Fried-Oken, Melanie

    2013-01-01

    Humans need communication. The desire to communicate remains one of the primary issues for people with locked-in syndrome (LIS). While many assistive and augmentative communication systems that use various physiological signals are available commercially, the need is not satisfactorily met. Brain interfaces, in particular, those that utilize event related potentials (ERP) in electroencephalography (EEG) to detect the intent of a person noninvasively, are emerging as a promising communication interface to meet this need where existing options are insufficient. Existing brain interfaces for typing use many repetitions of the visual stimuli in order to increase accuracy at the cost of speed. However, speed is also crucial and is an integral portion of peer-to-peer communication; a message that is not delivered timely often looses its importance. Consequently, we utilize rapid serial visual presentation (RSVP) in conjunction with language models in order to assist letter selection during the brain-typing process with the final goal of developing a system that achieves high accuracy and speed simultaneously. This paper presents initial results from the RSVP Keyboard system that is under development. These initial results on healthy and locked-in subjects show that single-trial or few-trial accurate letter selection may be possible with the RSVP Keyboard paradigm. PMID:24500542

  3. Ab initio diffuse-interface model for lithiated electrode interface evolution

    NASA Astrophysics Data System (ADS)

    Stournara, Maria E.; Kumar, Ravi; Qi, Yue; Sheldon, Brian W.

    2016-07-01

    The study of chemical segregation at interfaces, and in particular the ability to predict the thickness of segregated layers via analytical expressions or computational modeling, is a fundamentally challenging topic in the design of novel heterostructured materials. This issue is particularly relevant for the phase-field (PF) methodology, which has become a prominent tool for describing phase transitions. These models rely on phenomenological parameters that pertain to the interfacial energy and thickness, quantities that cannot be experimentally measured. Instead of back-calculating these parameters from experimental data, here we combine a set of analytical expressions based on the Cahn-Hilliard approach with ab initio calculations to compute the gradient energy parameter κ and the thickness λ of the segregated Li layer at the LixSi-Cu interface. With this bottom-up approach we calculate the thickness λ of the Li diffuse interface to be on the order of a few nm, in agreement with prior experimental secondary ion mass spectrometry observations. Our analysis indicates that Li segregation is primarily driven by solution thermodynamics, while the strain contribution in this system is relatively small. This combined scheme provides an essential first step in the systematic evaluation of the thermodynamic parameters of the PF methodology, and we believe that it can serve as a framework for the development of quantitative interface models in the field of Li-ion batteries.

  4. Ab initio diffuse-interface model for lithiated electrode interface evolution.

    PubMed

    Stournara, Maria E; Kumar, Ravi; Qi, Yue; Sheldon, Brian W

    2016-07-01

    The study of chemical segregation at interfaces, and in particular the ability to predict the thickness of segregated layers via analytical expressions or computational modeling, is a fundamentally challenging topic in the design of novel heterostructured materials. This issue is particularly relevant for the phase-field (PF) methodology, which has become a prominent tool for describing phase transitions. These models rely on phenomenological parameters that pertain to the interfacial energy and thickness, quantities that cannot be experimentally measured. Instead of back-calculating these parameters from experimental data, here we combine a set of analytical expressions based on the Cahn-Hilliard approach with ab initio calculations to compute the gradient energy parameter κ and the thickness λ of the segregated Li layer at the Li_{x}Si-Cu interface. With this bottom-up approach we calculate the thickness λ of the Li diffuse interface to be on the order of a few nm, in agreement with prior experimental secondary ion mass spectrometry observations. Our analysis indicates that Li segregation is primarily driven by solution thermodynamics, while the strain contribution in this system is relatively small. This combined scheme provides an essential first step in the systematic evaluation of the thermodynamic parameters of the PF methodology, and we believe that it can serve as a framework for the development of quantitative interface models in the field of Li-ion batteries. PMID:27575197

  5. Individual-Based Modeling of Tuberculosis in a User-Friendly Interface: Understanding the Epidemiological Role of Population Heterogeneity in a City

    PubMed Central

    Prats, Clara; Montañola-Sales, Cristina; Gilabert-Navarro, Joan F.; Valls, Joaquim; Casanovas-Garcia, Josep; Vilaplana, Cristina; Cardona, Pere-Joan; López, Daniel

    2016-01-01

    For millennia tuberculosis (TB) has shown a successful strategy to survive, making it one of the world’s deadliest infectious diseases. This resilient behavior is based not only on remaining hidden in most of the infected population, but also by showing slow evolution in most sick people. The course of the disease within a population is highly related to its heterogeneity. Thus, classic epidemiological approaches with a top-down perspective have not succeeded in understanding its dynamics. In the past decade a few individual-based models were built, but most of them preserved a top-down view that makes it difficult to study a heterogeneous population. We propose an individual-based model developed with a bottom-up approach to studying the dynamics of pulmonary TB in a certain population, considered constant. Individuals may belong to the following classes: healthy, infected, sick, under treatment, and treated with a probability of relapse. Several variables and parameters account for their age, origin (native or immigrant), immunodeficiency, diabetes, and other risk factors (smoking and alcoholism). The time within each infection state is controlled, and sick individuals may show a cavitated disease or not that conditions infectiousness. It was implemented in NetLogo because it allows non-modelers to perform virtual experiments with a user-friendly interface. The simulation was conducted with data from Ciutat Vella, a district of Barcelona with an incidence of 67 TB cases per 100,000 inhabitants in 2013. Several virtual experiments were performed to relate the disease dynamics with the structure of the infected subpopulation (e.g., the distribution of infected times). Moreover, the short-term effect of health control policies on modifying that structure was studied. Results show that the characteristics of the population are crucial for the local epidemiology of TB. The developed user-friendly tool is ready to test control strategies of disease in any city in the

  6. The effect of interface properties on nickel base alloy composites

    NASA Technical Reports Server (NTRS)

    Groves, M.; Grossman, T.; Senemeier, M.; Wright, K.

    1995-01-01

    This program was performed to assess the extent to which mechanical behavior models can predict the properties of sapphire fiber/nickel aluminide matrix composites and help guide their development by defining improved combinations of matrix and interface coating. The program consisted of four tasks: 1) selection of the matrices and interface coating constituents using a modeling-based approach; 2) fabrication of the selected materials; 3) testing and evaluation of the materials; and 4) evaluation of the behavior models to develop recommendations. Ni-50Al and Ni-20AI-30Fe (a/o) matrices were selected which gave brittle and ductile behavior, respectively, and an interface coating of PVD YSZ was selected which provided strong bonding to the sapphire fiber. Significant fiber damage and strength loss was observed in the composites which made straightforward comparison of properties with models difficult. Nevertheless, the models selected generally provided property predictions which agreed well with results when fiber degradation was incorporated. The presence of a strong interface bond was felt to be detrimental in the NiAI MMC system where low toughness and low strength were observed.

  7. Improved Sharp Interface Models in Coastal Aquifers of Finite Dimensions

    NASA Astrophysics Data System (ADS)

    Christelis, Vasileios; Mantoglou, Aristotelis

    2013-04-01

    Coastal aquifer management often involves aquifers of finite dimensions where optimal pumping rates must be calculated through a combined simulation-optimization procedure. Variable-density numerical models are considered more exact than sharp interface models as they better describe the governing flow and transport equations. However, such models are not always preferable in pumping optimization studies, due to their complexity and computational burden. On the other hand, sharp interface models are approximate and can lead to large errors if they are not applied properly, particularly when model boundaries are not treated correctly. The present paper proposes improved sharp interface models considering aquifer boundaries in a proper way. Two sharp interface models are investigated based on the single potential formulation and the Ghyben-Herzberg relation. The first model (Strack, 1976) is based on the assumption of a semi-infinite aquifer with a sea-boundary only. The second model (Mantoglou, 2003) is based on an analytical solution developed for coastal aquifers of finite size and accounts for inland and lateral aquifer boundaries. Next, both models are modified using an empirical correction factor (similar to Pool and Carrera, 2011) which accounts for mixing. A simple pumping optimization problem with a single well in a confined coastal aquifer of finite size with four boundaries (sea, inland and lateral impervious boundaries) is employed. The constraint prevents the toe of the interface to reach the well and the optimal pumping rates are calculated for different locations of the pumping well and different combinations of aquifer parameters. Then the results of the sharp interface models are compared to the 'true' results of the corresponding variable-density numerical model in order to evaluate the performance of the sharp interface models. The results indicate that when the location of the well is close to the sea-boundary, the semi-infinite and the finite

  8. Modelling interfacial cracking with non-matching cohesive interface elements

    NASA Astrophysics Data System (ADS)

    Nguyen, Vinh Phu; Nguyen, Chi Thanh; Bordas, Stéphane; Heidarpour, Amin

    2016-07-01

    Interfacial cracking occurs in many engineering problems such as delamination in composite laminates, matrix/interface debonding in fibre reinforced composites etc. Computational modelling of these interfacial cracks usually employs compatible or matching cohesive interface elements. In this paper, incompatible or non-matching cohesive interface elements are proposed for interfacial fracture mechanics problems. They allow non-matching finite element discretisations of the opposite crack faces thus lifting the constraint on the compatible discretisation of the domains sharing the interface. The formulation is based on a discontinuous Galerkin method and works with both initially elastic and rigid cohesive laws. The proposed formulation has the following advantages compared to classical interface elements: (i) non-matching discretisations of the domains and (ii) no high dummy stiffness. Two and three dimensional quasi-static fracture simulations are conducted to demonstrate the method. Our method not only simplifies the meshing process but also it requires less computational demands, compared with standard interface elements, for problems that involve materials/solids having a large mismatch in stiffnesses.

  9. Constructing a starting 3D shear velocity model with sharp interfaces for SEM-based upper mantle tomography in North America

    NASA Astrophysics Data System (ADS)

    Calo, M.; Bodin, T.; Yuan, H.; Romanowicz, B. A.; Larmat, C. S.; Maceira, M.

    2013-12-01

    this work we propose instead to directly tackle the non-linearity of the inverse problem by using stochastic methods to construct a 3D starting model with a good estimate of the depths of the main layering interfaces. We present preliminary results of the construction of such a starting 3D model based on: (1) Regionalizing the study area to define provinces within which lateral variations are smooth; (2) Applying trans-dimensional stochastic inversion (Bodin et al., 2012) to obtain accurate 1D models in each province as well as the corresponding error distribution, constrained by receiver function and surface wave dispersion data as well as the previously constructed 3D model (name), and (3) connecting these models laterally using data-driven smoothing operators to obtain a starting 3D model with errors. References Bodin, T.,et al. 2012, Transdimensional inversion of receiver functions and surface wave dispersion, J. Geophys. Res., 117, B02301, doi:10.1029/2011JB008560. Yuan and Romanowicz, 2013, in revison. Yuan, H., et al. 2011, 3-D shear wave radially and azimuthally anisotropic velocity model of the North American upper mantle. Geophysical Journal International, 184: 1237-1260. doi: 10.1111/j.1365-246X.2010.04901.x Yuan, H. & Romanowicz, B., 2010. Lithospheric layering in the North American Craton, Nature, 466, 1063-1068.

  10. Attenuation of numerical artefacts in the modelling of fluid interfaces

    NASA Astrophysics Data System (ADS)

    Evrard, Fabien; van Wachem, Berend G. M.; Denner, Fabian

    2015-11-01

    Numerical artefacts in the modelling of fluid interfaces, such as parasitic currents or spurious capillary waves, present a considerable problem in two-phase flow modelling. Parasitic currents result from an imperfect evaluation of the interface curvature and can severely affect the flow, whereas spatially underresolved (spurious) capillary waves impose strict limits on the time-step and, hence, dictate the required computational resources for surface-tension-dominated flows. By applying an additional shear stress term at the fluid interface, thereby dissipating the surface energy associated with small wavelengths, we have been able to considerably reduce the adverse impact of parasitic currents and mitigate the time-step limit imposed by capillary waves. However, a careful choice of the applied interface viscosity is crucial, since an excess of additional dissipation compromises the accuracy of the solution. We present the derivation of the additional interfacial shear stress term, explain the underlying physical mechanism and discuss the impact on parasitic currents and interface instabilities based on a variety of numerical experiments. We acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) through Grant No. EP/M021556/1 and from PETROBRAS.

  11. The use of analytical models in human-computer interface design

    NASA Technical Reports Server (NTRS)

    Gugerty, Leo

    1991-01-01

    Some of the many analytical models in human-computer interface design that are currently being developed are described. The usefulness of analytical models for human-computer interface design is evaluated. Can the use of analytical models be recommended to interface designers? The answer, based on the empirical research summarized here, is: not at this time. There are too many unanswered questions concerning the validity of models and their ability to meet the practical needs of design organizations.

  12. ModelMate - A graphical user interface for model analysis

    USGS Publications Warehouse

    Banta, Edward R.

    2011-01-01

    ModelMate is a graphical user interface designed to facilitate use of model-analysis programs with models. This initial version of ModelMate supports one model-analysis program, UCODE_2005, and one model software program, MODFLOW-2005. ModelMate can be used to prepare input files for UCODE_2005, run UCODE_2005, and display analysis results. A link to the GW_Chart graphing program facilitates visual interpretation of results. ModelMate includes capabilities for organizing directories used with the parallel-processing capabilities of UCODE_2005 and for maintaining files in those directories to be identical to a set of files in a master directory. ModelMate can be used on its own or in conjunction with ModelMuse, a graphical user interface for MODFLOW-2005 and PHAST.

  13. Radiation budget measurement/model interface

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Ciesielski, P.; Randel, D.; Stevens, D.

    1983-01-01

    This final report includes research results from the period February, 1981 through November, 1982. Two new results combine to form the final portion of this work. They are the work by Hanna (1982) and Stevens to successfully test and demonstrate a low-order spectral climate model and the work by Ciesielski et al. (1983) to combine and test the new radiation budget results from NIMBUS-7 with earlier satellite measurements. Together, the two related activities set the stage for future research on radiation budget measurement/model interfacing. Such combination of results will lead to new applications of satellite data to climate problems. The objectives of this research under the present contract are therefore satisfied. Additional research reported herein includes the compilation and documentation of the radiation budget data set a Colorado State University and the definition of climate-related experiments suggested after lengthy analysis of the satellite radiation budget experiments.

  14. Modeling interfaces between solids: Application to Li battery materials

    NASA Astrophysics Data System (ADS)

    Lepley, N. D.; Holzwarth, N. A. W.

    2015-12-01

    We present a general scheme to model an energy for analyzing interfaces between crystalline solids, quantitatively including the effects of varying configurations and lattice strain. This scheme is successfully applied to the modeling of likely interface geometries of several solid state battery materials including Li metal, Li3PO4 , Li3PS4 , Li2O , and Li2S . Our formalism, together with a partial density of states analysis, allows us to characterize the thickness, stability, and transport properties of these interfaces. We find that all of the interfaces in this study are stable with the exception of Li3PS4/Li . For this chemically unstable interface, the partial density of states helps to identify mechanisms associated with the interface reactions. Our energetic measure of interfaces and our analysis of the band alignment between interface materials indicate multiple factors, which may be predictors of interface stability, an important property of solid electrolyte systems.

  15. Are Pretty Interfaces Worth the Time? The Effects of User Interface Types on Web-Based Instruction

    ERIC Educational Resources Information Center

    Cheon, Jongpil; Grant, Michael M.

    2009-01-01

    The purpose of this study was to examine the effectiveness of three different interface types on Web-based instruction: a text-based interface, a graphical interface and a metaphorical interface. In order to determine differences among three interface groups, we compared learning performance, cognitive load, usability, and appeal with various data…

  16. Protein-protein interface prediction based on hexagon structure similarity.

    PubMed

    Guo, Fei; Ding, Yijie; Li, Shuai Cheng; Shen, Chao; Wang, Lusheng

    2016-08-01

    Studies on protein-protein interaction are important in proteome research. How to build more effective models based on sequence information, structure information and physicochemical characteristics, is the key technology in protein-protein interface prediction. In this paper, we study the protein-protein interface prediction problem. We propose a novel method for identifying residues on interfaces from an input protein with both sequence and 3D structure information, based on hexagon structure similarity. Experiments show that our method achieves better results than some state-of-the-art methods for identifying protein-protein interface. Comparing to existing methods, our approach improves F-measure value by at least 0.03. On a common dataset consisting of 41 complexes, our method has overall precision and recall values of 63% and 57%. On Benchmark v4.0, our method has overall precision and recall values of 55% and 56%. On CAPRI targets, our method has overall precision and recall values of 52% and 55%. PMID:26936323

  17. Design Through Manufacturing: The Solid Model - Finite Element Analysis Interface

    NASA Technical Reports Server (NTRS)

    Rubin, Carol

    2003-01-01

    State-of-the-art computer aided design (CAD) presently affords engineers the opportunity to create solid models of machine parts which reflect every detail of the finished product. Ideally, these models should fulfill two very important functions: (1) they must provide numerical control information for automated manufacturing of precision parts, and (2) they must enable analysts to easily evaluate the stress levels (using finite element analysis - FEA) for all structurally significant parts used in space missions. Today's state-of-the-art CAD programs perform function (1) very well, providing an excellent model for precision manufacturing. But they do not provide a straightforward and simple means of automating the translation from CAD to FEA models, especially for aircraft-type structures. The research performed during the fellowship period investigated the transition process from the solid CAD model to the FEA stress analysis model with the final goal of creating an automatic interface between the two. During the period of the fellowship a detailed multi-year program for the development of such an interface was created. The ultimate goal of this program will be the development of a fully parameterized automatic ProE/FEA translator for parts and assemblies, with the incorporation of data base management into the solution, and ultimately including computational fluid dynamics and thermal modeling in the interface.

  18. Multiscale modeling of droplet interface bilayer membrane networks.

    PubMed

    Freeman, Eric C; Farimani, Amir B; Aluru, Narayana R; Philen, Michael K

    2015-11-01

    Droplet interface bilayer (DIB) networks are considered for the development of stimuli-responsive membrane-based materials inspired by cellular mechanics. These DIB networks are often modeled as combinations of electrical circuit analogues, creating complex networks of capacitors and resistors that mimic the biomolecular structures. These empirical models are capable of replicating data from electrophysiology experiments, but these models do not accurately capture the underlying physical phenomena and consequently do not allow for simulations of material functionalities beyond the voltage-clamp or current-clamp conditions. The work presented here provides a more robust description of DIB network behavior through the development of a hierarchical multiscale model, recognizing that the macroscopic network properties are functions of their underlying molecular structure. The result of this research is a modeling methodology based on controlled exchanges across the interfaces of neighboring droplets. This methodology is validated against experimental data, and an extension case is provided to demonstrate possible future applications of droplet interface bilayer networks. PMID:26594262

  19. Atomic Models of Strong Solids Interfaces Viewed as Composite Structures

    NASA Astrophysics Data System (ADS)

    Staffell, I.; Shang, J. L.; Kendall, K.

    2014-02-01

    This paper looks back through the 1960s to the invention of carbon fibres and the theories of Strong Solids. In particular it focuses on the fracture mechanics paradox of strong composites containing weak interfaces. From Griffith theory, it is clear that three parameters must be considered in producing a high strength composite:- minimising defects; maximising the elastic modulus; and raising the fracture energy along the crack path. The interface then introduces two further factors:- elastic modulus mismatch causing crack stopping; and debonding along a brittle interface due to low interface fracture energy. Consequently, an understanding of the fracture energy of a composite interface is needed. Using an interface model based on atomic interaction forces, it is shown that a single layer of contaminant atoms between the matrix and the reinforcement can reduce the interface fracture energy by an order of magnitude, giving a large delamination effect. The paper also looks to a future in which cars will be made largely from composite materials. Radical improvements in automobile design are necessary because the number of cars worldwide is predicted to double. This paper predicts gains in fuel economy by suggesting a new theory of automobile fuel consumption using an adaptation of Coulomb's friction law. It is demonstrated both by experiment and by theoretical argument that the energy dissipated in standard vehicle tests depends only on weight. Consequently, moving from metal to fibre construction can give a factor 2 improved fuel economy performance, roughly the same as moving from a petrol combustion drive to hydrogen fuel cell propulsion. Using both options together can give a factor 4 improvement, as demonstrated by testing a composite car using the ECE15 protocol.

  20. Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models

    PubMed Central

    Li, Bo; Zhao, Yanxiang

    2013-01-01

    Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson–Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation. PMID:24058213

  1. Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models.

    PubMed

    Li, Bo; Zhao, Yanxiang

    2013-01-01

    Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation. PMID:24058213

  2. Workstation Modelling and Development: Clinical Definition of a Picture Archiving and Communications System (PACS) User Interface

    NASA Astrophysics Data System (ADS)

    Braudes, Robert E.; Mun, Seong K.; Sibert, John L.; Schnizlein, John; Horii, Steven C.

    1989-05-01

    A PACS must provide a user interface which is acceptable to all potential users of the system. Observations and interviews have been conducted with six radiology services at the Georgetown University Medical Center, Department of Radiology, in order to evaluate user interface requirements for a PACS system. Based on these observations, a conceptual model of radiology has been developed. These discussions have also revealed some significant differences in the user interface requirements between the various services. Several underlying factors have been identified which may be used as initial predictors of individual user interface styles. A user model has been developed which incorporates these factors into the specification of a tailored PACS user interface.

  3. Polymer based interfaces as bioinspired 'smart skins'.

    PubMed

    De Rossi, Danilo; Carpi, Federico; Scilingo, Enzo Pasquale

    2005-11-30

    This work reports on already achieved results and ongoing research on the development of complex interfaces between humans and external environment, based on organic synthetic materials and used as smart 'artificial skins'. They are conceived as wearable and flexible systems with multifunctional characteristics. Their features are designed to mimic or augment a broad-spectrum of properties shown by biological skins of humans and/or animals. The discussion is here limited to those properties whose mimicry/augmentation is achievable with currently available technologies based on polymers and oligomers. Such properties include tactile sensing, thermal sensing/regulation, environmental energy harvesting, chromatic mimetism, ultra-violet protection, adhesion and surface mediation of mobility. Accordingly, bioinspired devices and structures, proposed as suitable functional analogous of natural architectures, are analysed. They consist of organic piezoelectric sensors, thermoelectric and pyroelectric sensors and generators, photoelectric generators, thermal and ultra-violet protection systems, electro-, photo- and thermo-chromic devices, as well as structures for improved adhesion and reduced fluid-dynamic friction. PMID:16111642

  4. A nonlinear interface model applied to masonry structures

    NASA Astrophysics Data System (ADS)

    Lebon, Frédéric; Raffa, Maria Letizia; Rizzoni, Raffaella

    2015-12-01

    In this paper, a new imperfect interface model is presented. The model includes finite strains, micro-cracks and smooth roughness. The model is consistently derived by coupling a homogenization approach for micro-cracked media and arguments of asymptotic analysis. The model is applied to brick/mortar interfaces. Numerical results are presented.

  5. Language Model Applications to Spelling with Brain-Computer Interfaces

    PubMed Central

    Mora-Cortes, Anderson; Manyakov, Nikolay V.; Chumerin, Nikolay; Van Hulle, Marc M.

    2014-01-01

    Within the Ambient Assisted Living (AAL) community, Brain-Computer Interfaces (BCIs) have raised great hopes as they provide alternative communication means for persons with disabilities bypassing the need for speech and other motor activities. Although significant advancements have been realized in the last decade, applications of language models (e.g., word prediction, completion) have only recently started to appear in BCI systems. The main goal of this article is to review the language model applications that supplement non-invasive BCI-based communication systems by discussing their potential and limitations, and to discern future trends. First, a brief overview of the most prominent BCI spelling systems is given, followed by an in-depth discussion of the language models applied to them. These language models are classified according to their functionality in the context of BCI-based spelling: the static/dynamic nature of the user interface, the use of error correction and predictive spelling, and the potential to improve their classification performance by using language models. To conclude, the review offers an overview of the advantages and challenges when implementing language models in BCI-based communication systems when implemented in conjunction with other AAL technologies. PMID:24675760

  6. Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces

    SciTech Connect

    James A. Smith; Jeffrey M. Lacy; Barry H. Rabin

    2014-07-01

    12. Other advances in QNDE and related topics: Preferred Session Laser-ultrasonics Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces 41st Annual Review of Progress in Quantitative Nondestructive Evaluation Conference QNDE Conference July 20-25, 2014 Boise Centre 850 West Front Street Boise, Idaho 83702 James A. Smith, Jeffrey M. Lacy, Barry H. Rabin, Idaho National Laboratory, Idaho Falls, ID ABSTRACT: The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) which is assigned with reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU. The new LEU fuel is based on a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to complete the fuel qualification process, the laser shock technique is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. The Laser Shockwave Technique (LST) is being investigated to characterize interface strength in fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However the deposition of laser energy into the containment layer on specimen’s surface is intractably complex. The shock wave energy is inferred from the velocity on the backside and the depth of the impression left on the surface from the high pressure plasma pulse created by the shock laser. To help quantify the stresses and strengths at the interface, a finite element model is being developed and validated by comparing numerical and experimental results for back face velocities and front face depressions with experimental results. This paper will report on initial efforts to develop a finite element model for laser

  7. A long-range electric field solver for molecular dynamics of fluid-solid interfaces based on atomistic-to-continuum modeling.

    SciTech Connect

    Zimmerman, Jonathan A.; Wong, Bryan Matthew; Jones, Reese E.; Templeton, Jeremy Alan; Lee, Jonathan

    2010-11-01

    Understanding charge transport processes at a molecular level using computational techniques is currently hindered by a lack of appropriate models for incorporating anisotropic electric fields, as occur at charged fluid/solid interfaces, in molecular dynamics (MD) simulations. In this work, we develop a model for including electric fields in MD using an atomistic-to-continuum framework. Our model represents the electric potential on a finite element mesh satisfying a Poisson equation with source terms determined by the distribution of the atomic charges. The method is verified using simulations where analytical solutions are known or comparisons can be made to existing techniques. A Calculation of a salt water solution in a silicon nanochannel is performed to demonstrate the method in a target scientific application.

  8. Control Strategies for the DAB Based PV Interface System.

    PubMed

    El-Helw, Hadi M; Al-Hasheem, Mohamed; Marei, Mostafa I

    2016-01-01

    This paper presents an interface system based on the Dual Active Bridge (DAB) converter for Photovoltaic (PV) arrays. Two control strategies are proposed for the DAB converter to harvest the maximum power from the PV array. The first strategy is based on a simple PI controller to regulate the terminal PV voltage through the phase shift angle of the DAB converter. The Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) technique is utilized to set the reference of the PV terminal voltage. The second strategy presented in this paper employs the Artificial Neural Network (ANN) to directly set the phase shift angle of the DAB converter that results in harvesting maximum power. This feed-forward strategy overcomes the stability issues of the feedback strategy. The proposed PV interface systems are modeled and simulated using MATLAB/SIMULINK and the EMTDC/PSCAD software packages. The simulation results reveal accurate and fast response of the proposed systems. The dynamic performance of the proposed feed-forward strategy outdoes that of the feedback strategy in terms of accuracy and response time. Moreover, an experimental prototype is built to test and validate the proposed PV interface system. PMID:27560138

  9. Control Strategies for the DAB Based PV Interface System

    PubMed Central

    El-Helw, Hadi M.; Al-Hasheem, Mohamed; Marei, Mostafa I.

    2016-01-01

    This paper presents an interface system based on the Dual Active Bridge (DAB) converter for Photovoltaic (PV) arrays. Two control strategies are proposed for the DAB converter to harvest the maximum power from the PV array. The first strategy is based on a simple PI controller to regulate the terminal PV voltage through the phase shift angle of the DAB converter. The Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) technique is utilized to set the reference of the PV terminal voltage. The second strategy presented in this paper employs the Artificial Neural Network (ANN) to directly set the phase shift angle of the DAB converter that results in harvesting maximum power. This feed-forward strategy overcomes the stability issues of the feedback strategy. The proposed PV interface systems are modeled and simulated using MATLAB/SIMULINK and the EMTDC/PSCAD software packages. The simulation results reveal accurate and fast response of the proposed systems. The dynamic performance of the proposed feed-forward strategy outdoes that of the feedback strategy in terms of accuracy and response time. Moreover, an experimental prototype is built to test and validate the proposed PV interface system. PMID:27560138

  10. Bacterial Adhesion to Hexadecane (Model NAPL)-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Ghoshal, S.; Zoueki, C. R.; Tufenkji, N.

    2009-05-01

    The rates of biodegradation of NAPLs have been shown to be influenced by the adhesion of hydrocarbon- degrading microorganisms as well as their proximity to the NAPL-water interface. Several studies provide evidence for bacterial adhesion or biofilm formation at alkane- or crude oil-water interfaces, but there is a significant knowledge gap in our understanding of the processes that influence initial adhesion of bacteria on to NAPL-water interfaces. In this study bacterial adhesion to hexadecane, and a series of NAPLs comprised of hexadecane amended with toluene, and/or with asphaltenes and resins, which are the surface active fractions of crude oils, were examined using a Microbial Adhesion to Hydrocarbons (MATH) assay. The microorganisms employed were Mycobacterium kubicae, Pseudomonas aeruginosa and Pseudomonas putida, which are hydrocarbon degraders or soil microorganisms. MATH assays as well as electrophoretic mobility measurements of the bacterial cells and the NAPL droplet surfaces in aqueous solutions were conducted at three solution pHs (4, 6 and 7). Asphaltenes and resins were shown to generally decrease microbial adhesion. Results of the MATH assay were not in qualitative agreement with theoretical predictions of bacteria- hydrocarbon interactions based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model of free energy of interaction between the cell and NAPL droplets. In this model the free energy of interaction between two colloidal particles is predicted based on electrical double layer, van der Waals and hydrophobic forces. It is likely that the steric repulsion between bacteria and NAPL surfaces, caused by biopolymers on bacterial surfaces and aphaltenes and resins at the NAPL-water interface contributed to the decreased adhesion compared to that predicted by the XDLVO model.

  11. ShowFlow: A practical interface for groundwater modeling

    SciTech Connect

    Tauxe, J.D.

    1990-12-01

    ShowFlow was created to provide a user-friendly, intuitive environment for researchers and students who use computer modeling software. What traditionally has been a workplace available only to those familiar with command-line based computer systems is now within reach of almost anyone interested in the subject of modeling. In the case of this edition of ShowFlow, the user can easily experiment with simulations using the steady state gaussian plume groundwater pollutant transport model SSGPLUME, though ShowFlow can be rewritten to provide a similar interface for any computer model. Included in this thesis is all the source code for both the ShowFlow application for Microsoft{reg sign} Windows{trademark} and the SSGPLUME model, a User's Guide, and a Developer's Guide for converting ShowFlow to run other model programs. 18 refs., 13 figs.

  12. Continental hydrosystem modelling: the concept of nested stream-aquifer interfaces

    NASA Astrophysics Data System (ADS)

    Flipo, N.; Mouhri, A.; Labarthe, B.; Biancamaria, S.

    2014-01-01

    Recent developments in hydrological modelling are based on a view of the interface being a single continuum through which water flows. These coupled hydrological-hydrogeological models, emphasising the importance of the stream-aquifer interface, are more and more used in hydrological sciences for pluri-disciplinary studies aiming at investigating environmental issues. This notion of a single continuum, which is accepted by the hydrological modellers, originates in the historical modelling of hydrosystems based on the hypothesis of a homogeneous media that led to the Darcy law. There is then a need to first bridge the gap between hydrological and eco-hydrological views of the stream-aquifer interfaces, and, secondly, to rationalise the modelling of stream-aquifer interface within a consistent framework that fully takes into account the multi-dimensionality of the stream-aquifer interfaces. We first define the concept of nested stream-aquifer interfaces as a key transitional component of continental hydrosystem. Based on a literature review, we then demonstrate the usefulness of the concept for the multi-dimensional study of the stream-aquifer interface, with a special emphasis on the stream network, which is identified as the key component for scaling hydrological processes occurring at the interface. Finally we focus on the stream-aquifer interface modelling at different scales, with up-to-date methodologies and give some guidances for the multi-dimensional modelling of the interface using the innovative methodology MIM (Measurements-Interpolation-Modelling), which is graphically developed, scaling in space the three pools of methods needed to fully understand stream-aquifer interfaces at various scales. The outcome of MIM is the localisation in space of the stream-aquifer interface types that can be studied by a given approach. The efficiency of the method is demonstrated with two approaches from the local (~1 m) to the continental (<10 M km2) scale.

  13. A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.

  14. Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface.

    PubMed

    Zhang, Ziyin; Nagy, Peter B; Hassan, Waled

    2016-02-01

    Non-collinear shear wave mixing at an imperfect interface between two solids can be exploited for nonlinear ultrasonic assessment of bond quality. In this study we developed two analytical models for nonlinear imperfect interfaces. The first model uses a finite nonlinear interfacial stiffness representation of an imperfect interface of vanishing thickness, while the second model relies on a thin nonlinear interphase layer to represent an imperfect interface region. The second model is actually a derivative of the first model obtained by calculating the equivalent interfacial stiffness of a thin isotropic nonlinear interphase layer in the quasi-static approximation. The predictions of both analytical models were numerically verified by comparison to COMSOL finite element simulations. These models can accurately predict the additional nonlinearity caused by interface imperfections based on the strength of the reflected and transmitted mixed longitudinal waves produced by them under non-collinear shear wave interrogation. PMID:26482394

  15. Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyin; Nagy, Peter B.; Hassan, Waled

    2016-02-01

    Non-collinear shear wave mixing at an imperfect interface between two solids can be exploited for nonlinear ultrasonic assessment of bond quality. In this study we developed two analytical models for nonlinear imperfect interfaces. The first model uses a finite nonlinear interfacial stiffness representation of an imperfect interface of vanishing thickness, while the second model relies on a thin nonlinear interphase layer to represent an imperfect interface region. The second model is actually a derivative of the first model obtained by calculating the equivalent interfacial stiffness of a thin isotropic nonlinear interphase layer in the quasi-static approximation. The predictions of both analytical models were numerically verified by comparison to COMSOL finite element simulations. These models can accurately predict the excess nonlinearity caused by interface imperfections based on the strength of the reflected and transmitted mixed longitudinal waves produced by them under non-collinear shear wave interrogation.

  16. Behavior of asphaltene model compounds at w/o interfaces.

    PubMed

    Nordgård, Erland L; Sørland, Geir; Sjöblom, Johan

    2010-02-16

    Asphaltenes, present in significant amounts in heavy crude oil, contains subfractions capable of stabilizing water-in-oil emulsions. Still, the composition of these subfractions is not known in detail, and the actual mechanism behind emulsion stability is dependent on perceived interfacial concentrations and compositions. This study aims at utilizing polyaromatic surfactants which contains an acidic moiety as model compounds for the surface-active subfraction of asphaltenes. A modified pulse-field gradient (PFG) NMR method has been used to study droplet sizes and stability of emulsions prepared with asphaltene model compounds. The method has been compared to the standard microscopy droplet counting method. Arithmetic and volumetric mean droplet sizes as a function of surfactant concentration and water content clearly showed that the interfacial area was dependent on the available surfactant at the emulsion interface. Adsorption of the model compounds onto hydrophilic silica has been investigated by UV depletion, and minor differences in the chemical structure of the model compounds caused significant differences in the affinity toward this highly polar surface. The cross-sectional areas obtained have been compared to areas from the surface-to-volume ratio found by NMR and gave similar results for one of the two model compounds. The mean molecular area for this compound suggested a tilted geometry of the aromatic core with respect to the interface, which has also been proposed for real asphaltenic samples. The film behavior was further investigated using a liquid-liquid Langmuir trough supporting the ability to form stable interfacial films. This study supports that acidic, or strong hydrogen-bonding fractions, can promote stable water-in-oil emulsion. The use of model compounds opens up for studying emulsion behavior and demulsifier efficiency based on true interfacial concentrations rather than perceived interfaces. PMID:19852481

  17. Design of Wireless GPIB Interface Module Based on Bluetooth

    NASA Astrophysics Data System (ADS)

    Fu, P.; Ma, W. J.; Huang, C. J.

    2006-10-01

    GPIB interface is widely used in the testing and control field. In this paper a wireless GPIB interface module based on Bluetooth is developed. Programming with Verilog HDL language on the hardware of ROK 101 008 and a FPGA chip, the complicated logical design of GPIB interface and the Bluetooth data processing unit are implemented. On basis of Bluetooth specifications, the software for the control computer is developed. In order to provide a standard software interface for users, a VISA library that is compatible with the VPP specifications is also designed.

  18. Progress in Modeling of Ion Effects at the Vapor/Water Interface

    NASA Astrophysics Data System (ADS)

    Netz, Roland R.; Horinek, Dominik

    2012-05-01

    The behavior of halide salts at the vapor/water interface has been the focus of a tremendous amount of work in the past ten years. A molecular view of the interface has been introduced with the observation that large anions have some affinity for the interface, but a quantitative description of the driving forces that determine ion adsorption or repulsion at the interface is still missing. This review discusses recent developments that are based on classical and quantum-chemical molecular simulations as well as developments that are based on simple potential models.

  19. Flexible dynamic models for user interfaces

    NASA Astrophysics Data System (ADS)

    Vogelsang, Holger; Brinkschulte, Uwe; Siormanolakis, Marios

    1997-04-01

    This paper describes an approach for a platform- and implementation-independent design of user interfaces using the UIMS idea. It is a result of a detailed examination of object-oriented techniques for program specification and implementation. This analysis leads to a description of the requirements for man-machine interaction from the software- developers point of view. On the other hand, the final user of the whole system has a different view of this system. He needs metaphors of his own world to fulfill his tasks. It's the job of the user interface designer to bring these views together. The approach, described in this paper, helps bringing both kinds of developers together, using a well defined interface with minimal communication overhead.

  20. Modelling melt-solid interfaces in Bridgman growth

    NASA Technical Reports Server (NTRS)

    Barber, Patrick G.; Berry, Robert F.; Debnam, William J.; Fripp, Archibald F.; Huang, YU

    1989-01-01

    Doped epoxy models with abrupt interfaces were prepared to test radiographic and computer enhancement procedures used to study the images of melt-solid interfaces during crystal growth in Bridgman furnaces. A column averaging procedure resulted in improved images that faithfully reproduced the positions and shapes of interfaces even at very low density differences. These techniques were applied to lead tin telluride growing in Bridgman furnaces.

  1. Numerical modeling of materials processes with fluid-fluid interfaces

    NASA Astrophysics Data System (ADS)

    Yanke, Jeffrey Michael

    A numerical model has been developed to study material processes that depend on the interaction between fluids with a large discontinuity in thermophysical properties. A base model capable of solving equations of mass, momentum, energy conservation, and solidification has been altered to enable tracking of the interface between two immiscible fluids and correctly predict the interface deformation using a volume of fluid (VOF) method. Two materials processes investigated using this technique are Electroslag Remelting (ESR) and plasma spray deposition. ESR is a secondary melting technique that passes an AC current through an electrically resistive slag to provide the heat necessary to melt the alloy. The simulation tracks the interface between the slag and metal. The model was validated against industrial scale ESR ingots and was able to predict trends in melt rate, sump depth, macrosegregation, and liquid sump depth. In order to better understand the underlying physics of the process, several constant current ESR runs simulated the effects of freezing slag in the model. Including the solidifying slag in the imulations was found to have an effect on the melt rate and sump shape but there is too much uncertainty in ESR slag property data at this time for quantitative predictions. The second process investigated in this work is the deposition of ceramic coatings via plasma spray deposition. In plasma spray deposition, powderized coating material is injected into a plasma that melts and carries the powder towards the substrate were it impacts, flattening out and freezing. The impacting droplets pile up to form a porous coating. The model is used to simulate this rain of liquid ceramic particles impacting the substrate and forming a coating. Trends in local solidification time and porosity are calculated for various particle sizes and velocities. The predictions of decreasing porosity with increasing particle velocity matches previous experimental results. Also, a

  2. Numerical simulation of continuum models for fluid-fluid interface dynamics

    NASA Astrophysics Data System (ADS)

    Gross, S.; Reusken, A.

    2013-05-01

    This paper is concerned with numerical methods for two-phase incompressible flows assuming a sharp interface model for interfacial stresses. Standard continuum models for the fluid dynamics in the bulk phases, for mass transport of a solute between the phases and for surfactant transport on the interface are given. We review some recently developed finite element methods for the appropriate discretization of such models, e. g., a pressure extended finite element (XFE) space which is suitable to represent the pressure jump, a space-time extended finite element discretization for the mass transport equation of a solute and a surface finite element method (SurFEM) for surfactant transport. Numerical experiments based on level set interface capturing and adaptive multilevel finite element discretization are presented for rising droplets with a clean interface model and a spherical droplet in a Poisseuille flow with a Boussinesq-Scriven interface model.

  3. Electrochemical Stability of Model Polymer Electrolyte/Electrode Interfaces

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel; Yang, Guang

    2015-03-01

    Polymer electrolytes are promising materials for high energy density rechargeable batteries. However, typical polymer electrolytes are not electrochemically stable at the charging voltage of advanced positive electrode materials. Although not yet reported in literature, decomposition is expected to adversely affect the performance and lifetime of polymer-electrolyte-based batteries. In an attempt to better understand polymer electrolyte oxidation and design stable polymer electrolyte/positive electrode interfaces, we are studying electron transfer across model interfaces comprising gold nanoparticles and organic protecting ligands assembled into monolayer films. Gold nanoparticles provide large interfacial surface area yielding a measurable electrochemical signal. They are inert and hence non-reactive with most polymer electrolytes and lithium salts. The surface can be easily modified with ligands of different chemistry and molecular weight. In our study, poly(ethylene oxide) (PEO) will serve as the polymer electrolyte and lithium bis(trifluoromethanesulfonyl) imide salt (LiTFSI) will be the lithium salt. The effect of ligand type and molecular weight on both optical and electrical properties of the gold nanoparticle film will be presented. Finally, the electrochemical stability of the electrode/electrolyte interface and its dependence on interfacial properties will be presented.

  4. A brain computer interface-based explorer.

    PubMed

    Bai, Lijuan; Yu, Tianyou; Li, Yuanqing

    2015-04-15

    In recent years, various applications of brain computer interfaces (BCIs) have been studied. In this paper, we present a hybrid BCI combining P300 and motor imagery to operate an explorer. Our system is mainly composed of a BCI mouse, a BCI speller and an explorer. Through this system, the user can access his computer and manipulate (open, close, copy, paste, and delete) files such as documents, pictures, music, movies and so on. The system has been tested with five subjects, and the experimental results show that the explorer can be successfully operated according to subjects' intentions. PMID:24975290

  5. Knowledge-based control of an adaptive interface

    NASA Technical Reports Server (NTRS)

    Lachman, Roy

    1989-01-01

    The analysis, development strategy, and preliminary design for an intelligent, adaptive interface is reported. The design philosophy couples knowledge-based system technology with standard human factors approaches to interface development for computer workstations. An expert system has been designed to drive the interface for application software. The intelligent interface will be linked to application packages, one at a time, that are planned for multiple-application workstations aboard Space Station Freedom. Current requirements call for most Space Station activities to be conducted at the workstation consoles. One set of activities will consist of standard data management services (DMS). DMS software includes text processing, spreadsheets, data base management, etc. Text processing was selected for the first intelligent interface prototype because text-processing software can be developed initially as fully functional but limited with a small set of commands. The program's complexity then can be increased incrementally. The intelligent interface includes the operator's behavior and three types of instructions to the underlying application software are included in the rule base. A conventional expert-system inference engine searches the data base for antecedents to rules and sends the consequents of fired rules as commands to the underlying software. Plans for putting the expert system on top of a second application, a database management system, will be carried out following behavioral research on the first application. The intelligent interface design is suitable for use with ground-based workstations now common in government, industrial, and educational organizations.

  6. Optical Modeling Activities for NASA's James Webb Space Telescope (JWST). 4; Overview and Introduction of Matlab Based Toolkits used to Interface with Optical Design Software

    NASA Technical Reports Server (NTRS)

    Howard, Joseph

    2007-01-01

    This is part four of a series on the ongoing optical modeling activities for James Webb Space Telescope (JWST). The first two discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The third investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory. The work here introduces some of the math software tools used to perform the work of the previous three papers of this series. NASA has recently approved these in-house tools for public release as open source, so this presentation also serves as a quick tutorial on their use. The tools are collections of functions written in Matlab, which interface with optical design software (CodeV, OSLO, and Zemax) using either COM or DDE communication protocol. The functions are discussed, and examples are given.

  7. ORIGAMI -- The Oak Ridge Geometry Analysis and Modeling Interface

    SciTech Connect

    Burns, T.J.

    1996-04-01

    A revised ``ray-tracing`` package which is a superset of the geometry specifications of the radiation transport codes MORSE, MASH (GIFT Versions 4 and 5), HETC, and TORT has been developed by ORNL. Two additional CAD-based formats are also included as part of the superset: the native format of the BRL-CAD system--MGED, and the solid constructive geometry subset of the IGES specification. As part of this upgrade effort, ORNL has designed an Xwindows-based utility (ORIGAMI) to facilitate the construction, manipulation, and display of the geometric models required by the MASH code. Since the primary design criterion for this effort was that the utility ``see`` the geometric model exactly as the radiation transport code does, ORIGAMI is designed to utilize the same ``ray-tracing`` package as the revised version of MASH. ORIGAMI incorporates the functionality of two previously developed graphical utilities, CGVIEW and ORGBUG, into a single consistent interface.

  8. User's Manual for the Object User Interface (OUI): An Environmental Resource Modeling Framework

    USGS Publications Warehouse

    Markstrom, Steven L.; Koczot, Kathryn M.

    2008-01-01

    The Object User Interface is a computer application that provides a framework for coupling environmental-resource models and for managing associated temporal and spatial data. The Object User Interface is designed to be easily extensible to incorporate models and data interfaces defined by the user. Additionally, the Object User Interface is highly configurable through the use of a user-modifiable, text-based control file that is written in the eXtensible Markup Language. The Object User Interface user's manual provides (1) installation instructions, (2) an overview of the graphical user interface, (3) a description of the software tools, (4) a project example, and (5) specifications for user configuration and extension.

  9. Rapid Prototyping of Hydrologic Model Interfaces with IPython

    NASA Astrophysics Data System (ADS)

    Farthing, M. W.; Winters, K. D.; Ahmadia, A. J.; Hesser, T.; Howington, S. E.; Johnson, B. D.; Tate, J.; Kees, C. E.

    2014-12-01

    A significant gulf still exists between the state of practice and state of the art in hydrologic modeling. Part of this gulf is due to the lack of adequate pre- and post-processing tools for newly developed computational models. The development of user interfaces has traditionally lagged several years behind the development of a particular computational model or suite of models. As a result, models with mature interfaces often lack key advancements in model formulation, solution methods, and/or software design and technology. Part of the problem has been a focus on developing monolithic tools to provide comprehensive interfaces for the entire suite of model capabilities. Such efforts require expertise in software libraries and frameworks for creating user interfaces (e.g., Tcl/Tk, Qt, and MFC). These tools are complex and require significant investment in project resources (time and/or money) to use. Moreover, providing the required features for the entire range of possible applications and analyses creates a cumbersome interface. For a particular site or application, the modeling requirements may be simplified or at least narrowed, which can greatly reduce the number and complexity of options that need to be accessible to the user. However, monolithic tools usually are not adept at dynamically exposing specific workflows. Our approach is to deliver highly tailored interfaces to users. These interfaces may be site and/or process specific. As a result, we end up with many, customized interfaces rather than a single, general-use tool. For this approach to be successful, it must be efficient to create these tailored interfaces. We need technology for creating quality user interfaces that is accessible and has a low barrier for integration into model development efforts. Here, we present efforts to leverage IPython notebooks as tools for rapid prototyping of site and application-specific user interfaces. We provide specific examples from applications in near

  10. Modeling organohalide perovskites for photovoltaic applications: From materials to interfaces

    NASA Astrophysics Data System (ADS)

    de Angelis, Filippo

    2015-03-01

    The field of hybrid/organic photovoltaics has been revolutionized in 2012 by the first reports of solid-state solar cells based on organohalide perovskites, now topping at 20% efficiency. First-principles modeling has been widely applied to the dye-sensitized solar cells field, and more recently to perovskite-based solar cells. The computational design and screening of new materials has played a major role in advancing the DSCs field. Suitable modeling strategies may also offer a view of the crucial heterointerfaces ruling the device operational mechanism. I will illustrate how simulation tools can be employed in the emerging field of perovskite solar cells. The performance of the proposed simulation toolbox along with the fundamental modeling strategies are presented using selected examples of relevant materials and interfaces. The main issue with hybrid perovskite modeling is to be able to accurately describe their structural, electronic and optical features. These materials show a degree of short range disorder, due to the presence of mobile organic cations embedded within the inorganic matrix, requiring to average their properties over a molecular dynamics trajectory. Due to the presence of heavy atoms (e.g. Sn and Pb) their electronic structure must take into account spin-orbit coupling (SOC) in an effective way, possibly including GW corrections. The proposed SOC-GW method constitutes the basis for tuning the materials electronic and optical properties, rationalizing experimental trends. Modeling charge generation in perovskite-sensitized TiO2 interfaces is then approached based on a SOC-DFT scheme, describing alignment of energy levels in a qualitatively correct fashion. The role of interfacial chemistry on the device performance is finally discussed. The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007 2013] under Grant Agreement No. 604032 of the MESO project.

  11. Acid-base chemistry of frustrated water at protein interfaces.

    PubMed

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts. PMID:26762189

  12. Bioinspired interface for nanobiodevices based on phospholipid polymer chemistry

    PubMed Central

    Ishihara, Kazuhiko; Takai, Madoka

    2009-01-01

    This review paper describes novel biointerfaces for nanobiodevices. Biocompatible and non-biofouling surfaces are designed largely based on cell membrane structure, and the preparation and functioning of the bioinspired interface are evaluated and compared between living and artificial systems. A molecular assembly of polymers with a phospholipid polar group has been developed as the platform of the interface. At the surface, protein adsorption is effectively reduced and the subsequent bioreactions are suppressed. Through this platform, biomolecules with a high affinity to the specific molecules are introduced under mild conditions. The activity of the biomolecules is retained even after immobilization. This bioinspired interface is adapted to construct bionanodevices, that is, microfluidic chips and nanoparticles for capturing target molecules and cells. The interface functions well and has a very high efficiency for biorecognition. This bioinspired interface is a promising universal platform that integrates various fields of science and has useful applications. PMID:19324688

  13. Finite element modeling of frictionally restrained composite interfaces

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Ahmed, Shamim

    1989-01-01

    The use of special interface finite elements to model frictional restraint in composite interfaces is described. These elements simulate Coulomb friction at the interface, and are incorporated into a standard finite element analysis of a two-dimensional isolated fiber pullout test. Various interfacial characteristics, such as the distribution of stresses at the interface, the extent of slip and delamination, load diffusion from fiber to matrix, and the amount of fiber extraction or depression are studied for different friction coefficients. The results are compared to those obtained analytically using a singular integral equation approach, and those obtained by assuming a constant interface shear strength. The usefulness of these elements in micromechanical modeling of fiber-reinforced composite materials is highlighted.

  14. A Robust Camera-Based Interface for Mobile Entertainment

    PubMed Central

    Roig-Maimó, Maria Francesca; Manresa-Yee, Cristina; Varona, Javier

    2016-01-01

    Camera-based interfaces in mobile devices are starting to be used in games and apps, but few works have evaluated them in terms of usability or user perception. Due to the changing nature of mobile contexts, this evaluation requires extensive studies to consider the full spectrum of potential users and contexts. However, previous works usually evaluate these interfaces in controlled environments such as laboratory conditions, therefore, the findings cannot be generalized to real users and real contexts. In this work, we present a robust camera-based interface for mobile entertainment. The interface detects and tracks the user’s head by processing the frames provided by the mobile device’s front camera, and its position is then used to interact with the mobile apps. First, we evaluate the interface as a pointing device to study its accuracy, and different factors to configure such as the gain or the device’s orientation, as well as the optimal target size for the interface. Second, we present an in the wild study to evaluate the usage and the user’s perception when playing a game controlled by head motion. Finally, the game is published in an application store to make it available to a large number of potential users and contexts and we register usage data. Results show the feasibility of using this robust camera-based interface for mobile entertainment in different contexts and by different people. PMID:26907288

  15. A Robust Camera-Based Interface for Mobile Entertainment.

    PubMed

    Roig-Maimó, Maria Francesca; Manresa-Yee, Cristina; Varona, Javier

    2016-01-01

    Camera-based interfaces in mobile devices are starting to be used in games and apps, but few works have evaluated them in terms of usability or user perception. Due to the changing nature of mobile contexts, this evaluation requires extensive studies to consider the full spectrum of potential users and contexts. However, previous works usually evaluate these interfaces in controlled environments such as laboratory conditions, therefore, the findings cannot be generalized to real users and real contexts. In this work, we present a robust camera-based interface for mobile entertainment. The interface detects and tracks the user's head by processing the frames provided by the mobile device's front camera, and its position is then used to interact with the mobile apps. First, we evaluate the interface as a pointing device to study its accuracy, and different factors to configure such as the gain or the device's orientation, as well as the optimal target size for the interface. Second, we present an in the wild study to evaluate the usage and the user's perception when playing a game controlled by head motion. Finally, the game is published in an application store to make it available to a large number of potential users and contexts and we register usage data. Results show the feasibility of using this robust camera-based interface for mobile entertainment in different contexts and by different people. PMID:26907288

  16. A formalism for modeling solid electrolyte/electrode interfaces using first principles methods

    NASA Astrophysics Data System (ADS)

    Lepley, Nicholas; Holzwarth, Natalie

    We describe a scheme based on the interface energy for analyzing interfaces between crystalline solids, quantitatively including the effect of lattice strain. This scheme is applied to the modeling of likely interface geometries of several solid state battery materials including Li metal, Li3PO4, Li3PS4, Li2O, and Li2S. We find that all of the interfaces in this study are stable with the exception of Li3PS4/Li. For this chemically unstable interface, the partial density of states helps to identify mechanisms associated with the interface reactions. We also consider the case of charged defects at the interface, and show that accurately modeling them requires a careful treatment of the resulting electric fields. Our energetic measure of interfaces and our analysis of the band alignment between interface materials indicate multiple factors which may be predictors of interface stability, an important property of solid electrolyte systems. Supported by NSF Grant DMR-1105485 and DMR-1507942.

  17. Computer-Based Tools for Evaluating Graphical User Interfaces

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1997-01-01

    The user interface is the component of a software system that connects two very complex system: humans and computers. Each of these two systems impose certain requirements on the final product. The user is the judge of the usability and utility of the system; the computer software and hardware are the tools with which the interface is constructed. Mistakes are sometimes made in designing and developing user interfaces because the designers and developers have limited knowledge about human performance (e.g., problem solving, decision making, planning, and reasoning). Even those trained in user interface design make mistakes because they are unable to address all of the known requirements and constraints on design. Evaluation of the user inter-face is therefore a critical phase of the user interface development process. Evaluation should not be considered the final phase of design; but it should be part of an iterative design cycle with the output of evaluation being feed back into design. The goal of this research was to develop a set of computer-based tools for objectively evaluating graphical user interfaces. The research was organized into three phases. The first phase resulted in the development of an embedded evaluation tool which evaluates the usability of a graphical user interface based on a user's performance. An expert system to assist in the design and evaluation of user interfaces based upon rules and guidelines was developed during the second phase. During the final phase of the research an automatic layout tool to be used in the initial design of graphical inter- faces was developed. The research was coordinated with NASA Marshall Space Flight Center's Mission Operations Laboratory's efforts in developing onboard payload display specifications for the Space Station.

  18. Modeling Speech Disfluency to Predict Conceptual Misalignment in Speech Survey Interfaces

    ERIC Educational Resources Information Center

    Ehlen, Patrick; Schober, Michael F.; Conrad, Frederick G.

    2007-01-01

    Computer-based interviewing systems could use models of respondent disfluency behaviors to predict a need for clarification of terms in survey questions. This study compares simulated speech interfaces that use two such models--a generic model and a stereotyped model that distinguishes between the speech of younger and older speakers--to several…

  19. Graphene-Based Interfaces Do Not Alter Target Nerve Cells.

    PubMed

    Fabbro, Alessandra; Scaini, Denis; León, Verónica; Vázquez, Ester; Cellot, Giada; Privitera, Giulia; Lombardi, Lucia; Torrisi, Felice; Tomarchio, Flavia; Bonaccorso, Francesco; Bosi, Susanna; Ferrari, Andrea C; Ballerini, Laura; Prato, Maurizio

    2016-01-26

    Neural-interfaces rely on the ability of electrodes to transduce stimuli into electrical patterns delivered to the brain. In addition to sensitivity to the stimuli, stability in the operating conditions and efficient charge transfer to neurons, the electrodes should not alter the physiological properties of the target tissue. Graphene is emerging as a promising material for neuro-interfacing applications, given its outstanding physico-chemical properties. Here, we use graphene-based substrates (GBSs) to interface neuronal growth. We test our GBSs on brain cell cultures by measuring functional and synaptic integrity of the emerging neuronal networks. We show that GBSs are permissive interfaces, even when uncoated by cell adhesion layers, retaining unaltered neuronal signaling properties, thus being suitable for carbon-based neural prosthetic devices. PMID:26700626

  20. Learning Machine, Vietnamese Based Human-Computer Interface.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    The sixth session of IT@EDU98 consisted of seven papers on the topic of the learning machine--Vietnamese based human-computer interface, and was chaired by Phan Viet Hoang (Informatics College, Singapore). "Knowledge Based Approach for English Vietnamese Machine Translation" (Hoang Kiem, Dinh Dien) presents the knowledge base approach, which…

  1. A new seismically constrained subduction interface model for Central America

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, C.; Newman, A. V.; Thomas, A. M.; Moore-Driskell, M.; Farmer, G. T.

    2015-08-01

    We provide a detailed, seismically defined three-dimensional model for the subducting plate interface along the Middle America Trench between northern Nicaragua and southern Costa Rica. The model uses data from a weighted catalog of about 30,000 earthquake hypocenters compiled from nine catalogs to constrain the interface through a process we term the "maximum seismicity method." The method determines the average position of the largest cluster of microseismicity beneath an a priori functional surface above the interface. This technique is applied to all seismicity above 40 km depth, the approximate intersection of the hanging wall Mohorovičić discontinuity, where seismicity likely lies along the plate interface. Below this depth, an envelope above 90% of seismicity approximates the slab surface. Because of station proximity to the interface, this model provides highest precision along the interface beneath the Nicoya Peninsula of Costa Rica, an area where marked geometric changes coincide with crustal transitions and topography observed seaward of the trench. The new interface is useful for a number of geophysical studies that aim to understand subduction zone earthquake behavior and geodynamic and tectonic development of convergent plate boundaries.

  2. A conductivity-based interface tracking method for microfluidic application

    NASA Astrophysics Data System (ADS)

    Salgado, Juan David; Horiuchi, Keisuke; Dutta, Prashanta

    2006-05-01

    A novel conductivity-based interface tracking method is developed for 'lab-on-a-chip' applications to measure the velocity of the liquid-gas boundary during the filling process. This interface tracking system consists of two basic components: a fluidic circuit and an electronic circuit. The fluidic circuit is composed of a microchannel network where a number of very thin electrodes are placed in the flow path to detect the location of the liquid-gas interface in order to quantify the speed of a traveling liquid front. The electronic circuit is placed on a microelectronic chip that works as a logical switch. This interface tracking method is used to evaluate the performance of planar electrokinetic micropumps formed on a hybrid poly-di-methyl-siloxane (PDMS)-glass platform. In this study, the thickness of the planar micropump is set to be 10 µm, while the externally applied electric field is ranged from 100 V mm-1 to 200 V mm-1. For a particular geometric and electrokinetic condition, repeatable flow results are obtained from the speed of the liquid-gas interface. Flow results obtained from this interface tracking method are compared to those of other existing flow measuring techniques. The maximum error of this interface tracking sensor is less than 5%, even in an ultra low flow velocity.

  3. Monitoring of intratidal lung mechanics: a Graphical User Interface for a model-based decision support system for PEEP-titration in mechanical ventilation.

    PubMed

    Buehler, S; Lozano-Zahonero, S; Schumann, S; Guttmann, J

    2014-12-01

    In mechanical ventilation, a careful setting of the ventilation parameters in accordance with the current individual state of the lung is crucial to minimize ventilator induced lung injury. Positive end-expiratory pressure (PEEP) has to be set to prevent collapse of the alveoli, however at the same time overdistension should be avoided. Classic approaches of analyzing static respiratory system mechanics fail in particular if lung injury already prevails. A new approach of analyzing dynamic respiratory system mechanics to set PEEP uses the intratidal, volume-dependent compliance which is believed to stay relatively constant during one breath only if neither atelectasis nor overdistension occurs. To test the success of this dynamic approach systematically at bedside or in an animal study, automation of the computing steps is necessary. A decision support system for optimizing PEEP in form of a Graphical User Interface (GUI) was targeted. Respiratory system mechanics were analyzed using the gliding SLICE method. The resulting shapes of the intratidal compliance-volume curve were classified into one of six categories, each associated with a PEEP-suggestion. The GUI should include a graphical representation of the results as well as a quality check to judge the reliability of the suggestion. The implementation of a user-friendly GUI was successfully realized. The agreement between modelled and measured pressure data [expressed as root-mean-square (RMS)] tested during the implementation phase with real respiratory data from two patient studies was below 0.2 mbar for data taken in volume controlled mode and below 0.4 mbar for data taken in pressure controlled mode except for two cases with RMS < 0.6 mbar. Visual inspections showed, that good and medium quality data could be reliably identified. The new GUI allows visualization of intratidal compliance-volume curves on a breath-by-breath basis. The automatic categorisation of curve shape into one of six shape

  4. The Knowledge Base Interface for Parametric Grid Information

    SciTech Connect

    Hipp, James R.; Simons, Randall W.; Young, Chris J.

    1999-08-03

    The parametric grid capability of the Knowledge Base (KBase) provides an efficient robust way to store and access interpolatable information that is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use an approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation. The method involves three basic steps: data preparation, data storage, and data access. In past presentations we have discussed in detail the first step. In this paper we focus on the latter two, describing in detail the type of information which must be stored and the interface used to retrieve parametric grid data from the Knowledge Base. Once data have been properly prepared, the information (tessellation and associated value surfaces) needed to support the interface functionality, can be entered into the KBase. The primary types of parametric grid data that must be stored include (1) generic header information; (2) base model, station, and phase names and associated ID's used to construct surface identifiers; (3) surface accounting information; (4) tessellation accounting information; (5) mesh data for each tessellation; (6) correction data defined for each surface at each node of the surfaces owning tessellation (7) mesh refinement calculation set-up and flag information; and (8) kriging calculation set-up and flag information. The eight data components not only represent the results of the data preparation process but also include all required input information for several population tools that would enable the complete regeneration of the data results if that should be necessary.

  5. Simulation of evaporation of a sessile drop using a diffuse interface model

    NASA Astrophysics Data System (ADS)

    Sefiane, Khellil; Ding, Hang; Sahu, Kirti; Matar, Omar

    2008-11-01

    We consider here the evaporation dynamics of a Newtonian liquid sessile drop using an improved diffuse interface model. The governing equations for the drop and surrounding vapour are both solved, and separated by the order parameter (i.e. volume fraction), based on the previous work of Ding et al. JCP 2007. The diffuse interface model has been shown to be successful in modelling the moving contact line problems (Jacqmin 2000; Ding and Spelt 2007, 2008). Here, a pinned contact line of the drop is assumed. The evaporative mass flux at the liquid-vapour interface is a function of local temperature constitutively and treated as a source term in the interface evolution equation, i.e. Cahn-Hilliard equation. The model is validated by comparing its predictions with data available in the literature. The evaporative dynamics are illustrated in terms of drop snapshots, and a quantitative comparison with the results using a free surface model are made.

  6. A Universal Intelligent System-on-Chip Based Sensor Interface

    PubMed Central

    Mattoli, Virgilio; Mondini, Alessio; Mazzolai, Barbara; Ferri, Gabriele; Dario, Paolo

    2010-01-01

    The need for real-time/reliable/low-maintenance distributed monitoring systems, e.g., wireless sensor networks, has been becoming more and more evident in many applications in the environmental, agro-alimentary, medical, and industrial fields. The growing interest in technologies related to sensors is an important indicator of these new needs. The design and the realization of complex and/or distributed monitoring systems is often difficult due to the multitude of different electronic interfaces presented by the sensors available on the market. To address these issues the authors propose the concept of a Universal Intelligent Sensor Interface (UISI), a new low-cost system based on a single commercial chip able to convert a generic transducer into an intelligent sensor with multiple standardized interfaces. The device presented offers a flexible analog and/or digital front-end, able to interface different transducer typologies (such as conditioned, unconditioned, resistive, current output, capacitive and digital transducers). The device also provides enhanced processing and storage capabilities, as well as a configurable multi-standard output interface (including plug-and-play interface based on IEEE 1451.3). In this work the general concept of UISI and the design of reconfigurable hardware are presented, together with experimental test results validating the proposed device. PMID:22163624

  7. Empirical rheological model for rough or grooved bonded interfaces.

    PubMed

    Belloncle, Valentina Vlasie; Rousseau, Martine

    2007-12-01

    In the industrial sector, it is common to use metal/adhesive/metal structural bonds. The cohesion of such structures can be improved by preliminary chemical treatments (degreasing with solvents, alkaline, or acid pickling), electrochemical treatments (anodising), or mechanical treatments (abrasion, sandblasting, grooving) of the metallic plates. All these pretreatments create some asperities, ranging from roughnesses to grooves. On the other hand, in damage solid mechanics and in non-destructive testing, rheological models are used to measure the strength of bonded interfaces. However, these models do not take into account the interlocking of the adhesive in the porosities. Here, an empirical rheological model taking into account the interlocking effects is developed. This model depends on a characteristic parameter representing the average porosity along the interface, which considerably simplifies the corresponding stress and displacement jump conditions. The paper deals with the influence of this interface model on the ultrasonic guided modes of the structure. PMID:17659313

  8. SN_GUI: a graphical user interface for snowpack modeling

    NASA Astrophysics Data System (ADS)

    Spreitzhofer, G.; Fierz, C.; Lehning, M.

    2004-10-01

    SNOWPACK is a physical snow cover model. The model not only serves as a valuable research tool, but also runs operationally on a network of high Alpine automatic weather and snow measurement sites. In order to facilitate the operation of SNOWPACK and the interpretation of the results obtained by this model, a user-friendly graphical user interface for snowpack modeling, named SN_GUI, was created. This Java-based and thus platform-independent tool can be operated in two modes, one designed to fulfill the requirements of avalanche warning services (e.g. by providing information about critical layers within the snowpack that are closely related to the avalanche activity), and the other one offering a variety of additional options satisfying the needs of researchers. The user of SN_GUI is graphically guided through the entire process of creating snow cover simulations. The starting point is the efficient creation of input parameter files for SNOWPACK, followed by the launching of SNOWPACK with a variety of parameter settings. Finally, after the successful termination of the run, a number of interactive display options may be used to visualize the model output. Among these are vertical profiles and time profiles for many parameters. Besides other features, SN_GUI allows the use of various color, time and coordinate scales, and the comparison of measured and observed parameters.

  9. Diffuse Interface Model for Microstructure Evolution

    NASA Astrophysics Data System (ADS)

    Nestler, Britta

    A phase-field model for a general class of multi-phase metallic alloys is proposed which describes both, multi-phase solidification phenomena as well as polycrystalline grain structures. The model serves as a computational method to simulate the motion and kinetics of multiple phase boundaries and enables the visualization of the diffusion processes and of the phase transitions in multi-phase systems. Numerical simulations are presented which illustrate the capability of the phase-field model to recover a variety of complex experimental growth structures. In particular, the phase-field model can be used to simulate microstructure evolutions in eutectic, peritectic and monotectic alloys. In addition, polycrystalline grain structures with effects such as wetting, grain growth, symmetry properties of adjacent triple junctions in thin film samples and stability criteria at multiple junctions are described by phase-field simulations.

  10. A distributed data component for the open modeling interface

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the volume of collected data continues to increase in the environmental sciences, so does the need for effective means for accessing those data. We have developed an Open Modeling Interface (OpenMI) data component that retrieves input data for model components from environmental information syste...

  11. Integration of finite element modeling with solid modeling through a dynamic interface

    NASA Technical Reports Server (NTRS)

    Shephard, Mark S.

    1987-01-01

    Finite element modeling is dominated by geometric modeling type operations. Therefore, an effective interface to geometric modeling requires access to both the model and the modeling functionality used to create it. The use of a dynamic interface that addresses these needs through the use of boundary data structures and geometric operators is discussed.

  12. SIF-based fracture criterion for interface cracks

    NASA Astrophysics Data System (ADS)

    Ji, Xing

    2016-06-01

    The complex stress intensity factor K governing the stress field of an interface crack tip may be split into two parts, i.e., hat{K} and s^{-iɛ}, so that K=hat{K}s^{-iɛ}, s is a characteristic length and ɛ is the oscillatory index. hat{K} has the same dimension as the classical stress intensity factor and characterizes the interface crack tip field. That means a criterion for interface cracks may be formulated directly with hat{K}, as Irwin (ASME J. Appl. Mech. 24:361-364, 1957) did in 1957 for the classical fracture mechanics. Then, for an interface crack, it is demonstrated that the quasi Mode I and Mode II tip fields can be defined and distinguished from the coupled mode tip fields. Built upon SIF-based fracture criteria for quasi Mode I and Mode II, the stress intensity factor (SIF)-based fracture criterion for mixed mode interface cracks is proposed and validated against existing experimental results.

  13. SIF-based fracture criterion for interface cracks

    NASA Astrophysics Data System (ADS)

    Ji, Xing

    2016-01-01

    The complex stress intensity factor K governing the stress field of an interface crack tip may be split into two parts, i.e., hat{K} and s^{-i\\varepsilon } , so that K=hat{K}s^{-i\\varepsilon }, s is a characteristic length and \\varepsilon is the oscillatory index. hat{K} has the same dimension as the classical stress intensity factor and characterizes the interface crack tip field. That means a criterion for interface cracks may be formulated directly with hat{K} , as Irwin (ASME J. Appl. Mech. 24:361-364, 1957) did in 1957 for the classical fracture mechanics. Then, for an interface crack, it is demonstrated that the quasi Mode I and Mode II tip fields can be defined and distinguished from the coupled mode tip fields. Built upon SIF-based fracture criteria for quasi Mode I and Mode II, the stress intensity factor (SIF)-based fracture criterion for mixed mode interface cracks is proposed and validated against existing experimental results.

  14. Streamflow forecasting using the modular modeling system and an object-user interface

    USGS Publications Warehouse

    Jeton, A.E.

    2001-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Bureau of Reclamation (BOR), developed a computer program to provide a general framework needed to couple disparate environmental resource models and to manage the necessary data. The Object-User Interface (OUI) is a map-based interface for models and modeling data. It provides a common interface to run hydrologic models and acquire, browse, organize, and select spatial and temporal data. One application is to assist river managers in utilizing streamflow forecasts generated with the Precipitation-Runoff Modeling System running in the Modular Modeling System (MMS), a distributed-parameter watershed model, and the National Weather Service Extended Streamflow Prediction (ESP) methodology.

  15. An interface model for dosage adjustment connects hematotoxicity to pharmacokinetics.

    PubMed

    Meille, C; Iliadis, A; Barbolosi, D; Frances, N; Freyer, G

    2008-12-01

    When modeling is required to describe pharmacokinetics and pharmacodynamics simultaneously, it is difficult to link time-concentration profiles and drug effects. When patients are under chemotherapy, despite the huge amount of blood monitoring numerations, there is a lack of exposure variables to describe hematotoxicity linked with the circulating drug blood levels. We developed an interface model that transforms circulating pharmacokinetic concentrations to adequate exposures, destined to be inputs of the pharmacodynamic process. The model is materialized by a nonlinear differential equation involving three parameters. The relevance of the interface model for dosage adjustment is illustrated by numerous simulations. In particular, the interface model is incorporated into a complex system including pharmacokinetics and neutropenia induced by docetaxel and by cisplatin. Emphasis is placed on the sensitivity of neutropenia with respect to the variations of the drug amount. This complex system including pharmacokinetic, interface, and pharmacodynamic hematotoxicity models is an interesting tool for analysis of hematotoxicity induced by anticancer agents. The model could be a new basis for further improvements aimed at incorporating new experimental features. PMID:19107581

  16. Using ADDIE To Design a Web-Based Training Interface.

    ERIC Educational Resources Information Center

    Lohr, Linda

    Modeling the functions of a teacher in a computer interface is not a new practice; most computer applications employ electronic performance support systems (EPSS) such as online help, wizards, coaches, and even some forms of artificial intelligence. This paper presents easy-to-implement strategies for increasing learner autonomy by embedding…

  17. Designing a flexible grid enabled scientific modeling interface.

    SciTech Connect

    Dvorak, M.; Taylor, J.; Mickelson, S.

    2002-08-15

    The Espresso Scientific Modeling Interface (Espresso) is a scientific modeling productivity tool developed from climate modelers. Espresso was designed to be an extensible interface to both scientific models and Grid resources. It also aims to be a contemporary piece of software that relies on Globus.org's Java CoG Kit for a Grid toolkit, Sun's Java 2 API and is configured using XML. This article covers the design implementation of Espresso's Grid functionality and how it interacts with existing scientific models. The authors give specific examples of how they have designed Espresso to perform climate simulations using the PSU/NCAR MM5 atmospheric model. Plans to incorporate the CCSM and FOAM climate models are also discussed.

  18. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows

    PubMed Central

    Li, Zhilin; Lai, Ming-Chih

    2012-01-01

    In this paper, new finite difference methods based on the augmented immersed interface method (IIM) are proposed for simulating an inextensible moving interface in an incompressible two-dimensional flow. The mathematical models arise from studying the deformation of red blood cells in mathematical biology. The governing equations are incompressible Stokes or Navier-Stokes equations with an unknown surface tension, which should be determined in such a way that the surface divergence of the velocity is zero along the interface. Thus, the area enclosed by the interface and the total length of the interface should be conserved during the evolution process. Because of the nonlinear and coupling nature of the problem, direct discretization by applying the immersed boundary or immersed interface method yields complex nonlinear systems to be solved. In our new methods, we treat the unknown surface tension as an augmented variable so that the augmented IIM can be applied. Since finding the unknown surface tension is essentially an inverse problem that is sensitive to perturbations, our regularization strategy is to introduce a controlled tangential force along the interface, which leads to a least squares problem. For Stokes equations, the forward solver at one time level involves solving three Poisson equations with an interface. For Navier-Stokes equations, we propose a modified projection method that can enforce the pressure jump condition corresponding directly to the unknown surface tension. Several numerical experiments show good agreement with other results in the literature and reveal some interesting phenomena. PMID:23795308

  19. NASA: Model development for human factors interfacing

    NASA Technical Reports Server (NTRS)

    Smith, L. L.

    1984-01-01

    The results of an intensive literature review in the general topics of human error analysis, stress and job performance, and accident and safety analysis revealed no usable techniques or approaches for analyzing human error in ground or space operations tasks. A task review model is described and proposed to be developed in order to reduce the degree of labor intensiveness in ground and space operations tasks. An extensive number of annotated references are provided.

  20. Data Base Of Industrial Human-Robot Interfaces

    NASA Astrophysics Data System (ADS)

    Parsons, H. Mcllvaine

    1987-03-01

    A survey of ten robot manufacturers has produced a task taxonomy of factory-floor programming and a compilation of hardware and software interface designs, the first undertaken in industrial robotics. This data base suggests the need for increased application of human factors engineering.

  1. Molecular Modeling of Water Interfaces: From Molecular Spectroscopy to Thermodynamics.

    PubMed

    Nagata, Yuki; Ohto, Tatsuhiko; Backus, Ellen H G; Bonn, Mischa

    2016-04-28

    Understanding aqueous interfaces at the molecular level is not only fundamentally important, but also highly relevant for a variety of disciplines. For instance, electrode-water interfaces are relevant for electrochemistry, as are mineral-water interfaces for geochemistry and air-water interfaces for environmental chemistry; water-lipid interfaces constitute the boundaries of the cell membrane, and are thus relevant for biochemistry. One of the major challenges in these fields is to link macroscopic properties such as interfacial reactivity, solubility, and permeability as well as macroscopic thermodynamic and spectroscopic observables to the structure, structural changes, and dynamics of molecules at these interfaces. Simulations, by themselves, or in conjunction with appropriate experiments, can provide such molecular-level insights into aqueous interfaces. In this contribution, we review the current state-of-the-art of three levels of molecular dynamics (MD) simulation: ab initio, force field, and coarse-grained. We discuss the advantages, the potential, and the limitations of each approach for studying aqueous interfaces, by assessing computations of the sum-frequency generation spectra and surface tension. The comparison of experimental and simulation data provides information on the challenges of future MD simulations, such as improving the force field models and the van der Waals corrections in ab initio MD simulations. Once good agreement between experimental observables and simulation can be established, the simulation can be used to provide insights into the processes at a level of detail that is generally inaccessible to experiments. As an example we discuss the mechanism of the evaporation of water. We finish by presenting an outlook outlining four future challenges for molecular dynamics simulations of aqueous interfacial systems. PMID:27010817

  2. Critical interfaces and duality in the Ashkin-Teller model

    SciTech Connect

    Picco, Marco; Santachiara, Raoul

    2011-06-15

    We report on the numerical measures on different spin interfaces and Fortuin-Kasteleyn (FK) cluster boundaries in the Askhin-Teller (AT) model. For a general point on the AT critical line, we find that the fractal dimension of a generic spin cluster interface can take one of four different possible values. In particular we found spin interfaces whose fractal dimension is d{sub f}=3/2 all along the critical line. Furthermore, the fractal dimension of the boundaries of FK clusters was found to satisfy all along the AT critical line a duality relation with the fractal dimension of their outer boundaries. This result provides clear numerical evidence that such duality, which is well known in the case of the O(n) model, exists in an extended conformal field theory.

  3. Computer modelling studies of the bilayer/water interface.

    PubMed

    Pasenkiewicz-Gierula, Marta; Baczynski, Krzysztof; Markiewicz, Michal; Murzyn, Krzysztof

    2016-10-01

    This review summarises high resolution studies on the interface of lamellar lipid bilayers composed of the most typical lipid molecules which constitute the lipid matrix of biomembranes. The presented results were obtained predominantly by computer modelling methods. Whenever possible, the results were compared with experimental results obtained for similar systems. The first and main section of the review is concerned with the bilayer-water interface and is divided into four subsections. The first describes the simplest case, where the interface consists only of lipid head groups and water molecules and focuses on interactions between the lipid heads and water molecules; the second describes the interface containing also mono- and divalent ions and concentrates on lipid-ion interactions; the third describes direct inter-lipid interactions. These three subsections are followed by a discussion on the network of direct and indirect inter-lipid interactions at the bilayer interface. The second section summarises recent computer simulation studies on the interactions of antibacterial membrane active compounds with various models of the bacterial outer membrane. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26825705

  4. Interface fracture and composite deformation of model laminates

    NASA Astrophysics Data System (ADS)

    Fox, Matthew R.

    Model laminates were studied to improve the understanding of composite mechanical behavior. NiAl/Mo and NiAl/Cr model laminates, with a series of interfaces, were bonded at 1100°C. Reaction layers were present in all laminates, varying in thickness with bonding conditions. Interface fracture strengths and resistances were determined under primarily mode II loading conditions using a novel technique, the asymmetrically-loaded shear (ALS) test, in which one layer of the laminate was loaded in compression, producing a stable interface crack. The NiAl/Mo interface was also fractured in four-point bending. A small amount of plasticity was found to play a role in crack initiation. During steady-state mode II interface fracture of NiAl/Mo model laminates, large-scale slip was observed near the crack tip in the NiAl adjacent to the interface. After testing, the local slope and curvature of the interface were characterized at intervals along the interface and at slip locations to qualitatively describe local stresses present at and just ahead of the crack tip. The greatest percentage of slip occurred where closing forces on the crack tip were below the maximum value and were decreasing with crack growth. A mechanism for crack propagation is presented describing the role of large-scale slip in crack propagation. The mechanical response of structural laminates in 3-D stress states, as would be present in a polycrystalline aggregate composed of lamellar grains, are lacking. In order to understand the response of laminates composed of hard and soft phases, Pb/Zn laminates were prepared and tested in compression with varying lamellar orientation relative to the loading axis. A model describing the mechanical response in a general state assuming elastic-perfectly plastic isotropic layers was developed. For the 90° laminate, a different approach was applied, using the friction hill concepts used in forging analyses. With increasing ratios of cross-sectional radius to layer

  5. Designers' models of the human-computer interface

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Breedin, Sarah D.

    1993-01-01

    Understanding design models of the human-computer interface (HCI) may produce two types of benefits. First, interface development often requires input from two different types of experts: human factors specialists and software developers. Given the differences in their backgrounds and roles, human factors specialists and software developers may have different cognitive models of the HCI. Yet, they have to communicate about the interface as part of the design process. If they have different models, their interactions are likely to involve a certain amount of miscommunication. Second, the design process in general is likely to be guided by designers' cognitive models of the HCI, as well as by their knowledge of the user, tasks, and system. Designers do not start with a blank slate; rather they begin with a general model of the object they are designing. The author's approach to a design model of the HCI was to have three groups make judgments of categorical similarity about the components of an interface: human factors specialists with HCI design experience, software developers with HCI design experience, and a baseline group of computer users with no experience in HCI design. The components of the user interface included both display components such as windows, text, and graphics, and user interaction concepts, such as command language, editing, and help. The judgments of the three groups were analyzed using hierarchical cluster analysis and Pathfinder. These methods indicated, respectively, how the groups categorized the concepts, and network representations of the concepts for each group. The Pathfinder analysis provides greater information about local, pairwise relations among concepts, whereas the cluster analysis shows global, categorical relations to a greater extent.

  6. Broadening the interface bandwidth in simulation based training

    NASA Technical Reports Server (NTRS)

    Somers, Larry E.

    1989-01-01

    Currently most computer based simulations rely exclusively on computer generated graphics to create the simulation. When training is involved, the method almost exclusively used to display information to the learner is text displayed on the cathode ray tube. MICROEXPERT Systems is concentrating on broadening the communications bandwidth between the computer and user by employing a novel approach to video image storage combined with sound and voice output. An expert system is used to combine and control the presentation of analog video, sound, and voice output with computer based graphics and text. Researchers are currently involved in the development of several graphics based user interfaces for NASA, the U.S. Army, and the U.S. Navy. Here, the focus is on the human factors considerations, software modules, and hardware components being used to develop these interfaces.

  7. Interfaces between phases in a lattice model of microemulsions

    NASA Astrophysics Data System (ADS)

    Dawson, K. A.

    1987-02-01

    A lattice model which has recently been developed to aid the study of microemulsions is briefly reviewed. The local-density mean-field equations are presented and the interfacial profiles and surface tensions are computed using a variational method. These density profiles describing the interface between oil rich and water rich phases, both of which are isotropic, are structured and nonmonotonic. Some comments about a perturbation expansion which confirms these conclusions are made. It is possible to compute the surface tension to high numerical accuracy using the variational procedure. This permits discussion of the question of wetting of the oil-water interface by a microemulsion phase. The interfacial tensions along the oil-water-microemulsion coexistence line are ultra-low. The oil-water interface is not wet by microemulsion throughout most of the bicontinuous regime.

  8. Damage evolution of bi-body model composed of weakly cemented soft rock and coal considering different interface effect.

    PubMed

    Zhao, Zenghui; Lv, Xianzhou; Wang, Weiming; Tan, Yunliang

    2016-01-01

    Considering the structure effect of tunnel stability in western mining of China, three typical kinds of numerical model were respectively built as follows based on the strain softening constitutive model and linear elastic-perfectly plastic model for soft rock and interface: R-M, R-C(s)-M and R-C(w)-M. Calculation results revealed that the stress-strain relation and failure characteristics of the three models vary between each other. The combination model without interface or with a strong interface presented continuous failure, while weak interface exhibited 'cut off' effect. Thus, conceptual models of bi-material model and bi-body model were established. Then numerical experiments of tri-axial compression were carried out for the two models. The relationships between stress evolution, failure zone and deformation rate fluctuations as well as the displacement of interface were detailed analyzed. Results show that two breakaway points of deformation rate actually demonstrate the starting and penetration of the main rupture, respectively. It is distinguishable due to the large fluctuation. The bi-material model shows general continuous failure while bi-body model shows 'V' type shear zone in weak body and failure in strong body near the interface due to the interface effect. With the increasing of confining pressure, the 'cut off' effect of weak interface is not obvious. These conclusions lay the theoretical foundation for further development of constitutive model for soft rock-coal combination body. PMID:27066329

  9. Analysis and Management of Large-Scale Activities Based on Interface

    NASA Astrophysics Data System (ADS)

    Yang, Shaofan; Ji, Jingwei; Lu, Ligang; Wang, Zhiyi

    Based on the concepts of system safety engineering, life-cycle and interface that comes from American system safety standard MIL-STD-882E, and apply them to the process of risk analysis and management of large-scale activities. Identify the involved personnel, departments, funds and other contents throughout the life cycle of large-scale activities. Recognize and classify the ultimate risk sources of people, objects and environment of large-scale activities from the perspective of interface. Put forward the accident cause analysis model according to the previous large-scale activities' accidents and combine with the analysis of the risk source interface. Analyze the risks of each interface and summary various types of risks the large-scale activities faced. Come up with the risk management consciousness, policies and regulations, risk control and supervision departments improvement ideas.

  10. Interface-tracking electro-hydrodynamic model for droplet coalescence

    NASA Astrophysics Data System (ADS)

    Crowl Erickson, Lindsay; Noble, David

    2012-11-01

    Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. micro-fluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. We present a conformal decomposition finite element (CDFEM) interface-tracking method for two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface. The electro-hydrodynamic equations solved allow for convection of charge and charge accumulation at the interface, both of which may be important factors for the pinch-off dynamics in this parameter regime.

  11. ODP based UPT model

    NASA Astrophysics Data System (ADS)

    Berre, A. J.; Handegard, T.; Loevnes, K.; Skjellaug, B.; Aagedal, J. O.

    1994-01-01

    The report documents the experiments with object oriented modelling of Universal Personal Telecommunication (UPT) in a telecommunication environment based on the basic principles of open distributed processing (ODP). Through the object-oriented analysis and design technique Object Modelling Technique (OMT) the service is modelled as a collection of software objects distributed across multiple network nodes. A software platform provides the mechanisms for application objects to interact. The platform builds on the basic facilities in the native computing and communication environments, but hides the heterogeneity of these environments and provides distribution transparency at the application programmer's interface. The report closes with some thoughts about applying the paradigm of ODP to intelligent networks (IN), and the experience with OMT as a modelling technique for real time distributed applications.

  12. Toward synergy-based brain-machine interfaces.

    PubMed

    Vinjamuri, Ramana; Weber, Douglas J; Mao, Zhi-Hong; Collinger, Jennifer L; Degenhart, Alan D; Kelly, John W; Boninger, Michael L; Tyler-Kabara, Elizabeth C; Wang, Wei

    2011-09-01

    This paper demonstrates a synergy-based brain-machine interface that uses low-dimensional command signals to control a high dimensional virtual hand. First, temporal postural synergies were extracted from the angular velocities of finger joints of five healthy subjects when they performed hand movements that were similar to activities of daily living. Two synergies inspired from the extracted synergies, namely, two-finger pinch and whole-hand grasp, were used in real-time brain control, where a virtual hand with 10 degrees of freedom was controlled to grasp or pinch virtual objects. These two synergies were controlled by electrocorticographic (ECoG) signals recorded from two electrodes of an electrode array that spanned motor and speech areas of an individual with intractable epilepsy, thus demonstrating closed loop control of a synergy-based brain-machine interface. PMID:21708506

  13. Penalty-Based Finite Element Interface Technology for Analysis of Homogeneous and Composite Structures

    NASA Technical Reports Server (NTRS)

    Averill, Ronald C.

    2002-01-01

    An effective and robust interface element technology able to connect independently modeled finite element subdomains has been developed. This method is based on the use of penalty constraints and allows coupling of finite element models whose nodes do not coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. A significant effort has been directed toward identifying those model characteristics (element geometric properties, material properties, and loads) that most strongly affect the required penalty parameter, and subsequently to developing simple 'formulae' for automatically calculating the proper penalty parameter for each interface constraint. This task is especially critical in composite materials and structures, where adjacent sub-regions may be composed of significantly different materials or laminates. This approach has been validated by investigating a variety of two-dimensional problems, including composite laminates.

  14. Interface characterization using an SEM-based micro-indentor

    SciTech Connect

    Lewis, M.H.; Cain, M.G.; Daniel, A.M.

    1995-10-01

    The design and performance of an SEM-based microindentor, for interfacial property measurements in CMCs, is described. It enables high resolution imaging and simultaneous load/displacement monitoring with capacity and resolution of 20 N {+-} 1 mN (load) and 100 {mu}m {+-} 10 nm (displacement). Its application to measurement of interface debond and shear stresses for a wide range of fibers and monofilaments is described.

  15. The JAVA-based DICOM query interface DicoSE.

    PubMed

    Prinz, Michael; Fischer, Georg; Schuster, Ernst

    2005-03-01

    DICOM 3 is a very elaborate standard for the communication between medical image devices. It is published in several parts by the National Electrical Manufacturers Association (NEMA). To adequately visualize the data structure defined in parts 3, 5 and 6 of the DICOM standard, we implemented the web based Dicom Search Engine (DicoSE). It allows for querying the DICOM standard data dictionary for defined data fields and visualizes the topology of the data which is inherently present in DICOM datasets. For the administration of the underlying data a web based administration interface is provided. The service is entirely based on freely available software. PMID:15694639

  16. Optimized Diagnostic Assays Based on Redox Tagged Bioreceptive Interfaces.

    PubMed

    Bedatty Fernandes, Flavio C; Patil, Amol V; Bueno, Paulo R; Davis, Jason J

    2015-12-15

    Among the numerous label free electronic biomarker assay methodologies now available, impedance based electrochemical capacitance spectroscopy (ECS), based upon mapping the perturbations in interfacial charging of redox elements incorporated into a biologically receptive interface, has recently been shown to be a convenient and highly sensitive mode of transduction and one which, additionally, requires no predoping of analytical solution. We present, herein, a data acquisition and analysis methodology based on frequency resolved immittance function analysis. Ultimately, this enables both a maximization of assay sensitivity and a reduction in assay acquisition time by an order of magnitude. PMID:26583592

  17. A polarizable continuum model for molecules at spherical diffuse interfaces.

    PubMed

    Di Remigio, Roberto; Mozgawa, Krzysztof; Cao, Hui; Weijo, Ville; Frediani, Luca

    2016-03-28

    We present an extension of the Polarizable Continuum Model (PCM) to simulate solvent effects at diffuse interfaces with spherical symmetry, such as nanodroplets and micelles. We derive the form of the Green's function for a spatially varying dielectric permittivity with spherical symmetry and exploit the integral equation formalism of the PCM for general dielectric environments to recast the solvation problem into a continuum solvation framework. This allows the investigation of the solvation of ions and molecules in nonuniform dielectric environments, such as liquid droplets, micelles or membranes, while maintaining the computationally appealing characteristics of continuum solvation models. We describe in detail our implementation, both for the calculation of the Green's function and for its subsequent use in the PCM electrostatic problem. The model is then applied on a few test systems, mainly to analyze the effect of interface curvature on solvation energetics. PMID:27036423

  18. A polarizable continuum model for molecules at spherical diffuse interfaces

    NASA Astrophysics Data System (ADS)

    Di Remigio, Roberto; Mozgawa, Krzysztof; Cao, Hui; Weijo, Ville; Frediani, Luca

    2016-03-01

    We present an extension of the Polarizable Continuum Model (PCM) to simulate solvent effects at diffuse interfaces with spherical symmetry, such as nanodroplets and micelles. We derive the form of the Green's function for a spatially varying dielectric permittivity with spherical symmetry and exploit the integral equation formalism of the PCM for general dielectric environments to recast the solvation problem into a continuum solvation framework. This allows the investigation of the solvation of ions and molecules in nonuniform dielectric environments, such as liquid droplets, micelles or membranes, while maintaining the computationally appealing characteristics of continuum solvation models. We describe in detail our implementation, both for the calculation of the Green's function and for its subsequent use in the PCM electrostatic problem. The model is then applied on a few test systems, mainly to analyze the effect of interface curvature on solvation energetics.

  19. Computer modelling of nanoscale diffusion phenomena at epitaxial interfaces

    NASA Astrophysics Data System (ADS)

    Michailov, M.; Ranguelov, B.

    2014-05-01

    The present study outlines an important area in the application of computer modelling to interface phenomena. Being relevant to the fundamental physical problem of competing atomic interactions in systems with reduced dimensionality, these phenomena attract special academic attention. On the other hand, from a technological point of view, detailed knowledge of the fine atomic structure of surfaces and interfaces correlates with a large number of practical problems in materials science. Typical examples are formation of nanoscale surface patterns, two-dimensional superlattices, atomic intermixing at an epitaxial interface, atomic transport phenomena, structure and stability of quantum wires on surfaces. We discuss here a variety of diffusion mechanisms that control surface-confined atomic exchange, formation of alloyed atomic stripes and islands, relaxation of pure and alloyed atomic terraces, diffusion of clusters and their stability in an external field. The computational model refines important details of diffusion of adatoms and clusters accounting for the energy barriers at specific atomic sites: smooth domains, terraces, steps and kinks. The diffusion kinetics, integrity and decomposition of atomic islands in an external field are considered in detail and assigned to specific energy regions depending on the cluster stability in mass transport processes. The presented ensemble of diffusion scenarios opens a way for nanoscale surface design towards regular atomic interface patterns with exotic physical features.

  20. A visual interface for the SUPERFLEX hydrological modelling framework

    NASA Astrophysics Data System (ADS)

    Gao, H.; Fenicia, F.; Kavetski, D.; Savenije, H. H. G.

    2012-04-01

    The SUPERFLEX framework is a modular modelling system for conceptual hydrological modelling at the catchment scale. This work reports the development of a visual interface for the SUPERFLEX model. This aims to enhance the communication between the hydrologic experimentalists and modelers, in particular further bridging the gap between the field soft data and the modeler's knowledge. In collaboration with field experimentalists, modelers can visually and intuitively hypothesize different model architectures and combinations of reservoirs, select from a library of constructive functions to describe the relationship between reservoirs' storage and discharge, specify the shape of lag functions and, finally, set parameter values. The software helps hydrologists take advantage of any existing insights into the study site, translate it into a conceptual hydrological model and implement it within a computationally robust algorithm. This tool also helps challenge and contrast competing paradigms such as the "uniqueness of place" vs "one model fits all". Using this interface, hydrologists can test different hypotheses and model representations, and stepwise build deeper understanding of the watershed of interest.

  1. Symmetric model of compressible granular mixtures with permeable interfaces

    NASA Astrophysics Data System (ADS)

    Saurel, Richard; Le Martelot, Sébastien; Tosello, Robert; Lapébie, Emmanuel

    2014-12-01

    Compressible granular materials are involved in many applications, some of them being related to energetic porous media. Gas permeation effects are important during their compaction stage, as well as their eventual chemical decomposition. Also, many situations involve porous media separated from pure fluids through two-phase interfaces. It is thus important to develop theoretical and numerical formulations to deal with granular materials in the presence of both two-phase interfaces and gas permeation effects. Similar topic was addressed for fluid mixtures and interfaces with the Discrete Equations Method (DEM) [R. Abgrall and R. Saurel, "Discrete equations for physical and numerical compressible multiphase mixtures," J. Comput. Phys. 186(2), 361-396 (2003)] but it seemed impossible to extend this approach to granular media as intergranular stress [K. K. Kuo, V. Yang, and B. B. Moore, "Intragranular stress, particle-wall friction and speed of sound in granular propellant beds," J. Ballist. 4(1), 697-730 (1980)] and associated configuration energy [J. B. Bdzil, R. Menikoff, S. F. Son, A. K. Kapila, and D. S. Stewart, "Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues," Phys. Fluids 11, 378 (1999)] were present with significant effects. An approach to deal with fluid-porous media interfaces was derived in Saurel et al. ["Modelling dynamic and irreversible powder compaction," J. Fluid Mech. 664, 348-396 (2010)] but its validity was restricted to weak velocity disequilibrium only. Thanks to a deeper analysis, the DEM is successfully extended to granular media modelling in the present paper. It results in an enhanced version of the Baer and Nunziato ["A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials," Int. J. Multiphase Flow 12(6), 861-889 (1986)] model as symmetry of the formulation is now preserved. Several computational examples are

  2. Hypertext-based design of a user interface for scheduling

    NASA Technical Reports Server (NTRS)

    Woerner, Irene W.; Biefeld, Eric

    1993-01-01

    Operations Mission Planner (OMP) is an ongoing research project at JPL that utilizes AI techniques to create an intelligent, automated planning and scheduling system. The information space reflects the complexity and diversity of tasks necessary in most real-world scheduling problems. Thus the problem of the user interface is to present as much information as possible at a given moment and allow the user to quickly navigate through the various types of displays. This paper describes a design which applies the hypertext model to solve these user interface problems. The general paradigm is to provide maps and search queries to allow the user to quickly find an interesting conflict or problem, and then allow the user to navigate through the displays in a hypertext fashion.

  3. A TinyOS-based wireless neural interface.

    PubMed

    Farshchi, Shahin; Mody, Istvan; Judy, Jack W

    2004-01-01

    The overlay of a neural interface upon a TinyOS-based sensing and communication platform is described. The system amplifies, digitally encodes, and transmits two EEG channels of neural signals from an un-tethered subject to a remote gateway, which routes the signals to a client PC. This work demonstrates the viability of the TinyOS-based sensor technology as a foundation for chronic remote biological monitoring applications, and thus provides an opportunity to create a system that can leverage from the frequent networking and communications advancements being made by the global TinyOS-development community. PMID:17271263

  4. ATCA-based ATLAS FTK input interface system

    NASA Astrophysics Data System (ADS)

    Okumura, Y.; Liu, T.; Olsen, J.; Iizawa, T.; Mitani, T.; Korikawa, T.; Yorita, K.; Annovi, A.; Beretta, M.; Gatta, M.; Sotiropoulou, C.-L.; Gkaitatzis, S.; Kordas, K.; Kimura, N.; Cremonesi, M.; Yin, H.; Xu, Z.

    2015-04-01

    The first stage of the ATLAS Fast TracKer (FTK) is an ATCA-based input interface system, where hits from the entire silicon tracker are clustered and organized into overlapping η-phi trigger towers before being sent to the tracking engines. First, FTK Input Mezzanine cards receive hit data and perform clustering to reduce data volume. Then, the ATCA-based Data Formatter system will organize the trigger tower data, sharing data among boards over full mesh backplanes and optic fibers. The board and system level design concepts and implementation details, as well as the operation experiences from the FTK full-chain testing, will be presented.

  5. A Graph Based Interface for Representing Volume Visualization Results

    NASA Technical Reports Server (NTRS)

    Patten, James M.; Ma, Kwan-Liu

    1998-01-01

    This paper discusses a graph based user interface for representing the results of the volume visualization process. As images are rendered, they are connected to other images in a graph based on their rendering parameters. The user can take advantage of the information in this graph to understand how certain rendering parameter changes affect a dataset, making the visualization process more efficient. Because the graph contains more information than is contained in an unstructured history of images, the image graph is also helpful for collaborative visualization and animation.

  6. fNIRS-based brain-computer interfaces: a review

    PubMed Central

    Naseer, Noman; Hong, Keum-Shik

    2015-01-01

    A brain-computer interface (BCI) is a communication system that allows the use of brain activity to control computers or other external devices. It can, by bypassing the peripheral nervous system, provide a means of communication for people suffering from severe motor disabilities or in a persistent vegetative state. In this paper, brain-signal generation tasks, noise removal methods, feature extraction/selection schemes, and classification techniques for fNIRS-based BCI are reviewed. The most common brain areas for fNIRS BCI are the primary motor cortex and the prefrontal cortex. In relation to the motor cortex, motor imagery tasks were preferred to motor execution tasks since possible proprioceptive feedback could be avoided. In relation to the prefrontal cortex, fNIRS showed a significant advantage due to no hair in detecting the cognitive tasks like mental arithmetic, music imagery, emotion induction, etc. In removing physiological noise in fNIRS data, band-pass filtering was mostly used. However, more advanced techniques like adaptive filtering, independent component analysis (ICA), multi optodes arrangement, etc. are being pursued to overcome the problem that a band-pass filter cannot be used when both brain and physiological signals occur within a close band. In extracting features related to the desired brain signal, the mean, variance, peak value, slope, skewness, and kurtosis of the noised-removed hemodynamic response were used. For classification, the linear discriminant analysis method provided simple but good performance among others: support vector machine (SVM), hidden Markov model (HMM), artificial neural network, etc. fNIRS will be more widely used to monitor the occurrence of neuro-plasticity after neuro-rehabilitation and neuro-stimulation. Technical breakthroughs in the future are expected via bundled-type probes, hybrid EEG-fNIRS BCI, and through the detection of initial dips. PMID:25674060

  7. fNIRS-based brain-computer interfaces: a review.

    PubMed

    Naseer, Noman; Hong, Keum-Shik

    2015-01-01

    A brain-computer interface (BCI) is a communication system that allows the use of brain activity to control computers or other external devices. It can, by bypassing the peripheral nervous system, provide a means of communication for people suffering from severe motor disabilities or in a persistent vegetative state. In this paper, brain-signal generation tasks, noise removal methods, feature extraction/selection schemes, and classification techniques for fNIRS-based BCI are reviewed. The most common brain areas for fNIRS BCI are the primary motor cortex and the prefrontal cortex. In relation to the motor cortex, motor imagery tasks were preferred to motor execution tasks since possible proprioceptive feedback could be avoided. In relation to the prefrontal cortex, fNIRS showed a significant advantage due to no hair in detecting the cognitive tasks like mental arithmetic, music imagery, emotion induction, etc. In removing physiological noise in fNIRS data, band-pass filtering was mostly used. However, more advanced techniques like adaptive filtering, independent component analysis (ICA), multi optodes arrangement, etc. are being pursued to overcome the problem that a band-pass filter cannot be used when both brain and physiological signals occur within a close band. In extracting features related to the desired brain signal, the mean, variance, peak value, slope, skewness, and kurtosis of the noised-removed hemodynamic response were used. For classification, the linear discriminant analysis method provided simple but good performance among others: support vector machine (SVM), hidden Markov model (HMM), artificial neural network, etc. fNIRS will be more widely used to monitor the occurrence of neuro-plasticity after neuro-rehabilitation and neuro-stimulation. Technical breakthroughs in the future are expected via bundled-type probes, hybrid EEG-fNIRS BCI, and through the detection of initial dips. PMID:25674060

  8. Conservative phase-field lattice Boltzmann model for interface tracking equation.

    PubMed

    Geier, Martin; Fakhari, Abbas; Lee, Taehun

    2015-06-01

    Based on the phase-field theory, we propose a conservative lattice Boltzmann method to track the interface between two different fluids. The presented model recovers the conservative phase-field equation and conserves mass locally and globally. Two entirely different approaches are used to calculate the gradient of the phase field, which is needed in computation of the normal to the interface. One approach uses finite-difference stencils similar to many existing lattice Boltzmann models for tracking the two-phase interface, while the other one invokes central moments to calculate the gradient of the phase field without any finite differences involved. The former approach suffers from the nonlocality of the collision operator while the latter is entirely local making it highly suitable for massive parallel implementation. Several benchmark problems are carried out to assess the accuracy and stability of the proposed model. PMID:26172824

  9. Region based Brain Computer Interface for a home control application.

    PubMed

    Akman Aydin, Eda; Bay, Omer Faruk; Guler, Inan

    2015-08-01

    Environment control is one of the important challenges for disabled people who suffer from neuromuscular diseases. Brain Computer Interface (BCI) provides a communication channel between the human brain and the environment without requiring any muscular activation. The most important expectation for a home control application is high accuracy and reliable control. Region-based paradigm is a stimulus paradigm based on oddball principle and requires selection of a target at two levels. This paper presents an application of region based paradigm for a smart home control application for people with neuromuscular diseases. In this study, a region based stimulus interface containing 49 commands was designed. Five non-disabled subjects were attended to the experiments. Offline analysis results of the experiments yielded 95% accuracy for five flashes. This result showed that region based paradigm can be used to select commands of a smart home control application with high accuracy in the low number of repetitions successfully. Furthermore, a statistically significant difference was not observed between the level accuracies. PMID:26736451

  10. A dielectric barrier discharge ionization based interface for online coupling surface plasmon resonance with mass spectrometry.

    PubMed

    Zhang, Yiding; Xu, Shuting; Wen, Luhong; Bai, Yu; Niu, Li; Song, Daqian; Liu, Huwei

    2016-05-23

    The online combination of surface plasmon resonance (SPR) with mass spectrometry (MS) could be beneficial for accurately acquiring molecular interaction data simultaneously with their structural information at high throughputs. In this work, a novel SPR-MS interface was developed using a dielectric barrier discharge ionization (DBDI) source. The DBDI source was placed in front of the MS inlet, generating an ionization plasma jet. A spray tip was set between the DBDI source outlet and the MS inlet, nebulizing the SPR sample solution. Using this interface, samples could first be studied by SPR, then sprayed and ionized, finally analyzed by MS. By analyzing model samples containing small-molecule drugs dissolved in salt containing solutions, the practicability of this SPR-DBDI-MS interface was proved, observing the consistent change of SPR and MS signals. Compared with our previously developed direct analysis in real time (DART) based SPR-MS interface, this new interface exhibited a higher and better tolerance to non-volatile salts, and different ionization capabilities for various samples. These results indicated that the interface could find further utilization in SPR-MS studies especially when physiological conditions were needed. PMID:27116712

  11. Modeling the Effect of Interface Wear on Fatigue Hysteresis Behavior of Carbon Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    An analytical method has been developed to investigate the effect of interface wear on fatigue hysteresis behavior in carbon fiber-reinforced ceramic-matrix composites (CMCs). The damage mechanisms, i.e., matrix multicracking, fiber/matrix interface debonding and interface wear, fibers fracture, slip and pull-out, have been considered. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. Upon first loading to fatigue peak stress and subsequent cyclic loading, the fibers failure probabilities and fracture locations were determined by combining the interface wear model and fiber statistical failure model based on the assumption that the loads carried by broken and intact fibers satisfy the global load sharing criterion. The effects of matrix properties, i.e., matrix cracking characteristic strength and matrix Weibull modulus, interface properties, i.e., interface shear stress and interface debonded energy, fiber properties, i.e., fiber Weibull modulus and fiber characteristic strength, and cycle number on fibers failure, hysteresis loops and interface slip, have been investigated. The hysteresis loops under fatigue loading from the present analytical method were in good agreement with experimental data.

  12. Near infrared spectroscopy based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Ranganatha, Sitaram; Hoshi, Yoko; Guan, Cuntai

    2005-04-01

    A brain-computer interface (BCI) provides users with an alternative output channel other than the normal output path of the brain. BCI is being given much attention recently as an alternate mode of communication and control for the disabled, such as patients suffering from Amyotrophic Lateral Sclerosis (ALS) or "locked-in". BCI may also find applications in military, education and entertainment. Most of the existing BCI systems which rely on the brain's electrical activity use scalp EEG signals. The scalp EEG is an inherently noisy and non-linear signal. The signal is detrimentally affected by various artifacts such as the EOG, EMG, ECG and so forth. EEG is cumbersome to use in practice, because of the need for applying conductive gel, and the need for the subject to be immobile. There is an urgent need for a more accessible interface that uses a more direct measure of cognitive function to control an output device. The optical response of Near Infrared Spectroscopy (NIRS) denoting brain activation can be used as an alternative to electrical signals, with the intention of developing a more practical and user-friendly BCI. In this paper, a new method of brain-computer interface (BCI) based on NIRS is proposed. Preliminary results of our experiments towards developing this system are reported.

  13. Organizing the public health-clinical health interface: theoretical bases.

    PubMed

    St-Pierre, Michèle; Reinharz, Daniel; Gauthier, Jacques-Bernard

    2006-01-01

    This article addresses the issue of the interface between public health and clinical health within the context of the search for networking approaches geared to a more integrated delivery of health services. The articulation of an operative interface is complicated by the fact that the definition of networking modalities involves complex intra- and interdisciplinary and intra- and interorganizational systems across which a new transversal dynamics of intervention practices and exchanges between service structures must be established. A better understanding of the situation is reached by shedding light on the rationale underlying the organizational methods that form the bases of the interface between these two sectors of activity. The Quebec experience demonstrates that neither the structural-functionalist approach, which emphasizes remodelling establishment structures and functions as determinants of integration, nor the structural-constructivist approach, which prioritizes distinct fields of practice in public health and clinical health, adequately serves the purpose of networking and integration. Consequently, a theoretical reframing is imperative. In this regard, structuration theory, which fosters the simultaneous study of methods of inter-structure coordination and inter-actor cooperation, paves the way for a better understanding of the situation and, in turn, to the emergence of new integration possibilities. PMID:16645802

  14. Developing a laser shockwave model for characterizing diffusion bonded interfaces

    SciTech Connect

    Lacy, Jeffrey M. Smith, James A. Rabin, Barry H.

    2015-03-31

    The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.

  15. Developing a laser shockwave model for characterizing diffusion bonded interfaces

    NASA Astrophysics Data System (ADS)

    Lacy, Jeffrey M.; Smith, James A.; Rabin, Barry H.

    2015-03-01

    The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.

  16. A diffuse interface model of grain boundary faceting

    NASA Astrophysics Data System (ADS)

    Abdeljawad, Fadi; Medlin, Douglas; Zimmerman, Jonathan; Hattar, Khalid; Foiles, Stephen

    Incorporating anisotropy into thermodynamic treatments of interfaces dates back to over a century ago. For a given orientation of two abutting grains in a pure metal, depressions in the grain boundary (GB) energy may exist as a function of GB inclination, defined by the plane normal. Therefore, an initially flat GB may facet resulting in a hill-and-valley structure. Herein, we present a diffuse interface model of GB faceting that is capable of capturing anisotropic GB energies and mobilities, and accounting for the excess energy due to facet junctions and their non-local interactions. The hallmark of our approach is the ability to independently examine the role of each of the interface properties on the faceting behavior. As a demonstration, we consider the Σ 5 < 001 > tilt GB in iron, where faceting along the { 310 } and { 210 } planes was experimentally observed. Linear stability analysis and numerical examples highlight the role of junction energy and associated non-local interactions on the resulting facet length scales. On the whole, our modeling approach provides a general framework to examine the spatio-temporal evolution of highly anisotropic GBs in polycrystalline metals. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  17. Physics-Based 3-D Simulation for Earthquake Generation Cycles at Plate Interfaces in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Hashimoto, Chihiro; Fukuyama, Eiichi; Matsu'ura, Mitsuhiro

    2014-08-01

    The generation of interplate earthquakes can be regarded as a process of tectonic stress accumulation and release, driven by relative plate motion. We completed a physics-based simulation system for earthquake generation cycles at plate interfaces in the Japan region, where the Pacific plate is descending beneath the North American and Philippine Sea plates, and the Philippine Sea plate is descending beneath the North American and Eurasian plates. The system is composed of a quasi-static tectonic loading model and a dynamic rupture propagation model, developed on a realistic 3-D plate interface model. The driving force of the system is relative plate motion. In the quasi-static tectonic loading model, mechanical interaction at plate interfaces is rationally represented by the increase of tangential displacement discontinuity (fault slip) across them on the basis of dislocation theory for an elastic surface layer overlying Maxwell-type viscoelastic half-space. In the dynamic rupture propagation model, stress changes due to fault slip motion on non-planar plate interfaces are evaluated with the boundary integral equation method. The progress of seismic (dynamic) or aseismic (quasi-static) fault slip on plate interfaces is governed by a slip- and time-dependent fault constitutive law. As an example, we numerically simulated earthquake generation cycles at the source region of the 1968 Tokachi-oki earthquake on the North American-Pacific plate interface. From the numerical simulation, we can see that postseismic stress relaxation in the asthenosphere accelerates stress accumulation in the source region. When the stress state of the source region is close to a critical level, dynamic rupture is rapidly accelerated and develops over the whole source region. When the stress state is much lower than the critical level, the rupture is not accelerated. This means that the stress state realized by interseismic tectonic loading essentially controls the subsequent dynamic

  18. Diffuse-interface modeling of three-phase interactions

    NASA Astrophysics Data System (ADS)

    Park, Jang Min; Anderson, Patrick D.

    2016-05-01

    In this work, a numerical model is developed to study the three-phase interactions which take place when two immiscible drops suspended in a third immiscible liquid are brought together. The diffuse-interface model coupled with the hydrodynamic equations is solved by a standard finite element method. Partial and complete engulfing between two immiscible drops is studied, and the effects of several parameters are discussed. In the partial-engulfing case, two stages of wetting and pulling are identified, which qualitatively agrees with the experiment. In the complete-engulfing case, three stages of wetting and/or penetration, pulling, and spreading are identified.

  19. Phononic band structures and stability analysis using radial basis function method with consideration of different interface models

    NASA Astrophysics Data System (ADS)

    Yan, Zhi-zhong; Wei, Chun-qiu; Zheng, Hui; Zhang, Chuanzeng

    2016-05-01

    In this paper, a meshless radial basis function (RBF) collocation method is developed to calculate the phononic band structures taking account of different interface models. The present method is validated by using the analytical results in the case of perfect interfaces. The stability is fully discussed based on the types of RBFs, the shape parameters and the node numbers. And the advantages of the proposed RBF method compared to the finite element method (FEM) are also illustrated. In addition, the influences of the spring-interface model and the three-phase model on the wave band gaps are investigated by comparing with the perfect interfaces. For different interface models, the effects of various interface conditions, length ratios and density ratios on the band gap width are analyzed. The comparison results of the two models show that the weakly bonded interface has a significant effect on the properties of phononic crystals. Besides, the band structures of the spring-interface model have certain similarities and differences with those of the three-phase model.

  20. The effect of interface properties on nickel base alloy composites. Final report

    SciTech Connect

    Groves, M.; Grossman, T.; Senemeier, M.; Wright, K.

    1995-07-01

    This program was performed to assess the extent to which mechanical behavior models can predict the properties of sapphire fiber/nickel aluminide matrix composites and help guide their development by defining improved combinations of matrix and interface coating. The program consisted of four tasks: (1) selection of the matrices and interface coating constituents using a modeling-based approach; (2) fabrication of the selected materials; (3) testing and evaluation of the materials; and (4) evaluation of the behavior models to develop recommendations. Ni-50Al and Ni-20AI-30Fe (a/o) matrices were selected which gave brittle and ductile behavior, respectively, and an interface coating of PVD YSZ was selected which provided strong bonding to the sapphire fiber. Significant fiber damage and strength loss was observed in the composites which made straightforward comparison of properties with models difficult. Nevertheless, the models selected generally provided property predictions which agreed well with results when fiber degradation was incorporated. The presence of a strong interface bond was felt to be detrimental in the NiAI MMC system where low toughness and low strength were observed.

  1. Surfaces and interfaces in polymer-based electronics

    NASA Astrophysics Data System (ADS)

    Fahlman, M.; Salaneck, W. R.

    2002-03-01

    Research on electronics applications such as light-emitting devices for flat-panel displays, transistors, sensors and even solid state lasers based on conducting polymers is presently under way and in some cases has reached the stage of prototype production. The mechanisms for charge injection and conduction in these materials are being studied, as are the physics of luminescence and its quenching. Lately, research into controlling film morphology through self-organizing techniques also has gained interest. Though the present interest in conducting polymers mainly concerns the pristine semiconducting state, doped conducting polymers are also studied for potential use in many applications. In this paper, we present an overview of some of the central issues in surface and interface science in the field, as well as provide our view on what may lie ahead in the future. Specifically, the importance of metal/polymer, polymer/metal and polymer/polymer interfaces is addressed. We illustrate these using polymer-based light-emitting devices, though the same type of issues appear in other polymer-based applications such as transistors and solar cells.

  2. Analytical solutions in a hydraulic model of seepage with sharp interfaces

    NASA Astrophysics Data System (ADS)

    Kacimov, A. R.

    2002-02-01

    Flows in horizontal homogeneous porous layers are studied in terms of a hydraulic model with an abrupt interface between two incompressible Darcian fluids of contrasting density driven by an imposed gradient along the layer. The flow of one fluid moving above a resting finger-type pool of another is studied. A straight interface between two moving fluids is shown to slump, rotate and propagate deeper under periodic drive conditions than in a constant-rate regime. Superpropagation of the interface is related to Philip's superelevation in tidal dynamics and acceleration of the front in vertical infiltration in terms of the Green-Ampt model with an oscillating ponding water level. All solutions studied are based on reduction of the governing PDE to nonlinear ODEs and further analytical and numerical integration by computer algebra routines.

  3. Modeling Complex Cross-Systems Software Interfaces Using SysML

    NASA Technical Reports Server (NTRS)

    Mandutianu, Sanda; Morillo, Ron; Simpson, Kim; Liepack, Otfrid; Bonanne, Kevin

    2013-01-01

    The complex flight and ground systems for NASA human space exploration are designed, built, operated and managed as separate programs and projects. However, each system relies on one or more of the other systems in order to accomplish specific mission objectives, creating a complex, tightly coupled architecture. Thus, there is a fundamental need to understand how each system interacts with the other. To determine if a model-based system engineering approach could be utilized to assist with understanding the complex system interactions, the NASA Engineering and Safety Center (NESC) sponsored a task to develop an approach for performing cross-system behavior modeling. This paper presents the results of applying Model Based Systems Engineering (MBSE) principles using the System Modeling Language (SysML) to define cross-system behaviors and how they map to crosssystem software interfaces documented in system-level Interface Control Documents (ICDs).

  4. A Strategy Based on Protein-Protein Interface Motifs May Help in Identifying Drug Off-Targets

    PubMed Central

    Engin, H. Billur; Keskin, Ozlem; Nussinov, Ruth; Gursoy, Attila

    2014-01-01

    Networks are increasingly used to study the impact of drugs at the systems level. From the algorithmic standpoint, a drug can ‘attack’ nodes or edges of a protein-protein interaction network. In this work, we propose a new network strategy, “The Interface Attack”, based on protein-protein interfaces. Similar interface architectures can occur between unrelated proteins. Consequently, in principle, a drug that binds to one has a certain probability of binding others. The interface attack strategy simultaneously removes from the network all interactions that consist of similar interface motifs. This strategy is inspired by network pharmacology and allows inferring potential off-targets. We introduce a network model which we call “Protein Interface and Interaction Network (P2IN)”, which is the integration of protein-protein interface structures and protein interaction networks. This interface-based network organization clarifies which protein pairs have structurally similar interfaces, and which proteins may compete to bind the same surface region. We built the P2IN of p53 signaling network and performed network robustness analysis. We show that (1) ‘hitting’ frequent interfaces (a set of edges distributed around the network) might be as destructive as eleminating high degree proteins (hub nodes); (2) frequent interfaces are not always topologically critical elements in the network; and (3) interface attack may reveal functional changes in the system better than attack of single proteins. In the off-target detection case study, we found that drugs blocking the interface between CDK6 and CDKN2D may also affect the interaction between CDK4 and CDKN2D. PMID:22817115

  5. Importance of interfaces in governing thermal transport in composite materials: modeling and experimental perspectives.

    PubMed

    Roy, Ajit K; Farmer, Barry L; Varshney, Vikas; Sihn, Sangwook; Lee, Jonghoon; Ganguli, Sabyasachi

    2012-02-01

    Thermal management in polymeric composite materials has become increasingly critical in the air-vehicle industry because of the increasing thermal load in small-scale composite devices extensively used in electronics and aerospace systems. The thermal transport phenomenon in these small-scale heterogeneous systems is essentially controlled by the interface thermal resistance because of the large surface-to-volume ratio. In this review article, several modeling strategies are discussed for different length scales, complemented by our experimental efforts to tailor the thermal transport properties of polymeric composite materials. Progress in the molecular modeling of thermal transport in thermosets is reviewed along with a discussion on the interface thermal resistance between functionalized carbon nanotube and epoxy resin systems. For the thermal transport in fiber-reinforced composites, various micromechanics-based analytical and numerical modeling schemes are reviewed in predicting the transverse thermal conductivity. Numerical schemes used to realize and scale the interface thermal resistance and the finite mean free path of the energy carrier in the mesoscale are discussed in the frame of the lattice Boltzmann-Peierls-Callaway equation. Finally, guided by modeling, complementary experimental efforts are discussed for exfoliated graphite and vertically aligned nanotubes based composites toward improving their effective thermal conductivity by tailoring interface thermal resistance. PMID:22295993

  6. A biological model for controlling interface growth and morphology.

    SciTech Connect

    Hoyt, Jeffrey John; Holm, Elizabeth Ann

    2004-01-01

    Biological systems create proteins that perform tasks more efficiently and precisely than conventional chemicals. For example, many plants and animals produce proteins to control the freezing of water. Biological antifreeze proteins (AFPs) inhibit the solidification process, even below the freezing point. These molecules bond to specific sites at the ice/water interface and are theorized to suppress solidification chemically or geometrically. In this project, we investigated the theoretical and experimental data on AFPs and performed analyses to understand the unique physics of AFPs. The experimental literature was analyzed to determine chemical mechanisms and effects of protein bonding at ice surfaces, specifically thermodynamic freezing point depression, suppression of ice nucleation, decrease in dendrite growth kinetics, solute drag on the moving solid/liquid interface, and stearic pinning of the ice interface. Stearic pinning was found to be the most likely candidate to explain experimental results, including freezing point depression, growth morphologies, and thermal hysteresis. A new stearic pinning model was developed and applied to AFPs, with excellent quantitative results. Understanding biological antifreeze mechanisms could enable important medical and engineering applications, but considerable future work will be necessary.

  7. A diffuse interface model of grain boundary faceting

    NASA Astrophysics Data System (ADS)

    Abdeljawad, F.; Medlin, D. L.; Zimmerman, J. A.; Hattar, K.; Foiles, S. M.

    2016-06-01

    Interfaces, free or internal, greatly influence the physical properties and stability of materials microstructures. Of particular interest are the processes that occur due to anisotropic interfacial properties. In the case of grain boundaries (GBs) in metals, several experimental observations revealed that an initially flat GB may facet into hill-and-valley structures with well defined planes and corners/edges connecting them. Herein, we present a diffuse interface model that is capable of accounting for strongly anisotropic GB properties and capturing the formation of hill-and-valley morphologies. The hallmark of our approach is the ability to independently examine the various factors affecting GB faceting and subsequent facet coarsening. More specifically, our formulation incorporates higher order expansions to account for the excess energy due to facet junctions and their non-local interactions. As a demonstration of the modeling capability, we consider the Σ5 <001 > tilt GB in body-centered-cubic iron, where faceting along the {210} and {310} planes was experimentally observed. Atomistic calculations were utilized to determine the inclination-dependent GB energy, which was then used as an input in our model. Linear stability analysis and simulation results highlight the role of junction energy and associated non-local interactions on the resulting facet length scales. Broadly speaking, our modeling approach provides a general framework to examine the microstructural stability of polycrystalline systems with highly anisotropic GBs.

  8. A symbolic/subsymbolic interface protocol for cognitive modeling

    PubMed Central

    Simen, Patrick; Polk, Thad

    2009-01-01

    Researchers studying complex cognition have grown increasingly interested in mapping symbolic cognitive architectures onto subsymbolic brain models. Such a mapping seems essential for understanding cognition under all but the most extreme viewpoints (namely, that cognition consists exclusively of digitally implemented rules; or instead, involves no rules whatsoever). Making this mapping reduces to specifying an interface between symbolic and subsymbolic descriptions of brain activity. To that end, we propose parameterization techniques for building cognitive models as programmable, structured, recurrent neural networks. Feedback strength in these models determines whether their components implement classically subsymbolic neural network functions (e.g., pattern recognition), or instead, logical rules and digital memory. These techniques support the implementation of limited production systems. Though inherently sequential and symbolic, these neural production systems can exploit principles of parallel, analog processing from decision-making models in psychology and neuroscience to explain the effects of brain damage on problem solving behavior. PMID:20711520

  9. Rule-based interface generation on mobile devices for structured documentation.

    PubMed

    Kock, Ann-Kristin; Andersen, Björn; Handels, Heinz; Ingenerf, Josef

    2014-01-01

    In many software systems to date, interactive graphical user interfaces (GUIs) are represented implicitly in the source code, together with the application logic. Hence, the re-use, development, and modification of these interfaces is often very laborious. Flexible adjustments of GUIs for various platforms and devices as well as individual user preferences are furthermore difficult to realize. These problems motivate a software-based separation of content and GUI models on the one hand, and application logic on the other. In this project, a software solution for structured reporting on mobile devices is developed. Clinical content archetypes developed in a previous project serve as the content model while the Android SDK provides the GUI model. The necessary bindings between the models are specified using the Jess Rule Language. PMID:25160197

  10. Quantum dots self assembly based interface for blood cancer detection.

    PubMed

    Sharma, Aditya; Sumana, Gajjala; Sapra, Sameer; Malhotra, Bansi Dhar

    2013-07-01

    Results of the studies related to fabrication of sensitive electrochemical biosensor using an interface based on quantum dots (QDs) self-assembly is reported. The QDs assembly is sought to provide improved fundamental characteristics to the electrode interface in terms of electroactive surface area, diffusion coefficient, and electron transfer kinetics. This QDs modified electrode has been utilized to serve as a transducer surface for covalent immobilization of chronic myelogenous leukemia (CML) specific probe oligonucleotide, designed from the BCR-ABL fusion gene. The electrochemical characteristics of this biosensor toward various designed synthetic oligonucleotides reveal a significant enhancement in its mismatch discrimination capability compared to the biosensing assay without QDs under similar experimental conditions. The sensing characteristics of this biosensor offer a potential for detection of target oligonucleotide at a concentration as low as 1.0 pM. Furthermore, the PCR-amplified CML-positive patient samples with various BCR-ABL transcript ratios can be electrochemically distinguished from healthy samples, indicating promising application of the QDs based biosensor for clinical investigations. PMID:23721517

  11. Groundwater modeling and remedial optimization design using graphical user interfaces

    SciTech Connect

    Deschaine, L.M.

    1997-05-01

    The ability to accurately predict the behavior of chemicals in groundwater systems under natural flow circumstances or remedial screening and design conditions is the cornerstone to the environmental industry. The ability to do this efficiently and effectively communicate the information to the client and regulators is what differentiates effective consultants from ineffective consultants. Recent advances in groundwater modeling graphical user interfaces (GUIs) are doing for numerical modeling what Windows{trademark} did for DOS{trademark}. GUI facilitates both the modeling process and the information exchange. This Test Drive evaluates the performance of two GUIs--Groundwater Vistas and ModIME--on an actual groundwater model calibration and remedial design optimization project. In the early days of numerical modeling, data input consisted of large arrays of numbers that required intensive labor to input and troubleshoot. Model calibration was also manual, as was interpreting the reams of computer output for each of the tens or hundreds of simulations required to calibrate and perform optimal groundwater remedial design. During this period, the majority of the modelers effort (and budget) was spent just getting the model running, as opposed to solving the environmental challenge at hand. GUIs take the majority of the grunt work out of the modeling process, thereby allowing the modeler to focus on designing optimal solutions.

  12. Brain-computer interface using water-based electrodes

    NASA Astrophysics Data System (ADS)

    Volosyak, Ivan; Valbuena, Diana; Malechka, Tatsiana; Peuscher, Jan; Gräser, Axel

    2010-12-01

    Current brain-computer interfaces (BCIs) that make use of EEG acquisition techniques require unpleasant electrode gel causing skin abrasion during the standard preparation procedure. Electrodes that require tap water instead of electrolytic electrode gel would make both daily setup and clean up much faster, easier and comfortable. This paper presents the results from ten subjects that controlled an SSVEP-based BCI speller system using two EEG sensor modalities: water-based and gel-based surface electrodes. Subjects performed in copy spelling mode using conventional gel-based electrodes and water-based electrodes with a mean information transfer rate (ITR) of 29.68 ± 14.088 bit min-1 and of 26.56 ± 9.224 bit min-1, respectively. A paired t-test failed to reveal significant differences in the information transfer rates and accuracies of using gel- or water-based electrodes for EEG acquisition. This promising result confirms the operational readiness of water-based electrodes for BCI applications.

  13. Voltage harmonic elimination with RLC based interface smoothing filter

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, K.; Ramachandaramurthy, V. K.

    2015-04-01

    A method is proposed for designing a Dynamic Voltage Restorer (DVR) with RLC interface smoothing filter. The RLC filter connected between the IGBT based Voltage Source Inverter (VSI) is attempted to eliminate voltage harmonics in the busbar voltage and switching harmonics from VSI by producing a PWM controlled harmonic voltage. In this method, the DVR or series active filter produces PWM voltage that cancels the existing harmonic voltage due to any harmonic voltage source. The proposed method is valid for any distorted busbar voltage. The operating VSI handles no active power but only harmonic power. The DVR is able to suppress the lower order switching harmonics generated by the IGBT based VSI. Good dynamic and transient results obtained. The Total Harmonic Distortion (THD) is minimized to zero at the sensitive load end. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of RLC filter. Simulated results are presented.

  14. Modeling small-signal response of GaN-based metal-insulator-semiconductor high electron mobility transistor gate stack in spill-over regime: Effect of barrier resistance and interface states

    NASA Astrophysics Data System (ADS)

    Capriotti, M.; Lagger, P.; Fleury, C.; Oposich, M.; Bethge, O.; Ostermaier, C.; Strasser, G.; Pogany, D.

    2015-01-01

    We provide theoretical and simulation analysis of the small signal response of SiO2/AlGaN/GaN metal insulator semiconductor (MIS) capacitors from depletion to spill over region, where the AlGaN/SiO2 interface is accumulated with free electrons. A lumped element model of the gate stack, including the response of traps at the III-N/dielectric interface, is proposed and represented in terms of equivalent parallel capacitance, Cp, and conductance, Gp. Cp -voltage and Gp -voltage dependences are modelled taking into account bias dependent AlGaN barrier dynamic resistance Rbr and the effective channel resistance. In particular, in the spill-over region, the drop of Cp with the frequency increase can be explained even without taking into account the response of interface traps, solely by considering the intrinsic response of the gate stack (i.e., no trap effects) and the decrease of Rbr with the applied forward bias. Furthermore, we show the limitations of the conductance method for the evaluation of the density of interface traps, Dit, from the Gp/ω vs. angular frequency ω curves. A peak in Gp/ω vs. ω occurs even without traps, merely due to the intrinsic frequency response of gate stack. Moreover, the amplitude of the Gp/ω vs. ω peak saturates at high Dit, which can lead to underestimation of Dit. Understanding the complex interplay between the intrinsic gate stack response and the effect of interface traps is relevant for the development of normally on and normally off MIS high electron mobility transistors with stable threshold voltage.

  15. Modeling small-signal response of GaN-based metal-insulator-semiconductor high electron mobility transistor gate stack in spill-over regime: Effect of barrier resistance and interface states

    SciTech Connect

    Capriotti, M. E-mail: dionyz.pogany@tuwien.ac.at; Fleury, C.; Oposich, M.; Bethge, O.; Strasser, G.; Pogany, D. E-mail: dionyz.pogany@tuwien.ac.at; Lagger, P.; Ostermaier, C.

    2015-01-14

    We provide theoretical and simulation analysis of the small signal response of SiO{sub 2}/AlGaN/GaN metal insulator semiconductor (MIS) capacitors from depletion to spill over region, where the AlGaN/SiO{sub 2} interface is accumulated with free electrons. A lumped element model of the gate stack, including the response of traps at the III-N/dielectric interface, is proposed and represented in terms of equivalent parallel capacitance, C{sub p}, and conductance, G{sub p}. C{sub p} -voltage and G{sub p} -voltage dependences are modelled taking into account bias dependent AlGaN barrier dynamic resistance R{sub br} and the effective channel resistance. In particular, in the spill-over region, the drop of C{sub p} with the frequency increase can be explained even without taking into account the response of interface traps, solely by considering the intrinsic response of the gate stack (i.e., no trap effects) and the decrease of R{sub br} with the applied forward bias. Furthermore, we show the limitations of the conductance method for the evaluation of the density of interface traps, D{sub it}, from the G{sub p}/ω vs. angular frequency ω curves. A peak in G{sub p}/ω vs. ω occurs even without traps, merely due to the intrinsic frequency response of gate stack. Moreover, the amplitude of the G{sub p}/ω vs. ω peak saturates at high D{sub it}, which can lead to underestimation of D{sub it}. Understanding the complex interplay between the intrinsic gate stack response and the effect of interface traps is relevant for the development of normally on and normally off MIS high electron mobility transistors with stable threshold voltage.

  16. Wall modeling for implicit large-eddy simulation and immersed-interface methods

    NASA Astrophysics Data System (ADS)

    Chen, Zhen Li; Hickel, Stefan; Devesa, Antoine; Berland, Julien; Adams, Nikolaus A.

    2014-02-01

    We propose and analyze a wall model based on the turbulent boundary layer equations (TBLE) for implicit large-eddy simulation (LES) of high Reynolds number wall-bounded flows in conjunction with a conservative immersed-interface method for mapping complex boundaries onto Cartesian meshes. Both implicit subgrid-scale model and immersed-interface treatment of boundaries offer high computational efficiency for complex flow configurations. The wall model operates directly on the Cartesian computational mesh without the need for a dual boundary-conforming mesh. The combination of wall model and implicit LES is investigated in detail for turbulent channel flow at friction Reynolds numbers from Re τ = 395 up to Re τ =100,000 on very coarse meshes. The TBLE wall model with implicit LES gives results of better quality than current explicit LES based on eddy viscosity subgrid-scale models with similar wall models. A straightforward formulation of the wall model performs well at moderately large Reynolds numbers. A logarithmic-layer mismatch, observed only at very large Reynolds numbers, is removed by introducing a new structure-based damping function. The performance of the overall approach is assessed for two generic configurations with flow separation: the backward-facing step at Re h = 5,000 and the periodic hill at Re H = 10,595 and Re H = 37,000 on very coarse meshes. The results confirm the observations made for the channel flow with respect to the good prediction quality and indicate that the combination of implicit LES, immersed-interface method, and TBLE-based wall modeling is a viable approach for simulating complex aerodynamic flows at high Reynolds numbers. They also reflect the limitations of TBLE-based wall models.

  17. Spherical wave reflection in layered media with rough interfaces: Three-dimensional modeling.

    PubMed

    Pinson, Samuel; Cordioli, Julio; Guillon, Laurent

    2016-08-01

    In the context of sediment characterization, layer interface roughnesses may be responsible for sound-speed profile measurement uncertainties. To study the roughness influence, a three-dimensional (3D) modeling of a layered seafloor with rough interfaces is necessary. Although roughness scattering has an abundant literature, 3D modeling of spherical wave reflection on rough interfaces is generally limited to a single interface (using Kirchhoff-Helmholtz integral) or computationally expensive techniques (finite difference or finite element method). In this work, it is demonstrated that the wave reflection over a layered medium with irregular interfaces can be modeled as a sum of integrals over each interface. The main approximations of the method are the tangent-plane approximation, the Born approximation (multiple reflection between interfaces are neglected) and flat-interface approximation for the transmitted waves into the sediment. The integration over layer interfaces results in a method with reasonable computation cost. PMID:27586741

  18. A Natural Language Interface Concordant with a Knowledge Base

    PubMed Central

    Han, Yong-Jin; Park, Seong-Bae; Park, Se-Young

    2016-01-01

    The discordance between expressions interpretable by a natural language interface (NLI) system and those answerable by a knowledge base is a critical problem in the field of NLIs. In order to solve this discordance problem, this paper proposes a method to translate natural language questions into formal queries that can be generated from a graph-based knowledge base. The proposed method considers a subgraph of a knowledge base as a formal query. Thus, all formal queries corresponding to a concept or a predicate in the knowledge base can be generated prior to query time and all possible natural language expressions corresponding to each formal query can also be collected in advance. A natural language expression has a one-to-one mapping with a formal query. Hence, a natural language question is translated into a formal query by matching the question with the most appropriate natural language expression. If the confidence of this matching is not sufficiently high the proposed method rejects the question and does not answer it. Multipredicate queries are processed by regarding them as a set of collected expressions. The experimental results show that the proposed method thoroughly handles answerable questions from the knowledge base and rejects unanswerable ones effectively. PMID:26904105

  19. Design of video interface conversion system based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Heng; Wang, Xiang-jun

    2014-11-01

    This paper presents a FPGA based video interface conversion system that enables the inter-conversion between digital and analog video. Cyclone IV series EP4CE22F17C chip from Altera Corporation is used as the main video processing chip, and single-chip is used as the information interaction control unit between FPGA and PC. The system is able to encode/decode messages from the PC. Technologies including video decoding/encoding circuits, bus communication protocol, data stream de-interleaving and de-interlacing, color space conversion and the Camera Link timing generator module of FPGA are introduced. The system converts Composite Video Broadcast Signal (CVBS) from the CCD camera into Low Voltage Differential Signaling (LVDS), which will be collected by the video processing unit with Camera Link interface. The processed video signals will then be inputted to system output board and displayed on the monitor.The current experiment shows that it can achieve high-quality video conversion with minimum board size.

  20. Detecting Nasal Vowels in Speech Interfaces Based on Surface Electromyography

    PubMed Central

    Freitas, João; Teixeira, António; Silva, Samuel; Oliveira, Catarina; Dias, Miguel Sales

    2015-01-01

    Nasality is a very important characteristic of several languages, European Portuguese being one of them. This paper addresses the challenge of nasality detection in surface electromyography (EMG) based speech interfaces. We explore the existence of useful information about the velum movement and also assess if muscles deeper down in the face and neck region can be measured using surface electrodes, and the best electrode location to do so. The procedure we adopted uses Real-Time Magnetic Resonance Imaging (RT-MRI), collected from a set of speakers, providing a method to interpret EMG data. By ensuring compatible data recording conditions, and proper time alignment between the EMG and the RT-MRI data, we are able to accurately estimate the time when the velum moves and the type of movement when a nasal vowel occurs. The combination of these two sources revealed interesting and distinct characteristics in the EMG signal when a nasal vowel is uttered, which motivated a classification experiment. Overall results of this experiment provide evidence that it is possible to detect velum movement using sensors positioned below the ear, between mastoid process and the mandible, in the upper neck region. In a frame-based classification scenario, error rates as low as 32.5% for all speakers and 23.4% for the best speaker have been achieved, for nasal vowel detection. This outcome stands as an encouraging result, fostering the grounds for deeper exploration of the proposed approach as a promising route to the development of an EMG-based speech interface for languages with strong nasal characteristics. PMID:26069968

  1. Detecting Nasal Vowels in Speech Interfaces Based on Surface Electromyography.

    PubMed

    Freitas, João; Teixeira, António; Silva, Samuel; Oliveira, Catarina; Dias, Miguel Sales

    2015-01-01

    Nasality is a very important characteristic of several languages, European Portuguese being one of them. This paper addresses the challenge of nasality detection in surface electromyography (EMG) based speech interfaces. We explore the existence of useful information about the velum movement and also assess if muscles deeper down in the face and neck region can be measured using surface electrodes, and the best electrode location to do so. The procedure we adopted uses Real-Time Magnetic Resonance Imaging (RT-MRI), collected from a set of speakers, providing a method to interpret EMG data. By ensuring compatible data recording conditions, and proper time alignment between the EMG and the RT-MRI data, we are able to accurately estimate the time when the velum moves and the type of movement when a nasal vowel occurs. The combination of these two sources revealed interesting and distinct characteristics in the EMG signal when a nasal vowel is uttered, which motivated a classification experiment. Overall results of this experiment provide evidence that it is possible to detect velum movement using sensors positioned below the ear, between mastoid process and the mandible, in the upper neck region. In a frame-based classification scenario, error rates as low as 32.5% for all speakers and 23.4% for the best speaker have been achieved, for nasal vowel detection. This outcome stands as an encouraging result, fostering the grounds for deeper exploration of the proposed approach as a promising route to the development of an EMG-based speech interface for languages with strong nasal characteristics. PMID:26069968

  2. Numerical simulations of the moving contact line problem using a diffuse-interface model

    NASA Astrophysics Data System (ADS)

    Afzaal, Muhammad; Sibley, David; Duncan, Andrew; Yatsyshin, Petr; Duran-Olivencia, Miguel A.; Nold, Andreas; Savva, Nikos; Schmuck, Markus; Kalliadasis, Serafim

    2015-11-01

    Moving contact lines are a ubiquitous phenomenon both in nature and in many modern technologies. One prevalent way of numerically tackling the problem is with diffuse-interface (phase-field) models, where the classical sharp-interface model of continuum mechanics is relaxed to one with a finite thickness fluid-fluid interface, capturing physics from mesoscopic lengthscales. The present work is devoted to the study of the contact line between two fluids confined by two parallel plates, i.e. a dynamically moving meniscus. Our approach is based on a coupled Navier-Stokes/Cahn-Hilliard model. This system of partial differential equations allows a tractable numerical solution to be computed, capturing diffusive and advective effects in a prototypical case study in a finite-element framework. Particular attention is paid to the static and dynamic contact angle of the meniscus advancing or receding between the plates. The results obtained from our approach are compared to the classical sharp-interface model to elicit the importance of considering diffusion and associated effects. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.

  3. Facial pressure zones of an oronasal interface for noninvasive ventilation: a computer model analysis* **

    PubMed Central

    Barros, Luana Souto; Talaia, Pedro; Drummond, Marta; Natal-Jorge, Renato

    2014-01-01

    OBJECTIVE: To study the effects of an oronasal interface (OI) for noninvasive ventilation, using a three-dimensional (3D) computational model with the ability to simulate and evaluate the main pressure zones (PZs) of the OI on the human face. METHODS: We used a 3D digital model of the human face, based on a pre-established geometric model. The model simulated soft tissues, skull, and nasal cartilage. The geometric model was obtained by 3D laser scanning and post-processed for use in the model created, with the objective of separating the cushion from the frame. A computer simulation was performed to determine the pressure required in order to create the facial PZs. We obtained descriptive graphical images of the PZs and their intensity. RESULTS: For the graphical analyses of each face-OI model pair and their respective evaluations, we ran 21 simulations. The computer model identified several high-impact PZs in the nasal bridge and paranasal regions. The variation in soft tissue depth had a direct impact on the amount of pressure applied (438-724 cmH2O). CONCLUSIONS: The computer simulation results indicate that, in patients submitted to noninvasive ventilation with an OI, the probability of skin lesion is higher in the nasal bridge and paranasal regions. This methodology could increase the applicability of biomechanical research on noninvasive ventilation interfaces, providing the information needed in order to choose the interface that best minimizes the risk of skin lesion. PMID:25610506

  4. Intelligent User Interfaces for Information Analysis: A Cognitive Model

    SciTech Connect

    Schwarting, Irene S.; Nelson, Rob A.; Cowell, Andrew J.

    2006-01-29

    Intelligent user interfaces (IUIs) for information analysis (IA) need to be designed with an intrinsic understanding of the analytical objectives and the dimensions of the information space. These analytical objectives are oriented around the requirement to provide decision makers with courses of action. Most tools available to support analysis barely skim the surface of the dimensions and categories of information used in analysis, and almost none are designed to address the ultimate requirement of decision support. This paper presents a high-level model of the cognitive framework of information analysts in the context of doing their jobs. It is intended that this model will enable the derivation of design requirements for advanced IUIs for IA.

  5. PyGSM: Python interface to the Global Sky Model

    NASA Astrophysics Data System (ADS)

    Price, Danny C.

    2016-03-01

    PyGSM is a Python interface for the Global Sky Model (GSM, ascl:1011.010). The GSM is a model of diffuse galactic radio emission, constructed from a variety of all-sky surveys spanning the radio band (e.g. Haslam and WMAP). PyGSM uses the GSM to generate all-sky maps in Healpix format of diffuse Galactic radio emission from 10 MHz to 94 GHz. The PyGSM module provides visualization utilities, file output in FITS format, and the ability to generate observed skies for a given location and date. PyGSM requires Healpy, PyEphem (ascl:1112.014), and AstroPy (ascl:1304.002).

  6. Direct interfaces for smart skins based on FPGAs

    NASA Astrophysics Data System (ADS)

    Oballe-Peinado, Óscar; Castellanos-Ramos, Julián; Hidalgo-López, José A.; Vidal-Verdú, Fernando

    2009-05-01

    Many artificial skins for robotics are based on piezoresistive films that cover an array of electrodes. Local preprocessing is a must in these systems to reduce errors and interferences and cope with the large amount of data provided by the sensor. This paper presents circuitry based on an FPGA to implement the interface to the artificial skin. The approach consists of a direct connection. The analog to digital conversion procedure is simple. It consists of measuring the discharging time of a capacitor through the resistance we want to read. This first proposed approach needs isolated tactels, so the raw sensor has to be fabricated in this way. If the tactile array is large, the strategy is not feasible. For instance, up to 288 pins are required to implement the interface with an array of 16x16 tactels. The proposal of this work for this case is to replace passive integrators by active ones. The result is a circuitry that allows the cancellation of interferences due to parasitic resistors and the sharing of the addressing tracks. Moreover, the FPGA allows the processing of data from the tactile sensor at a very high rate. This is because the high number of I/O pins of the device allows the conversion of many channels (in our case one per column) in parallel. The internal processing of the tactile image can also be done in parallel. This means we could be able to respond to very high demanding tasks in terms of dynamic requirements, like slippage detection. This also means we can run complex algorithms at real time, so a smart, programmable and powerful sensor is obtained.

  7. The electrical behavior of GaAs-insulator interfaces - A discrete energy interface state model

    NASA Technical Reports Server (NTRS)

    Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1983-01-01

    The relationship between the electrical behavior of GaAs Metal Insulator Semiconductor (MIS) structures and the high density discrete energy interface states (0.7 and 0.9 eV below the conduction band) was investigated utilizing photo- and thermal emission from the interface states in conjunction with capacitance measurements. It was found that all essential features of the anomalous behavior of GaAs MIS structures, such as the frequency dispersion and the C-V hysteresis, can be explained on the basis of nonequilibrium charging and discharging of the high density discrete energy interface states.

  8. An MEG-based Brain-Computer Interface (BCI)

    PubMed Central

    Mellinger, Jürgen; Schalk, Gerwin; Braun, Christoph; Preissl, Hubert; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea

    2007-01-01

    Brain-Computer Interfaces (BCIs) allow for communicating intentions by mere brain activity, not involving muscles. Thus, BCIs may offer patients who have lost all voluntary muscle control the only possible way to communicate. Many recent studies have demonstrated that BCIs based on electroencephalography (EEG) can allow healthy and severely paralyzed individuals to communicate. While this approach is safe and inexpensive, communication is slow. Magnetoencephalography (MEG) provides signals with higher spatiotemporal resolution than EEG, and could thus be used to explore whether these improved signal properties translate into increased BCI communication speed. In this study, we investigated the utility of an MEG-based BCI that uses voluntary amplitude modulation of sensorimotor μ and β rhythms. To increase the signal-to-noise ratio, we present a simple spatial filtering method that takes the geometric properties of signal propagation in MEG into account, and we present methods that can process artifacts specifically encountered in an MEG-based BCI. Exemplarily, six participants were successfully trained to communicate binary decisions by imagery of limb movements using a feedback paradigm. Participants achieved significant μ-rhythm self control within 32 minutes of feedback training. For a subgroup of three participants, we localized the origin of the amplitude modulated signal to the motor cortex. Our results suggest that an MEG-based BCI is feasible and efficient in terms of user training. PMID:17475511

  9. Growth/reflectance model interface for wheat and corresponding model

    NASA Technical Reports Server (NTRS)

    Suits, G. H.; Sieron, R.; Odenweller, J.

    1984-01-01

    The use of modeling to explore the possibility of discovering new and useful crop condition indicators which might be available from the Thematic Mapper and to connect these symptoms to the biological causes in the crop is discussed. A crop growth model was used to predict the day to day growth features of the crop as it responds biologically to the various environmental factors. A reflectance model was used to predict the character of the interaction of daylight with the predicted growth features. An atmospheric path radiance was added to the reflected daylight to simulate the radiance appearing at the sensor. Finally, the digitized data sent to a ground station were calculated. The crop under investigation is wheat.

  10. Interface localization in the 2D Ising model with a driven line

    NASA Astrophysics Data System (ADS)

    Cohen, O.; Mukamel, D.

    2016-04-01

    We study the effect of a one-dimensional driving field on the interface between two coexisting phases in a two dimensional model. This is done by considering an Ising model on a cylinder with Glauber dynamics in all sites and additional biased Kawasaki dynamics in the central ring. Based on the exact solution of the two-dimensional Ising model, we are able to compute the phase diagram of the driven model within a special limit of fast drive and slow spin flips in the central ring. The model is found to exhibit two phases where the interface is pinned to the central ring: one in which it fluctuates symmetrically around the central ring and another where it fluctuates asymmetrically. In addition, we find a phase where the interface is centered in the bulk of the system, either below or above the central ring of the cylinder. In the latter case, the symmetry breaking is ‘stronger’ than that found in equilibrium when considering a repulsive potential on the central ring. This equilibrium model is analyzed here by using a restricted solid-on-solid model.

  11. Enhancement of galloping-based wind energy harvesting by synchronized switching interface circuits

    NASA Astrophysics Data System (ADS)

    Zhao, Liya; Liang, Junrui; Tang, Lihua; Yang, Yaowen; Liu, Haili

    2015-04-01

    Galloping phenomenon has attracted extensive research attention for small-scale wind energy harvesting. In the reported literature, the dynamics and harvested power of a galloping-based energy harvesting system are usually evaluated with a resistive AC load; these characteristics might shift when a practical harvesting interface circuit is connected for extracting useful DC power. In the family of piezoelectric energy harvesting interface circuits, synchronized switching harvesting on inductor (SSHI) has demonstrated its advantage for enhancing the harvested power from existing base vibrations. This paper investigates the harvesting capability of a galloping-based wind energy harvester using SSHI interfaces, with a focus on comparing the performances of Series SSHI (S-SSHI) and Parallel SSHI (P-SSHI) with that of a standard DC interface, in terms of power at various wind speeds. The prototyped galloping-based piezoelectric energy harvester (GPEH) comprises a piezoelectric cantilever attached with a square-sectioned bluff body made of foam. Equivalent circuit model (ECM) of the GPEH is established and system-level circuit simulations with SSHI and standard interfaces are performed and validated with wind tunnel tests. The benefits of SSHI compared to standard circuit become more significant when the wind speed gets higher; while SSHI circuits lose the benefits at small wind speeds. In both experiment and simulation, the superiority of P-SSHI is confirmed while S-SSHI demands further investigation. The power output is increased by 43.75% with P-SSHI compared to the standard circuit at a wind speed of 6m/s.

  12. Analytical model for radiative transfer including the effects of a rough material interface.

    PubMed

    Giddings, Thomas E; Kellems, Anthony R

    2016-08-20

    The reflected and transmitted radiance due to a source located above a water surface is computed based on models for radiative transfer in continuous optical media separated by a discontinuous air-water interface with random surface roughness. The air-water interface is described as the superposition of random, unresolved roughness on a deterministic realization of a stochastic wave surface at resolved scales. Under the geometric optics assumption, the bidirectional reflection and transmission functions for the air-water interface are approximated by applying regular perturbation methods to Snell's law and including the effects of a random surface roughness component. Formal analytical solutions to the radiative transfer problem under the small-angle scattering approximation account for the effects of scattering and absorption as light propagates through the atmosphere and water and also capture the diffusive effects due to the interaction of light with the rough material interface that separates the two optical media. Results of the analytical models are validated against Monte Carlo simulations, and the approximation to the bidirectional reflection function is also compared to another well-known analytical model. PMID:27556978

  13. A robust and flexible Geospatial Modeling Interface (GMI) for environmental model deployment and evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper provides an overview of the GMI (Geospatial Modeling Interface) simulation framework for environmental model deployment and assessment. GMI currently provides access to multiple environmental models including AgroEcoSystem-Watershed (AgES-W), Nitrate Leaching and Economic Analysis 2 (NLEA...

  14. Modeling and diagnosing interface mix in layered ICF implosions

    NASA Astrophysics Data System (ADS)

    Weber, C. R.; Berzak Hopkins, L. F.; Clark, D. S.; Haan, S. W.; Ho, D. D.; Meezan, N. B.; Milovich, J. L.; Robey, H. F.; Smalyuk, V. A.; Thomas, C. A.

    2015-11-01

    Mixing at the fuel-ablator interface of an inertial confinement fusion (ICF) implosion can arise from an unfavorable in-flight Atwood number between the cryogenic DT fuel and the ablator. High-Z dopant is typically added to the ablator to control the Atwood number, but recent high-density carbon (HDC) capsules have been shot at the National Ignition Facility (NIF) without this added dopant. Highly resolved post-shot modeling of these implosions shows that there was significant mixing of ablator material into the dense DT fuel. This mix lowers the fuel density and results in less overall compression, helping to explain the measured ratio of down scattered-to-primary neutrons. Future experimental designs will seek to improve this issue through adding dopant and changing the x-ray spectra with a different hohlraum wall material. To test these changes, we are designing an experimental platform to look at the growth of this mixing layer. This technique uses side-on radiography to measure the spatial extent of an embedded high-Z tracer layer near the interface. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  15. A low cost human computer interface based on eye tracking.

    PubMed

    Hiley, Jonathan B; Redekopp, Andrew H; Fazel-Rezai, Reza

    2006-01-01

    This paper describes the implementation of a human computer interface based on eye tracking. Current commercially available systems exist, but have limited use due mainly to their large cost. The system described in this paper was designed to be a low cost and unobtrusive. The technique was video-oculography assisted by corneal reflections. An off-the shelf CCD webcam was used to capture images. The images were analyzed in software to extract key features of the eye. The users gaze point was then calculated based on the relative position of these features. The system is capable of calculating eye-gaze in real-time to provide a responsive interaction. A throughput of eight gaze points per second was achieved. The accuracy of the fixations based on the calculated eye-gazes were within 1 cm of the on-screen gaze location. By developing a low-cost system, this technology is made accessible to a wider range of applications. PMID:17946167

  16. Modeling the Electrical Contact Resistance at Steel-Carbon Interfaces

    NASA Astrophysics Data System (ADS)

    Brimmo, Ayoola T.; Hassan, Mohamed I.

    2016-01-01

    In the aluminum smelting industry, electrical contact resistance at the stub-carbon (steel-carbon) interface has been recurrently reported to be of magnitudes that legitimately necessitate concern. Mitigating this via finite element modeling has been the focus of a number of investigations, with the pressure- and temperature-dependent contact resistance relation frequently cited as a factor that limits the accuracy of such models. In this study, pressure- and temperature-dependent relations are derived from the most extensively cited works that have experimentally characterized the electrical contact resistance at these contacts. These relations are applied in a validated thermo-electro-mechanical finite element model used to estimate the voltage drop across a steel-carbon laboratory setup. By comparing the models' estimate of the contact electrical resistance with experimental measurements, we deduce the applicability of the different relations over a range of temperatures. The ultimate goal of this study is to apply mathematical modeling in providing pressure- and temperature-dependent relations that best describe the steel-carbon electrical contact resistance and identify the best fit relation at specific thermodynamic conditions.

  17. Parallelization of a hydrological model using the message passing interface

    USGS Publications Warehouse

    Wu, Yiping; Li, Tiejian; Sun, Liqun; Chen, Ji

    2013-01-01

    With the increasing knowledge about the natural processes, hydrological models such as the Soil and Water Assessment Tool (SWAT) are becoming larger and more complex with increasing computation time. Additionally, other procedures such as model calibration, which may require thousands of model iterations, can increase running time and thus further reduce rapid modeling and analysis. Using the widely-applied SWAT as an example, this study demonstrates how to parallelize a serial hydrological model in a Windows® environment using a parallel programing technology—Message Passing Interface (MPI). With a case study, we derived the optimal values for the two parameters (the number of processes and the corresponding percentage of work to be distributed to the master process) of the parallel SWAT (P-SWAT) on an ordinary personal computer and a work station. Our study indicates that model execution time can be reduced by 42%–70% (or a speedup of 1.74–3.36) using multiple processes (two to five) with a proper task-distribution scheme (between the master and slave processes). Although the computation time cost becomes lower with an increasing number of processes (from two to five), this enhancement becomes less due to the accompanied increase in demand for message passing procedures between the master and all slave processes. Our case study demonstrates that the P-SWAT with a five-process run may reach the maximum speedup, and the performance can be quite stable (fairly independent of a project size). Overall, the P-SWAT can help reduce the computation time substantially for an individual model run, manual and automatic calibration procedures, and optimization of best management practices. In particular, the parallelization method we used and the scheme for deriving the optimal parameters in this study can be valuable and easily applied to other hydrological or environmental models.

  18. Modeling interface-controlled phase transformation kinetics in thin films

    NASA Astrophysics Data System (ADS)

    Pang, E. L.; Vo, N. Q.; Philippe, T.; Voorhees, P. W.

    2015-05-01

    The Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation is widely used to describe phase transformation kinetics. This description, however, is not valid in finite size domains, in particular, thin films. A new computational model incorporating the level-set method is employed to study phase evolution in thin film systems. For both homogeneous (bulk) and heterogeneous (surface) nucleation, nucleation density and film thickness were systematically adjusted to study finite-thickness effects on the Avrami exponent during the transformation process. Only site-saturated nucleation with isotropic interface-kinetics controlled growth is considered in this paper. We show that the observed Avrami exponent is not constant throughout the phase transformation process in thin films with a value that is not consistent with the dimensionality of the transformation. Finite-thickness effects are shown to result in reduced time-dependent Avrami exponents when bulk nucleation is present, but not necessarily when surface nucleation is present.

  19. Formulation of consumables management models: Mission planning processor payload interface definition

    NASA Technical Reports Server (NTRS)

    Torian, J. G.

    1977-01-01

    Consumables models required for the mission planning and scheduling function are formulated. The relation of the models to prelaunch, onboard, ground support, and postmission functions for the space transportation systems is established. Analytical models consisting of an orbiter planning processor with consumables data base is developed. A method of recognizing potential constraint violations in both the planning and flight operations functions, and a flight data file storage/retrieval of information over an extended period which interfaces with a flight operations processor for monitoring of the actual flights is presented.

  20. Two-dimensional model of flows and interface instability in aluminum reduction cells

    NASA Astrophysics Data System (ADS)

    Zikanov, Oleg; Sun, Haijun; Ziegler, Donald

    2003-11-01

    We derive a two-dimensional model for the melt flows and interface instability in aluminum reduction cells. The model is based on the de St. Venant shallow water equations and incorporates the essential features of the system such as the magnetohydrodynamic instability mechanism and nonlinear coupling between the flows and interfacial waves. The model is applied to verify a recently proposed theory that explains the instability through the interaction between perturbations of horizontal electric currents in the aluminum layer and the imposed vertical magnetic field. We investigate the role of other factors, in particular, background melt flows and magnetic field perturbations.

  1. Haptic Interfaces: Getting in Touch with Web-based Learning.

    ERIC Educational Resources Information Center

    Bussell, Linda

    2001-01-01

    Explains haptic computer interfaces for Web sites that relay touch-sensory feedback to the user. Discusses the importance of touch to cognition and learning; whether haptics can improve performance and learning; haptic interfaces for accessibility for blind and physically impaired users; comparisons of haptic devices; barriers to implementation;…

  2. Designing and application of SAN extension interface based on CWDM

    NASA Astrophysics Data System (ADS)

    Qin, Leihua; Yu, Shengsheng; Zhou, Jingli

    2005-11-01

    As Fibre Channel (FC) becomes the protocol of choice within corporate data centers, enterprises are increasingly deploying SANs in their data central. In order to mitigate the risk of losing data and improve the availability of data, more and more enterprises are increasingly adopting storage extension technologies to replicate their business critical data to a secondary site. Transmitting this information over distance requires a carrier grade environment with zero data loss, scalable throughput, low jitter, high security and ability to travel long distance. To address this business requirements, there are three basic architectures for storage extension, they are Storage over Internet Protocol, Storage over Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) and Storage over Dense Wavelength Division Multiplexing (DWDM). Each approach varies in functionality, complexity, cost, scalability, security, availability , predictable behavior (bandwidth, jitter, latency) and multiple carrier limitations. Compared with these connectiviy technologies,Coarse Wavelength Division Multiplexing (CWDM) is a Simplified, Low Cost and High Performance connectivity solutions for enterprises to deploy their storage extension. In this paper, we design a storage extension connectivity over CWDM and test it's electrical characteristic and random read and write performance of disk array through the CWDM connectivity, testing result show us that the performance of the connectivity over CWDM is acceptable. Furthermore, we propose three kinds of network architecture of SAN extension based on CWDM interface. Finally the credit-Based flow control mechanism of FC, and the relationship between credits and extension distance is analyzed.

  3. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.

    PubMed

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid. PMID:23214691

  4. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model

    NASA Astrophysics Data System (ADS)

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland [Phys. FluidsPHFLE61070-663110.1063/1.3584815 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.

  5. Characterizing and Modeling Brittle Bi-material Interfaces Subjected to Shear

    NASA Astrophysics Data System (ADS)

    Anyfantis, Konstantinos N.; Berggreen, Christian

    2014-12-01

    This work is based on the investigation, both experimentally and numerically, of the Mode II fracture process and bond strength of bondlines formed in co-cured composite/metal joints. To this end, GFRP-to-steel double strap joints were tested in tension, so that the bi-material interface was subjected to shear with debonding occurring under Mode II conditions. The study of the debonding process and thus failure of the joints was based both on stress and energy considerations. Analytical formulas were utilized for the derivation of the respective shear strength and fracture toughness measures which characterize the bi-material interface, by considering the joint's failure load, geometry and involved materials. The derived stress and toughness magnitudes were further utilized as the parameters of an extrinsic cohesive law, applied in connection with the modeling the bi-material interface in a finite element simulation environment. It was concluded that interfacial fracture in the considered joints was driven by the fracture toughness and not by strength considerations, and that LEFM is well suited to analyze the failure of the joint. Additionally, the double strap joint geometry was identified and utilized as a characterization test for measuring the Mode II fracture toughness of brittle bi-material interfaces.

  6. Resistive switching near electrode interfaces: Estimations by a current model

    NASA Astrophysics Data System (ADS)

    Schroeder, Herbert; Zurhelle, Alexander; Stemmer, Stefanie; Marchewka, Astrid; Waser, Rainer

    2013-02-01

    The growing resistive switching database is accompanied by many detailed mechanisms which often are pure hypotheses. Some of these suggested models can be verified by checking their predictions with the benchmarks of future memory cells. The valence change memory model assumes that the different resistances in ON and OFF states are made by changing the defect density profiles in a sheet near one working electrode during switching. The resulting different READ current densities in ON and OFF states were calculated by using an appropriate simulation model with variation of several important defect and material parameters of the metal/insulator (oxide)/metal thin film stack such as defect density and its profile change in density and thickness, height of the interface barrier, dielectric permittivity, applied voltage. The results were compared to the benchmarks and some memory windows of the varied parameters can be defined: The required ON state READ current density of 105 A/cm2 can only be achieved for barriers smaller than 0.7 eV and defect densities larger than 3 × 1020 cm-3. The required current ratio between ON and OFF states of at least 10 requests defect density reduction of approximately an order of magnitude in a sheet of several nanometers near the working electrode.

  7. Reduction of nonlinear embedded boundary models for problems with evolving interfaces

    NASA Astrophysics Data System (ADS)

    Balajewicz, Maciej; Farhat, Charbel

    2014-10-01

    Embedded boundary methods alleviate many computational challenges, including those associated with meshing complex geometries and solving problems with evolving domains and interfaces. Developing model reduction methods for computational frameworks based on such methods seems however to be challenging. Indeed, most popular model reduction techniques are projection-based, and rely on basis functions obtained from the compression of simulation snapshots. In a traditional interface-fitted computational framework, the computation of such basis functions is straightforward, primarily because the computational domain does not contain in this case a fictitious region. This is not the case however for an embedded computational framework because the computational domain typically contains in this case both real and ghost regions whose definitions complicate the collection and compression of simulation snapshots. The problem is exacerbated when the interface separating both regions evolves in time. This paper addresses this issue by formulating the snapshot compression problem as a weighted low-rank approximation problem where the binary weighting identifies the evolving component of the individual simulation snapshots. The proposed approach is application independent and therefore comprehensive. It is successfully demonstrated for the model reduction of several two-dimensional, vortex-dominated, fluid-structure interaction problems.

  8. A user interface for the Kansas Geological Survey slug test model.

    PubMed

    Esling, Steven P; Keller, John E

    2009-01-01

    The Kansas Geological Survey (KGS) developed a semianalytical solution for slug tests that incorporates the effects of partial penetration, anisotropy, and the presence of variable conductivity well skins. The solution can simulate either confined or unconfined conditions. The original model, written in FORTRAN, has a text-based interface with rigid input requirements and limited output options. We re-created the main routine for the KGS model as a Visual Basic macro that runs in most versions of Microsoft Excel and built a simple-to-use Excel spreadsheet interface that automatically displays the graphical results of the test. A comparison of the output from the original FORTRAN code to that of the new Excel spreadsheet version for three cases produced identical results. PMID:19583592

  9. P300-based brain computer interface experimental setup.

    PubMed

    Arboleda, Carolina; Garcia, Eliana; Posada, Alejandro; Torres, Robinson

    2009-01-01

    A Brain-Computer interface (BCI) is a communication system that enables the generation of a control signal from brain signals such as sensorymotor rhythms and evoked potentials; therefore, it constitutes a novel communication option for people with severe motor disabilities (such as Amyotrophic Lateral Sclerosis patients). This paper presents the development of a P300-based BCI. This prototype uses a homemade six-channel electroencephalograph for the acquisition of the signals, and a visual stimulation matrix; since this matrix contains letters of the alphabet as well as images associated to them, it permits word-writing and the elaboration of messages with the images. To process the signals the software BCI2000 and MATLAB 7.0 were used. The latter was used to program three linear translation algorithms (Stepwise Linear Discriminant Analysis, Lineal Discriminant Analysis and Least Squares) to convert the brain signals into communication signals. These algorithms had a classification accuracy of 90.73 %, 95.75 % and 89.45 % respectively, when using raw data; and of 90.78%, 49.48 % and 53.9 %, when data was previously common-average filtered. The experimental setup was tested in ten healthy volunteers; 5 of them got a 100% success, 1 a 90% success, 2 an around 70% success and 2 a 50% success, in the online free-spelling tests. PMID:19964232

  10. Pyroelectric energy harvesting using liquid-based switchable thermal interfaces

    SciTech Connect

    Cha, G; Ju, YS

    2013-01-15

    The pyroelectric effect offers an intriguing solid-state approach for harvesting ambient thermal energy to power distributed networks of sensors and actuators that are remotely located or otherwise difficult to access. There have been, however, few device-level demonstrations due to challenges in converting spatial temperature gradients into temporal temperature oscillations necessary for pyroelectric energy harvesting. We demonstrate the feasibility of a device concept that uses liquid-based thermal interfaces for rapid switching of the thermal conductance between a pyroelectric material and a heat source/sink and can thereby deliver high output power density. Using a thin film of a pyroelectric co-polymer together with a macroscale mechanical actuator, we operate pyroelectric thermal energy harvesting cycles at frequencies close to 1 Hz. Film-level power densities as high as 110 mW/cm(3) were achieved, limited by slow heat diffusion across a glass substrate. When combined with a laterally interdigitated electrode array and a MEMS actuator, the present design offers an attractive option for compact high-power density thermal energy harvesters. (C) 2012 Elsevier B.V. All rights reserved.

  11. Knowledge-based graphical interfaces for presenting technical information

    NASA Technical Reports Server (NTRS)

    Feiner, Steven

    1988-01-01

    Designing effective presentations of technical information is extremely difficult and time-consuming. Moreover, the combination of increasing task complexity and declining job skills makes the need for high-quality technical presentations especially urgent. We believe that this need can ultimately be met through the development of knowledge-based graphical interfaces that can design and present technical information. Since much material is most naturally communicated through pictures, our work has stressed the importance of well-designed graphics, concentrating on generating pictures and laying out displays containing them. We describe APEX, a testbed picture generation system that creates sequences of pictures that depict the performance of simple actions in a world of 3D objects. Our system supports rules for determining automatically the objects to be shown in a picture, the style and level of detail with which they should be rendered, the method by which the action itself should be indicated, and the picture's camera specification. We then describe work on GRIDS, an experimental display layout system that addresses some of the problems in designing displays containing these pictures, determining the position and size of the material to be presented.

  12. Graphical User Interface for Simulink Integrated Performance Analysis Model

    NASA Technical Reports Server (NTRS)

    Durham, R. Caitlyn

    2009-01-01

    The J-2X Engine (built by Pratt & Whitney Rocketdyne,) in the Upper Stage of the Ares I Crew Launch Vehicle, will only start within a certain range of temperature and pressure for Liquid Hydrogen and Liquid Oxygen propellants. The purpose of the Simulink Integrated Performance Analysis Model is to verify that in all reasonable conditions the temperature and pressure of the propellants are within the required J-2X engine start boxes. In order to run the simulation, test variables must be entered at all reasonable values of parameters such as heat leak and mass flow rate. To make this testing process as efficient as possible in order to save the maximum amount of time and money, and to show that the J-2X engine will start when it is required to do so, a graphical user interface (GUI) was created to allow the input of values to be used as parameters in the Simulink Model, without opening or altering the contents of the model. The GUI must allow for test data to come from Microsoft Excel files, allow those values to be edited before testing, place those values into the Simulink Model, and get the output from the Simulink Model. The GUI was built using MATLAB, and will run the Simulink simulation when the Simulate option is activated. After running the simulation, the GUI will construct a new Microsoft Excel file, as well as a MATLAB matrix file, using the output values for each test of the simulation so that they may graphed and compared to other values.

  13. An approximate model and empirical energy function for solute interactions with a water-phosphatidylcholine interface.

    PubMed Central

    Sanders, C R; Schwonek, J P

    1993-01-01

    An empirical model of a liquid crystalline (L alpha phase) phosphatidylcholine (PC) bilayer interface is presented along with a function which calculates the position-dependent energy of associated solutes. The model approximates the interface as a gradual two-step transition, the first step being from an aqueous phase to a phase of reduced polarity, but which maintains a high enough concentration of water and/or polar head group moieties to satisfy the hydrogen bond-forming potential of the solute. The second transition is from the hydrogen bonding/low polarity region to an effectively anhydrous hydrocarbon phase. The "interfacial energies" of solutes within this variable medium are calculated based upon atomic positions and atomic parameters describing general polarity and hydrogen bond donor/acceptor propensities. This function was tested for its ability to reproduce experimental water-solvent partitioning energies and water-bilayer partitioning data. In both cases, the experimental data was reproduced fairly well. Energy minimizations carried out on beta-hexyl glucopyranoside led to identification of a global minimum for the interface-associated glycolipid which exhibited glycosidic torsion angles in agreement with prior results (Hare, B.J., K.P. Howard, and J.H. Prestegard. 1993. Biophys. J. 64:392-398). Molecular dynamics simulations carried out upon this same molecule within the simulated interface led to results which were consistent with a number of experimentally based conclusions from previous work, but failed to quantitatively reproduce an available NMR quadrupolar/dipolar coupling data set (Sanders, C.R., and J.H. Prestegard. 1991. J. Am. Chem. Soc. 113:1987-1996). The proposed model and functions are readily incorporated into computational energy modeling algorithms and may prove useful in future studies of membrane-associated molecules. PMID:8241401

  14. Planar architecture for microstrip interfaced packaging of coplanar-waveguide-based radio frequency microelectromechanical system switches

    NASA Astrophysics Data System (ADS)

    Singh, Shailendra; Giridhar, Malalahalli Sreenivasamurthy; Rao, Cheemalamarri Venkata Narasimha; Bhalke, Sangam; Islam, Rifqul

    2015-01-01

    This paper describes the architecture of microstrip (MS) interfaced packaging of a coplanar-waveguide (CPW)-based radio frequency microelectromechanical systems (RF MEMS) switch in a hermetic metal-ceramic RF package. The switch is integrated along with CPW to MS (CPW-MS) transitions within the package itself. This makes the MS interfaced packaged switch module readily mountable on MS based RF boards and subsystems. The CPW-MS transition for the package was designed as a separate off-chip entity on an alumina substrate and utilizes via hole. The integrated three-dimensional model of the package consisting of the RF MEMS switch and the transitions was simulated using high frequency structure simulator. The realized module shows an insertion loss of 0.2 and 1.1 dB at 100 MHz and 7 GHz, respectively. The measured isolation is better than 60 dB at 100 MHz and 30 dB at 7 GHz. The return loss is better than 15 dB up to 7 GHz. The estimated packaging and transitioning loss is 0.5 dB at 5 GHz. This packaging architecture is a planar solution for the MS interfaced packaging of CPW based RF MEMS switches for designers who do not have access to high-end technologies, such as zero-level packaging, through silicon via or low temperature co-fired ceramics.

  15. PITOMBA: Parameter Interface for Oligosaccharide Molecules Based on Atoms.

    PubMed

    Rusu, Victor H; Baron, Riccardo; Lins, Roberto D

    2014-11-11

    A novel four-bead coarse-grained (CG) model for carbohydrates denoted PITOMBA was devised using a bottom-up approach based on the atomistic GROMOS 53A6GLYC force field and on experimental thermodynamical data. The model was developed to be used in conjunction with the SPC CG water model (J. Chem. Phys. 2011, 134, 084110) and the GROMOS force field functional form. Explicit electrostatic interactions are considered by assigning point charges to each CG bead. Validation of the model is presented to a variety of structural and thermodynamic properties for mono- and oligosaccharides in solution. In addition, the model development philosophy allows for prompt extensions to include hexopyranose chains with diverse glycosidic linkages and branches. PMID:26584387

  16. Driven Interfaces: From Flow to Creep Through Model Reduction

    NASA Astrophysics Data System (ADS)

    Agoritsas, Elisabeth; García-García, Reinaldo; Lecomte, Vivien; Truskinovsky, Lev; Vandembroucq, Damien

    2016-08-01

    The response of spatially extended systems to a force leading their steady state out of equilibrium is strongly affected by the presence of disorder. We focus on the mean velocity induced by a constant force applied on one-dimensional interfaces. In the absence of disorder, the velocity is linear in the force. In the presence of disorder, it is widely admitted, as well as experimentally and numerically verified, that the velocity presents a stretched exponential dependence in the force (the so-called `creep law'), which is out of reach of linear response, or more generically of direct perturbative expansions at small force. In dimension one, there is no exact analytical derivation of such a law, even from a theoretical physical point of view. We propose an effective model with two degrees of freedom, constructed from the full spatially extended model, that captures many aspects of the creep phenomenology. It provides a justification of the creep law form of the velocity-force characteristics, in a quasistatic approximation. It allows, moreover, to capture the non-trivial effects of short-range correlations in the disorder, which govern the low-temperature asymptotics. It enables us to establish a phase diagram where the creep law manifests itself in the vicinity of the origin in the force-system-size-temperature coordinates. Conjointly, we characterise the crossover between the creep regime and a linear-response regime that arises due to finite system size.

  17. Challenges in Modeling of the Plasma-Material Interface

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag; Meyer, Fred; Allain, Jean Paul

    2013-09-01

    Plasma-Material Interface mixes materials of the two worlds, creating a new entity, a dynamical surface, which communicates between the two and represent one of the most challenging areas of multidisciplinary science, with many fundamental processes and synergies. How to build an integrated theoretical-experimental approach? Without mutual validation of experiment and theory chances very slim to have believable results? The outreach of the PMI science modeling at the fusion plasma facilities is illustrated by the significant step forward in understanding achieved recently by the quantum-classical modeling of the lithiated carbon surfaces irradiated by deuterium, showing surprisingly large role of oxygen in the deuterium retention and erosion chemistry. The plasma-facing walls of the next-generation fusion reactors will be exposed to high fluxes of neutrons and plasma-particles and will operate at high temperatures for thermodynamic efficiency. To this end we have been studying the evolution dynamics of vacancies and interstitials to the saturated dpa doses of tungsten surfaces bombarded by self-atoms, as well as the plasma-surface interactions of the damaged surfaces (erosion, hydrogen and helium uptake and fuzz formation). PSK and FWM acknowledge support of the ORNL LDRD program.

  18. Adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients.

    PubMed

    Xia, Kelin; Zhan, Meng; Wan, Decheng; Wei, Guo-Wei

    2012-02-01

    Mesh deformation methods are a versatile strategy for solving partial differential equations (PDEs) with a vast variety of practical applications. However, these methods break down for elliptic PDEs with discontinuous coefficients, namely, elliptic interface problems. For this class of problems, the additional interface jump conditions are required to maintain the well-posedness of the governing equation. Consequently, in order to achieve high accuracy and high order convergence, additional numerical algorithms are required to enforce the interface jump conditions in solving elliptic interface problems. The present work introduces an interface technique based adaptively deformed mesh strategy for resolving elliptic interface problems. We take the advantages of the high accuracy, flexibility and robustness of the matched interface and boundary (MIB) method to construct an adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients. The proposed method generates deformed meshes in the physical domain and solves the transformed governed equations in the computational domain, which maintains regular Cartesian meshes. The mesh deformation is realized by a mesh transformation PDE, which controls the mesh redistribution by a source term. The source term consists of a monitor function, which builds in mesh contraction rules. Both interface geometry based deformed meshes and solution gradient based deformed meshes are constructed to reduce the L(∞) and L(2) errors in solving elliptic interface problems. The proposed adaptively deformed mesh based interface method is extensively validated by many numerical experiments. Numerical results indicate that the adaptively deformed mesh based interface method outperforms the original MIB method for dealing with elliptic interface problems. PMID:22586356

  19. Adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients

    PubMed Central

    Xia, Kelin; Zhan, Meng; Wan, Decheng; Wei, Guo-Wei

    2011-01-01

    Mesh deformation methods are a versatile strategy for solving partial differential equations (PDEs) with a vast variety of practical applications. However, these methods break down for elliptic PDEs with discontinuous coefficients, namely, elliptic interface problems. For this class of problems, the additional interface jump conditions are required to maintain the well-posedness of the governing equation. Consequently, in order to achieve high accuracy and high order convergence, additional numerical algorithms are required to enforce the interface jump conditions in solving elliptic interface problems. The present work introduces an interface technique based adaptively deformed mesh strategy for resolving elliptic interface problems. We take the advantages of the high accuracy, flexibility and robustness of the matched interface and boundary (MIB) method to construct an adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients. The proposed method generates deformed meshes in the physical domain and solves the transformed governed equations in the computational domain, which maintains regular Cartesian meshes. The mesh deformation is realized by a mesh transformation PDE, which controls the mesh redistribution by a source term. The source term consists of a monitor function, which builds in mesh contraction rules. Both interface geometry based deformed meshes and solution gradient based deformed meshes are constructed to reduce the L∞ and L2 errors in solving elliptic interface problems. The proposed adaptively deformed mesh based interface method is extensively validated by many numerical experiments. Numerical results indicate that the adaptively deformed mesh based interface method outperforms the original MIB method for dealing with elliptic interface problems. PMID:22586356

  20. Phase field modeling of a glide dislocation transmission across a coherent sliding interface

    NASA Astrophysics Data System (ADS)

    Zheng, Songlin; Ni, Yong; He, Linghui

    2015-04-01

    Three-dimensional phase field microelasticity modeling and simulation capable of representing core structure and elastic interactions of dislocations are used to study a glide dislocation transmission across a coherent sliding interface in face-centered cubic metals. We investigate the role of the interface sliding process, which is described as the reversible motion of interface dislocation on the interfacial barrier strength to transmission. Numerical results show that a wider transient interface sliding zone develops on the interface with a lower interfacial unstable stacking fault energy to trap the glide dislocation leading to a stronger barrier to transmission. The interface sliding zone shrinks in the case of high applied stress and low mobility for the interfacial dislocation. This indicates that such interfacial barrier strength might be rate dependent. We discuss the calculated interfacial barrier strength for the Cu/Ni interface from the contribution of interface sliding comparable to previous atomistic simulations.

  1. Interfacing comprehensive rotorcraft analysis with advanced aeromechanics and vortex wake models

    NASA Astrophysics Data System (ADS)

    Liu, Haiying

    This dissertation describes three aspects of the comprehensive rotorcraft analysis. First, a physics-based methodology for the modeling of hydraulic devices within multibody-based comprehensive models of rotorcraft systems is developed. This newly proposed approach can predict the fully nonlinear behavior of hydraulic devices, and pressure levels in the hydraulic chambers are coupled with the dynamic response of the system. The proposed hydraulic device models are implemented in a multibody code and calibrated by comparing their predictions with test bench measurements for the UH-60 helicopter lead-lag damper. Predicted peak damping forces were found to be in good agreement with measurements, while the model did not predict the entire time history of damper force to the same level of accuracy. The proposed model evaluates relevant hydraulic quantities such as chamber pressures, orifice flow rates, and pressure relief valve displacements. This model could be used to design lead-lag dampers with desirable force and damping characteristics. The second part of this research is in the area of computational aeroelasticity, in which an interface between computational fluid dynamics (CFD) and computational structural dynamics (CSD) is established. This interface enables data exchange between CFD and CSD with the goal of achieving accurate airloads predictions. In this work, a loose coupling approach based on the delta-airloads method is developed in a finite-element method based multibody dynamics formulation, DYMORE. To validate this aerodynamic interface, a CFD code, OVERFLOW-2, is loosely coupled with a CSD program, DYMORE, to compute the airloads of different flight conditions for Sikorsky UH-60 aircraft. This loose coupling approach has good convergence characteristics. The predicted airloads are found to be in good agreement with the experimental data, although not for all flight conditions. In addition, the tight coupling interface between the CFD program, OVERFLOW

  2. Definition of common support equipment and space station interface requirements for IOC model technology experiments

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Waiss, Richard D.

    1988-01-01

    A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.

  3. Modeling Geometry and Progressive Failure of Material Interfaces in Plain Weave Composites

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Cheng, Ron-Bin

    2010-01-01

    A procedure combining a geometrically nonlinear, explicit-dynamics contact analysis, computer aided design techniques, and elasticity-based mesh adjustment is proposed to efficiently generate realistic finite element models for meso-mechanical analysis of progressive failure in textile composites. In the procedure, the geometry of fiber tows is obtained by imposing a fictitious expansion on the tows. Meshes resulting from the procedure are conformal with the computed tow-tow and tow-matrix interfaces but are incongruent at the interfaces. The mesh interfaces are treated as cohesive contact surfaces not only to resolve the incongruence but also to simulate progressive failure. The method is employed to simulate debonding at the material interfaces in a ceramic-matrix plain weave composite with matrix porosity and in a polymeric matrix plain weave composite without matrix porosity, both subject to uniaxial cyclic loading. The numerical results indicate progression of the interfacial damage during every loading and reverse loading event in a constant strain amplitude cyclic process. However, the composites show different patterns of damage advancement.

  4. Rigorous interpolation near tilted interfaces in 3-D finite-difference EM modelling

    NASA Astrophysics Data System (ADS)

    Shantsev, Daniil V.; Maaø, Frank A.

    2015-02-01

    We present a rigorous method for interpolation of electric and magnetic fields close to an interface with a conductivity contrast. The method takes into account not only a well-known discontinuity in the normal electric field, but also discontinuity in all the normal derivatives of electric and magnetic tangential fields. The proposed method is applied to marine 3-D controlled-source electromagnetic modelling (CSEM) where sources and receivers are located close to the seafloor separating conductive seawater and resistive formation. For the finite-difference scheme based on the Yee grid, the new interpolation is demonstrated to be much more accurate than alternative methods (interpolation using nodes on one side of the interface or interpolation using nodes on both sides, but ignoring the derivative jumps). The rigorous interpolation can handle arbitrary orientation of interface with respect to the grid, which is demonstrated on a marine CSEM example with a dipping seafloor. The interpolation coefficients are computed by minimizing a misfit between values at the nearest nodes and linear expansions of the continuous field components in the coordinate system aligned with the interface. The proposed interpolation operators can handle either uniform or non-uniform grids and can be applied to interpolation for both sources and receivers.

  5. Interfacing Cultured Neurons to Microtransducers Arrays: A Review of the Neuro-Electronic Junction Models

    PubMed Central

    Massobrio, Paolo; Massobrio, Giuseppe; Martinoia, Sergio

    2016-01-01

    Microtransducer arrays, both metal microelectrodes and silicon-based devices, are widely used as neural interfaces to measure, extracellularly, the electrophysiological activity of excitable cells. Starting from the pioneering works at the beginning of the 70's, improvements in manufacture methods, materials, and geometrical shape have been made. Nowadays, these devices are routinely used in different experimental conditions (both in vivo and in vitro), and for several applications ranging from basic research in neuroscience to more biomedical oriented applications. However, the use of these micro-devices deeply depends on the nature of the interface (coupling) between the cell membrane and the sensitive active surface of the microtransducer. Thus, many efforts have been oriented to improve coupling conditions. Particularly, in the latest years, two innovations related to the use of carbon nanotubes as interface material and to the development of micro-structures which can be engulfed by the cell membrane have been proposed. In this work, we review what can be simulated by using simple circuital models and what happens at the interface between the sensitive active surface of the microtransducer and the neuronal membrane of in vitro neurons. We finally focus our attention on these two novel technological solutions capable to improve the coupling between neuron and micro-nano transducer. PMID:27445657

  6. Interfacing Cultured Neurons to Microtransducers Arrays: A Review of the Neuro-Electronic Junction Models.

    PubMed

    Massobrio, Paolo; Massobrio, Giuseppe; Martinoia, Sergio

    2016-01-01

    Microtransducer arrays, both metal microelectrodes and silicon-based devices, are widely used as neural interfaces to measure, extracellularly, the electrophysiological activity of excitable cells. Starting from the pioneering works at the beginning of the 70's, improvements in manufacture methods, materials, and geometrical shape have been made. Nowadays, these devices are routinely used in different experimental conditions (both in vivo and in vitro), and for several applications ranging from basic research in neuroscience to more biomedical oriented applications. However, the use of these micro-devices deeply depends on the nature of the interface (coupling) between the cell membrane and the sensitive active surface of the microtransducer. Thus, many efforts have been oriented to improve coupling conditions. Particularly, in the latest years, two innovations related to the use of carbon nanotubes as interface material and to the development of micro-structures which can be engulfed by the cell membrane have been proposed. In this work, we review what can be simulated by using simple circuital models and what happens at the interface between the sensitive active surface of the microtransducer and the neuronal membrane of in vitro neurons. We finally focus our attention on these two novel technological solutions capable to improve the coupling between neuron and micro-nano transducer. PMID:27445657

  7. A DIFFUSE-INTERFACE APPROACH FOR MODELING TRANSPORT, DIFFUSION AND ADSORPTION/DESORPTION OF MATERIAL QUANTITIES ON A DEFORMABLE INTERFACE.

    PubMed

    Teigen, Knut Erik; Li, Xiangrong; Lowengrub, John; Wang, Fan; Voigt, Axel

    2009-12-01

    A method is presented to solve two-phase problems involving a material quantity on an interface. The interface can be advected, stretched, and change topology, and material can be adsorbed to or desorbed from it. The method is based on the use of a diffuse interface framework, which allows a simple implementation using standard finite-difference or finite-element techniques. Here, finite-difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Interfacial flow with soluble surfactants is used as an example of the application of the method, and several test cases are presented demonstrating its accuracy and convergence. PMID:21373370

  8. A DIFFUSE-INTERFACE APPROACH FOR MODELING TRANSPORT, DIFFUSION AND ADSORPTION/DESORPTION OF MATERIAL QUANTITIES ON A DEFORMABLE INTERFACE*

    PubMed Central

    Teigen, Knut Erik; Li, Xiangrong; Lowengrub, John; Wang, Fan; Voigt, Axel

    2010-01-01

    A method is presented to solve two-phase problems involving a material quantity on an interface. The interface can be advected, stretched, and change topology, and material can be adsorbed to or desorbed from it. The method is based on the use of a diffuse interface framework, which allows a simple implementation using standard finite-difference or finite-element techniques. Here, finite-difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Interfacial flow with soluble surfactants is used as an example of the application of the method, and several test cases are presented demonstrating its accuracy and convergence. PMID:21373370

  9. Modeling solid electrolyte/electrode interface stability using first principles calculations

    NASA Astrophysics Data System (ADS)

    Lepley, Nicholas; Holzwarth, N. A. W.

    2015-03-01

    The formation of a stable interface between electrode and electrolyte materials is a necessary property for batteries in general and for Li-ion batteries in particular. We present a framework for understanding and predicting the electrochemical stability of electrode/electrolyte interfaces based on density functional theory calculations. Within this framework, we have extended our previous work to include quantitative results for the solid-solid interface energy of the Li3PS4/Li, Li3PO4/Li, Li2S/Li, Li2O/Li, and Li3PS4/Li2S interfaces. We show that under local equilibrium conditions the interface energy appears to be a good indicator of the stability of the interface. While the results we present are focused on the interface between Li-ion solid electrolytes and Li metal we expect the method to be applicable to other interface systems. Supported by NSF Grant DMR-1105485.

  10. Designing geo-spatial interfaces to scale process models: the GeoWEPP approach

    NASA Astrophysics Data System (ADS)

    Renschler, Chris S.

    2003-04-01

    Practical decision making in spatially distributed environmental assessment and management is increasingly based on environmental process models linked to geographical information systems. Powerful personal computers and Internet-accessible assessment tools are providing much greater public access to, and use of, environmental models and geo-spatial data. However traditional process models, such as the water erosion prediction project (WEPP), were not typically developed with a flexible graphical user interface (GUI) for applications across a wide range of spatial and temporal scales, utilizing readily available geo-spatial data of highly variable precision and accuracy, and communicating with a diverse spectrum of users with different levels of expertise. As the development of the geo-spatial interface for WEPP (GeoWEPP) demonstrates, the GUI plays a key role in facilitating effective communication between the tool developer and user about data and model scales. The GeoWEPP approach illustrates that it is critical to develop a scientific and functional framework for the design, implementation, and use of such geo-spatial model assessment tools. The way that GeoWEPP was developed and implemented suggests a framework and scaling theory leading to a practical approach for developing geo-spatial interfaces for process models. GeoWEPP accounts for fundamental water erosion processes, model, and users needs, but most important it also matches realistic data availability and environmental settings by enabling even non-GIS-literate users to assemble the available geo-spatial data quickly to start soil and water conservation planning. In general, it is potential users' spatial and temporal scales of interest, and scales of readily available data, that should drive model design or selection, as opposed to using or designing the most sophisticated process model as the starting point and then determining data needs and result scales.