Science.gov

Sample records for interface studies technical

  1. Shuttle payload interface verification equipment study. Volume 2: Technical document, part 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The technical analysis is reported that was performed during the shuttle payload interface verification equipment study. It describes: (1) the background and intent of the study; (2) study approach and philosophy covering all facets of shuttle payload/cargo integration; (3)shuttle payload integration requirements; (4) preliminary design of the horizontal IVE; (5) vertical IVE concept; and (6) IVE program development plans, schedule and cost. Also included is a payload integration analysis task to identify potential uses in addition to payload interface verification.

  2. Shuttle payload interface verification equipment study. Volume 2: Technical document. Part 2: Appendices

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Appendices to the shuttle payload integration study provide for: (1) The interface verification equipment hardware utilization list; (2) the horizontal IVE in-field assembly procedure; and (3) payload integration baseline functional flow block diagrams and options.

  3. [Surface science instrumentation for the study of important catalytic and electrochemical interfaces]. Annual technical report

    SciTech Connect

    Not Available

    1992-12-31

    The equipment combines several standard surface science probes (uv photoelectron spectra, thermal desorption, AES) with a state-of-the art x-ray photoelectron spectrometer and integrates with a dry box and a custom electrochemical cell. After the LEED chamber was remachined, the instrument has been performing satisfactorily. Various studies using the instrument were conducted in cooperation with other groups. Si surfaces were studied before and after use as a photoanode in a photoelectrochemical cell.

  4. [Technical production and its interface with nursing].

    PubMed

    Mendes, Isabel Amélia; Leite, Joséte Luzia; Trevizan, Maria Auxiliadora; Trezza, Maria Cristina; dos Santos, Regina Maria

    2002-01-01

    This is a descriptive study which subject concerns the interfaces of technological production with nursing. Its objectives is to analyse the interface of technological production with nursing and to discuss that production on the following dimensions: instructional, instrumental and informatic. To develop this the summaries of the papers presented during the last three editions of the Congresso Brasileiro de Enfermagem--1998, 1999 and 2000 were used as a source of information. The inherent subjectivity of a study of summaries was considered a limitation, since it is possible that a miscomprehension between our understanding and the real idea of the author occur. This study showed that Nursing, even in an incipient manner, has been producing constitutive components of the technological production, on its daily work. PMID:12817540

  5. Software Engineering for User Interfaces. Technical Report.

    ERIC Educational Resources Information Center

    Draper, Stephen W.; Norman, Donald A.

    The discipline of software engineering can be extended in a natural way to deal with the issues raised by a systematic approach to the design of human-machine interfaces. The user should be treated as part of the system being designed and projects should be organized to take into account the current lack of a priori knowledge of user interface…

  6. Databases Improve Technical Studies

    ERIC Educational Resources Information Center

    Graube, Gabriele

    2004-01-01

    In Lower Saxony, technology studies as part of preparing technical education teachers for primary and partly for secondary education can be studied only at two universities--the Technical University of Brunswick and the University of Oldenburg. Technology education is not available at the Gymnasium (a type of secondary school leading to the…

  7. Cognitive Task Analysis, Interface Design, and Technical Troubleshooting.

    ERIC Educational Resources Information Center

    Steinberg, Linda S.; Gitomer, Drew H.

    A model of the interface design process is proposed that makes use of two interdependent levels of cognitive analysis: the study of the criterion task through an analysis of expert/novice differences and the evaluation of the working user interface design through the application of a practical interface analysis methodology (GOMS model). This dual…

  8. [Charge generation and separation at liquid interfaces]. Technical progress report

    SciTech Connect

    Eisenthal, K.B.

    1992-12-01

    The research is divided into 3 parts: (1)Sum Frequency Generation (SFG) and Monolayer Structure. Picosecond lasers are combined by difference frequency mixing in a nonlinear crystal to generate picosecond, tunable IR pulses, which are used to study orientation of C{double_bond}N and CD{sub 3} chromosphores (head group and tail) on lipid monolayers CD{sub 3}(CH{sub 2}){sub 21}CN at air/water interface. (2)Femtosecond Dynamics. The femtosecond colliding pulse mode locked laser is being modified to carry out pump-second harmonic (SH) probe studies at liquid interfaces. Picosecond SH knowhow of intermolecular energy transfer, excited state isomerization, and rotational motions at interfaces is now being applied to femtosecond scale. Aromatics adsorbed at air/water interface, generated changes in SH probe signal and their decay back to original value. If the laser is tightly focussed at interface, multiphoton absorption processes occur which destroy the sample; this effect will be exploited. (3)Interface Potential and Acid-Base Equilibria. The interface potential is a key to charge transport; using SHG, we plan to measure the pKa of organic acids at interfaces. In these studies at silica/aqueous interface, the water molecules extending from the interface into the bulk (about 50{Angstrom}) were strongly polarized by SiO{sup {minus}} charges at the interface. In summary, a new spectroscopic technique is being applied to study of neutral and charged lipid monolayers, interface pKa values, interface potential and orientational structure and vibrational spectroscopy of lipids.

  9. EUDISED: Technical Studies, 1971.

    ERIC Educational Resources Information Center

    Council of Europe, Strasbourg (France). Documentation Center for Education in Europe.

    This collection of technical studies concerning the European Documentation and Information System for Education (EUDISED) presents the problems of educational information, documentation, and dissemination in Europe. In the first report, transmitter-receiver relationships and the understanding of each other's roles and needs are discussed. The…

  10. Knowledge-based graphical interfaces for presenting technical information

    NASA Technical Reports Server (NTRS)

    Feiner, Steven

    1988-01-01

    Designing effective presentations of technical information is extremely difficult and time-consuming. Moreover, the combination of increasing task complexity and declining job skills makes the need for high-quality technical presentations especially urgent. We believe that this need can ultimately be met through the development of knowledge-based graphical interfaces that can design and present technical information. Since much material is most naturally communicated through pictures, our work has stressed the importance of well-designed graphics, concentrating on generating pictures and laying out displays containing them. We describe APEX, a testbed picture generation system that creates sequences of pictures that depict the performance of simple actions in a world of 3D objects. Our system supports rules for determining automatically the objects to be shown in a picture, the style and level of detail with which they should be rendered, the method by which the action itself should be indicated, and the picture's camera specification. We then describe work on GRIDS, an experimental display layout system that addresses some of the problems in designing displays containing these pictures, determining the position and size of the material to be presented.

  11. PHOTOS interface in C++. Technical and physics documentation

    NASA Astrophysics Data System (ADS)

    Davidson, N.; Przedzinski, T.; Was, Z.

    2016-02-01

    For five years now, PHOTOS Monte Carlo for bremsstrahlung in the decay of particles and resonances has been available with an interface to the C++ HepMC event record. The main purpose of the present paper is to document the technical aspects of the PHOTOS Monte Carlo installation and present version use. A multitude of test results and examples are distributed together with the program code. The PHOTOS C++ physics precision is better than its FORTRAN predecessor and more convenient steering options are also available. An algorithm for the event record interface necessary for process dependent photon emission kernel is implemented. It is used in Z and W decays for kernels of complete first order matrix elements of the decays. Additional emission of final state lepton pairs is also available. Physics assumptions used in the program and properties of the solution are reviewed. In particular, it is explained how the second order matrix elements were used in design and validation of the program iteration procedure. Also, it is explained that the phase space parameterization used in the program is exact.

  12. Methods for Improving the User-Computer Interface. Technical Report.

    ERIC Educational Resources Information Center

    McCann, Patrick H.

    This summary of methods for improving the user-computer interface is based on a review of the pertinent literature. Requirements of the personal computer user are identified and contrasted with computer designer perspectives towards the user. The user's psychological needs are described, so that the design of the user-computer interface may be…

  13. Improving SOLO's User-Interface: An Empirical Study of User Behavior and a Proposal for Cost Effectiveness Enhancements to SOLO. CAL Research Group Technical Report No. 7.

    ERIC Educational Resources Information Center

    Lewis, Matthew W.

    This report describes an in-depth analysis of the errors made by users of SOLO, a programming language written for Open University students studying cognitive psychology. The study was designed to (1) determine the effectiveness of SOLO's current error-handling routines by evaluating how often SOLO produced "sensible" messages or automatic…

  14. Interface between object-oriented systems. Technical report

    SciTech Connect

    Crowl, L.A.

    1987-04-01

    The Chrysalis operating system for the Butterfly Parallel Processor presents an object-oriented programming environment based on shared memory. However, because of Chrysalis's low-level orientation and its use of type-unsafe features of the C programming language, programs using the environment are difficult to program and highly error-prone. Using C as the primary programming language for the Butterfly does not fully realize the benefit of Chrysalis's object orientation. An object-oriented programming language is natural candidate for improving the Chrysalis environment. The C ++ programming language provides a number of advantages in developing such an interface. This paper reports the successes and problems encountered in the development of Chrysalis ++, a C ++ interface to Chrysalis ++ uncovered many strengths and weakness in C ++. Some apply to C ++ in general, others apply only to its adaptation to a parallel programming environment. It is important to note that C++ is a sequential language; it is use in a parallel programming environment is therefore outside the bounds of its design.

  15. Nonlinear optical studies of polymer interfaces

    SciTech Connect

    Shen, Y.R. |

    1993-11-01

    Second-order nonlinear optical processes can be used as effective surface probes. They can provide some unique opportunities for studies of polymer interfaces. Here the author describes two examples to illustrate the potential of the techniques. One is on the formation of metal/polymer interfaces. The other is on the alignment of liquid crystal films by mechanically rubbed polymer surfaces.

  16. High temperature ceramic interface study

    NASA Technical Reports Server (NTRS)

    Lindberg, L. J.

    1984-01-01

    Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.

  17. FY07 Summary of System Interface and Support Systems R&D and Technical Issues Map

    SciTech Connect

    Steven R. Sherman

    2007-09-01

    This document provides a summary of research and development activities in the System Interface and Support Systems area of the DOE Nuclear Hydrogen Initiative in FY 2007. Project cost and performance data obtained from the PICS system, at least up through July 2007, are presented and analyzed. Brief summaries of accomplishments and references are provided. A mapping of System Interface and Support Systems technical issues versus the work performed is updated and presented. Lastly, near-term research plans are described, and recommendatioins are provided for additional research.

  18. Head Start Impact Study. Technical Report

    ERIC Educational Resources Information Center

    Puma, Michael; Bell, Stephen; Cook, Ronna; Heid, Camilla; Shapiro, Gary; Broene, Pam; Jenkins, Frank; Fletcher, Philip; Quinn, Liz; Friedman, Janet; Ciarico, Janet; Rohacek, Monica; Adams, Gina; Spier, Elizabeth

    2010-01-01

    This Technical Report is designed to provide technical detail to support the analysis and findings presented in the "Head Start Impact Study Final Report" (U.S. Department of Health and Human Services, January 2010). Chapter 1 provides an overview of the Head Start Impact Study and its findings. Chapter 2 provides technical information on the…

  19. Solar thermochemical process interface study

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design and analyses of a subsystem of a hydrogen production process are described. The process is based on solar driven thermochemical reactions. The subject subsystem receives sulfuric acid of 60% concentration at 100 C, 1 atm pressure. The acid is further concentrated, vaporized, and decomposed (at a rate of 122 g moles/sec H2SO4) into SO2, O2, and water. The produce stream is cooled to 100 C. Three subsystem options, each being driven by direct solar energy, were designed and analyzed. The results are compared with a prior study case in which solar energy was provided indirectly through a helium loop.

  20. Insights from the study of high-temperature interface superconductivity.

    PubMed

    Pereiro, J; Bollinger, A T; Logvenov, G; Gozar, A; Panagopoulos, C; Bozović, I

    2012-10-28

    A brief overview is given of the studies of high-temperature interface superconductivity based on atomic-layer-by-layer molecular beam epitaxy (ALL-MBE). A number of difficult materials science and physics questions have been tackled, frequently at the expense of some technical tour de force, and sometimes even by introducing new techniques. ALL-MBE is especially suitable to address questions related to surface and interface physics. Using this technique, it has been demonstrated that high-temperature superconductivity can occur in a single copper oxide layer-the thinnest superconductor known. It has been shown that interface superconductivity in cuprates is a genuine electronic effect-it arises from charge transfer (electron depletion and accumulation) across the interface driven by the difference in chemical potentials rather than from cation diffusion and mixing. We have also understood the nature of the superconductor-insulator phase transition as a function of doping. However, a few important questions, such as the mechanism of interfacial enhancement of the critical temperature, are still outstanding. PMID:22987034

  1. Gas Gun Studies of Interface Wear Effects

    NASA Astrophysics Data System (ADS)

    Jackson, Tyler; Kennedy, Greg; Thadhani, Naresh

    2011-06-01

    The characteristics of interface wear were studied by performing gas gun experiments at velocities up to 1 km/s. The approach involved developing coefficients of constitutive strength models for Al 6061 and OFHC-Cu, then using those to design die geometry for interface wear gas gun experiments. Taylor rod-on-anvil impact experiments were performed to obtain coefficients of the Johnson-Cook constitutive strength model by correlating experimentally obtained deformed states of impacted samples with those predicted using ANSYS AUTODYN hydrocode. Simulations were used with validated strength models to design geometry involving acceleration of Al rods through a copper concentric cylindrical angular extrusion die. Experiments were conducted using 7.62 mm and 80 mm diameter gas guns. Differences in the microstructure of the interface layer and microhardness values illustrate that stress-strain conditions produced during acceleration of Al through the hollow concentric copper die, at velocities less than 800 m/s, result in formation of a layer via solid state alloying due to severe plastic deformation, while higher velocities produce an interface layer consisting of melted and re-solidified aluminum.

  2. Human-system Interfaces to Automatic Systems: Review Guidance and Technical Basis

    SciTech Connect

    OHara, J.M.; Higgins, J.C.

    2010-01-31

    Automation has become ubiquitous in modern complex systems and commercial nuclear power plants are no exception. Beyond the control of plant functions and systems, automation is applied to a wide range of additional functions including monitoring and detection, situation assessment, response planning, response implementation, and interface management. Automation has become a 'team player' supporting plant personnel in nearly all aspects of plant operation. In light of the increasing use and importance of automation in new and future plants, guidance is needed to enable the NRC staff to conduct safety reviews of the human factors engineering (HFE) aspects of modern automation. The objective of the research described in this report was to develop guidance for reviewing the operator's interface with automation. We first developed a characterization of the important HFE aspects of automation based on how it is implemented in current systems. The characterization included five dimensions: Level of automation, function of automation, modes of automation, flexibility of allocation, and reliability of automation. Next, we reviewed literature pertaining to the effects of these aspects of automation on human performance and the design of human-system interfaces (HSIs) for automation. Then, we used the technical basis established by the literature to develop design review guidance. The guidance is divided into the following seven topics: Automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, we identified insights into the automaton design process, operator training, and operations.

  3. Two-Fluid Interface Instability Being Studied

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles E.

    2003-01-01

    The interface between two fluids of different density can experience instability when gravity acts normal to the surface. The relatively well known Rayleigh-Taylor (RT) instability results when the gravity is constant with a heavy fluid over a light fluid. An impulsive acceleration applied to the fluids results in the Richtmyer-Meshkov (RM) instability. The RM instability occurs regardless of the relative orientation of the heavy and light fluids. In many systems, the passing of a shock wave through the interface provides the impulsive acceleration. Both the RT and RM instabilities result in mixing at the interface. These instabilities arise in a diverse array of circumstances, including supernovas, oceans, supersonic combustion, and inertial confinement fusion (ICF). The area with the greatest current interest in RT and RM instabilities is ICF, which is an attempt to produce fusion energy for nuclear reactors from BB-sized pellets of deuterium and tritium. In the ICF experiments conducted so far, RM and RT instabilities have prevented the generation of net-positive energy. The $4 billion National Ignition Facility at Lawrence Livermore National Laboratory is being constructed to study these instabilities and to attempt to achieve net-positive yield in an ICF experiment.

  4. Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics

    SciTech Connect

    Geiger, Franz

    2015-03-27

    This is the Final Technical Report for "Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics", by Franz M. Geiger, PI, from Northwestern University, IL, USA, Grant Number SC0004101 and/or DE-PS02-ER09-07.

  5. FAO-OIE-WHO Joint Technical Consultation on Avian Influenza at the Human-Animal Interface.

    PubMed

    Anderson, Tara; Capua, Ilaria; Dauphin, Gwenaëlle; Donis, Ruben; Fouchier, Ron; Mumford, Elizabeth; Peiris, Malik; Swayne, David; Thiermann, Alex

    2010-05-01

    For the past 10 years, animal health experts and human health experts have been gaining experience in the technical aspects of avian influenza in mostly separate fora. More recently, in 2006, in a meeting of the small WHO Working Group on Influenza Research at the Human Animal Interface (Meeting report available from: http://www.who.int/csr/resources/publications/influenza/WHO_CDS_EPR_GIP_2006_3/en/index.html) in Geneva allowed influenza experts from the animal and public health sectors to discuss together the most recent avian influenza research. Ad hoc bilateral discussions on specific technical issues as well as formal meetings such as the Technical Meeting on HPAI and Human H5N1 Infection (Rome, June, 2007; information available from: http://www.fao.org/avianflu/en/conferences/june2007/index.html) have increasingly brought the sectors together and broadened the understanding of the topics of concern to each sector. The sectors have also recently come together at the broad global level, and have developed a joint strategy document for working together on zoonotic diseases (Joint strategy available from: ftp://ftp.fao.org/docrep/fao/011/ajl37e/ajl37e00.pdf). The 2008 FAO-OIE-WHO Joint Technical Consultation on Avian Influenza at the Human Animal Interface described here was the first opportunity for a large group of influenza experts from the animal and public health sectors to gather and discuss purely technical topics of joint interest that exist at the human-animal interface. During the consultation, three influenza-specific sessions aimed to (1) identify virological characteristics of avian influenza viruses (AIVs) important for zoonotic and pandemic disease, (2) evaluate the factors affecting evolution and emergence of a pandemic influenza strain and identify existing monitoring systems, and (3) identify modes of transmission and exposure sources for human zoonotic influenza infection (including discussion of specific exposure risks by affected countries). A

  6. Technical development of PubMed Interact: an improved interface for MEDLINE/PubMed searches

    PubMed Central

    Muin, Michael; Fontelo, Paul

    2006-01-01

    Background The project aims to create an alternative search interface for MEDLINE/PubMed that may provide assistance to the novice user and added convenience to the advanced user. An earlier version of the project was the 'Slider Interface for MEDLINE/PubMed searches' (SLIM) which provided JavaScript slider bars to control search parameters. In this new version, recent developments in Web-based technologies were implemented. These changes may prove to be even more valuable in enhancing user interactivity through client-side manipulation and management of results. Results PubMed Interact is a Web-based MEDLINE/PubMed search application built with HTML, JavaScript and PHP. It is implemented on a Windows Server 2003 with Apache 2.0.52, PHP 4.4.1 and MySQL 4.1.18. PHP scripts provide the backend engine that connects with E-Utilities and parses XML files. JavaScript manages client-side functionalities and converts Web pages into interactive platforms using dynamic HTML (DHTML), Document Object Model (DOM) tree manipulation and Ajax methods. With PubMed Interact, users can limit searches with JavaScript slider bars, preview result counts, delete citations from the list, display and add related articles and create relevance lists. Many interactive features occur at client-side, which allow instant feedback without reloading or refreshing the page resulting in a more efficient user experience. Conclusion PubMed Interact is a highly interactive Web-based search application for MEDLINE/PubMed that explores recent trends in Web technologies like DOM tree manipulation and Ajax. It may become a valuable technical development for online medical search applications. PMID:17083729

  7. Photophysics and photoredox processes at polymer-water interfaces. Final technical report

    SciTech Connect

    Webber, S.E.

    1998-11-01

    The transduction of light into chemical potential has been actively studies via a variety of mechanisms. Perhaps the most actively pursued approach is via photoredox chemistry. In this project, the authors have used hydrophobic polymer-water interfaces to investigate mechanisms. The paper discusses results on the effect of adsorbing polymers onto latex particles and the use of diblock amphiphilic polymers with interfacial chromophores. It then evaluates the project from the point of view of solar energy conversion.

  8. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    SciTech Connect

    Duncan, Garth M.; Saunders, Scott A.

    2013-07-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two different prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation

  9. 'Buildings in Use' Study. Technical Factors.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Milwaukee. School of Architecture and Urban Planning.

    The second report of the 'Buildings in Use' study documents the results of over 100 field tests conducted at four elementary schools, as well as discussion of these results and relevant technical specifications and details. The procedural framework used in the Field Tests Manual is followed and test results are rated numerically wherever possible.…

  10. Occupational-Technical Curriculum Development TV Study.

    ERIC Educational Resources Information Center

    McClure, Lyndon

    Section I of this report provides a brief review of various experiments and studies conducted in the United States and abroad on the effectiveness of televised occupational-technical courses. Issues discussed include the packaging of televised instruction; the need for preproduction testing; the limitations of television teaching; teacher and…

  11. Technical Issues Map for the NHI System Interface and Support Systems Area: 1st Quarter FY 07

    SciTech Connect

    Steven R. Sherman

    2006-12-01

    This document provides a mapping of technical issues associated with development of the Next Generation Nuclear Plant (NGNP) intermediate heat transport loop and nuclear hydrogen plant support systems to the work that has been accomplished or is currently underway. The technical issues are ranked according to priority and by assumed resolution dates. Due to funding limitations, not all high-priority technical issues are under study at the present time, and more resources will need to be dedicated to tackling such issues in the future. This technical issues map is useful for understanding the relative importance of various technical challenges and will be used as a planning tool for future work package planning.

  12. Dynamics explorer: Interface definition study, volume 1

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Work done in response to the work statement wherein a specific deliverable was not identified but where design and analysis tasks were identified is reported. The summary and baseline change list is included along with design notes for the spacecraft system, thermal subsystem, power subsystem, communications subsystem, plasma wave instrument interface definition, and the structure.

  13. Advanced human-system interface design review guideline. General evaluation model, technical development, and guideline description

    SciTech Connect

    O`Hara, J.M.

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator`s overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use.

  14. Guide to the stand-damage model interface management system. Forest Service general technical report (Final)

    SciTech Connect

    Racin, G.; Colbert, J.J.

    1995-08-16

    Describes the Gypsy Moth Stand-Damage interface management system. Management of stand-damage data made it necessary to define structures to store data and provide the mechanisms to manipulate these data. The software is used to manipulate files, graph and manage outputs, and edit input data. The interface was built using pop-up windows, menuing systems, text editing and validation, mouse support, and context-sensitive help. The interface is written in the C language for DOS microcomputers.

  15. Micro-engineered cathode interface studies

    SciTech Connect

    Doshi, R.; Kueper, T.; Nagy, Z.; Krumpelt, M.

    1997-08-01

    The aim of this work is to increase the performance of the cathode in solid oxide fuel cells (SOFCs) operating at 1,000 C by decreasing the polarization resistance from 0.2 {Omega}-cm{sup 2} at 300 mA/cm{sup 2}. Decreased polarization resistance will allow operation at higher current densities. This work is in support of the Westinghouse tubular SOFC technology using YSZ electrolyte and strontium doped lanthanum manganite (LSM) cathode. As a result of work performed last year at Argonne National Laboratory and information derived from the literature, the limitations at the cathode/electrolyte interface can be classified into two main areas. First, the ionic conductivity of the LSM cathode material is low which limits the reaction zone to an area very close to the interface, while the rest of the cathode thickness acts essentially as current collector with channels for gas access. Second, the electronic conductivity in YSZ is very low which limits the reaction zone to areas that are the boundaries between LSM and YSZ rather than the YSZ surface away from LSM at the interface. Possible solutions to this problem being pursued are: (1) introducing an ionic conducting YSZ phase in LSM to form a porous two-phase mixture of LSM and YSZ; (2) applying a thin interlayer between the electrolyte and the cathode where the interlayer has high ionic and electronic conductivity and high catalytic activity for reduction of O{sub 2}; (3) increasing the ionic conductivity in the LSM by suitable doping; and (4) increasing the electronic conductivity in the electrolyte by doping or by depositing an appropriate mixed conducting layer on the YSZ before applying the cathode.

  16. [A new human machine interface in neurosurgery: The Leap Motion(®). Technical note regarding a new touchless interface].

    PubMed

    Di Tommaso, L; Aubry, S; Godard, J; Katranji, H; Pauchot, J

    2016-06-01

    Currently, cross-sectional imaging viewing is used in routine practice whereas the surgical procedure requires physical contact with an interface (mouse or touch-sensitive screen). This type of contact results in a risk of lack of aseptic control and causes loss of time. The recent appearance of devices such as the Leap Motion(®) (Leap Motion society, San Francisco, USA) a sensor which enables to interact with the computer without any physical contact is of major interest in the field of surgery. However, its configuration and ergonomics produce key challenges in order to adapt to the practitioner's requirements, the imaging software as well as the surgical environment. This article aims to suggest an easy configuration of the Leap Motion(®) in neurosurgery on a PC for an optimized utilization with Carestream(®) Vue PACS v11.3.4 (Carestream Health, Inc., Rochester, USA) using a plug-in (to download at: https://drive.google.com/?usp=chrome_app#folders/0B_F4eBeBQc3ybElEeEhqME5DQkU) and a video tutorial (https://www.youtube.com/watch?v=yVPTgxg-SIk). PMID:27234915

  17. Scientist/AMPS equipment interface study

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.

    1977-01-01

    The principal objective was to determine for each experiment how the operating procedures and modes of equipment onboard shuttle can be managed in real-time or near-real-time to enhance the quality of results. As part of this determination the data and display devices that a man will need for real-time management are defined. The secondary objectives, as listed in the RFQ and technical proposal, were to: (1) determine what quantities are to be measured (2) determine permissible background levels (3) decide in what portions of space measurements are to be made (4) estimate bit rates (5) establish time-lines for operating the experiments on a mission or set of missions and (6) determine the minimum set of hardware needed for real-time display. Experiment descriptions and requirements were written. The requirements of the various experiments are combined and a minimal set of joint requirements are defined.

  18. The interface of CCD image line sensor ILX511 in technical spectrometer

    NASA Astrophysics Data System (ADS)

    BartonÄk, LudÄk.; Keprt, Jiri, Sr.

    2003-11-01

    This paper presents a way for practical use of the CCD linear image sensor for scanning of light in some optical applications (spectroscopy). Communication of the equipment (detector CCD) with computer is realized by the help of a parallel interface of a personal computer (PC) without additive interface card. In final part of this contribution is presented a realization of measuring circuit (enhanced parallel interface PC) for the sensor ILXS 1 1. The use of the line detector is demonstrated on detection of the optical spectrum of the mercury lamp.

  19. Context-aware brain-computer interfaces: exploring the information space of user, technical system and environment

    NASA Astrophysics Data System (ADS)

    Zander, T. O.; Jatzev, S.

    2012-02-01

    Brain-computer interface (BCI) systems are usually applied in highly controlled environments such as research laboratories or clinical setups. However, many BCI-based applications are implemented in more complex environments. For example, patients might want to use a BCI system at home, and users without disabilities could benefit from BCI systems in special working environments. In these contexts, it might be more difficult to reliably infer information about brain activity, because many intervening factors add up and disturb the BCI feature space. One solution for this problem would be adding context awareness to the system. We propose to augment the available information space with additional channels carrying information about the user state, the environment and the technical system. In particular, passive BCI systems seem to be capable of adding highly relevant context information—otherwise covert aspects of user state. In this paper, we present a theoretical framework based on general human-machine system research for adding context awareness to a BCI system. Building on that, we present results from a study on a passive BCI, which allows access to the covert aspect of user state related to the perceived loss of control. This study is a proof of concept and demonstrates that context awareness could beneficially be implemented in and combined with a BCI system or a general human-machine system. The EEG data from this experiment are available for public download at www.phypa.org. Parts of this work have already been presented in non-journal publications. This will be indicated specifically by appropriate references in the text.

  20. Experimental study of interface properties between layer and substrate

    NASA Astrophysics Data System (ADS)

    Ko, Ray T.; Nagy, Peter B.; Adler, Laszlo

    A meshed intervening layer technique which makes it possible to study the interface properties between layer and substrate is presented. It is argued that the bonding condition of the interface can be monitored through the variation of the phase velocity of the modified Rayleigh mode. The experimental setup of the measurement of the reflection of ultrasonic waves from a layered substrate specimen is shown, and the frequency spectra from three typical bonding cases - perfectly bonded, partially bonded, and completely misbonded - are illustrated.

  1. Study of GaAs-oxide interface by transient capacitance spectroscopy - Discrete energy interface states

    NASA Technical Reports Server (NTRS)

    Kamieniecki, E.; Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1980-01-01

    Interface states and bulk GaAs energy levels were simultaneously investigated in GaAs MOS structures prepared by anodic oxidation. These two types of energy levels were successfully distinguished by carrying out a comparative analysis of deep level transient capacitance spectra of the MOS structures and MS structures prepared on the same samples of epitaxially grown GaAs. The identification and study of the interface states and bulk levels was also performed by investigating the transient capacitance spectra as a function of the filling pulse magnitude. It was found that in the GaAs-anodic oxide interface there are states present with a discrete energy rather than with a continuous energy distribution. The value of the capture cross section of the interface states was found to be 10 to the 14th to 10 to the 15th/sq cm, which is more accurate than the extremely large values of 10 to the -8th to 10 to the -9th/sq cm reported on the basis of conductance measurements.

  2. Magnetic multilayer interface anisotropy. Technical progress report, January 1, 1992--December 31, 1992

    SciTech Connect

    Pechan, M.J.

    1992-12-01

    Ni/Mo and Ni/V multilayer magnetic anisotropy has been investigated as a function of Ni layer thickness, frequency and temperature. Variable frequency ferromagnetic resonance (FMR) measurements show, for the first time, significant frequency dependence associated with the multilayer magnetic anisotropy. The thickness dependence allows one to extract the interface contribution from the total anisotropy. Temperature dependent FMR (9 GHz) and room temperature magnetization indicate that strain between Ni and the non-magnetic layers is contributing significantly to the source of the interface anisotropy and the state of the interfacial magnetization. In order to examine the interface properties of other transition metal multilayer systems, investigations on Fe/Cu are underway and CoCr/Ag is being proposed. ESR measurements have been reported on Gd substituted YBaCuO superconductors and a novel quasi-equilibrium method has been developed to determine quickly and precisely the ransition temperature.

  3. Evaluation Study of VTAE Wood Technics Programs.

    ERIC Educational Resources Information Center

    Wisconsin State Board of Vocational, Technical, and Adult Education, Madison.

    A survey of former students of the Wisconsin Vocational, Technical, and Adult Education (VTAE) wood technics programs and employers in woodworking industries was conducted during spring of 1985. General objectives were to determine job classifications, types of businesses, and relative importance of tasks or duties in various woodworking-related…

  4. Space Weather Studies at Istanbul Technical University

    NASA Astrophysics Data System (ADS)

    Kaymaz, Zerefsan

    2016-07-01

    This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.

  5. Technical Aspects of Interfacing MUMPS to an External SQL Relational Database Management System

    PubMed Central

    Kuzmak, Peter M.; Walters, Richard F.; Penrod, Gail

    1988-01-01

    This paper describes an interface connecting InterSystems MUMPS (M/VX) to an external relational DBMS, the SYBASE Database Management System. The interface enables MUMPS to operate in a relational environment and gives the MUMPS language full access to a complete set of SQL commands. MUMPS generates SQL statements as ASCII text and sends them to the RDBMS. The RDBMS executes the statements and returns ASCII results to MUMPS. The interface suggests that the language features of MUMPS make it an attractive tool for use in the relational database environment. The approach described in this paper separates MUMPS from the relational database. Positioning the relational database outside of MUMPS promotes data sharing and permits a number of different options to be used for working with the data. Other languages like C, FORTRAN, and COBOL can access the RDBMS database. Advanced tools provided by the relational database vendor can also be used. SYBASE is an advanced high-performance transaction-oriented relational database management system for the VAX/VMS and UNIX operating systems. SYBASE is designed using a distributed open-systems architecture, and is relatively easy to interface with MUMPS.

  6. The Interface as a Working Environment: A Purpose for Physical Geography. Geographic Technical Paper Series.

    ERIC Educational Resources Information Center

    Carter, Douglas B.; And Others

    This technical paper offers an alternative method to the traditional physical geography course which has as its primary objective the knowing of approved body of knowledge. The premise is that a discipline of physical geography does not now exist and that traditional physical geography consists of nearly independent topics treated without common…

  7. Interfaces in polymer nanocomposites - An NMR study

    NASA Astrophysics Data System (ADS)

    Böhme, Ute; Scheler, Ulrich

    2016-03-01

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. 1H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T2 is most suited. In this presentation we report on two applications of T2 measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of the polymer dynamics in the melt under shear flow.

  8. Capital projects: Egypt case study. Technical report

    SciTech Connect

    Lieberson, J.; Stallard, J.

    1994-03-01

    This report assesses the US Agency for International Development`s (A.I.D.`s) capital assistance program in Egypt in terms of both its commercial benefits for the United States and its developmental benefits for Egypt. In regard to the first aspect, the study found that few A.I.D.-funded projects or studies generated either participation by other donors or follow-on sales for U.S. companies. The report places much of the blame for this on U.S. firms` failure to take advantage of a clear opportunity to develop the Egyptian commercial market. Findings regarding the developmental benefits of the projects are mixed. (1) The projects helped support strong private sector growth in Egypt through the 1980`s. Nonetheless, their economic and financial rates of return were generally disappointing. (2) The projects were built to a high technical standard, but their sustainability is in doubt. (3) The pursuit of commercial advantage for U.S. firms did not distort the developmental goals of the projects. Overall, the report attributes the disappointing economic results of A.I.D.`s capital assistance program to a poor policy environment, which the reforms pursued in connection with the program did little to change.

  9. Man-machine systems of the 1990 decade: cognitive factors and human interface issues. Technical report

    SciTech Connect

    Hoffman, P.J.

    1985-08-01

    The primary psychological concepts fundamental to the design of man-machine interfaces for intelligent systems of the 1990's are presented. These concepts embrace perception, learning motivation, and cognitive capacities of human operators, in systems that require a high degree of operator-machine interaction. The central role of feedback is emphasized through simple schematic examples, designed to provide an understanding of the reciprocity requirements in man-machine communication. Cognitive theory and recent experimental data form the basis for discussion of visual image storage, short-term memory, long-term memory, transfer rates and buffering of information being processed by the human operator, under control of a central processor with a cycle time of roughly 70 milliseconds. Systems of the 1990 era will provide increased capability for high-speed processing of data and will utilize increasing numbers of decision-aides, spreadsheets and AI tools. Users of these systems will be components of networks, linked via efficient communication systems to other users and other subsystems. These developments will lead to fundamental changes in the work place. Keywords: Interface; Artificial Intelligence; Systems; Feedback; Productivity; User Interface; Man-Machine; Cognitive.

  10. Hydrogen energy systems studies. Final technical report

    SciTech Connect

    Ogden, J.M.; Kreutz, T.; Kartha, S.; Iwan, L.

    1996-08-13

    The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions: (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.

  11. Computer modelling studies of the bilayer/water interface.

    PubMed

    Pasenkiewicz-Gierula, Marta; Baczynski, Krzysztof; Markiewicz, Michal; Murzyn, Krzysztof

    2016-10-01

    This review summarises high resolution studies on the interface of lamellar lipid bilayers composed of the most typical lipid molecules which constitute the lipid matrix of biomembranes. The presented results were obtained predominantly by computer modelling methods. Whenever possible, the results were compared with experimental results obtained for similar systems. The first and main section of the review is concerned with the bilayer-water interface and is divided into four subsections. The first describes the simplest case, where the interface consists only of lipid head groups and water molecules and focuses on interactions between the lipid heads and water molecules; the second describes the interface containing also mono- and divalent ions and concentrates on lipid-ion interactions; the third describes direct inter-lipid interactions. These three subsections are followed by a discussion on the network of direct and indirect inter-lipid interactions at the bilayer interface. The second section summarises recent computer simulation studies on the interactions of antibacterial membrane active compounds with various models of the bacterial outer membrane. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26825705

  12. Electron Microscopy Studies of Solid Surfaces and Interfaces.

    NASA Astrophysics Data System (ADS)

    Gajdardziska-Josifovska, Marija

    1991-02-01

    Electron microscopy techniques for study of surfaces and interfaces have been investigated and applied to (100) and (111) surfaces of MgO and to interfaces of Mo/Si multilayers and CoSi_2/Si epitaxial films. MgO surfaces subjected to different annealing and chemical treatments have been characterized by reflection electron microscopy imaging, reflection high-energy electron diffraction (RHEED), and reflection electron energy-loss spectroscopy (REELS). An oxygen rich (sqrt {3} times sqrt{3})R 30^circ reconstruction was found on the polar (111) surface upon annealing in oxygen at temperatures higher than 1500 ^circC. Transformation of the surface topography and segregation of calcium were observed on the cleaved (100) surface due to annealing. RHEED resonance conditions have been employed and studied with geometrical constructions, rocking curves and REELS. These conditions are associated with parabolas in the Kikuchi (K) patterns whose nature had been subject of much controversy. The parabolas have been explained as K lines of two-dimensional (2D) lattices in a general scheme which describes the K pattern geometry in terms of intersections of Brillouin zone boundaries with a sphere of reflections. Full treatment of the cases of 2D and 1D real lattices has revealed previously unknown boundaries in the form of parabolic surfaces (2D) and paraboloids of revolution (1D). These boundaries have been applied to lines which arise from electron channeling in 3D crystals and to RHEED parabolas from 2D surface reconstructions. Nanodiffraction, low angle dark-field imaging, electron holography, high spatial resolution EELS, and shadow imaging have been evaluated as means for measuring interface abruptness and change in mean-inner potential and compared to other microscopy techniques. Refraction effects at interfaces were observed as streaking of the nanodiffraction disks which was found to depend on the crystalline nature of the interface. For polycrystalline

  13. Comprehensive Study of High-Tc Interface Superconductivity

    SciTech Connect

    Logvenov, G.; Gozar A.; Butko, V.Y.; Bollinger, A.T.; Bozovic, N.; Radovic, Z.; Bozovic, I.

    2010-08-01

    Using ALL-MBE technique, we have synthesized different heterostructures consisting of an insulator La{sub 2}CuO{sub 4} (I) and a metal La{sub 1.56}Sr{sub 0.44}CuO{sub 4} (M) layer neither of which is superconducting by itself. The M-I bilayers were superconducting with a critical temperature T{sub c} {approx} 30-36 K. This highly robust phenomenon is confined within 1-2 nm from the interface and is primarily caused by the redistribution of doped holes across the interface. In this paper, we present a comprehensive study of the interface superconductivity by a range of experimental techniques including transport measurements of superconducting properties.

  14. Technical operations and data collection details of the in situ WIPP (Waste Isolation Pilot Plant) Materials Interface Interaction Test

    SciTech Connect

    Molecke, M.A.

    1988-01-01

    The WIPP Materials Interface Interaction Tests (MIIT) experiments involve the in situ testing of multiple ''pineapple-slice'' shaped samples of simulated (nonradioactive) waste glasses, potential canister and overpack metals, brine, and rock salt in the salt repository environment at WIPP. This series of experiments involves multiple emplacements of various US and foreign glass waste forms (all nonradioactive) in contact with/interacting with several container metals, rock salt, brine, etc., all maintained at approximately 90 /+-/ 5/degree/C. The focus of this paper is on the technical aspects and operations of the MIIT experimental program, including assorted repository-relevant observations and experience gathered after more than two years of in situ test operation. As such, this is primarily a descriptive ''hardware'' and test operations document; test data are presented in parallel documents. 12 refs., 1 fig.

  15. Where the lay and the technical meet: Using an anthropology of interfaces to explain persistent reproductive health disparities in West Africa.

    PubMed

    Jaffré, Yannick; Suh, Siri

    2016-05-01

    Despite impressive global investment in reproductive health programs in West Africa, maternal mortality remains unacceptably high and obstetric care is often inadequate. Fertility is among the highest in the world, while contraceptive prevalence remains among the lowest. This paper explores the social and technical dimensions of this situation. We argue that effective reproductive health programs require analyzing the interfaces between technical programs and the social logics and behaviors of health professionals and client populations. Significant gaps between health programs' goals and the behaviors of patients and health care professionals have been observed. While public health projects aim to manage reproduction, sexuality, fertility, and professional practices are regulated socially. Such projects may target technical practices, but access to care is greatly influenced by social norms and ethics. This paper shows how an empirical anthropology that investigates the social and technical interfaces of reproduction can contribute to improved global health. PMID:27043370

  16. Maintenance support: case study for a multimodal mobile user interface

    NASA Astrophysics Data System (ADS)

    Fuchs, G.; Reichart, D.; Schumann, H.; Forbrig, P.

    2006-02-01

    Maintaining and repairing complex technical facilities such as generating plants requires comprehensive knowledge on subsystems, operational and safety procedures by the technician. Upgrades to the facility may mean that knowledge about these becomes outdated, raising the need for documentation at the working site. Today's commonplace availability of mobile devices motivates the use of digital, interactive manuals over printed ones. Such applications should provide high-quality illustrations and interaction techniques tailored for specific tasks, while at the same time allow flexible deployment of these components on a multitude of (mobile) hardware platforms. This includes the integration of multimodal interaction facilities like speech recognition into the user interface. To meet these demands, we propose a model-based approach that combines task, object and dialog models to specify platform-independent user interfaces. New concepts like relating tasks to domain objects and dialog views allow us to generate abstract canonical prototypes. Another focus is on the necessary adaptation of visual representations to the platform capabilities to remain effective and adequate, requiring tight coupling of the underlying model, the visualization, and alternative input/output modes. The above aspects have been addressed in a prototype for air-condition unit maintenance, presented on the CeBIT 2005 fair.

  17. Programs of Study: Year 2 Joint Technical Report. Research Snapshot

    ERIC Educational Resources Information Center

    National Research Center for Career and Technical Education, 2010

    2010-01-01

    In January 2010, the National Research Center for Career and Technical Education (NRCCTE) issued a progress report on three studies being conducted by the Center that examine the implementation and outcomes of Programs of Study (POS), which were required in the 2006 reauthorization of the federal legislation for career and technical education…

  18. Technical Studies Lead to Dream Career

    ERIC Educational Resources Information Center

    Suraci, Gary

    2008-01-01

    Like many young men, Ty Kropp had no idea what he wanted to do when he graduated from high school. Courses he took as a computer design/manufacturing (CDM) technology student at the Ulster County Career and Technical Education center in Port Ewen, NY, gave him valuable skills that opened the door to his dream job at Orange County Choppers (OCC), a…

  19. The Oregon Career and Technical Education Study

    ERIC Educational Resources Information Center

    Klein, Steven; Richards, Amanda

    2008-01-01

    Oregon educators, policymakers, and business people are working together to increase the number and quality of Career and Technical Education (CTE) programs in secondary and postsecondary institutions. CTE is an integral component of Oregon's education and workforce development system and prepares students for careers in areas ranging from the…

  20. Airborne Precision Spacing for Dependent Parallel Operations Interface Study

    NASA Technical Reports Server (NTRS)

    Volk, Paul M.; Takallu, M. A.; Hoffler, Keith D.; Weiser, Jarold; Turner, Dexter

    2012-01-01

    This paper describes a usability study of proposed cockpit interfaces to support Airborne Precision Spacing (APS) operations for aircraft performing dependent parallel approaches (DPA). NASA has proposed an airborne system called Pair Dependent Speed (PDS) which uses their Airborne Spacing for Terminal Arrival Routes (ASTAR) algorithm to manage spacing intervals. Interface elements were designed to facilitate the input of APS-DPA spacing parameters to ASTAR, and to convey PDS system information to the crew deemed necessary and/or helpful to conduct the operation, including: target speed, guidance mode, target aircraft depiction, and spacing trend indication. In the study, subject pilots observed recorded simulations using the proposed interface elements in which the ownship managed assigned spacing intervals from two other arriving aircraft. Simulations were recorded using the Aircraft Simulation for Traffic Operations Research (ASTOR) platform, a medium-fidelity simulator based on a modern Boeing commercial glass cockpit. Various combinations of the interface elements were presented to subject pilots, and feedback was collected via structured questionnaires. The results of subject pilot evaluations show that the proposed design elements were acceptable, and that preferable combinations exist within this set of elements. The results also point to potential improvements to be considered for implementation in future experiments.

  1. BBN technical memorandum W1291 infrasound model feasibility study

    SciTech Connect

    Farrell, T., BBN Systems and Technologies

    1998-05-01

    The purpose of this study is to determine the need and level of effort required to add existing atmospheric databases and infrasound propagation models to the DOE`s Hydroacoustic Coverage Assessment Model (HydroCAM) [1,2]. The rationale for the study is that the performance of the infrasound monitoring network will be an important factor for both the International Monitoring System (IMS) and US national monitoring capability. Many of the technical issues affecting the design and performance of the infrasound network are directly related to the variability of the atmosphere and the corresponding uncertainties in infrasound propagation. It is clear that the study of these issues will be enhanced by the availability of software tools for easy manipulation and interfacing of various atmospheric databases and infrasound propagation models. In addition, since there are many similarities between propagation in the oceans and in the atmosphere, it is anticipated that much of the software infrastructure developed for hydroacoustic database manipulation and propagation modeling in HydroCAM will be directly extendible to an infrasound capability. The study approach was to talk to the acknowledged domain experts in the infrasound monitoring area to determine: 1. The major technical issues affecting infrasound monitoring network performance. 2. The need for an atmospheric database/infrasound propagation modeling capability similar to HydroCAM. 3. The state of existing infrasound propagation codes and atmospheric databases. 4. A recommended approach for developing the required capabilities. A list of the people who contributed information to this study is provided in Table 1. We also relied on our knowledge of oceanographic and meteorological data sources to determine the availability of atmospheric databases and the feasibility of incorporating this information into the existing HydroCAM geographic database software. This report presents a summary of the need for an integrated

  2. Nonlinear optical studies of aqueous interfaces, polymers, and nanowires

    NASA Astrophysics Data System (ADS)

    Onorato, Robert Michael

    Understanding the structure and composition of aqueous interfaces is one of the most important current problems in modern science. Aqueous interfaces are ubiquitous in Nature, ranging from aerosols to cellular structures. Aerosol chemistry is presently the most significant unknown factor in predicting climate change, and an understanding of the chemistry that occurs at aerosol interfaces would significantly improve climate models. Similarly, the nature of aqueous biological interfaces has a profound effect on the structure and function of proteins and other biological structures. Despite the importance of these problems, aqueous interfaces remain incompletely understood due to the challenges of experimentally probing them. Recent experimental and theoretical results have firmly established the existence of enhanced concentrations of selected ions at the air/water interface. In this dissertation, I use an interface-specific technique, UV second harmonic generation (SHG), to further investigate the adsorption of ions to the air/water interface and to extend the study of ion adsorption towards more biologically relevant systems, alcohol/water interfaces. In Chapter 2, I describe resonant UV-SHG studies of the strongly chaotropic thiocyanate ion adsorbed to the interface formed by water and a monolayer of dodecanol, wherein the Gibbs free energy of adsorption was determined to be -6.7 +/- 1.1 and -6.3 +/- 1.8 kJ/mol for sodium and potassium thiocyanate, respectively, coincident with the value determined for thiocyanate at the air/water interface. Interestingly, at concentrations near and above 4 M, the resonant SHG signal increases discontinuously, indicating a structural change in the interfacial region. Recent experimental and theoretical work has demonstrated that the adsorption of bromide is particularly important for chemical reactions on atmospheric aerosols, including the depletion of ozone. In Chapter 3, UV-SHG resonant with the bromide charge

  3. Career and Technical Education at a Crossroads: A Delphi Study

    ERIC Educational Resources Information Center

    Cutright, Michael W.

    2011-01-01

    Career and technical education in the United States has reached a critical juncture. A three round Delphi method was used to determine a consensus on the future events of career and technical education to better inform educational decision makers. Forty-one individual experts in the field were invited to serve as panelists for the Delphi study and…

  4. Studying Quality beyond Technical Rationality: Political and Symbolic Perspectives

    ERIC Educational Resources Information Center

    Blanco Ramírez, Gerardo

    2013-01-01

    The underlying paradigms that influence research on quality have remained alarmingly under-researched; this article analyses the constraints that a technical-rational approach for the study of quality in higher education imposes. Technical rationality has been the dominant paradigm that shapes research on quality in higher education.…

  5. Selling Technology in Technical Advertisements: A Case Study.

    ERIC Educational Resources Information Center

    Guthrie, James R.

    1995-01-01

    Argues that, as the category of "technical products" has expanded and the public's enthusiasm for such products has lessened, marketing writers have begun to reconsider their approaches to technology in ads. Studies two technical ads in detail, and compares the ways in which they portray technology. (SR)

  6. Exploration studies technical report, FY1988 status. Volume 1: Technical summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Office of Exploration (OEXP) at NASA Headquarters has been tasked with defining and recommending alternatives for an early 1990's nationaL decision on a focused program of human exploration of the solar system. The Mission Analysis and System Engineering (MASE) group, which is managed by the Exploration Studies Office at the Lyndon B. Johnson Space Center, is responsible for coordinating the technical studies necessary for accomplishing such a task. This technical report, produced by the MASE, describes the process that has been developed in a case study approach. The four case studies developed in FY88 include: (1) Human Expedition to Phobos; (2) Human Expedition to Mars; (3) Lunar Observatory; and (4) Lunar Outpost to Early Mars Evolution. The final outcome of this effort is a set of programmatic and technical conclusions and recommendations for the following year's work.

  7. Experimental study of the oscillating interface of a falling drop

    NASA Astrophysics Data System (ADS)

    Choi, Suhwan; Ward, Thomas

    2012-11-01

    The drop interface oscillation generated from detachment from a nozzle due to gravity are experimentally studied. The fluids used in the experiments are glycerol-water mixtures with viscosities ranging from 0.005 to 0.410 Pa s, mineral oil having a viscosity of 0.0270 Pa s, and DI water with viscosity of 0.0009 Pa s. The drop oscillating is taken by fast camera to make observations. For large drops, where the interface relative to a polar angle may be measured, the periodic deformation is plotted as a function of time. For smaller drops we measure the deformation as switching between an oblate and prolate drop as a function of time. The phenomenon is clearly a function of the fluid viscosity but we seek to propose a pinch-off mechanism for understanding the source of the observed oscillations.

  8. Respiration gated radiotherapy treatment: a technical study

    NASA Astrophysics Data System (ADS)

    Kubo, Hideo D.; Hill, Bruce C.

    1996-01-01

    In order to optimize external-beam conformal radiotherapy, patient movement during treatment must be minimized. For treatment on the upper torso, the target organs are known to move substantially due to patient respiration. This paper deals with the technical aspects of gating the radiotherapy beam synchronously with respiration: the optimal respiration monitoring system, measurements of organ displacement and linear accelerator gating. Several respiration sensors including a thermistor, a thermocouple, a strain gauge and a pneumotachograph were examined to find the optimal sensor. The magnitude of breast, chest wall and lung motion were determined using playback of fluoroscopic x-ray images recorded on a VCR during routine radiotherapy simulation. Total dose, beam symmetry and beam uniformity were examined to determine any effects on the Varian 2100C linear accelerator due to gating.

  9. X-Ray Studies of Thin Films and Interfaces.

    NASA Astrophysics Data System (ADS)

    Woronick, Steven Charles

    1990-01-01

    Presented here are a series of x-ray studies utilizing synchrotron radiation to investigate a variety of properties of thin films and interfaces in technologically important materials. By far the largest part of this dissertation is devoted to studies of x-ray reflectivity as a function of angle (mainly soft x rays), although some extended x -ray absorption fine structure (EXAFS) results are included as reprinted published papers (briefly discussed). The reflectivity discussion covers theory, experimental techniques, data analysis (by curve-fitting), and specific applications. The material systems studied by the x-ray reflectivity technique include: bulk silicon, GaAs, InAs, ~250 -A InAs layers deposited by molecular-beam epitaxy (MBE) on GaAs(100) substrates, four thicknesses (~ 126-1100 A) of SiO_2 /Si(100) produced by dry thermal oxidation, and ~250-A layers of CoSi_2 /Si(111) (two samples, one produced by MBE and one by solid-phase epitaxy). Results determined from the reflectivity measurements include: interfacial roughness parameters, refractive index of materials (in the energy range ~400-1100 eV), and overlayer thicknesses. It has been found for example that the indium -stabilized growth mode of InAs on GaAs(100) results in a smoother buried interface than the arsenic-stabilized growth mode, while the indium-stabilized growth mode on 2^circ-off GaAs(100) produces the smoothest buried interface (with typical roughness parameters in the range 10-19 A). Preliminary results indicate that growth of CoSi_2/Si(111) by MBE produces smoother buried interfaces than growth by solid-phase epitaxy. The roughness parameters have been explained in terms of growth conditions, lattice mismatch, and material inhomogeneity in the vicinity of the buried interface. The oxygen atomic scattering factor for photons in the range 400-800 eV (oxygen K edge ~ 540 eV) has also been deduced from a determination the Si and SiO_2 refractive indices. The EXAFS studies were used to

  10. Atomistic study on the FCC/BCC interface structure with {112}KS orientation

    SciTech Connect

    Kang, Keonwook; Beyerlein, Irene; Han, Weizhong; Wang, Jian; Mara, Nathan

    2011-09-23

    In this study, atomistic simulation is used to explore the atomic interface structure, the intrinsic defect network, and mechanism of twin formation from the {112}KS Cu-Nb interface. The interface structure of different material systems AI-Fe and AI-Nb are also compared with Cu-Nb interface.

  11. Propagation of Stream Interfaces: An LFM-helio Study

    NASA Astrophysics Data System (ADS)

    Pahud, D. M.; Hughes, W.; Merkin, V. G.; McGregor, S. L.

    2012-12-01

    During the last solar minimum, the heliosphere was dominated by steady-state Stream Interaction Regions (SIRs). Carrington Rotation (CR) 2060, which occurred during this period, contained multiple SIRs and was free of transient phenomena which made it a good interval for the study of SIRs. We have used the Lyon-Fedder-Mobarry (LFM) heliospheric 3-D magnetohydrodynamic (MHD) model, the LFM-helio, to examine the radial evolution of SIRs, particularly the speed of the stream interface, from 0.1 AU to 2.0 AU. The LFM-helio is an adaptation of the magnetospheric LFM MHD code to heliospheric plasmas and fields. The ideal MHD equations are solved on a uniform spherical grid, excluding 10 degree cones centered at the poles. The inner boundary condition is obtained using the Wang-Sheeley-Arge (WSA) coronal model driven by photospheric magnetic field measurements for CR 2060. The global nature of the LFM-helio solution facilitates the study of the steepening of SIRs as well as their speed through the ambient plasma. For the SIR considered, the location of the stream interface is determined using multiple definitions, namely: the location of maximum total pressure, the location of maximum flow vorticity, the location of null azimuthal flow velocity and the location of steepest gradient of entropy. The speed of the plasma at these locations is compared to the mean speed of the interface to determine whether the interfaces are convected with the solar wind or propagate through it. In order to elucidate the physics of the evolution of the SIR, we also ran the LFM-helio using an idealized inner boundary condition. The idealized inner boundary specified the solar wind speed so as to ensure the presence of an SIR. Specifically, a source of fast wind was located at the same latitude as, and longitudinally near, a source of slow wind. The combined effect of radially outward plasma flow and rotation of the inner boundary align the fast wind behind the slow wind, creating an SIR. The

  12. 2008 ULTRASONIC BENCHMARK STUDIES OF INTERFACE CURVATURE--A SUMMARY

    SciTech Connect

    Schmerr, L. W.; Huang, R.; Raillon, R.; Mahaut, S.; Leymarie, N.; Lonne, S.; Spies, M.; Lupien, V.

    2009-03-03

    In the 2008 QNDE ultrasonic benchmark session researchers from five different institutions around the world examined the influence that the curvature of a cylindrical fluid-solid interface has on the measured NDE immersion pulse-echo response of a flat-bottom hole (FBH) reflector. This was a repeat of a study conducted in the 2007 benchmark to try to determine the sources of differences seen in 2007 between model-based predictions and experiments. Here, we will summarize the results obtained in 2008 and analyze the model-based results and the experiments.

  13. Video STM Studies of Adsorbate Diffusion at Electrochemical Interfaces

    NASA Astrophysics Data System (ADS)

    Tansel, T.; Magnussen, O. M.

    2006-01-01

    Direct in situ studies of the surface diffusion of isolated adsorbates at an electrochemical interface by high-speed scanning tunneling microscopy (video STM) are presented for sulfide adsorbates on Cu(100) in HCl solution. As revealed by a quantitative statistical analysis, the adsorbate motion can be described by thermally activated hopping between neighboring adsorption sites with an activation energy that increases linearly with electrode potential by 0.50 eV per V. This can be explained by changes in the adsorbate dipole moment during the hopping process and contributions from coadsorbates.

  14. Space station automation and robotics study. Operator-systems interface

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

  15. Electrochemical impedance study of the hematite/water interface.

    PubMed

    Shimizu, Kenichi; Lasia, Andrzej; Boily, Jean-François

    2012-05-22

    Reactions taking place on hematite (α-Fe(2)O(3)) surfaces in contact with aqueous solutions are of paramount importance to environmental and technological processes. The electrochemical properties of the hematite/water interface are central to these processes and can be probed by open circuit potentials and cyclic voltammetric measurements of semiconducting electrodes. In this study, electrochemical impedance spectroscopy (EIS) was used to extract resistive and capacitive attributes of this interface on millimeter-sized single-body hematite electrodes. This was carried out by developing equivalent circuit models for impedance data collected on a semiconducting hematite specimen equilibrated in solutions of 0.1 M NaCl and NH(4)Cl at various pH values. These efforts produced distinct sets of capacitance values for the diffuse and compact layers of the interface. Diffuse layer capacitances shift in the pH 3-11 range from 2.32 to 2.50 μF·cm(-2) in NaCl and from 1.43 to 1.99 μF·cm(-2) in NH(4)Cl. Furthermore, these values reach a minimum capacitance at pH 9, near a probable point of zero charge for an undefined hematite surface exposing a variety of (hydr)oxo functional groups. Compact layer capacitances pertain to the transfer of ions (charge carriers) from the diffuse layer to surface hydroxyls and are independent of pH in NaCl, with values of 32.57 ± 0.49 μF·cm(-2)·s(-φ). However, they decrease with pH in NH(4)Cl from 33.77 at pH 3.5 to 21.02 μF·cm(-2)·s(-φ) at pH 10.6 because of the interactions of ammonium species with surface (hydr)oxo groups. Values of φ (0.71-0.73 in NaCl and 0.56-0.67 in NH(4)Cl) denote the nonideal behavior of this capacitor, which is treated here as a constant phase element. Because electrode-based techniques are generally not applicable to the commonly insulating metal (oxyhydr)oxides found in the environment, this study presents opportunities for exploring mineral/water interface chemistry by EIS studies of single

  16. Ultrafast studies of electron dynamics at metal-dielectric interfaces

    SciTech Connect

    Ge, Nien-Hui

    1998-10-01

    Femtosecond time- and angle-resolved two-photon photoemission spectroscopy has been used to study fundamental aspects of excited electron dynamics at metal-dielectric interfaces, including layer-by-layer evolution of electronic structure and two-dimensional electron localization. On bare Ag(111), the lifetimes of image states are dominated by their position with respect to the projected bulk band structure. The n = 2 state has a shorter lifetime than the n = 1 state due to degeneracy with the bulk conduction band. As the parallel momentum of the n = 1 image electron increases, the lifetime decreases. With decreasing temperatures, the n = 1 image electrons, with zero or nonzero parallel momentum, all become longer lived. Adsorption of one to three layers of n-heptane results in an approximately exponential increase in lifetime as a function of layer thickness. This results from the formation of a tunneling barrier through which the interfacial electrons must decay, consistent with the repulsive bulk electron affinity of n-alkanes. The lifetimes of the higher quantum states indicate that the presence of the monolayer significantly reduces coupling of the image states to the bulk band structure. These results are compared with predictions of a dielectric continuum model. The study of electron lateral motion shows that optical excitation creates interfacial electrons in quasifree states for motion parallel to the n-heptane/Ag(111) interface. These initially delocalized electrons decay into a localized state within a few hundred femtoseconds. The localized electrons then decay back to the metal by tunneling through the adlayer potential barrier. The localization time depends strongly on the electron's initial parallel momentum and exhibits a non-Arrhenius temperature dependence. The experimental findings are consistent with a 2-D self-trapping process in which electrons become localized by interacting with the topmost plane of the alkane layer. The energy dependence of

  17. Study of job burnout in technical writers and technical illustrators/designers at LLNL

    SciTech Connect

    Rice, J A

    1998-06-03

    According to the American Institute of Stress, job stress is estimated to cost American industry more than $200 billion a year. These costs are, in part, related to the estimated 1 million employees that will be absent on an average workday because of stress; 75 percent of visits to primary care physicians are for stress-related problems. California workers' compensation claims for stress cost $1 billion for medical and legal fees alone (Murphy, 1997). But, there is another dimension to stress that needs to be addressed. Job stress can be a precursor to job burnout. Burnout is a loss of motivation, and antidotes for job stress will not necessarily alleviate or stop job burnout. Job burnout is experienced as exhaustion on physical, emotional, and cognitive levels. Burnout can include withdrawal and decreasing involvement on the job, seriously affecting job satisfaction, turnover, absenteeism, and productivity (Dwyer & Ganster, 1991; Erickson & Gunderson, 1972; Spector & Jex, 1991). The research project described in this paper examined whether job burnout exists in the technical writer and technical illustrator/designer occupations in the Technical Information Department at Lawrence Livermore National Laboratory. This study also determined at what age and after how many years of service these employees were most likely to experience job burnout, whether it affects men or women most, and if writers in a technical organization experience job burnout more than illustrators/designers in that organization.

  18. 29 CFR 1607.14 - Technical standards for validity studies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... study. Nothing in these guidelines is intended to preclude the development and use of other... technically feasible for a user to conduct a validity study, the user has the obligation otherwise to comply... information about the job. Any validity study should be based upon a review of information about the job...

  19. 29 CFR 1607.14 - Technical standards for validity studies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... study. Nothing in these guidelines is intended to preclude the development and use of other... technically feasible for a user to conduct a validity study, the user has the obligation otherwise to comply... information about the job. Any validity study should be based upon a review of information about the job...

  20. 29 CFR 1607.14 - Technical standards for validity studies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... study. Nothing in these guidelines is intended to preclude the development and use of other... technically feasible for a user to conduct a validity study, the user has the obligation otherwise to comply... information about the job. Any validity study should be based upon a review of information about the job...

  1. 29 CFR 1607.14 - Technical standards for validity studies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... study. Nothing in these guidelines is intended to preclude the development and use of other... technically feasible for a user to conduct a validity study, the user has the obligation otherwise to comply... information about the job. Any validity study should be based upon a review of information about the job...

  2. 29 CFR 1607.14 - Technical standards for validity studies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... study. Nothing in these guidelines is intended to preclude the development and use of other... technically feasible for a user to conduct a validity study, the user has the obligation otherwise to comply... information about the job. Any validity study should be based upon a review of information about the job...

  3. Supported Lipid Bilayer Technology for the Study of Cellular Interfaces

    PubMed Central

    Crites, Travis J.; Maddox, Michael; Padhan, Kartika; Muller, James; Eigsti, Calvin; Varma, Rajat

    2015-01-01

    Glass-supported lipid bilayers presenting freely diffusing proteins have served as a powerful tool for studying cell-cell interfaces, in particular, T cell–antigen presenting cell (APC) interactions, using optical microscopy. Here we expand upon existing protocols and describe the preparation of liposomes by an extrusion method, and describe how this system can be used to study immune synapse formation by Jurkat cells. We also present a method for forming such lipid bilayers on silica beads for the study of signaling responses by population methods, such as western blotting, flow cytometry, and gene-expression analysis. Finally, we describe how to design and prepare transmembrane-anchored protein-laden liposomes, following expression in suspension CHO (CHOs) cells, a mammalian expression system alternative to insect and bacterial cell lines, which do not produce mammalian glycosylation patterns. Such transmembrane-anchored proteins may have many novel applications in cell biology and immunology. PMID:26331983

  4. Cathode interface studies of polymer light emitting devices

    NASA Astrophysics Data System (ADS)

    Swiontek, Stephen; Tzolov, Marian

    2010-03-01

    Efficient injection of charge carriers is a key factor for successful operation of any electronic device and especially of devices with non-crystalline or wide band gap active material. Our study concentrates on the cathode interface of light emitting devices with a conjugated polymer as light emitter. We apply two principally different methods for the cathode deposition, physical and chemical, in order to fundamentally understand if in addition to the commonly accepted notion for the matching of the work functions also material modification takes place. The completed devices are studies by steady-state electrical measurements, impedance spectroscopy, current and emission lifetime measurements, and electroluminescence spectroscopy. The morphology of the cathodes is studied by Scanning Electron Microscopy and the formation of additional phases by Energy Dispersive X-ray Spectroscopy. The results help to define ways for more cost efficient fabrication of light emitting devices with applications in displays, electronic newspapers, room illumination, etc.

  5. Vibrational spectroscopy of buried interfaces using nonlinear optics. Final technical report, July 7, 1986--February 29, 1996

    SciTech Connect

    Furtak, T.E.

    1996-05-30

    This DOE sponsored program has been dedicated to the understanding, development, and application of nontraditional methods for studying buried interfaces, particularly the electrolyte-solid system. Most of the work has dealt with optical techniques. The early research was directed toward revealing the mechanisms of surface enhanced Raman scattering (SERS). More recently the author has concentrated on surface nonlinear optical effects--second harmonic generation (SHG) and sum-frequency generation (SHG). Both of these techniques have the potential for selective interface sensitivity, and are produced through a higher order susceptibility than that which governs linear optical response. Optical SHG has the potential of providing more information about a buried interface than can be obtained by conventional optical spectroscopy. The author`s experiments have been designed to: (a) extract the second order optical susceptibility tensor associated with the surface of a metal electrode, and (b) discover how the electrochemical environment influences the nonlinear optical measurements. Recent contributions include quantitative comparison of the nonlinear response of single crystal silver to theoretical models for the effect. The author has provided the first detailed test of the time-dependent, local density functional prediction. Optical SHG bears a fundamental connection with the symmetry of the surface atoms. While investigating Ag(111) an anomalous effect was discovered that could not be explained by the known surface structure of Ag. The phenomenon was tentatively assigned to an adsorption induced surface reconstruction, since it behaved like a second order phase transition. In addition to the optical phenomena the author has designed, built, and operated an in situ quartz crystal microbalance (QCM) electrochemical cell.

  6. Elementary Staffing Study. Final Technical Report. Appendixes.

    ERIC Educational Resources Information Center

    Austin Independent School District, TX. Office of Research and Evaluation.

    The Elementary Staffing Study was conducted to develop a formula for determining the allocation of personnel positions and services for individual elementary school campuses in the Austin Independent School District. The 1981-82 study was meant to identify factors to be considered in personnel assignment, to "weight" each factor, and to use the…

  7. Laser studies of chemical dynamics at the gas-solid interface

    NASA Astrophysics Data System (ADS)

    Cavanagh, Richard R.; King, David S.

    The DOE funded research program Laser Studies of Chemical Dynamics at the Gas-Solid Interface has taken a detailed, microscopic view of molecules desorbed from surfaces in order to gain an understanding of energy flow and interaction potentials and how these control chemical reactivity at interfaces. Successful completion of these experiments required technical expertise both in surface science and laser-based molecular dynamics, a collaborative situation that exists in the NIST center for Atomic, Molecular and Optical Physics. During the three year period covered by this progress report, our goal was to use state-resolved techniques to examine a single chemisorption system in detail, and to observe how changes in the interaction potential or method of surface excitation are manifest in the desorption dynamics. The system chosen was NO/Pt(111). Studies were undertaken in which the effects on the NO-Pt interaction potential of coadsorbates--both weakly (CO) and strongly (NH(sub 3)) interacting-- could be examined. In addition, attempts were to be made to study non- equilibrium dynamics by using pulsed laser heating.

  8. Body Machine Interfaces for Neuromotor Rehabilitation: a Case Study

    PubMed Central

    Pierella, Camilla; Abdollahi, Farnaz; Farshchiansadegh, Ali; Pedersen, Jessica; Chen, David; Mussa-Ivaldi, Ferdinando A.; Casadio, Maura

    2015-01-01

    High-level spinal cord injury (SCI) survivors face every day two related problems: recovering motor skills and regaining functional independence. Body machine interfaces (BoMIs) empower people with sever motor disabilities with the ability to control an external device, but they also offer the opportunity to focus concurrently on achieving rehabilitative goals. In this study we developed a portable, and low-cost BoMI that addresses both problems. The BoMI remaps the user’s residual upper body mobility to the two coordinates of a cursor on a computer monitor. By controlling the cursor, the user can perform functional tasks, such as entering text and playing games. This framework also allows the mapping between the body and the cursor space to be modified, gradually challenging the user to exercise more impaired movements. With this approach, we were able to change the behavior of our SCI subject, who initially used almost exclusively his less impaired degrees of freedom - on the left side - for controlling the BoMI. At the end of the few practice sessions he had restored symmetry between left and right side of the body, with an increase of mobility and strength of all the degrees of freedom involved in the control of the interface. This is the first proof of concept that our BoMI can be used to control assistive devices and reach specific rehabilitative goals simultaneously. PMID:25569980

  9. Body machine interfaces for neuromotor rehabilitation: a case study.

    PubMed

    Pierella, Camilla; Abdollahi, Farnaz; Farshchiansadegh, Ali; Pedersen, Jessica; Chen, David; Mussa-Ivaldi, Ferdinando A; Casadio, Maura

    2014-01-01

    High-level spinal cord injury (SCI) survivors face every day two related problems: recovering motor skills and regaining functional independence. Body machine interfaces (BoMIs) empower people with sever motor disabilities with the ability to control an external device, but they also offer the opportunity to focus concurrently on achieving rehabilitative goals. In this study we developed a portable, and low-cost BoMI that addresses both problems. The BoMI remaps the user's residual upper body mobility to the two coordinates of a cursor on a computer monitor. By controlling the cursor, the user can perform functional tasks, such as entering text and playing games. This framework also allows the mapping between the body and the cursor space to be modified, gradually challenging the user to exercise more impaired movements. With this approach, we were able to change the behavior of our SCI subject, who initially used almost exclusively his less impaired degrees of freedom - on the left side - for controlling the BoMI. At the end of the few practice sessions he had restored symmetry between left and right side of the body, with an increase of mobility and strength of all the degrees of freedom involved in the control of the interface. This is the first proof of concept that our BoMI can be used to control assistive devices and reach specific rehabilitative goals simultaneously. PMID:25569980

  10. The CULTEX RFS: A Comprehensive Technical Approach for the In Vitro Exposure of Airway Epithelial Cells to the Particulate Matter at the Air-Liquid Interface

    PubMed Central

    Aufderheide, Michaela; Hochrainer, Dieter

    2013-01-01

    The EU Regulation on Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) demands the implementation of alternative methods for analyzing the hazardous effects of chemicals including particulate formulations. In the field of inhalation toxicology, a variety of in vitro models have been developed for such studies. To simulate the in vivo situation, an adequate exposure device is necessary for the direct exposure of cultivated lung cells at the air-liquid interface (ALI). The CULTEX RFS fulfills these requirements and has been optimized for the exposure of cells to atomized suspensions, gases, and volatile compounds as well as micro- and nanosized particles. This study provides information on the construction and functional aspects of the exposure device. By using the Computational Fluid Dynamics (CFD) analysis, the technical design was optimized to realize a stable, reproducible, and homogeneous deposition of particles. The efficiency of the exposure procedure is demonstrated by exposing A549 cells dose dependently to lactose monohydrate, copper(II) sulfate, copper(II) oxide, and micro- and nanoparticles. All copper compounds induced cytotoxic effects, most pronounced for soluble copper(II) sulfate. Micro- and nanosized copper(II) oxide also showed a dose-dependent decrease in the cell viability, whereby the nanosized particles decreased the metabolic activity of the cells more severely. PMID:23509768

  11. Third International Mathematics and Science Study 1999 Video Study Technical Report: Volume 2--Science. Technical Report. NCES 2011-049

    ERIC Educational Resources Information Center

    Garnier, Helen E.; Lemmens, Meike; Druker, Stephen L.; Roth, Kathleen J.

    2011-01-01

    This second volume of the Third International Mathematics and Science Study (TIMSS) 1999 Video Study Technical Report focuses on every aspect of the planning, implementation, processing, analysis, and reporting of the science components of the TIMSS 1999 Video Study. The report is intended to serve as a record of the actions and documentation of…

  12. Third International Mathematics and Science Study 1999 Video Study Technical Report: Volume 1--Mathematics. Technical Report. NCES 2003-012

    ERIC Educational Resources Information Center

    Jacobs, Jennifer; Garnier, Helen; Gallimore, Ronald; Hollingsworth, Hilary; Givvin, Karen Bogard; Rust, Keith; Kawanaka, Takako; Smith, Margaret; Wearne, Diana; Manaster, Alfred; Etterbeek, Wallace; Hiebert, James; Stigler, James

    2003-01-01

    This first volume of the Third International Mathematics and Science Study (TIMSS) 1999 Video Study Technical Report focuses on every aspect of the planning, implementation, processing, analysis, and reporting of the mathematics components of the TIMSS 1999 Video Study. The report is intended to serve as a record of the actions and documentation…

  13. Adhesion at WC/diamond interfaces - A theoretical study

    SciTech Connect

    Padmanabhan, Haricharan; Rao, M. S. Ramachandra; Nanda, B. R. K.

    2015-06-24

    We investigate the adhesion at the interface of face-centered tungsten-carbide (001) and diamond (001) from density-functional calculations. Four high-symmetry model interfaces, representing different lattice orientations for either side of the interface, are constructed to incorporate different degrees of strain arising due to lattice mismatch. The adhesion, estimated from the ideal work of separation, is found to be in the range of 4 - 7 J m{sup −2} and is comparable to that of metal-carbide interfaces. Maximum adhesion occurs when WC and diamond slabs have the same orientation, even though such a growth induces large epitaxial strain at the interface. From electronic structure calculations, we attribute the adhesion to covalent interaction between carbon p-orbitals as well as partial ionic interaction between the tungsten d- and carbon p-orbitals across the interface.

  14. Closing the Gender Gap in Technical Disciplines: AN Investigative Study

    NASA Astrophysics Data System (ADS)

    Gokhale, Anu A.; Stier, Ken

    The goal of this study was to investigate the efficacy of curriculum and instructional techniques in a technical core course to create a more conducive learning environment for women. The technical core course introduced technology majors to mechanical systems, electronics, and fluid power principles through lectures and laboratory work. Female students already enrolled in the department and female alumnae of the program were surveyed. The students' responses to the survey showed that although the female participants in the study were pleased with the instructors, the curriculum, and the instruction they received, they had recommendations for modifying the instruction.

  15. Reusable Agena study. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    Carter, W. K.; Piper, J. E.; Douglass, D. A.; Waller, E. W.; Hopkins, C. V.; Fitzgerald, E. T.; Sagawa, S. S.; Carter, S. A.; Jensen, H. L.

    1974-01-01

    The application of the existing Agena vehicle as a reusable upper stage for the space shuttle is discussed. The primary objective of the study is to define those changes to the Agena required for it to function in the reusable mode in the 100 percent capture of the NASA-DOD mission model. This 100 percent capture is achieved without use of kick motors or stages by simply increasing the Agena propellant load by using optional strap-on-tanks. The required shuttle support equipment, launch and flight operations techniques, development program, and cost package are also defined.

  16. Space Tug Aerobraking Study. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    Corso, C. J.; Eyer, C. L.

    1972-01-01

    The feasibility and practicality of employing an aerobraking trajectory for return of the reusable Space Tug from geosynchronous and other high energy missions was investigated. The aerobraking return trajectory modes from high orbits employ transfer ellipses which have low perigee altitudes wherein the earth's sensible atmosphere provides drag to reduce the Tug descent delta velocity requirements and thus decrease the required return trip propulsive energy. An aerobraked Space Tug, sized to the Space Shuttle payload capability and dimensional constraints, can accomplish 95 percent of the geosynchronous missions with a single Shuttle/Tug launch per mission. Aerodynamics, aerothermodynamics, trajectory, quidance and control, configuration concepts, materials, weights and performance parameters were identified. Sensitivities to trajectory uncertainties, atmospheric anomalies and re-entry environments were determined. New technology requirements and future studies required to further enhance the aerobraking potential were identified.

  17. Drainage flows: A mountain-plains interface numerical case study

    SciTech Connect

    Poulos, G.S.; Bossert, J.E.

    1992-01-01

    In January/February, 1991 an intensive set of measurements was taken around Rocky Flats near Denver, CO, USA under the auspices of the Atmospheric Studies in Complex Terrain (ASCOT) program. This region of the country is known as the Front Range, and is characterized by a transition from the relatively flat terrain of the Great Plains to the highly varied terrain of the Rocky Mountains. The mountains are oriented north-south and rise from 1800m above mean sea level (MSL) to 3600m MSL at the Continental Divide. Numerous east-west oriented valleys begin in the mountains and end at the plains interface. This terrain makes the Front Range a challenging region to model. One of the more important flows created by this severe terrain are the highly-varying drainage flows found during stagnant, wintertime conditions. These flows can interact with larger-scale mountain and synoptic winds. One goal of the ASCOT 1991 program was to gain insight into multi-scale meteorological interaction by observing wintertime drainage conditions at the mountain-valley-plains interface. ASCOT data included surface and upper air measurements on approximately a 50km{sup 2} scale. Simultaneously, an SF{sub 6} tracer release study was being conducted around Rocky Flats, a nuclear materials production facility. Detailed surface concentration measurements were completed for the SF{sub 6} plume. This combination of meteorological and tracer concentration data provided a unique data set for comparisons of mesoscale and dispersion modeling results with observations and for evaluating our capability to predict pollutant transport. Our approach is to use the Regional Atmospheric Modeling System (RAMS) mesoscale model to simulate atmospheric conditions and the Lagrangian Particle Dispersion Model (LPDM) to model the dispersion of the SF{sub 6}.

  18. Drainage flows: A mountain-plains interface numerical case study

    SciTech Connect

    Poulos, G.S.; Bossert, J.E.

    1992-09-01

    In January/February, 1991 an intensive set of measurements was taken around Rocky Flats near Denver, CO, USA under the auspices of the Atmospheric Studies in Complex Terrain (ASCOT) program. This region of the country is known as the Front Range, and is characterized by a transition from the relatively flat terrain of the Great Plains to the highly varied terrain of the Rocky Mountains. The mountains are oriented north-south and rise from 1800m above mean sea level (MSL) to 3600m MSL at the Continental Divide. Numerous east-west oriented valleys begin in the mountains and end at the plains interface. This terrain makes the Front Range a challenging region to model. One of the more important flows created by this severe terrain are the highly-varying drainage flows found during stagnant, wintertime conditions. These flows can interact with larger-scale mountain and synoptic winds. One goal of the ASCOT 1991 program was to gain insight into multi-scale meteorological interaction by observing wintertime drainage conditions at the mountain-valley-plains interface. ASCOT data included surface and upper air measurements on approximately a 50km{sup 2} scale. Simultaneously, an SF{sub 6} tracer release study was being conducted around Rocky Flats, a nuclear materials production facility. Detailed surface concentration measurements were completed for the SF{sub 6} plume. This combination of meteorological and tracer concentration data provided a unique data set for comparisons of mesoscale and dispersion modeling results with observations and for evaluating our capability to predict pollutant transport. Our approach is to use the Regional Atmospheric Modeling System (RAMS) mesoscale model to simulate atmospheric conditions and the Lagrangian Particle Dispersion Model (LPDM) to model the dispersion of the SF{sub 6}.

  19. A Case Study on the Design of Learning Interfaces

    ERIC Educational Resources Information Center

    Perry, Gabriela Trindade; Schnaid, Fernando

    2012-01-01

    The design of educational software interfaces is a complex task, given its high domain dependency and multidisciplinary nature. It requires that teachers' knowledge and pedagogical beliefs be incorporated into the interface, posing a challenge to both teachers and designers, as they have to act as partners from the earliest phases of the process,…

  20. Studies of interfaces and vapors with Optical Second Harmonic Generation

    SciTech Connect

    Mullin, C. S.

    1993-12-01

    Optical Second Harmonic Generation (SHG) has been applied to the study of soap-like molecules adsorbed to the water-air interface. By calibrating the signal from a soluble monolayer with that of an insoluble homolog, absolute measurements of the surface density could be obtained and related to the bulk concentration and surface tension. We could then demonstrate that the soluble surfactant forms a single monolayer at the interface. Furthermore, it deviates significantly from the ideal case in that its activity coefficients are far from 1, yet those coefficients remain constant over a broad range of surface pressures. We present evidence of a first-order phase transition taking place during the adsorption of this soluble monolayer. We consider the effects of the non-ideal behavior and the phase transition on the microscopic model of adsorption, and formulate an alternative to the Langmuir picture of adsorption which is just as simple, yet it can more easily allow for non-ideal behavior. The second half of this thesis considers the problem of SHG in bulk metal vapors. The symmetry of the vapor forbids SHG, yet it has been observed. We consider several models whereby the symmetry of the vapor is broken by the presence of the laser and compare their predictions to new observations we have made using a few-picosecond laser pulse. The two-lobed output beam profile shows that it is the vapor-plus-beam combination whose symmetry is important. The dependence on vapor pressure demonstrates the coherent nature of the radiation, while the dependence on buffer gas pressure hints at a change of the symmetry in time. The time-dependence is measured directly with a preliminary pump-probe measurement. The magnitude and intensity dependence of the signal are also measured. All but one of the models are eliminated by this comparison.

  1. English Language Proficiency Study (ELPS), 1982 Microdata File. Technical Documentation.

    ERIC Educational Resources Information Center

    Bureau of the Census (DOC), Suitland, MD.

    This document consists of the printed technical documentation that accompanies the English Language Proficiency Study (ELPS) machine-readable data file when obtained from the Bureau of the Census. The ELPS was conducted by the United States Bureau of the Census for the Department of Education to provide materials with which the Department of…

  2. Western Wind and Solar Integration Study Phase 3: Technical Overview

    SciTech Connect

    2015-11-01

    Technical fact sheet outlining the key findings of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3). NREL and GE find that with good system planning, sound engineering practices, and commercially available technologies, the Western grid can maintain reliability and stability during the crucial first minute after grid disturbances with high penetrations of wind and solar power.

  3. American Studies and the Technical Curriculum: Man and Technology.

    ERIC Educational Resources Information Center

    St. Germain, Amos

    An approach to teaching American studies at a Southern institute of engineering technology is described. The curriculum of this school is technically oriented to the professional engineer. Elective humanities courses must attract their own market and justify their places to both the students and the faculty. Two courses entitled "Man and…

  4. Management Studies Educational Knowledge: Technical, Elite or Political?

    ERIC Educational Resources Information Center

    Hordern, Jim

    2014-01-01

    This paper draws on the technical, elite and political interpretations of the purpose of management, to identify demands for particular forms of educational knowledge in the management studies curriculum. The varied character of this knowledge is discussed using Bernsteinian concepts of verticality, grammaticality, classification and framing, and…

  5. New Training Technologies. Studies on Technical and Vocational Education 2.

    ERIC Educational Resources Information Center

    Herremans, Albert

    This book is the second in a series aiming to promote international exchange of ideas, experiences, and studies relating to technical and vocational education. Information provided is designed to help educators and trainers plan for an intelligent use of new training technologies (NTTs) to improve the access to basic and advanced lifelong learning…

  6. Technical Communications in Aeronautics: Results of an Exploratory Study. NASA Technical Memorandum 101534, Parts 1 and 2.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    An exploratory study investigated technical communications in aeronautics by surveying aeronautical engineers and scientists. The study had five specific objectives: to solicit the opinions of aeronautical engineers and scientists regarding the importance of technical communications to their profession; to determine their use and production of…

  7. A study of dilational rheological properties of polymers at interfaces.

    PubMed

    Cao, Xulong; Li, Yang; Jiang, Shengxiang; Sun, Huanquan; Cagna, Alain; Dou, Lixia

    2004-02-15

    Viscoelastic properties of two polymers, partially hydrolyzed polyacrylamide and partially hydrolyzed modified polyacrylamide, widely used in chemical flooding in the petroleum industry, were investigated at three interfaces, water-air, water-dodecane, and water-crude oil, by means of a dilational method provided by I.T. Concept, France, at 85 degrees C. Polymer solutions were prepared in brine with 10,000 mg/l sodium chloride and 2000 mg/l calcium chloride. It has been shown that the viscoelastic modulus increases with the increment of polymer concentration in the range of 0-1500 mg/l at the water-air interface. Each polymer shows different viscoelatic behavior at different interfaces. Generally speaking, values of the viscoelastic modulus (E), the real part (E'), and the imaginary part (E") at the crude oil-water interface for each polymer are lower than at the air-water or water-dodecane interface. The two polymers display different interfacial properties at the same interface. Polymer No. 2 gives more viscous interfaces than polymer No. 1. All the information obtained from this paper will be helpful in understanding the interfacial rheology of ultra-high-molecular-weight polymer solutions. PMID:14697692

  8. Ballistic Electron Emission Microscopy Studies of Ferromagnet - Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Mather, P. G.; Perrella, A. C.; Yurtsever, A.; Buhrman, R. A.

    2004-03-01

    Devices that employ spin as well as charge effects have been the subjects of extensive study recently. The magnetic tunneling transistor (1) is one important device that demonstrates an electrical means of injecting spin-polarized electrons into a semiconductor. A Schottky barrier lies at the heart of the device, and a high quality spatially homogenous and uniform barrier formed on GaAs is highly desirable. We have used ballistic electron emission microscopy (BEEM) to study CoFe, Fe and permalloy deposited on a GaAs substrate to give nanometer resolved evaluation of hot electron transport through the films and across the Schottky barrier. All films give a homogenous, uniform barrier as compared with evaporated Au/GaAs and Ag/GaAs interfaces. We will report on BEEM measurements of the hot electron transfer ratio across the Schottky barrier for the different ferromagnetic materials, and on the energy and spin-dependent hot electron attenuation lengths of the CoFe, Fe, and permalloy films. (1) Sebastiaan van Dijken, Xin Jiang, Stuart S. P. Parkin, APL, 80, 3364.

  9. Experimental study of an isochorically heated heterogeneous interface. A progress report

    SciTech Connect

    Fernandez, Juan Carlos

    2015-08-20

    Outline of the presentation: Studying possible mix / interface motion between heterogeneous low/high Z interfaces driven by 2-fluid or kinetic plasma effects (Heated to few eV, Sharp (sub µm) interface); Isochoric heating to initialize interface done with Al quasimonoenergetic ion beams on Trident; Have measured isochoric heating in individual materials intended for compound targets; Fielded experiments on Trident to measure interface motion (Gold-diamond, tin-aluminium); Measured heated-sample temperature with streaked optical pyrometry (SOP) (UT Austin led (research contract), SOP tests → heating uniformity Vs thickness on Al foils. Results are being analyzed.

  10. High-energy photoemission studies of oxide interfaces

    NASA Astrophysics Data System (ADS)

    Claessen, Ralph

    2015-03-01

    The interfaces of complex oxide heterostructures can host novel quantum phases not existing in the bulk of the constituents, with the high-mobility 2D electron system (2DES) in LaAlO3/SrTiO3 (LAO/STO) representing a prominent example. Despite extensive research the origin of the 2DES and its unusual properties - including the supposed coexistence of superconductivity and ferromagnetism - are still a matter of intense debate. Photoelectron spectroscopy, recently extended into the soft (SX-ARPES) and hard (HAXPES) X-ray regime, is a powerful method to provide detailed insight into the electronic structure of these heterostructures and, in particular, of the buried interface. This includes the identification of the orbital character of the 2DES as well as the determination of vital band structure information, such as band alignment, band bending, and even k-resolved band dispersions and Fermi surface topology. Moreover, resonant photoemission at the Ti L-edge reveals the existence of two different species of Ti 3d states, localized and itinerant, which can be distinguished and identified by their different resonance behavior. The role of oxygen vacancies is studied by controlled in-situ oxidation, which allows us to vary the composition from fully stoichiometric to strongly O-deficient. By comparison to free STO surfaces we can thus demonstrate that the metallicity of the heteointerfaces is intrinsic, i . e . it persists even in the absence of O defects. I will discuss our photoemission results on LAO/STO heterostructures in both (100) and (111) orientation as well as on the related system γ-Al2O3/STO(100), which also hosts a 2DES with an even higher mobility. Work in collaboration with J. Mannhart (MPI-FKF, Stuttgart), N. Pryds (TU Denmark), G. Rijnders (U Twente), S. Suga (U Osaka), M. Giorgoi (BESSY, HZB), W. Drube (DESY Photon Science), V.N. Strocov (Swiss Light Source), J. Denlinger (Advanced Light Source, LBNL), and T.-L. Lee (Diamond Light Source). Support by

  11. Experimental Studies of Nanobubbles at Solid-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Xuehua

    2013-11-01

    When a hydrophobic substrate is in contact with water, gas bubbles thinner than 100 nm can form at the interface and stay for long time under ambient conditions. These nanobubbles have significant influence on a range of interfacial processes. For example, they give rise to hydrodynamic slip on the boundary, initiate the rupture of thin liquid films, facilitate the long-ranged interactions between hydrophobic surfaces, and enhance the attachment of a macroscopic bubble to the substrate. Experimentally, it is nontrivial to characterize such small fragile bubbles and unravel their fundamental physical properties. Based on our established procedure for the nanobubble formation, we have systematically studied the formation, stability and response of nanobubbles to external fields (e.g. sonication, pressure drop and temperature rise). By following the bubble morphology by atomic force microscopy, we show that the loss or gain of the nanobubble volume is achieved mainly by the change in the bubble height. The pinning on the three-phase boundary has significant implication on the properties of nanobubbles under various conditions. This talk will cover the effects of the substrate structures on the nanobubble formation, and the response of nanobubbles to the gas dissolution, the temperature increase, the extended gentle ultrasound or the substantial pressure drop in the environment. We acknowledge the support from Australian Research Council (FFT120100473).

  12. Ultrafast optical studies of surface reaction processes at semiconductor interfaces

    SciTech Connect

    Miller, R.J.D.

    1993-03-01

    Rectifying properties of semiconductor liquid junctions make them a simple system for converting and storing optical energy. However, interfacial electron or hole carrier transfer and competing non-radiative (energy loss) channels are not well understood at surfaces. This research has explored the use of three optical techniques, Surface Space Charge Electrooptic Sampling, Surface Restricted Transient Grating Spectroscopy, and Femtosecond Optical Kerr Spectroscopy (OKE) to obtain time evolution of the surface spatial distribution of photogenerated charge carriers, photocarrier population dynamics at semiconductor interfaces, and solvent modes responsible for charge localization and separation. These studies have shown that carriers arrive at GaAs(100) surfaces on the hundred femtosecond time scale. Improvements in time resolution, using surface grating spectroscopy, have shown interfacial hole transfer is occurring on the picosecond time scale. The OKE approach to solvent dynamics has determined the response of water to a field is multiexpontential with a major relaxation component of 100 femtoseconds. The observed interfacial hole transfer to Se[sup [minus]2] acceptors is occurring on this same time scale. This observation illustrates charge transfer processes can occur in the strong electronic coupling limit and can be competitive with carrier thermalization.

  13. Technical Communications in Aeronautics: Results of an Exploratory Study. An Analysis of Managers' and Nonmanagers' Responses. NASA Technical Memorandum 101625.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    Data collected from an exploratory study concerned with the technical communications practices of aerospace engineers and scientists were analyzed to test the primary assumption that aerospace managers and nonmanagers have different technical communications practices. Five secondary assumptions were established for the analysis: (1) that the…

  14. Study of Composite Interface Fracture and Crack Growth Monitoring Using Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Bily, Mollie A.; Kwon, Young W.; Pollak, Randall D.

    2010-08-01

    Interface fracture of woven fabric composite layers was studied using Mode II fracture testing. Both carbon fiber and E-glass fiber composites were used with a vinyl ester resin. First, the single-step cured (i.e., co-cured) composite interface strength was compared to that of the two-step cured interface as used in the scarf joint technique. The results showed that the two-step cured interface was as strong as the co-cured interface. Carbon nanotubes were then applied to the composite interface using two-step curing, and then followed by Mode II fracture testing. The results indicated a significant improvement of the interface fracture toughness due to the dispersed carbon nanotube layer for both carbon fiber and E-glass fiber composites. The carbon nanotube layer was then evaluated as a means to monitor crack growth along the interface. Because carbon nanotubes have very high electrical conductivity, the electrical resistance was measured through the interface as a crack grew, thus disrupting the carbon nanotube network and increasing the resistance. The results showed a linear relationship between crack length and interface resistance for the carbon fiber composites, and allowed initial detection of failure in the E-glass fiber composites. This study demonstrated that the application of carbon nanotubes along a critical composite interface not only improves fracture properties but can also be used to detect and monitor interfacial damage.

  15. Discrete Element study of granular material - Bumpy wall interface behavior

    NASA Astrophysics Data System (ADS)

    El Cheikh, Khadija; Rémond, Sébastien; Pizette, Patrick; Vanhove, Yannick; Djelal, Chafika

    2016-09-01

    This paper presents a DEM study of a confined granular material sheared between two parallel bumpy walls. The granular material consists of packed dry spherical particles. The bumpiness is modeled by spheres of a given diameter glued on horizontal planes. Different bumpy surfaces are modeled by varying diameter or concentration of glued spheres. The material is sheared by moving the two bumpy walls at fixed velocity. During shear, the confining pressure applied on each bumpy wall is controlled. The effect of wall bumpiness on the effective friction coefficient and on the granular material behavior at the bumpy walls is reported for various shearing conditions. For given bumpiness and confining pressure that we have studied, it is found that the shear velocity does not affect the shear stress. However, the effective friction coefficient and the behavior of the granular material depend on the bumpiness. When the diameter of the glued spheres is larger than about the average grains diameter of the medium, the latter is uniformly sheared and the effective friction coefficient remains constant. For smaller diameters of the glued spheres, the effective friction coefficient increases with the diameter of glued spheres. The influence of glued spheres concentration is significant only for small glued spheres diameters, typically half of average particle diameter of the granular material. In this case, increasing the concentration of glued spheres leads to a decrease in effective friction coefficient and to shear localization at the interface. For different diameters and concentrations of glued spheres, we show that the effect of bumpiness on the effective friction coefficient can be characterized by the depth of interlocking.

  16. Positron annihilation lifetime study of interfaces in ternary polymer blends

    NASA Astrophysics Data System (ADS)

    Meghala, D.; Ramya, P.; Pasang, T.; Raj, J. M.; Ranganathaiah, C.; Williams, J. F.

    2013-06-01

    A new method based on positron lifetime spectroscopy is developed to characterize individual interfaces in ternary polymer blends and hence determine the composition dependent miscibility level. The method owes its origin to the Kirkwood-Risemann-Zimm (KRZ) model for the evaluation of the hydrodynamic interaction parameters (αij) which was used successfully for a binary blend with a single interface. The model was revised for the present work for ternary polymer blends to account for three interfaces. The efficacy of this method is shown for two ternary blends namely poly(styrene-co-acrylonitrile)/poly (ethylene-co-vinylacetate)/poly(vinyl chloride) (SAN/EVA/PVC) and polycaprolactone /poly(styrene-co-acrylonitrile)/poly(vinyl chloride) (PCL/SAN/PVC) at different compositions. An effective hydrodynamic interaction parameter, αeff, was introduced to predict the overall miscibility of ternary blends.

  17. Kinetic studies of the sucrose adsorption onto an alumina interface

    NASA Astrophysics Data System (ADS)

    Singh, Kaman; Mohan, Sudhanshu

    2004-01-01

    An account is given of an experimental kinetic study of adsorption of analar reagent sucrose (ARS) onto an alumina interface spectrometrically ( λmax=570 nm) at pH 8.0 and at room temperature. The adsorption isotherm is a typical Langmuirian isotherm (S-type) and adsorption parameters have been deduced according to the Langmuir's model. The adsorption coefficient evaluated from the Langmuir's equation was found to be 2.52×10 2 l mol -1. Adsorption mechanism has been interpreted on the basis of metal-saccharide interaction as found in organometallic compounds and interaction due to negatively charged ends on the disaccharide molecules and positively charge groups on the surface on alumina which depends on the pH value. The effects of variation in experimental conditions of the adsorption system have also been investigated. The adsorption exhibited a typical response to the pH effect and on going towards the PZC the net charge decreases and any reaction making dependence on charge and maximum adsorption (amount) was found near the isoelectric point of alumina (pH 9.0). The presence of ions like Cl -, SO 42- and PO 43- affect the adsorbed amount quantitatively and it seems that these anions compete with sucrose for the positively charged surface sites. The addition of similar concentration of cations was found to reduce the adsorbed amount. The temperature was found to have an inverse effect on adsorption. The additions of catonic and anionic detergents influence both the adsorbed amount and the adsorption rate. The thermodynamics of the titled adsorption model indicates the spontaneous and exothermic nature. The negative value of entropy is an indication of probability of favorable and complex nature of the adsorption.

  18. Study of lumineers' interfaces by means of optical coherence tomography

    NASA Astrophysics Data System (ADS)

    de Andrade Borges, Erica; Fernandes Cassimiro-Silva, Patrícia; Osório Fernandes, Luana; Leônidas Gomes, Anderson Stevens

    2015-06-01

    OCT has been used to evaluate dental materials, and is employed here to evaluate lumineers for the first time. Lumineers are used as esthetical indirect restoration, and after wearing and aging, several undesirable features such as gaps, bubbles and mismatch can appear in which would only be seen by invasive analysis. The OCT (spectral domain SD-OCT, 930nm central wavelength) was used to evaluate noninvasively the lumineer- cement-tooth interface. We analyzed 20 specimens of lumineers-teeth that were prepared in bovine teeth and randomly allocated in 4 experimental groups (n=5) with two different cementation techniques and two different types of cementing agent (RelyX U200 and RelyX Veneer, 3M ESPE, with the adhesive recommended by the manufacture). The lumineers were made of lithium disilicate and obtained using a vacuum injection technique. The analysis was performed by using 2D and 3D OCT images, obtained before and after cementing and the thermal cycling process to simulate thermal stress in a oral cavity. Initial measurements showed that the SD-OCT was able to see through the 500μm thick lumineer, as delivered by the fabricant, and internal stress was observed. Failures were found in the cementing process and also after ageing simulation by thermal cycling. The adhesive failures as bubbles, gaps and degradation of the cementation line are the natural precursors of other defects reported by several studies of clinical follow-up (detachments, fractures and cracks). Bubble dimensions ranging from 146 μm to 1427 μm were measured and the OCT was validated as an investigative and precise tool for evaluation of the lumineer-cement-tooth.

  19. The Effects of Degraded Digital Instrumentation and Control Systems on Human-system Interfaces and Operator Performance: HFE Review Guidance and Technical Basis

    SciTech Connect

    O'Hara, J.M.; W. Gunther, G. Martinez-Guridi

    2010-02-26

    New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I&C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I&C conditions by plant operators. We reviewed pertinent standards and guidelines, empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I&C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I&C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I&C conditions as part of the design process and the HSI features and functions that support operators to monitor I&C performance and manage I&C degradations when they occur. In addition, we identified topics for future research.

  20. Market assessment and technical feasibility study of PFBC ash use

    SciTech Connect

    Smith, V.E.; Bland, A.E.; Brown, T.H.; Georgiou, D.N.; Wheeldon, J.

    1994-10-01

    The overall objectives of this study are to determine the market potential and the technical feasibility of using PFBC ash in high volume ash use applications. The information will be of direct use to the utility industry in assessing the economics of PFBC power generation in light of ash disposal avoidance through ash marketing. In addition, the research is expected to result in the generation of generic data on the use of PFBC ash that could lead to novel processing options and procedures. The specific objectives of the proposed research and demonstration effort are: Define resent and future market potential of PFBC ash for a range of applications (Phase I); assess the technical feasibility of PFBC ash use in construction, civil engineering and agricultural applications (Phase II); and demonstrate the most promising of the market and ash use options in full-scale field demonstrations (Phase III).

  1. Transport, Interfaces, and Modeling in Amorphous Silicon Based Solar Cells: Final Technical Report, 11 February 2002 - 30 September 2006

    SciTech Connect

    Schiff, E. A.

    2008-10-01

    Results for a-Si characteristics/modeling; photocarrier drift mobilities in a-Si;H, ..mu..c-Si:H, CIGS; hole-conducting polymers as p-layer for a-Si and c-Si; IR spectra of p/i and n/i interfaces in a-Si.

  2. Communication Platform Payload Definition (CPPD) study. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Hunter, E. M.; Driggers, T.; Jorasch, R.

    1986-01-01

    This is Volume 2 (Technical Report) of the Ford Aerospace & Communications Corporation Final Report for the Communication Platform Payload Definition (CPPD) Study program conducted for NASA Lewis Research Center under contract No. NAS3-24235. This report presents the results of the study effort leading to five potential platform payloads to service CONUS and WARC Region 2 traffic demand as projected to the year 2008. The report addresses establishing the data bases, developing service aggregation scenarios, selecting and developing 5 payload concepts, performing detailed definition of the 5 payloads, costing them, identifying critical technology, and finally comparing the payloads with each other and also with non-aggregated equivalent services.

  3. XPS Study of Oxide/GaAs and SiO2/Si Interfaces

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.

    1982-01-01

    Concepts developed in study of SiO2/Si interface applied to analysis of native oxide/GaAs interface. High-resolution X-ray photoelectron spectroscopy (XPS) has been combined with precise chemical-profiling technique and resolution-enhancement methods to study stoichiometry of transitional layer. Results are presented in report now available.

  4. Technical Issues Map for the NHI System Interface and Support Systems Area: 2nd Quarter FY07

    SciTech Connect

    Steven R. Sherman

    2007-03-01

    This document provides a mapping of technical issues associated with development of the Next Generation Nuclear Plant (NGNP) intermediate heat transport loop and nuclear hydrogen plant support systems to the work that has been accomplished or is currently underway in the 2nd quarter of FY07.

  5. Student-Centered and Dynamic Interfaces that Enrich Technical Learning for Online Science Learners: A Review of the Literature

    ERIC Educational Resources Information Center

    Killian, Susan A.; Beck, Dennis E.; O'Bryan, Corliss A.; Jarvis, Nathan; Clausen, Edgar C.; Crandall, Philip G.

    2014-01-01

    Communicating complex scientific and technical information presents a challenge for food science educators. The most efficient learning occurs when all senses are engaged, one reason that many educators believe that scientific principles are best taught with hands-on laboratory experiences. Today there are many challenges to the continuation of…

  6. Feasibility study for future implantable neural-silicon interface devices.

    PubMed

    Al-Armaghany, Allann; Yu, Bo; Mak, Terrence; Tong, Kin-Fai; Sun, Yihe

    2011-01-01

    The emerging neural-silicon interface devices bridge nerve systems with artificial systems and play a key role in neuro-prostheses and neuro-rehabilitation applications. Integrating neural signal collection, processing and transmission on a single device will make clinical applications more practical and feasible. This paper focuses on the wireless antenna part and real-time neural signal analysis part of implantable brain-machine interface (BMI) devices. We propose to use millimeter-wave for wireless connections between different areas of a brain. Various antenna, including microstrip patch, monopole antenna and substrate integrated waveguide antenna are considered for the intra-cortical proximity communication. A Hebbian eigenfilter based method is proposed for multi-channel neuronal spike sorting. Folding and parallel design techniques are employed to explore various structures and make a trade-off between area and power consumption. Field programmable logic arrays (FPGAs) are used to evaluate various structures. PMID:22254974

  7. TEM and XPS studies on CdS/CIGS interfaces

    NASA Astrophysics Data System (ADS)

    Han, Jun-feng; Liao, Cheng; Cha, Li-mei; Jiang, Tao; Xie, Hua-mu; Zhao, Kui; Besland, M.-P.

    2014-12-01

    Copper indium gallium selenide (CIGS) was deposited by metallic precursors sputtering and subsequently submitted to a selenization process. The upper CdS layers were deposited by chemical bath deposition (CBD) technique. The CdS/CIGS interfaces were investigated by Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). As checked by XPS analysis, the CIGS surface exhibited a hydroxide-terminated CdSe layer when treated with Cd Partial Electrolyte solution (Cd PE). Its thickness was roughly estimated to several nanometers. A 100 nm thick CdS layer was deposited onto CIGS surface. The TEM images revealed a clear and sharp interface between CdS and CIGS. XPS analysis showed a CIGS surface covered by a pinhole free and homogeneous CdS layer. XPS depth profile measurement of the CdS/CIGS interface did not evidence elemental inter-diffusion between the CIGS and CdS layers, in very good agreement with TEM observations.

  8. Interaction of monovalent ions with the water liquid-vapor interface - A molecular dynamics study

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Pohorille, Andrew

    1991-01-01

    Results of molecular dynamics calculations are presented for a series of ions at infinite dilution near the water liquid-vapor interface. The free energies of ion transfer from the bulk to the interface are discussed, as are the accompanying changes of water structure at the surface and ion mobilities as a function of their proximity to the interface. It is shown that simple dielectric models do not provide an accurate description of ions at the water surface. The results of the study should be useful in the development of better models incorporating the shape and molecular structure of the interface.

  9. First-principles study on oxidation of Ge and its interface electronic structures

    NASA Astrophysics Data System (ADS)

    Ono, Tomoya; Saito, Shoichiro; Iwase, Shigeru

    2016-08-01

    We review a series of first-principles studies on the defect generation mechanism and electronic structures of the Ge/GeO2 interface. Several experimental and theoretical studies proved that Si atoms at the Si/SiO2 interface are emitted to release interface stress. In contrast, total-energy calculation reveals that Ge atoms at the Ge/GeO2 interface are hardly emitted, resulting in the low trap density. Even if defects are generated, those at the Ge/GeO2 interface are found to behave differently from those at the Si/SiO2 interface. The states attributed to the dangling bonds at the Ge/GeO2 interface lie below the valence-band maximum of Ge, while those at the Si/SiO2 interface generate the defect state within the band gap of Si. First-principles electron-transport calculation elucidates that this characteristic behavior of the defect states is relevant to the difference in the leakage current through the Si/SiO2 and Ge/GeO2 interfaces.

  10. Water at an electrochemical interface - a simulation study

    SciTech Connect

    Willard, Adam; Reed, Stewart; Madden, Paul; Chandler, David

    2008-08-22

    The results of molecular dynamics simulations of the properties of water in an aqueous ionic solution close to an interface with a model metallic electrode are described. In the simulations the electrode behaves as an ideally polarizable hydrophilic metal, supporting image charge interactions with charged species, and it is maintained at a constant electrical potential with respect to the solution so that the model is a textbook representation of an electrochemical interface through which no current is passing. We show how water is strongly attracted to and ordered at the electrode surface. This ordering is different to the structure that might be imagined from continuum models of electrode interfaces. Further, this ordering significantly affects the probability of ions reaching the surface. We describe the concomitant motion and configurations of the water and ions as functions of the electrode potential, and we analyze the length scales over which ionic atmospheres fluctuate. The statistics of these fluctuations depend upon surface structure and ionic strength. The fluctuations are large, sufficiently so that the mean ionic atmosphere is a poor descriptor of the aqueous environment near a metal surface. The importance of this finding for a description of electrochemical reactions is examined by calculating, directly from the simulation, Marcus free energy profiles for transfer of charge between the electrode and a redox species in the solution and comparing the results with the predictions of continuum theories. Significant departures from the electrochemical textbook descriptions of the phenomenon are found and their physical origins are characterized from the atomistic perspective of the simulations.

  11. Atomic-Scale Studies of Defect Interactions with Homo- and Heterophase Interfaces

    NASA Astrophysics Data System (ADS)

    Martínez, Enrique; Uberuaga, Blas P.; Beyerlein, Irene J.

    2016-06-01

    Interfaces are planar metastable defects with singular features capable of controlling diverse material properties, including mechanical response and the microstructure evolution in materials under irradiation. This ability of interfaces to dictate the material response resides inherently in their atomic structure, which controls the interactions of dislocations as well as point and defect clusters with the interface. We recently showed how dislocations nucleated from defect clusters interact with a heterophase interface in Cu-Nb layered composites. We also showed how the ability of the interface to absorb vacancy clusters depends on the atomic structure at the interface. Herein, we elaborate on the effect of the atomic structure on the ability of the interface to absorb dislocations as well as vacancy and self-interstitial defect clusters. We study a physical-vapor-deposited Kurdjumov-Sachs orientation in a Cu-Nb interface and an asymmetric Σ 11 grain boundary in pure Cu. On the one hand, the manner in which dislocations react with the interface depends on the misfit dislocation arrangement, which substantially differs between these two cases. On the other hand, vacancy and self-interstitial clusters are absorbed similarly upon interaction with both structures.

  12. Atomic-Scale Studies of Defect Interactions with Homo- and Heterophase Interfaces

    NASA Astrophysics Data System (ADS)

    Martínez, Enrique; Uberuaga, Blas P.; Beyerlein, Irene J.

    2016-04-01

    Interfaces are planar metastable defects with singular features capable of controlling diverse material properties, including mechanical response and the microstructure evolution in materials under irradiation. This ability of interfaces to dictate the material response resides inherently in their atomic structure, which controls the interactions of dislocations as well as point and defect clusters with the interface. We recently showed how dislocations nucleated from defect clusters interact with a heterophase interface in Cu-Nb layered composites. We also showed how the ability of the interface to absorb vacancy clusters depends on the atomic structure at the interface. Herein, we elaborate on the effect of the atomic structure on the ability of the interface to absorb dislocations as well as vacancy and self-interstitial defect clusters. We study a physical-vapor-deposited Kurdjumov-Sachs orientation in a Cu-Nb interface and an asymmetric Σ 11 grain boundary in pure Cu. On the one hand, the manner in which dislocations react with the interface depends on the misfit dislocation arrangement, which substantially differs between these two cases. On the other hand, vacancy and self-interstitial clusters are absorbed similarly upon interaction with both structures.

  13. Advanced transportation system studies. Technical area 2: Heavy lift launch vehicle development. Volume 2; Technical Results

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Sections 10 to 13 of the Advanced Transportation System Studies final report are included in this volume. Section 10 contains a copy of an executive summary that was prepared by Lockheed Space Operations Company (LSOC) to document their support to the TA-2 contract during the first-year period of performance of the contract, May 1992 through May 1993. LSOC participated on the TA-2 contract as part of the concurrent engineering launch system definition team, and provided outstanding heavy lift launch vehicle (HLLV) ground operations requirements and concept assessments for Lockheed Missiles and Space Company (LMSC) through an intercompany work transfer as well as providing specific HLLV ground operations assessments at the direction of NASA KSC through KSC funding that was routed to the TA-2 contract. Section 11 contains a copy of a vehicle-independent, launch system health management requirements assessment. The purpose of the assessment was to define both health management requirements and the associated interfaces between a generic advanced transportation system launch vehicle and all related elements of the entire transportation system, including the ground segment. Section 12 presents the major TA-2 presentations provided to summarize the significant results and conclusions that were developed over the course of the contract. Finally, Section 13 presents the design and assessment report on the first lunar outpost heavy lift launch vehicle.

  14. Neutral buoyancy methodology for studying satellite servicing EVA crewmember interfaces

    NASA Technical Reports Server (NTRS)

    Barnby, Mary E.; Griffin, Thomas J.; Lewis, Ruthan

    1989-01-01

    Current economic constraints indicate the need for incorporating the satellite servicing philosophy of commonality within the design of spacecraft subsytems. This philosophy is essential for conserving resources including hardware/software development and implementation costs, on-orbit and ground-based manpower, crew training/testing time, and documentation. In addition, spacecraft subsystem commonality may be coupled with standardization of operation procedures, and test and verification techniques for spacecraft design. Several spacecraft have adopted this practice, including Hubble Space Telescope, Space Station Freedom, and the Explorer Platform. As these and other programs continue and if effective crew interfaces and procedures are clearly and consistently defined, crew retraining for similar spacecraft subsystems will lessen, and procurement efforts will diminish. A relatively high fidelity zero-gravity simulation using water immersion is available to establish crew interfaces economically. The flexibility and utility of this space simulation medium for planning and assisting on-orbit operations was exemplified by astronaut evaluations of potential EVA electrical connectors. The testing was conducted at a NASA underwater neutral buoyancy training facility.

  15. A Theoretical Study of Remobilizing Surfactant Retarded Fluid Particle Interfaces

    NASA Technical Reports Server (NTRS)

    Wang, Yanping; Papageorgiou, Dimitri; Maldarelli, Charles

    1996-01-01

    Microgravity processes must rely on mechanisms other than bouyancy to move bubbles or droplets from one region to another in a continuous liquid phase. One suggested method is thermocapillary migration in which a temperature gradient is applied to the continuous phase. When a fluid particle contacts this gradient, one pole of the particle becomes warmer than the opposing pole. The interfacial tension between the drop or bubble phase and the continuous phase usually decreases with temperature. Thus the cooler pole is of higher interfacial tension than the warmer pole, and the interface is tugged in the direction of the cooler end. This thermocapillary or thermally induced Marangoni surface stress causes a fluid streaming in the continuous phase from which develops a viscous shear traction and pressure gradient which together propel the particle in the direction of the warmer fluid. In this paper, we provide a theoretical basis for remobilizing surfactant retarded fluid particle interfaces in an effort to make viable the use of thermocapillary migrations for the management of bubbles and drops in microgravity,

  16. Analysis of a display and control system man-machine interface concept. Volume 1: Final technical report

    NASA Technical Reports Server (NTRS)

    Karl, D. R.

    1972-01-01

    An evaluation was made of the feasibility of utilizing a simplified man machine interface concept to manage and control a complex space system involving multiple redundant computers that control multiple redundant subsystems. The concept involves the use of a CRT for display and a simple keyboard for control, with a tree-type control logic for accessing and controlling mission, systems, and subsystem elements. The concept was evaluated in terms of the Phase B space shuttle orbiter, to utilize the wide scope of data management and subsystem control inherent in the central data management subsystem provided by the Phase B design philosophy. Results of these investigations are reported in four volumes.

  17. Spin labelled polymers for composite interface studies: Synthesis and characterization

    SciTech Connect

    Snow, A.W.; Pace, M.D.

    1993-12-31

    For the purpose of investigating the epoxy resin composite interface, a series of spin labelled epoxy polymers and model compounds were synthesized and characterized. Linear epoxy polymers were prepared by reacting systematically varying quantities of 4-amino-2,2,6,6-tetramethylpiperid-1-yloxy and cyclohexyl amine with an equivalence bisphenol A diglycidyl ether. The adducts of phenylgylcidyl ether and 4-cumylphenylgylcidyl ether with 4-amino-2,2,6,6-tetramethylpiperid-1-yloxy were synthesized as model compounds. Characterization determined that the 125{degrees}C polymerization temperature did not cause significant decomposition of the nitroxyl free radical, magnetic dilution of the spin label in the epoxy polymer to 3% of the amine repeat units is sufficient for observation of unobscured nitroxyl hyperfine structure in the ESR spectrum of the labelled epoxy polymer in the solid state, and a polymer glass transition temperature of 66{degrees}C as not affected by variation in the amine composition.

  18. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    SciTech Connect

    Knowlton, W.B. |

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 {angstrom} Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 {angstrom}, 500 {angstrom}, and 300 {angstrom} per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 {angstrom}/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 {angstrom}/side appear to correspond with the phonon transmission study.

  19. Comparison of the Booster Interface Temperature in Stainless Steel (SS) V-Channel versus the Aluminum (Al) Y-Channel Primer Chamber Assemblies (PCAs). Volume 1; Technical Assessment Report

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Saulsberry, Regor L.

    2011-01-01

    NASA's Technical Fellow for Propulsion, requested a technical assessment of the performance improvement achieved by the introduction of the stainless steel (SS) V-channel compared to the aluminum (Al) Y-channel Primer Chamber Assembly (PCA) design. The SS V-channel PCA was developed for NASA's Mars Science Laboratory (MSL) Project. The principle focus of the assessment was to measure the transient temperature at the booster interface with both designs. This document contains the findings of the assessment.

  20. Numerical and experimental study of the nonlinear interaction between a shear wave and a frictional interface.

    PubMed

    Blanloeuil, Philippe; Croxford, Anthony J; Meziane, Anissa

    2014-04-01

    The nonlinear interaction of shear waves with a frictional interface are presented and modeled using simple Coulomb friction. Analytical and finite difference implementations are proposed with both in agreement and showing a unique trend in terms of the generated nonlinearity. A dimensionless parameter ξ is proposed to uniquely quantify the nonlinearity produced. The trends produced in the numerical study are then validated with good agreement experimentally. This is carried out loading an interface between two steel blocks and exciting this interface with different amplitude normal incidence shear waves. The experimental results are in good agreement with the numerical results, suggesting the simple friction model does a reasonable job of capturing the fundamental physics. The resulting approach offers a potential way to characterize a contacting interface; however, the difficulty in activating that interface may ultimately limit its applicability. PMID:25234971

  1. Exploring the Capability of Evaluating Technical Solutions: A Collaborative Study into the Primary Technology Classroom

    ERIC Educational Resources Information Center

    Björkholm, Eva

    2014-01-01

    Within the field of technology education, evaluating technical solutions is considered as an important topic. Research indicates that pupils have difficulties in evaluating technical solutions in terms of fitness for purpose, i.e. how effective a technical solution supports its intended function. By using the learning study, which is an iterative…

  2. Thermal boundary conductance enhancement using experimentally achievable nanostructured interfaces - analytical study combined with molecular dynamics simulation.

    PubMed

    Lee, Eungkyu; Zhang, Teng; Hu, Ming; Luo, Tengfei

    2016-06-22

    Interfacial thermal resistance presents great challenges to the thermal management of modern electronics. In this work, we perform an analytical study to enhance the thermal boundary conductance (TBC) of nanostructured interfaces with square-shape pillar arrays, extendable to the characteristic lengths that can be fabricated in practice. As a representative system, we investigate a SiC substrate with the square-shape pillar array combined with epitaxial GaN as the nanostructured interface. By applying a first-order ray tracing method and molecular dynamics simulations to analyze phonon incidence and transmission at the nanostructured interface, we systematically study the impact of the characteristic dimensions of the pillar array on the TBC. Based on the multi-scale analysis we provide a general guideline to optimize the nanostructured interfaces to achieve higher TBC, demonstrating that the optimized TBC value of the nanostructured SiC/GaN interfaces can be 42% higher than that of the planar SiC/GaN interfaces without nanostructures. The model used and results obtained in this study will guide the further experimental realization of nanostructured interfaces for better thermal management in microelectronics. PMID:27275647

  3. North American Natural Gas Markets: Selected technical studies

    SciTech Connect

    Huntington, H.G.; Schuler, G.E.

    1989-04-01

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  4. North American Natural Gas Markets: Selected technical studies. Volume 3

    SciTech Connect

    Huntington, H.G.; Schuler, G.E.

    1989-04-01

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  5. Elemental and structural studies at the bone-cartilage interface

    NASA Astrophysics Data System (ADS)

    Kaabar, W.; Daar, E.; Bunk, O.; Farquharson, M. J.; Laklouk, A.; Bailey, M.; Jeynes, C.; Gundogdu, O.; Bradley, D. A.

    2011-10-01

    Micro-Proton Induced X-ray Emission (μ-PIXE) and Proton Induced Gamma-ray Emission (PIGE) techniques were employed in the investigation of trace and essential elements distribution in normal and diseased human femoral head sections affected by osteoarthritis (OA). PIGE was exploited in the determination of elements of low atomic number z<15 such as Na and F whereas elements with z>15 viz Ca, Z, P and S were determined by PIXE. Accumulations of key elements in the bone and cartilage sections were observed, significant S and Na concentrations being found in the cartilage region particularly in normal tissues. Zn showed enhanced concentrations at the bone-cartilage interface. At a synchrotron facility, small angle X-ray scattering (SAXS) was utilized on a decalcified human femoral head section affected by OA, direct measurements being made of spatial alterations of collagen fibres. The SAXS results showed a slight decrease in the axial periodicity between normal collagen type I and that in diseased tissue in various sites, in contrast with the findings of others.

  6. Adsorption of Bovine Serum Albumin (BSA) at the Oil/Water Interface: A Neutron Reflection Study.

    PubMed

    Campana, M; Hosking, S L; Petkov, J T; Tucker, I M; Webster, J R P; Zarbakhsh, A; Lu, J R

    2015-05-26

    The structure of the adsorbed protein layer at the oil/water interface is essential to the understanding of the role of proteins in emulsion stabilization, and it is important to glean the mechanistic events of protein adsorption at such buried interfaces. This article reports on a novel experimental methodology for probing protein adsorption at the buried oil/water interface. Neutron reflectivity was used with a carefully selected set of isotopic contrasts to study the adsorption of bovine serum albumin (BSA) at the hexadecane/water interface, and the results were compared to those for the air/water interface. The adsorption isotherm was determined at the isoelectric point, and the results showed that a higher degree of adsorption could be achieved at the more hydrophobic interface. The adsorbed BSA molecules formed a monolayer on the aqueous side of the interface. The molecules in this layer were partially denatured by the presence of oil, and once released from the spatial constraint by the globular framework they were free to establish more favorable interactions with the hydrophobic medium. Thus, a loose layer extending toward the oil phase was clearly observed, resulting in an overall broader interface. By analogy to the air/water interface, as the concentration of BSA increased to 1.0 mg mL(-1) a secondary layer extending toward the aqueous phase was observed, possibly resulting from the steric repulsion upon the saturation of the primary monolayer. Results clearly indicate a more compact arrangement of molecules at the oil/water interface: this must be caused by the loss of the globular structure as a consequence of the denaturing action of the hexadecane. PMID:25875917

  7. A multi-imaging approach to study the root–soil interface

    PubMed Central

    Rudolph-Mohr, Nicole; Vontobel, Peter; Oswald, Sascha E.

    2014-01-01

    Background and Aims Dynamic processes occurring at the soil–root interface crucially influence soil physical, chemical and biological properties at a local scale around the roots, and are technically challenging to capture in situ. This study presents a novel multi-imaging approach combining fluorescence and neutron radiography that is able to simultaneously monitor root growth, water content distribution, root respiration and root exudation. Methods Germinated seeds of white lupins (Lupinus albus) were planted in boron-free glass rhizotrons. After 11 d, the rhizotrons were wetted from the bottom and time series of fluorescence and neutron images were taken during the subsequent day and night cycles for 13 d. The following day (i.e. 25 d after planting) the rhizotrons were again wetted from the bottom and the measurements were repeated. Fluorescence sensor foils were attached to the inner sides of the glass and measurements of oxygen and pH were made on the basis of fluorescence intensity. The experimental set-up allowed for simultaneous fluorescence imaging and neutron radiography. Key Results The interrelated patterns of root growth and distribution in the soil, root respiration, exudation and water uptake could all be studied non-destructively and at high temporal and spatial resolution. The older parts of the root system with greater root-length density were associated with fast decreases of water content and rapid changes in oxygen concentration. pH values around the roots located in areas with low soil water content were significantly lower than the rest of the root system. Conclusions The results suggest that the combined imaging set-up developed here, incorporating fluorescence intensity measurements, is able to map important biogeochemical parameters in the soil around living plants with a spatial resolution that is sufficiently high enough to relate the patterns observed to the root system. PMID:25344936

  8. Descriptive analysis of context evaluation instrument for technical oral presentation skills evaluation: A case study in English technical communication course

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdullah-Adnan; Asmawi, Adelina; Hamid, Mohd Rashid Ab; Mustafa, Zainol bin

    2015-02-01

    This paper reports a pilot study of Context Evaluation using a self-developed questionnaire distributed among engineering undergraduates at a university under study. The study aims to validate the self-developed questionnaires used in the Context evaluation, a component in the CIPP Model. The Context evaluation assesses background information for needs, assets, problems and opportunities relevant to beneficiaries of the study in a defined environment. Through the questionnaire, background information for the assessment of needs, assets and problems related to the engineering undergraduates' perceptions on the teaching and learning of technical oral presentation skills was collected and analysed. The questionnaire was developed using 5-points Likert scale to measure the constructs under study. They were distributed to 100 respondents with 79 returned. The respondents consisted of engineering undergraduates studied at various faculties at one technical university in Malaysia. The descriptive analysis of data for each item which makes up the construct for Context evaluation is found to be high. This implied that engineering undergraduates showed high interest in teaching and learning of technical oral presentation skills, thus their needs are met. Also, they agreed that assets and facilities are conducive to their learning. In conclusion, the context evaluation involving needs and assets factors are both considerably important; their needs are met and the assets and facilities do support their technical oral presentation skills learning experience.

  9. Florida Study of Career and Technical Education. Final Report

    ERIC Educational Resources Information Center

    Jacobson, Louis; Mokher, Christine

    2014-01-01

    A key goal of the "Carl D. Perkins Career and Technical Education Act of 2006" ("Perkins IV") is to ensure career and technical education (CTE) programs are widely available for preparing high school and college students for "high skill, high wage, or high demand occupations in current or emerging professions"…

  10. Technical Services Cost Studies in ARL Libraries. SPEC Kit 125.

    ERIC Educational Resources Information Center

    Hoerman, Heidi Lee

    Based on a survey of Association of Research Libraries (ARL) member libraries in February 1986, this kit is designed to illustrate a wide range of alternative approaches to analyzing the costs of technical services. The kit consists of the following unedited primary-source documents: (1) SPEC Technical Services Costs Survey (Three-Year Update)…

  11. Case Study: Sussex Technical High School, Georgetown, Delaware.

    ERIC Educational Resources Information Center

    Southern Regional Education Board, Atlanta, GA.

    A vocational-technical center in Delaware, launched a massive restructuring effort in 1988. Educators used frameworks provided by the National Center for Research in Vocational Education and Southern Regional Educational Board and visited High Schools That Work sites. In 1991, Sussex Technical High School opened its doors as a newly designed…

  12. OEXP exploration studies technical report. Volume 3: Special reports, studies, and indepth systems assessments

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.; Bland, Dan

    1988-01-01

    The Office of Exploration (OEXP) at NASA has been tasked with defining and recommending alternatives for an early 1990's national decision on a focused program of manned exploration of the Solar System. The Mission analysis and System Engineering (MASE) group, which is managed by the Exploration Studies Office at the Johnson Space Center, is responsible for coordinating the technical studies necessary for accomplishing such a task. This technical report, produced by the MASE, describes the process used to conduct exploration studies and discusses the mission developed in a case study approach. The four case studies developed in FY88 include: (1) a manned expedition to PHOBOS; (2) a manned expedition to MARS; (3) a lunar surface observatory; and a lunar outpost to early Mars evolution. The final outcome of this effort is a set of programmatic and technical conclusions and recommendations for the following year's work.

  13. Hybrid density functional study of oligothiophene/ZnO interface for photovoltaics

    SciTech Connect

    Sai, Na; Leung, Kevin; Chelikowsky, James R.

    2011-03-21

    Organic-inorganic donor-acceptor interfaces are gaining growing attention in organic photovoltaic applications as each component of the interface offers unique attributes. Here we use hybrid density functional theory to examine the electronic structure of sexithiophene/ZnO interfaces. We find that interfacial molecular orientations strongly influence the adsorption energy, the energy level alignment, and the open-circuit voltage. We attribute the orientation dependence to the varied strength of electronic coupling between the molecule and the substrate. Our study suggests that photovoltaic performance can be optimized by controlling the interfacial design of molecular orientations.

  14. Computational Study of ions binding to the liquid interface of water

    SciTech Connect

    Dang, Liem X. )

    2002-08-12

    We have performed extensive classical molecular dynamics simulations to examine the molecular transport mechanisms of the I-, Br-, Cl- and Na+ ions across the liquid/vapor interface of water. The potentials of mean force were calculated using the constrained mean force approach and polarizable potential models were used to describe the interactions among the species. The simulated potentials of mean force were found to be different, depending on the type of anion. The larger I- and Br- anions bind more strongly to the liquid/vapor interface of water than did the smaller Cl-ion. It is important to note here that most of the gas phase and solution phase properties of the Br- anion are quite similar to that of the Cl- ion. At the interface, however, the interactions of the Br- and Cl- anions with the water interface appeared to be significantly different. We found that the anions approach the interface more closely do than cations. We have also studied the transport mechanism of an I- across the water/dichloromethane interface. The computed potential of mean force showed no well-defined minimum as in the liquid/vapor case, but a stabilization free energy of about?1 kcal/mol near the interface with respect to the bulk liquid was observed. The I- anion carried a water molecule with it as it crossed the interface. This result is in agreement with a recent experimental study on a similar system. Our work differs from earlier contributions in that our potential models have taken many-body effects into account, and in some cases, these effects cannot be neglected. To the best of our knowledge, this work significantly advances our understanding of molecular processes at the liquid interfaces.

  15. Computer Simulation study of polyhedral nanoparticle self-assembly at interfaces

    NASA Astrophysics Data System (ADS)

    Thapar, Vikram; Gupta, Unmukt; Escobedo, Fernando

    The self-assembly of polyhedral particles confined to a fluid-fluid interface is studied using Monte Carlo simulations. Several polyhedral shapes are studied, which are selected from a family of truncated cubes which include cubes, cuboctahedra, and octahedra. First we studied the case of hard particles pinned to the interface by restricting their movement in the direction perpendicular to it while allowing their free rotations. Our results suggest that the known solid phases and mesophases of these shapes in the 3D bulk are ``translated'' into variants in 2D space. These insights on 2D entropic self-assembly of polyhedral particles is a first step toward understanding the self-assembly of particles at fluid-fluid interfaces, which is driven by a complex interplay of entropic and enthalpic forces. As a second step we hence studied the particle-surface and particle-particle interactions associated with a fluid-fluid interface using both continuum and polybead models to assess the role of enthalpic interactions in determining the particle orientation behavior with respect to interface. We find that the thickness of the interface can introduce non-trivial effects on the preferential particle orientations.

  16. A Guide for Evaluation of Technical and Vocational Education Curricula. Studies on Technical and Vocational Education 3.

    ERIC Educational Resources Information Center

    Kenneke, Larry

    This book is the third in a series aiming to promote international exchange of ideas, experiences, and studies relating to technical and vocational education. Intended to assist educators in the evaluation of vocational education curricula, the guide is designed for both experienced evaluators and novices. Section I describes the purpose,…

  17. Office of Exploration: Exploration studies technical report. Volume 2: Studies approach and results

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.; Bland, Dan

    1988-01-01

    The NASA Office of Exploration has been tasked with defining and recommending alternatives for an early 1990's national decision on a focused program of human exploration of the solar system. The Mission Analysis and System Engineering (MASE) group, which is managed by the Exploration Studies Office at the Johnson Space Center, is responsible for coordinating the technical studies necessary for accomplishing such a task. This technical report describes the process that has been developed in a case study approach. The four case studies that were developed in FY88 include: (1) human expedition to Phobos; (2) human expeditions to Mars; (3) lunar observatory; and (4) lunar outpost to early Mars evolution. The final outcome of this effort is a set of programmatic and technical conclusions and recommendations for the following year's work. Volume 2 describes the case study process, the technical results of each of the case studies, and opportunities for additional study. Included in the discussion of each case study is a description of the mission key features and profile. Mission definition and manifesting are detailed, followed by a description of the mission architecture and infrastructure. Systems concepts for the required orbital nodes, transportation systems, and planetary surface systems are discussed. Prerequisite implementation plans resulting from the synthesized case studies are described and in-depth assessments are presented.

  18. Crew time utilisation and Habitat interface investigations for future planetary habitat definition studies: field tests at MDRS

    NASA Astrophysics Data System (ADS)

    Pletser, Vladimir

    To prepare future Lunar and Martian planetary exploration definition studies, the European Space Agency (ESA) has interests in gathering data on human aspects during long term space and planetary exploration missions, namely limited resources, limited social interactions, long term living and working in confined and isolated areas. To assess their impact on long term space missions and to attempt a general quantification, the environmental and technical condi-tions to which astronauts may be confronted need to be reproduced as closely as possible. Used since 2001 to conduct various types of simulation campaigns of planetary exploration missions, The Mars Society's `Mars Desert Research Station' (MDRS) in the Desert of Utah is one of the analogue facilities suited for this kind of human aspect investigations. In this frame, the ESA's Directorate of Human Space Flight was associated to the EuroGeoMars campaign conducted in February 2009 by the MDRS Crews 76 and 77. The EuroGeoMars campaign lasted five weeks and encompassed two groups of experiments, on human crew related aspects and field experiments in geology, biology and astronomy/astrophysics. The human crew related aspects covered evaluations of (a) the different functions and interfaces of a planetary habitat, (b) the crew time organization, (c) man-machine interfaces of science and technical equipment. The paper recalls the objectives of the human crew related experiments of the EuroGeoMars cam-paign and presents the results of these field investigations. Some recommendations and lessons learnt are presented and used as first inputs for future planetary habitat definition studies.

  19. Studies of the Si/SiO2 interface using synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Grunthaner, F. J.

    1985-01-01

    Synchrotron radiation photoemission spectroscopy (SRPS) in the 1-4 KeV photon energy range is a useful tool for interface characterization. Results are presented of a series of studies of the near-interface region of Si/SiO2 which confirm that a bond strain gradient exists in the oxide as a result of lattice mismatch. These experiments include measurement of photoemission lineshape changes as a function of photon energy, corresponding changes in the electron escape depth near the interface, and surface extended X-ray absorption fine structure (SEXAFS) measurements directly indicating the shortening of the Si-Si second nearest neighbor distance in the near-interface region of the oxide.

  20. Advanced EVA system design requirements study: EVAS/space station system interface requirements

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1985-01-01

    The definition of the Extravehicular Activity (EVA) systems interface requirements and accomodations for effective integration of a production EVA capability into the space station are contained. A description of the EVA systems for which the space station must provide the various interfaces and accomodations are provided. The discussion and analyses of the various space station areas in which the EVA interfaces are required and/or from which implications for EVA system design requirements are derived, are included. The rationale is provided for all EVAS mechanical, fluid, electrical, communications, and data system interfaces as well as exterior and interior requirements necessary to facilitate EVA operations. Results of the studies supporting these discussions are presented in the appendix.

  1. In-situ Studies of Structures and Processes at Model Battery Electrode/Electrolyte Interfaces

    NASA Astrophysics Data System (ADS)

    Fenter, Paul

    2015-03-01

    The ability to understand and control materials properties within electrochemical energy storage systems is a significant scientific and technical challenge. This is due, at least in part, to the extreme conditions present within these systems, and the significant structural and chemical changes that take place as lithium ions are incorporated in the active electrode material. In particular, the behavior of interfaces in such systems is poorly understood, notably the solid-liquid interface that separates the electrode and the liquid electrolyte. I will review our recent work in which we seek to isolate and understand the role of interfacial reactivity in these systems through in-situ, real-time, observations of electrochemically driven lithiation/delithation reactions. This is achieved by observing well-defined model electrode-electrolyte interfaces using X-ray reflectivity. These results reveal novel understandings of interfacial reactivity in conversion reactions (e.g., Si, SixCr, Ge, NiO) that can be used to control the complex reaction lithiation pathway through the use of thin-film and multilayer electrode structures. This work was supported by the Center for Electrochemical Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, in collaboration with T. Fister, A. Gewirth, M.J. Bedzyk and others.

  2. Additive Manufacturing in Production: A Study Case Applying Technical Requirements

    NASA Astrophysics Data System (ADS)

    Ituarte, Iñigo Flores; Coatanea, Eric; Salmi, Mika; Tuomi, Jukka; Partanen, Jouni

    Additive manufacturing (AM) is expanding the manufacturing capabilities. However, quality of AM produced parts is dependent on a number of machine, geometry and process parameters. The variability of these parameters affects the manufacturing drastically and therefore standardized processes and harmonized methodologies need to be developed to characterize the technology for end use applications and enable the technology for manufacturing. This research proposes a composite methodology integrating Taguchi Design of Experiments, multi-objective optimization and statistical process control, to optimize the manufacturing process and fulfil multiple requirements imposed to an arbitrary geometry. The proposed methodology aims to characterize AM technology depending upon manufacturing process variables as well as to perform a comparative assessment of three AM technologies (Selective Laser Sintering, Laser Stereolithography and Polyjet). Results indicate that only one machine, laser-based Stereolithography, was feasible to fulfil simultaneously macro and micro level geometrical requirements but mechanical properties were not at required level. Future research will study a single AM system at the time to characterize AM machine technical capabilities and stimulate pre-normative initiatives of the technology for end use applications.

  3. A study of interface crack branching in dissimilar anisotropic bimaterial composites including thermal effects

    NASA Astrophysics Data System (ADS)

    Li, Renfu

    The interface crack branching phenomena, including thermal effects, has been investigated by using complex variable method and Stroh's dislocation theory, extended to thermo-elasticity in matrix notation. As one of the most catastrophic failure modes in structures like laminated and sandwich composites in aerospace and marine construction, thin film in electronic packaging, rotators in high speed engine of aircraft and reactor in nuclear power station, the study of interface crack branching has become a topic not only having theoretical importance, but also having practical significance. A unified approach is presented to address the thermoelastic interface crack problems in dissimilar anisotropic bimaterial composites, and a compact closed form solution is formulated by analytical continuation principle of complex analysis. Employing the contour integral method, an explicit solution to the interaction between the dislocations and the interface crack is obtained. By modeling the branched portion as a continuous distribution of the dislocations, the thermoelastic interface crack branching problem is then converted to a set of semi-coupled singular integral equations and solved by Gauss-Jacobi integration schemes. The influence of material property mismatches between the two constituents and the thermal loading effects on the interface crack branching are demonstrated by extensive numerical simulation. Some useful criteria for predicting the interface crack branching growth and guidance for optimal composites design are suggested. Further, a contact model to eliminate the overlapping between the two surfaces of an interface crack is also proposed and some new parameters which could influence the interpenetrating phenomena are also discovered. The technique to extend the current method to three dimensional problems is also outlined. Furthermore, the C++ source code has been implemented to manipulate the complicated complex operations for numerically solving the

  4. Shuttle payload interface verification equipment study. Volume 3: Specification data

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A complete description is given of the IVE physical and performance design requirements as evolved in this study. The data are presented in a format to facilitate the development of an item specification. Data were used to support the development of the project plan data (schedules, cost, etc.) contained in Volume 4 of this report.

  5. Atmosphere explorer missions C, D, and E. Spacecraft experiment interface definition study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Atmosphere Explorer Missions C, D, & E Spacecraft/Experiment Interface Definition Study is discussed. The objectives of the study included an analysis of the accommodation requirements of the experiments for the three missions, an assessment of the overall effect of these requirements on the spacecraft system design and performance, and the detailed definition of all experiment/spacecraft electrical, mechanical, and environmental interfaces. In addition, the study included the identification and definition of system characteristics required to ensure compatibility with the consolidated STADAN and MSFN communications networks.

  6. Interstellar dust: interfacing laboratory, theoretical and observational studies

    NASA Astrophysics Data System (ADS)

    Jones, Anthony Peter

    2015-08-01

    In this talk I will consider how our understanding of interstellar dust can only be advanced through a combination of laboratory, theoretical and observational studies, which provide the critical framework for advancing our understanding. I will summarise what we currently know, or think we know, about the physical and compositional properties of dust and their evolution in interstellar media. Along the way I will question the utility of astronomical dust analogues and show, based on data from the laboratory, theoretical studies and from astronomical observations, that some of our prior interpretations need to be subjected to a critical re-evaluation. I will present interstellar dust modelling from a new vantage point and review ideas on the interpretation of observations within the framework of this model and its predictions for dust evolution within and between interstellar media. Finally, I will summarise some of the current outstanding issues and what we would like to learn in the future.

  7. On biomolecules and semiconductors: Analytical studies of interface dynamics

    NASA Astrophysics Data System (ADS)

    Slavin, John William Joseph

    The studies discussed here were undertaken to examine the use of III-V semiconducting materials as templates for biomolecules, to be applied in such technologies as Field-Effect Transistor (FET) and Light-emitting Diode (LED) biosensors. Materials application requires an informed analysis of interactions between chemical environments. Specific to surfaces, this means investigating the molecular interactions between the substrate and the bonding moieties. The analytical tools used to probe these interactions, and the changes that such communication causes on specific substrates are specifically discussed. Surface analysis tools included in this review are Atomic Force Microscopy (AFM), Nanoindentation, X-ray Photoelectron Spectroscopy (XPS), and Raman Microscopy. The interaction of biomolecules - deoxyribonucleic acid (DNA), proteins adhered to nanoparticles, and amino acids - on semiconductor surfaces is also examined. Proper investigation follows, as well, the methods of applying these biomolecular structures to the specified surfaces, through procedures such as solution phase transfer, as well as Dip-pen Nanolithography (DPN). The stretching and enzymatic cleavage of DNA, on silicon oxide surfaces, was studied to determine the recognition properties of dual-enzymatic systems on surfaces. Fundamental questions such as the interaction of functional groups with InAs(100) surfaces, the mechanical properties of protein modified systems, and the DPN application of biologically relevant linker molecules to InAs(100) surfaces were explored. These studies provide information applicable to the development of novel sensing platforms in the future.

  8. Interfacing anthropology and epidemiology: the Bedouin Arab Infant Feeding Study.

    PubMed

    Hundt, G A; Forman, M R

    1993-04-01

    This paper encapsulates a 10 year effort of multi-disciplinary research on the relationship between infant feeding, growth, and morbidity among the Negev Bedouin Arabs of Israel as they underwent a transition from semi-nomadism to urban settlement. The research team was multi-disciplinary including a nutritional epidemiologist and an anthropologist who both came to the study with previous experience in interdisciplinary work. The specific study objectives were (1) a description of infant feeding practices among Negev Bedouin Arab women at various stages of settlement, (2) an examination of the trend in these infant feeding practices, (3) a comparison of the extent to which different infant feeding practices are related to infant morbidity and growth after adjustment for exposure to social change and other covariates. The data collection took place in 1981-83 and the analysis from 1984-88. In this paper, two areas of the study are discussed in depth: the duration of exclusive breast feeding during the practice of the traditional postpartum 40 day rest period, and the development of a culture-specific scale of socioeconomic status. Through these examples, we highlight the use of ethnographic data and the merging of epidemiology and anthropology from hypothesis generation through data collection, data analysis and interpretation. PMID:8480241

  9. The composing process of technical writers: A preliminary study

    NASA Technical Reports Server (NTRS)

    Mair, D.; Roundy, N.

    1981-01-01

    The assumption that technical writers compose as do other writers is tested. The literature on the composing process, not limited to the pure or applied sciences, was reviewed, yielding three areas of general agreement. The composing process (1) consists of several stages, (2) is reflexive, and (3) may be mastered by means of strategies. Data on the ways technical writers compose were collected, and findings were related to the three areas of agreement. Questionnaires and interviews surveying 70 writers were used. The disciplines represented by these writers included civil, chemical, agricultural, geological, mechanical, electrical, and petroleum engineering, chemistry, hydrology, geology, and biology. Those providing consulting services, or performing research. No technical editors or professional writers were surveyed, only technicians, engineers, and researchers whose jobs involved composing reports. Three pedagogical implications are included.

  10. First principles study of band line up at defective metal-oxide interface: oxygen point defects at Al/SiO2 interface

    NASA Astrophysics Data System (ADS)

    Tea, Eric; Huang, Jianqiu; Hin, Celine

    2016-03-01

    The dielectric breakdown at metal-oxide interfaces is a critical electronic device failure mechanism. Electronic tunneling through dielectric layers is a well-accepted explanation for this phenomenon. Theoretical band alignment studies, providing information about tunneling, have already been conducted in the literature for metal-oxide interfaces. However, most of the time materials were assumed defect free. Oxygen vacancies being very common in oxides, their effect on band lineup is of prime importance in understanding electron tunneling in realistic materials and devices. This work explores the effect of oxygen vacancy and oxygen di-vacancy at the Al/SiO2 interface on the band line up within Density Functional Theory using PBE0 hybrid exchange and correlation functional. It is found that the presence of defects at the interface, and their charge state, strongly alters the band line up.

  11. First-principles study of interface doping in ferroelectric junctions

    PubMed Central

    Wang, Pin-Zhi; Cai, Tian-Yi; Ju, Sheng; Wu, Yin-Zhong

    2016-01-01

    Effect of atomic monolayer insertion on the performance of ferroelectric tunneling junction is investigated in SrRuO3/BaTiO3/SrRuO3 heterostrucutures. Based on first-principles calculations, the atomic displacement, orbital occupancy, and ferroelectric polarization are studied. It is found that the ferroelectricity is enhanced when a (AlO2)− monolayer is inserted between the electrode SRO and the barrier BTO, where the relatively high mobility of doped holes effectively screen ferroelectric polarization. On the other hand, for the case of (LaO)+ inserted layer, the doped electrons resides at the both sides of middle ferroelectric barrier, making the ferroelectricity unfavorable. Our findings provide an alternative avenue to improve the performance of ferroelectric tunneling junctions. PMID:27063704

  12. Theoretical study of reactions at the electrode-electrolyte interface

    SciTech Connect

    Halley, J.W.

    1993-01-01

    Electron transfer rates are predicted by numerical methods, in a collaboration with Argonne National Laboratory . Emphasis is on electron transfer involving ions known to be important in enhancing stress corrosion cracking in light water reactors and on electron transfer at oxide surfaces. We have produced a new theory for description of the Jahn Teller effect in the solvation shell of the cuprous ion in aqueous solution, have implemented it in a molecular dynamics simulation and compared the results with experimental neutron scattering measurements on solutions containing the cuprous ion. A large amount of numerical data has been collected on the transition state of the ferrous ferric electron transfer reaction at an electrode. Work was completed on a polarizable and dissociable model of water for use in the electron transfer studies. New calculations of the conductivity in models of oxides have shown the existence of impurity conduction bands in such models for the first time.

  13. An experimental study of recirculating flow through fluid sediment interfaces

    NASA Astrophysics Data System (ADS)

    Khalili, A.; Basu, A. J.; Pietrzyk, U.; Raffel, M.

    1999-03-01

    We report here visualizations and quantitative measurements of scalar transport, under the influence of rotation, through permeable sediments with an overlying fluid layer. The experimental set-up considered here is a stationary cylinder containing a fluid-saturated porous medium up to its midheight, with supernatant water on top. A rotating lid generates, in the upper fluid region, a flow that partially percolates into the porous layer below. The velocity field in the fluid layer is obtained using particle image velocimetry (PIV). Further, dye transport from the sediment is studied using two different techniques. The first one is positron emission tomography (PET), a non-invasive method which allowed us to ‘see’ through the opaque solid matrix, and to obtain full three-dimensional pictures of dye transport through the sediment. The second one is digital photographic visualization from outside, and subsequent image processing in order to obtain the near-wall dye-washout depth. The experimental data suggest that the temporal evolution of washout depth for different sediments follows near-logarithmic behaviour. This finding is of importance for the a priori estimation of the transport of fluid and other solute substances in sandy aquatic sediments.

  14. Iron oxide mineral-water interface reactions studied by AFM

    SciTech Connect

    Hawley, M.E.; Rogers, P.S.Z.

    1994-07-01

    Natural iron mineral surfaces have been examined in air by atomic force (AFM) and scanning tunneling (STM) microscopies. A number of different surface features were found to be characteristic of the native surface. Even surfaces freshly exposed by crushing larger crystals were found to have a pebbly surface texture caused by the presence of thin coatings of what might be surface precipitates. This finding is interpreted as evidence for previous exposure to water, probably through an extensive network of microfractures. Surface reactions on the goethite crystals were studied by AFM at size resolutions ranging from microns to atomic resolution before, during, and after reaction with distilled water and 0.lN HCl. Immediate and extensive surface reconfiguration occurred on contact with water. In one case, after equilibration with water for 3 days, surface reprecipitation, etching and pitting were observed. Atomic resolution images taken under water were found to be disordered. The result of surface reaction was generally to increase the surface area substantially through the extension of surface platelet arrays, present prior to reaction. This work is being done in support of the site characterization project at Yucca Mountain.

  15. Space shuttle/payload interface analysis (study 2.4). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Pritchard, E. I.

    1973-01-01

    The space shuttle/payload interface analysis is presented. The analysis consists of the following sections: (1) payload capture and cost analysis, (2) business risk and value of operations in space analysis, and (3) payload community analysis. The primary objective of the study was to furnish a method for tracing capture/cost analyses conducted by other study groups.

  16. A Qualitative Inquiry of Career Exploration in Highly Implemented Career and Technical Education Programs of Study

    ERIC Educational Resources Information Center

    Stipanovic, Natalie; Stringfield, Sam

    2013-01-01

    This qualitative study explores career counseling and guidance services as provided to students engaged in career and technical education programs at three sites in the United States. The sites, consisting of high schools and community colleges, were part of the National Research Center for Career and Technical Education's 5-year studies of…

  17. Development of a submersible shadowgraph for the study of interfaces in salt-gradient solar ponds

    SciTech Connect

    Huacuz, J.M.; Sierra, F.; Venegas, C.; Ramos, C. )

    1989-01-01

    In this paper the processes of development and testing of a submersible shadowgraph are described. This instrument was devised as a tool for the study of interfaces in salt-gradient solar ponds. Tests were carried out in the solar pond of the University of Texas at El Paso. Photographs of interfaces inside the pond were taken for the first time. The submersible shadowgraph can be stationed inside the pond for time dependent studies of a given region, or it can be used to scan the pond depth.

  18. First principles studies of the stability and Shottky barriers of metal/CdTe(111) interfaces

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Miao, Masoehng; Kioussis, Nicholas; Aqariden, Fikri; Chang, Y.; Grein, Christoph

    CdZnTe and CdTe based semiconductor X-Ray and Gamma-Ray detectors have been intensively studied recently due to their promising potentials for achieving high-resolution, high signal-to-noise ratios and low leakage current, all are desirable features in applications ranging from medical diagnostics to homeland security. Using density functional calculations, we systematically studied the stability, the atomic and electronic structures of the interfaces between CdTe (111) surfaces (Cd- and Te-terminated) and the selected metals (Cu, Al Ni, Pd and Pt). We also calculated the Schottky barrier height (SBH) by aligning the electrostatic potentials in semiconductor and metal regions. Our calculations revealed significant differences between the Cd- and Te- terminated interfaces. While metals tend to deposit directly on reconstructed Te-terminated surfaces, they form a Te-metal alloy layer at the Cd-Terminated metal/CdTe interface. For both Te- and Cd- terminated interfaces, the Schottky barrier heights do not depend much on the choice of metals despite the large variation of the work functions. On the other hand, the interface structure is found to have large effect on the SBH, which is attributed to the metal induced states in the gap.

  19. Wisconsin Indianhead Technical College Delphi Study. Final Report.

    ERIC Educational Resources Information Center

    Harkins, Arthur M.; Otto, Nelson R.

    A project was conducted to define positive, opportunity-focused methods to increase the percentage of high school students who are academically and personally prepared for enrollment in technical college directly after graduation. Objectives included determining how and why high school students choose to attend or not to attend vocational…

  20. Case Study: Randolph County Vocational Technical Center, Elkins, W. Va.

    ERIC Educational Resources Information Center

    Southern Regional Education Board, Atlanta, GA.

    Randolph County Vocational Technical Center, Elkins, West Virginia, received a grant in 1997 for a project that was part of the High Schools That Work (HSTW) initiative to improve academic skills of career-bound students. The superintendent and faculty knew that improving achievement meant reaching out to the three home high schools to bring them…

  1. Safety in earth orbit study. Volume 1: Technical summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A summary of the technical results and conclusions is presented of the hazards analyses of earth orbital operations in conjunction with the space shuttle program. The space shuttle orbiter and a variety of manned and unmanned payloads delivered to orbit by the shuttle are considered. The specific safety areas examined are hazardous payloads, docking, on-orbit survivability, tumbling spacecraft, and escape and rescue.

  2. Experimental Study of the Richtmyer-Meshkov Instability for a He -- SF6 Interface

    NASA Astrophysics Data System (ADS)

    Motl, Bradley; Ranjan, Devesh; Oakley, Jason; Anderson, Mark; Bonazza, Riccardo

    2007-11-01

    Results are presented from a series of experiments studying the Richtmyer-Meshkov (RM) instability for the case of a perturbed gas interface at the Wisconsin Shock Tube Laboratory. A membraneless interface is formed by the head-on flow of helium and sulfur-hexafluoride (seeded with smoke) which creates a stagnation surface. A sinusoidal interface is created at the gas stagnation plane in the test section by oscillating pistons that are initially flush with the shock tube walls. Flow visualization for the initial condition and post-shock images is carried out using Mie scattering from a planar laser sheet. The RM instability is studied for varying incident shock wave strengths (1.1 <=M <= 2), and results are reported in the form of experimental images and perturbation growth rates which are compared to several analytic models.

  3. Usefulness of O-18 and deuterium to study transport processes at aquatic interfaces

    NASA Astrophysics Data System (ADS)

    Lewandowski, Jörg; Pöschke, Franziska; Rudnick, Sebastian; Meinikmann, Karin; Périllon, Cécile

    2014-05-01

    Several different tracers are used in ecohydrology to study the manifold transport processes across groundwater-surface water interfaces. The stable isotopes of oxygen (O-18) and hydrogen (deuterium) as parts of the water molecule might be perfect tracers since their behavior in the environment is quite conservative. Isotope signatures of water differ due to origin of the water and can help to identify processes such as in- or exfiltration at groundwater-surface water interfaces. The recent development of cavity ring-down spectroscopy facilitates reliable measurements by far compared to the previously common method of mass spectroscopy. Nowadays, stable isotope measurements are orders of magnitude cheaper, faster and easier than five years ago. Based on that analytical progress, an increasing number of studies employ the stable isotopes O-18 and deuterium. Ecohydrological applications and their limitations are critically discussed in this contribution focusing on aquifer-lake interfaces.

  4. Do Career and Technical Education Programs of Study Improve Student Achievement? Preliminary Analyses from a Rigorous Longitudinal Study

    ERIC Educational Resources Information Center

    Castellano, Marisa; Sundell, Kirsten; Overman, Laura T.; Aliaga, Oscar A.

    2012-01-01

    This longitudinal study examines the impact of programs of study on high school academic and technical achievement. Two districts are participating in experimental and quasi-experimental strands of the study. This article describes the sample selection, baseline characteristics, study design, career and technical education and academic achievement…

  5. Experimental study on interface region of two-dimensional Si layers by forming gas annealing

    NASA Astrophysics Data System (ADS)

    Mizuno, Tomohisa; Suzuki, Yuhya; Kikuchi, Reika; Suzuki, Ayaka; Inoue, Ryohsuke; Yamanaka, Masahiro; Yokoyama, Miki; Nagamine, Yoshiki; Aoki, Takashi; Maeda, Tatsuro

    2016-04-01

    We experimentally studied the SiO2/Si and Si/buried oxide (BOX) interface regions of a two-dimensional (2D) Si layer, by forming gas annealing (FGA). A photoluminescence (PL) result measured at various lattice temperature, T L, values shows that the PL intensity I PL of the 2D-Si layer rapidly increases and then saturates with increasing FGA temperature, T A, and time, t A. I PL also increases with decreasing T L. A one-dimensional (1D) Schroedinger equation simulator indicates that some of the electrons in the 2D-Si layer generated by a PL excitation laser are quantum-mechanically transmitted into Si interface regions. Actually, we experimentally confirmed that the PL spectra of the 2D-Si layer can be fitted by the PL emission from two regions with different PL peak photon energy values, E PH, which consist of a typical 2D-Si and the interface regions of both the surface SiO2/Si and Si/BOX. Thus, this forming gas dependence is probably attributable to the improved lifetime τ of electrons in the surface interface region, because the Si surface is terminated by H atoms. Moreover, the E PH of the interface region is higher than that of the 2D-Si layer, because of the graded increased bandgap in the interface regions. However, the E PH of 2D-Si is independent of both T A and T L, and this T L independence does not agree with that of a 3D-Si layer. Consequently, we experimentally verified the larger impact of the Si interface on the performance of 2D-Si layer.

  6. First-principles study of Mg(0001)/MgO(1-11) interfaces

    NASA Astrophysics Data System (ADS)

    Song, Hong-Quan; Zhao, Ming; Li, Jian-Guo

    2016-06-01

    By means of first-principles density-functional calculations, we studied the surface energy of a nonstoichiometric MgO(1-11) slab, the interfacial energy and interfacial bonding characteristics of Mg-terminated and O-terminated Mg/MgO(1-11) interfaces with three stacking-site (TOP, HCP and FCC sites) models, and the effect of the thickness of Mg films on the O-terminated MgO(1-11) surface. The results indicate that the surface energies of the nonstoichiometric MgO(1-11) slab and interfacial energies of Mg/Mg(1-11) interface depend on Mg chemical potential. We found that the Mg-terminated MgO(1-11) surface is more stable than the O-terminated MgO(1-11) surface at high Mg chemical potential, and Mg/MgO(1-11) with FCC stacking-site model is the most stable configuration in the Mg/MgO(1-11) interfaces. The results of the electronic structure reveals that the interfacial bonding of Mg-terminated interface with FCC site model mainly consists of metallic bond and of the O-terminated interface with FCC site model is mainly ionic with a small degree of σ-type covalent bond. Although the interfacial energy of Mg-terminated Mg/MgO interface with FCC stacking-site model is slightly higher than that of O-terminated Mg/MgO interface, the molten Mg would epitaxially grow on the FCC sites of the Mg-terminated MgO(1-11) surface because of the high evaporation pressure of Mg at high temperature.

  7. Thermodynamic Study of the Role of Interface Curvature on Multicomponent Vapor-Liquid Phase Equilibrium.

    PubMed

    Shardt, Nadia; Elliott, Janet A W

    2016-04-14

    The effect of interface curvature on phase equilibrium has been much more studied for single-component than multicomponent systems. We isolate the effect of curvature on multicomponent vapor-liquid equilibrium (VLE) phase envelopes and phase composition diagrams using the ideal system methanol/ethanol and the nonideal system ethanol/water as illustrative examples. An important finding is how nanoscale interface curvature shifts the azeotrope (equal volatility point) of nonideal systems. Understanding of the effect of curvature on VLE can be exploited in future nanoscale prediction and design. PMID:27028744

  8. Theoretical study of vibrational energy transfer of free OH groups at the water-air interface

    NASA Astrophysics Data System (ADS)

    Zheng, Renhui; Wei, Wenmei; Sun, Yuanyuan; Song, Kai; Shi, Qiang

    2016-04-01

    Recent experimental studies have shown that the vibrational dynamics of free OH groups at the water-air interface is significantly different from that in bulk water. In this work, by performing molecular dynamics simulations and mixed quantum/classical calculations, we investigate different vibrational energy transfer pathways of free OH groups at the water-air interface. The calculated intramolecular vibrational energy transfer rate constant and the free OH bond reorientation time scale agree well with the experiment. It is also found that, due to the small intermolecular vibrational couplings, the intermolecular vibrational energy transfer pathway that is very important in bulk water plays a much less significant role in the vibrational energy relaxation of the free OH groups at the water-air interface.

  9. A novel X-ray photoelectron spectroscopy study of the Al/SiO2 interface

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Vasquez, R. P.; Grunthaner, F. J.; Zamani, N.; Maserjian, J.

    1985-01-01

    The nondestructive measurement of the chemical and physical characteristics of the interface between bulk SiO2 and thick aluminum films is reported. Both X-ray phototelectron spectroscopy (XPS) and electrical measurements of unannealed, resistively evaporated Al films on thermal SiO2 indicate an atomically abrupt interface. Post metallization annealing at 450 C induces reduction of the SiO2 by the aluminum, at a rate consistent with the bulk reaction rate. The XPS measurement is performed from the SiO2 side after the removal of the Si substrate with XeF2 gas and thinning of the SiO2 layer with HF:ETOH. This represents a powerful new approach to the study of metal-insulator and related interfaces.

  10. Geochemical Insight from Nonlinear Optical Studies of Mineral-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Covert, Paul A.; Hore, Dennis K.

    2016-05-01

    The physics and chemistry of mineral-water interfaces are complex, even in idealized systems. Our need to understand this complexity is driven by both pure and applied sciences, that is, by the need for basic understanding of earth systems and for the knowledge to mitigate our influences upon them. The second-order nonlinear optical techniques of second-harmonic generation and sum-frequency generation spectroscopy have proven adept at probing these types of interfaces. This review focuses on the contributions to geochemistry made by nonlinear optical methods. The types of questions probed have included a basic description of the structure adopted by water molecules at the mineral interface, how flow and porosity affect this structure, adsorption of trace metal and organic species, and dissolution mechanisms. We also discuss directions and challenges that lie ahead and the outlook for the continued use of nonlinear optical methods for studies of mineral-water boundaries.

  11. NiAl(110)/Cr(110) interface: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Liu, W.; Li, J. C.; Zheng, W. T.; Jiang, Q.

    2006-05-01

    The optimal geometries, thermodynamic properties, and electronic structures of NiAl(110)/Cr(110) interface are studied using a first-principle density functional plane-wave ultrasoft pseudopotential method. Surface energies of different NiAl surfaces are compared with those obtained based on the classical broken-bond rule. Simulation results indicate that the structure of Ni and Al placed in the hollow sites of Cr atoms at the interface is more thermodynamically stable, and the NiCr bonding is dominated by 3d electrons of Ni and Cr. It is found that NiAl(110)/Cr(110) alloying could lower brittleness of NiAl compounds. With simulated values of adhesion work and interface energy for NiAl(110)/Cr(110) system, its mechanical and thermodynamic properties are also discussed.

  12. Theoretical study of vibrational energy transfer of free OH groups at the water-air interface.

    PubMed

    Zheng, Renhui; Wei, Wenmei; Sun, Yuanyuan; Song, Kai; Shi, Qiang

    2016-04-14

    Recent experimental studies have shown that the vibrational dynamics of free OH groups at the water-air interface is significantly different from that in bulk water. In this work, by performing molecular dynamics simulations and mixed quantum/classical calculations, we investigate different vibrational energy transfer pathways of free OH groups at the water-air interface. The calculated intramolecular vibrational energy transfer rate constant and the free OH bond reorientation time scale agree well with the experiment. It is also found that, due to the small intermolecular vibrational couplings, the intermolecular vibrational energy transfer pathway that is very important in bulk water plays a much less significant role in the vibrational energy relaxation of the free OH groups at the water-air interface. PMID:27083739

  13. An experimental study of liquid drop - interface coalescence in the presence of surfactants

    NASA Astrophysics Data System (ADS)

    Angeli, Panagiota; Chinaud, Maxime; Li, Kai; Wang, Wei; University College London Team; Beijing Key Laboratory of Urban Oil; Gas Distribution Technology Team

    2014-11-01

    Drop-interface coalescence has been the subject of many studies both theoretical and experimental. It is of particular interest for the oil industries particularly during the transportation of multiphase mixtures where coalescence rates can affect the stability and separation of dispersions. It is well-known that the presence of surfactants can significantly affect the coalescence rates. In this work a silicon oil -water system has been studied in a rectangular coalescence cell. Both rising oil drops and falling water drops coalescing with the water-oil interface have been investigated. A water soluble surfactant, SPAN 80, was used. High speed imaging has been performed to study the coalescence phenomenon and obtain the coalescence time of the drops with the interface with and without the presence of the surfactant. The velocity fields in the bulk fluid and in the liquid film forming between the drop and the interface were studied with shadowgraphy (bright field Particle Image Velocimetry). To increase the spatial resolution particularly in the liquid film microscope lenses were implemented. Results have been compared against existing literature.

  14. Atomic Scale Study of Interfaces Involved in Epitaxial Fe/MgO/Fe Magnetic Tunnel Junctions

    SciTech Connect

    Andrieu, S.; Serra, R.; Bonell, F.; Tiusan, C.; Calmels, L.; Snoeck, E.; Varela del Arco, Maria; Pennycook, Stephen J; Walls, M.; Colliex, C.

    2009-01-01

    Epitaxial Fe/MgO/Fe(001) magnetic tunnel junctions grown by Molecular Beam Epitaxy have been studied by using spatially resolved Electron Energy Loss Spectroscopy (EELS). The structure, the chemical composition as well as the bonding variations across the interfaces were investigated up to the atomic scale.

  15. Does Interface Matter? A Study of Web Authoring and Editing by Inexperienced Web Writers

    ERIC Educational Resources Information Center

    Dick, Rodney F.

    2006-01-01

    This study explores the complicated nature of the interface as a mediational tool for inexperienced writers as they composed hypertext documents. Because technology can become so quickly and inextricably connected to people's everyday lives, it is essential to explore the effects on these technologies before they become invisible. Because…

  16. Technical Work Plan for: Fracture and Lithophysal Studies

    SciTech Connect

    n

    2006-09-11

    The primary objective of the work scope described in this technical work plan (TWP) is to enhance the descriptions of fracture and lithophysal parameters for the repository host horizon (RHH) over the repository footprint utilizing a predictive model. This work is planned to address U.S. Nuclear Regulatory Commission (NRC) additional information needs (AINs) associated with the Structural Deformation and Seismicity (SDS) Key Technical Issues (KTI) agreement SDS 3.03 (Schlueter 2000 [DIRS 166615]). The results of the planned work are expected to enhance the technical basis and confirm the results of the fracture analyses presented in ''Drift Degradation Analysis'' (BSC 2004 [DIRS 166107], Section 6.1.6). This model is not intended to provide an alternative for the unsaturated zone and saturated zone flow and transport models currently used by the Yucca Mountain Project (YMP). Nor are the outputs of this model intended to address the SDS 3.03 AINs related to the unsaturated zone and saturated zone flow and transport models.

  17. Michigan Technician Need Study. The Present and Projected Demand for Technically Trained People in Michigan.

    ERIC Educational Resources Information Center

    Ferris State Coll., Big Rapids, MI. Office of Administrative Studies.

    This study undertakes to determine (1) the extent of crucial manpower shortages in Michigan by technical area and skill, by the areas of occupation or industry, and whether these shortages will decrease or increase over the next few years, and (2) the opportunities for technical education now available or necessary to assure Michigan industry and…

  18. 76 FR 72885 - FM Asymmetric Sideband Operation and Associated Technical Studies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Documents in Rulemaking Proceedings, 63 FR 24121 (1998). Electronic Filers: Comments may be filed... COMMISSION 47 CFR Part 73 FM Asymmetric Sideband Operation and Associated Technical Studies AGENCY: Federal... for public comment on this request and on two related technical reports. DATES: Comments for...

  19. At-Risk Learner Preference in Engineering/Technical Graphics: An Exploratory Study

    ERIC Educational Resources Information Center

    Ernst, Jeremy V.

    2011-01-01

    This exploratory study investigated learner preferences of secondary Career and Technical Education (CTE) Engineering/Technical Graphics students using the VARK Questionnaire. The VARK Questionnaire is an instrument that assists in determining students' dominant preferred learning styles, whether visual, aural, reading, or kinesthetic. This study…

  20. Interviewing of Technical Communicators: A Field Study Method for Teacher Preparation.

    ERIC Educational Resources Information Center

    Goldstein, Jone Rymer

    The exploratory interview is one field method for studying how professionals write as part of their jobs that is also an effective device for preparing composition instructors to teach technical writing. This field research method is a loosely guided discussion in which the technical communicator ranges freely, widely, and in depth about personal…

  1. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    SciTech Connect

    Vanden Bout, David A.

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling the CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.

  2. Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering

    NASA Astrophysics Data System (ADS)

    Renaud, Gilles

    important physical properties such as superconductivity or magnetism is also briefly reviewed. The strengths and limitations of the technique, such as the need for single crystals and surfaces of high crystalline quality are discussed. Finally, an outlook of future prospects in the field is given, such as the study of more complex oxide surfaces, vicinal surfaces, reactive metal/oxide interfaces, metal oxidation processes, the use of surfactants to promote wetting of a metal deposited on an oxide surface or the study of oxide/liquid interfaces in a non-UHV environment.

  3. Design and usability study of an iconic user interface to ease information retrieval of medical guidelines

    PubMed Central

    Griffon, Nicolas; Kerdelhué, Gaétan; Hamek, Saliha; Hassler, Sylvain; Boog, César; Lamy, Jean-Baptiste; Duclos, Catherine; Venot, Alain; Darmoni, Stéfan J

    2014-01-01

    Background and objective Doc'CISMeF (DC) is a semantic search engine used to find resources in CISMeF-BP, a quality controlled health gateway, which gathers guidelines available on the internet in French. Visualization of Concepts in Medicine (VCM) is an iconic language that may ease information retrieval tasks. This study aimed to describe the creation and evaluation of an interface integrating VCM in DC in order to make this search engine much easier to use. Methods Focus groups were organized to suggest ways to enhance information retrieval tasks using VCM in DC. A VCM interface was created and improved using the ergonomic evaluation approach. 20 physicians were recruited to compare the VCM interface with the non-VCM one. Each evaluator answered two different clinical scenarios in each interface. The ability and time taken to select a relevant resource were recorded and compared. A usability analysis was performed using the System Usability Scale (SUS). Results The VCM interface contains a filter based on icons, and icons describing each resource according to focus group recommendations. Some ergonomic issues were resolved before evaluation. Use of VCM significantly increased the success of information retrieval tasks (OR=11; 95% CI 1.4 to 507). Nonetheless, it took significantly more time to find a relevant resource with VCM interface (101 vs 65 s; p=0.02). SUS revealed ‘good’ usability with an average score of 74/100. Conclusions VCM was successfully implemented in DC as an option. It increased the success rate of information retrieval tasks, despite requiring slightly more time, and was well accepted by end-users. PMID:24650636

  4. Reactive ZnO/Ti/ZnO interfaces studied by hard x-ray photoelectron spectroscopy

    SciTech Connect

    Knut, Ronny Lindblad, Rebecka; Rensmo, Håkan; Karis, Olof; Grachev, Sergey; Faou, Jean-Yvon; Søndergård, Elin

    2014-01-28

    The chemistry and intermixing at buried interfaces in sputter deposited ZnO/Ti/ZnO thin layers were studied by hard x-ray photoelectron spectroscopy. The long mean free path of the photoelectrons allowed for detailed studies of the oxidation state, band bending effects, and intrinsic doping of the buried interfaces. Oxidation of the Ti layer was observed when ZnO was deposited on top. When Ti is deposited onto ZnO, Zn Auger peaks acquire a metallic character indicating a strong reduction of ZnO at the interface. Annealing of the stack at 200 °C results in further reduction of ZnO and oxidation of Ti. Above 300 °C, oxygen transport from the bulk of the ZnO layer takes place, leading to re-oxidation of ZnO at the interface and further oxidation of Ti layer. Heating above 500 °C leads to an intermixing of the layers and the formation of a Zn{sub x}TiO{sub y} compound.

  5. First principles studies of the stability and Shottky barriers of metal/CdTe(111) interfaces

    NASA Astrophysics Data System (ADS)

    Dorj, Odkhuu; Miao, M. S.; Kioussis, N.; Tari, S.; Aqariden, F.; Chang, Y.; Grein, C.

    2015-03-01

    CdZnTe and CdTe based semiconductor X-Ray and Gamma-Ray detectors have been intensively studied recently due to their promising potentials for achieving high-resolution, high signal-to-noise ratios and low leakage current, all are desirable features in applications ranging from medical diagnostics to homeland security. Understanding the atomic and electronic structures of the metal/semiconductor interfaces is essential for the further improvements of performance. Using density functional calculations, we systematically studied the stability, the atomic and electronic structures of the interfaces between Cd-terminated CdTe (111) surface and the selected metals. We also calculated the Schottky barrier height (SBH) by aligning the electrostatic potentials in semiconductor and metal regions. Our calculations revealed the importance of intermixing between semiconductor and metal layers and the formation of Te-metal alloys at the interface. The obtained SBH does not depend much on the choice of metals despite the large variation of the work functions. On the other hand, the interface structure is found to have large effect to the SBH, which is attributed to the metal induced states in the gap. The position of such states is insensitive to the metal work functions, as revealed by the analysis of the electronic structures.

  6. Density functional theory based study of chlorine doped WS2-metal interface

    NASA Astrophysics Data System (ADS)

    Chanana, Anuja; Mahapatra, Santanu

    2016-03-01

    Investigation of a transition metal dichalcogenide (TMD)-metal interface is essential for the effective functioning of monolayer TMD based field effect transistors. In this work, we employ the Density Functional Theory calculations to analyze the modulation of the electronic structure of monolayer WS2 with chlorine doping and the relative changes in the contact properties when interfaced with gold and palladium. We initially examine the atomic and electronic structures of pure and doped monolayer WS2 supercell and explore the formation of midgap states with band splitting near the conduction band edge. Further, we analyze the contact nature of the pure supercell with Au and Pd. We find that while Au is physiosorbed and forms n-type contact, Pd is chemisorped and forms p-type contact with a higher valence electron density. Next, we study the interface formed between the Cl-doped supercell and metals and observe a reduction in the Schottky barrier height (SBH) in comparison to the pure supercell. This reduction found is higher for Pd in comparison to Au, which is further validated by examining the charge transfer occurring at the interface. Our study confirms that Cl doping is an efficient mechanism to reduce the n-SBH for both Au and Pd, which form different types of contact with WS2.

  7. A Study of Technical Engineering Peer Reviews at NASA

    NASA Technical Reports Server (NTRS)

    Chao, Lawrence P.; Tumer, Irem Y.; Bell, David G.

    2003-01-01

    This report describes the state of practices of design reviews at NASA and research into what can be done to improve peer review practices. There are many types of reviews at NASA: required and not, formalized and informal, programmatic and technical. Standing project formal reviews such as the Preliminary Design Review and Critical Design Review are a required part of every project and mission development. However, the technical, engineering peer reviews that support teams' work on such projects are informal, some times ad hoc, and inconsistent across the organization. The goal of this work is to identify best practices and lessons learned from NASA's experience, supported by academic research and methodologies to ultimately improve the process. This research has determined that the organization, composition, scope, and approach of the reviews impact their success. Failure Modes and Effects Analysis (FMEA) can identify key areas of concern before or in the reviews. Product definition tools like the Project Priority Matrix, engineering-focused Customer Value Chain Analysis (CVCA), and project or system-based Quality Function Deployment (QFD) help prioritize resources in reviews. The use of information technology and structured design methodologies can strengthen the engineering peer review process to help NASA work towards error-proofing the design process.

  8. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface

    NASA Astrophysics Data System (ADS)

    Nagayama, Gyoko; Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu

    2015-07-01

    The structure and thermodynamic properties of the liquid-vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid-vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid-vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid-vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid-vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.

  9. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid–vapor interface

    SciTech Connect

    Nagayama, Gyoko Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu

    2015-07-07

    The structure and thermodynamic properties of the liquid–vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid–vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid–vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid–vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid–vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.

  10. First principles study of Al/SrTiO3 interface formation

    NASA Astrophysics Data System (ADS)

    Hamze, Ali; Posadas, Agham; Kormondy, Kristy; Demkov, Alexander

    Two-dimensional electron gasses (2DEGs) at the interfaces of oxides have been the subject of much interest in recent years due to their relatively high carrier mobilities and potential for use in all-oxide devices. In particular, the γ-Al2O3 (γ-alumina)-SrTiO3 (STO) system has been the focus of much research. It exhibits a 2DEG at the interface with a carrier mobility ranging from 103-105 cm2V-1 s-1, depending on the thickness of the STO and how the γ-alumina film was grown. It is believed that Al atoms steal oxygen from the STO substrate at growth temperature and thus create a conductive channel in STO near the interface. We investigate the initial studies of the interface formation using density functional theory. The results of first principles calculations are compared with those of x-ray photoemission spectroscopy (XPS) performed in situ on thin Al films deposited on STO by molecular beam epitaxy. Analysis of the Al 2p XPS spectrum shows one layer of aluminum is fully oxidized during growth at 40°C and 4 layers of aluminum are fully oxidized during growth at 600°C. Furthermore, the Ti 2p XPS spectrum shows the titanium atoms are reduced, which is consistent with the presence of oxygen vacancies in STO.

  11. Experimental Study of the Richtmyer-Meshkov Instability on a Coupled Multimode and Inclined Interface Perturbation

    NASA Astrophysics Data System (ADS)

    Reilly, David; Creel, Skylar; McFarland, Jacob; Mitruka, Jatin; McDonald, Christopher; Ranjan, Devesh

    2013-11-01

    The inclined shock tube in the Texas A&M Shock Tube and Advanced Mixing Laboratory was used to study the effect of small amplitude, long wavelength multimode perturbations imposed on the inclined interface initial condition of the Richtmyer-Meshkov instability. The inclined interface is essentially a long wavelength, extremely large amplitude perturbation. Images of the shocked flow-field were captured with the angle of the shock tube with respect to the horizontal at 60° (η/ λ = √{ 3}/6). The modal content of the initial conditions was determined by taking the Fourier decomposition of the interface. This work is a proof of concept for creating a coupled multimode and inclined interface. Work that is currently underway will investigate the effect of these initial conditions on intermediate and late-time mixing as well as the transition to turbulence before reshock by using qualitative comparisons of Mie scattering images, mixing width measurements, and circulation from Particle Image Velocimetry (PIV). This research was funded by the Air Force Office of Scientific Research Young Investigator Research Program (AFOSR-YIP) grant.

  12. A theoretical study of wave dispersion and thermal conduction for HMX/additive interfaces

    NASA Astrophysics Data System (ADS)

    Long, Yao; Chen, Jun

    2014-04-01

    The wave dispersion rule for non-uniform material is useful for ultrasonic inspection and engine life prediction, and also is key in achieving an understanding of the energy dissipation and thermal conduction properties of solid material. On the basis of linear response theory and molecular dynamics, we derive a set of formulas for calculating the wave dispersion rate of interface systems, and study four kinds of interfaces inside plastic bonded explosives: HMX/{HMX, TATB, F2312, F2313}. (HMX: octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; TATB: 1,3,5-triamino-2,4,6-trinitrobenzene; F2312, F2313: fluoropolymers). The wave dispersion rate is obtained over a wide frequency range from kHz to PHz. We find that at low frequency, the rate is proportional to the square of the frequency, and at high frequency, the rate couples with the molecular vibration modes at the interface. By using the results, the thermal conductivities of HMX/additive interfaces are derived, and a physical model is built for describing the total thermal conductivity of mixture explosives, including HMX multi-particle systems and {TATB, F2312, F2313}-coated HMX.

  13. A Study of Fluid Interface Configurations in Exploration Vehicle Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Asipauskas, Marius; Chen, Yongkang; Weislogel, Mark M.

    2010-01-01

    The equilibrium shape and location of fluid interfaces in spacecraft propellant tanks while in low-gravity is of interest to system designers, but can be challenging to predict. The propellant position can affect many aspects of the spacecraft such as the spacecraft center of mass, response to thruster firing due to sloshing, liquid acquisition, propellant mass gauging, and thermal control systems. We use Surface Evolver, a fluid interface energy minimizing algorithm, to investigate theoretical equilibrium liquid-vapor interfaces for spacecraft propellant tanks similar to those that have been considered for NASA's new class of Exploration vehicles. The choice of tank design parameters we consider are derived from the NASA Exploration Systems Architecture Study report. The local acceleration vector employed in the computations is determined by estimating low-Earth orbit (LEO) atmospheric drag effects and centrifugal forces due to a fixed spacecraft orientation with respect to the Earth or Moon, and rotisserie-type spacecraft rotation. Propellant/vapor interface positions are computed for the Earth Departure Stage and Altair lunar lander descent and ascent stage tanks for propellant loads applicable to LEO and low-lunar orbit. In some of the cases investigated the vapor ullage bubble is located at the drain end of the tank, where propellant management device hardware is often located.

  14. Study of natural convection and interface shape in directional solidification of succinonitrile

    NASA Technical Reports Server (NTRS)

    Kawaji, M.; Ojah, M.; Stojanovic, M.; De Groh, H. C.

    1992-01-01

    Flow visualization experiments in a Bridgman furnace at zero growth velocity have been performed. The experiments were intended to investigate if the photochromic dye activation method could be used in a crystal growth study. The results from this work have confirmed that with a carefully designed experimental setup, the photochromic-dye method permits qualitative and quantitative evaluation of the flow field near the interface in crystal growth experiments. For the horizontal orientation of a 6 mm x 6 mm ampoule and an axial temperature gradient of 26.5 C/cm, velocity profiles have been obtained accurately at various positions near the interface. The maximum velocity of 1.29 mm/sec was measured in the central vertical plane and the flow was symmetrical about that plane. A flow inversion point was also noted, above which the flow was towards the interface and below it, away from the interface. The results obtained are useful for validating 3-dimensional numerical models and establishing a link between the macroscopic processing conditions and the formation of crystalline defects.

  15. Technical Communications in Aeronautics: Results of an Exploratory Study. An Analysis of Profit Managers' and Nonprofit Managers' Responses. NASA Technical Memorandum 101626.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    Data collected from an exploratory study concerned with the technical communications practices of aerospace engineers and scientists were analyzed to test the primary assumption that profit and nonprofit managers in the aerospace community have different technical communications practices. Profit and nonprofit managers were compared in five…

  16. Steel: Reducing BOF Hood Scrubber Energy Costs at a Steel Mill (Technical Case Study)

    SciTech Connect

    Ericksen, E.

    1999-01-27

    This OIT Technical Case Study reveals how Bethlehem Steel Corporation, by installing a variable-frequency drive and making associated equipment modifications, was able to save energy, reduce operational costs, and decrease system maintenance.

  17. Co-Evolution of User and Organizational Interfaces: A Longitudinal Case Study of WWW Dissemination of National Statistics.

    ERIC Educational Resources Information Center

    Marchionini, Gary

    2002-01-01

    Describes how user interfaces for the Bureau of Labor Statistics (BLS) web site evolved over a 5-year period along with the larger organizational interface and how this co-evolution has influenced the institution. Interviews with BLS staff and transaction log analysis are the foci of this study, as well as user information-seeking studies and user…

  18. Fort Hood solar cogeneration facility conceptual design study. Volume 1. Technical report. Final technical report

    SciTech Connect

    Not Available

    1981-08-01

    A central receiver cogeneration facility is studied for a Texas military facility. A solar-heated heat-transfer salt provides heat to a steam generator and providing space heating and air conditioning and hot water for the complex. The site and its climate are described briefly. Candidate site-specific system configurations, technology assessments, system sizing, and the results of numerous trade studies leading toward the selection of the preferred system configuration are presented. A system level conceptual design of the cogeneration facility is presented, and the conceptual design of the major subsystems (heliostats, receiver, tower, energy transport and storage, fossil energy subsystem, electric power generation subsystem, control, space conditioning and domestic hot water subsystem) are described. Results of the economic analysis of the cogeneration facility are presented, including a description of analysis methods used, assumptions and rationale, simulation models used, a brief summary of capital and operations and maintenance costs, fuel savings, results of the economic evaluations and an economic scenario for future applications. The results of the development planning are presented, including all major activities required during the detailed design, construction, and initial operational phases. An assessment of the proposed facility by the Department of the Army at Fort Hood is presented. (LEW)

  19. Interactions of anesthetics with the water-hexane interface. A molecular dynamics study

    NASA Technical Reports Server (NTRS)

    Chipot, C.; Wilson, M. A.; Pohorille, A.

    1997-01-01

    The free energy profiles characterizing the transfer of nine solutes across the liquid-vapor interfaces of water and hexane and across the water-hexane interface were calculated from molecular dynamics simulations. Among the solutes were n-butane and three of its halogenated derivatives, as well as three halogenated cyclobutanes. The two remaining molecules, dichlorodifluoromethane and 1,2-dichloroperfluoroethane, belong to series of halo-substituted methanes and ethanes, described in previous studies (J. Chem. Phys. 1996, 104, 3760; Chem. Phys. 1996, 204, 337). Each series of molecules contains structurally similar compounds that differ greatly in anesthetic potency. The accuracy of the simulations was tested by comparing the calculated and the experimental free energies of solvation of all nine compounds in water and in hexane. In addition. the calculated and the measured surface excess concentrations of n-butane at the water liquid-vapor interface were compared. In all cases, good agreement with experimental results was found. At the water-hexane interface, the free energy profiles for polar molecules exhibited significant interfacial minima, whereas the profiles for nonpolar molecules did not. The existence of these minima was interpreted in terms of a balance between the free energy contribution arising from solute-solvent interactions and the work to form a cavity that accommodates the solute. These two contributions change monotonically, but oppositely, across the interface. The interfacial solubilities of the solutes, obtained from the free energy profiles, correlate very well with their anesthetic potencies. This is the case even when the Meyer-Overton hypothesis, which predicts a correlation between anesthetic potency and solubility in oil, fails.

  20. Studies in RF Power Communication, SAR, and Temperature Elevation in Wireless Implantable Neural Interfaces

    PubMed Central

    Zhao, Yujuan; Tang, Lin; Rennaker, Robert; Hutchens, Chris; Ibrahim, Tamer S.

    2013-01-01

    Implantable neural interfaces are designed to provide a high spatial and temporal precision control signal implementing high degree of freedom real-time prosthetic systems. The development of a Radio Frequency (RF) wireless neural interface has the potential to expand the number of applications as well as extend the robustness and longevity compared to wired neural interfaces. However, it is well known that RF signal is absorbed by the body and can result in tissue heating. In this work, numerical studies with analytical validations are performed to provide an assessment of power, heating and specific absorption rate (SAR) associated with the wireless RF transmitting within the human head. The receiving antenna on the neural interface is designed with different geometries and modeled at a range of implanted depths within the brain in order to estimate the maximum receiving power without violating SAR and tissue temperature elevation safety regulations. Based on the size of the designed antenna, sets of frequencies between 1 GHz to 4 GHz have been investigated. As expected the simulations demonstrate that longer receiving antennas (dipole) and lower working frequencies result in greater power availability prior to violating SAR regulations. For a 15 mm dipole antenna operating at 1.24 GHz on the surface of the brain, 730 uW of power could be harvested at the Federal Communications Commission (FCC) SAR violation limit. At approximately 5 cm inside the head, this same antenna would receive 190 uW of power prior to violating SAR regulations. Finally, the 3-D bio-heat simulation results show that for all evaluated antennas and frequency combinations we reach FCC SAR limits well before 1 °C. It is clear that powering neural interfaces via RF is possible, but ultra-low power circuit designs combined with advanced simulation will be required to develop a functional antenna that meets all system requirements. PMID:24223123

  1. Advanced Risk Reduction Tool (ARRT) Special Case Study Report: Science and Engineering Technical Assessments (SETA) Program

    NASA Technical Reports Server (NTRS)

    Kirsch, Paul J.; Hayes, Jane; Zelinski, Lillian

    2000-01-01

    This special case study report presents the Science and Engineering Technical Assessments (SETA) team's findings for exploring the correlation between the underlying models of Advanced Risk Reduction Tool (ARRT) relative to how it identifies, estimates, and integrates Independent Verification & Validation (IV&V) activities. The special case study was conducted under the provisions of SETA Contract Task Order (CTO) 15 and the approved technical approach documented in the CTO-15 Modification #1 Task Project Plan.

  2. A New Socio-technical Model for Studying Health Information Technology in Complex Adaptive Healthcare Systems

    PubMed Central

    Sittig, Dean F.; Singh, Hardeep

    2011-01-01

    Conceptual models have been developed to address challenges inherent in studying health information technology (HIT). This manuscript introduces an 8-dimensional model specifically designed to address the socio-technical challenges involved in design, development, implementation, use, and evaluation of HIT within complex adaptive healthcare systems. The 8 dimensions are not independent, sequential, or hierarchical, but rather are interdependent and interrelated concepts similar to compositions of other complex adaptive systems. Hardware and software computing infrastructure refers to equipment and software used to power, support, and operate clinical applications and devices. Clinical content refers to textual or numeric data and images that constitute the “language” of clinical applications. The human computer interface includes all aspects of the computer that users can see, touch, or hear as they interact with it. People refers to everyone who interacts in some way with the system, from developer to end-user, including potential patient-users. Workflow and communication are the processes or steps involved in assuring that patient care tasks are carried out effectively. Two additional dimensions of the model are internal organizational features (e.g., policies, procedures, and culture) and external rules and regulations, both of which may facilitate or constrain many aspects of the preceding dimensions. The final dimension is measurement and monitoring, which refers to the process of measuring and evaluating both intended and unintended consequences of HIT implementation and use. We illustrate how our model has been successfully applied in real-world complex adaptive settings to understand and improve HIT applications at various stages of development and implementation. PMID:20959322

  3. Evaluation of a Novel Conjunctive Exploratory Navigation Interface for Consumer Health Information: A Crowdsourced Comparative Study

    PubMed Central

    Cui, Licong; Carter, Rebecca

    2014-01-01

    Background Numerous consumer health information websites have been developed to provide consumers access to health information. However, lookup search is insufficient for consumers to take full advantage of these rich public information resources. Exploratory search is considered a promising complementary mechanism, but its efficacy has never before been rigorously evaluated for consumer health information retrieval interfaces. Objective This study aims to (1) introduce a novel Conjunctive Exploratory Navigation Interface (CENI) for supporting effective consumer health information retrieval and navigation, and (2) evaluate the effectiveness of CENI through a search-interface comparative evaluation using crowdsourcing with Amazon Mechanical Turk (AMT). Methods We collected over 60,000 consumer health questions from NetWellness, one of the first consumer health websites to provide high-quality health information. We designed and developed a novel conjunctive exploratory navigation interface to explore NetWellness health questions with health topics as dynamic and searchable menus. To investigate the effectiveness of CENI, we developed a second interface with keyword-based search only. A crowdsourcing comparative study was carefully designed to compare three search modes of interest: (A) the topic-navigation-based CENI, (B) the keyword-based lookup interface, and (C) either the most commonly available lookup search interface with Google, or the resident advanced search offered by NetWellness. To compare the effectiveness of the three search modes, 9 search tasks were designed with relevant health questions from NetWellness. Each task included a rating of difficulty level and questions for validating the quality of answers. Ninety anonymous and unique AMT workers were recruited as participants. Results Repeated-measures ANOVA analysis of the data showed the search modes A, B, and C had statistically significant differences among their levels of difficulty (P<.001

  4. Advanced Transportation System Studies Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development Contract. Volume 2; Technical Results

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The purpose of the Advanced Transportation System Studies (ATSS) Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is Volume 2 of the final report for the contract. It provides documentation of selected technical results from various TA-2 analysis activities, including a detailed narrative description of the SSTO concept assessment results, a user's guide for the associated SSTO sizing tools, an SSTO turnaround assessment report, an executive summary of the ground operations assessments performed during the first year of the contract, a configuration-independent vehicle health management system requirements report, a copy of all major TA-2 contract presentations, a copy of the FLO launch vehicle final report, and references to Pratt & Whitney's TA-2 sponsored final reports regarding the identification of Russian main propulsion technologies.

  5. XPS Study of SiO2 and the Si/SiO2 Interface

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.

    1982-01-01

    X-ray photoelectron spectroscopy (XPS) is analytical technique for understanding electronic structure of atoms close to surface in solids, in preference to bulk structure of material. Study found evidence for core-level chemical shifts arising from changes in local structural environment in amorphous SiO2 and at Si/SiO2 interface. Observed XPS spectra may be understood as sequential convolution of several functions, each with well-defined physical interpretation.

  6. Studies of the analyte-carrier interface in flow injection analysis

    SciTech Connect

    Brown, S.D.

    1992-01-01

    Chemical analysis in flowing solution is popular for automation of classical methods. However, most of the classical methods are not specific enough for direct multicomponent analysis of simple mixtures. This research project has the goals of study of rapid multicomponent analysis of transient species in flowing media, and investigations of chemical reactions at interfaces and of effects of competition on distribution of products from interfacial reaction. This report summarizes work done over the past 4.5 years; support has been terminated.

  7. Storable droplet interface lipid bilayers for cell-free ion channel studies.

    PubMed

    Jung, Sung-Ho; Choi, Sangbaek; Kim, Young-Rok; Jeon, Tae-Joon

    2012-01-01

    An artificially created lipid bilayer is an important platform in studying ion channels and engineered biosensor applications. However, a lipid bilayer created using conventional techniques is fragile and short-lived, and the measurement of ion channels requires expertise and laborious procedures, precluding practical applications. Here, we demonstrate a storable droplet lipid bilayer precursor frozen with ion channels, resulting in a droplet interface bilayer upon thawing. A small vial with an aqueous droplet in organic solution was flash frozen in -80 °C methanol immediately after an aqueous droplet was introduced into the organic solution and gravity draws the droplet down to the interface upon thawing. A lipid bilayer created along the interface using this method had giga-ohm resistance and typical specific capacitance values. The noise level of this system is favorably comparable to the conventional system. The subsequent incorporation of ion channels, alpha-hemolysin and gramicidin A, showed typical conductance values consistent with those in previous literatures. This novel system to create a lipid bilayer as a whole can be automated from its manufacture to use and indefinitely stored when frozen. As a result, ion channel measurements can be carried out in any place, increasing the accessibility of ion channel studies as well as a number of applications, such as biosensors, ion channel drug screening, and biophysical studies. PMID:21909672

  8. Fermi-level pinning through defects at GaAs/oxide interfaces: A density functional study

    NASA Astrophysics Data System (ADS)

    Colleoni, Davide; Miceli, Giacomo; Pasquarello, Alfredo

    2015-09-01

    Using density functional calculations, we study a set of candidate defects for Fermi-level pinning at GaAs/oxide interfaces. The set of considered defects comprises both bulklike and interfacial defects, including As antisites, Ga and As dangling bonds, the As-As dimer/dangling bond defect, and several defect complexes. The defects are generated within atomistic model structures representing the GaAs /Al2O3 interface. Formation energies of bulklike defects are obtained and compared with those of corresponding bulk defects, while interfacial defects are studied through their relative defect energies. Finite-size corrections to the defect energies are applied through a scheme that accounts for the interfacial geometry of our models. Defect levels are defined as thermodynamic transition levels between different charge states and are calculated for all considered defects. Through an alignment procedure based on hybrid functional calculations, the defect levels are then positioned within the calculated band gap of GaAs that reproduces the experimental one, thereby enabling direct comparisons with the experimental density of defect states. Our study shows that several As-related defects show a similar amphoteric bistability between an As-As dimer state and a configuration with two doubly occupied As dangling bonds. The associated charge transition levels generally lie in the midgap region, in accord with experimental observations. This mechanism is proposed as the origin of the observed Fermi-level pinning at GaAs/oxide interfaces.

  9. Interaction between dimer interface residues of native and mutated SOD1 protein: a theoretical study.

    PubMed

    Keerthana, S P; Kolandaivel, P

    2015-04-01

    Cu-Zn superoxide dismutase 1 (SOD1) is a highly conserved bimetallic protein enzyme, used for the scavenging the superoxide radicals (O2 (-)) produced due to aerobic metabolism in the mitochondrial respiratory chain. Over 100 mutations have been identified and found to be in the homodimeric structure of SOD1. The enzyme has to be maintained in its dimeric state for the structural stability and enzymatic activity. From our investigation, we found that the mutations apart from the dimer interface residues are found to affect the dimer stability of protein and hence enhancing the aggregation and misfolding tendency of mutated protein. The homodimeric state of SOD1 is found to be held together by the non-covalent interactions. The molecular dynamics simulation has been used to study the hydrogen bond interactions between the dimer interface residues of the monomers in native and mutated forms of SOD1 in apo- and holo-states. The results obtained by this analysis reveal the fact that the loss of hydrogen bond interactions between the monomers of the dimer is responsible for the reduced stability of the apo- and holo-mutant forms of SOD1. The conformers with dimer interface residues in native and mutated protein obtained by the molecular dynamics simulation is subjected to quantum mechanical study using M052X/6-31G(d) level of theory. The charge transfer between N-H···O interactions in the dimer interface residues were studied. The weak interaction between the monomers of the dimer accounts for the reduced dimerization and enhanced deformation energy in the mutated SOD1 protein. PMID:25578810

  10. Advanced space communications architecture study. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Horstein, Michael; Hadinger, Peter J.

    1987-01-01

    The technical feasibility and economic viability of satellite system architectures that are suitable for customer premise service (CPS) communications are investigated. System evaluation is performed at 30/20 GHz (Ka-band); however, the system architectures examined are equally applicable to 14/11 GHz (Ku-band). Emphasis is placed on systems that permit low-cost user terminals. Frequency division multiple access (FDMA) is used on the uplink, with typically 10,000 simultaneous accesses per satellite, each of 64 kbps. Bulk demodulators onboard the satellite, in combination with a baseband multiplexer, convert the many narrowband uplink signals into a small number of wideband data streams for downlink transmission. Single-hop network interconnectivity is accomplished via downlink scanning beams. Each satellite is estimated to weigh 5600 lb and consume 6850W of power; the corresponding payload totals are 1000 lb and 5000 W. Nonrecurring satellite cost is estimated at $110 million, with the first-unit cost at $113 million. In large quantities, the user terminal cost estimate is $25,000. For an assumed traffic profile, the required system revenue has been computed as a function of the internal rate of return (IRR) on invested capital. The equivalent user charge per-minute of 64-kbps channel service has also been determined.

  11. Cr/B4C multilayer mirrors: Study of interfaces and X-ray reflectance

    NASA Astrophysics Data System (ADS)

    Burcklen, C.; Soufli, R.; Dennetiere, D.; Polack, F.; Capitanio, B.; Gullikson, E.; Meltchakov, E.; Thomasset, M.; Jérome, A.; de Rossi, S.; Delmotte, F.

    2016-03-01

    We present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B4C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B4C-on-Cr interface, which we modeled with a 1-1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L2,3 absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulated refractive index (optical constants) values for Cr.

  12. Molecular dynamics study of two-dimensional sum frequency generation spectra at vapor/water interface

    SciTech Connect

    Ishiyama, Tatsuya; Morita, Akihiro; Tahara, Tahei

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum frequency generation (2D HD-VSFG) spectra at vapor/water interface were studied by molecular dynamics (MD) simulation with a classical flexible and nonpolarizable model. The present model well describes the spectral diffusion of 2D infrared spectrum of bulk water as well as 2D HD-VSFG at the interface. The effect of isotopic dilution on the 2D HD-VSFG was elucidated by comparing the normal (H{sub 2}O) water and HOD water. We further performed decomposition analysis of 2D HD-VSFG into the hydrogen-bonding and the dangling (or free) OH vibrations, and thereby disentangled the different spectral responses and spectral diffusion in the 2D HD-VSFG. The present MD simulation demonstrated the role of anharmonic coupling between these modes on the cross peak in the 2D HD-VSFG spectrum.

  13. Cr/B4C multilayer mirrors: Study of interfaces and X-ray reflectance

    DOE PAGESBeta

    Burcklen, C.; Soufli, R.; Gullikson, E.; Meltchakov, E.; Dennetiere, D.; Polack, F.; Capitanio, B.; Thomasset, M.; Jerome, A.; de Rossi, S.; et al

    2016-03-24

    Here, we present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B4C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B4C-on-Cr interface, which we modeled with a 1–1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L2,3 absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulated refractive index (opticalmore » constants) values for Cr.« less

  14. The Pt(111)/electrolyte interface under oxygen reduction reaction conditions: an electrochemical impedance spectroscopy study.

    PubMed

    Bondarenko, Alexander S; Stephens, Ifan E L; Hansen, Heine A; Pérez-Alonso, Francisco J; Tripkovic, Vladimir; Johansson, Tobias P; Rossmeisl, Jan; Nørskov, Jens K; Chorkendorff, Ib

    2011-03-01

    The Pt(111)/electrolyte interface has been characterized during the oxygen reduction reaction (ORR) in 0.1 M HClO(4) using electrochemical impedance spectroscopy. The surface was studied within the potential region where adsorption of OH* and O* species occur without significant place exchange between the adsorbate and Pt surface atoms (0.45-1.15 V vs RHE). An equivalent electric circuit is proposed to model the Pt(111)/electrolyte interface under ORR conditions within the selected potential window. This equivalent circuit reflects three processes with different time constants, which occur simultaneously during the ORR at Pt(111). Density functional theory (DFT) calculations were used to correlate and interpret the results of the measurements. The calculations indicate that the coadsorption of ClO(4)* and Cl* with OH* is unlikely. Our analysis suggests that the two-dimensional (2D) structures formed in O(2)-free solution are also formed under ORR conditions. PMID:21244087

  15. A comparative study of the thermal interface materials with graphene and boron nitride fillers

    NASA Astrophysics Data System (ADS)

    Kargar, F.; Salgado, R.; Legedza, S.; Renteria, J.; Balandin, A. A.

    2014-09-01

    We report the results of an experimental study that compares the performance of graphene and boron nitride flakes as fillers in the thermal interface materials. The thickness of both fillers varied from a single atomic plane to about a hundred. The measurements have been conducted using a standard TIM tester. Our results show that the addition of a small fraction of graphene (f=4 wt%) to a commercial thermal interface material increases the resulting apparent thermal conductivity substantially stronger than the addition of boron nitride. The obtained data suggest that graphene and fewlayer graphene flakes couple better to the matrix materials than the boron nitride fillers. A combination of both fillers can be used to increase the thermal conductivity while controlling the electrical conduction.

  16. X-ray absorption studies of Ti/polymer and Cr/polymer interfaces

    SciTech Connect

    Opila, R.L.; Konstadinidis, K.; Ibidunni, A.O; Davenport, A.J.; Isaacs, H.S.

    1993-11-01

    The interface formed between metals, Ti and Cr, and polymers, epoxy, and triazine, have been studied, non-destructively, using x-ray absorption spectroscopy. The metals were sputtered onto the polymer surfaces. Titanium reacts extensively, up to Ti thickness of 100 {Angstrom} while Cr remains primarily metallic. In situ heating at 200{degree}C increases the extent of reaction for both metals. Heating has a greater effect on metal/epoxy interfaces than metal/triazine. Titanium and Cr were ion implanted into the polymer in order to determine the interactions of isolated metal atoms with the polymer. Titanium and Cr appear to form oxides as the final reaction product, and the Ti is tetrahedrally coordinated.

  17. First-principles study of the Fe | MgO(0 0 1) interface: magnetic anisotropy.

    PubMed

    Bose, Thomas; Cuadrado, Ramon; Evans, Richard F L; Chepulskii, Roman V; Apalkov, Dmytro; Chantrell, Roy W

    2016-04-20

    We present a systematic first-principles study of Fe | MgO bilayer systems emphasizing the influence of the iron layer thickness on the geometry, the electronic structure and the magnetic properties. Our calculations ensure the unconstrained structural relaxation at scalar relativistic level for various numbers of iron layers placed on the magnesium oxide substrate. Our results show that due to the formation of the interface the electronic structure of the interface iron atoms is significantly modified involving charge transfer within the iron subsystem. In addition, we find that the magnetic anisotropy energy increases from 1.9 mJ m(-2) for 3 Fe layers up to 3.0 mJ m(-2) for 11 Fe layers. PMID:26987845

  18. Application of Neutron Reflectivity for Studies of Biomolecular Structures and Functions at Interfaces

    SciTech Connect

    Johs, Alexander; Liang, Liyuan; Gu, Baohua; Ankner, John Francis; Wang, Wei

    2009-01-01

    Structures and functions of cell membranes are of central importance in understanding processes such as cell signaling, chemotaxis, redox transformation, biofilm formation, and mineralization occurring at interfaces. This chapter provides an overview of the application of neutron reflectivity (NR) as a unique tool for probing biomolecular structures and mechanisms as a first step toward understanding protein protein, protein lipid, and protein mineral interactions at the membrane substrate interfaces. Emphasis is given to the review of existing literature on the assembly of biomimetic membrane systems, such as supported membranes for NR studies, and demonstration of model calculations showing the potential of NR to elucidate molecular fundamentals of microbial cell mineral interactions and structure functional relationships of electron transport pathways. The increased neutron flux afforded by current and upcoming neutron sources holds promise for elucidating detailed processes such as phase separation, formation of microdomains, and membrane interactions with proteins and peptides in biological systems.

  19. Theoretical Study of Excess Si Emitted from Si-oxide/Si Interfaces

    NASA Astrophysics Data System (ADS)

    Kageshima, Hiroyuki; Uematsu, Masahi; Akagi, Kazuto; Tsuneyuki, Shinji; Akiyama, Toru; Shiraishi, Kenji

    2004-12-01

    The excess Si emitted from the Si-oxide/Si interface is studied using the first-principles calculations. It is shown that the excess Si can have many (meta-) stable positions around the interface. In addition, some positions in the oxide do not have any dangling bonds or floating bonds in contrast to those in the bulk crystalline Si. The results indicate that the emitted Si can be located in the oxide layer but they do not necessarily cause charge traps in the oxide. The emitted Si atoms are thought to just be oxidized and absorbed into the oxide while a portion of them cause the E' centers, the Pb centers or charge traps.

  20. Single-crystal-silicon-based microinstrument to study friction and wear at MEMS sidewall interfaces

    NASA Astrophysics Data System (ADS)

    Ansari, N.; Ashurst, W. R.

    2012-02-01

    Since the advent of microelectromechanical systems (MEMS) technology, friction and wear are considered as key factors that determine the lifetime and reliability of MEMS devices that contain contacting interfaces. However, to date, our knowledge of the mechanisms that govern friction and wear in MEMS is insufficient. Therefore, systematically investigating friction and wear at MEMS scale is critical for the commercial success of many potential MEMS devices. Specifically, since many emerging MEMS devices contain more sidewall interfaces, which are topographically and chemically different from in-plane interfaces, studying the friction and wear characteristics of MEMS sidewall surfaces is important. The microinstruments that have been used to date to investigate the friction and wear characteristics of MEMS sidewall surfaces possess several limitations induced either by their design or the structural film used to fabricate them. Therefore, in this paper, we report on a single-crystal-silicon-based microinstrument to study the frictional and wear behavior of MEMS sidewalls, which not only addresses some of the limitations of other microinstruments but is also easy to fabricate. The design, modeling and fabrication of the microinstrument are described in this paper. Additionally, the coefficients of static and dynamic friction of octadecyltrichlorosilane-coated sidewall surfaces as well as sidewall surfaces with only native oxide on them are also reported in this paper.

  1. Ti/CeOx(111) interfaces studied by XPS and STM

    NASA Astrophysics Data System (ADS)

    Zhou, Yinghui; Zhou, Jing

    2012-04-01

    Low coverage of Ti was deposited on the well-ordered CeOx(111) (1.5 < x < 2) thin films grown on Ru(0001) by physical vapor deposition at room temperature. The structure and interaction of Ti/ceria interfaces were investigated with X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) techniques under ultrahigh vacuum conditions. XPS data indicate that the deposition of Ti on both oxidized and reduced ceria surfaces causes the partial reduction of Ce from + 4 to + 3 state. Ti is formally in the + 4 state. STM data show the formation of small atomic-like titania features at 300 K, which coalesce to form chain structures upon heating. It is demonstrated in the study that the deposition of Ti can form mixed metal oxides at the interface and modify both electronic and structural properties of the ceria support. The structural study of Ti/ceria interfaces can be a key for understanding the higher catalytic activity of the Ti-CeOx mixed oxide catalysts as compared with the individual pure oxides.

  2. Studies of ferroelectric heterostructure thin films and interfaces via in situ analytical techniques.

    SciTech Connect

    Auciello, O.; Dhote, A.; Gao, Y.; Gruen, D. M.; Im, J.; Irene, E. A.; Krauss, A. R.; Mueller, A. H.; Ramesh, R.

    1999-08-30

    The science and technology of ferroelectric thin films has experienced an explosive development during the last ten years. Low-density non-volatile ferroelectric random access memories (NVFRAMs) are now incorporated in commercial products such as ''smart cards'', while high permittivity capacitors are incorporated in cellular phones. However, substantial work is still needed to develop materials integration strategies for high-density memories. We have demonstrated that the implementation of complementary in situ characterization techniques is critical to understand film growth and interface processes, which play critical roles in film microstructure and properties. We are using uniquely integrated time of flight ion scattering and recoil spectroscopy (TOF-ISARS) and spectroscopic ellipsometry (SE) techniques to perform in situ, real-time studies of film growth processes in the high background gas pressure required to growth ferroelectric thin films. TOF-ISARS provides information on surface processes, while SE permits the investigation of buried interfaces as they are being formed. Recent studies on SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub x}Sr{sub 1{minus}x}TiO{sub 3} (BST) film growth and interface processes are discussed.

  3. Theoretical study of binding and permeation of ether-based polymers through interfaces.

    PubMed

    Samanta, Susruta; Hezaveh, Samira; Roccatano, Danilo

    2013-11-27

    We present a molecular dynamics simulation study on the interactions of poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), and their ABA-type block copolymer, poloxamers, at water/n-heptane and 1,2-dimyristoyl-sn-glycero-3-phospatidycholine (DMPC) lipid bilayer/water interfaces. The partition coefficients in water/1-octanol of the linear polyethers up to three monomers were calculated. The partition coefficients evidenced a higher hydrophobicity of the PPO in comparison to PEO. At the water/n-heptane interface, the polymers tend to adopt elongated conformations in agreement with similar experimental ellipsometry studies of different poloxamers. In the case of the poloxamers at the n-heptane/water interface, the stronger preference of the PPO block for the hydrophobic phase resulted in bottle-brush-type polymer conformations. At lipid bilayer/water interface, the PEO polymers, as expected from their hydrophilic nature, are weakly adsorbed on the surface of the lipid bilayer and locate in the water phase close to the headgroups. The free energy barriers of permeation calculated for short polymer chains suggest a thermodynamics propensity for the water phase that increase with the chain length. The lower affinity of PEO for the hydrophobic interior of the lipid bilayer resulted in the spontaneous expulsion within the simulation time. On the contrary, PPO chains and poloxamers have a longer residence time inside the bilayer, and they tend to concentrate in the tail region of the bilayer near the polar headgroups. In addition, polymers with PPO unit length comparable to the thickness of the hydrophobic region of the bilayer tend to span across the bilayer. PMID:24219592

  4. Advanced transportation system studies, technical area 3. Alternate propulsion subsystem concepts: J-2S restart study

    NASA Astrophysics Data System (ADS)

    Vilja, John; Levack, Daniel

    1993-04-01

    The objectives were to assess what design changes would be required to remit late production of the J-2S engine for use as a large high energy upper stage engine. The study assessed design changes required to perform per the J-2S model specification, manufacturing changes required due to obsolescence or improvements in state-of-the-practice, availability issues for supplier provided items, and provided cost and schedule estimates for this configuration. The confidence that J-2S production could be reinitiated within reasonable costs and schedules was provided. No significant technical issues were identified in either the producibility study or in the review of previous technical data. Areas of potential cost reduction were identified which could be quantified to a greater extent with further manufacturing planning. The proposed schedule can be met with no foreseeable impacts. The results of the study provided the necessary foundation for the detailed manufacturing and test plans and non-recurring and recurring cost estimates that are needed to complete the effort to reinitiate production of the J-2S engine system.

  5. Advanced transportation system studies, technical area 3. Alternate propulsion subsystem concepts: J-2S restart study

    NASA Technical Reports Server (NTRS)

    Vilja, John; Levack, Daniel

    1993-01-01

    The objectives were to assess what design changes would be required to remit late production of the J-2S engine for use as a large high energy upper stage engine. The study assessed design changes required to perform per the J-2S model specification, manufacturing changes required due to obsolescence or improvements in state-of-the-practice, availability issues for supplier provided items, and provided cost and schedule estimates for this configuration. The confidence that J-2S production could be reinitiated within reasonable costs and schedules was provided. No significant technical issues were identified in either the producibility study or in the review of previous technical data. Areas of potential cost reduction were identified which could be quantified to a greater extent with further manufacturing planning. The proposed schedule can be met with no foreseeable impacts. The results of the study provided the necessary foundation for the detailed manufacturing and test plans and non-recurring and recurring cost estimates that are needed to complete the effort to reinitiate production of the J-2S engine system.

  6. Technical Note: Groundwater flow modeling in coastal aquifers - the influence of submarine groundwater discharge on the position of the saltwater-freshwater interface

    NASA Astrophysics Data System (ADS)

    Shishaye, H. A.

    2015-04-01

    An investigation of the impact of submarine groundwater discharge on the position of saltwater-freshwater interface is presented in this manuscript. Two conceptualizations were considered and analyzed using both analytic and numerical techniques, for comparison purposes. The first conceptualization assumes that the tip of the saltwater-freshwater interface occurs at the shoreline, and the second conceptualization allows for the tip to extend off-shore. Analytic solutions exist for both conceptualizations, i.e., Strack (1976) for conceptualization 1 and Bakker (2006) for conceptualization 2. Results from both analytic and numeric analysis for the two conceptualizations are presented. Results from the first conceptualization were found to overestimate the inland distance to the interface toe, compared to the second conceptualization, for it ignores the influence of submarine groundwater discharge on the interface location. Moreover, results from the analytic solutions as a whole were found to overestimate the interface location compared to the numerical modeling results, for analytic solutions are based on the sharp interface approximations. Therefore, an empirically derived dispersion factor should be used to correct the analytic solution results so as to compare them with the numerically simulated values. Furthermore, offshore model extents should be incorporated when modeling coastal aquifer systems to include the influence of submarine groundwater discharge on the saltwater-freshwater interface position.

  7. A Comparison Study of Conjunctiva Disorders in Technical and Administrative Sawmill Workers in Nigeria

    PubMed Central

    Njinaka, Itiyafa; Uhumwangho, Odarosa M; Edema, Omolabake T; Dawodu, Oseluese A; Omoti, Afekhide E

    2011-01-01

    Background: Workers in the sawmilling industry are at risk of various ocular hazards as a direct result of the sawmilling processes. The aim of this study was to determine the pattern of conjunctival disorders between technical and administrative sawmill workers in Benin, Nigeria. Methods: A cross-sectional study was performed on sawmill workers in Benin, Nigeria, between January and May 2009, with the aid of pre-tested questionnaires. Ocular examination was performed on all subjects. Data obtained were recorded and analysed using SPSS version 13. Results: A total of 553 sawmill workers were studied, among whom 449 (81.2%) and 104 (18.8%) were technical and administrative workers, respectively. There were 496 (89.7%) males and 57 (10.3%) females. The age range was 15–80 years, with a mean of 38.9 years (SD 12.8). Pingueculum was found in 127 (23%) workers, among whom 122 (27.2%) were technical workers and 5 (4.8%) were administrative workers. Pterygium was present in 65 (11.8%) workers, among whom 64 (14.3%) were technical workers and 1 (1%) was an administrative worker. Seven (1.6%) technical workers used protective eyewear; 2 (0.4%) wore this protective eyewear regularly. Conclusion: Technical sawmill workers are at risk of developing conjunctival disorders, which result from chronic ocular irritation. This can be prevented by the provision of protective eye devices in the workplace. PMID:22135600

  8. Synchrotron-radiation photoemission study of the ultrathin Ba/3C-SiC(111) interface

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Benemanskaya, G. V.; Dementev, P. A.; Timoshnev, S. N.; Senkovskiy, B.

    2016-03-01

    Electronic structure of the Ba/3C-SiC(111) interface has been detailed studied in situ in an ultrahigh vacuum using synchrotron radiation photoemission spectroscopy with photon energies in the range of 100-450 eV. The 3C-SiC(111) samples were grown by a new method of epitaxy of low-defect unstressed nanoscaled silicon carbide films on silicon substrates. Valence band photoemission and both the Si 2p, C 1s core level spectra have been investigated as a function of Ba submonolayer coverage. Under Ba adsorption two induced surface bands are found at binding energies of 2 eV and 6 eV. It is obtained that Ba/3C-SiC(111) interface can be characterized as metallic-like. Modification of both the Si 2p and C 1s surface-related components were ascertained and shown to be provided by redistribution effect of electron density between Ba adatoms and both the Si surface and C interface atoms.

  9. First-Principles Study of Enhanced Magnetoelectric Effects at the Fe/MgO(001) Interface

    NASA Astrophysics Data System (ADS)

    Niranjan, M. K.; Jaswal, S. S.; Tsymbal, E. Y.; Duan, C.-G.

    2010-03-01

    The magnetoelectric effect allows affecting magnetic properties of materials by electric fields with potential for technological applications such as electrically controlled magnetic data storage. In this study we explore, using first-principles methods, the magnetoelectric effect at the Fe/MgO(001) interface^,1. By explicitly introducing an electric field in our density-functional calculations we demonstrate that the magnetic moment of Fe atoms at the interface changes linearly as a function of the applied electric field with the surface magnetoelectric coefficient being strongly enhanced as compared to that for the clean Fe(001) surface.^1 The effect originates from the increased screening charge associated with a large dielectric constant of MgO. The influence of electric field on relative occupancy of the Fe-3d orbitals leads to significant change in the surface magnetocrystalline anisotropy. These results are compared with the available experimental work.^2 Our results indicate that using high-k dielectrics at the interface with ferromagnetic metals may be very effective in controlling the magnetic properties by electric fields thereby leading to interesting device applications. ^1 C.-G. Duan et al., Phys. Rev. Lett. 101, 137201 (2008). ^2 T. Maruyama et al., Nat. Nanotech., 4, 158 (2009).

  10. A comparative study about electronic structures at rubrene/Ag and Ag/rubrene interfaces

    SciTech Connect

    Sinha, Sumona Mukherjee, M.

    2015-10-15

    The contact between the electrode and the organic semiconductor is one of the most crucial factors in determining the organic device performance. The development and production technology of different organic devices require the understanding of different types of metal/organic semiconducting thin film interfaces. Comparisons about the electronic structures at Rubrene/Ag and Ag/Rubrene interfaces have been studied using photoemission spectroscopy. The Ag on rubrene interfaces is found to show more interesting and complex natures than its counterpart. The vacuum level (VL) was shifted about 0.51 eV from push back effect for deposition of 5 Å rubrene onto Ag film whereas the electronic features of silver was only suppressed and no energy shift was resulted. While the deposition of 5 Å Ag onto rubrene film leads to the diffusion of the Ag atoms, as a cluster with quantum size effect, inside the film. Angle dependent XPS measurement indicates that diffused metal clusters were present at entire probed depth of the film. Moreover these clusters dope the uppermost surface of the rubrene film which consequences a shift of the electronic states of thick organic film towards higher binding energy. The VL was found to shift about 0.31 eV toward higher binding energy whereas the shift was around 0.21 eV for the electronic states of rubrene layer.