Science.gov

Sample records for interferon responsive gene

  1. An Interferon Response Gene Signature Is Associated with the Therapeutic Response of Hepatitis C Patients

    PubMed Central

    Pfeffer, Lawrence M.; Li, Kui; Fleckenstein, Jaquelyn F.; Marion, Tony N.; Diament, Joel; Yang, Chuan He; Pfeffer, Susan R.; Fan, Meiyun; Handorf, Elizabeth; Handorf, Charles R.

    2014-01-01

    Infection with the hepatitis C virus (HCV) is a major cause of chronic liver diseases and hepatocellular carcinoma worldwide, and thus represents a significant public health problem. The type I interferon (IFN), IFNα, has been successful in treating HCV-infected patients, but current IFN-based treatment regimens for HCV have suboptimal efficacy, and relatively little is known about why IFN therapy eliminates the virus in some patients but not in others. Therefore, it is critical to understand the basic mechanisms that underlie the therapeutic resistance to IFN action in HCV-infected individuals, and there is an urgent need to identify those patients most likely to respond to IFN therapy for HCV. To characterize the response of HCV-infected patients to treatment with IFNα, the expression of an IFN-response gene signature comprised of IFN-stimulated genes and genes that play an important role in the innate immune response was examined in liver biopsies from HCV-infected patients enrolled in a clinical trial. In the present study we found that the expression of a subset of IFN-response genes was dysregulated in liver biopsy samples from nonresponsive hepatitis C patients as compared with virologic responders. Based on these findings, a statistical model was developed to help predict the response of patients to IFN therapy, and compared to results obtained to the IL28 mutation model, which is highly predictive of the response to IFN-based therapy in HCV-infected patients. We found that a model incorporating gene expression data can improve predictions of IFN responsiveness compared to IL28 mutation status alone. PMID:25111807

  2. Interferon γ-inducible Protein (IFI) 16 Transcriptionally Regulates Type I Interferons and Other Interferon-stimulated Genes and Controls the Interferon Response to both DNA and RNA Viruses*

    PubMed Central

    Thompson, Mikayla R.; Sharma, Shruti; Atianand, Maninjay; Jensen, Søren B.; Carpenter, Susan; Knipe, David M.; Fitzgerald, Katherine A.; Kurt-Jones, Evelyn A.

    2014-01-01

    The interferon γ-inducible protein 16 (IFI16) has recently been linked to the detection of nuclear and cytosolic DNA during infection with herpes simplex virus-1 and HIV. IFI16 binds dsDNA via HIN200 domains and activates stimulator of interferon genes (STING), leading to TANK (TRAF family member-associated NF-κB activator)-binding kinase-1 (TBK1)-dependent phosphorylation of interferon regulatory factor (IRF) 3 and transcription of type I interferons (IFNs) and related genes. To better understand the role of IFI16 in coordinating type I IFN gene regulation, we generated cell lines with stable knockdown of IFI16 and examined responses to DNA and RNA viruses as well as cyclic dinucleotides. As expected, stable knockdown of IFI16 led to a severely attenuated type I IFN response to DNA ligands and viruses. In contrast, expression of the NF-κB-regulated cytokines IL-6 and IL-1β was unaffected in IFI16 knockdown cells, suggesting that the role of IFI16 in sensing these triggers was unique to the type I IFN pathway. Surprisingly, we also found that knockdown of IFI16 led to a severe attenuation of IFN-α and the IFN-stimulated gene retinoic acid-inducible gene I (RIG-I) in response to cyclic GMP-AMP, a second messenger produced by cyclic GMP-AMP synthase (cGAS) as well as RNA ligands and viruses. Analysis of IFI16 knockdown cells revealed compromised occupancy of RNA polymerase II on the IFN-α promoter in these cells, suggesting that transcription of IFN-stimulated genes is dependent on IFI16. These results indicate a broader role for IFI16 in the regulation of the type I IFN response to RNA and DNA viruses in antiviral immunity. PMID:25002588

  3. African Swine Fever Virus Multigene Family 360 and 530 Genes Affect Host Interferon Response

    PubMed Central

    Afonso, C. L.; Piccone, M. E.; Zaffuto, K. M.; Neilan, J.; Kutish, G. F.; Lu, Z.; Balinsky, C. A.; Gibb, T. R.; Bean, T. J.; Zsak, L.; Rock, D. L.

    2004-01-01

    African swine fever virus (ASFV) multigene family 360 and 530 (MGF360/530) genes affect viral growth in macrophage cell cultures and virulence in pigs (L. Zsak, Z. Lu, T. G. Burrage, J. G. Neilan, G. F. Kutish, D. M. Moore, and D. L. Rock, J. Virol. 75:3066-3076, 2001). The mechanism by which these novel genes affect virus-host interactions is unknown. To define MGF360/530 gene function, we compared macrophage transcriptional responses following infection with parental ASFV (Pr4) and an MGF360/530 deletion mutant (Pr4Δ35). A swine cDNA microarray containing 7,712 macrophage cDNA clones was used to compare the transcriptional profiles of swine macrophages infected with Pr4 and Pr4Δ35 at 3 and 6 h postinfection (hpi). While at 3 hpi most (7,564) of the genes had similar expression levels in cells infected with either virus, 38 genes had significantly increased (>2.0-fold, P < 0.05) mRNA levels in Pr4Δ35-infected macrophages. Similar up-regulation of these genes was observed at 6 hpi. Viral infection was required for this induced transcriptional response. Most Pr4Δ35 up-regulated genes were part of a type I interferon (IFN) response or were genes that are normally induced by double-stranded RNA and/or viral infection. These included monocyte chemoattractant protein, transmembrane protein 3, tetratricopeptide repeat protein 1, a ubiquitin-like 17-kDa protein, ubiquitin-specific protease ISG43, an RNA helicase DEAD box protein, GTP-binding MX protein, the cytokine IP-10, and the PKR activator PACT. Differential expression of IFN early-response genes in Pr4Δ35 relative to Pr4 was confirmed by Northern blot analysis and real-time PCR. Analysis of IFN-α mRNA and secreted IFN-α levels at 3, 8, and 24 hpi revealed undetectable IFN-α in mock- and Pr4-infected macrophages but significant IFN-α levels at 24 hpi in Pr4Δ35-infected macrophages. The absence of IFN-α in Pr4-infected macrophages suggests that MGF360/530 genes either directly or indirectly suppress a type

  4. African swine fever virus multigene family 360 and 530 genes affect host interferon response.

    PubMed

    Afonso, C L; Piccone, M E; Zaffuto, K M; Neilan, J; Kutish, G F; Lu, Z; Balinsky, C A; Gibb, T R; Bean, T J; Zsak, L; Rock, D L

    2004-02-01

    African swine fever virus (ASFV) multigene family 360 and 530 (MGF360/530) genes affect viral growth in macrophage cell cultures and virulence in pigs (L. Zsak, Z. Lu, T. G. Burrage, J. G. Neilan, G. F. Kutish, D. M. Moore, and D. L. Rock, J. Virol. 75:3066-3076, 2001). The mechanism by which these novel genes affect virus-host interactions is unknown. To define MGF360/530 gene function, we compared macrophage transcriptional responses following infection with parental ASFV (Pr4) and an MGF360/530 deletion mutant (Pr4 Delta 35). A swine cDNA microarray containing 7,712 macrophage cDNA clones was used to compare the transcriptional profiles of swine macrophages infected with Pr4 and Pr4 Delta 35 at 3 and 6 h postinfection (hpi). While at 3 hpi most (7,564) of the genes had similar expression levels in cells infected with either virus, 38 genes had significantly increased (>2.0-fold, P < 0.05) mRNA levels in Pr4 Delta 35-infected macrophages. Similar up-regulation of these genes was observed at 6 hpi. Viral infection was required for this induced transcriptional response. Most Pr Delta 35 up-regulated genes were part of a type I interferon (IFN) response or were genes that are normally induced by double-stranded RNA and/or viral infection. These included monocyte chemoattractant protein, transmembrane protein 3, tetratricopeptide repeat protein 1, a ubiquitin-like 17-kDa protein, ubiquitin-specific protease ISG43, an RNA helicase DEAD box protein, GTP-binding MX protein, the cytokine IP-10, and the PKR activator PACT. Differential expression of IFN early-response genes in Pr4 Delta 35 relative to Pr4 was confirmed by Northern blot analysis and real-time PCR. Analysis of IFN-alpha mRNA and secreted IFN-alpha levels at 3, 8, and 24 hpi revealed undetectable IFN-alpha in mock- and Pr4-infected macrophages but significant IFN-alpha levels at 24 hpi in Pr4 Delta 35-infected macrophages. The absence of IFN-alpha in Pr4-infected macrophages suggests that MGF360/530 genes

  5. The interferon α-responsive gene, Ifrg15, plays vital roles during mouse early embryonic development.

    PubMed

    Yang, Ye; Wang, Jiayi; Zhao, Chun; Chen, Xiaojiao; Chen, Li; Zhang, Junqiang; Huo, Ran; Liu, Chang; Tong, Hua; Ling, Xiufeng

    2016-08-01

    The interferon alpha-responsive gene (Ifrg15) mRNA is highly expressed in various stages during preimplantation mammalian embryo development. Unfortunately, few studies have investigated the effect of Ifrg15 in this process. In mammals, the fusion of male and female pronuclei generates a diploid zygote, and is an important step for subsequent cleavage and blastocyst formation. Here, by using RNA interference, rescue experiments, immunofluorescence staining and live cell observations, we found that preimplantation embryo development was arrested at the 1-cell stage after knocking down Ifrg15 expression. This induced DNA damage and prevented the cleavage of embryos. Furthermore, the effect of Ifrg15 deficiency in arresting preimplantation embryo development produced by specific short interfering RNA microinjection was concentration-dependent. Using transcriptome expression profiles, gene ontogeny functional annotation and enrichment analysis, we gained 197 enriched pathways based on 1445 differentially expressed genes (DEGs). Of these, 12 pathways and about one third of the DEGs were involved in DNA damage, DNA repair, cell cycle, and developmental processes. Thus, the IFRG15 protein might be an important molecule for maintaining genomic integrity and stability through upregulating or downregulating a cascade of genes to permit normal preimplantation embryo development. PMID:26911731

  6. Transcriptional induction of IFN-gamma-responsive genes is modulated by DNA surrounding the interferon stimulation response element.

    PubMed Central

    Strehlow, I; Decker, T

    1992-01-01

    The 9/27 and GBP mRNAs are both inducible by Interferon-gamma (IFN-gamma). The promoters of both genes contain an Interferon Stimulation Response Element (ISRE), but while the GBP gene is strongly induced transcriptionally by IFN-gamma the response of the 9/27 promoter is very weak. We investigated the molecular basis for this difference. The different IFN-gamma-responsiveness was found to have more than one reason. First, 9/27 promoter DNA was unable to bind the Gamma Interferon Activation Factor (GAF) with a single high affinity site. It efficiently competed for the association of the GAF with the GBP promoter but this competition was due to the presence of two low affinity sites, the ISRE and an ISRE-like sequence, suggesting that the GAS and ISRE, though both having clear preferences for specific proteins, may nevertheless share a certain degree of structural homology. Second, the 9/27 and GBP ISREs differed markedly in their affinities for regulatory proteins (ISGFs 1,2,3) and the GBP ISRE was more potent in mediating IFN-gamma-induced promoter activity in transient transfection. Third and most importantly, however, the strong difference between the IFN-gamma response of the two promoters was mainly due to the sequences surrounding the ISRE: the positive-acting GAS on one side and sequences with silencing properties 5' and 3' of the 9/27 ISRE on the other side. The data thus show mechanisms to both up- and down-regulate the activity of the ISRE. Images PMID:1508672

  7. Transcription of interferon stimulated genes in response to Porcine rubulavirus infection in vitro

    PubMed Central

    Flores-Ocelotl, María del Rosario; Rosas-Murrieta, Nora Hilda; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio; Herrera-Camacho, Irma; Santos-López, Gerardo

    2011-01-01

    Porcine rubulavirus (PoRV) is an emerging virus causing meningo-encephalitis and reproductive failures in pigs. Little is known about the pathogenesis and immune evasion of this virus; therefore research on the mechanisms underlying tissue damage during infection is essential. To explore these mechanisms, the effect of PoRV on the transcription of interferon (IFN) pathway members was analyzed in vitro by semi-quantitative RT-PCR. Ten TCID50 of PoRV stimulated transcription of IFNα, IFNβ, STAT1, STAT2, p48 and OAS genes in neuroblastoma cells, whereas infection with 100 TCID50 did not stimulate transcription levels more than non-infected cells. When the cells were primed with IFNα, infection with 1 TCDI50 of PoRV sufficed to stimulate the transcription of the same genes, but 10 and 100 TCID50 did not modify the transcription level of those genes as compared with non-infected and primed controls. MxA gene transcription was observed only when the cells were primed with IFNα and stimulated with 10 TCID50, whereas 100 TCID50 of PoRV did not modify the MxA transcription level as compared to non-infected and primed cells. Our results show that PoRV replication at low titers stimulates the expression of IFN-responsive genes in neuroblastoma cells, and suggest that replication of PoRV at higher titers inhibits the transcription of several members of the IFN pathway. These findings may contribute to the understanding of the pathogenesis of PoRV. PMID:24031738

  8. The Lyme Disease Spirochete Borrelia burgdorferi Utilizes Multiple Ligands, Including RNA, for Interferon Regulatory Factor 3-Dependent Induction of Type I Interferon-Responsive Genes

    PubMed Central

    Miller, Jennifer C.; Maylor-Hagen, Heather; Ma, Ying; Weis, John H.; Weis, Janis J.

    2010-01-01

    We recently discovered a critical role for type I interferon (IFN) in the development of murine Lyme arthritis. Borrelia burgdorferi-mediated induction of IFN-responsive genes by bone marrow-derived macrophages (BMDMs) was dependent upon a functional type I IFN receptor but independent of Toll-like receptor 2 (TLR2), TLR4, TLR9, and the adapter molecule MyD88. We now demonstrate that induction of the IFN transcriptional profile in B. burgdorferi-stimulated BMDMs occurs independently of the adapter TRIF and of the cytoplasmic sensor NOD2. In contrast, B. burgdorferi-induced transcription of these genes was dependent upon a rapid STAT1 feedback amplification pathway. IFN profile gene transcription was IRF3 dependent but did not utilize B. burgdorferi-derived DNA or DNase-sensitive ligands. Instead, IFN-responsive gene expression could be induced by B. burgdorferi-derived RNA. Interferon regulatory factor 3 (IRF3)-dependent IFN profile gene transcription was also induced by sonicated bacteria, by the lipoprotein OspA, and by factors released into the BSKII medium during culture of B. burgdorferi. The IFN-stimulatory activity of B. burgdorferi culture supernatants was not destroyed by nuclease treatment. Nuclease digestion also had no effect on IFN profile induction mediated by sonicated B. burgdorferi. Thus, B. burgdorferi-derived RNA, OspA, and non-nucleic acid ligands present in both sonicated bacteria and B. burgdorferi culture medium contribute to type I IFN-responsive gene induction. These findings suggest that B. burgdorferi invasion of joint tissue and the resultant type I IFN induction associated with Lyme arthritis development may involve multiple triggering ligands. PMID:20404081

  9. Human Papillomaviruses and the Interferon Response

    PubMed Central

    Beglin, Melanie; Melar-New, Marta

    2009-01-01

    Human papillomaviruses (HPV) are small DNA viruses that target stratified keratinocytes for infection. A subset of HPV types infect epithelia in the genital tract and are the causative agents of cervical as well as other anogenital cancers. Interferon treatment of existing genital HPV lesions has had mixed results. While HPV proteins down-regulate the expression of interferon-inducible genes, interferon treatment ultimately induces their high-level transcription after a delay. Cells containing complete HPV genomes that are able to undergo productive replication upon differentiation are sensitive to interferon-induced growth arrest, while cells from high-grade cancers that only express E6 and E7 are resistant. Recent studies indicate this sensitivity is dependent upon the binding of the interferon-inducible factor, p56, to the E1 replication protein. The response to interferon by HPV proteins is complex and results from the action of multiple viral proteins. PMID:19715460

  10. S-adenosyl methionine improves early viral responses and interferon-stimulated gene induction in hepatitis C nonresponders

    PubMed Central

    Feld, Jordan J.; Modi, Apurva A.; El-Diwany, Ramy; Rotman, Yaron; Thomas, Emmanuel; Koh, Christopher; Cherepanov, Vera; Heller, Theo; Ghany, Marc G.; Park, Yoon; Hoofnagle, Jay H.; Liang, T. Jake

    2010-01-01

    Background & Aims Fewer than half of patients infected with Hepatitis C virus (HCV) achieve sustained viral clearance after peginterferon and ribavirin therapy. S-adenosyl methionine (SAMe) increases interferon signaling in cell culture. We assessed the effect of SAMe on the kinetics of the early anti-viral response and interferon signaling in patients that did not respond to previous therapy (nonresponders) and investigated its mechanisms. Methods Nonresponders with HCV genotype-1 were given 2 weeks of peginterferon alfa-2a and ribavirin (Course A, baseline/control). After a 1-month period, patients received SAMe (1600 mg daily) for 2 weeks and then peginterferon and ribavirin for 48 weeks (Course B; completed by 21 of 24 patients). Viral kinetics and interferon-stimulated gene (ISG) expression in peripheral blood mononuclear cells (PBMCs) were compared between courses. Results The decrease in HCV RNA from 0 to 48 hours (phase 1) was similar before and after administration of SAMe. However, the slope increased for the second-phase decrease in HCV between courses A and B (Course A=0.11±0.04 log10IU/mL/week, Course B=0.27±0.06; P=0.009); 11 patients (53%) achieved an early virological response and 10 (48%) had undetectable HCV RNA by week 24. Induction of ISGs in PBMCs was significantly greater after Course B. In cultured cells, SAMe increased induction of ISGs, compared with only peginterferon and ribavirin, and the antiviral effects of interferon by increasing STAT1 methylation, which might promote binding of STAT1 to DNA. Conclusions The addition of SAMe to peginterferon and ribavirin improves the kinetics of the early anti-viral response and induces ISGs in patients with HCV genotype 1 that do not respond to interferon therapy. SAMe might be used with peginterferon-based therapies in patients with chronic HCV infections. PMID:20854821

  11. Association of SCARB1 Gene Polymorphisms with Virological Response in Chronic Hepatitis C Patients Receiving Pegylated Interferon plus Ribavirin Therapy

    PubMed Central

    Hsu, Ching-Sheng; Hsu, Shih-Jer; Liu, Wei-Liang; Chen, Ding-Shinn; Kao, Jia-Horng

    2016-01-01

    The scavenger receptor type B class I(SR-BI) is a receptor for high-density lipoproteins(HDL) and one of entry factors for hepatitis C virus(HCV). We examined the association of single nucleotide polymorphisms(SNPs) of the SCARB1 gene, which encodes SR-BI, with virologic responses to pegylated interferon-based treatment in Asian chronic hepatitis C(CHC) patients. Human genomic and clinical data were collected from 156 consecutive Taiwanese HCV genotype 1 or 2 patients who received pegylated interferon plus ribavirin therapy and 153 non-HCV healthy subjects. Three SNPs(rs10846744, rs5888, and rs3782287) of the SCARB1 gene that have been linked to humans diseases were investigated. rs10846744 rather than rs5888 or rs3782287 was associated with serum HCV RNA level and sustained virologic response(SVR) to pegylated interferon plus ribavirin therapy in CHC patients(GG vs. non-GG genotype, Adjusted Odds Ratio, 95% CI: 0.32, 0.11–0.95, P = 0.039). Among patients with IL28B rs8099917 non-TT genotypes, those with rs10846744 non-GG genotype had a higher SVR rate than those with GG genotypes. In addition, patients with GG genotype had a higher fasting blood glucose level than those with CC genotype. In conclusion, SCARB1 gene polymorphisms may serve as a potential predictor of treatment responses in CHC patients receiving interferon-based therapy. (ClinicalTrials.gov number, NCT02714712). PMID:27561198

  12. Association of SCARB1 Gene Polymorphisms with Virological Response in Chronic Hepatitis C Patients Receiving Pegylated Interferon plus Ribavirin Therapy.

    PubMed

    Hsu, Ching-Sheng; Hsu, Shih-Jer; Liu, Wei-Liang; Chen, Ding-Shinn; Kao, Jia-Horng

    2016-01-01

    The scavenger receptor type B class I(SR-BI) is a receptor for high-density lipoproteins(HDL) and one of entry factors for hepatitis C virus(HCV). We examined the association of single nucleotide polymorphisms(SNPs) of the SCARB1 gene, which encodes SR-BI, with virologic responses to pegylated interferon-based treatment in Asian chronic hepatitis C(CHC) patients. Human genomic and clinical data were collected from 156 consecutive Taiwanese HCV genotype 1 or 2 patients who received pegylated interferon plus ribavirin therapy and 153 non-HCV healthy subjects. Three SNPs(rs10846744, rs5888, and rs3782287) of the SCARB1 gene that have been linked to humans diseases were investigated. rs10846744 rather than rs5888 or rs3782287 was associated with serum HCV RNA level and sustained virologic response(SVR) to pegylated interferon plus ribavirin therapy in CHC patients(GG vs. non-GG genotype, Adjusted Odds Ratio, 95% CI: 0.32, 0.11-0.95, P = 0.039). Among patients with IL28B rs8099917 non-TT genotypes, those with rs10846744 non-GG genotype had a higher SVR rate than those with GG genotypes. In addition, patients with GG genotype had a higher fasting blood glucose level than those with CC genotype. In conclusion, SCARB1 gene polymorphisms may serve as a potential predictor of treatment responses in CHC patients receiving interferon-based therapy. (ClinicalTrials.gov number, NCT02714712). PMID:27561198

  13. Trisomy 21 consistently activates the interferon response

    PubMed Central

    Sullivan, Kelly D; Lewis, Hannah C; Hill, Amanda A; Pandey, Ahwan; Jackson, Leisa P; Cabral, Joseph M; Smith, Keith P; Liggett, L Alexander; Gomez, Eliana B; Galbraith, Matthew D; DeGregori, James; Espinosa, Joaquín M

    2016-01-01

    Although it is clear that trisomy 21 causes Down syndrome, the molecular events acting downstream of the trisomy remain ill defined. Using complementary genomics analyses, we identified the interferon pathway as the major signaling cascade consistently activated by trisomy 21 in human cells. Transcriptome analysis revealed that trisomy 21 activates the interferon transcriptional response in fibroblast and lymphoblastoid cell lines, as well as circulating monocytes and T cells. Trisomy 21 cells show increased induction of interferon-stimulated genes and decreased expression of ribosomal proteins and translation factors. An shRNA screen determined that the interferon-activated kinases JAK1 and TYK2 suppress proliferation of trisomy 21 fibroblasts, and this defect is rescued by pharmacological JAK inhibition. Therefore, we propose that interferon activation, likely via increased gene dosage of the four interferon receptors encoded on chromosome 21, contributes to many of the clinical impacts of trisomy 21, and that interferon antagonists could have therapeutic benefits. DOI: http://dx.doi.org/10.7554/eLife.16220.001 PMID:27472900

  14. Survey of Transcript Expression in Rainbow Trout Leukocytes Reveals a Major Contribution of Interferon-Responsive Genes in the Early Response to a Rhabdovirus Infection

    PubMed Central

    O'Farrell, Caroline; Vaghefi, Nikta; Cantonnet, Monique; Buteau, Bénédicte; Boudinot, Pierre; Benmansour, Abdenour

    2002-01-01

    Virus infections induce changes in the expression of host cell genes. A global knowledge of these modifications should help to better understand the virus/host cell interactions. To obtain a more comprehensive view of the rainbow trout response to a viral infection, we used the subtractive suppressive hybridization methodology in the viral hemorrhagic septicemia model of infection. We infected rainbow trout leukocytes with viral hemorrhagic septicemia virus (VHSV), and total RNA from infected and mock-infected cells was compared at 40 h postinfection. Twenty-four virus-induced genes were ultimately retrieved from the subtracted cDNA library, and their differential expression was further confirmed by semiquantitative reverse transcription-PCR and Northern blot analysis. Among these sequences, three were already described as VHSV-induced genes. Eight sequences with known homologs were extended to full-length cDNA using 5′ and 3′ rapid amplification of cDNA ends, and they were subsequently divided into three functional subsets. Four genes were homologous to mammalian interferon responsive genes, three were similar to chemo-attractant molecules (CXC chemokine, galectin), and two had nucleic acid binding domains. All of the virus-induced genes were also induced by rainbow trout interferon, indicating that the interferon pathway is the predominant component of the anti-VHSV response. They were also expressed in vivo in experimentally infected fish, indicating their biological relevance in natural infection. PMID:12134009

  15. Achieving sustained virologic response after interferon-free hepatitis C virus treatment correlates with hepatic interferon gene expression changes independent of cirrhosis.

    PubMed

    Meissner, E G; Kohli, A; Virtaneva, K; Sturdevant, D; Martens, C; Porcella, S F; McHutchison, J G; Masur, H; Kottilil, S

    2016-07-01

    Chronic hepatitis C virus (HCV) infection can now be treated with oral directly acting antiviral agents, either with or without ribavirin (RBV). Virologic relapse after treatment can occur, and in some studies was more common in cirrhotic subjects. We previously observed changes in hepatic immunity during interferon (IFN)-free therapy that correlated with favourable outcome in subjects with early liver disease. Here, we compared changes in endogenous IFN pathways during IFN-free, RBV-free therapy between cirrhotic and noncirrhotic subjects. mRNA and microRNA (miRNA) expression analyses were performed on paired pre- and post-treatment liver biopsies from genotype-1 HCV subjects treated with sofosbuvir/ledipasvir (SOF/LDV) for 12 weeks (n = 4, 3 cirrhotics) or SOF/LDV combined with GS-9669 or GS-9451 for 6 weeks (n = 6, 0 cirrhotics). Nine of ten subjects achieved a sustained virologic response (SVR), while one noncirrhotic subject relapsed. Hepatic IFN-stimulated gene expression decreased with treatment in the liver of all subjects, with no observable impact of cirrhosis. Hepatic gene expression of type III IFNs (IFNL1, IFNL3, IFNL4-ΔG) similarly decreased with treatment, while IFNA2 expression, undetectable in all subjects pretreatment, was detected post-treatment in three subjects who achieved a SVR. Only the subject who relapsed had detectable IFNL4-ΔG expression in post-treatment liver. Other IFNs had no change in gene expression (IFNG, IFNB1, IFNA5) or could not be detected. Although expression of multiple hepatic miRNAs changed with treatment, many miRNAs previously implicated in HCV replication and IFN signalling had unchanged expression. In conclusion, favourable treatment outcome during IFN-free HCV therapy is associated with changes in the host IFN response regardless of cirrhosis. PMID:26840694

  16. Regulation of interferon-gamma gene expression.

    PubMed

    Young, H A

    1996-08-01

    Interferon-gamma (IFN-gamma), also known as type II interferon, is an important immunoregulatory gene that has multiple effects on the development, maturation, and function of the immune system. IFN-gamma mRNA and protein are expressed predominantly by T cells and large granular lymphocytes. The IFN-gamma mRNA is induced/inhibited in these cell types by a wide variety of extracellular signals, thus implicating a number of diverse, yet convergent signal transduction pathways in its transcriptional control. In this review, I describe how DNA methylation and specific DNA binding proteins may regulate transcription of the IFN-gamma gene in response to extracellular signals. PMID:8877725

  17. Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection.

    PubMed

    Wong, Mun-Teng; Chen, Steve S-L

    2016-01-01

    Infection with hepatitis C virus (HCV), a major viral cause of chronic liver disease, frequently progresses to steatosis and cirrhosis, which can lead to hepatocellular carcinoma. HCV infection strongly induces host responses, such as the activation of the unfolded protein response, autophagy and the innate immune response. Upon HCV infection, the host induces the interferon (IFN)-mediated frontline defense to limit virus replication. Conversely, HCV employs diverse strategies to escape host innate immune surveillance. Type I IFN elicits its antiviral actions by inducing a wide array of IFN-stimulated genes (ISGs). Nevertheless, the mechanisms by which these ISGs participate in IFN-mediated anti-HCV actions remain largely unknown. In this review, we first outline the signaling pathways known to be involved in the production of type I IFN and ISGs and the tactics that HCV uses to subvert innate immunity. Then, we summarize the effector mechanisms of scaffold ISGs known to modulate IFN function in HCV replication. We also highlight the potential functions of emerging ISGs, which were identified from genome-wide siRNA screens, in HCV replication. Finally, we discuss the functions of several cellular determinants critical for regulating host immunity in HCV replication. This review will provide a basis for understanding the complexity and functionality of the pleiotropic IFN system in HCV infection. Elucidation of the specificity and the mode of action of these emerging ISGs will also help to identify novel cellular targets against which effective HCV therapeutics can be developed. PMID:25544499

  18. The hematopoietic regulator, ELF-1, enhances the transcriptional response to Interferon-β of the OAS1 anti-viral gene

    PubMed Central

    Larsen, Steven; Kawamoto, Shota; Tanuma, Sei-ichi; Uchiumi, Fumiaki

    2015-01-01

    Interferon (IFN) therapy is effective in treating cancers, haematological and virus induced diseases. The classical Jak/Stat pathway of IFN signal transduction leading to changes in transcriptional activity is well established but alone does not explain the whole spectrum of cellular responses to IFN. Gene promoters contain cis-acting sequences that allow precise and contextual binding of transcription factors, which control gene expression. Using the transcriptional response to IFN as a starting point we report a high frequency of tandem GGAA motifs in the proximal promoters of Interferon stimulated genes, suggesting a key regulatory action. Utilizing the well-characterized anti-viral gene, OAS1, as an example Interferon stimulated gene promoter containing such a duplicated GGAA motif, we have demonstrated a regulatory role of this promoter in response to IFN by mutation analysis. Furthermore, we identified ELF-1 as a direct binding factor at this motif. Additionally, recruitment of RB1 and SP1 factors to the promoter following IFN stimulation is shown. ELF-1 overexpression enhanced and knockdown of ELF-1 inhibited full activation of OAS1 by IFN stimulation. Collectively, ELF-1 binds an important duplicated GGAA cis-acting element at the OAS1 promoter and in cooperation with RB1 and SP1 recruitment contributes to regulation in response to IFN stimulation. PMID:26643049

  19. Variants in Interferon-α Pathway Genes and Response to Pegylated-Interferon-α2a plus Ribavirin for Treatment of Chronic HCV Infection in the HALT-C Trial

    PubMed Central

    Welzel, Tania Mara; Morgan, Timothy R.; Bonkovsky, Herbert L.; Naishadham, Deepa; Pfeiffer, Ruth M.; Wright, Elizabeth C.; Hutchinson, Amy A.; Crenshaw, Andrew T.; Bashirova, Arman; Carrington, Mary; Dotrang, Myhanh; Sterling, Richard K.; Lindsay, Karen L.; Fontana, Robert J.; Lee, William M.; Di Bisceglie, Adrian M.; Ghany, Marc G.; Gretch, David R.; Chanock, Stephen J.; Chung, Raymond T.; O’Brien, Thomas R.

    2009-01-01

    Combination treatment with pegylated-interferon-α and ribavirin, the current recommended therapy for chronic hepatitis C virus (HCV) infection, results in a sustained virological response (SVR) in only about half of patients. Because genes involved in the interferon-α pathway may affect anti-viral responses, we analyzed the relationship between variants in these genes and SVR among participants in the HALT-C trial. Patients had advanced chronic hepatitis C and had previously failed to respond to interferon-based treatment. Participants were treated with peginterferon-α2a and ribavirin during the trial. Subjects with undetectable HCV RNA at week 72 were considered to have had an SVR. Subjects with detectable HCV RNA at week 20 were considered non-responders. We used TaqMan assays to genotype 56 polymorphisms found in 13 genes in the interferon-α pathway. This analysis compares genotypes for participants with an SVR to non-responders. The primary analysis was restricted to European American participants because a priori statistical power was low among the small number (n=131) of African American patients. We used logistic regression to control the effect of other variables that are associated with treatment response. Among 581 European American patients, SVR was associated with IFNAR1 IVS1-22G (adjusted odds ratio [aOR], 0.57; p=0.02); IFNAR2 Ex2-33C (aOR, 2.09; p=0.02); JAK1 IVS22+112T (aOR, 1.66; p=0.04); and ADAR Ex9+14A (aOR, 1.67; p=0.03). For the TYK2 -2256A promoter region variant a borderline association was present among European American participants (OR, 1.51; p=0.05) and a strong relationship among African American patients; all 10 with SVR who were genotyped for TYK2-2256 carried the A variant compared to 68/120 (57%) non-responders (p=0.006). In conclusion, genetic polymorphisms in the interferon-α pathway may affect responses to antiviral therapy of chronic hepatitis C. PMID:19434718

  20. A novel c-Jun-dependent signal transduction pathway necessary for the transcriptional activation of interferon gamma response genes.

    PubMed

    Gough, Daniel J; Sabapathy, Kanaga; Ko, Enoch Yi-No; Arthur, Helen A; Schreiber, Robert D; Trapani, Joseph A; Clarke, Christopher J P; Johnstone, Ricky W

    2007-01-12

    The biological effects of interferon gamma (IFNgamma) are mediated by interferon-stimulated genes (ISGs), many of which are activated downstream of Janus kinase (JAK)/signal transducer and activator of transcription 1 (STAT1) signaling. Herein we have shown that IFNgamma rapidly activated AP-1 DNA binding that required c-Jun but was independent of JAK1 and STAT1. IFNgamma-induced c-Jun phosphorylation and AP-1 DNA binding required the MEK1/2 and ERK1/2 signaling pathways, whereas the JNK1/2 and p38 mitogen-activated protein kinase pathways were dispensable. The induction of several ISGs, including ifi-205 and iNOS, was impaired in IFNgamma-treated c-Jun-/- cells, but others, such as IP-10 and SOCS3, were unaffected, and chromatin immunoprecipitation demonstrated that c-Jun binds to the iNOS promoter following treatment with IFNgamma. Thus, IFNgamma induced JAK1- and STAT1-independent activation of the ERK mitogen-activated protein kinase pathway, phosphorylation of c-Jun, and activation of AP-1 DNA binding, which are important for the induction of a subset of ISGs. This represents a novel signal transduction pathway induced by IFNgamma that proceeds in parallel with conventional JAK/STAT signaling to activate ISGs. PMID:17105733

  1. Regulation of type I interferon responses

    PubMed Central

    Ivashkiv, Lionel B.; Donlin, Laura T.

    2014-01-01

    Type I interferons (IFNs) activate intracellular antimicrobial programmes and influence the development of innate and adaptive immune responses. Canonical type I IFN signalling activates the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathway, leading to transcription of IFN-stimulated genes (ISGs). Host, pathogen and environmental factors regulate the responses of cells to this signalling pathway and thus calibrate host defences while limiting tissue damage and preventing autoimmunity. Here, we summarize the signalling and epigenetic mechanisms that regulate type I IFN-induced STAT activation and ISG transcription and translation. These regulatory mechanisms determine the biological outcomes of type I IFN responses and whether pathogens are cleared effectively or chronic infection or autoimmune disease ensues. PMID:24362405

  2. Fluorescence-Activated Cell Sorting-Based Analysis Reveals an Asymmetric Induction of Interferon-Stimulated Genes in Response to Seasonal Influenza A Virus

    PubMed Central

    von Recum-Knepper, Jessica; Sadewasser, Anne; Weinheimer, Viola K.

    2015-01-01

    ABSTRACT Influenza A virus (IAV) infection provokes an antiviral response involving the expression of type I and III interferons (IFN) and IFN-stimulated genes (ISGs) in infected cell cultures. However, the spatiotemporal dynamics of the IFN reaction are incompletely understood, as previous studies investigated mainly the population responses of virus-infected cultures, although substantial cell-to-cell variability has been documented. We devised a fluorescence-activated cell sorting-based assay to simultaneously quantify expression of viral antigens and ISGs, such as ISG15, MxA, and IFIT1, in IAV-infected cell cultures at the single-cell level. This approach revealed that seasonal IAV triggers an unexpected asymmetric response, as the major cell populations expressed either viral antigen or ISG, but rarely both. Further investigations identified a role of the viral NS1 protein in blocking ISG expression in infected cells, which surprisingly did not reduce paracrine IFN signaling to noninfected cells. Interestingly, viral ISG control was impaired in cultures infected with avian-origin IAV, including the H7N9 virus from eastern China. This phenotype was traced back to polymorphic NS1 amino acids known to be important for stable binding of the polyadenylation factor CPSF30 and concomitant suppression of host cell gene expression. Most significantly, mutation of two amino acids within the CPSF30 attachment site of NS1 from seasonal IAV diminished the strict control of ISG expression in infected cells and substantially attenuated virus replication. In conclusion, our approach revealed an asymmetric, NS1-dependent ISG induction in cultures infected with seasonal IAV, which appears to be essential for efficient virus propagation. IMPORTANCE Interferons are expressed by infected cells in response to IAV infection and play important roles in the antiviral immune response by inducing hundreds of interferon-stimulated genes (ISGs). Unlike many previous studies, we

  3. Liver Gene Expression Profiles Correlate with Virus Infection and Response to Interferon Therapy in Chronic Hepatitis B Patients.

    PubMed

    Wu, Hui-Lin; Hsiao, Tzu-Hung; Chen, Pei-Jer; Wong, Siao-Han; Kao, Jia-Horng; Chen, Ding-Shinn; Lu, Jo-Yang; Lu, Tzu-Pin; Chen, Yidong; Chuang, Eric Y; Tu, Hui-Chu; Liu, Chun-Jen

    2016-01-01

    The natural course of chronic hepatitis B (CHB) infection and treatment response are determined mainly by the genomic characteristics of the individual. We investigated liver gene expression profiles to reveal the molecular basis associated with chronic hepatitis B and IFN-alpha (IFNα) treatment response in CHB patients. Expression profiles were compared between seven paired liver biopsy samples taken before and 6 months after successful IFNα treatment or between pretreatment biopsy samples of 11 IFNα responders and 11 non-responders. A total of 132 differentially up-regulated and 39 down-regulated genes were identified in the pretreated livers of CHB patients. The up-regulated genes were mainly related to cell proliferation and immune response, with IFNγ and B cell signatures significantly enriched. Lower intrahepatic HBV pregenomic RNA levels and 25 predictive genes were identified in IFNα responders. The predictive gene set in responders significantly overlapped with the up-regulated genes associated with the pretreated livers of CHB patients. The mechanisms responsible for IFNα treatment responses are different between HBV and HCV patients. HBV infection evokes significant immune responses even in chronic infection. The up-regulated genes are predictive of responsiveness to IFNα therapy, as are lower intrahepatic levels of HBV pregenomic RNA and pre-activated host immune responses. PMID:27546197

  4. Liver Gene Expression Profiles Correlate with Virus Infection and Response to Interferon Therapy in Chronic Hepatitis B Patients

    PubMed Central

    Wu, Hui-Lin; Hsiao, Tzu-Hung; Chen, Pei-Jer; Wong, Siao-Han; Kao, Jia-Horng; Chen, Ding-Shinn; Lu, Jo-Yang; Lu, Tzu-Pin; Chen, Yidong; Chuang, Eric Y.; Tu, Hui-Chu; Liu, Chun-Jen

    2016-01-01

    The natural course of chronic hepatitis B (CHB) infection and treatment response are determined mainly by the genomic characteristics of the individual. We investigated liver gene expression profiles to reveal the molecular basis associated with chronic hepatitis B and IFN-alpha (IFNα) treatment response in CHB patients. Expression profiles were compared between seven paired liver biopsy samples taken before and 6 months after successful IFNα treatment or between pretreatment biopsy samples of 11 IFNα responders and 11 non-responders. A total of 132 differentially up-regulated and 39 down-regulated genes were identified in the pretreated livers of CHB patients. The up-regulated genes were mainly related to cell proliferation and immune response, with IFNγ and B cell signatures significantly enriched. Lower intrahepatic HBV pregenomic RNA levels and 25 predictive genes were identified in IFNα responders. The predictive gene set in responders significantly overlapped with the up-regulated genes associated with the pretreated livers of CHB patients. The mechanisms responsible for IFNα treatment responses are different between HBV and HCV patients. HBV infection evokes significant immune responses even in chronic infection. The up-regulated genes are predictive of responsiveness to IFNα therapy, as are lower intrahepatic levels of HBV pregenomic RNA and pre-activated host immune responses. PMID:27546197

  5. Type III interferon gene expression in response to influenza virus infection in chicken and duck embryonic fibroblasts.

    PubMed

    Zhang, Zhijie; Zou, Tingting; Hu, Xiaotong; Jin, Hong

    2015-12-01

    Type III interferons (IFN-λs) comprise a group of newly identified antiviral cytokines that are functionally similar to type I IFNs and elicit first-line antiviral responses. Recently, type III IFNs were identified in several species; however, little information is available about type III IFNs in ducks. We compared the expression of type III IFNs and their receptor in chicken embryonic fibroblasts (CEFs) and duck embryonic fibroblasts (DEFs) in response to influenza virus infection. The results showed that the expression of type III IFNs was upregulated in both DEFs and CEFs following infection with H1N1 influenza virus or treatment with poly (I:C), and expression levels were significantly higher in CEFs than in DEFs at each time point. The expression of the receptor for type III IFNs (IL-28Rα) was also upregulated following infection with H1N1 virus or treatment with poly (I:C) and was significantly higher in CEFs than in DEFs at each time point. The expression of the receptor for type III IFNs occurred from 8 hpi and remained at similar levels until 36 hpi in CEFs, but the expression level was elevated from 36 hpi in DEFs. These findings revealed the existence of distinct expression patterns for type III IFNs in chickens and ducks in response to influenza virus infection. The provided data are fundamentally useful in furthering our understanding of type III IFNs and innate antiviral responses in different species. PMID:26598110

  6. Human Cytokinome Analysis for Interferon Response

    PubMed Central

    Al-Yahya, Suhad; Mahmoud, Linah; Al-Zoghaibi, Fahad; Al-Tuhami, Abdullah; Amer, Haithem; Almajhdi, Fahad N.; Polyak, Stephen J.

    2015-01-01

    ABSTRACT Cytokines are a group of small secreted proteins that mediate a diverse range of immune and nonimmune responses to inflammatory and microbial stimuli. Only a few of these cytokines mount an antiviral response, including type I, II, and III interferons (IFNs). During viral infections and under inflammatory conditions, a number of cytokines and chemokines are coproduced with IFN; however, no systematic study exists on the interactions of the cytokine repertoire with the IFN response. Here, we performed the largest cytokine and chemokine screen (the human cytokinome, with >240 members) to investigate their modulation of type I and type II IFN responses in a cell line model. We evaluated the cytokine activities in both IFN-stimulated response element (ISRE) and IFN-γ activation sequence (GAS) reporter systems. Several cytokine clusters that augment either or both ISRE- and GAS-mediated responses to IFNs were derived from the screen. We identified novel modulators of IFN response—betacellulin (BTC), interleukin 11 (IL-11), and IL-17F—that caused time-dependent induction of the IFN response. The ability to induce endogenous IFN-β and IFN-stimulated genes varies among these cytokines and was largely dependent on Stat1, as assessed by Stat1 mutant fibroblasts. Certain cytokines appear to augment the IFN-β response through the NF-κB pathway. The novel IFN-like cytokines augmented the antiviral activity of IFN-α against several RNA viruses, including encephalomyocarditis virus, vesicular stomatitis virus, and influenza virus, in susceptible cell lines. Overall, the study represents a large-scale analysis of cytokines for enhancing the IFN response and identified cytokines capable of enhancing Stat1, IFN-induced gene expression, and antiviral activities. IMPORTANCE Innate immunity to viruses is an early defense system to ward off viruses. One mediator is interferon (IFN), which activates a cascade of biochemical events that aim to control the virus life

  7. Positive feedback regulation of type I interferon by the interferon-stimulated gene STING

    PubMed Central

    Ma, Feng; Li, Bing; Yu, Yongxin; Iyer, Shankar S; Sun, Mingyu; Cheng, Genhong

    2015-01-01

    Stimulator of interferon genes (STING) is an important regulator of the innate immune response to cytoplasmic DNA. However, regulation of STING itself is largely unknown. Here, we show that STING transcription is induced by innate immune activators, such as cyclic dinucleotides (CDNs), through an IFNAR1- and STAT1-dependent pathway. We also identify a STAT1 binding site in the STING promoter that contributes to the activation of STING transcription. Furthermore, we show that induction of STING mediates the positive feedback regulation of CDN-triggered IFN-I. Thus, our study demonstrates that STING is an interferon-stimulated gene (ISG) and its induction is crucial for the IFN-I positive feedback loop. PMID:25572843

  8. Influence of Vitamin D-Related Gene Polymorphisms (CYP27B and VDR) on the Response to Interferon/Ribavirin Therapy in Chronic Hepatitis C

    PubMed Central

    García-Martín, Elena; Agúndez, José A. G.; Maestro, María L.; Suárez, Avelina; Vidaurreta, Marta; Martínez, Carmen; Fernández-Pérez, Cristina; Ortega, Luis; Ladero, José M.

    2013-01-01

    Background and Aims Vitamin D exerts immunomodulatory effects on the host response against infection with hepatitis C virus (HCV). This study was performed to assess the putative influence of polymorphisms in vitamin D-related genes on the response to antiviral therapy in patients with chronic hepatitis C (CHC). Methods Single nucleotide polymorphisms (SNPs) in CYP27B-1260 gene promoter (rs10877012AC) and in vitamin D receptor (VDR) gene rs2228570TC, rs1544410CT, rs7975232AC and rs731236AT were analyzed in a cohort of 238 Caucasian CHC patients treated with pegylated interferon (Peg-IFN) plus ribavirin (RBV). Multivariate analyses were performed to exclude confounding effects of well-known baseline predictors of response to therapy (HCV genotype and load, IL28B genotype, age, and GGT and serum cholesterol). Results Three SNPs at the VDR gene (rs1544410, rs7975232 and rs731236) were in strong linkage disequilibrium, with the CCA haplotype predicting therapeutic failure [Odds ratio 2.743; (95% C.I. 1.313–5.731), p = 0.007]. The carrier state of the VDR rs2228570 T allele was inversely related to the probability of therapeutic failure [Odds ratio 0.438; 95 C.I. (0.204–0.882), p = 0.021]. No relation existed between CYP27B-1260 rs10877012 polymorphism and response to therapy. The area under the operating curve (AUROC) based on the model including all variables significantly related to the response to therapy was 0.846 (95% confidence interval = 0.793–0.899). Conclusion VDR gene polymorphisms are independently related to the response to Peg-IFN+RBV therapy in chronic hepatitis C and could be used as complementary biomarkers of response when included in a prediction algorithm in association with demographic, virologic, biochemical and genetic traits. PMID:24073221

  9. Comprehensive metagenomic analysis of glioblastoma reveals absence of known virus despite antiviral-like type I interferon gene response

    PubMed Central

    Cosset, Érika; Petty, Tom J; Dutoit, Valérie; Cordey, Samuel; Padioleau, Ismael; Otten-Hernandez, Patricia; Farinelli, Laurent; Kaiser, Laurent; Bruyère-Cerdan, Pascale; Tirefort, Diderik; Amar El-Dusouqui, Soraya; Nayernia, Zeynab; Krause, Karl-Heinz; Zdobnov, Evgeny M; Dietrich, Pierre-Yves; Rigal, Emmanuel; Preynat-Seauve, Olivier

    2014-01-01

    Glioblastoma is a deadly malignant brain tumor and one of the most incurable forms of cancer in need of new therapeutic targets. As some cancers are known to be caused by a virus, the discovery of viruses could open the possibility to treat, and perhaps prevent, such a disease. Although an association with viruses such as cytomegalovirus or Simian virus 40 has been strongly suggested, involvement of these and other viruses in the initiation and/or propagation of glioblastoma remains vague, controversial and warrants elucidation. To exhaustively address the association of virus and glioblastoma, we developed and validated a robust metagenomic approach to analyze patient biopsies via high-throughput sequencing, a sensitive tool for virus screening. In addition to traditional clinical diagnostics, glioblastoma biopsies were deep-sequenced and analyzed with a multistage computational pipeline to identify known or potentially discover unknown viruses. In contrast to the studies reporting the presence of viral signatures in glioblastoma, no common or recurring active viruses were detected, despite finding an antiviral-like type I interferon response in some specimens. Our findings highlight a discrete and non-specific viral signature and uncharacterized short RNA sequences in glioblastoma. This study provides new insights into glioblastoma pathogenesis and defines a general methodology that can be used for high-resolution virus screening and discovery in human cancers. PMID:24347514

  10. Hepatitis C Virus Frameshift/Alternate Reading Frame Protein Suppresses Interferon Responses Mediated by Pattern Recognition Receptor Retinoic-Acid-Inducible Gene-I

    PubMed Central

    Park, Seung Bum; Seronello, Scott; Mayer, Wasima; Ojcius, David M.

    2016-01-01

    Hepatitis C virus (HCV) actively evades host interferon (IFN) responses but the mechanisms of how it does so are not completely understood. In this study, we present evidence for an HCV factor that contributes to the suppression of retinoic-acid-inducible gene-I (RIG-I)-mediated IFN induction. Expression of frameshift/alternate reading frame protein (F/ARFP) from HCV -2/+1 frame in Huh7 hepatoma cells suppressed type I IFN responses stimulated by HCV RNA pathogen-associated molecular pattern (PAMP) and poly(IC). The suppression occurred independently of other HCV factors; and activation of interferon stimulated genes, TNFα, IFN-λ1, and IFN-λ2/3 was likewise suppressed by HCV F/ARFP. Point mutations in the full-length HCV sequence (JFH1 genotype 2a strain) were made to introduce premature termination codons in the -2/+1 reading frame coding for F/ARFP while preserving the original reading frame, which enhanced IFNα and IFNβ induction by HCV. The potentiation of IFN response by the F/ARFP mutations was diminished in Huh7.5 cells, which already have a defective RIG-I, and by decreasing RIG-I expression in Huh7 cells. Furthermore, adding F/ARFP back via trans-complementation suppressed IFN induction in the F/ARFP mutant. The F/ARFP mutants, on the other hand, were not resistant to exogenous IFNα. Finally, HCV-infected human liver samples showed significant F/ARFP antibody reactivity, compared to HCV-uninfected control livers. Therefore, HCV F/ARFP likely cooperates with other viral factors to suppress type I and III IFN induction occurring through the RIG-I signaling pathway. This study identifies a novel mechanism of pattern recognition receptor modulation by HCV and suggests a biological function of the HCV alternate reading frame in the modulation of host innate immunity. PMID:27404108

  11. Candidate Gene Study of TRAIL and TRAIL Receptors: Association with Response to Interferon Beta Therapy in Multiple Sclerosis Patients

    PubMed Central

    Órpez-Zafra, Teresa; Pinto-Medel, María Jesús; Oliver-Martos, Begoña; Ortega-Pinazo, Jesús; Arnáiz, Carlos; Guijarro-Castro, Cristina; Varadé, Jezabel; Álvarez-Lafuente, Roberto; Urcelay, Elena; Sánchez-Jiménez, Francisca

    2013-01-01

    TRAIL and TRAIL Receptor genes have been implicated in Multiple Sclerosis pathology as well as in the response to IFN beta therapy. The objective of our study was to evaluate the association of these genes in relation to the age at disease onset (AAO) and to the clinical response upon IFN beta treatment in Spanish MS patients. We carried out a candidate gene study of TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 genes. A total of 54 SNPs were analysed in 509 MS patients under IFN beta treatment, and an additional cohort of 226 MS patients was used to validate the results. Associations of rs1047275 in TRAILR-2 and rs7011559 in TRAILR-4 genes with AAO under an additive model did not withstand Bonferroni correction. In contrast, patients with the TRAILR-1 rs20576-CC genotype showed a better clinical response to IFN beta therapy compared with patients carrying the A-allele (recessive model: p = 8.88×10−4, pc = 0.048, OR = 0.30). This SNP resulted in a non synonymous substitution of Glutamic acid to Alanine in position 228 (E228A), a change previously associated with susceptibility to different cancer types and risk of metastases, suggesting a lack of functionality of TRAILR-1. In order to unravel how this amino acid change in TRAILR-1 would affect to death signal, we performed a molecular modelling with both alleles. Neither TRAIL binding sites in the receptor nor the expression levels of TRAILR-1 in peripheral blood mononuclear cell subsets (monocytes, CD4+ and CD8+ T cells) were modified, suggesting that this SNP may be altering the death signal by some other mechanism. These findings show a role for TRAILR-1 gene variations in the clinical outcome of IFN beta therapy that might have relevance as a biomarker to predict the response to IFN beta in MS. PMID:23658636

  12. Association of Myxovirus Resistance Gene Promoter Polymorphism with Response to Combined Interferon Treatment and Progression of Liver Disease in Chronic HCV Egyptian Patients.

    PubMed

    Bader El Din, Noha Gamal; Salum, Ghada M; Anany, Mohamed A; Ibrahim, Marwa Khalil; Dawood, Reham Mohamed; Zayed, Naglaa; El Abd, Yasmine S; El-Shenawy, Reem; El Awady, Mostafa K

    2015-08-01

    To evaluate the frequency of single-nucleotide polymorphism at the -88 myxovirus resistance (MxA) gene promoter region in relation to the status of hepatitis C virus (HCV) progression and response to combined interferon (IFN) in chronic HCV Egyptian patients. One hundred ten subjects were enrolled in the study; 60 HCV genotype 4-infected patients who underwent combined IFN therapy and 50 healthy individuals. All subjects were genotyped for -88 MxA polymorphism by the restriction fragment length polymorphism technique. There was an increasing trend of response to combined IFN treatment as 34.9% of GG, 64.3% of GT, and 66.7% of TT genotypes were sustained responders (P=0.05). The T allele was significantly affecting the response rate more than G allele (P=0.032). Moreover, the hepatic fibrosis score and hepatitis activity were higher in GG genotypes compared with the GT and TT genotypes. The multivariate analysis showed that the MxA GG genotype was an independent factor increasing the no response to IFN therapy (P=0.04, odds ratio [OR] 3.822, 95% confidence interval [CI] 1.056-11.092), also MxA G allele (P=0.0372, OR 2.905, 95% CI 1.066-7.919). MxA -88 polymorphism might be a potential biomarker to predict response to IFN and disease progression in chronic HCV-infected patients. PMID:25868067

  13. Acetaminophen Modulates the Transcriptional Response to Recombinant Interferon

    PubMed Central

    Farnsworth, Aaron; Flaman, Anathea S.; Prasad, Shiv S.; Gravel, Caroline; Williams, Andrew; Yauk, Carole L.; Li, Xuguang

    2010-01-01

    Background Recombinant interferon treatment can result in several common side effects including fever and injection-site pain. Patients are often advised to use acetaminophen or other over-the-counter pain medications as needed. Little is known regarding the transcriptional changes induced by such co-administration. Methodology/Principal Findings We tested whether the administration of acetaminophen causes a change in the response normally induced by interferon-β treatment. CD-1 mice were administered acetaminophen (APAP), interferon-β (IFN-β) or a combination of IFN-β+APAP and liver and serum samples were collected for analysis. Differential gene expression was determined using an Agilent 22 k whole mouse genome microarray. Data were analyzed by several methods including Gene Ontology term clustering and Gene Set Enrichment Analysis. We observed a significant change in the transcription profile of hepatic cells when APAP was co-administered with IFN-β. These transcriptional changes included a marked up-regulation of genes involved in signal transduction and cell differentiation and down-regulation of genes involved in cellular metabolism, trafficking and the IκBK/NF-κB cascade. Additionally, we observed a large decrease in the expression of several IFN-induced genes including Ifit-3, Isg-15, Oasl1, Zbp1 and predicted gene EG634650 at both early and late time points. Conclusions/Significance A significant change in the transcriptional response was observed following co-administration of IFN-β+APAP relative to IFN-β treatment alone. These results suggest that administration of acetaminophen has the potential to modify the efficacy of IFN-β treatment. PMID:20544007

  14. Identification of a set of genes associated with response to interleukin-2 and interferon-α combination therapy for renal cell carcinoma through genome-wide gene expression profiling

    PubMed Central

    MIZUMORI, OSAMU; ZEMBUTSU, HITOSHI; KATO, YOICHIRO; TSUNODA, TATSUHIKO; MIYA, FUYUKI; MORIZONO, TAKASHI; TSUKAMOTO, TAIJI; FUJIOKA, TOMOAKI; TOMITA, YOSHIHIKO; KITAMURA, TADAICHI; OZONO, SEIICHIRO; MIKI, TSUNEHARU; NAITO, SEIJI; AKAZA, HIDEYUKI; NAKAMURA, YUSUKE

    2010-01-01

    Interleukin (IL)-2 and interferon (IFN)-α combination therapy for metastatic renal cell carcinoma (RCC) improves the prognosis for a subset of patients, while some patients suffer from severe adverse drug reactions with little benefit. To establish a method to predict responses to this combination therapy (approximately 30% response rate), the gene expression profiles of primary RCCs were analyzed using an oligoDNA microarray consisting of 38,500 genes or ESTs, after enrichment of the cancer cell population by laser micro-beam microdissection. The analysis of 10 responders and 18 non-responders identified 24 genes that exhibited significant differential expression between the two groups. In addition, the patients whose tumors did not express HLA-DQA1 or HLA-DQB1 molecules demonstrated poor clinical response. Exclusion of patients with tumors lacking either of these two genes is likely to improve the response rate to IL-2 and IFN-α combination therapy from 30 to 67%, indicating that a simple pretreatment test provides useful information with which to subselect patients with renal cancer in order to improve the efficacy of this treatment and reduce unnecessary medical costs. PMID:22993625

  15. Virus Multiplicity of Infection Affects Type I Interferon Subtype Induction Profiles and Interferon-Stimulated Genes

    PubMed Central

    Zaritsky, Luna A.; Bedsaul, Jacquelyn R.

    2015-01-01

    . However, we report in our study the novel finding that the amount of virus used to infect a system can also affect which type I IFN subtypes are induced due to the extent of activation of certain signaling pathways. These distinct IFN subtype profiles in cells infected at different MOIs are correlated with differences in interferon-stimulated gene induction, indicating that the same virus can induce distinct antiviral responses depending on the MOI. Because type I IFNs are used as therapeutic agents to treat viral diseases, understanding their antiviral mechanisms can enhance clinical treatments. PMID:26355085

  16. The interferon response to intracellular DNA: why so many receptors?

    PubMed

    Unterholzner, Leonie

    2013-11-01

    The detection of intracellular DNA has emerged to be a key event in the innate immune response to viruses and intracellular bacteria, and during conditions of sterile inflammation and autoimmunity. One of the consequences of the detection of DNA as a 'stranger' and a 'danger' signal is the production of type I interferons and pro-inflammatory cytokines. Much work has been dedicated to the elucidation of the signalling cascades that activate this DNA-induced gene expression programme. However, while many proteins have been proposed to act as sensors for intracellular DNA in recent years, none has been met with universal acceptance, and a theory linking all the recent observations is, as yet, lacking. This review presents the evidence for the various interferon-inducing DNA receptors proposed to date, and examines the hypotheses that might explain why so many different receptors appear to be involved in the innate immune recognition of intracellular DNA. PMID:23962476

  17. Differential Transcriptional Responses to Interferon-α and Interferon-γ in Primary Human Hepatocytes

    PubMed Central

    Nanda, Santosh; Ji, Xuhuai; Calderon-Rodriguez, Gloria M.; Greenberg, Harry B.; Liang, T. Jake

    2010-01-01

    Interferon (IFN) plays a central role in the innate and adaptive antiviral immune responses. While IFN-α is currently approved for treating chronic hepatitis B and hepatitis C, in limited studies, IFN-γ has not been shown to be effective for chronic hepatitis B or C. To identify the potential mechanism underlying the differential antiviral effects of IFN-α and IFN-γ, we used cDNA microarray to profile the global transcriptional response to IFN-α and IFN-γ in primary human hepatocytes, the target cell population of hepatitis viruses. Our results reveal distinct patterns of gene expression induced by these 2 cytokines. Overall, IFN-α induces more genes than IFN-γ at the transcriptional level. Distinct sets of genes were induced by IFN-α and IFN-γ with limited overlaps. IFN-α induces gene transcription at an early time point (6 h) but not at a later time point (18 h), while the effects of IFN-γ are more prominent at 18 h than at 6 h, suggesting a delayed transcriptional response to IFN-γ in the hepatocytes. These findings indicate differential actions of IFN-α and IFN-γ in the context of therapeutic intervention for chronic viral infections in the liver. PMID:20038212

  18. Axonal interferon responses and alphaherpesvirus neuroinvasion

    NASA Astrophysics Data System (ADS)

    Song, Ren

    Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at a peripheral epithelial surface and continues into the peripheral nervous system (PNS) that innervates this tissue. Inflammatory responses are induced at the infected peripheral site prior to viral invasion of the PNS. PNS neurons are highly polarized cells with long axonal processes that connect to distant targets. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which include type I interferon (e.g. IFNbeta) and type II interferon (i.e. IFNgamma). IFNbeta can be produced by all types of cells, while IFNgamma is secreted by some specific types of immune cells. And both types of IFN induce antiviral responses in surrounding cells that express the IFN receptors. The fundamental question is how do PNS neurons respond to the inflammatory milieu experienced only by their axons. Axons must act as potential front-line barriers to prevent PNS infection and damage. Using compartmented cultures that physically separate neuron axons from cell bodies, I found that pretreating isolated axons with IFNbeta or IFNgamma significantly diminished the number of HSV-1 and PRV particles moving from axons to the cell bodies in an IFN receptor-dependent manner. Furthermore, I found the responses in axons are activated differentially by the two types of IFNs. The response to IFNbeta is a rapid, axon-only response, while the response to IFNgamma involves long distance signaling to the PNS cell body. For example, exposing axons to IFNbeta induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFNgamma induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated IFNgamma-, but not IFNbeta-mediated antiviral effects. Proteomic analysis of IFNbeta- or IFNgamma-treated axons identified several differentially regulated proteins. Therefore

  19. Mice devoid of interferon regulatory factor 1 (IRF-1) show normal expression of type I interferon genes.

    PubMed Central

    Reis, L F; Ruffner, H; Stark, G; Aguet, M; Weissmann, C

    1994-01-01

    The transcription factor interferon regulatory factor 1 (IRF-1) binds tightly to the interferon (IFN)-beta promoter and has been implicated in the induction of type I IFNs. We generated mice devoid of functional IRF-1 by targeted gene disruption. As reported by others, IRF-1-deficient mice showed a discrete phenotype: the CD4/CD8 ratio was increased and IFN-gamma-induced levels of macrophage iNO synthase mRNA were strongly diminished. However, type I IFN induction in vivo by virus or double-stranded RNA was unimpaired, as evidenced by serum IFN titers and IFN mRNA levels in spleen, liver and lung. There was also no impairment in the response of type I IFN-inducible genes. Therefore, IRF-1 is not essential for these processes in vivo. Images PMID:7957048

  20. Negative regulation of the interferon response by an interferon-induced long non-coding RNA.

    PubMed

    Kambara, Hiroto; Niazi, Farshad; Kostadinova, Lenche; Moonka, Dilip K; Siegel, Christopher T; Post, Anthony B; Carnero, Elena; Barriocanal, Marina; Fortes, Puri; Anthony, Donald D; Valadkhan, Saba

    2014-01-01

    Long non-coding RNAs (lncRNAs) play critical roles in diverse cellular processes; however, their involvement in many critical aspects of the immune response including the interferon (IFN) response remains poorly understood. To address this gap, we compared the global gene expression pattern of primary human hepatocytes before and at three time points after treatment with IFN-α. Among ∼ 200 IFN-induced lncRNAs, one transcript showed ∼ 100-fold induction. This RNA, which we named lncRNA-CMPK2, was a spliced, polyadenylated nuclear transcript that was induced by IFN in diverse cell types from human and mouse. Similar to protein-coding IFN-stimulated genes (ISGs), its induction was dependent on JAK-STAT signaling. Intriguingly, knockdown of lncRNA-CMPK2 resulted in a marked reduction in HCV replication in IFN-stimulated hepatocytes, suggesting that it could affect the antiviral role of IFN. We could show that lncRNA-CMPK2 knockdown resulted in upregulation of several protein-coding antiviral ISGs. The observed upregulation was caused by an increase in both basal and IFN-stimulated transcription, consistent with loss of transcriptional inhibition in knockdown cells. These results indicate that the IFN response involves a lncRNA-mediated negative regulatory mechanism. lncRNA-CMPK2 was strongly upregulated in a subset of HCV-infected human livers, suggesting a role in modulation of the IFN response in vivo. PMID:25122750

  1. Negative regulation of the interferon response by an interferon-induced long non-coding RNA

    PubMed Central

    Kambara, Hiroto; Niazi, Farshad; Kostadinova, Lenche; Moonka, Dilip K.; Siegel, Christopher T.; Post, Anthony B.; Carnero, Elena; Barriocanal, Marina; Fortes, Puri; Anthony, Donald D.; Valadkhan, Saba

    2014-01-01

    Long non-coding RNAs (lncRNAs) play critical roles in diverse cellular processes; however, their involvement in many critical aspects of the immune response including the interferon (IFN) response remains poorly understood. To address this gap, we compared the global gene expression pattern of primary human hepatocytes before and at three time points after treatment with IFN-α. Among ∼200 IFN-induced lncRNAs, one transcript showed ∼100-fold induction. This RNA, which we named lncRNA-CMPK2, was a spliced, polyadenylated nuclear transcript that was induced by IFN in diverse cell types from human and mouse. Similar to protein-coding IFN-stimulated genes (ISGs), its induction was dependent on JAK-STAT signaling. Intriguingly, knockdown of lncRNA-CMPK2 resulted in a marked reduction in HCV replication in IFN-stimulated hepatocytes, suggesting that it could affect the antiviral role of IFN. We could show that lncRNA-CMPK2 knockdown resulted in upregulation of several protein-coding antiviral ISGs. The observed upregulation was caused by an increase in both basal and IFN-stimulated transcription, consistent with loss of transcriptional inhibition in knockdown cells. These results indicate that the IFN response involves a lncRNA-mediated negative regulatory mechanism. lncRNA-CMPK2 was strongly upregulated in a subset of HCV-infected human livers, suggesting a role in modulation of the IFN response in vivo. PMID:25122750

  2. Ribavirin improves early responses to peginterferon through enhanced interferon signaling

    PubMed Central

    Feld, Jordan J.; Lutchman, Glen A.; Heller, Theo; Hara, Koji; Pfeiffer, Julie K.; Leff, Richard D; Meek, Claudia; Rivera, Maria; Ko, Myung; Koh, Christopher; Rotman, Yaron; Ghany, Marc G.; Haynes-Williams, Vanessa; Neumann, Avidan U.; Liang, T. Jake; Hoofnagle, Jay H.

    2010-01-01

    Background & Aims: The therapeutic mechanisms of ribavirin for hepatitis C are unclear. Microarray analyses have shown that ribavirin increases induction of interferon-stimulated genes (ISGs). We evaluated viral kinetics, serum cytokine expression, and viral mutagenesis during early stages of peginterferon therapy with and without ribavirin. Methods: Fifty patients with chronic hepatitis C virus (HCV) infection genotype 1 were randomly assigned to groups that were given peginterferon alfa-2a, with or without ribavirin, for 4 weeks; all patients then received an additional 44 weeks of combination therapy. First- and second-phase viral kinetics were evaluated. Serum levels of IP10, MIG, and MCP1 were quantified as measures of the ISG response. NS5A and NS5B were partially sequenced and mutation rates were calculated. Results: The first-phase decrease in HCV RNA was similar between groups. Patients that received ribavirin had a more rapid second-phase decrease, compared with patients that did not receive ribavirin—particularly those with an adequate first-phase decrease (0.61 vs. 0.35 log10 IU/mL/week, p=0.018). At 12 hrs, fold induction of serum IP10 was higher in patients given the combination therapy than those given only peginterferon (7.6- vs. 3.8-fold, p=0.01); however, the difference was greatest in patients with an adequate first-phase decrease in HCV RNA. IP10-induction correlated with first- and second-phase kinetics and with ribavirin serum concentrations on day 3. HCV mutation rates were similar between groups. Conclusion: Ribavirin improves the kinetics of the early response to therapy in patients with an adequate initial response to peginterferon. Induction of interferon-stimulated cytokines correlates with viral kinetics following ribavirin therapy, suggesting that ribavirin promotes interferon signaling. PMID:20303352

  3. Identification of a functional transcriptional factor AP-1 site in the sheep interferon tau gene that mediates a response to PMA in JEG3 cells.

    PubMed Central

    Yamaguchi, H; Ikeda, Y; Moreno, J I; Katsumura, M; Miyazawa, T; Takahashi, E; Imakawa, K; Sakai, S; Christenson, R K

    1999-01-01

    To examine regulatory mechanisms of sheep interferon tau (oIFNtau) gene expression, potential enhancer/silencer elements of the oIFNtau gene were examined using a transient transfection system with oIFNtau gene-chloramphenicol acetyltransferase (oIFNtau-CAT) reporter constructs in human choriocarcinoma cells, JEG3. Experiments with 5'-deletion constructs revealed that the upstream regions from bases -654 to -607 and from bases -606 to -555 were essential for oIFNtau gene expression. In a heterologous transcriptional system in which the upstream regions of oIFNtau were inserted in front of simian virus 40 (SV40) promoter, the regions between bases -654 and -555 were determined as being the enhancer region required for oIFNtau-SV40-CAT transactivation. A subsequent study with the oIFNtau-CAT constructs lacking the upstream region between bases -542 and -124 revealed that, in addition to the further upstream region between bases -1000 and -654, the sequences from bases -543 to -452 seemed to act as silencer regions. The oIFNtau-CAT constructs with site-specific mutagenesis revealed that multiple enhancer elements existed between bases -654 and -555 of the oIFNtau gene. On the basis of nucleotide sequence analysis, there are numerous sites between bases -654 and -555 to which potential transcriptional factors, AP-1, GATA and GATA-related proteins, could bind. Furthermore, gel mobility-shift assays revealed that AP-1 or other nuclear factors could bind to these elements. In co-transfection studies, the expression of c-Jun plus c-Fos enhanced the transactivation of oIFNtau-CAT but the expression of GATA-1, GATA-2 or GATA-3 did not. Taken together, these results suggest that the upstream region between bases -654 and -555 could be considered as the enhancer region for oIFNtau gene transactivation. PMID:10359663

  4. HIV Downregulates Interferon-Stimulated Genes in Primary Macrophages

    PubMed Central

    Wie, Seong-Heon; Du, Pinyi; Luong, Tiffany Q.; Rought, Steffney E.; Beliakova-Bethell, Nadejda; Lozach, Jean; Corbeil, Jacques; Kornbluth, Richard S.; Richman, Douglas D.

    2013-01-01

    HIV is able to outpace the innate immune response, including that mediated by interferon (IFN), to establish a productive infection. Primary macrophages, however, may be protected from HIV infection by treatment with type I IFN before virus exposure. The ability of HIV to modulate the type I IFN-mediated innate immune response when it encounters a cell that has already been exposed to IFN remains poorly defined. The optimal pretreatment time (12 h) and the most potent HIV-inhibitors (e.g., IFN-α2 and -ω) were identified to investigate the ability of HIV to modulate an established type I IFN response. Gene expression at the level of the entire transcriptome was then compared between primary macrophages treated with type I IFNs, as opposed to treated with IFNs and then infected with HIV. Although HIV was not able to establish a robust infection, the virus was able to downregulate a number of IFN-stimulated genes (ISGs) with a fold change greater than 1.5 (i.e., AXL, IFI27, IFI44, IFI44L, ISG15, OAS1, OAS3, and XAF1). The downregulation of OAS1 by the presence of HIV was confirmed by real-time quantitative polymerase chain reaction. In conclusion, even though HIV replication is significantly inhibited by IFN pretreatment, the virus is able to downregulate the transcription of known antiviral ISGs (e.g., IFI44, ISG15, and OAS1). PMID:23276142

  5. Racial differences in responses to therapy with interferon in chronic hepatitis C. Consensus Interferon Study Group.

    PubMed

    Reddy, K R; Hoofnagle, J H; Tong, M J; Lee, W M; Pockros, P; Heathcote, E J; Albert, D; Joh, T

    1999-09-01

    The likelihood of a sustained response to a course of interferon in patients with chronic hepatitis C correlates with several clinical and viral factors, including age, viral genotype and initial levels of hepatitis C virus (HCV) RNA in serum. The role of race and ethnicity has not been assessed. We evaluated the association of race with response to interferon in a large randomized, controlled trial using either consensus interferon (9 microg) or interferon alfa-2b (3 million units) given three times weekly for 24 weeks. African-American patients participating in the study were similar to white patients in mean age (43 vs. 42 years) and baseline levels of HCV RNA (3.6 vs. 3.0 million copies/mL) but had lower rates of cirrhosis (5% vs. 12%) and more frequently had viral genotype 1 (88% vs. 66%: P =.004). Most strikingly, the rates of end-of-treatment and sustained virological responses were lower among the 40 African-American patients (5% and 2%) than among the 380 white patients (33% and 12%) (P =.04 and.07). Rates of response among Hispanic and Asian-American patients were not statistically different than non-Hispanic white patients. Median viral levels decreased by week 24 of therapy by 2.5 logs in white patients (from 3.0 to 0.012 million copies/mL) but by only 0.5 logs among African- American patients (from 3.6 to 1.8 million copies/mL). Thus, there are marked racial differences in virological responses to interferon in hepatitis C that must be considered in assessing trials of interferon therapy and in counseling patients regarding treatment. The differences in response rates are as yet unexplained. PMID:10462387

  6. Interferon-independent and -induced regulation of Epstein-Barr virus EBNA-1 gene transcription in Burkitt lymphoma.

    PubMed Central

    Nonkwelo, C; Ruf, I K; Sample, J

    1997-01-01

    Replication of the Epstein-Barr virus (EBV) genome within latently infected cells is dependent on the EBV EBNA-1 protein. The objective of this study was to identify transcriptional regulatory proteins that mediate EBNA-1 expression via the viral promoter Qp, which is active in EBV-associated tumors such as Burkitt lymphoma and nasopharyngeal carcinoma. Results of a yeast one-hybrid screen suggested that a subset of the interferon regulatory factor (IRF) family may regulate EBNA-1 transcription by targeting an essential cis-regulatory element of Qp, QRE-2. Further investigation indicated that the transcriptional activator IRF-1 and the closely related IRF-2, a repressor of interferon-induced gene expression, are both capable of activating Qp. However, the major QRE-2-specific binding activity detected within extracts of Burkitt lymphoma cells was attributed to IRF-2, suggesting that interferon-independent activation of Qp is largely mediated by IRF-2 in these cells. We observed no effect of gamma interferon on Qp activity in transfection assays, whereas we observed a moderate but significant repression of Qp activity in response to alpha interferon, possibly mediated by either the interferon consensus sequence binding protein or IRF-7, a novel alpha interferon-inducible factor identified in this study. Since expression of IRF-1 and IRF-2 is increased in response to interferons, the Qp activity observed in the presence of interferon likely represented an equilibrium between IRF factors that activate and those that repress gene expression in response to interferon. Thus, by usurping both IRF-1 and its transcriptional antagonist IRF-2 to activate Qp, EBV has evolved not only a mechanism to constitutively express EBNA-1 but also one which may sustain EBNA-1 expression in the face of the antiviral effects of interferon. PMID:9261415

  7. RelA-Induced Interferon Response Negatively Regulates Proliferation

    PubMed Central

    Kochupurakkal, Bose S.; Wang, Zhigang C.; Hua, Tony; Culhane, Aedin C.; Rodig, Scott J.; Rajkovic-Molek, Koraljka; Lazaro, Jean-Bernard; Richardson, Andrea L.; Biswas, Debajit K.; Iglehart, J. Dirk

    2015-01-01

    Both oncogenic and tumor-suppressor activities are attributed to the Nuclear Factor kappa B (NF-kB) pathway. Moreover, NF-kB may positively or negatively regulate proliferation. The molecular determinants of these opposing roles of NF-kB are unclear. Using primary human mammary epithelial cells (HMEC) as a model, we show that increased RelA levels and consequent increase in basal transcriptional activity of RelA induces IRF1, a target gene. Induced IRF1 upregulates STAT1 and IRF7, and in consort, these factors induce the expression of interferon response genes. Activation of the interferon pathway down-regulates CDK4 and up-regulates p27 resulting in Rb hypo-phosphorylation and cell cycle arrest. Stimulation of HMEC with IFN-γ elicits similar phenotypic and molecular changes suggesting that basal activity of RelA and IFN-γ converge on IRF1 to regulate proliferation. The anti-proliferative RelA-IRF1-CDK4 signaling axis is retained in ER+/HER2- breast tumors analyzed by The Cancer Genome Atlas (TCGA). Using immuno-histochemical analysis of breast tumors, we confirm the negative correlation between RelA levels and proliferation rate in ER+/HER2- breast tumors. These findings attribute an anti-proliferative tumor-suppressor role to basal RelA activity. Inactivation of Rb, down-regulation of RelA or IRF1, or upregulation of CDK4 or IRF2 rescues the RelA-IRF1-CDK4 induced proliferation arrest in HMEC and are points of disruption in aggressive tumors. Activity of the RelA-IRF1-CDK4 axis may explain favorable response to CDK4/6 inhibition observed in patients with ER+ Rb competent tumors. PMID:26460486

  8. RelA-Induced Interferon Response Negatively Regulates Proliferation.

    PubMed

    Kochupurakkal, Bose S; Wang, Zhigang C; Hua, Tony; Culhane, Aedin C; Rodig, Scott J; Rajkovic-Molek, Koraljka; Lazaro, Jean-Bernard; Richardson, Andrea L; Biswas, Debajit K; Iglehart, J Dirk

    2015-01-01

    Both oncogenic and tumor-suppressor activities are attributed to the Nuclear Factor kappa B (NF-kB) pathway. Moreover, NF-kB may positively or negatively regulate proliferation. The molecular determinants of these opposing roles of NF-kB are unclear. Using primary human mammary epithelial cells (HMEC) as a model, we show that increased RelA levels and consequent increase in basal transcriptional activity of RelA induces IRF1, a target gene. Induced IRF1 upregulates STAT1 and IRF7, and in consort, these factors induce the expression of interferon response genes. Activation of the interferon pathway down-regulates CDK4 and up-regulates p27 resulting in Rb hypo-phosphorylation and cell cycle arrest. Stimulation of HMEC with IFN-γ elicits similar phenotypic and molecular changes suggesting that basal activity of RelA and IFN-γ converge on IRF1 to regulate proliferation. The anti-proliferative RelA-IRF1-CDK4 signaling axis is retained in ER+/HER2- breast tumors analyzed by The Cancer Genome Atlas (TCGA). Using immuno-histochemical analysis of breast tumors, we confirm the negative correlation between RelA levels and proliferation rate in ER+/HER2- breast tumors. These findings attribute an anti-proliferative tumor-suppressor role to basal RelA activity. Inactivation of Rb, down-regulation of RelA or IRF1, or upregulation of CDK4 or IRF2 rescues the RelA-IRF1-CDK4 induced proliferation arrest in HMEC and are points of disruption in aggressive tumors. Activity of the RelA-IRF1-CDK4 axis may explain favorable response to CDK4/6 inhibition observed in patients with ER+ Rb competent tumors. PMID:26460486

  9. Gamma-interferon alters globin gene expression in neonatal and adult erythroid cells

    SciTech Connect

    Miller, B.A.; Perrine, S.P.; Antognetti, G.; Perlmutter, D.H.; Emerson, S.G.; Sieff, C.; Faller, D.V.

    1987-06-01

    The effect of gamma-interferon on fetal hemoglobin synthesis by purified cord blood, fetal liver, and adult bone marrow erythroid progenitors was studied with a radioligand assay to measure hemoglobin production by BFU-E-derived erythroblasts. Coculture with recombinant gamma-interferon resulted in a significant and dose-dependent decrease in fetal hemoglobin production by neonatal and adult, but not fetal, BFU-E-derived erythroblasts. Accumulation of fetal hemoglobin by cord blood BFU-E-derived erythroblasts decreased up to 38.1% of control cultures (erythropoietin only). Synthesis of both G gamma/A gamma globin was decreased, since the G gamma/A gamma ratio was unchanged. Picograms fetal hemoglobin per cell was decreased by gamma-interferon addition, but picograms total hemoglobin was unchanged, demonstrating that a reciprocal increase in beta-globin production occurred in cultures treated with gamma-interferon. No toxic effect of gamma-interferon on colony growth was noted. The addition of gamma-interferon to cultures resulted in a decrease in the percentage of HbF produced by adult BFU-E-derived cells to 45.6% of control. Fetal hemoglobin production by cord blood, fetal liver, and adult bone marrow erythroid progenitors, was not significantly affected by the addition of recombinant GM-CSF, recombinant interleukin 1 (IL-1), recombinant IL-2, or recombinant alpha-interferon. Although fetal progenitor cells appear unable to alter their fetal hemoglobin program in response to any of the growth factors added here, the interaction of neonatal and adult erythroid progenitors with gamma-interferon results in an altered expression of globin genes.

  10. Characterisation of gamma-interferon responsive promoters in fish.

    PubMed

    Castro, Rosario; Martin, Samuel A M; Bird, Steve; Lamas, Jesús; Secombes, Christopher J

    2008-07-01

    Reporter constructs of three interferon (IFN)-gamma-induced rainbow trout genes were generated to examine specificity to type I or type II IFN. Constructs included gammaIP-10, LMP2 and TAP2 and were used to transfect trout fibroblast cells (RTG-2) which were then exposed to rainbow trout rIFNs. The gammaIP-10 construct showed high reporter activity even in the absence of rIFNs. The LMP2 promoter contained one GAS element and two double ISRE elements, of four constructs made, only those with ISRE elements showed significant reporter activity following rIFN-gamma stimulation. The TAP2 regulatory region contained two GAS, two ISRE and one C/EBP element from which four constructs were made. Reporter expression for the construct containing all five elements showed an 11- and 2-fold increase in response to rIFN-gamma and type I rIFN, respectively. Constructs containing only the GAS elements did not respond to rIFNs. The TAP2 construct with two ISRE and the C/EBP gave the greatest dose-dependent reporter response to rIFN-gamma, with no significant response to type I rIFN. These data suggest that the ISRE elements, or elements nearby, are essential for the induction of type II IFN responsive genes in trout. The TAP2 construct is a candidate to develop a IFN-gamma reporter stable cell line. PMID:18457879

  11. Enhanced protection against pulmonary mycobacterial challenge by chitosan-formulated polyepitope gene vaccine is associated with increased pulmonary secretory IgA and gamma-interferon(+) T cell responses.

    PubMed

    Ai, Wenqing; Yue, Yan; Xiong, Sidong; Xu, Wei

    2013-03-01

    Induction of local (pulmonary) immunity plays a critical role in preventing dissemination of Mycobacterium tuberculosis (M. tb) during the early infection stage. To induce specific mucosal immunity, chitosan, a natural cationic polysaccharide, was employed as a mucosal gene carrier and complexed with pHSP65pep, our previously constructed multi-epitope gene vaccine, which induces splenic gamma-interferon (IFN-γ)(+) T helper cell 1 responses. The resultant chitosan-pHSP65pep was administered intranasally to BALB/c mice with four doses of 50 μg DNA followed by mycobacterial challenge 4 weeks after the final immunization. It was found that the chitosan formulation significantly induced production of secretory immunoglobulin A (P < 0.05) as determined by measuring its concentrations in lung lavage fluid and enhanced pulmonary CD4(+) and CD8(+) IFN-γ(+) T cell responses (P < 0.001) compared with naked gene vaccine. Improved protection against Mycobacterium bovis bacillus Calmette-Guérin (BCG) challenge was consistently achieved by the chitosan-DNA formulation both as the vaccine alone or in a BCG prime-vaccine boost immunization scenario. Our study shows that mucosal delivery of gene vaccine in a chitosan formulation remarkably enhances specific SIgA concentrations and mucosal IFN-γ(+) T cell response, which correlated positively with immunological protection. PMID:23489083

  12. A Lower PBMC Estrogen Receptor α Gene Expression in Chronic Hepatitis B Is Associated with a Sustained Virological Response to Pegylated Interferon.

    PubMed

    Zhang, Tingting; Zhang, Zhenhua; Zhang, Yafei; Ye, Jun; Li, Xu

    2016-02-01

    The aim of this study was to investigate possible involvement of estrogen receptor α (ESR1) in responding to pegylated interferon alpha-2a (PEG IFNα-2a) therapy in chronic hepatitis B (CHB) patients. A total of 106 HBeAg-positive patients and 52 healthy controls were enrolled into this study. ESR1 messenger RNA (mRNA) expression in peripheral blood mononuclear cells was quantified at the baseline, during treatment (weeks 4 and 12), and at the end of treatment (week 48) by real-time reverse transcriptase-polymerase chain reaction assay (RT-PCR). The sequence polymorphism of ESR1 (rs2077647, rs2234693, rs9340799, and rs9322354) was analyzed using the Sequenom MassARRAY Analyzer. Our results suggested that the most accurate prediction of nonresponder in female patients was the baseline alanine aminotransferase (ALT) in combination with ESR1 expression at week 4 of treatment (area under the receiver operating characteristic curve [AUC] = 0.908). Combining the baseline ALT with ESR1 mRNA expression at the end of treatment showed the best prediction of sustained virological response in male patients (AUC = 0.818). Internal validation was assessed by bootstrap cross-validation. These results may have clinical relevance and warrant future validation in studies with larger cohorts. PMID:26485345

  13. Characterization of the promoter of the human gene encoding the high-affinity IgG receptor: Transcriptional induction by. gamma. -interferon is mediated through common DNA response elements

    SciTech Connect

    Pearse, R.N.; Feinman, R.; Ravetch, J.V. )

    1991-12-15

    Expression of the high-affinity receptor for IgG (Fc{sub {gamma}}RI) is restricted to cells of myeloid lineage and is induced by {gamma}-interferon (IFN-{gamma}) but not by IFN-{alpha}/{beta}. The organization of the human Fc{sub {gamma}}RI gene has been determined and the DNA elements governing its cell type-restricted transcription and IFN-{gamma} induction are reported here. A 39-nucleotide sequence (IFN-{gamma} response region, or GRR) is defined that is both necessary and sufficient for IFN-{gamma} inducibility. Sequence analysis of the GRR reveals the presence of promoter elements initially defined for the major histocompatibility complex class 2 genes: i.e., X, H, and {gamma}-IRE sequences. Comparison of a number of genes whose expression is induced selectively by IFN-{gamma} indicated that the presence of these elements is a general feature of IFN-{gamma}-responsive genes. The studies suggest that the combination of X, H, and {gamma}-IRE elements is a common motif in the pathway of transcriptional induction by this lymphokine.

  14. Interferon-stimulated genes: roles in viral pathogenesis

    PubMed Central

    Schoggins, John W.

    2014-01-01

    Interferon-stimulated genes (ISGs) are critical for controlling virus infections. As new antiviral ISGs continue to be identified and characterized, their roles in viral pathogenesis are also being explored in more detail. Our current understanding of how ISGs impact viral pathogenesis comes largely from studies in knockout mice, with isolated examples from human clinical data. This review outlines recent developments on the contributions of various ISGs to viral disease outcomes in vivo. PMID:24713352

  15. Ribavirin Potentiates Interferon Action by Augmenting Interferon-Stimulated Gene Induction in Hepatitis C Virus Cell Culture Models

    PubMed Central

    Thomas, Emmanuel; Feld, Jordan J.; Li, Qisheng; Hu, Zongyi; Fried, Michael W.; Liang, T. Jake

    2012-01-01

    The combination of pegylated interferon (PEG-IFN) and ribavirin is the standard treatment for chronic hepatitis C. Our recent clinical study suggests that ribavirin augments the induction of interferon-stimulated genes (ISGs) in patients treated for hepatitis C virus (HCV) infection. In order to further characterize the mechanisms of action of ribavirin, we examined the effect of ribavirin treatment on ISG induction in cell culture. In addition, the effect of ribavirin on infectious HCV cell culture systems was studied. Similar to interferon (IFN)-α, ribavirin potently inhibits JFH-1 infection of Huh7.5.1 cells in a dose-dependent manner, which spans the physiological concentration of ribavirin in vivo. Microarray analysis and subsequent quantitative polymerase chain reaction assays demonstrated that ribavirin treatment resulted in the induction of a distinct set of ISGs. These ISGs, including IFN regulatory factors 7 and 9, are known to play an important role in anti-HCV responses. When ribavirin is used in conjunction with IFN-α, induction of specific ISGs is synergistic when compared with either drug applied separately. Direct up-regulation of these antiviral genes by ribavirin is mediated by a novel mechanism different from those associated with IFN signaling and intracellular double-stranded RNA sensing pathways such as RIG-I and MDA5. RNA interference studies excluded the activation of the Toll-like receptor and nuclear factor κB pathways in the action of ribavirin. Conclusion Our study suggests that ribavirin, acting by way of a novel innate mechanism, potentiates the anti-HCV effect of IFN. Understanding the mechanism of action of ribavirin would be valuable in identifying novel antivirals PMID:21254160

  16. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses

    PubMed Central

    Chiappinelli, Katherine B.; Strissel, Pamela L.; Desrichard, Alexis; Li, Huili; Henke, Christine; Akman, Benjamin; Hein, Alexander; Rote, Neal S.; Cope, Leslie M.; Snyder, Alexandra; Makarov, Vladimir; Buhu, Sadna; Slamon, Dennis J.; Wolchok, Jedd D.; Pardoll, Drew M.; Beckmann, Matthias W.; Zahnow, Cynthia A.; Mergoub, Taha; Chan, Timothy A.; Baylin, Stephen B.; Strick, Reiner

    2015-01-01

    Summary We show that DNA methyltransferase inhibitors (DNMTis) upregulate immune signaling in cancer through the viral defense pathway. In ovarian cancer (OC), DNMTis trigger cytosolic sensing of double-stranded RNA (dsRNA) causing a Type I Interferon response and apoptosis. Knocking down dsRNA sensors TLR3 and MAVS reduces this response twofold, and blocking interferon beta or its receptor abrogates it. Upregulation of hypermethylated endogenous retrovirus (ERV) genes accompanies the response and ERV overexpression activates the response. Basal levels of ERV and viral defense gene expression significantly correlate in primary OC and the latter signature separates primary samples for multiple tumor types from The Cancer Genome Atlas into low versus high expression groups. In melanoma patients treated with an immune checkpoint therapy, high viral defense signature expression in tumors significantly associates with durable clinical response and DNMTi treatment sensitizes to anti-CTLA4 therapy in a pre-clinical melanoma model. PMID:26317466

  17. The Impact of Interleukin 28b Gene Polymorphism on the Virological Response to Combined Pegylated Interferon and Ribavirin Therapy in Chronic HCV Genotype 4 Infected Egyptian Patients Using Data Mining Analysis

    PubMed Central

    Khairy, Marwa; Fouad, Rabab; Mabrouk, Mahassen; El-Akel, Wafaa; Awad, Abu Bakr; Salama, Rabab; Elnegouly, Mayada; Shaker, Olfat

    2013-01-01

    Background: Chronic HCV represents one of the common causes of chronic liver disease worldwide with Egypt having the highest prevalence, namely genotype 4. Interleukin IL-28B gene polymorphism has been shown to relate to HCV treatment response, mainly in genotype1. Objectives: We aim to evaluate the predictive power of the rs12979860 IL28B SNP and its protein for treatment response in genotype 4 Egyptian patients by regression analysis and decision tree analysis. Patients and Methods: The study included 263 chronic HCV Egyptian patients receiving peg-interferon and ribavirin therapy. Patients were classified into 3 groups; non responders (83patients), relapsers (76patients) and sustained virological responders (104 patients). Serum IL 28 B was performed, DNA was extracted and analyzed by direct sequencing of the SNP rs 12979860 of IL28B gene. Results: CT, CC and TT represented 56 %, 25 % and 19% of the patients, respectively. Absence of C allele (TT genotype) was significantly correlated with the early failure of response while CC was associated with sustained virological response. The decision tree showed that baseline alpha fetoprotein (AFP ≤ 2.68 ng/ml) was the variable of initial split (the strongest predictor of response) confirmed by regression analysis. Patients with TT genotype had the highest probability of failure of response. Conclusions: Absence of the C allele was significantly associated with failure of response. The presence of C allele was associated with a favorable outcome. AFP is a strong baseline predictor of HCV treatment response. A decision tree model is useful for predicting the probability of response to therapy. PMID:24065997

  18. Interferons and autoimmune disorders.

    PubMed

    Meyer, Olivier

    2009-10-01

    Interferons are ubiquitous cytokines produced by all mononuclear cell types in response to infection by a DNA or RNA virus. There are three major classes of interferons: type I or nonimmune interferons consist chiefly of interferons alpha produced by leukocytes and of interferon beta produced by fibroblasts, although there are several other less important variants; type II or immune interferon is interferon gamma, which is mainly produced by NK cells and T cells; and type III consists of the lambda interferons. Each type is characterized by a specific receptor and signal transduction pathway. Toll-like receptors (TLRs) on the cell membrane and endosomes recognize viruses and other microorganisms. Binding of DNA or RNA to endosomal TLRs generates a signal whose transduction pathways lead to molecules capable of binding to genes for various interferons, interleukin-1, and TNFalpha. Interferons can stimulate or inhibit up to 300 different genes encoding proteins involved in antiviral defense mechanisms, inflammation, adaptive immunity, angiogenesis, and other processes. The properties of interferons are used to treat a number of viral infections (e.g., hepatitis B and hepatitis C), inflammatory diseases (interferon beta for multiple sclerosis and interferon gamma for systemic sclerosis), and malignancies. Overactivation of the interferon pathways has been demonstrated in patients with systemic lupus erythematosus. The result is a characteristic pattern of mRNA expression known as the interferon signature. Interferon overactivation is related to inadequate clearance of apoptotic particles with accumulation of apoptosis products (DNA-CpG motifs and U-RNA). Similar abnormalities have been found in patients with primary Sjögren's syndrome, systemic sclerosis, and polymyositis, as well as in some cases of rheumatoid arthritis. Immunomodulation strategies designed to decrease interferon overactivity are being evaluated in patients with systemic lupus erythematosus. PMID

  19. Dual Modulation of Type I Interferon Response by Bluetongue Virus

    PubMed Central

    Doceul, Virginie; Chauveau, Emilie; Lara, Estelle; Bréard, Emmanuel; Sailleau, Corinne; Zientara, Stéphan

    2014-01-01

    ABSTRACT Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus that causes an economically important disease in ruminants. BTV infection is a strong inducer of type I interferon (IFN-I) in multiple cell types. It has been shown recently that BTV and, more specifically, the nonstructural protein NS3 of BTV are able to modulate the IFN-I synthesis pathway. However, nothing is known about the ability of BTV to counteract IFN-I signaling. Here, we investigated the effect of BTV on the IFN-I response pathway and, more particularly, the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription protein (STAT) signaling pathway. We found that BTV infection triggered the expression of IFN-stimulated genes (ISGs) in A549 cells. However, when BTV-infected cells were stimulated with external IFN-I, we showed that activation of the IFN-stimulated response element (ISRE) promoter and expression of ISGs were inhibited. We found that this inhibition involved two different mechanisms that were dependent on the time of infection. After overnight infection, BTV blocked specifically the phosphorylation and nuclear translocation of STAT1. This inhibition correlated with the redistribution of STAT1 in regions adjacent to the nucleus. At a later time point of infection, BTV was found to interfere with the activation of other key components of the JAK/STAT pathway and to induce the downregulation of JAK1 and TYK2 protein expression. Overall, our study indicates for the first time that BTV is able to interfere with the JAK/STAT pathway to modulate the IFN-I response. IMPORTANCE Bluetongue virus (BTV) causes a severe disease in ruminants and has an important impact on the livestock economy in areas of endemicity such as Africa. The emergence of strains, such as serotype 8 in Europe in 2006, can lead to important economic losses due to commercial restrictions and prophylactic measures. It has been known for many years that BTV is a strong inducer of type I

  20. Phleboviruses and the Type I Interferon Response

    PubMed Central

    Wuerth, Jennifer Deborah; Weber, Friedemann

    2016-01-01

    The genus Phlebovirus of the family Bunyaviridae contains a number of emerging virus species which pose a threat to both human and animal health. Most prominent members include Rift Valley fever virus (RVFV), sandfly fever Naples virus (SFNV), sandfly fever Sicilian virus (SFSV), Toscana virus (TOSV), Punta Toro virus (PTV), and the two new members severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus (HRTV). The nonstructural protein NSs is well established as the main phleboviral virulence factor in the mammalian host. NSs acts as antagonist of the antiviral type I interferon (IFN) system. Recent progress in the elucidation of the molecular functions of a growing list of NSs proteins highlights the astonishing variety of strategies employed by phleboviruses to evade the IFN system. PMID:27338447

  1. Polymorphism in the interferon-alpha gene family.

    PubMed Central

    Golovleva, I.; Kandefer-Szerszen, M.; Beckman, L.; Lundgren, E.

    1996-01-01

    A pronounced genetic polymorphism of the interferon type I gene family has been assumed on the basis of RFLP analysis of the genomic region as well as the large number of sequences published compared to the number of loci. However, IFNA2 is the only locus that has been carefully analyzed concerning gene frequency, and only naturally occurring rare alleles have been found. We have extended the studies on a variation of expressed sequences by studying the IFNA1, IFNA2, IFNA10, IFNA13, IFNA14, and IFNA17 genes. Genomic white-blood-cell DNA from a population sample of blood donors and from a family material were screened by single-nucleotide primer extension (allele-specific primer extension) of PCR fragments. Because of sequence similarities, in some cases "nested" PCR was used, and, when applicable, restriction analysis or control sequencing was performed. All individuals carried the interferon-alpha 1 and interferon-alpha 13 variants but not the LeIF D variant. At the IFNA2 and IFNA14 loci only one sequence variant was found, while in the IFNA10 and IFNA17 groups two alleles were detected in each group. The IFNA10 and IFNA17 alleles segregated in families and showed a close fit to the Hardy-Weinberg equilibrium. There was a significant linkage disequilibrium between IFNA10 and IFNA17 alleles. The fact that the extent of genetic polymorphism was lower than expected suggests that a majority of the previously described gene sequences represent nonpolymorphic rare mutants that may have arisen in tumor cell lines. Images Figure 1 Figure 2 Figure 3 PMID:8751858

  2. Late Multiple Organ Surge in Interferon-Regulated Target Genes Characterizes Staphylococcal Enterotoxin B Lethality

    PubMed Central

    Ferreyra, Gabriela A.; Elinoff, Jason M.; Demirkale, Cumhur Y.; Starost, Matthew F.; Buckley, Marilyn; Munson, Peter J.; Krakauer, Teresa; Danner, Robert L.

    2014-01-01

    Background Bacterial superantigens are virulence factors that cause toxic shock syndrome. Here, the genome-wide, temporal response of mice to lethal intranasal staphylococcal enterotoxin B (SEB) challenge was investigated in six tissues. Results The earliest responses and largest number of affected genes occurred in peripheral blood mononuclear cells (PBMC), spleen, and lung tissues with the highest content of both T-cells and monocyte/macrophages, the direct cellular targets of SEB. In contrast, the response of liver, kidney, and heart was delayed and involved fewer genes, but revealed a dominant genetic program that was seen in all 6 tissues. Many of the 85 uniquely annotated transcripts participating in this shared genomic response have not been previously linked to SEB. Nine of the 85 genes were subsequently confirmed by RT-PCR in every tissue/organ at 24 h. These 85 transcripts, up-regulated in all tissues, annotated to the interferon (IFN)/antiviral-response and included genes belonging to the DNA/RNA sensing system, DNA damage repair, the immunoproteasome, and the ER/metabolic stress-response and apoptosis pathways. Overall, this shared program was identified as a type I and II interferon (IFN)-response and the promoters of these genes were highly enriched for IFN regulatory matrices. Several genes whose secreted products induce the IFN pathway were up-regulated at early time points in PBMCs, spleen, and/or lung. Furthermore, IFN regulatory factors including Irf1, Irf7 and Irf8, and Zbp1, a DNA sensor/transcription factor that can directly elicit an IFN innate immune response, participated in this host-wide SEB signature. Conclusion Global gene-expression changes across multiple organs implicated a host-wide IFN-response in SEB-induced death. Therapies aimed at IFN-associated innate immunity may improve outcome in toxic shock syndromes. PMID:24551153

  3. Host Responses to Melioidosis and Tuberculosis Are Both Dominated by Interferon-Mediated Signaling

    PubMed Central

    Koh, Gavin C. K. W.; Schreiber, M. Fernanda; Bautista, Ruben; Maude, Rapeephan R.; Dunachie, Susanna; Limmathurotsakul, Direk; Day, Nicholas P. J.; Dougan, Gordon; Peacock, Sharon J.

    2013-01-01

    Melioidosis (Burkholderia pseudomallei infection) is a common cause of community-acquired sepsis in Northeast Thailand and northern Australia. B. pseudomallei is a soil saprophyte endemic to Southeast Asia and northern Australia. The clinical presentation of melioidosis may mimic tuberculosis (both cause chronic suppurative lesions unresponsive to conventional antibiotics and both commonly affect the lungs). The two diseases have overlapping risk profiles (e.g., diabetes, corticosteroid use), and both B. pseudomallei and Mycobacterium tuberculosis are intracellular pathogens. There are however important differences: the majority of melioidosis cases are acute, not chronic, and present with severe sepsis and a mortality rate that approaches 50% despite appropriate antimicrobial therapy. By contrast, tuberculosis is characteristically a chronic illness with mortality <2% with appropriate antimicrobial chemotherapy. We examined the gene expression profiles of total peripheral leukocytes in two cohorts of patients, one with acute melioidosis (30 patients and 30 controls) and another with tuberculosis (20 patients and 24 controls). Interferon-mediated responses dominate the host response to both infections, and both type 1 and type 2 interferon responses are important. An 86-gene signature previously thought to be specific for tuberculosis is also found in melioidosis. We conclude that the host responses to melioidosis and to tuberculosis are similar: both are dominated by interferon-signalling pathways and this similarity means gene expression signatures from whole blood do not distinguish between these two diseases. PMID:23383015

  4. Systems biology unravels interferon responses to respiratory virus infections

    PubMed Central

    Kroeker, Andrea L; Coombs, Kevin M

    2014-01-01

    Interferon production is an important defence against viral replication and its activation is an attractive therapeutic target. However, it has long been known that viruses perpetually evolve a multitude of strategies to evade these host immune responses. In recent years there has been an explosion of information on virus-induced alterations of the host immune response that have resulted from data-rich omics technologies. Unravelling how these systems interact and determining the overall outcome of the host response to viral infection will play an important role in future treatment and vaccine development. In this review we focus primarily on the interferon pathway and its regulation as well as mechanisms by which respiratory RNA viruses interfere with its signalling capacity. PMID:24600511

  5. Interferon-Stimulated Gene 15 and the Protein ISGylation System

    PubMed Central

    Zhang, Dongxian

    2011-01-01

    Interferon-stimulated gene 15 (ISG15) is one of the most upregulated genes upon Type I interferon treatment or pathogen infection. Its 17 kDa protein product, ISG15, was the first ubiquitin-like modifier identified, and is similar to a ubiquitin linear dimer. As ISG15 modifies proteins in a similar manner to ubiquitylation, protein conjugation by ISG15 is termed ISGylation. Some of the primary enzymes that promote ISGylation are also involved in ubiquitin conjugation. The process to remove ISG15 from its conjugated proteins, termed de-ISGylation, is performed by a cellular ISG15-specific protease, ubiquitin-specific proteases with molecular mass 43 kDa (UBP43)/ubiquitin-specific proteases 18. Relative to ubiquitin, the biological function of ISG15 is still poorly understood, but ISG15 appears to play important roles in various biological and cellular functions. Therefore, there is growing interest in ISG15, as the study of free ISG15 and functional consequences of ISGylation/de-ISGylation may identify useful therapeutic targets. This review highlights recent discoveries and remaining questions important to understanding the biological functions of ISG15. PMID:21190487

  6. Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta.

    PubMed

    Bierne, Hélène; Travier, Laetitia; Mahlakõiv, Tanel; Tailleux, Ludovic; Subtil, Agathe; Lebreton, Alice; Paliwal, Anupam; Gicquel, Brigitte; Staeheli, Peter; Lecuit, Marc; Cossart, Pascale

    2012-01-01

    Bacterial infections trigger the expression of type I and II interferon genes but little is known about their effect on type III interferon (IFN-λ) genes, whose products play important roles in epithelial innate immunity against viruses. Here, we studied the expression of IFN-λ genes in cultured human epithelial cells infected with different pathogenic bacteria and in the mouse placenta infected with Listeria monocytogenes. We first showed that in intestinal LoVo cells, induction of IFN-λ genes by L. monocytogenes required bacterial entry and increased further during the bacterial intracellular phase of infection. Other Gram-positive bacteria, Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis, also induced IFN-λ genes when internalized by LoVo cells. In contrast, Gram-negative bacteria Salmonella enterica serovar Typhimurium, Shigella flexneri and Chlamydia trachomatis did not substantially induce IFN-λ. We also found that IFN-λ genes were up-regulated in A549 lung epithelial cells infected with Mycobacterium tuberculosis and in HepG2 hepatocytes and BeWo trophoblastic cells infected with L. monocytogenes. In a humanized mouse line permissive to fetoplacental listeriosis, IFN-λ2/λ3 mRNA levels were enhanced in placentas infected with L. monocytogenes. In addition, the feto-placental tissue was responsive to IFN-λ2. Together, these results suggest that IFN-λ may be an important modulator of the immune response to Gram-positive intracellular bacteria in epithelial tissues. PMID:22720036

  7. Interferon regulatory factors and TFIIB cooperatively regulate interferon-responsive promoter activity in vivo and in vitro.

    PubMed Central

    Wang, I M; Blanco, J C; Tsai, S Y; Tsai, M J; Ozato, K

    1996-01-01

    Interferon regulatory factors (IRFs) bind to the interferon-stimulated response element (ISRE) and regulate interferon- and virus-mediated gene expression. IRF-1 acts as a transcriptional activator, while IRF-2 acts as a repressor. Here we show that IRF-1 and IRF-2 bind to both cellular TFIIB, a component of the basal transcription machinery, and recombinant TFIIB (rTFIIB) and that this protein-protein interaction facilitates binding of IRFs to the ISRE. A functional interaction between TFIIB and IRF was assessed by a newly established in vitro transcription assay in which recombinant IRF-1 (rIRF-1) stimulated transcription specifically from an ISRE-containing template. With this assay we show that rIRF-1 and rTFIIB cooperatively enhance the ISRE promoter in vitro. We found that the activity of an ISRE-containing promoter was cooperatively enhanced upon cotransfection of TFIIB and IRF-1 cDNAs into P19 embryonal carcinoma cells, further demonstrating functional interactions in vivo. The cooperative enhancement by TFIIB and IRF-1 was independent of the TATA sequence in the ISRE promoter but dependent on the initiator sequence (Inr) and was abolished when P19 cells were induced to differentiate by retinoic acid treatment. In contrast, cotransfection of TFIIB and IRF-1 into NIH 3T3 cells resulted in a dose-dependent repression of promoter activation which occurred in a TATA-dependent manner. Our results indicate the presence of a cell type-specific factor that mediates the functional interaction between IRFs and TFIIB and that acts in conjunction with the requirement of TATA and Inr for promoter activation. PMID:8887661

  8. Chicken interferon consensus sequence-binding protein (ICSBP) and interferon regulatory factor (IRF) 1 genes reveal evolutionary conservation in the IRF gene family.

    PubMed Central

    Jungwirth, C; Rebbert, M; Ozato, K; Degen, H J; Schultz, U; Dawid, I B

    1995-01-01

    Members of the IRF family mediate transcriptional responses to interferons (IFNs) and to virus infection. So far, proteins of this family have been studied only among mammalian species. Here we report the isolation of cDNA clones encoding two members of this family from chicken, interferon consensus sequence-binding protein (ICSBP) and IRF-1. The predicted chicken ICSBP and IRF-1 proteins show high levels of sequence similarity to their corresponding human and mouse counterparts. Sequence identities in the putative DNA-binding domains of chicken and human ICSBP and IRF-1 were 97% and 89%, respectively, whereas the C-terminal regions showed identities of 64% and 51%; sequence relationships with mouse ICSBP and IRF-1 are very similar. Chicken ICSBP was found to be expressed in several embryonic tissues, and both chicken IRF-1 and ICSBP were strongly induced in chicken fibroblasts by IFN treatment, supporting the involvement of these factors in IFN-regulated gene expression. The presence of proteins homologous to mammalian IRF family members, together with earlier observations on the occurrence of functionally homologous IFN-responsive elements in chicken and mammalian genes, highlights the conservation of transcriptional mechanisms in the IFN system, a finding that contrasts with the extensive sequence and functional divergence of the IFNs. Images Fig. 3 Fig. 4 Fig. 5 PMID:7536924

  9. Hepatitis C Virus Infection Suppresses the Interferon Response in the Liver of the Human Hepatocyte Chimeric Mouse

    PubMed Central

    Tsuge, Masataka; Fujimoto, Yoshifumi; Hiraga, Nobuhiko; Zhang, Yizhou; Ohnishi, Mayu; Kohno, Tomohiko; Abe, Hiromi; Miki, Daiki; Imamura, Michio; Takahashi, Shoichi; Ochi, Hidenori; Hayes, C. Nelson; Miya, Fuyuki; Tsunoda, Tatsuhiko; Chayama, Kazuaki

    2011-01-01

    Background and Aims Recent studies indicate that hepatitis C virus (HCV) can modulate the expression of various genes including those involved in interferon signaling, and up-regulation of interferon-stimulated genes by HCV was reported to be strongly associated with treatment outcome. To expand our understanding of the molecular mechanism underlying treatment resistance, we analyzed the direct effects of interferon and/or HCV infection under immunodeficient conditions using cDNA microarray analysis of human hepatocyte chimeric mice. Methods Human serum containing HCV genotype 1b was injected into human hepatocyte chimeric mice. IFN-α was administered 8 weeks after inoculation, and 6 hours later human hepatocytes in the mouse livers were collected for microarray analysis. Results HCV infection induced a more than 3-fold change in the expression of 181 genes, especially genes related to Organismal Injury and Abnormalities, such as fibrosis or injury of the liver (P = 5.90E-16 ∼ 3.66E-03). IFN administration induced more than 3-fold up-regulation in the expression of 152 genes. Marked induction was observed in the anti-fibrotic chemokines such as CXCL9, suggesting that IFN treatment might lead not only to HCV eradication but also prevention and repair of liver fibrosis. HCV infection appeared to suppress interferon signaling via significant reduction in interferon-induced gene expression in several genes of the IFN signaling pathway, including Mx1, STAT1, and several members of the CXCL and IFI families (P = 6.0E-12). Genes associated with Antimicrobial Response and Inflammatory Response were also significantly repressed (P = 5.22×10−10 ∼ 1.95×10−2). Conclusions These results provide molecular insights into possible mechanisms used by HCV to evade innate immune responses, as well as novel therapeutic targets and a potential new indication for interferon therapy. PMID:21886832

  10. Type 1 Interferons Inhibit Myotube Formation Independently of Upregulation of Interferon-Stimulated Gene 15

    PubMed Central

    Franzi, Sara; Salajegheh, Mohammad; Nazareno, Remedios; Greenberg, Steven A.

    2013-01-01

    Introduction Type 1 interferon (IFN)-inducible genes and their inducible products are upregulated in dermatomyositis muscle. Of these, IFN-stimulated gene 15 (ISG15) is one of the most upregulated, suggesting its possible involvement in the pathogenesis of this disease. To test this postulate, we developed a model of type 1 IFN mediated myotube toxicity and assessed whether or not downregulation of ISG15 expression prevents this toxicity. Methods Mouse myoblasts (C2C12 cell line) were cultured in the presence of type 1 or type 2 IFNs and ISG15 expression assessed by microarray analysis. The morphology of newly formed myotubes was assessed by measuring their length, diameter, and area on micrographs using imaging software. ISG15 expression was silenced through transfection with small interference RNA. Results Type 1 IFNs, especially IFN-beta, increased ISG15 expression in C2C12 cells and impaired myotube formation. Silencing of ISG15 resulted in knockdown of ISG15 protein, but without phenotypic rescue of myotube formation. Discussion IFN-beta affects myoblast differentiation ability and myotube morphology in vitro.These studies provide evidence that ISG15, which is highly upregulated in dermatomyositis muscle, does not appear to play a key role in IFN-beta-mediated C2C12 myoblast cell fusion. PMID:23750257

  11. Two Modes of the Axonal Interferon Response Limit Alphaherpesvirus Neuroinvasion

    PubMed Central

    Song, Ren; Koyuncu, Orkide O.; Greco, Todd M.; Diner, Benjamin A.; Cristea, Ileana M.

    2016-01-01

    ABSTRACT Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at epithelial surfaces and continues into the peripheral nervous system (PNS). Inflammatory responses are induced at the infected peripheral site prior to invasion of the PNS. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which includes the interferons (IFNs). The fundamental question is how do PNS cell bodies respond to these distant, potentially damaging events experienced by axons. Using compartmented cultures that physically separate neuron axons from cell bodies, we found that pretreating isolated axons with beta interferon (IFN-β) or gamma interferon (IFN-γ) significantly diminished the number of herpes simplex virus 1 (HSV-1) and PRV particles moving in axons toward the cell bodies in a receptor-dependent manner. Exposing axons to IFN-β induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFN-γ induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated antiviral effects induced by IFN-γ, but not those induced by IFN-β. Proteomic analysis of IFN-β- or IFN-γ-treated axons identified several differentially regulated proteins. Therefore, unlike treatment with IFN-γ, IFN-β induces a noncanonical, local antiviral response in axons. The activation of a local IFN response in axons represents a new paradigm for cytokine control of neuroinvasion. PMID:26838720

  12. Rhinovirus Load Is High despite Preserved InterferonResponse in Cystic Fibrosis Bronchial Epithelial Cells

    PubMed Central

    Cammisano, Maria; Chen, He; Singh, Sareen; Kooi, Cora; Leigh, Richard; Beaudoin, Trevor; Rousseau, Simon; Lands, Larry C.

    2015-01-01

    Lung disease in cystic fibrosis (CF) is often exacerbated following acute upper respiratory tract infections caused by the human rhinovirus (HRV). Pathophysiology of these exacerbations is presently unclear and may involve deficient innate antiviral or exaggerated inflammatory responses in CF airway epithelial cells. Furthermore, responses of CF cells to HRV may be adversely affected by pre-exposure to virulence factors of Pseudomonas (P.) aeruginosa, the microorganism that frequently colonizes CF airways. Here we examined production of antiviral cytokine interferon-β and inflammatory chemokine interleukin-8, expression of the interferon-responsive antiviral gene 2’-5’-oligoadenylate synthetase 1 (OAS1), and intracellular virus RNA load in primary CF (delF508 CFTR) and healthy airway epithelial cells following inoculation with HRV16. Parallel cells were exposed to virulence factors of P. aeruginosa prior to and during HRV16 inoculation. CF cells exhibited production of interferon-β and interleukin-8, and expression of OAS1 at levels comparable to those in healthy cells, yet significantly higher HRV16 RNA load during early hours post-inoculation with HRV16. In line with this, HRV16 RNA load was higher in the CFBE41o- dF cell line overexpessing delF508 CFTR, compared with the isogenic control CFBE41o- WT (wild-type CFTR). Pre-exposure to virulence factors of P. aeruginosa did not affect OAS1 expression or HRV16 RNA load, but potentiated interleukin-8 production. In conclusion, CF cells demonstrate elevated HRV RNA load despite preserved interferon-β and OAS1 responses. High HRV load in CF airway epithelial cells appears to be due to deficiencies manifesting early during HRV infection, and may not be related to interferon-β. PMID:26599098

  13. The HIN-200 family: More than interferon-inducible genes?

    SciTech Connect

    Ludlow, Louise E.A.; Johnstone, Ricky W.; Clarke, Christopher J.P. . E-mail: chris.clarke@petermac.org

    2005-08-01

    The HIN-200 family was initially grouped together based on their hemopoietic expression, interferon-inducibility, nuclear localization, and characteristic 200 amino-acid domains. In this review, we performed a comprehensive search of genome databases and determined the location of previously characterized and predicted genes within the human, mouse, and rat HIN-200 loci. Several novel proteins were predicted in the mouse and rat. We also discuss recent advances in our understanding of this family of proteins and highlight the most important findings. In addition to a role in interferon biology, there is now good evidence supporting a role for these proteins as regulators of cell proliferation and differentiation. The activity of HIN-200 proteins is not restricted to the hemopoietic system as they are expressed and can function in a variety of other cells and tissues. The importance of HIN-200 proteins in disease now is beginning to be understood as they appear to be involved in autoimmunity and may act as tumor suppressor proteins.

  14. Attenuation of the type I interferon response in cells infected with human rhinovirus

    SciTech Connect

    Kotla, Swathi; Peng, Tao; Bumgarner, Roger E.; Gustin, Kurt E.

    2008-05-10

    The type I interferon (IFN) response requires the coordinated activation of the latent transcription factors NF-{kappa}B, IRF-3 and ATF-2 which in turn activate transcription from the IFN-{beta} promoter. Here we have examined the type I interferon response in rhinovirus type 14-infected A549 cells, with particular emphasis on the status of the transcription factor IRF-3. Our results indicate that although rhinovirus type 14 (RV14) infection induces the activation of NF-{kappa}B and ATF-2, only very low levels of IFN-{beta} mRNA are detected. Analysis of ISG54 mRNA levels revealed very little induction of this IRF-3 responsive transcript and suggested that IRF-3 activation might be impaired. Examination of IRF-3 in RV14-infected cells demonstrated only low levels of phosphorylation, a lack of homodimer formation and an absence of nuclear accumulation indicating that this transcription factor is not activated. Inhibition of viral protein synthesis following infection resulted in an increase in IFN-{beta} mRNA levels indicating that viral gene products prevent induction of this pathway. Collectively, these results indicate that RV14 infection inhibits the host type I interferon response by interfering with IRF-3 activation.

  15. Induction of Interferon-Stimulated Genes by IRF3 Promotes Replication of Toxoplasma gondii

    PubMed Central

    Majumdar, Tanmay; Chattopadhyay, Saurabh; Ozhegov, Evgeny; Dhar, Jayeeta; Goswami, Ramansu; Sen, Ganes C.; Barik, Sailen

    2015-01-01

    Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell

  16. Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 1 Interacts with a Member of the Interferon-Stimulated Gene 15 Pathway

    PubMed Central

    Jacobs, Sarah R.; Stopford, Charles M.; West, John A.; Bennett, Christopher L.; Giffin, Louise

    2015-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus known to establish lifelong latency in the human host. We and others have previously shown that three KSHV homologs of cellular interferon regulatory factors (IRFs), known as viral IRFs (vIRFs), participate in evasion of the host interferon (IFN) response. We report that vIRF1 interacts with the cellular interferon-stimulated gene 15 (ISG15) E3 ligase, HERC5, in the context of Toll-like receptor 3 (TLR3) activation and IFN induction. The ISG15 protein is covalently conjugated to target proteins upon activation of the interferon response. Interaction between vIRF1 and HERC5 was confirmed by immunoprecipitation, and the region between amino acids 224 and 349 of vIRF1 was required for interaction with HERC5. We further report that expression of vIRF1 in the context of TLR3 activation results in decreased ISG15 conjugation of proteins. Specifically, TLR3-induced ISG15 conjugation and protein levels of cellular IRF3, a known ISG15 target, were decreased in the presence of vIRF1 compared to the control. vIRF1 itself was also identified as a target of ISG15 conjugation. KSHV-infected cells exhibited increased ISG15 conjugation upon reactivation from latency in coordination with increased IFN. Furthermore, knockdown of ISG15 in latently infected cells resulted in a higher level of KSHV reactivation and an increase in infectious virus. These data suggest that the KSHV vIRF1 protein affects ISG15 conjugation and interferon responses and may contribute to effective KSHV replication. IMPORTANCE The KSHV vIRF1 protein can inhibit interferon activation in response to viral infection. We identified a cellular protein named HERC5, which is the major ligase for ISG15, as a vIRF1 binding partner. vIRF1 association with HERC5 altered ISG15 modification of cellular proteins, and knockdown of ISG15 augmented reactivation of KSHV from latency. PMID:26355087

  17. Activation of the Stimulator of Interferon Genes (STING) adaptor attenuates experimental autoimmune encephalitis

    PubMed Central

    Lemos, Henrique; Huang, Lei; Chandler, Phillip R.; Mohamed, Eslam; Souza, Guilherme R.; Li, Lingqian; Pacholczyk, Gabriela; Barber, Glen N.; Hayakawa, Yoshihiro; Munn, David H.; Mellor, Andrew L.

    2014-01-01

    Cytosolic DNA sensing activates the Stimulator of Interferon Genes (STING) adaptor to induce interferon type I (IFNαβ) production. Constitutive DNA sensing to induce sustained STING activation incites tolerance breakdown leading to autoimmunity. Here we show that systemic treatments with DNA nanoparticles (DNPs) induced potent immune regulatory responses via STING signaling that suppressed experimental autoimmune encephalitis (EAE) when administered to mice after immunization with myelin oligodendrocyte glycoprotein (MOG), at EAE onset, or at peak disease severity. DNP treatments attenuated infiltration of effector T cells into the central nervous system (CNS) and suppressed innate and adaptive immune responses to MOG immunization in spleen. Therapeutic responses were not observed in mice treated with cargo DNA or cationic polymers alone, indicating that DNP uptake and cargo DNA sensing by cells with regulatory functions was essential for therapeutic responses to manifest. Intact STING and IFNαβ receptor genes, but not IFNγ receptor genes, were essential for therapeutic responses to DNPs to manifest. Treatments with cyclic diguanylate monophosphate (c-diGMP) to activate STING also delayed EAE onset and reduced disease severity. Therapeutic responses to DNPs were critically dependent on indoleamine 2,3 dioxygenase (IDO) enzyme activity in hematopoietic cells. Thus DNPs and c-diGMP attenuate EAE by inducing dominant T cell regulatory responses via the STING-IFNαβ-IDO pathway that suppress CNS-specific autoimmunity. These findings reveal dichotomous roles for the STING-IFNαβ pathway in either stimulating or suppressing autoimmunity and identify STING activating reagents as a novel class of immune modulatory drugs. PMID:24799564

  18. Optineurin Regulates the Interferon Response in a Cell Cycle-Dependent Manner

    PubMed Central

    Génin, Pierre; Cuvelier, Frédérique; Lambin, Sandrine; Côrte-Real Filipe, Josina; Autrusseau, Elodie; Laurent, Christine; Laplantine, Emmanuel; Weil, Robert

    2015-01-01

    Viral invasion into a host is initially recognized by the innate immune system, mainly through activation of the intracellular cytosolic signaling pathway and coordinated activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-κB) transcription factors that promote type I interferon gene induction. The TANK-binding Kinase 1 (TBK1) phosphorylates and activates IRF3. Here, we show that Optineurin (Optn) dampens the antiviral innate immune response by targeting the deubiquitinating enzyme CYLD to TBK1 in order to inhibit its enzymatic activity. Importantly, we found that this regulatory mechanism is abolished at the G2/M phase as a consequence of the nuclear translocation of CYLD and Optn. As a result, we observed, at this cell division stage, an increased activity and phosphorylation of TBK1 that lead to its relocalization to mitochondria and to enhanced interferon production, suggesting that this process, which relies on Optn function, might be of major importance to mount a preventive antiviral response during mitosis. PMID:25923723

  19. Gene-Expression Profiling Suggests Impaired Signaling via the Interferon Pathway in Cstb-/- Microglia

    PubMed Central

    Körber, Inken; Katayama, Shintaro; Einarsdottir, Elisabet; Krjutškov, Kaarel; Hakala, Paula; Kere, Juha; Lehesjoki, Anna-Elina; Joensuu, Tarja

    2016-01-01

    Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1, OMIM254800) is an autosomal recessive neurodegenerative disorder characterized by stimulus-sensitive and action-activated myoclonus, tonic-clonic epileptic seizures, and ataxia. Loss-of-function mutations in the gene encoding the cysteine protease inhibitor cystatin B (CSTB) underlie EPM1. The deficiency of CSTB in mice (Cstb-/- mice) generates a phenotype resembling the symptoms of EPM1 patients and is accompanied by microglial activation at two weeks of age and an upregulation of immune system-associated genes in the cerebellum at one month of age. To shed light on molecular pathways and processes linked to CSTB deficiency in microglia we characterized the transcriptome of cultured Cstb-/- mouse microglia using microarray hybridization and RNA sequencing (RNA-seq). The gene expression profiles obtained with these two techniques were in good accordance and not polarized to either pro- or anti-inflammatory status. In Cstb-/- microglia, altogether 184 genes were differentially expressed. Of these, 33 genes were identified by both methods. Several interferon-regulated genes were weaker expressed in Cstb-/- microglia compared to control. This was confirmed by quantitative real-time PCR of the transcripts Irf7 and Stat1. Subsequently, we explored the biological context of CSTB deficiency in microglia more deeply by functional enrichment and canonical pathway analysis. This uncovered a potential role for CSTB in chemotaxis, antigen-presentation, and in immune- and defense response-associated processes by altering JAK-STAT pathway signaling. These data support and expand the previously suggested involvement of inflammatory processes to the disease pathogenesis of EPM1 and connect CSTB deficiency in microglia to altered expression of interferon-regulated genes. PMID:27355630

  20. Gene-Expression Profiling Suggests Impaired Signaling via the Interferon Pathway in Cstb-/- Microglia.

    PubMed

    Körber, Inken; Katayama, Shintaro; Einarsdottir, Elisabet; Krjutškov, Kaarel; Hakala, Paula; Kere, Juha; Lehesjoki, Anna-Elina; Joensuu, Tarja

    2016-01-01

    Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1, OMIM254800) is an autosomal recessive neurodegenerative disorder characterized by stimulus-sensitive and action-activated myoclonus, tonic-clonic epileptic seizures, and ataxia. Loss-of-function mutations in the gene encoding the cysteine protease inhibitor cystatin B (CSTB) underlie EPM1. The deficiency of CSTB in mice (Cstb-/- mice) generates a phenotype resembling the symptoms of EPM1 patients and is accompanied by microglial activation at two weeks of age and an upregulation of immune system-associated genes in the cerebellum at one month of age. To shed light on molecular pathways and processes linked to CSTB deficiency in microglia we characterized the transcriptome of cultured Cstb-/- mouse microglia using microarray hybridization and RNA sequencing (RNA-seq). The gene expression profiles obtained with these two techniques were in good accordance and not polarized to either pro- or anti-inflammatory status. In Cstb-/- microglia, altogether 184 genes were differentially expressed. Of these, 33 genes were identified by both methods. Several interferon-regulated genes were weaker expressed in Cstb-/- microglia compared to control. This was confirmed by quantitative real-time PCR of the transcripts Irf7 and Stat1. Subsequently, we explored the biological context of CSTB deficiency in microglia more deeply by functional enrichment and canonical pathway analysis. This uncovered a potential role for CSTB in chemotaxis, antigen-presentation, and in immune- and defense response-associated processes by altering JAK-STAT pathway signaling. These data support and expand the previously suggested involvement of inflammatory processes to the disease pathogenesis of EPM1 and connect CSTB deficiency in microglia to altered expression of interferon-regulated genes. PMID:27355630

  1. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    SciTech Connect

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R. . E-mail: nerurkar@pbrc.hawaii.edu

    2006-02-20

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML.

  2. Response of differentiated but not anaplastic teratoma to interferon.

    PubMed Central

    Rustin, G. J.; Kaye, S. B.; Williams, C. J.; Newlands, E. S.; Bagshawe, K. D.; Toy, J. L.

    1984-01-01

    A Phase 2 trial was conducted using intramuscular lymphoblastoid interferon (IFN, Wellcome Research Laboratories), 4 MU per day, in 10 patients with chemotherapy-resistant teratomas. There was stabilisation of disease in 2 patients both of whom were in retrospect considered to have had differentiated teratoma at the time of IFN administration. There was progression of presumed active anaplastic germ cell tumour in 8 patients. One of these patients, a 15-year-old boy with biopsy proven differentiated teratoma has received 2 courses of lymphoblastoid IFN and 1 course of recombinant leukocyte A IFN (Roche Products Ltd.) lasting 5 1/2, 8 and 8+ months respectively. He has had a mixed response in his differentiated tumour which on each occasion has been maintained for the duration that he received IFN. Rising HCG levels during his second course of interferon required additional cytotoxic chemotherapy. Lymphoblastoid IFN does not appear to be active against anaplastic germ cell tumours but both lymphoblastoid and recombinant leukocyte A IFN may be useful in the treatment of unresectable differentiated teratoma. Images Figure 2 Figure 3 PMID:6498061

  3. Chicken interferome: avian interferon-stimulated genes identified by microarray and RNA-seq of primary chick embryo fibroblasts treated with a chicken type I interferon (IFN-α).

    PubMed

    Giotis, Efstathios S; Robey, Rebecca C; Skinner, Natalie G; Tomlinson, Christopher D; Goodbourn, Stephen; Skinner, Michael A

    2016-01-01

    Viruses that infect birds pose major threats-to the global supply of chicken, the major, universally-acceptable meat, and as zoonotic agents (e.g. avian influenza viruses H5N1 and H7N9). Controlling these viruses in birds as well as understanding their emergence into, and transmission amongst, humans will require considerable ingenuity and understanding of how different species defend themselves. The type I interferon-coordinated response constitutes the major antiviral innate defence. Although interferon was discovered in chicken cells, details of the response, particularly the identity of hundreds of stimulated genes, are far better described in mammals. Viruses induce interferon-stimulated genes but they also regulate the expression of many hundreds of cellular metabolic and structural genes to facilitate their replication. This study focusses on the potentially anti-viral genes by identifying those induced just by interferon in primary chick embryo fibroblasts. Three transcriptomic technologies were exploited: RNA-seq, a classical 3'-biased chicken microarray and a high density, "sense target", whole transcriptome chicken microarray, with each recognising 120-150 regulated genes (curated for duplication and incorrect assignment of some microarray probesets). Overall, the results are considered robust because 128 of the compiled, curated list of 193 regulated genes were detected by two, or more, of the technologies. PMID:27494935

  4. Interferon-λ and interleukin-22 cooperate for the induction of interferon-stimulated genes and control of rotavirus infection

    PubMed Central

    Yang, Ines; Schwierzeck, Vera; Nguyen, Nam; Guendel, Fabian; Gronke, Konrad; Ryffel, Bernhard; Hoelscher, Christoph; Dumoutier, Laure; Renauld, Jean-Christophe; Suerbaum, Sebastian; Staeheli, Peter; Diefenbach, Andreas

    2015-01-01

    The epithelium is the major entry point for many viruses but the processes protecting barrier surfaces against viral infections are incompletely understood. We identify interleukin (IL)-22 produced by group 3 innate lymphoid cells (ILC3s) as an amplifier of interferon (IFN)-λ signaling, a synergism required to curtail replication of rotavirus, the leading cause of childhood gastroenteritis. Cooperation between IL-22 and IFN-λ receptors, both of which are preferentially expressed by intestinal epithelial cells, was required for optimal STAT1 transcription factor activation and expression of interferon-stimulated genes. This data suggests that epithelial cells are protected against virus replication by co-opting two evolutionarily related cytokine networks. These data may inform the design of novel immunotherapies of virus infections that are sensitive to IFNs. PMID:26006013

  5. Positive Role of Promyelocytic Leukemia Protein in Type I Interferon Response and Its Regulation by Human Cytomegalovirus

    PubMed Central

    Kim, Young-Eui; Ahn, Jin-Hyun

    2015-01-01

    Promyelocytic leukemia protein (PML), a major component of PML nuclear bodies (also known as nuclear domain 10), is involved in diverse cellular processes such as cell proliferation, apoptosis, gene regulation, and DNA damage response. PML also acts as a restriction factor that suppresses incoming viral genomes, therefore playing an important role in intrinsic defense. Here, we show that PML positively regulates type I interferon response by promoting transcription of interferon-stimulated genes (ISGs) and that this regulation by PML is counteracted by human cytomegalovirus (HCMV) IE1 protein. Small hairpin RNA-mediated PML knockdown in human fibroblasts reduced ISG induction by treatment of interferon-β or infection with UV-inactivated HCMV. PML was required for accumulation of activated STAT1 and STAT2, interacted with them and HDAC1 and HDAC2, and was associated with ISG promoters after HCMV infection. During HCMV infection, viral IE1 protein interacted with PML, STAT1, STAT2, and HDACs. Analysis of IE1 mutant viruses revealed that, in addition to the STAT2-binding domain, the PML-binding domain of IE1 was necessary for suppression of interferon-β-mediated ISG transcription, and that IE1 inhibited ISG transcription by sequestering interferon-stimulated gene factor 3 (ISGF3) in a manner requiring its binding of PML and STAT2, but not of HDACs. In conclusion, our results demonstrate that PML participates in type I interferon-induced ISG expression by regulating ISGF3, and that this regulation by PML is counteracted by HCMV IE1, highlighting a widely shared viral strategy targeting PML to evade intrinsic and innate defense mechanisms. PMID:25812002

  6. Type I Interferon Suppresses Type II Interferon–Triggered Human Anti-Mycobacterial Responses

    PubMed Central

    Teles, Rosane M. B.; Graeber, Thomas G.; Krutzik, Stephan R.; Montoya, Dennis; Schenk, Mirjam; Lee, Delphine J.; Komisopoulou, Evangelia; Kelly-Scumpia, Kindra; Chun, Rene; Iyer, Shankar S.; Sarno, Euzenir N.; Rea, Thomas H.; Hewison, Martin; Adams, John S.; Popper, Stephen J.; Relman, David A.; Stenger, Steffen; Bloom, Barry R.; Cheng, Genhong; Modlin, Robert L.

    2013-01-01

    Type I interferons (IFN-α and IFN-β) are important for protection against many viral infections, whereas type II interferon (IFN-γ) is essential for host defense against some bacterial and parasitic pathogens. Study of IFN responses in human leprosy revealed an inverse correlation between IFN-β and IFN-γ gene expression programs. IFN-γ and its downstream vitamin D–dependent antimicrobial genes were preferentially expressed in self-healing tuberculoid lesions and mediated antimicrobial activity against the pathogen Mycobacterium leprae in vitro. In contrast, IFN-β and its downstream genes, including interleukin-10 (IL-10), were induced in monocytes by M. leprae in vitro and preferentially expressed in disseminated and progressive lepromatous lesions. The IFN-γ–induced macrophage vitamin D–dependent antimicrobial peptide response was inhibited by IFN-β and by IL-10, suggesting that the differential production of IFNs contributes to protection versus pathogenesis in some human bacterial infections. PMID:23449998

  7. Gene Expression Profiling Identifies Interferon Signalling Molecules and IGFBP3 in Human Degenerative Annulus Fibrosus.

    PubMed

    Kazezian, Zepur; Gawri, Rahul; Haglund, Lisbet; Ouellet, Jean; Mwale, Fackson; Tarrant, Finbarr; O'Gaora, Peadar; Pandit, Abhay; Alini, Mauro; Grad, Sibylle

    2015-01-01

    Low back pain is a major cause of disability especially for people between 20 and 50 years of age. As a costly healthcare problem, it imposes a serious socio-economic burden. Current surgical therapies fail to replace the normal disc in facilitating spinal movements and absorbing load. The focus of regenerative medicine is on identifying biomarkers and signalling pathways to improve our understanding about cascades of disc degeneration and allow for the design of specific therapies. We hypothesized that comparing microarray profiles from degenerative and non-degenerative discs will lead to the identification of dysregulated signalling and pathophysiological targets. Microarray data sets were generated from human annulus fibrosus cells and analysed using IPA ingenuity pathway analysis. Gene expression values were validated by qRT-PCR, and respective proteins were identified by immunohistochemistry. Microarray analysis revealed 238 differentially expressed genes in the degenerative annulus fibrosus. Seventeen of the dysregulated molecular markers showed log2-fold changes greater than ±1.5. Various dysregulated cellular functions, including cell proliferation and inflammatory response, were identified. The most significant canonical pathway induced in degenerative annulus fibrosus was found to be the interferon pathway. This study indicates interferon-alpha signalling pathway activation with IFIT3 and IGFBP3 up-regulation, which may affect cellular function in human degenerative disc. PMID:26489762

  8. Gene Expression Profiling Identifies Interferon Signalling Molecules and IGFBP3 in Human Degenerative Annulus Fibrosus

    PubMed Central

    Kazezian, Zepur; Gawri, Rahul; Haglund, Lisbet; Ouellet, Jean; Mwale, Fackson; Tarrant, Finbarr; O’Gaora, Peadar; Pandit, Abhay; Alini, Mauro; Grad, Sibylle

    2015-01-01

    Low back pain is a major cause of disability especially for people between 20 and 50 years of age. As a costly healthcare problem, it imposes a serious socio-economic burden. Current surgical therapies fail to replace the normal disc in facilitating spinal movements and absorbing load. The focus of regenerative medicine is on identifying biomarkers and signalling pathways to improve our understanding about cascades of disc degeneration and allow for the design of specific therapies. We hypothesized that comparing microarray profiles from degenerative and non-degenerative discs will lead to the identification of dysregulated signalling and pathophysiological targets. Microarray data sets were generated from human annulus fibrosus cells and analysed using IPA ingenuity pathway analysis. Gene expression values were validated by qRT-PCR, and respective proteins were identified by immunohistochemistry. Microarray analysis revealed 238 differentially expressed genes in the degenerative annulus fibrosus. Seventeen of the dysregulated molecular markers showed log2-fold changes greater than ±1.5. Various dysregulated cellular functions, including cell proliferation and inflammatory response, were identified. The most significant canonical pathway induced in degenerative annulus fibrosus was found to be the interferon pathway. This study indicates interferon-alpha signalling pathway activation with IFIT3 and IGFBP3 up-regulation, which may affect cellular function in human degenerative disc. PMID:26489762

  9. Regulation of antiviral T cell responses by type I interferons.

    PubMed

    Crouse, Josh; Kalinke, Ulrich; Oxenius, Annette

    2015-04-01

    Type I interferons (IFNs) are pro-inflammatory cytokines that are rapidly induced in different cell types during viral infections. The consequences of type I IFN signalling include direct antiviral activity, innate immune cell activation and regulation of adaptive immune responses. In this Review, we discuss recent conceptual advances in our understanding of indirect and direct regulation of T cell immunity by type I IFNs, which can either promote or inhibit T cell activation, proliferation, differentiation and survival. This regulation depends, to a large extent, on the timing of type I IFN exposure relative to T cell receptor signalling. Type I IFNs also provide activated T cells with resistance to natural killer cell-mediated elimination. PMID:25790790

  10. The nucleocapsid protein of measles virus blocks host interferon response

    SciTech Connect

    Takayama, Ikuyo; Sato, Hiroki; Watanabe, Akira; Omi-Furutani, Mio; Sugai, Akihiro; Kanki, Keita; Yoneda, Misako; Kai, Chieko

    2012-03-01

    Measles virus (MV) belongs to the genus Morbillivirus of the family Paramyxoviridae. A number of paramyxoviruses inhibit host interferon (IFN) signaling pathways in host immune systems by various mechanisms. Inhibition mechanisms have been described for many paramyxoviruses. Although there are inconsistencies among previous reports concerning MV, it appears that P/V/C proteins interfere with the pathways. In this study, we confirmed the effects of MV P gene products of a wild MV strain on IFN pathways and examined that of other viral proteins on it. Interestingly, we found that N protein acts as an IFN-{alpha}/{beta} and {gamma}-antagonist as strong as P gene products. We further investigated the mechanisms of MV-N inhibition, and revealed that MV-N blocks the nuclear import of activated STAT without preventing STAT and Jak activation or STAT degradation, and that the nuclear translocation of MV-N is important for the inhibition. The inhibitory effect of the N protein was observed as a common feature of other morbilliviruses. The results presented in this report suggest that N protein of MV as well as P/V/C proteins is involved in the inhibition of host IFN signaling pathways.

  11. The AIM2-like Receptors Are Dispensable for the Interferon Response to Intracellular DNA.

    PubMed

    Gray, Elizabeth E; Winship, Damion; Snyder, Jessica M; Child, Stephanie J; Geballe, Adam P; Stetson, Daniel B

    2016-08-16

    Detection of intracellular DNA triggers activation of the STING-dependent interferon-stimulatory DNA (ISD) pathway, which is essential for antiviral responses. Multiple DNA sensors have been proposed to activate this pathway, including AIM2-like receptors (ALRs). Whether the ALRs are essential for activation of this pathway remains unknown. To rigorously explore the function of ALRs, we generated mice lacking all 13 ALR genes. We found that ALRs are dispensable for the type I interferon (IFN) response to transfected DNA ligands, DNA virus infection, and lentivirus infection. We also found that ALRs do not contribute to autoimmune disease in the Trex1(-/-) mouse model of Aicardi-Goutières Syndrome. Finally, CRISPR-mediated disruption of the human AIM2-like receptor IFI16 in primary fibroblasts revealed that IFI16 is not essential for the IFN response to human cytomegalovirus infection. Our findings indicate that ALRs are dispensable for the ISD response and suggest that alternative functions for these receptors should be explored. PMID:27496731

  12. A novel interferon regulatory factor family transcription factor, ICSAT/Pip/LSIRF, that negatively regulates the activity of interferon-regulated genes.

    PubMed Central

    Yamagata, T; Nishida, J; Tanaka, S; Sakai, R; Mitani, K; Yoshida, M; Taniguchi, T; Yazaki, Y; Hirai, H

    1996-01-01

    We have isolated a novel cDNA clone encoding interferon (IFN) consensus sequence-binding protein in adult T-cell leukemia cell line or activated T cells (ICSAT); this protein is the human homolog of the recently cloned Pip/LSIRF. ICSAT is structurally most closely related to the previously cloned ICSBP, a member of the IFN regulatory factor (IRF) family of proteins that binds to interferon consensus sequences (ICSs) found in many promoters of the IFN-regulated genes. Among T-cell lines investigated, ICSAT was abundantly expressed in human T-cell leukemia virus type 1 (HTLV-1)-infected T cells. When the HTLV-1 tax gene was expressed or phorbol myristake acetate-A23187 stimulation was used, ICSAT expression was induced in Jurkat cells which otherwise do not express ICSAT. When the binding of ICSAT to four different ICSs was tested, the relative differences in binding affinities for those ICSs were determined. To study the functional role of ICSAT, we performed cotransfection experiments with the human embryonal carcinoma cell line N-Tera2. ICSAT was demonstrated to possess repressive function over the gene activation induced by IFN stimulation or by IRF-1 cotransfection. Such repressive function is similar to that seen in IRF-2 or ICSBP. However, we have found that ICSAT has a different repressive effect from that of IRF-2 or ICSBP in some IFN-responsive reporter constructs. These results suggest that a novel mechanism of gene regulation by "differential repression" is used by multiple members of repressor proteins with different repressive effects on the IFN-responsive genes. PMID:8657101

  13. Assessment of mTOR-Dependent Translational Regulation of Interferon Stimulated Genes

    PubMed Central

    Livingstone, Mark; Sikström, Kristina; Robert, Philippe A.; Uzé, Gilles; Larsson, Ola; Pellegrini, Sandra

    2015-01-01

    Type-I interferon (IFN)-induced activation of the mammalian target of rapamycin (mTOR) signaling pathway has been implicated in translational control of mRNAs encoding interferon-stimulated genes (ISGs). However, mTOR-sensitive translatomes commonly include mRNAs with a 5’ terminal oligopyrimidine tract (TOP), such as those encoding ribosomal proteins, but not ISGs. Because these translatomes were obtained under conditions when ISG expression is not induced, we examined the mTOR-sensitive translatome in human WISH cells stimulated with IFN β. The mTOR inhibitor Torin1 resulted in a repression of global protein synthesis, including that of ISG products, and translation of all but 3 ISG mRNAs (TLR3, NT5C3A, and RNF19B) was not selectively more sensitive to mTOR inhibition. Detailed studies of NT5C3A revealed an IFN-induced change in transcription start site resulting in a switch from a non-TOP to a TOP-like transcript variant and mTOR sensitive translation. Thus, we show that, in the cell model used, translation of the vast majority of ISG mRNAs is not selectively sensitive to mTOR activity and describe an uncharacterized mechanism wherein the 5’-UTR of an mRNA is altered in response to a cytokine, resulting in a shift from mTOR-insensitive to mTOR-sensitive translation. PMID:26207988

  14. Interferome v2.0: an updated database of annotated interferon-regulated genes.

    PubMed

    Rusinova, Irina; Forster, Sam; Yu, Simon; Kannan, Anitha; Masse, Marion; Cumming, Helen; Chapman, Ross; Hertzog, Paul J

    2013-01-01

    Interferome v2.0 (http://interferome.its.monash.edu.au/interferome/) is an update of an earlier version of the Interferome DB published in the 2009 NAR database edition. Vastly improved computational infrastructure now enables more complex and faster queries, and supports more data sets from types I, II and III interferon (IFN)-treated cells, mice or humans. Quantitative, MIAME compliant data are collected, subjected to thorough, standardized, quantitative and statistical analyses and then significant changes in gene expression are uploaded. Comprehensive manual collection of metadata in v2.0 allows flexible, detailed search capacity including the parameters: range of -fold change, IFN type, concentration and time, and cell/tissue type. There is no limit to the number of genes that can be used to search the database in a single query. Secondary analysis such as gene ontology, regulatory factors, chromosomal location or tissue expression plots of IFN-regulated genes (IRGs) can be performed in Interferome v2.0, or data can be downloaded in convenient text formats compatible with common secondary analysis programs. Given the importance of IFN to innate immune responses in infectious, inflammatory diseases and cancer, this upgrade of the Interferome to version 2.0 will facilitate the identification of gene signatures of importance in the pathogenesis of these diseases. PMID:23203888

  15. INTERFEROME v2.0: an updated database of annotated interferon-regulated genes

    PubMed Central

    Rusinova, Irina; Forster, Sam; Yu, Simon; Kannan, Anitha; Masse, Marion; Cumming, Helen; Chapman, Ross; Hertzog, Paul J.

    2013-01-01

    Interferome v2.0 (http://interferome.its.monash.edu.au/interferome/) is an update of an earlier version of the Interferome DB published in the 2009 NAR database edition. Vastly improved computational infrastructure now enables more complex and faster queries, and supports more data sets from types I, II and III interferon (IFN)-treated cells, mice or humans. Quantitative, MIAME compliant data are collected, subjected to thorough, standardized, quantitative and statistical analyses and then significant changes in gene expression are uploaded. Comprehensive manual collection of metadata in v2.0 allows flexible, detailed search capacity including the parameters: range of -fold change, IFN type, concentration and time, and cell/tissue type. There is no limit to the number of genes that can be used to search the database in a single query. Secondary analysis such as gene ontology, regulatory factors, chromosomal location or tissue expression plots of IFN-regulated genes (IRGs) can be performed in Interferome v2.0, or data can be downloaded in convenient text formats compatible with common secondary analysis programs. Given the importance of IFN to innate immune responses in infectious, inflammatory diseases and cancer, this upgrade of the Interferome to version 2.0 will facilitate the identification of gene signatures of importance in the pathogenesis of these diseases. PMID:23203888

  16. Induction of interferon-stimulated genes by Simian virus 40 T antigens

    SciTech Connect

    Rathi, Abhilasha V.; Cantalupo, Paul G.; Sarkar, Saumendra N.; Pipas, James M.

    2010-10-25

    Simian virus 40 (SV40) large T antigen (TAg) is a multifunctional oncoprotein essential for productive viral infection and for cellular transformation. We have used microarray analysis to examine the global changes in cellular gene expression induced by wild-type T antigen (TAg{sup wt}) and TAg-mutants in mouse embryo fibroblasts (MEFs). The expression profile of approximately 800 cellular genes was altered by TAg{sup wt} and a truncated TAg (TAg{sup N136}), including many genes that influence cell cycle, DNA-replication, transcription, chromatin structure and DNA repair. Unexpectedly, we found a significant number of immune response genes upregulated by TAg{sup wt} including many interferon-stimulated genes (ISGs) such as ISG56, OAS, Rsad2, Ifi27 and Mx1. Additionally, we also observed activation of STAT1 by TAg{sup wt}. Our genetic studies using several TAg-mutants reveal an unexplored function of TAg and indicate that the LXCXE motif and p53 binding are required for the upregulation of ISGs.

  17. Interferon induced IFIT family genes in host antiviral defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IF stimulated ...

  18. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression

    SciTech Connect

    Kamitani, Shinya; Ohbayashi, Norihiko; Ikeda, Osamu; Togi, Sumihito; Muromoto, Ryuta; Sekine, Yuichi; Ohta, Kazuhide; Ishiyama, Hironobu; Matsuda, Tadashi

    2008-05-30

    Signal transducers and activators of transcription (STATs) mediate cell proliferation, differentiation, and survival in immune responses, hematopoiesis, neurogenesis, and other biological processes. Recently, we showed that KAP1 is a novel STAT-binding partner that regulates STAT3-mediated transactivation. KAP1 is a universal co-repressor protein for the KRAB zinc finger protein superfamily of transcriptional repressors. In this study, we found KAP1-dependent repression of interferon (IFN)/STAT1-mediated signaling. We also demonstrated that endogenous KAP1 associates with endogenous STAT1 in vivo. Importantly, a small-interfering RNA-mediated reduction in KAP1 expression enhanced IFN-induced STAT1-dependent IRF-1 gene expression. These results indicate that KAP1 may act as an endogenous regulator of the IFN/STAT1 signaling pathway.

  19. Irf3 Polymorphism Alters Induction of Interferon Beta in Response to Listeria monocytogenes Infection

    PubMed Central

    Garifulin, Oleg; Qi, Zanmei; Shen, Haihong; Patnala, Sujatha; Green, Michael R; Boyartchuk, Victor

    2007-01-01

    Genetic makeup of the host plays a significant role in the course and outcome of infection. Inbred strains of mice display a wide range of sensitivities to Listeria monocytogenes infection and thus serve as a good model for analysis of the effect of genetic polymorphism. The outcome of L. monocytogenes infection in mice is influenced by the ability of this bacterium to induce expression of interferon beta mRNA, encoded in mouse by the Ifnb1 (interferon beta 1, fibroblast) gene. Mouse strains that lack components of the IFNβ signaling pathway are substantially more resistant to infection. We found that macrophages from the ByJ substrain of the common C57BL/6 inbred strain of mice are impaired in their ability to induce Ifnb1 expression in response to bacterial and viral infections. We mapped the locus that controls differential expression of Ifnb1 to a region on Chromosome 7 that includes interferon regulatory factor 3 (Irf3), which encodes a transcription factor responsible for early induction of Ifnb1 expression. In C57BL/6ByJ mice, Irf3 mRNA was inefficiently spliced, with a significant proportion of the transcripts retaining intron 5. Analysis of the Irf3 locus identified a single base-pair polymorphism and revealed that intron 5 of Irf3 is spliced by the atypical U12-type spliceosome. We found that the polymorphism disrupts a U12-type branchpoint and has a profound effect on the efficiency of splicing of Irf3. We demonstrate that a naturally occurring change in the splicing control element has a dramatic effect on the resistance to L. monocytogenes infection. Thus, the C57BL/6ByJ mouse strain serves as an example of how a mammalian host can counter bacterial virulence strategies by introducing subtle alteration of noncoding sequences. PMID:17845078

  20. Dietary Selenium Levels Affect Selenoprotein Expression and Support the Interferon-γ and IL-6 Immune Response Pathways in Mice

    PubMed Central

    Tsuji, Petra A.; Carlson, Bradley A.; Anderson, Christine B.; Seifried, Harold E.; Hatfield, Dolph L.; Howard, Michael T.

    2015-01-01

    Selenium is an essential element that is required to support a number of cellular functions and biochemical pathways. The objective of this study was to examine the effects of reduced dietary selenium levels on gene expression to assess changes in expression of non-selenoprotein genes that may contribute to the physiological consequences of selenium deficiency. Mice were fed diets that were either deficient in selenium or supplemented with selenium in the form of sodium selenite for six weeks. Differences in liver mRNA expression and translation were measured using a combination of ribosome profiling, RNA-Seq, microarrays, and qPCR. Expression levels and translation of mRNAs encoding stress-related selenoproteins were shown to be up-regulated by increased selenium status, as were genes involved in inflammation and response to interferon-γ. Changes in serum cytokine levels were measured which confirmed that interferon-γ, as well as IL-6, were increased in selenium adequate mice. Finally, microarray and qPCR analysis of lung tissue demonstrated that the selenium effects on immune function are not limited to liver. These data are consistent with previous reports indicating that adequate selenium levels can support beneficial immune responses, and further identify the IL-6 and interferon-γ pathways as being responsive to dietary selenium intake. PMID:26258789

  1. Interferon response of the cystic fibrosis bronchial epithelium to major and minor group rhinovirus infection.

    PubMed

    Schögler, Aline; Stokes, Andrea B; Casaulta, Carmen; Regamey, Nicolas; Edwards, Michael R; Johnston, Sebastian L; Jung, Andreas; Moeller, Alexander; Geiser, Thomas; Alves, Marco P

    2016-05-01

    Rhinoviruses (RVs) are associated with exacerbations of cystic fibrosis (CF), asthma and COPD. There is growing evidence suggesting the involvement of the interferon (IFN) pathway in RV-associated morbidity in asthma and COPD. The mechanisms of RV-triggered exacerbations in CF are poorly understood. In a pilot study, we assessed the antiviral response of CF and healthy bronchial epithelial cells (BECs) to RV infection, we measured the levels of IFNs, pattern recognition receptors (PRRs) and IFN-stimulated genes (ISGs) upon infection with major and minor group RVs and poly(IC) stimulation. Major group RV infection of CF BECs resulted in a trend towards a diminished IFN response at the level of IFNs, PRRs and ISGs in comparison to healthy BECs. Contrary to major group RV, the IFN pathway induction upon minor group RV infection was significantly increased at the level of IFNs and PRRs in CF BECs compared to healthy BECs. PMID:26613982

  2. Antagonism of type I interferon responses by new world hantaviruses.

    PubMed

    Levine, Jessica R; Prescott, Joseph; Brown, Kyle S; Best, Sonja M; Ebihara, Hideki; Feldmann, Heinz

    2010-11-01

    Evasion of interferon (IFN)-mediated antiviral signaling is a common defense strategy for pathogenic RNA viruses. To date, research on IFN antagonism by hantaviruses is limited and has focused on only a subset of the numerous recognized hantavirus species. The host IFN response has two phases, an initiation phase, resulting in the induction of alpha/beta IFN (IFN-α/β), and an amplification phase, whereby IFN-α/β signals through the Jak/STAT pathway, resulting in the establishment of the cellular antiviral state. We examined interactions between these critical host responses and the New World hantaviruses. We observed delayed cellular responses in both Andes virus (ANDV)- and Sin Nombre virus (SNV)-infected A549 and Huh7-TLR3 cells. We found that IFN-β induction is inhibited by coexpression of ANDV nucleocapsid protein (NP) and glycoprotein precursor (GPC) and is robustly inhibited by SNV GPC alone. Downstream amplification by Jak/STAT signaling is also inhibited by SNV GPC and by either NP or GPC of ANDV. Therefore, ANDV- and SNV-encoded proteins have the potential for inhibiting both IFN-β induction and signaling, with SNV exhibiting the more potent antagonism ability. Herein we identify ANDV NP, a previously unrecognized inhibitor of Jak/STAT signaling, and show that IFN antagonism by ANDV relies on expression of both the glycoproteins and NP, whereas the glycoproteins appear to be sufficient for antagonism by SNV. These data suggest that IFN antagonism strategies by hantaviruses are quite variable, even between species with similar disease phenotypes, and may help to better elucidate species-specific pathogenesis. PMID:20844031

  3. An interferon gamma-regulated protein that binds the interferon-inducible enhancer element of major histocompatibility complex class I genes.

    PubMed Central

    Driggers, P H; Ennist, D L; Gleason, S L; Mak, W H; Marks, M S; Levi, B Z; Flanagan, J R; Appella, E; Ozato, K

    1990-01-01

    Interferons (IFNs) induce transcription of major histocompatibility complex (MHC) class I genes through the conserved IFN consensus sequence (ICS) that contains an IFN response motif shared by many IFN-regulated genes. By screening mouse lambda ZAP expression libraries with the ICS as a probe, we isolated a cDNA clone encoding a protein that binds the ICS, designated ICSBP. Protein blot analysis with labeled oligonucleotide probes showed that ICSBP binds not only the MHC class I ICS but also IFN response motifs of many IFN-regulated genes, as well as a virus-inducible element of the IFN-beta gene. The ICSBP cDNA encodes 424 amino acids and a long 3' untranslated sequence. The N-terminal 115 amino acids correspond to a putative DNA-binding domain and show significant sequence similarity with other cloned IFN response factors (IRF-1 and IRF-2). Because of the structural similarity and shared binding specificity, we conclude that ICSBP is a third member of the IRF gene family, presumably playing a role in IFN- and virus-mediated regulation of many genes. Although IRF-1 and IRF-2 share some similarity in their C-terminal regions, ICSBP shows no similarity to IRF-1 or IRF-2 in this region, suggesting that it is more distantly related. We show that ICSBP mRNA is expressed predominantly in lymphoid tissues and is inducible preferentially by IFN-gamma. The induction by IFN-gamma appears to be predominant in lymphocytes and macrophages, implying that ICSBP plays a regulatory role in cells of the immune system. The presence of multiple factors that bind common IFN response motifs may partly account for the complexity and diversity of IFN action as well as IFN-regulated gene expression. Images PMID:2111015

  4. Effect of statins on clinical and molecular responses to intramuscular interferon beta-1a

    PubMed Central

    Rudick, R A.; Pace, A; Rani, M R.S.; Hyde, R; Panzara, M; Appachi, S; Shrock, J; Maurer, S L.; Calabresi, P A.; Confavreux, C; Galetta, S L.; Lublin, F D.; Radue, E -W.; Ransohoff, R M.

    2009-01-01

    Background: Findings from a small clinical study suggested that statins may counteract the therapeutic effects of interferon beta (IFNβ) in patients with relapsing-remitting multiple sclerosis (RRMS). Methods: We conducted a post hoc analysis of data from the Safety and Efficacy of Natalizumab in Combination With IFNβ-1a in Patients With Relapsing-Remitting Multiple Sclerosis (SENTINEL) study to determine the effects of statins on efficacy of IFNβ. SENTINEL was a prospective trial of patients with RRMS treated with natalizumab (Tysabri®, Biogen Idec, Inc., Cambridge, MA) plus IM IFNβ-1a (Avonex®, Biogen Idec, Inc.) 30 μg compared with placebo plus IM IFNβ-1a 30 μg. Clinical and MRI outcomes in patients treated with IM IFNβ-1a only (no-statins group, n = 542) were compared with those of patients taking IM IFNβ-1a and statins at doses used to treat hyperlipidemia (statins group, n = 40). Results: No significant differences were observed between treatment groups in adjusted annualized relapse rate (p = 0.937), disability progression (p = 0.438), number of gadolinium-enhancing lesions (p = 0.604), or number of new or enlarging T2-hyperintense lesions (p = 0.802) at 2 years. More patients in the statins group reported fatigue, extremity pain, muscle aches, and increases in hepatic transaminases compared with patients in the no-statins group. Statin treatment had no ex vivo or in vitro effect on induction of IFN-stimulated genes. Conclusions: Statin therapy does not appear to affect clinical effects of IM interferon beta-1a in patients with relapsing-remitting multiple sclerosis or the primary molecular response to interferon beta treatment. GLOSSARY ANCOVA = analysis of covariance; CI = confidence interval; EDSS = Expanded Disability Status Scale; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; Gd+ = gadolinium-enhancing; IFNβ = interferon beta; ISG = IFN-stimulated gene; RRMS = relapsing-remitting multiple sclerosis; SENTINEL = Safety and Efficacy of

  5. Identification of distal silencing elements in the murine interferon-A11 gene promoter.

    PubMed Central

    Roffet, P; Lopez, S; Navarro, S; Bandu, M T; Coulombel, C; Vignal, M; Doly, J; Vodjdani, G

    1996-01-01

    The murine interferon-A11 (Mu IFN-A11) gene is a member of the IFN-A multigenic family. In mouse L929 cells, the weak response of the gene's promoter to viral induction is due to a combination of both a point mutation in the virus responsive element (VRE) and the presence of negatively regulating sequences surrounding the VRE. In the distal part of the promoter, the negatively acting E1E2 sequence was delimited. This sequence displays an inhibitory effect in either orientation or position on the inducibility of a virus-responsive heterologous promoter. It selectively represses VRE-dependent transcription but is not able to reduce the transcriptional activity of a VRE-lacking promoter. In a transient transfection assay, an E1E2-containing DNA competitor was able to derepress the native Mu IFN-A11 promoter. Specific nuclear factors bind to this sequence; thus the binding of trans-regulators participates in the repression of the Mu IFN-A11 gene. The E1E2 sequence contains an IFN regulatory factor (IRF)-binding site. Recombinant IRF2 binds this sequence and anti-IRF2 antibodies supershift a major complex formed with nuclear extracts. The protein composing the complex is 50 kDa in size, indicating the presence of IRF2 or antigenically related proteins in the complex. The Mu IFN-A11 gene is the first example within the murine IFN-A family, in which a distal promoter element has been identified that can negatively modulate the transcriptional response to viral induction. PMID:8760352

  6. Correlation between mutations in the core and NS5A genes of hepatitis C virus genotypes 1a, 1b, 3a, 3b, 6f and the response to pegylated interferon and ribavirin combination therapy.

    PubMed

    Kumthip, K; Pantip, C; Chusri, P; Thongsawat, S; O'Brien, A; Nelson, K E; Maneekarn, N

    2011-04-01

    Several studies have reported correlation between mutations in core and NS5A proteins of hepatitis C virus (HCV) and response to interferon (IFN) therapy. In particular, mutations in NS5A protein have been shown to correlate with responsiveness to IFN treatment of HCV-1b in Japanese patients. This study investigated whether amino acid (aa) mutations in the core and NS5A proteins of HCV-1a, 1b, 3a, 3b and 6f correlated with the response to pegylated interferon (Peg-IFN) plus ribavirin (RBV) therapy in Thai patients. The entire sequences of core and NS5A of HCV from 76 HCV-infected patients were analysed in comparison with corresponding reference sequences. The data revealed that the number of aa mutations in full-length NS5A, its C-terminus, IFN sensitivity-determining region, variable region 3 (V3) and V3 plus flanking region of HCV-1b NS5A protein were significantly higher in responders than in the treatment failure group (P = 0.010, 0.031, 0.046, 0.020 and 0.006, respectively). Similar results were found in a putative protein kinase R binding domain region in HCV-6f NS5A protein (P = 0.022). Moreover, specific aa substitutions in NS5A that appeared to be associated with responders or the treatment failure group were observed at positions 78 and 305 for HCV-1b (P = 0.028), 64 and 52 for HCV-1a (P = 0.033) and 6f (P = 0.045). Nevertheless, analysis of aa sequences of core protein revealed highly conserved sequences among HCV genotypes and no significant differences between the viruses from responders and the treatment failure group. Our findings indicate that mutations in aa residues of NS5A of HCV-1a, 1b and 6f correlated well with responsiveness to Peg-IFN and RBV combination therapy. PMID:20955493

  7. Inhibitors of the Interferon Response Enhance Virus Replication In Vitro

    PubMed Central

    Stewart, Claire E.; Randall, Richard E.; Adamson, Catherine S.

    2014-01-01

    Virus replication efficiency is influenced by two conflicting factors, kinetics of the cellular interferon (IFN) response and induction of an antiviral state versus speed of virus replication and virus-induced inhibition of the IFN response. Disablement of a virus's capacity to circumvent the IFN response enables both basic research and various practical applications. However, such IFN-sensitive viruses can be difficult to grow to high-titer in cells that produce and respond to IFN. The current default option for growing IFN-sensitive viruses is restricted to a limited selection of cell-lines (e.g. Vero cells) that have lost their ability to produce IFN. This study demonstrates that supplementing tissue-culture medium with an IFN inhibitor provides a simple, effective and flexible approach to increase the growth of IFN-sensitive viruses in a cell-line of choice. We report that IFN inhibitors targeting components of the IFN response (TBK1, IKK2, JAK1) significantly increased virus replication. More specifically, the JAK1/2 inhibitor Ruxolitinib enhances the growth of viruses that are sensitive to IFN due to (i) loss of function of the viral IFN antagonist (due to mutation or species-specific constraints) or (ii) mutations/host cell constraints that slow virus spread such that it can be controlled by the IFN response. This was demonstrated for a variety of viruses, including, viruses with disabled IFN antagonists that represent live-attenuated vaccine candidates (Respiratory Syncytial Virus (RSV), Influenza Virus), traditionally attenuated vaccine strains (Measles, Mumps) and a slow-growing wild-type virus (RSV). In conclusion, supplementing tissue culture-medium with an IFN inhibitor to increase the growth of IFN-sensitive viruses in a cell-line of choice represents an approach, which is broadly applicable to research investigating the importance of the IFN response in controlling virus infections and has utility in a number of practical applications including

  8. EPCR-dependent PAR2 activation by the blood coagulation initiation complex regulates LPS-triggered interferon responses in mice

    PubMed Central

    Liang, Hai Po H.; Kerschen, Edward J.; Hernandez, Irene; Basu, Sreemanti; Zogg, Mark; Botros, Fady; Jia, Shuang; Hessner, Martin J.; Griffin, John H.; Ruf, Wolfram

    2015-01-01

    Infection and inflammation are invariably associated with activation of the blood coagulation mechanism, secondary to the inflammation-induced expression of the coagulation initiator tissue factor (TF) on innate immune cells. By investigating the role of cell-surface receptors for coagulation factors in mouse endotoxemia, we found that the protein C receptor (ProcR; EPCR) was required for the normal in vivo and in vitro induction of lipopolysaccharide (LPS)-regulated gene expression. In cultured bone marrow–derived myeloid cells and in monocytic RAW264.7 cells, the LPS-induced expression of functionally active TF, assembly of the ternary TF-VIIa-Xa initiation complex of blood coagulation, and the EPCR-dependent activation of protease-activated receptor 2 (PAR2) by the ternary TF-VIIa-Xa complex were required for the normal LPS induction of messenger RNAs encoding the TLR3/4 signaling adaptor protein Pellino-1 and the transcription factor interferon regulatory factor 8. In response to in vivo challenge with LPS, mice lacking EPCR or PAR2 failed to fully initiate an interferon-regulated gene expression program that included the Irf8 target genes Lif, Iigp1, Gbp2, Gbp3, and Gbp6. The inflammation-induced expression of TF and crosstalk with EPCR, PAR2, and TLR4 therefore appear necessary for the normal evolution of interferon-regulated host responses. PMID:25733582

  9. In vitro comparison of the cytokine response to avian influenza virus from peripheral blood lymphocyles isolated from chickens differing in Mx631 gene polymorphism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Following viral infection, the host innate immune response triggers induction of cytokine and interferon genes. Interferon-alpha induction stimulates expression interferon-stimulated genes, including the Mx protein. This protein has been shown to confer protection against influenza in mice. In ch...

  10. No Love Lost Between Viruses and Interferons.

    PubMed

    Fensterl, Volker; Chattopadhyay, Saurabh; Sen, Ganes C

    2015-11-01

    The interferon system protects mammals against virus infections. There are several types of interferons, which are characterized by their ability to inhibit virus replication and resultant pathogenesis by triggering both innate and cell-mediated immune responses. Virus infection is sensed by a variety of cellular pattern-recognition receptors and triggers the synthesis of interferons, which are secreted by the infected cells. In uninfected cells, cell surface receptors recognize the secreted interferons and activate intracellular signaling pathways that induce the expression of interferon-stimulated genes; the proteins encoded by these genes inhibit different stages of virus replication. To avoid extinction, almost all viruses have evolved mechanisms to defend themselves against the interferon system. Consequently, a dynamic equilibrium of survival is established between the virus and its host, an equilibrium that can be shifted to the host's favor by the use of exogenous interferon as a therapeutic antiviral agent. PMID:26958928

  11. Low-dose oral interferon modulates expression of inflammatory and autoimmune genes in cattle.

    PubMed

    Mamber, Stephen W; Lins, Jeremy; Gurel, Volkan; Hutcheson, David P; Pinedo, Pablo; Bechtol, David; Krakowka, Steven; Fields-Henderson, Rachel; Cummins, Joseph M

    2016-04-01

    While the safety and efficacy profiles of orally administered bovine interferon (IFN) alpha have been documented, the mechanism(s) that result in clinical benefits remain elusive. One approach to delineating the molecular pathways of IFN efficacy is through the use of gene expression profiling technologies. In this proof-of-concept study, different (0, 50, 200 and 800 units) oral doses of natural bovine IFN (type I) were tested in cattle to determine if oral IFN altered the expression of genes that may be pivotal to the development of systemic resistance to viral infections such as foot-and-mouth disease (FMD). Oral IFN was administered twice: Time 0 and 8h later. Blood was collected at 0, 8 and 24h after the first IFN administration, and DNA isolated from peripheral blood mononuclear cells (PBMCs) was employed in quantitative polymerase chain reaction (qPCR) microarray assays. Within 8h, 50 and 200 units of oral IFN induced significant (P<0.05) changes in expression of 41 of 92 tested autoimmune and inflammatory response-associated genes. These data suggest that orally administered IFN is a viable approach for providing short-term antiviral immunity to livestock exposed to viruses such as FMD virus (FMDV) until such a time that an effective vaccine can be produced and distributed to producers. PMID:27032505

  12. Hepatitis C: viral and host factors associated with non-response to pegylated interferon plus ribavirin

    PubMed Central

    Asselah, Tarik; Estrabaud, Emilie; Bieche, Ivan; Lapalus, Martine; De Muynck, Simon; Vidaud, Michel; Saadoun, David; Soumelis, Vassili; Marcellin, Patrick

    2010-01-01

    Treatment for chronic hepatitis C virus (HCV) infection has evolved considerably in the last years. The standard of care (SOC) for HCV infection consists in the combination of pegylated interferon (PEG-IFN) plus ribavirin. However, it only induces a sustained virological response (SVR) in half of genotype 1-infected patients. Several viral and host factors have been associated with non-response: steatosis, obesity, insulin resistance, age, male sex, ethnicity and genotypes. Many studies have demonstrated that in non-responders, some interferon-stimulated genes were upregulated before treatment. Those findings associated to clinical, biochemical and histological data may help detect responders before starting any treatment. This is a very important issue because the standard treatment is physically and economically demanding. The future of HCV treatment would probably consist in the addition of specifically targeted antiviral therapy for HCV such as protease and/or polymerase inhibitors to the SOC. In genotype 1 patients, very promising results have been reported when the protease inhibitor telaprevir or boceprevir is added to the SOC. It increases the SVR rates from approximately 50% (PEG-IFN plus ribavirin) to 70% (for patients treated with a combination of PEG-IFN plus ribavirin plus telaprevir). Different elements are associated with non-response: (i) viral factors, (ii) host factors and (iii) molecular mechanisms induced by HCV proteins to inhibit the IFN signalling pathway. The goal of this review is to present the mechanisms of non-response, to overcome it and to identify factors that can help to predict the response to anti-HCV therapy. PMID:20633102

  13. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide.

    PubMed Central

    Lowenstein, C J; Alley, E W; Raval, P; Snowman, A M; Snyder, S H; Russell, S W; Murphy, W J

    1993-01-01

    The promoter region of the mouse gene for macrophage-inducible nitric oxide synthase (mac-NOS; EC 1.14.13.39) has been characterized. A putative TATA box is 30 base pairs upstream of the transcription start site. Computer analysis reveals numerous potential binding sites for transcription factors, many of them associated with stimuli that induce mac-NOS expression. To localize functionally important portions of the regulatory region, we constructed deletion mutants of the mac-NOS 5' flanking region and placed them upstream of a luciferase reporter gene. The macrophage cell line RAW 264.7, when transfected with a minimal promoter construct, expresses little luciferase activity when stimulated by lipopolysaccharide (LPS), interferon gamma (IFN-gamma), or both. Maximal expression depends on two discrete regulatory regions upstream of the putative TATA box. Region I (position -48 to -209) increases luciferase activity approximately 75-fold over the minimal promoter construct. Region I contains LPS-related responsive elements, including a binding site for nuclear factor interleukin 6 (NF-IL6) and the kappa B binding site for NF-kappa B, suggesting that this region regulates LPS-induced expression of the mac-NOS gene. Region II (position -913 to -1029) alone does not increase luciferase expression, but together with region I it causes an additional 10-fold increase in expression. Together the two regions increase expression 750-fold over activity obtained from a minimal promoter construct. Region II contains motifs for binding IFN-related transcription factors and thus probably is responsible for IFN-mediated regulation of LPS-induced mac-NOS. Delineation of these two cooperative regions explains at the level of transcription how IFN-gamma and LPS act in concert to induce maximally the mac-NOS gene and, furthermore, how IFN-gamma augments the inflammatory response to LPS. Images Fig. 2 PMID:7692452

  14. Antipyrine clearance and response to interferon treatment in patients with chronic active hepatitis C.

    PubMed

    Coverdale, S; Byth, K; Field, J; Liddle, C; Lin, R; Farrell, G C

    1995-10-01

    To determine whether hepatic metabolic function affects the response to interferon treatment, we measured antipyrine clearance (APC) in 85 patients with chronic active hepatitis C and compared the results with treatment outcome. Among 55 patients who responded to interferon by normalization of alanine transaminase (ALT), median APC before treatment was 0.47 (range, 0.12 to 0.98; normal range, 0.34 to 1.02 mL/min/kg body wt), a value that was significantly greater than in 30 nonresponders (0.23; 0.08 to 0.67 mL/min/kg body wt, P < .001). APC was closely associated with response to interferon. The response rate among cases with values > 0.25 mL/min/kg body weight was 79%, the same as in cases without cirrhosis. Cases without cirrhosis and with APC of > 0.25 mL/min/kg body weight had an 85% chance of responding to interferon; this was unlikely a simple reflection of histological activity, because the correlation with Scheuer score was poor in this subgroup (r = -.31, P < .05). A second, independent group of 43 patients was used to test the predictive value of APC (using 0.25 mL/min/kg body wt as a cut-off) for response to interferon treatment. In this group, APC correctly predicted positive response to interferon in 75% of cases. APC was also used to measure the effects of treatment on hepatic metabolic function. Regardless of outcome, there was no change in APC at the end of a 6-month course of interferon treatment. Six months later, however, improvement in APC (14%; P < .05) was evident among responders but not in those who had failed to respond to interferon.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7557852

  15. Interferon γ (IFNγ) Signaling via Mechanistic Target of Rapamycin Complex 2 (mTORC2) and Regulatory Effects in the Generation of Type II Interferon Biological Responses.

    PubMed

    Kroczynska, Barbara; Rafidi, Robert L; Majchrzak-Kita, Beata; Kosciuczuk, Ewa M; Blyth, Gavin T; Jemielity, Jacek; Warminska, Zofia; Saleiro, Diana; Mehrotra, Swarna; Arslan, Ahmet Dirim; Fish, Eleanor N; Platanias, Leonidas C

    2016-01-29

    We provide evidence for a unique pathway engaged by the type II IFN receptor, involving mTORC2/AKT-mediated downstream regulation of mTORC1 and effectors. These events are required for formation of the eukaryotic translation initiation factor 4F complex (eIF4F) and initiation of mRNA translation of type II interferon-stimulated genes. Our studies establish that Rictor is essential for the generation of type II IFN-dependent antiviral and antiproliferative responses and that it controls the generation of type II IFN-suppressive effects on normal and malignant hematopoiesis. Together, our findings establish a central role for mTORC2 in IFNγ signaling and type II IFN responses. PMID:26645692

  16. Baseline Gene Expression Signatures in Monocytes from Multiple Sclerosis Patients Treated with Interferon-beta

    PubMed Central

    Bustamante, Marta F.; Nurtdinov, Ramil N.; Río, Jordi; Montalban, Xavier; Comabella, Manuel

    2013-01-01

    Background A relatively large proportion of relapsing-remitting multiple sclerosis (RRMS) patients do not respond to interferon-beta (IFNb) treatment. In previous studies with peripheral blood mononuclear cells (PBMC), we identified a subgroup of IFNb non-responders that was characterized by a baseline over-expression of type I IFN inducible genes. Additional mechanistic experiments carried out in IFNb non-responders suggested a selective alteration of the type I IFN signaling pathway in the population of blood monocytes. Here, we aimed (i) to investigate whether the type I IFN signaling pathway is up-regulated in isolated monocytes from IFNb non-responders at baseline; and (ii) to search for additional biological pathways in this cell population that may be implicated in the response to IFNb treatment. Methods Twenty RRMS patients classified according to their clinical response to IFNb treatment and 10 healthy controls were included in the study. Monocytes were purified from PBMC obtained before treatment by cell sorting and the gene expression profiling was determined with oligonucleotide microarrays. Results and discussion Purified monocytes from IFNb non-responders were characterized by an over-expression of type I IFN responsive genes, which confirms the type I IFN signature in monocytes suggested from previous studies. Other relevant signaling pathways that were up-regulated in IFNb non-responders were related with the mitochondrial function and processes such as protein synthesis and antigen presentation, and together with the type I IFN signaling pathway, may also be playing roles in the response to IFNb. PMID:23637780

  17. System-based proteomic analysis of the interferon response in human liver cells

    PubMed Central

    Yan, Wei; Lee, Hookeun; Yi, Eugene C; Reiss, David; Shannon, Paul; Kwieciszewski, Bartlomiej K; Coito, Carlos; Li, Xiao-jun; Keller, Andrew; Eng, Jimmy; Galitski, Timothy; Goodlett, David R; Aebersold, Ruedi; Katze, Michael G

    2004-01-01

    Background Interferons (IFNs) play a critical role in the host antiviral defense and are an essential component of current therapies against hepatitis C virus (HCV), a major cause of liver disease worldwide. To examine liver-specific responses to IFN and begin to elucidate the mechanisms of IFN inhibition of virus replication, we performed a global quantitative proteomic analysis in a human hepatoma cell line (Huh7) in the presence and absence of IFN treatment using the isotope-coded affinity tag (ICAT) method and tandem mass spectrometry (MS/MS). Results In three subcellular fractions from the Huh7 cells treated with IFN (400 IU/ml, 16 h) or mock-treated, we identified more than 1,364 proteins at a threshold that corresponds to less than 5% false-positive error rate. Among these, 54 were induced by IFN and 24 were repressed by more than two-fold, respectively. These IFN-regulated proteins represented multiple cellular functions including antiviral defense, immune response, cell metabolism, signal transduction, cell growth and cellular organization. To analyze this proteomics dataset, we utilized several systems-biology data-mining tools, including Gene Ontology via the GoMiner program and the Cytoscape bioinformatics platform. Conclusions Integration of the quantitative proteomics with global protein interaction data using the Cytoscape platform led to the identification of several novel and liver-specific key regulatory components of the IFN response, which may be important in regulating the interplay between HCV, interferon and the host response to virus infection. PMID:15287976

  18. In Vivo-Simulated Sonotransfection and the Effect of Gamma Interferon Gene on Neurofibroma Proliferation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Kazuki; Feril, Loreto B.; Yoshida, Yuichi; Nakayama, Juichiro; Tachibana, Katsuro

    2007-05-01

    We have previously shown that ultrasound-mediated gene transfection (or sonotransfection) can be optimized on the basis of concepts drawn from previous in vitro experiments demonstrating ultrasound-induced apoptosis. At optimized conditions, we have shown using five cancer cell lines (HeLa, U937, Meth A, T24 and PC3) that sonotransfection is superior to other conventional non-viral methods such as electroporation and liposome-mediated transfection. In the present study, we further investigate the gene transfection of pEGFP-N1 into neurofibroma cell line isolated from human dermal neurofibroma, using an improved experimental set up that simulates in vivo conditions. The ultrasound device used was SonoPore KTAC-4000, which is capable of various settings. Using transducers of centre frequency 1.011 MHz, the optimal conditions include ISATA of 0.15, 0.44 and 0.64 W/cm2, burst frequency of 0.5 Hz, 25% duty factor, and 10-40 sec exposure duration. Cells were assayed at 24, 48 and 72 hr after the sonication. The transfection efficiency was found to be around 10%. Then we further investigated whether sonotransfection of gamma interferon on neurofibroma cell lines in vivo can suppress cell proliferation. Gamma interferon is well known as a pluripotential cytokine. It exerts an anti-tumor activity in some malignant diseases such as malignant lymphoma. Gamma interferon gene transfection by use of lipofectamin has been found to markedly inhibit the proliferation of neurofibroma cell lines in vitro. Our new experimental system was applied in evaluating the effect of sonotransfected gamma interferon gene on neurofibroma proliferation in vitro. It is suggested that ultrasound-mediated gamma interferon gene transfection could potentially become a non-surgical method in treating skin diseases, such as neurofibromas, particularly in patients with von Recklinghausen's disease.

  19. Interferon alpha2b gene delivery using adenoviral vector causes inhibition of tumor growth in xenograft models from a variety of cancers.

    PubMed

    Iqbal Ahmed, C M; Johnson, D E; Demers, G W; Engler, H; Howe, J A; Wills, K N; Wen, S F; Shinoda, J; Beltran, J; Nodelman, M; Machemer, T; Maneval, D C; Nagabhushan, T L; Sugarman, B J

    2001-10-01

    A recombinant adenovirus expressing human interferon alpha2b driven by the cytomegalovirus promoter, IACB, was shown to produce and secrete biologically active protein in vitro and in vivo. Intravenous administration of IACB in Buffalo rats resulted in circulating levels of biologically active human interferon at 70,000 international units/mL for up to 15 days. Distribution of interferon protein after IACB administration was different from that seen with the subcutaneous delivery of interferon protein. Higher levels of interferon protein were observed in liver and spleen after IACB delivery compared to protein delivery. The antitumor efficacy of IACB, as measured by suppression of tumor growth, was tested in athymic nude mice bearing established human tumor xenografts from different types of human cancer. Subcutaneous tumors most responsive to the intratumoral administration of IACB ranked as U87MG (glioblastoma) and K562 (chronic myelogenous leukemia), followed by Hep 3B (hepatocellular carcinoma) and LN229 cells (glioblastoma). Intravenous administration of IACB in animals bearing U87MG or Hep 3B xenografts was also effective in suppressing tumor growth, although to a lesser extent than the intratumoral administration. IACB was also tested in a metastatic model in beige/SCID mice generated with H69 (small cell lung carcinoma) cells and was found to prolong survival in tumor-bearing animals. This suggested that interferon gene delivery can be effective in suppressing tumor growth in a wide variety of cells. PMID:11687902

  20. Cross-Species Antiviral Activity of Goose Interferons against Duck Plague Virus Is Related to Its Positive Self-Feedback Regulation and Subsequent Interferon Stimulated Genes Induction

    PubMed Central

    Zhou, Hao; Chen, Shun; Zhou, Qin; Wei, Yunan; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Yang, Qiao; Wu, Ying; Sun, Kunfeng; Chen, Xiaoyue; Cheng, Anchun

    2016-01-01

    Interferons are a group of antiviral cytokines acting as the first line of defense in the antiviral immunity. Here, we describe the antiviral activity of goose type I interferon (IFNα) and type II interferon (IFNγ) against duck plague virus (DPV). Recombinant goose IFNα and IFNγ proteins of approximately 20 kDa and 18 kDa, respectively, were expressed. Following DPV-enhanced green fluorescent protein (EGFP) infection of duck embryo fibroblast cells (DEFs) with IFNα and IFNγ pre-treatment, the number of viral gene copies decreased more than 100-fold, with viral titers dropping approximately 100-fold. Compared to the control, DPV-EGFP cell positivity was decreased by goose IFNα and IFNγ at 36 hpi (3.89%; 0.79%) and 48 hpi (17.05%; 5.58%). In accordance with interferon-stimulated genes being the “workhorse” of IFN activity, the expression of duck myxovirus resistance (Mx) and oligoadenylate synthetases-like (OASL) was significantly upregulated (p < 0.001) by IFN treatment for 24 h. Interestingly, duck cells and goose cells showed a similar trend of increased ISG expression after goose IFNα and IFNγ pretreatment. Another interesting observation is that the positive feedback regulation of type I IFN and type II IFN by goose IFNα and IFNγ was confirmed in waterfowl for the first time. These results suggest that the antiviral activities of goose IFNα and IFNγ can likely be attributed to the potency with which downstream genes are induced by interferon. These findings will contribute to our understanding of the functional significance of the interferon antiviral system in aquatic birds and to the development of interferon-based prophylactic and therapeutic approaches against viral disease. PMID:27438848

  1. Cross-Species Antiviral Activity of Goose Interferons against Duck Plague Virus Is Related to Its Positive Self-Feedback Regulation and Subsequent Interferon Stimulated Genes Induction.

    PubMed

    Zhou, Hao; Chen, Shun; Zhou, Qin; Wei, Yunan; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Yang, Qiao; Wu, Ying; Sun, Kunfeng; Chen, Xiaoyue; Cheng, Anchun

    2016-01-01

    Interferons are a group of antiviral cytokines acting as the first line of defense in the antiviral immunity. Here, we describe the antiviral activity of goose type I interferon (IFNα) and type II interferon (IFNγ) against duck plague virus (DPV). Recombinant goose IFNα and IFNγ proteins of approximately 20 kDa and 18 kDa, respectively, were expressed. Following DPV-enhanced green fluorescent protein (EGFP) infection of duck embryo fibroblast cells (DEFs) with IFNα and IFNγ pre-treatment, the number of viral gene copies decreased more than 100-fold, with viral titers dropping approximately 100-fold. Compared to the control, DPV-EGFP cell positivity was decreased by goose IFNα and IFNγ at 36 hpi (3.89%; 0.79%) and 48 hpi (17.05%; 5.58%). In accordance with interferon-stimulated genes being the "workhorse" of IFN activity, the expression of duck myxovirus resistance (Mx) and oligoadenylate synthetases-like (OASL) was significantly upregulated (p < 0.001) by IFN treatment for 24 h. Interestingly, duck cells and goose cells showed a similar trend of increased ISG expression after goose IFNα and IFNγ pretreatment. Another interesting observation is that the positive feedback regulation of type I IFN and type II IFN by goose IFNα and IFNγ was confirmed in waterfowl for the first time. These results suggest that the antiviral activities of goose IFNα and IFNγ can likely be attributed to the potency with which downstream genes are induced by interferon. These findings will contribute to our understanding of the functional significance of the interferon antiviral system in aquatic birds and to the development of interferon-based prophylactic and therapeutic approaches against viral disease. PMID:27438848

  2. Up-regulation of the interferon-related genes in BRCA2 knockout epithelial cells

    PubMed Central

    Xu, Hong; Xian, Jian; Vire, Emmanuelle; McKinney, Steven; Wong, Jason; Wei, Vivien; Tong, Rebecca; Kouzarides, Tony; Caldas, Carlos; Aparicio, Samuel

    2016-01-01

    BRCA2 mutations are significantly associated with early onset breast cancer, and the tumour suppressing function of BRCA2 has been attributed to its involvement in homologous recombination [1]-mediated DNA repair. In order to identify additional functions of BRCA2, we generated BRCA2-knockout HCT116 human colorectal carcinoma cells. Using genome-wide microarray analyses, we have discovered a link between the loss of BRCA2 and the up-regulation of a subset of interferon (IFN)-related genes, including APOBEC3F and APOBEC3G. The over-expression of IFN-related genes was confirmed in different human BRCA2−/− and mouse Brca2−/− tumour cell lines, and was independent of either senescence or apoptosis. In isogenic wild type BRCA2 cells, we observed over-expression of IFN-related genes after treatment with DNA-damaging agents, and following ionizing radiation. Cells with endogenous DNA damage because of defective BRCA1 or RAD51 also exhibited over-expression of IFN-related genes. Transcriptional activity of the IFN-stimulated response element (ISRE) was increased in BRCA2 knockout cells, and the expression of BRCA2 greatly decreased IFN-α stimulated ISRE reporter activity, suggesting that BRCA2 directly represses the expression of IFN-related genes through the ISRE. Finally, the colony forming capacity of BRCA2 knockout cells was significantly reduced in the presence of either IFN-β or IFN-γ, suggesting that IFNs may have potential as therapeutic agents in cancer cells with BRCA2 mutations. PMID:25043256

  3. MicroRNA-155 controls CD8+ T cell responses by regulating interferon signaling

    PubMed Central

    Gracias, Donald T.; Stelekati, Erietta; Hope, Jennifer L.; Boesteanu, Alina C.; Doering, Travis; Norton, Jillian; Mueller, Yvonne M.; Fraietta, Joseph A.; Wherry, E. John; Turner, Martin; Katsikis, Peter D.

    2013-01-01

    We show that microRNA-155 (miR-155) is upregulated in primary effector and effector memory CD8+ T cells but is low in naive and central memory cells. Anti-viral CD8+ T cell responses and viral clearance were impaired in miR-155 deficient (miR-155-KO) mice, and this defect was intrinsic to CD8+ T cells as miR-155-KO CD8+ T cells mounted greatly reduced primary and memory responses. Conversely, miR-155 overexpression augmented anti-viral CD8+ T cell responses in vivo. Gene expression profiling of miR-155-KO CD8+ T cells revealed increased type I interferon signaling and sensitivity. Inhibiting STAT1 or IRF7 increased miR-155-KO CD8+ T cell responses in vivo. We report a novel role for miR-155 in regulating IFN responsiveness and CD8+ T cell responses against pathogens in vivo. PMID:23603793

  4. Influence of Genes Suppressing Interferon Effects in Peripheral Blood Mononuclear Cells during Triple Antiviral Therapy for Chronic Hepatitis C

    PubMed Central

    Iijima, Sayuki; Matsuura, Kentaro; Watanabe, Tsunamasa; Onomoto, Koji; Fujita, Takashi; Ito, Kyoko; Iio, Etsuko; Miyaki, Tomokatsu; Fujiwara, Kei; Shinkai, Noboru; Kusakabe, Atsunori; Endo, Mio; Nojiri, Shunsuke; Joh, Takashi; Tanaka, Yasuhito

    2015-01-01

    The levels of expression of interferon-stimulated genes (ISGs) in liver are associated with response to treatment with pegylated interferon (PEG-IFN) plus ribavirin (RBV). However, associations between the responses of ISGs to IFN-based therapy and treatment efficacy or interleukin-28B (IL28B) genotype have not yet been determined. Therefore, we investigated the early responses of ISGs and interferon-lambdas (IFN-λs) in peripheral blood mononuclear cells (PBMCs) during PEG-IFN/RBV plus NS3/4 protease inhibitor (PI) therapy. We prospectively enrolled 50 chronic hepatitis C patients with HCV genotype 1, and collected PBMCs at baseline, 8 and 24 h after the initial administration of PEG-IFN/RBV/PI. Levels of mRNAs for selected ISGs and IFN-λs were evaluated by real-time PCR. All 31 patients with a favorable IL28B genotype and 13 of 19 with an unfavorable genotype achieved sustained virological responses (SVR). Levels of mRNA for A20, SOCS1, and SOCS3, known to suppress antiviral activity by interfering with the IFN signaling pathway, as well as IRF1 were significantly higher at 8 h in patients with an unfavorable IL28B genotype than in those with a favorable one (P = 0.007, 0.026, 0.0004, 0.0006, respectively), especially in the non-SVR group. Particularly, the fold-change of IRF1 at 8 h relative to baseline was significantly higher in non-SVR than in SVR cases with an unfavorable IL28B genotype (P = 0.035). In conclusion, levels of several mRNAs of genes suppressing antiviral activity in PBMCs during PEG-IFN/RBV/PI differed according to IL28B genotypes, paralleling treatment efficacy. PMID:25706116

  5. Clinical and molecular response to interferon-α therapy in essential thrombocythemia patients with CALR mutations.

    PubMed

    Verger, Emmanuelle; Cassinat, Bruno; Chauveau, Aurélie; Dosquet, Christine; Giraudier, Stephane; Schlageter, Marie-Hélène; Ianotto, Jean-Christophe; Yassin, Mohammed A; Al-Dewik, Nader; Carillo, Serge; Legouffe, Eric; Ugo, Valerie; Chomienne, Christine; Kiladjian, Jean-Jacques

    2015-12-10

    Myeloproliferative neoplasms are clonal disorders characterized by the presence of several gene mutations associated with particular hematologic parameters, clinical evolution, and prognosis. Few therapeutic options are available, among which interferon α (IFNα) presents interesting properties like the ability to induce hematologic responses (HRs) and molecular responses (MRs) in patients with JAK2 mutation. We report on the response to IFNα therapy in a cohort of 31 essential thrombocythemia (ET) patients with CALR mutations (mean follow-up of 11.8 years). HR was achieved in all patients. Median CALR mutant allelic burden (%CALR) significantly decreased from 41% at baseline to 26% after treatment, and 2 patients even achieved complete MR. In contrast, %CALR was not significantly modified in ET patients treated with hydroxyurea or aspirin only. Next-generation sequencing identified additional mutations in 6 patients (affecting TET2, ASXL1, IDH2, and TP53 genes). The presence of additional mutations was associated with poorer MR on CALR mutant clones, with only minor or no MRs in this subset of patients. Analysis of the evolution of the different variant allele frequencies showed that the mutated clones had a differential sensitivity to IFNα in a given patient, but no new mutation emerged during treatment. In all, this study shows that IFNα induces high rates of HRs and MRs in CALR-mutated ET, and that the presence of additional nondriver mutations may influence the MR to therapy. PMID:26486786

  6. A novel virus-inducible enhancer of the interferongene with tightly linked promoter and enhancer activities

    PubMed Central

    Banerjee, A. Raja; Kim, Yoon Jung; Kim, Tae Hoon

    2014-01-01

    Long-range enhancers of transcription are a key component of the genomic regulatory architecture. Recent studies have identified bi-directionally transcribed RNAs emanating from these enhancers known as eRNAs. However, it remains unclear how tightly coupled eRNA production is with enhancer activity. Through our systematic search for long-range elements that interact with the interferongene, a model system for studying inducible transcription, we have identified a novel enhancer, which we have named L2 that regulates the expression of interferon-β. We have demonstrated its virus-inducible enhancer activity by analyzing epigenomic profiles, transcription factor association, nascent RNA production and activity in reporter assays. This enhancer exhibits intimately linked virus-inducible enhancer and bidirectional promoter activity that is largely dependent on a conserved Interferon Stimulated Response Element and robustly generates virus inducible eRNAs. Notably, its enhancer and promoter activities are fully retained in reporter assays even upon a complete elimination of its associated eRNA sequences. Finally, we show that L2 regulates IFNB1 expression by siRNA knockdown of eRNAs, and the deletion of L2 in a BAC transfection assay. Thus, L2 is a novel enhancer that regulates IFNB1 and whose eRNAs exert significant activity in vivo that is distinct from those activities recapitulated in the luciferase reporter assays. PMID:25348400

  7. Different STAT transcription complexes drive early and delayed responses to type I Interferons

    PubMed Central

    Plumlee, Courtney R.; Perry, Stuart; Gu, Ai Di; Lee, Carolyn; Shresta, Sujan; Decker, Thomas; Schindler, Christian

    2015-01-01

    Interferons, which transduce pivotal signals through signal transducer and activator of transcription (Stat)1 and Stat2, effectively suppress the replication of Legionella pneumophila in primary murine macrophages. Whereas the ability of IFN-γ to impede L. pneumophila growth is fully dependent on Stat1, IFN-α/β unexpectedly suppresses L. pneumophila growth in both Stat1 and Stat2 deficient macrophages. New studies demonstrating that the robust response to IFN-α/β is lost in Stat1-Stat2 double knockout macrophages, suggest that Stat1 and Stat2 are functionally redundant in their ability to direct an innate response towards L. pneumophila. Since the ability of IFN-α/β to signal through Stat1-dependent complexes (i.e., Stat1-Stat1 and Stat1-Stat2 dimers) has been well characterized, the current studies focus on how Stat2 is able to direct a potent response to IFN-α/β in the absence of Stat1. These studies reveal that IFN-α/β is able to drive the formation of a Stat2 and IRF9 complex that drives the expression of a subset of IFN stimulated genes (ISGs), but with substantially delayed kinetics. These observations raise the possibility that this pathway evolved in response to microbes that have devised strategies to subvert Stat1 dependent responses. PMID:26019270

  8. Nucleofection of Expression Vectors Induces a Robust Interferon Response and Inhibition of Cell Proliferation

    PubMed Central

    Huerfano, Sandra; Ryabchenko, Boris

    2013-01-01

    The interferon (IFN) response, induced as a side effect after transfection of nucleic acids into mammalian cells, is known but inadequately described. We followed the IFN response, the fate of cells, and the possible mechanisms leading to this response in NIH3T3 mouse fibroblasts after DNA nucleofection. The gateway destination vector, phGf, and its derivatives encoding toxic and non-toxic variants of the minor structural proteins of polyomaviruses, VP2 and VP3, were used. DNA vector sequences induced in cells the production of high levels of IFN and the upregulation of the IFN-inducible genes, Mx-1, STAT1, IRF1, and IRF7. The IFN response was not restricted to phGf-derived plasmids. In nucleofected cells, upregulation of the modified γ-histone 2A.X indicating DNA damage and inhibition of cell proliferation were also observed. Although 3T3 cells expressed the Toll-like receptor-9 (TLR9) and vectors used for nucleofection contained unmethylated CpGs, signaling leading to IFN induction was found to be TLR9 independent. However, the early activation of nuclear factor-kappa B suggested the participation of this transcription factor in IFN induction. Surprisingly, in contrast to nucleofection, transfection using a cationic polymer induced only a poor IFN response. Together, the results point to a strong side effect of nucleofection. PMID:23745681

  9. Orf virus inhibits interferon stimulated gene expression and modulates the JAK/STAT signalling pathway.

    PubMed

    Harvey, Ryan; McCaughan, Catherine; Wise, Lyn M; Mercer, Andrew A; Fleming, Stephen B

    2015-10-01

    Interferons (IFNs) play a critical role as a first line of defence against viral infection. Activation of the Janus kinase/signal transducer and activation of transcription (JAK/STAT) pathway by IFNs leads to the production of IFN stimulated genes (ISGs) that block viral replication. The Parapoxvirus, Orf virus (ORFV) induces acute pustular skin lesions of sheep and goats and is transmissible to man. The virus replicates in keratinocytes that are the immune sentinels of skin. We investigated whether or not ORFV could block the expression of ISGs. The human gene GBP1 is stimulated exclusively by type II IFN while MxA is stimulated exclusively in response to type I IFNs. We found that GBP1 and MxA were strongly inhibited in ORFV infected HeLa cells stimulated with IFN-γ or IFN-α respectively. Furthermore we showed that ORFV inhibition of ISG expression was not affected by cells pretreated with adenosine N1-oxide (ANO), a molecule that inhibits poxvirus mRNA translation. This suggested that new viral gene synthesis was not required and that a virion structural protein was involved. We next investigated whether ORFV infection affected STAT1 phosphorylation in IFN-γ or IFN-α treated HeLa cells. We found that ORFV reduced the levels of phosphorylated STAT1 in a dose-dependent manner and was specific for Tyr701 but not Ser727. Treatment of cells with sodium vanadate suggested that a tyrosine phosphatase was responsible for dephosphorylating STAT1-p. ORFV encodes a factor, ORFV057, with homology to the vaccinia virus structural protein VH1 that impairs the JAK/STAT pathway by dephosphorylating STAT1. Our findings show that ORFV has the capability to block ISG expression and modulate the JAK/STAT signalling pathway. PMID:26113305

  10. Ability of peripheral blood mononuclear cells to activate interferon response in vitro is predictive of virological response in HCV patients.

    PubMed

    Lalle, E; Calcaterra, S; Horejsh, D; Abbate, I; D'Offizi, G; Abdeddaim, A; Vlassi, C; Antonucci, G; Capobianchi, M R

    2008-01-01

    The most reliable predictor of treatment efficacy in hepatitis C is HCV viremia decay at week 12 [early virological response (EVR)]. We investigated whether the ability of peripheral blood mononuclear cells (PBMC) to mount an interferon (IFN) response in vitro could be predictive of EVR. Fifteen patients treated with PEG IFNalpha + RBV, with pre-therapy frozen PBMC, were retrospectively selected. After a 3 hr PBMC exposure to IFNalpha in vitro, up-regulation of mRNA for IFN-stimulated genes (ISG) was measured by membrane super-array. ISG mRNA levels in unstimulated PBMC were low, but beta2M and CASP1 were significantly higher in EVR vs non-EVR. ISG mRNA up-regulation by IFN was more pronounced in EVR vs non-EVR. For 7 genes (IP-10, IFIT1, IFIT2, IFIT3, TRAIL, KIAA1628 and OAS2) cut-off levels were established, by ROC analysis, able to correctly classify all EVR and non-EVR. Early virological response to PEG IFNalpha +RBV is correlated with the pre-therapy ability of PBMC to activate an IFN response in vitro. If validated in a wider cohort of patients, the ability of this set of ISG to discriminate between EVR and non-EVR may be useful for pre-therapy evaluation, particularly in patients with unfavourable combinations of conventional response predictors. PMID:18842168

  11. Pre-treatment waking cortisol response and vulnerability to interferon α induced depression.

    PubMed

    Eccles, Jessica; Lallemant, Camille; Mushtaq, Farrah; Greenwood, Matthew; Keller, Majella; Golding, Bruno; Tibble, Jeremy; Haq, Inam; Whale, Richard

    2012-12-01

    Depressive disorder is a common consequence of interferon α treatment. An understanding of the aetiological processes involved is evolving. HPA axis abnormalities are clearly described in community depressive disorder and represent vulnerability to depression development. We explored whether pre-treatment HPA axis abnormalities influence depression emergence during interferon α treatment. We examined waking HPA axis response via salivary cortisol sampling in 44 non-depressed, chronic hepatitis C infected patients due to commence standard interferon α treatment. Hamilton depression scales and the structured clinical interview for DSM-IV major depressive disorder status were administered monthly during treatment. Major depressive disorder developed in 26 of 44 subjects during interferon-α treatment. The pre-treatment waking cortisol response over 1h was significantly greater in the subsequent switch to depression group (F=4.23, p=0.046). The waking cortisol response pre-treatment with interferon α appears greater in those subsequently switching to depressive disorder during treatment. This waking response may join other vulnerability factors for depression emergence in this group. This model could prove a valuable tool in understanding non-iatrogenic depressive disorder in the general population and notably the role of cytokines. PMID:22571879

  12. Genetic Variation of Goat Interferon Regulatory Factor 3 Gene and Its Implication in Goat Evolution.

    PubMed

    Okpeku, Moses; Esmailizadeh, Ali; Adeola, Adeniyi C; Shu, Liping; Zhang, Yesheng; Wang, Yangzi; Sanni, Timothy M; Imumorin, Ikhide G; Peters, Sunday O; Zhang, Jiajin; Dong, Yang; Wang, Wen

    2016-01-01

    The immune systems are fundamentally vital for evolution and survival of species; as such, selection patterns in innate immune loci are of special interest in molecular evolutionary research. The interferon regulatory factor (IRF) gene family control many different aspects of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known to take active part in very many biological processes. We assembled and evaluated 1356 base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethiopia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across the goats' populations. Fu and Li tests were significantly positive but Tajima's D test was significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3 gene in domesticated goats, wild goat and sheep showed that all domesticated goats have a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene showed that different domesticated goats share a common ancestor and suggest single origin. Four unique haplotypes were observed across all the sequences, of which, one was particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave a ω0 (dN/dS) value of 0.067 with LnL value of -6900.3 for the first Model (M1) while ω2 = 1.667 in model M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic empirical combination (MEC) model for evaluating adaptive selection pressure on particular codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat IRF3

  13. Retinoid X receptor α attenuates host antiviral response by suppressing type I interferon

    PubMed Central

    Ma, Feng; Liu, Su-Yang; Razani, Bahram; Arora, Neda; Li, Bing; Kagechika, Hiroyuki; Tontonoz, Peter; Núñez, Vanessa; Ricote, Mercedes; Cheng, Genhong

    2015-01-01

    The retinoid X receptor α (RXRα), a key nuclear receptor in metabolic processes, is down-regulated during host antiviral response. However, the roles of RXRα in host antiviral response are unknown. Here we show that RXRα overexpression or ligand activation increases host susceptibility to viral infections in vitro and in vivo, while Rxra −/− or antagonist treatment reduces infection by the same viruses. Consistent with these functional studies, ligand activation of RXR inhibits the expression of antiviral genes including type I interferon (IFN) and Rxra −/− macrophages produce more IFNβ than WT macrophages in response to polyI:C stimulation. Further results indicate that ligand activation of RXR suppresses the nuclear translocation of β-catenin, a co-activator of IFNβ enhanceosome. Thus, our studies have uncovered a novel RXR-dependent innate immune regulatory pathway, suggesting that the downregulation of RXR expression or RXR antagonist treatment benefits host antiviral response, whereas RXR agonist treatment may increase the risk of viral infections. PMID:25417649

  14. Rapid in vivo screening of experimental drugs for tuberculosis using gamma interferon gene-disrupted mice.

    PubMed

    Lenaerts, Anne J M; Gruppo, Veronica; Brooks, Jason V; Orme, Ian M

    2003-02-01

    We have developed a rapid new in vivo method for screening experimental drugs for their activity against Mycobacterium tuberculosis by using the gamma interferon gene-disrupted (GKO) C57BL/6 mouse. Due to the rapid growth of the infection, statistical differences indicating positive efficacy of active compounds can be seen after only 8 days of treatment. To validate this model, several fluoroquinolones, including ciprofloxacin, levofloxacin, moxifloxacin, and gatifloxacin, were tested in parallel. PMID:12543692

  15. A Rhesus Rhadinovirus Viral Interferon (IFN) Regulatory Factor Is Virion Associated and Inhibits the Early IFN Antiviral Response

    PubMed Central

    Morin, Gabriela; Robinson, Bridget A.; Rogers, Kelsey S.

    2015-01-01

    ABSTRACT The interferon (IFN) response is the earliest host immune response dedicated to combating viral infection. As such, viruses have evolved strategies to subvert this potent antiviral response. Two closely related gammaherpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV) and rhesus macaque rhadinovirus (RRV), are unique in that they express viral homologues to cellular interferon regulatory factors (IRFs), termed viral IRFs (vIRFs). Cellular IRFs are a family of transcription factors that are particularly important for the transcription of type I IFNs. Here, we demonstrate a strategy employed by RRV to ensure rapid inhibition of virus-induced type I IFN induction. We found that RRV vIRF R6, when expressed ectopically, interacts with a transcriptional coactivator, CREB-binding protein (CBP), in the nucleus. As a result, phosphorylated IRF3, an important transcriptional regulator in beta interferon (IFN-β) transcription, fails to effectively bind to the IFN-β promoter, thus inhibiting the activation of IFN-β genes. In addition, we found R6 within RRV virion particles via immunoelectron microscopy and, furthermore, that virion-associated R6 is capable of inhibiting the type I IFN response by preventing efficient binding of IRF3/CBP complexes to the IFN-β promoter in the context of infection. The work shown here is the first example of a vIRF being associated with either the KSHV or RRV virion. The presence of this immunomodulatory protein in the RRV virion provides the virus with an immediate mechanism to evade the host IFN response, thus enabling the virus to effectively establish an infection within the host. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) and the closely related rhesus macaque rhadinovirus (RRV) are the only viruses known to encode viral homologues to cellular interferon regulatory factors (IRFs), known as vIRFs. In KSHV, these proteins have been shown to play major roles in a variety of cellular processes and are

  16. Effects of prednisone, aspirin, and acetaminophen on an in vivo biologic response to interferon in humans.

    PubMed

    Witter, F R; Woods, A S; Griffin, M D; Smith, C R; Nadler, P; Lietman, P S

    1988-08-01

    In healthy volunteers receiving a single intramuscular dose of 18 X 10(6) U interferon alone or after 24 hours of an 8-day course of prednisone (40 mg/day), aspirin (650 mg every 4 hours), or acetaminophen (650 mg every 4 hours), the magnitude of the biologic response to interferon was quantified by measuring the time course of the induction of 2'-5'-oligoadenylate synthetase and resistance to vesicular stomatitis virus infection in human peripheral blood mononuclear cells. Prednisone decreased the AUC of 2'-5'-oligoadenylate synthetase activity (p less than 0.05), whereas administration of aspirin or acetaminophen did not affect this biologic response. No measurable effect was seen during administration of prednisone, aspirin, or acetaminophen on the duration or intensity of vesicular stomatitis virus yield reduction. The side effects seen with interferon administration at the dose tested were not altered in a clinically meaningful manner by prednisone, aspirin, or acetaminophen. PMID:2456175

  17. The Gamma Interferon Receptor Is Required for the Protective Pulmonary Inflammatory Response to Cryptococcus neoformans

    PubMed Central

    Chen, Gwo-Hsiao; McDonald, Roderick A.; Wells, Jason C.; Huffnagle, Gary B.; Lukacs, Nicholas W.; Toews, Galen B.

    2005-01-01

    Mice with a null deletion mutation in the gamma interferon (IFN-γ) receptor gene were used to study the role of IFN-γ responsiveness during experimental pulmonary cryptococcosis. Cryptococcus neoformans was inoculated intratracheally into mice lacking the IFN-γ receptor gene (IFN-γR−/−) and into control mice (IFN-γR+/+). The numbers of CFU in lung, spleen, and brain were determined to assess clearance; cytokines produced by lung leukocytes were measured, and survival curves were generated. In the present study, we demonstrate the following points. (i) IFN-γR−/− mice are markedly more susceptible to C. neoformans infection than IFN-γR+/+ mice. (ii) In the absence of IFN-γ signaling, pulmonary CFU continue to increase over the course of infection, and the infection disseminates to the brain. (iii) In the absence of IFN-γ receptor, recruitment of inflammatory cells in response to pulmonary cryptococcal infection is not impaired. (iv) At week 5 postinfection, IFN-γR−/− mice have recruited greater numbers of leukocytes into their lungs, with neutrophils, eosinophils, and lymphocytes accounting for this cellular increase. (v) IFN-γ signaling is required for the development of a T1 over a T2 immune response in the lung following cryptococcal infection. These results indicate that in the absence of IFN- γ responsiveness, even though the recruitment of pulmonary inflammatory cells is not impaired and the secretion of IFN-γ is not affected, IFN-γR−/− mice do not have the ability to resolve the cryptococcal infection. In conclusion, our data suggest that proper functional IFN-γ signaling, possibly through a mechanism which inhibits the potentially disease-promoting T2 response, is required for mice to confine the cryptococcal infection. PMID:15731080

  18. Peripheral Blood Mononuclear Cell Gene Expression Remains Broadly Altered Years after Successful Interferon-Based Hepatitis C Virus Treatment

    PubMed Central

    Waldron, Paul Ravi; Holodniy, Mark

    2015-01-01

    Background. Inflammatory gene expression in peripheral blood mononuclear cells (PBMCs) is altered in chronic Hepatitis C Virus (HCV) infection. Duration of changes after pegylated interferon- (peg-IFN-) based HCV treatment is unclear. Methods. PBMC mRNA expression of 184 inflammatory response genes was analyzed (nCounter GX Human Inflammation Kit, Nanostring) from peg-IFN treatment nonresponders (NR, n = 18), sustained virologic responders (SVR, n = 22), and spontaneous clearers (SC, n = 15). Logistic regression was used for comparison. Results. Median time from last treatment was 2 and 2.7 years in SVR and NR, respectively (p = NS). Mean mRNA counts were significantly different for 42 and 29 genes comparing SVR to SC patients and NR to SC, respectively, and no genes comparing SVR to NR. Differential expression of 24 genes was significantly different in both SVR and NR groups compared to SC. Among these 24 acute and chronic inflammatory cascade genes, significant upregulation was noted for proinflammatory transcription regulators Fos, CEBPB, and MyD88 in SVR and NR compared to SC. HDAC4 was significantly downregulated in SVR and NR compared to the SC group. Conclusions. PBMC inflammatory gene expression patterns in SVR resemble NR more than SC patients. A generalized inflammatory response persists in PBMCs long after successful peg-IFN treatment for HCV infection. PMID:26568966

  19. Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection.

    PubMed

    Li, Ling; Wang, Hualei; Jin, Hongli; Cao, Zengguo; Feng, Na; Zhao, Yongkun; Zheng, Xuexing; Wang, Jianzhong; Li, Qian; Zhao, Guoxing; Yan, Feihu; Wang, Lina; Wang, Tiecheng; Gao, Yuwei; Tu, Changchun; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Rabies virus infection is a major public health concern because of its wide host-interference spectrum and nearly 100 % lethality. However, the interactions between host and virus remain unclear. To decipher the authentic response in the central nervous system after rabies virus infection, a dynamic analysis of brain proteome alteration was performed. In this study, 104 significantly differentially expressed proteins were identified, and intermediate filament, interferon-inducible GTPases, and leucine-rich repeat-containing protein 16C were the three outstanding groups among these proteins. Interferon-inducible GTPases were prominent because of their strong upregulation. Moreover, quantitative real-time PCR showed distinct upregulation of interferon-inducible GTPases at the level of transcription. Several studies have shown that interferon-inducible GTPases are involved in many biological processes, such as viral infection, endoplasmic reticulum stress response, and autophagy. These findings indicate that interferon-inducible GTPases are likely to be a potential target involved in rabies pathogenesis or the antiviral process. PMID:26906695

  20. Association between Interferon Response and Protective Efficacy of NS1-Truncated Mutants as Influenza Vaccine Candidates in Chickens.

    PubMed

    Jang, Hyesun; Ngunjiri, John M; Lee, Chang-Won

    2016-01-01

    Influenza virus mutants that encode C-terminally truncated NS1 proteins (NS1-truncated mutants) are attractive candidates for avian live attenuated influenza vaccine (LAIV) development because they are both attenuated and immunogenic in chickens. We previously showed that a high protective efficacy of NS1-truncated LAIV in chickens corresponds with induction of high levels of type I interferon (IFN) responses in chicken embryonic fibroblast cells. In this study, we investigated the relationship between induction of IFN and IFN-stimulated gene responses in vivo and the immunogenicity and protective efficacy of NS1-truncated LAIV. Our data demonstrates that accelerated antibody induction and protective efficacy of NS1-truncated LAIV correlates well with upregulation of IFN-stimulated genes. Further, through oral administration of recombinant chicken IFN alpha in drinking water, we provide direct evidence that type I IFN can promote rapid induction of adaptive immune responses and protective efficacy of influenza vaccine in chickens. PMID:27257989

  1. Association between Interferon Response and Protective Efficacy of NS1-Truncated Mutants as Influenza Vaccine Candidates in Chickens

    PubMed Central

    Jang, Hyesun; Ngunjiri, John M.; Lee, Chang-Won

    2016-01-01

    Influenza virus mutants that encode C-terminally truncated NS1 proteins (NS1-truncated mutants) are attractive candidates for avian live attenuated influenza vaccine (LAIV) development because they are both attenuated and immunogenic in chickens. We previously showed that a high protective efficacy of NS1-truncated LAIV in chickens corresponds with induction of high levels of type I interferon (IFN) responses in chicken embryonic fibroblast cells. In this study, we investigated the relationship between induction of IFN and IFN-stimulated gene responses in vivo and the immunogenicity and protective efficacy of NS1-truncated LAIV. Our data demonstrates that accelerated antibody induction and protective efficacy of NS1-truncated LAIV correlates well with upregulation of IFN-stimulated genes. Further, through oral administration of recombinant chicken IFN alpha in drinking water, we provide direct evidence that type I IFN can promote rapid induction of adaptive immune responses and protective efficacy of influenza vaccine in chickens. PMID:27257989

  2. Pimecrolimus increases the expression of interferon-inducible genes that modulate human coronary artery cells proliferation.

    PubMed

    Hussner, Janine; Sünwoldt, Juliane; Seibert, Isabell; Gliesche, Daniel G; Zu Schwabedissen, Henriette E Meyer

    2016-08-01

    The pharmacodynamics of the loaded compounds defines clinical failure or success of a drug-eluting device. Various limus derivatives have entered clinics due to the observed positive outcome after stent implantation, which is explained by their antiproliferative activity resulting from inhibition of the cytosolic immunophilin FK506-binding protein 12. Although pimecrolimus also binds to this protein, pimecrolimus-eluting stents failed in clinics. However, despite its impact on T lymphocytes little is known about the pharmacodynamics of pimecrolimus in cultured human coronary artery cells. We were able to show that pimecrolimus exerts antiproliferative activity in human smooth muscle and endothelial cells. Furthermore in those cells pimecrolimus induced transcription of interferon-inducible genes which in part are known to modulate cell proliferation. Modulation of gene expression may be part of an interaction between calcineurin, the downstream target of the pimecrolimus/FK506-binding protein 12-complex, and the toll-like receptor 4. In accordance are our findings showing that silencing of toll-like receptor 4 by siRNA in A549 a lung carcinoma cell line reduced the activation of interferon-inducible genes upon pimecrolimus treatment in those cells. Based on our findings we hypothesize that calcineurin inhibition may induce the toll-like receptor 4 mediated activation of type I interferon signaling finally inducing the observed effect in endothelial and smooth muscle cells. The crosstalk of interferon and toll-like receptor signaling may be a molecular mechanism that contributed to the failure of pimecrolimus-eluting stents in humans. PMID:27212382

  3. Type I and III interferon production in response to RNA viruses.

    PubMed

    Reid, Elizabeth; Charleston, Bryan

    2014-09-01

    The biology of RNA viruses is closely linked to the type I and type III interferon (IFN) response of the host. These viruses display a range of molecular patterns that may be detected by host cells resulting in the induction of IFNs. Consequently, there are many examples of mechanisms employed by RNA viruses to block or delay IFN induction and reduce the expression of IFN-stimulated genes (ISGs), a necessary step in the virus lifecycle because of the capacity of IFNs to block virus replication. Efficient transmission of viruses depends, in part, on maintaining a balance between virus replication and host survival; specialized host cells, such as plasmacytoid dendritic cells, can sense viral molecular patterns and produce IFNs to help maintain this balance. There are now many examples of RNA viruses inducing type I and type III IFNs, and although these IFNs act through different receptors, in many systems studied, they induce a similar spectrum of genes. However, there may be a difference in the temporal expression pattern, with more prolonged expression of ISGs in response to type III IFN compared with type I IFN. There are also examples of synergy between type I and type III IFNs to induce antiviral responses. Clearly, it is important to understand the different roles of these IFNs in the antiviral response in vivo. One of the most striking differences between these 2 IFN systems is the distribution of the receptors: type I IFN receptors are expressed on most cells, yet type III receptor expression is restricted primarily to epithelial cells but has also been demonstrated on other cells, including dendritic cells. There is increasing evidence that type III IFNs are a key control mechanism against RNA viruses that infect respiratory and enteric epithelia. PMID:24956361

  4. Identification, Characterization, and Developmental Expression Pattern of Type III Interferon Receptor Gene in the Chinese Goose

    PubMed Central

    Zhou, Qin; Chen, Shun; Qi, Yulin; Zhou, Hao; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Chen, Xiaoyue; Zhou, Xue; Cheng, Anchun

    2015-01-01

    Interferons, as the first line of defense against the viral infection, play an important role in innate immune responses. Type III interferon (IFN-λ) was a newly identified member of IFN family, which plays IFN-like antiviral activity. Towards a better understanding of the type III interferon system in birds, type III interferon lambda receptor (IFNLR1) was first identified in the Chinese goose. In this paper, we had cloned 1952 bp for goose IFNLR1 (goIFNLR1), including an ORF of 1539 bp, encoding a 512-amino acid protein with a 20 aa predict signal peptide at its N terminal and a 23 aa transmembrane region. The predicted amino acid sequence of goIFNLR1 has 90%, 73%, and 34% identity with duck IFNLR1 (predicted sequence), chicken IFNLR1, and human IFNLR1, respectively. And the age-related tissue distribution of goIFNLR1 was identified by Real Time quantitative PCR (RT-qPCR), we found that the goIFNLR1 has a mainly expression in epithelium-rich tissues similar to other species', such as small intestinal, lung, liver, and stomach. Moreover, a relatively high expression of goIFNLR1 was also observed in the secondary immune tissues (harderian gland and cecal tonsil). The identification and tissue distribution of goIFNLR1 will facilitate further study of the role of IFN-λ in goose antiviral defense. PMID:26064884

  5. Human endogenous retrovirus expression is inversely related with the up-regulation of interferon-inducible genes in the skin of patients with lichen planus.

    PubMed

    Nogueira, Marcelle Almeida de Sousa; Gavioli, Camila Fátima Biancardi; Pereira, Nátalli Zanete; de Carvalho, Gabriel Costa; Domingues, Rosana; Aoki, Valéria; Sato, Maria Notomi

    2015-04-01

    Lichen planus (LP) is a common inflammatory skin disease of unknown etiology. Reports of a common transactivation of quiescent human endogenous retroviruses (HERVs) support the connection of viruses to the disease. HERVs are ancient retroviral sequences in the human genome and their transcription is often deregulated in cancer and autoimmune diseases. We explored the transcriptional activity of HERV sequences as well as the antiviral restriction factor and interferon-inducible genes in the skin from LP patients and healthy control (HC) donors. The study included 13 skin biopsies from patients with LP and 12 controls. Real-time PCR assay identified significant decrease in the HERV-K gag and env mRNA expression levels in LP subjects, when compared to control group. The expressions of HERV-K18 and HERV-W env were also inhibited in the skin of LP patients. We observed a strong correlation between HERV-K gag with other HERV sequences, regardless the down-modulation of transcripts levels in LP group. In contrast, a significant up-regulation of the cytidine deaminase APOBEC 3G (apolipoprotein B mRNA-editing), and the GTPase MxA (Myxovirus resistance A) mRNA expression level was identified in the LP skin specimens. Other transcript expressions, such as the master regulator of type I interferon-dependent immune responses, STING (stimulator of interferon genes) and IRF-7 (interferon regulatory factor 7), IFN-β and the inflammassome NALP3, had increased levels in LP, when compared to HC group. Our study suggests that interferon-inducible factors, in addition to their role in innate immunity against exogenous pathogens, contribute to the immune control of HERVs. Evaluation of the balance between HERV and interferon-inducible factor expression could possibly contribute to surveillance of inflammatory/malignant status of skin diseases. PMID:25384438

  6. The Histone Acetylase PCAF Is a Phorbol-Ester-Inducible Coactivator of the IRF Family That Confers Enhanced Interferon Responsiveness

    PubMed Central

    Masumi, Atsuko; Wang, I-Ming; Lefebvre, Bruno; Yang, Xing-Jiao; Nakatani, Yoshihiro; Ozato, Keiko

    1999-01-01

    Transcription factors of the interferon regulatory factor (IRF) family bind to the type I interferon (IFN)-responsive element (ISRE) and activate transcription from IFN-inducible genes. To identify cofactors that associate with IRF proteins, DNA affinity binding assays were performed with nuclear extracts prepared from tissue culture cells. The results demonstrated that the endogenous IRFs bound to the ISRE are complexed with the histone acetylases, PCAF, GCN5, and p300/CREB binding protein and that histone acetylase activities are accumulated on the IRF-ISRE complexes. By testing recombinant proteins, we show that PCAF directly binds to some but not all members of the IRF family through distinct domains of the two proteins. This interaction was functionally significant, since transfection of PCAF strongly enhanced IRF-1- and IRF-2-dependent promoter activities. Further studies showed that expression of PCAF and other histone acetylases was markedly induced in U937 cells upon phorbol ester treatment, which led to increased recruitment of PCAF to the IRF-ISRE complexes. Coinciding with the induction of histone acetylases, phorbol ester markedly enhanced IFN-α-stimulated gene expression in U937 cells. Supporting the role for PCAF in conferring IFN responsiveness, transfection of PCAF into U937 cells led to a large increase in IFN-α-inducible promoter activity. These results demonstrate that PCAF is a phorbol ester-inducible coactivator of the IRF proteins which contributes to the establishment of type I IFN responsiveness. PMID:10022868

  7. RIG-I Signaling Is Essential for Influenza B Virus-Induced Rapid Interferon Gene Expression

    PubMed Central

    Österlund, Pamela; Westenius, Veera; Latvala, Sinikka; Diamond, Michael S.; Gale, Michael; Julkunen, Ilkka

    2015-01-01

    ABSTRACT Influenza B virus causes annual epidemics and, along with influenza A virus, accounts for substantial disease and economic burden throughout the world. Influenza B virus infects only humans and some marine mammals and is not responsible for pandemics, possibly due to a very low frequency of reassortment and a lower evolutionary rate than that of influenza A virus. Influenza B virus has been less studied than influenza A virus, and thus, a comparison of influenza A and B virus infection mechanisms may provide new insight into virus-host interactions. Here we analyzed the early events in influenza B virus infection and interferon (IFN) gene expression in human monocyte-derived macrophages and dendritic cells. We show that influenza B virus induces IFN regulatory factor 3 (IRF3) activation and IFN-λ1 gene expression with faster kinetics than does influenza A virus, without a requirement for viral protein synthesis or replication. Influenza B virus-induced activation of IRF3 required the fusion of viral and endosomal membranes, and nuclear accumulation of IRF3 and viral NP occurred concurrently. In comparison, immediate early IRF3 activation was not observed in influenza A virus-infected macrophages. Experiments with RIG-I-, MDA5-, and RIG-I/MDA5-deficient mouse fibroblasts showed that RIG-I is the critical pattern recognition receptor needed for the influenza B virus-induced activation of IRF3. Our results show that innate immune mechanisms are activated immediately after influenza B virus entry through the endocytic pathway, whereas influenza A virus avoids early IRF3 activation and IFN gene induction. IMPORTANCE Recently, a great deal of interest has been paid to identifying the ligands for RIG-I under conditions of natural infection, as many previous studies have been based on transfection of cells with different types of viral or synthetic RNA structures. We shed light on this question by analyzing the earliest step in innate immune recognition of

  8. Genome-wide Analysis of Host-Plasmodium yoelii Interactions Reveals Regulators of the Type I Interferon Response.

    PubMed

    Wu, Jian; Cai, Baowei; Sun, Wenxiang; Huang, Ruili; Liu, Xueqiao; Lin, Meng; Pattaradilokrat, Sittiporn; Martin, Scott; Qi, Yanwei; Nair, Sethu C; Bolland, Silvia; Cohen, Jeffrey I; Austin, Christopher P; Long, Carole A; Myers, Timothy G; Wang, Rong-Fu; Su, Xin-Zhuan

    2015-07-28

    Invading pathogens trigger specific host responses, an understanding of which might identify genes that function in pathogen recognition and elimination. In this study, we performed trans-species expression quantitative trait locus (ts-eQTL) analysis using genotypes of the Plasmodium yoelii malaria parasite and phenotypes of mouse gene expression. We significantly linked 1,054 host genes to parasite genetic loci (LOD score ≥ 3.0). Using LOD score patterns, which produced results that differed from direct expression-level clustering, we grouped host genes that function in related pathways, allowing functional prediction of unknown genes. As a proof of principle, 14 of 15 randomly selected genes predicted to function in type I interferon (IFN-I) responses were experimentally validated using overexpression, small hairpin RNA knockdown, viral infection, and/or infection of knockout mice. This study demonstrates an effective strategy for studying gene function, establishes a functional gene database, and identifies regulators in IFN-I pathways. PMID:26190101

  9. [Expression of the human interferon alpha F gene in the obligate methylotroph Methylobacillus flagellatum KT and Pseudomonas putida].

    PubMed

    Chistoserdov, A Iu; Eremashvili, M R; Mashko, S V; Lapidus, A L; Skvortsova, M A

    1987-08-01

    The expression of human leucocyte interferon alpha F gene in plasmid pLM-IFN alpha F-273 is controlled by a hybrid tac (trp-lac) promoter. A structural gene for interferon alpha F is a component of the hybrid operon lacZ'-IFN alpha F-TcR, that contains an E. coli trp-operon intercystronic region. Plasmid pLM IFN alpha F-273--directed interferon synthesis allows to obtain about 10(7) IU/l. This plasmid was cloned in broad-host-range vector plasmid pAYC31. The hybrid bi-repliconed plasmid containing interferon gene as well as its single-repliconed deletion derivatives obtained by the in vivo recombination, were introduced into obligate methylotroph Methylobacillus flagellatum KT and Pseudomonas putida PpG6. Methylotrophic strain and Pseudomonas were able to transcribe the interferon gene from E. coli tac promoter, the yield of interferon being 2-4-fold higher as compared with the one in the initial host. PMID:3119998

  10. Global characterization of interferon regulatory factor (IRF) genes in vertebrates: Glimpse of the diversification in evolution

    PubMed Central

    2010-01-01

    Background Interferon regulatory factors (IRFs), which can be identified based on a unique helix-turn-helix DNA-binding domain (DBD) are a large family of transcription factors involved in host immune response, haemotopoietic differentiation and immunomodulation. Despite the identification of ten IRF family members in mammals, and some recent effort to identify these members in fish, relatively little is known in the composition of these members in other classes of vertebrates, and the evolution and probably the origin of the IRF family have not been investigated in vertebrates. Results Genome data mining has been performed to identify any possible IRF family members in human, mouse, dog, chicken, anole lizard, frog, and some teleost fish, mainly zebrafish and stickleback, and also in non-vertebrate deuterostomes including the hemichordate, cephalochordate, urochordate and echinoderm. In vertebrates, all ten IRF family members, i.e. IRF-1 to IRF-10 were identified, with two genes of IRF-4 and IRF-6 identified in fish and frog, respectively, except that in zebrafish exist three IRF-4 genes. Surprisingly, an additional member in the IRF family, IRF-11 was found in teleost fish. A range of two to ten IRF-like genes were detected in the non-vertebrate deuterostomes, and they had little similarity to those IRF family members in vertebrates as revealed in genomic structure and in phylogenetic analysis. However, the ten IRF family members, IRF-1 to IRF-10 showed certain degrees of conservation in terms of genomic structure and gene synteny. In particular, IRF-1, IRF-2, IRF-6, IRF-8 are quite conserved in their genomic structure in all vertebrates, and to a less degree, some IRF family members, such as IRF-5 and IRF-9 are comparable in the structure. Synteny analysis revealed that the gene loci for the ten IRF family members in vertebrates were also quite conservative, but in zebrafish conserved genes were distributed in a much longer distance in chromosomes. Furthermore

  11. Murine Gammaherpesvirus 68 Encoding Open Reading Frame 11 Targets TANK Binding Kinase 1 To Negatively Regulate the Host Type I Interferon Response

    PubMed Central

    Kang, Hye-Ri; Cheong, Woo-Chang; Park, Ji-Eun; Ryu, Seungbo; Cho, Hye-Jeong; Youn, Hyunyee; Ahn, Jin-Hyun

    2014-01-01

    ABSTRACT Upon viral infection, type I interferons, such as alpha and beta interferon (IFN-α and IFN-β, respectively), are rapidly induced and activate multiple antiviral genes, thereby serving as the first line of host defense. Many DNA and RNA viruses counteract the host interferon system by modulating the production of IFNs. In this study, we report that murine gammaherpesvirus 68 (MHV-68), a double-stranded DNA virus, encodes open reading frame 11 (ORF11), a novel immune modulator, to block IFN-β production. ORF11-deficient recombinant viruses induced more IFN-β production in fibroblast and macrophage cells than the MHV-68 wild type or a marker rescue virus. MHV-68 ORF11 decreased IFN-β promoter activation by various factors, the signaling of which converges on TBK1-IRF3 activation. MHV-68 ORF11 directly interacted with both overexpressed and endogenous TBK1 but not with IRF3. Physical interactions between ORF11 and endogenous TBK1 were further confirmed during virus replication in fibroblasts using a recombinant virus expressing FLAG-ORF11. ORF11 efficiently reduced interaction between TBK1 and IRF3 and subsequently inhibited activation of IRF3, thereby negatively regulating IFN-β production. Our domain-mapping study showed that the central domain of ORF11 was responsible for both TBK1 binding and inhibition of IFN-β induction, while the kinase domain of TBK1 was sufficient for ORF11 binding. Taken together, these results suggest a mechanism underlying inhibition of IFN-β production by a gammaherpesvirus and highlight the importance of TBK1 in DNA virus replication. IMPORTANCE Gammaherpesviruses are important human pathogens, as they are associated with various kinds of tumors. Upon virus infection, the type I interferon pathway is activated by a series of signaling molecules and stimulates antiviral gene expression. To subvert such interferon antiviral responses, viruses are equipped with multiple factors that can inhibit its critical steps. In this

  12. Anti-colorectal cancer effect of interleukin-2 and interferon-β fusion gene driven by carcinoembryonic antigen promoter

    PubMed Central

    Wang, Yan; Wang, Mengchun; Li, Yan

    2016-01-01

    This study was designed to investigate the antitumor effects of combined interleukin-2/interferon-β-based gene therapy in colorectal cancer. Transfection of the fusion gene expression plasmid induced significant apoptosis of Lovo cells. Additionally, the fusion gene exhibited strong inhibitory activity against tumor growth and apoptosis when being injected into the nude mice implanted with human colon cancer cells. Furthermore, the tail-vein injection showed a more notable effect than direct injection into tumor. These results suggest that the combined interleukin-2/interferon-β-based gene therapy with the carcinoembryonic antigen promoter might be an effective antitumor strategy. PMID:27313471

  13. Interferon Stimulated Gene Expression in HIV/HCV Coinfected Patients Treated with Nitazoxanide/Peginterferon-Alfa-2a and Ribavirin.

    PubMed

    Petersen, Tess; Lee, Yu-Jin; Osinusi, Anu; Amorosa, Valerianna K; Wang, Crystal; Kang, Minhee; Matining, Roy; Zhang, Xiao; Dou, Diana; Umbleja, Triin; Kottilil, Shyam; Peters, Marion G

    2016-07-01

    A combination of nitazoxanide (NTZ), peginterferon (PegIFN), and ribavirin (RBV) may result in higher sustained virologic response (SVR) rates in hepatitis C virus (HCV) monoinfected patients. This study evaluated the effect of NTZ on interferon-stimulated gene (ISG) expression in vitro and in vivo among HIV/HCV genotype-1 (GT-1) treatment-naive patients. The ability of NTZ to enhance host response to interferon (IFN) signaling using the HCV cell culture system was initially evaluated. Second, ISG expression in 53 patients with treatment outcomes [21 SVR and 32 nonresponders (NR)] in the ACTG A5269 trial, a phase-II study (4-week lead in of NTZ 500 mg daily followed by 48 weeks of NTZ, PegIFN, and weight-based RBV), was assessed. The relative expression of 48 ISGs in peripheral blood mononuclear cells (PBMCs) was measured at baseline, week 4, and week 8 of treatment in a blinded manner. In vitro NTZ produced a direct and additive antiviral effect with IFN-alfa, with pretreatment of NTZ resulting in maximal HCV suppression. NTZ augmented IFN-mediated ISG induction in PBMCs from relapsers and SVRs (p < 0.05), but not NR. In ACTG A5269, baseline expression of most ISGs was similar between NR and SVR. NTZ minimally induced 17 genes in NR and 13 genes in SVR after 4 weeks of therapy. However, after initiation of PegIFN and RBV, ISG induction was predominantly observed in the SVR group and not NR group. NTZ treatment facilitates IFN-induced suppression of HCV replication. Inability to achieve SVR with IFN-based therapy in this clinical trial is associated with diminished ISG response to therapy that is refractory to NTZ. PMID:26974581

  14. Gene-based intramuscular interferon-beta therapy for experimental autoimmune encephalomyelitis.

    PubMed

    Jaini, Ritika; Hannaman, Drew; Johnson, Justin M; Bernard, Robert M; Altuntas, Cengiz Z; Delasalas, Maida M; Kesaraju, Pavani; Luxembourg, Alain; Evans, Claire F; Tuohy, Vincent K

    2006-09-01

    In contrast to serial injections of recombinant interferon-beta (IFN-beta) for long-term therapy of multiple sclerosis (MS), prolonged systemic delivery of proteins derived through in vivo gene transfer may provide a more clinically relevant alternative. Here we compare the therapeutic efficacies of electroporation (EP)-mediated intramuscular IFN-beta gene transfer with repeated alternate-day injections of recombinant IFN-beta after the onset of relapsing-remitting experimental autoimmune encephalomyelitis (EAE), an animal model widely used in MS research. We show for the first time that a single EP-mediated intramuscular administration of 20 microg of an IFN-beta-expressing plasmid provides long-term expression of interferon-inducible genes and is therapeutic in ongoing established EAE. The achieved therapeutic effects of IFN-beta gene delivery were comparable to an 8-week regimen of 10,000 IU rIFN-beta injected every other day and involved a significant inhibition of disease progression and a significant reduction of EAE relapses compared to untreated or null-vector-treated mice. Our results indicate the viability of a convenient and effective gene-based alternative for long-term IFN-beta protein therapy in MS. PMID:16782409

  15. Rapid response to 2'-deoxycoformycin in advanced hairy cell leukemia after failure of interferons alpha and gamma.

    PubMed

    Lembersky, B C; Ratain, M J; Westbrook, C; Golomb, H M

    1988-01-01

    A patient with advanced hairy cell leukemia initially had a short-lived minor response to interferon alpha therapy and failed to respond to interferon gamma. Subsequent treatment with 2'-deoxycoformycin (dCF) administered biweekly for 12 wk resulted in a complete hematological remission which has continued for 16 months without additional therapy. PMID:3128105

  16. Mice Deficient in Interferon-Gamma or Interferon-Gamma Receptor 1 Have Distinct Inflammatory Responses to Acute Viral Encephalomyelitis

    PubMed Central

    Lee, Eun-Young; Schultz, Kimberly L. W.; Griffin, Diane E.

    2013-01-01

    Interferon (IFN)-gamma is an important component of the immune response to viral infections that can have a role both in controlling virus replication and inducing inflammatory damage. To determine the role of IFN-gamma in fatal alphavirus encephalitis, we have compared the responses of wild type C57BL/6 (WTB6) mice with mice deficient in either IFN-gamma (GKO) or the alpha-chain of the IFN-gamma receptor (GRKO) after intranasal infection with a neuroadapted strain of sindbis virus. Mortalities of GKO and GRKO mice were similar to WTB6 mice. Both GKO and GRKO mice had delayed virus clearance from the brain and spinal cord, more infiltrating perforin+ cells and lower levels of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 mRNAs than WTB6 mice. However, inflammation was more intense in GRKO mice than WTB6 or GKO mice with more infiltrating CD3+ T cells, greater expression of major histocompatibility complex-II and higher levels of interleukin-17A mRNA. Fibroblasts from GRKO embryos did not develop an antiviral response after treatment with IFN-gamma, but showed increases in TNF-alpha, IL-6, CXCL9 and CXCL10 mRNAs although these increases developed more slowly and were less intense than those of WTB6 fibroblasts. These data indicate that both GKO and GRKO mice fail to develop an IFN-gamma-mediated antiviral response, but differ in regulation of the inflammatory response to infection. Therefore, GKO and GRKO cannot be considered equivalent when assessing the role of IFN-gamma in CNS viral infections. PMID:24204622

  17. Monitoring interferon β treatment response with magnetic resonance spectroscopy in relapsing remitting multiple sclerosis.

    PubMed

    Yetkin, Mehmet Fatih; Mirza, Meral; Dönmez, Halil

    2016-09-01

    The aim of this study is to compare the white matter of multiple sclerosis (MS) patients with healthy controls and to monitor the response to the treatment with magnetic resonance spectroscopy (MRS).Fifteen healthy controls and 36 recently diagnosed MS patients never treated with interferon β were included in this study. In the patient group, MRS was performed before treatment, at 6th and 12th month after the initiation of treatment and once in control group. Patient group was divided into 3 interferon groups randomly. Physical examination findings were recorded as Expanded Disability Status Scale scores before treatment, at 6th and 12th month of interferon treatment.At the end of 1 year follow up, 26 of 36 patients completed the study. In patients' white matter lesions, N-acetylaspartate/creatine (NAA/Cr) ratios were lower than control group's white matters. NAA/Cr ratios were higher in control group's white matter than patient's normal appearing white matter but this difference was not statistically significant. There was no difference in choline/creatine (Cho/Cr) ratios between 2 groups. In follow-up period, NAA/Cr and Cho/Cr ratios obtained from patients' white matter lesions and normal appearing white matter did not change statistically.This study showed that in MS patients' white matters, especially in white matter lesions, neuron viability is reduced compared with healthy controls' normal white matter; and in the patients treated with interferon β NAA/Cr ratios remained stable. These stable levels of metabolite ratios in the patients who received interferon β therapy can be explained with either the shortness of the follow-up period post-treatment or may reflect a positive effect of the beta interferon therapy on the progress of MS. PMID:27603381

  18. Cloning and expression analyses of interferon regulatory factor (IRF) 3 and 7 genes in European eel, Anguilla anguilla with the identification of genes involved in IFN production.

    PubMed

    Huang, Bei; Huang, Wen Shu; Nie, P

    2014-04-01

    Interferon regulatory factor (IRF) 3 and IRF7 have been identified as regulators of type I interferon (IFN) gene expression in mammals. In the present study, the two genes were cloned and characterized in the European eel, Anguilla anguilla. The full-length cDNA sequence of IRF3 and IRF7 in the European eel, named as AaIRF3 and AaIRF7 consists of 2879 and 2419 bp respectively. Multiple alignments showed that the two IRFs have a highly conserved DNA binding domain (DBD) in the N terminus, with the characteristic motif containing five tryptophan residues, which is a feature present in their mammalian homologues. But, IRF7 has only four of the five residues in other species of fish. The expression of AaIRF3 and AaIRF7 both displayed an obvious dose-dependent manner following polyinosinic:polycytidylic acid (PolyI:C) challenge. In vivo expression analysis showed that the mRNA level of AaIRF3 and AaIRF7 was significantly up-regulated in response to PolyI:C stimulation in all examined tissues/organs except in muscle, with a lower level of increase observed in response to lipopolysaccharide (LPS) challenge and Edwardsiella tarda infection, indicating that AaIRF3 and AaIRF7 may be more likely involved in antiviral immune response. In addition, some pattern recognition receptors genes related with the production of type I IFNs and those genes in response to type I IFNs were identified in the European eel genome database, indicating a relatively conserved system in the production of type I IFN and its signalling in the European eel. PMID:24565894

  19. Sensitivity of African swine fever virus to type I interferon is linked to genes within multigene families 360 and 505

    PubMed Central

    Golding, Josephine P.; Goatley, Lynnette; Goodbourn, Steve; Dixon, Linda K.; Taylor, Geraldine; Netherton, Christopher L.

    2016-01-01

    African swine fever virus (ASFV) causes a lethal haemorrhagic disease of pigs. There are conflicting reports on the role of interferon in ASFV infection. We therefore analysed the interaction of ASFV with porcine interferon, in vivo and in vitro. Virulent ASFV induced biologically active IFN in the circulation of pigs from day 3-post infection, whereas low virulent OUR T88/3, which lacks genes from multigene family (MGF) 360 and MGF505, did not. Infection of porcine leucocytes enriched for dendritic cells, with ASFV, in vitro, induced high levels of interferon, suggesting a potential source of interferon in animals undergoing acute ASF. Replication of OUR T88/3, but not virulent viruses, was reduced in interferon pretreated macrophages and a recombinant virus lacking similar genes to those absent in OUR T88/3 was also inhibited. These findings suggest that as well as inhibiting the induction of interferon, MGF360 and MGF505 genes also enable ASFV to overcome the antiviral state. PMID:27043071

  20. Sensitivity of African swine fever virus to type I interferon is linked to genes within multigene families 360 and 505.

    PubMed

    Golding, Josephine P; Goatley, Lynnette; Goodbourn, Steve; Dixon, Linda K; Taylor, Geraldine; Netherton, Christopher L

    2016-06-01

    African swine fever virus (ASFV) causes a lethal haemorrhagic disease of pigs. There are conflicting reports on the role of interferon in ASFV infection. We therefore analysed the interaction of ASFV with porcine interferon, in vivo and in vitro. Virulent ASFV induced biologically active IFN in the circulation of pigs from day 3-post infection, whereas low virulent OUR T88/3, which lacks genes from multigene family (MGF) 360 and MGF505, did not. Infection of porcine leucocytes enriched for dendritic cells, with ASFV, in vitro, induced high levels of interferon, suggesting a potential source of interferon in animals undergoing acute ASF. Replication of OUR T88/3, but not virulent viruses, was reduced in interferon pretreated macrophages and a recombinant virus lacking similar genes to those absent in OUR T88/3 was also inhibited. These findings suggest that as well as inhibiting the induction of interferon, MGF360 and MGF505 genes also enable ASFV to overcome the antiviral state. PMID:27043071

  1. Transcriptional induction of pim-1 protein kinase gene expression by interferon gamma and posttranscriptional effects on costimulation with steel factor.

    PubMed

    Yip-Schneider, M T; Horie, M; Broxmeyer, H E

    1995-06-15

    Steel factor (SLF) synergizes with interferon gamma (IFN gamma) to stimulate proliferation of the human factor-dependent cell line MO7e. We examined the effects of IFN gamma and SLF treatment, alone or in combination, on the expression of a 33-kD cytoplasmic protein serine/threonine kinase designated pim-1 whose expression has been closely associated with proliferation induced by related myeloid cytokines. IFN gamma alone, but not SLF, stimulated expression of pim-1 RNA and protein in MO7e cells; compared with IFN gamma alone, costimulation with IFN gamma and SLF resulted in a twofold to threefold increase in pim-1 message and protein expression, correlating with synergistic effects on cell proliferation. Both IFN gamma and IFN gamma/SLF induced pim-1 mRNA in the absence of de novo protein synthesis. Nuclear run-on assays showed that, although IFN gamma alone increased the rate of pim-1 gene transcription, costimulation with IFN gamma and SLF did not further potentiate this effect; however, the stability of pim-1 message was significantly enhanced in the presence of both cytokines. An IFN gamma-responsive element within the 5' flanking region of the pim-1 gene that could confer IFN gamma responsiveness on a heterologous promoter was identified. This sequence, designated PMGAS, formed a specific complex with Stat (signal transducers and activators of transcription) 1 alpha (the p91 subunit of the transcription factor ISGF3 [interferon-stimulated gene factor 3]) in IFN gamma-treated cell extracts, suggesting that the transcriptional effects of IFN gamma on pim-1 expression may be mediated by Stat 1 alpha. PMID:7540064

  2. Analysis of Transcriptional Signatures in Response to Listeria monocytogenes Infection Reveals Temporal Changes That Result from Type I Interferon Signaling

    PubMed Central

    Potempa, Krzysztof; Graham, Christine M.; Moreira-Teixeira, Lucia; McNab, Finlay W.; Howes, Ashleigh; Stavropoulos, Evangelos; Pascual, Virginia; Banchereau, Jacques; Chaussabel, Damien; O’Garra, Anne

    2016-01-01

    Analysis of the mouse transcriptional response to Listeria monocytogenes infection reveals that a large set of genes are perturbed in both blood and tissue and that these transcriptional responses are enriched for pathways of the immune response. Further we identified enrichment for both type I and type II interferon (IFN) signaling molecules in the blood and tissues upon infection. Since type I IFN signaling has been reported widely to impair bacterial clearance we examined gene expression from blood and tissues of wild type (WT) and type I IFNαβ receptor-deficient (Ifnar1-/-) mice at the basal level and upon infection with L. monocytogenes. Measurement of the fold change response upon infection in the absence of type I IFN signaling demonstrated an upregulation of specific genes at day 1 post infection. A less marked reduction of the global gene expression signature in blood or tissues from infected Ifnar1-/- as compared to WT mice was observed at days 2 and 3 after infection, with marked reduction in key genes such as Oasg1 and Stat2. Moreover, on in depth analysis, changes in gene expression in uninfected mice of key IFN regulatory genes including Irf9, Irf7, Stat1 and others were identified, and although induced by an equivalent degree upon infection this resulted in significantly lower final gene expression levels upon infection of Ifnar1-/- mice. These data highlight how dysregulation of this network in the steady state and temporally upon infection may determine the outcome of this bacterial infection and how basal levels of type I IFN-inducible genes may perturb an optimal host immune response to control intracellular bacterial infections such as L. monocytogenes. PMID:26918359

  3. Early Changes in Interferon Signaling Define Natural Killer Cell Response and Refractoriness To Interferon-based Therapy of Hepatitis C

    PubMed Central

    Edlich, Birgit; Ahlenstiel, Golo; Azpiroz, Aintzane Zabaleta; Stoltzfus, Jonathan; Noureddin, Mazen; Serti, Elisavet; Feld, Jordan J.; Liang, T. Jake; Rotman, Yaron; Rehermann, Barbara

    2012-01-01

    Natural killer (NK) cells exhibit a polarized phenotype with increased cytotoxicity and decreased IFN- γ production in chronic hepatitis C virus (HCV) infection. Here we asked whether this is due to type I interferon (IFN)-induced expression and phosphorylation levels of signal transducer and activator of transcription (STAT) molecules in NK cells and whether it affects the response and refractoriness of NK cells to IFN-α-based therapy of hepatitis C. STAT1 levels in NK cells were significantly higher in patients with chronic HCV infection than in uninfected controls. STAT1 levels and induction of phosphorylated STAT1 (pSTAT1) increased further during IFN-α-based therapy with preferential STAT1 over STAT4 phosphorylation. Induction of pSTAT1 correlated with increased NK cytotoxicity (TRAIL expression and degranulation) and decreased IFN-γ production. NK cells from patients with a greater than 2 log10 first phase HCV RNA decline to IFN-α-based therapy (>99% IFN effectiveness) displayed strong pSTAT1 induction in vivo and were refractory to further stimulation in vitro. In contrast, NK cells from patients with a less than 2 log10 first phase HCV RNA decline exhibited lower pSTAT1 induction in vivo (p=0.024) but retained greater IFN-α responsiveness in vitro (p=0.024). NK cells of all patients became refractory to in vivo and in vitro stimulation by IFN-α during the second phase virological response. Conclusion These data show that IFN-α-induced modulation of STAT1/4 phosphorylation underlies the polarization of NK cells towards increased cytotoxicity and decreased IFN-γ production in HCV infection, and that NK cell responsiveness and refractoriness correlate to the antiviral effectiveness of IFN-α-based therapy. PMID:21898483

  4. The mouse BP-1 gene: Structure, chromosomal localization, and regulation of expression by type I interferons and interleukin-7

    SciTech Connect

    Wang, Jiyang; Walker, H.; Lin, Q.

    1996-04-15

    The BP-1/6C3 antigen is a homodimeric, phosphorylated type II membrane integral glycoprotein expressed on immature B-lineage cells, bone marrow stromal cells, thymic cortical epithelial cells, endothelial cells, thymic cortical epithelial cells, endothelial cells, thymic cortical epithelial cells, endothelial cells, enterocytes, and renal proximal tubular cells. Biochemical and molecular analysis identified BP-1 as glutamyl aminopeptidase, an ectoenzyme that catalyzes the hydrolysis of acidic amino acid residues from the amino termini of regulatory peptides. We have isolated genomic clones that encode the BP-1 gene (gene symbol Enpep). The gene spans more than 110 kb and contains 20 exons, it is composed of small exons ranging from 56 to 171 bp that are separated by introns ranging from less than 100 bp to approximately 10 kb. The zinc binding motif HEXXH and the glutamic acid residue 19 amino acids downstream, which also binds zinc, are encoded in exons 5 and 6. Primer extension analysis revealed a common major transcriptional start site in a pre-B cell line, in a bone marrow stromal cell line, and in kidney cells. An interferon responsive element also located in the promoter region appeared to be functional, since type I interferons (IFN-{alpha}/IFN-{beta}) upregulated BP-1 expression in pre-B cell lines. The BP-1/Enpep gene was localized to a distal region of mouse chromosome 3 in a region homologous to human chromosome 4q25. Interestingly, while interleukin-7 (IL-7) induced both cell growth and increased BP-1 expression, IFN-{alpha}/IFN-{beta} upregulated BP-1 expression but inhibited IL-7-induced proliferation. This finding indicates that the upregulated BP-1 expression can be disassociated from the cell growth signal. 48 refs., 7 figs., 1 tab.

  5. Critical Role of MDA5 in the Interferon Response Induced by Human Metapneumovirus Infection in Dendritic Cells and In Vivo

    PubMed Central

    Baños-Lara, M. Del Rocío; Ghosh, Arpita

    2013-01-01

    Human metapneumovirus (hMPV) is a respiratory paramyxovirus of global clinical relevance. Despite the substantial knowledge generated during the last 10 years about hMPV infection, information regarding the activation of the immune response against this virus remains largely unknown. In this study, we demonstrated that the helicase melanoma differentiation-associated gene 5 (MDA5) is essential to induce the interferon response after hMPV infection in human and mouse dendritic cells as well as in an experimental mouse model of infection. Our findings in vitro and in vivo showed that MDA5 is required for the expression and activation of interferon (IFN) regulatory factors (IRFs). hMPV infection induces activation of IRF-3, and it regulates the expression of IRF-7. However, both IRF-3 and IRF-7 are critical for the production of type I and type III IFNs. In addition, our in vivo studies in hMPV-infected mice indicated that MDA5 alters viral clearance, enhances disease severity and pulmonary inflammation, and regulates the production of cytokines and chemokines in response to hMPV. These findings are relevant for a better understanding of the pathogenesis of hMPV infection. PMID:23152520

  6. The Correlation Between Interferon Lambda 3 Gene Polymorphisms and Susceptibility to Hepatitis B Virus Infection

    PubMed Central

    Heidari, Zahra; Moudi, Bita; Mahmoudzadeh-Sagheb, Hamidreza; Hashemi, Mohammad

    2016-01-01

    Background Cytokines are proteins that mediate innate and adaptive immunity responses. It is hypothesized that interferon lambda 3 (IFNL3) levels can influence the outcome of chronic hepatitis B virus (HBV) infection. Polymorphisms in IFN genes have been associated with response to infection. Objectives This study was carried-out to investigate the association of IFNL3 gene polymorphisms (rs12979860 and rs8099917) with HBV susceptibility, in chronic HBV-infected patients. Patients and Methods In this case-control study, we determined IFNL3 single nucleotide polymorphisms (SNPs) (rs12979860 and rs8099917) in 221 individuals, with chronic HBV infection, and 200 healthy individuals, who were voluntary blood donors, with negative test for HBV. Alleles and genotypes analyses were performed by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods. Results The frequencies of the rs12979860 and rs8099917 genotypes were not significantly different between the HBV-infected and the control groups (CC:CT:TT of 30.3%:48.0%:21.7% vs. 33.0%:49.0%:18.0%, P > 0.05, and GG:GT:TT of 5.8%:39.4%:54.8% vs. 5.0%:41.0%:54.0%, P > 0.05, respectively). Also, the frequencies of the alleles were not significantly different between both groups (C:T of 54.3%:45.7% vs. 57.5%:42.5%, P > 0.05, and G:T of 25.6%:74.4% vs. 25.5%:74.5%, P > 0.05, respectively) and the chronic HBV infection. There were no significant differences between patients, with at least one rs12979860C and or rs8099917T alleles compared to the healthy controls (rs12979860: CT + CC:TT, OR = 1.26, 95%CI = 0.78 - 2.04, P = 0.341 and rs8099917: GT + TT:GG, OR = 1.03, 95%CI = 0.70 - 1.51, P = 0.877, respectively). Conclusions Our study showed no correlation between rs12979860 and rs8099917 SNPs and chronic HBV infection. Further studies, with larger sample sizes and different ethnicities, are necessary to validate our

  7. Self-reactive IgE exacerbates interferon responses associated with autoimmunity

    PubMed Central

    Henault, Jill; Riggs, Jeffrey M.; Karnell, Jodi L.; Liarski, Vladimir M.; Li, Jianqing; Shirinian, Lena; Xu, Linda; Casey, Kerry A.; Smith, Michael A.; Khatry, Deepak B.; Izhak, Liat; Clarke, Lorraine; Herbst, Ronald; Ettinger, Rachel; Petri, Michelle; Clark, Marcus R.; Mustelin, Tomas; Kolbeck, Roland; Sanjuan, Miguel A.

    2015-01-01

    Summary Canonically, IgE mediates allergic immune responses by triggering mast cells and basophils to release histamine and Type 2 helper cytokines. Here, we report that in human systemic lupus erythematosus, IgE antibodies specific for double-stranded DNA activate plasmacytoid dendritic cells (pDCs), an immune cell type linked to viral defense, leading to the secretion of substantial amounts of interferon-α. The concentrations of dsDNA-specific IgE found in patient serum correlated with disease severity and greatly potentiated pDC functions by triggering phagocytosis via FcεRI followed by Toll-like receptor 9-mediated DNA sensing in phagosomes. These findings expand the known pathogenic mechanisms of IgE-mediated inflammation beyond those found in allergy and demonstrate that IgE can trigger interferon responses capable of exacerbating self-destructive autoimmune responses. PMID:26692173

  8. Type I interferon related genes are common genes on the early stage after vaccination by meta-analysis of microarray data.

    PubMed

    Zhang, Junnan; Shao, Jie; Wu, Xing; Mao, Qunying; Wang, Yiping; Gao, Fan; Kong, Wei; Liang, Zhenglun

    2015-01-01

    The objective of this study was to find common immune mechanism across different kinds of vaccines. A meta-analysis of microarray datasets was performed using publicly available microarray Gene Expression Omnibus (GEO) and Array Express data sets of vaccination records. Seven studies (out of 35) were selected for this meta-analysis. A total of 447 chips (145 pre-vaccination and 302 post-vaccination) were included. Significance analysis of microarrays (SAM) program was used for screening differentially expressed genes (DEGs). Functional pathway enrichment for the DEGs was conducted in DAVID Gene Ontology (GO) database. Twenty DEGs were identified, of which 10 up-regulated genes involved immune response. Six of which were type I interferon (IFN) related genes, including LY6E, MX1, OAS3, IFI44L, IFI6 and IFITM3. Ten down-regulated genes mainly mediated negative regulation of cell proliferation and cell motion. Results of a subgroup analysis showed that although the kinds of genes varied widely between days 3 and 7 post vaccination, the pathways between them are basically the same, such as immune response and response to viruses, etc. For an independent verification of these 6 type I IFN related genes, peripheral blood mononuclear cells (PBMCs) were collected at baseline and day 3 after the vaccination from 8 Enterovirus 71(EV71) vaccinees and were assayed by RT-PCR. Results showed that the 6 DEGs were also upregulated in EV71 vaccinees. In summary, meta-analysis methods were used to explore the immune mechanism of vaccines and results indicated that the type I IFN related genes and corresponding pathways were common in early immune responses for different kinds of vaccines. PMID:25839220

  9. Type I interferon related genes are common genes on the early stage after vaccination by meta-analysis of microarray data

    PubMed Central

    Zhang, Junnan; Shao, Jie; Wu, Xing; Mao, Qunying; Wang, Yiping; Gao, Fan; Kong, Wei; Liang, Zhenglun

    2015-01-01

    The objective of this study was to find common immune mechanism across different kinds of vaccines. A meta-analysis of microarray datasets was performed using publicly available microarray Gene Expression Omnibus (GEO) and Array Express data sets of vaccination records. Seven studies (out of 35) were selected for this meta-analysis. A total of 447 chips (145 pre-vaccination and 302 post-vaccination) were included. Significance analysis of microarrays (SAM) program was used for screening differentially expressed genes (DEGs). Functional pathway enrichment for the DEGs was conducted in DAVID Gene Ontology (GO) database. Twenty DEGs were identified, of which 10 up-regulated genes involved immune response. Six of which were type I interferon (IFN) related genes, including LY6E, MX1, OAS3, IFI44L, IFI6 and IFITM3. Ten down-regulated genes mainly mediated negative regulation of cell proliferation and cell motion. Results of a subgroup analysis showed that although the kinds of genes varied widely between days 3 and 7 post vaccination, the pathways between them are basically the same, such as immune response and response to viruses, etc. For an independent verification of these 6 type I IFN related genes, peripheral blood mononuclear cells (PBMCs) were collected at baseline and day 3 after the vaccination from 8 Enterovirus 71(EV71) vaccinees and were assayed by RT-PCR. Results showed that the 6 DEGs were also upregulated in EV71 vaccinees. In summary, meta-analysis methods were used to explore the immune mechanism of vaccines and results indicated that the type I IFN related genes and corresponding pathways were common in early immune responses for different kinds of vaccines. PMID:25839220

  10. MicroRNA as Type I Interferon-Regulated Transcripts and Modulators of the Innate Immune Response

    PubMed Central

    Forster, Samuel C.; Tate, Michelle D.; Hertzog, Paul J.

    2015-01-01

    Type I interferons (IFNs) are an important family of cytokines that regulate innate and adaptive immune responses to pathogens, in cancer and inflammatory diseases. While the regulation and role of protein-coding genes involved in these responses are well characterized, the role of non-coding microRNAs in the IFN responses is less developed. We review the emerging picture of microRNA regulation of the IFN response at the transcriptional and post-transcriptional level. This response forms an important regulatory loop; several microRNAs target transcripts encoding components at many steps of the type I IFN response, both production and action, at the receptor, signaling, transcription factor, and regulated gene level. Not only do IFNs regulate positive signaling molecules but also negative regulators such as SOCS1. In total, 36 microRNA are reported as IFN regulated. Given this apparent multipronged targeting of the IFN response by microRNAs and their well-characterized capacity to “buffer” responses in other situations, the prospects of improved sequencing and microRNA targeting technologies will facilitate the elucidation of the broader regulatory networks of microRNA in this important biological context, and their therapeutic and diagnostic potential. PMID:26217335

  11. Fas-Associated Factor 1 Negatively Regulates the Antiviral Immune Response by Inhibiting Translocation of Interferon Regulatory Factor 3 to the Nucleus

    PubMed Central

    Song, Soonhwa; Lee, Jae-Jin; Kim, Hee-Jung; Lee, Jeong Yoon; Chang, Jun

    2016-01-01

    This study is designed to examine the cellular functions of human Fas-associated factor 1 (FAF1) containing multiple ubiquitin-related domains. Microarray analyses revealed that interferon-stimulated genes related to the antiviral response are significantly increased in FAF1-knockdown HeLa cells. Silencing FAF1 enhanced the poly(I·C)- and respiratory syncytial virus (RSV)-induced production of type I interferons (IFNs), the target genes of interferon regulator factor 3 (IRF3). IRF3 is a key transcription factor in IFN-β signaling responsible for the host innate immune response. This study also found that FAF1 and IRF3 physically associate with IPO5/importin-β3 and that overexpression of FAF1 reduces the interaction between IRF3 and IPO5/importin-β3. These findings suggest that FAF1 negatively regulates IRF3-mediated IFN-β production and the antiviral innate immune response by regulating nuclear translocation of IRF3. We conclude that FAF1 plays a novel role in negatively regulating virus-induced IFN-β production and the antiviral response by inhibiting the translocation of active, phosphorylated IRF3 from the cytosol to the nucleus. PMID:26811330

  12. Endogenous interferon production by endotoxin-responsive macrophages provides an autostimulatory differentiation signal.

    PubMed Central

    Vogel, S N; Fertsch, D

    1984-01-01

    Previous studies have demonstrated that peritoneal macrophages (resident or thioglycolate-induced) derived from mouse strains fully responsive to gram-negative endotoxins continue to differentiate in vitro, as evidenced by an increased capacity to phagocytose via the Fc receptor with time in culture. In contrast, macrophages derived from endotoxin-hyporesponsive mouse strains (e.g., C3H/HeJ or C57BL/10ScN) exhibit no such increase in phagocytic capacity, and, in fact, significantly lose the capacity to phagocytose particles opsonized with immunoglobulin G with time in culture. This defect was found to be fully correctable by the addition to the cultures of an exogenous source of alpha, beta, or gamma interferon. In this study, we compared C3H/HeN (endotoxin-responsive) and C3H/HeJ (endotoxin-responsive) and C3H/HeJ (endotoxin-hyporesponsive) macrophages in an attempt to elucidate the mechanism responsible for this difference in phagocytic (differentiative) potential. The following observations support the hypothesis that endotoxin-responsive macrophages, in contrast to endotoxin-hyporesponsive macrophages, produce significantly higher levels of an autostimulatory differentiation signal that appears to be macrophage-derived interferon. (i) Anti-alpha/beta-interferon antibody greatly reduces the ability of C3H/HeN macrophages to phagocytose opsonized erythrocytes: (ii) C3H/HeJ macrophages can be made more phagocytic by coculture with C3H/HeN macrophages or by treatment with supernatants derived from C3H/HeN macrophage cultures; and (iii) C3H/HeN macrophages spontaneously lose Mac-1 antigen with time in culture. C3H/HeJ macrophages must be interferon-treated to be equivalently down-regulated. PMID:6378797

  13. The human P-glycoprotein transporter enhances the type I interferon response to Listeria monocytogenes infection.

    PubMed

    Sigal, Nadejda; Kaplan Zeevi, Millie; Weinstein, Shiri; Peer, Dan; Herskovits, Anat A

    2015-06-01

    Human multidrug efflux transporters are known for their ability to extrude antibiotics and toxic compounds out of cells, yet accumulating data indicate they have additional functions in diverse physiological processes not related to drug efflux. Here, we show that the human multidrug transporter P-glycoprotein (P-gp) (also named MDR1 and ABCB1) is transcriptionally induced in the monocytic cell line THP-1 upon infection with the human intracellular bacterial pathogen Listeria monocytogenes. Notably, we found that P-gp is important for full activation of the type I interferon response elicited against L. monocytogenes bacteria. Both inhibition of P-gp function by verapamil and inhibition of its transcription using mRNA silencing led to a reduction in the magnitude of the type I response in infected cells. This function of P-gp was specific to type I interferon cytokines elicited against cytosolic replicating bacteria and was not observed in response to cyclic di-AMP (c-di-AMP), a molecule that was shown to be secreted by L. monocytogenes during infection and to trigger type I interferons. Moreover, P-gp was not involved in activation of other proinflammatory cytokines, such as those triggered by vacuolar-restricted L. monocytogenes or lipopolysaccharide (LPS). Taken together, these findings demonstrate a role for P-gp in proper development of an innate immune response against intracellular pathogens, highlighting the complexity in employing therapeutic strategies that involve inhibition of multidrug resistance (MDR) efflux pumps. PMID:25824830

  14. The Human P-Glycoprotein Transporter Enhances the Type I Interferon Response to Listeria monocytogenes Infection

    PubMed Central

    Sigal, Nadejda; Kaplan Zeevi, Millie; Weinstein, Shiri; Peer, Dan

    2015-01-01

    Human multidrug efflux transporters are known for their ability to extrude antibiotics and toxic compounds out of cells, yet accumulating data indicate they have additional functions in diverse physiological processes not related to drug efflux. Here, we show that the human multidrug transporter P-glycoprotein (P-gp) (also named MDR1 and ABCB1) is transcriptionally induced in the monocytic cell line THP-1 upon infection with the human intracellular bacterial pathogen Listeria monocytogenes. Notably, we found that P-gp is important for full activation of the type I interferon response elicited against L. monocytogenes bacteria. Both inhibition of P-gp function by verapamil and inhibition of its transcription using mRNA silencing led to a reduction in the magnitude of the type I response in infected cells. This function of P-gp was specific to type I interferon cytokines elicited against cytosolic replicating bacteria and was not observed in response to cyclic di-AMP (c-di-AMP), a molecule that was shown to be secreted by L. monocytogenes during infection and to trigger type I interferons. Moreover, P-gp was not involved in activation of other proinflammatory cytokines, such as those triggered by vacuolar-restricted L. monocytogenes or lipopolysaccharide (LPS). Taken together, these findings demonstrate a role for P-gp in proper development of an innate immune response against intracellular pathogens, highlighting the complexity in employing therapeutic strategies that involve inhibition of multidrug resistance (MDR) efflux pumps. PMID:25824830

  15. Increased responsiveness of rat dorsal horn neurons in vivo following prolonged intrathecal exposure to interferon-gamma.

    PubMed

    Vikman, K S; Siddall, P J; Duggan, A W

    2005-01-01

    Prolonged increases in the level of the pro-inflammatory cytokine interferon-gamma occur in the CNS during some disease states associated with persistent pain. Administration of interferon-gamma to both humans and rodents has produced pain or pain-related behavior but the underlying mechanisms are unknown. The present study examined the effects of repeated intrathecal administration of interferon-gamma on dorsal horn neuronal responses under in vivo conditions. In addition, behavioral effects of interferon-gamma treatment were studied. Intrathecal cannulae were implanted into anesthetized rats. Animals then received either 1000 U of recombinant rat interferon-gamma in 10 microl buffer intrathecally, repeated four times over 8 days, or similarly administered buffer (controls). Interferon-gamma-treated animals showed a significant reduction in paw withdrawal threshold to mechanical stimulation of the hind paw. Electrophysiological experiments were performed under halothane anesthesia. Extracellular recordings of spontaneous and evoked responses were obtained from dorsal horn neurons (n=64) in the lumbar spinal cord. There was a significantly higher proportion of spontaneously active neurons in the interferon-gamma-treated animals (50%) when compared with controls (19%). A significantly increased proportion of neurons from interferon-gamma-treated animals displayed afterdischarges following both innocuous and noxious mechanical stimulation of the receptive field (brush: 21% in interferon-gamma-treated, 3% in controls; pinch: 97% in interferon-gamma-treated, 50% in controls). Neurons from interferon-gamma-treated animals also showed significantly increased wind-up of action potentials in response to repeated electrical stimulation of the sciatic nerve at C-fiber strength at both 0.5 and 1 Hz. Paired-pulse inhibition, evoked through electrical stimulation of the cutaneous receptive field, was significantly decreased in neurons from interferon-gamma-treated animals at 50

  16. Comparison of the effects of early pregnancy with human interferon, alpha 2 (IFNA2), on gene expression in bovine endometrium.

    PubMed

    Bauersachs, Stefan; Ulbrich, Susanne E; Reichenbach, Horst-Dieter; Reichenbach, Myriam; Büttner, Mathias; Meyer, Heinrich H D; Spencer, Thomas E; Minten, Megan; Sax, Gerhard; Winter, Gerhard; Wolf, Eckhard

    2012-02-01

    Interferon tau (IFNT), a type I IFN similar to alpha IFNs (IFNA), is the pregnancy recognition signal produced by the ruminant conceptus. To elucidate specific effects of bovine IFNT and of other conceptus-derived factors, endometrial gene expression changes during early pregnancy were compared to gene expression changes after intrauterine application of human IFNA2. In experiment 1, endometrial tissue samples were obtained on Day (D) 12, D15, and D18 postmating from nonpregnant or pregnant heifers. In experiment 2, heifers were treated from D14 to D16 of the estrous cycle with an intrauterine device releasing IFNA2 or, as controls, placebo lipid extrudates or PBS only. Endometrial biopsies were performed after flushing the uterus. All samples from both experiments were analyzed with an Affymetrix Bovine Genome Array. Experiment 1 revealed differential gene expression between pregnant and nonpregnant endometria on D15 and D18. In experiment 2, IFNA2 treatment resulted in differential gene expression in the bovine endometrium. Comparison of the data sets from both studies identified genes that were differentially expressed in response to IFNA2 but not in response to pregnancy on D15 or D18. In addition, genes were found that were differentially expressed during pregnancy but not after IFNA2 treatment. In experiment 3, spatiotemporal alterations in expression of selected genes were determined in uteri from nonpregnant and early pregnant heifers using in situ hybridization. The overall findings of this study suggest differential effects of bovine IFNT compared to human IFNA2 and that some pregnancy-specific changes in the endometrium are elicited by conceptus-derived factors other than IFNT. PMID:22034527

  17. Interferon treatment for chronic hepatitis C infection in hemophiliacs--influence of virus load, genotype, and liver pathology on response.

    PubMed

    Hanley, J P; Jarvis, L M; Andrew, J; Dennis, R; Hayes, P C; Piris, J; Lee, R; Simmonds, P; Ludlam, C A

    1996-03-01

    In this study, we assessed the effectiveness of interferon treatment in 31 hemophiliacs with chronic hepatitis C virus (HCV) infection. Interferon alfa-2a (3 MU three times weekly) was administered for 6 months. Response was assessed by both serial alanine transaminase (ALT) and HCV RNA levels measured by a sensitive semiquantitative polymerase chain reaction (PCR) method. HCV genotype was determined by restriction fragment length polymorphism (RFLP), and evidence of changing genotypes during interferon therapy was sought. Severity of liver disease was assessed by both noninvasive and invasive methods, including laparoscopic liver inspection and biopsy. Sustained normalization of ALT levels occurred in eight patients (28%), and seven (24%) became nonviremic as assessed by PCR (<80 HCV/mL). Responders universally cleared HCV RNA within 2 months of starting interferon. Genotype 3a was associated with a favorable response to interferon. No evidence was found for a change in circulating genotype in patients who failed to respond to interferon or who relapsed. This study confirms that response rates to interferon are low in hemophiliacs as compared with other groups with chronic HCV infection. We have also demonstrated that virus load measurement over the first 8 to 12 weeks of treatment is an extremely useful method to identify responders at an early stage. PMID:8634415

  18. Regulation of expression of mouse interferon-induced transmembrane protein like gene-3, Ifitm3 (mil-1, fragilis), in germ cells.

    PubMed

    Tanaka, Satomi S; Nagamatsu, Go; Tokitake, Yuko; Kasa, Miyuki; Tam, Patrick P L; Matsui, Yasuhisa

    2004-08-01

    Mouse interferon-induced transmembrane protein (IFITM) gene, Ifitm3 (previously known as mil-1 and fragilis), is expressed in primordial germ cells (PGCs), in their precursors, and in germ cells of the fetal gonads (Saitou et al. [2002] Nature 418:293-300; Tanaka and Matsui [2002] Mech Dev 119S:S261-S267). By examining the expression of green fluorescent protein transgene under the control of DNA sequences flanking exon 1, we have identified domains that direct Ifitm3 transcription in PGCs and their precursors in gastrula stage and 13.5 days post coitum embryos. Germ cell-specific expression is achieved by the activity of a consensus element unique to the Ifitm genes, which may act to suppress Ifitm3 expression in somatic tissues. The lack of any influence of the interferon-stimulable response elements on transgene expression in the germ-line suggests that interferon-mediated response is not critical for activating Ifitm3. PMID:15254899

  19. Lawsonia intracellularis-specific interferon γ gene expression by peripheral blood mononuclear cells in vaccinated and naturally infected foals.

    PubMed

    Pusterla, Nicola; Mapes, Samantha; Gebhart, Connie

    2012-05-01

    The cell-mediated immune response to Lawsonia intracellularis, the agent of equine proliferative enteropathy (EPE), was investigated in vaccinated and naturally infected foals. Interferon (IFN)-γ gene expression was determined in peripheral blood mononuclear cells collected from vaccinated (n=6) and control foals (n=6) every 30 days for 180 days following first vaccine administration, and from clinically affected foals (n=16) within 7-10 days of diagnosing EPE. Seroconversion (immunoperoxidase monolayer assay titer ≥60) occurred in 5/6 vaccinated foals between 60 and 90 days following the first vaccine administration and these foals remained seropositive for the remaining study period. IFN-γ gene expression in all vaccinated foals was significantly higher (P<0.05) on days 60-180 following first vaccine administration compared to IFN-γ gene expression in control foals. When IFN-γ gene transcription was compared between naturally infected and vaccinated foals, a significant difference (P<0.05) was observed only for day 0. PMID:21689957

  20. High-Density Nucleosome Occupancy Map of Human Chromosome 9p21–22 Reveals Chromatin Organization of the Type I Interferon Gene Cluster

    PubMed Central

    Freaney, Jonathan E.; Zhang, Quanwei; Yigit, Erbay; Kim, Rebecca; Widom, Jonathan; Wang, Ji-Ping

    2014-01-01

    Genome-wide investigations have dramatically increased our understanding of nucleosome positioning and the role of chromatin in gene regulation, yet some genomic regions have been poorly represented in human nucleosome maps. One such region is represented by human chromosome 9p21–22, which contains the type I interferon gene cluster that includes 16 interferon alpha genes and the single interferon beta, interferon epsilon, and interferon omega genes. A high-density nucleosome mapping strategy was used to generate locus-wide maps of the nucleosome organization of this biomedically important locus at a steady state and during a time course of infection with Sendai virus, an inducer of interferon gene expression. Detailed statistical and computational analysis illustrates that nucleosomes in this locus exhibit preferences for particular dinucleotide and oligomer DNA sequence motifs in vivo, which are similar to those reported for lower eukaryotic nucleosome–DNA interactions. These data were used to visualize the region's chromatin architecture and reveal features that are common to the organization of all the type I interferon genes, indicating a common nucleosome-mediated gene regulatory paradigm. Additionally, this study clarifies aspects of the dynamic changes that occur with the nucleosome occupying the transcriptional start site of the interferon beta gene after virus infection. PMID:24673249

  1. Extremes of Interferon-Stimulated Gene Expression Associate with Worse Outcomes in the Acute Respiratory Distress Syndrome.

    PubMed

    Nick, Jerry A; Caceres, Silvia M; Kret, Jennifer E; Poch, Katie R; Strand, Matthew; Faino, Anna V; Nichols, David P; Saavedra, Milene T; Taylor-Cousar, Jennifer L; Geraci, Mark W; Burnham, Ellen L; Fessler, Michael B; Suratt, Benjamin T; Abraham, Edward; Moss, Marc; Malcolm, Kenneth C

    2016-01-01

    Acute Respiratory Distress Syndrome (ARDS) severity may be influenced by heterogeneity of neutrophil activation. Interferon-stimulated genes (ISG) are a broad gene family induced by Type I interferons, often as a response to viral infections, which evokes extensive immunomodulation. We tested the hypothesis that over- or under-expression of immunomodulatory ISG by neutrophils is associated with worse clinical outcomes in patients with ARDS. Genome-wide transcriptional profiles of circulating neutrophils isolated from patients with sepsis-induced ARDS (n = 31) and healthy controls (n = 19) were used to characterize ISG expression. Hierarchical clustering of expression identified 3 distinct subject groups with Low, Mid and High ISG expression. ISG accounting for the greatest variability in expression were identified (MX1, IFIT1, and ISG15) and used to analyze a prospective cohort at the Colorado ARDS Network site. One hundred twenty ARDS patients from four urban hospitals were enrolled within 72 hours of initiation of mechanical ventilation. Circulating neutrophils were isolated from patients and expression of ISG determined by PCR. Samples were stratified by standard deviation from the mean into High (n = 21), Mid, (n = 82) or Low (n = 17) ISG expression. Clinical outcomes were compared between patients with High or Low ISG expression to those with Mid-range expression. At enrollment, there were no differences in age, gender, co-existing medical conditions, or type of physiologic injury between cohorts. After adjusting for age, race, gender and BMI, patients with either High or Low ISG expression had significantly worse clinical outcomes than those in the Mid for number of 28-day ventilator- and ICU-free days (P = 0.0006 and 0.0004), as well as 90-day mortality and 90-day home with unassisted breathing (P = 0.02 and 0.004). These findings suggest extremes of ISG expression by circulating neutrophils from ARDS patients recovered early in the syndrome are associated

  2. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes

    PubMed Central

    2011-01-01

    Background Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Methods Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. Results AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. Conclusion AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT. PMID:21435270

  3. Noncanonical Autophagy Is Required for Type I Interferon Secretion in Response to DNA-Immune Complexes

    PubMed Central

    Riggs, Jeffrey M.; Tian, Jane; Mehta, Payal; Clarke, Lorraine; Sasai, Miwa; Latz, Eicke; Brinkmann, Melanie M.; Iwasaki, Akiko; Coyle, Anthony J.; Kolbeck, Roland

    2013-01-01

    SUMMARY Toll-like receptor-9 (TLR9) is largely responsible for discriminating self from pathogenic DNA. However, association of host DNA with autoantibodies activates TLR9, inducing the pathogenic secretion of type I interferons (IFNs) from plasmacytoid dendritic cells (pDCs). Here, we found that in response to DNA-containing immune complexes (DNA-IC), but not to soluble ligands, IFN-α production depended upon the convergence of the phagocytic and autophagic pathways, a process called microtubule-associated protein 1A/1B-light chain 3 (LC3)-associated phagocytosis (LAP). LAP was required for TLR9 trafficking into a specialized interferon signaling compartment by a mechanism that involved autophagy-related proteins, but not the conventional autophagic preinitiation complex, or adaptor protein-3 (AP-3). Our findings unveil a new role for nonconventional autophagy in inflammation and provide one mechanism by which anti-DNA autoantibodies, such as those found in several autoimmune disorders, bypass the controls that normally restrict the apportionment of pathogenic DNA and TLR9 to the interferon signaling compartment. PMID:23219390

  4. An Interferon-Related Signature in the Transcriptional Core Response of Human Macrophages to Mycobacterium tuberculosis Infection

    PubMed Central

    Jin, Wen; Mei, Jian; Gicquel, Brigitte; Du, Yanzhi; Wang, Kankan; Gao, Qian; Neyrolles, Olivier; Zhang, Ji

    2012-01-01

    The W-Beijing family of Mycobacterium tuberculosis (Mtb) strains is known for its high-prevalence and -virulence, as well as for its genetic diversity, as recently reported by our laboratories and others. However, little is known about how the immune system responds to these strains. To explore this issue, here we used reverse engineering and genome-wide expression profiling of human macrophage-like THP-1 cells infected by different Mtb strains of the W-Beijing family, as well as by the reference laboratory strain H37Rv. Detailed data mining revealed that host cell transcriptome responses to H37Rv and to different strains of the W-Beijing family are similar and overwhelmingly induced during Mtb infections, collectively typifying a robust gene expression signature (“THP1r2Mtb-induced signature”). Analysis of the putative transcription factor binding sites in promoter regions of genes in this signature identified several key regulators, namely STATs, IRF-1, IRF-7, and Oct-1, commonly involved in interferon-related immune responses. The THP1r2Mtb-induced signature appeared to be highly relevant to the interferon-inducible signature recently reported in active pulmonary tuberculosis patients, as revealed by cross-signature and cross-module comparisons. Further analysis of the publicly available transcriptome data from human patients showed that the signature appears to be relevant to active pulmonary tuberculosis patients and their clinical therapy, and be tuberculosis specific. Thus, our results provide an additional layer of information at the transcriptome level on mechanisms involved in host macrophage response to Mtb, which may also implicate the robustness of the cellular defense system that can effectively fight against genetic heterogeneity in this pathogen. PMID:22675550

  5. Characterization of the interferon genes in homozygous rainbow trout reveals two novel genes, alternate splicing and differential regulation of duplicated genes

    USGS Publications Warehouse

    Purcell, M.K.; Laing, K.J.; Woodson, J.C.; Thorgaard, G.H.; Hansen, J.D.

    2009-01-01

    The genes encoding the type I and type II interferons (IFNs) have previously been identified in rainbow trout and their proteins partially characterized. These previous studies reported a single type II IFN (rtIFN-??) and three rainbow trout type I IFN genes that are classified into either group I (rtIFN1, rtIFN2) or group II (rtIFN3). In this present study, we report the identification of a novel IFN-?? gene (rtIFN-??2) and a novel type I group II IFN (rtIFN4) in homozygous rainbow trout and predict that additional IFN genes or pseudogenes exist in the rainbow trout genome. Additionally, we provide evidence that short and long forms of rtIFN1 are actively and differentially transcribed in homozygous trout, and likely arose due to alternate splicing of the first exon. Quantitative reverse transcriptase PCR (qRT-PCR) assays were developed to systematically profile all of the rainbow trout IFN transcripts, with high specificity at an individual gene level, in na??ve fish and after stimulation with virus or viral-related molecules. Cloned PCR products were used to ensure the specificity of the qRT-PCR assays and as absolute standards to assess transcript abundance of each gene. All IFN genes were modulated in response to Infectious hematopoietic necrosis virus (IHNV), a DNA vaccine based on the IHNV glycoprotein, and poly I:C. The most inducible of the type I IFN genes, by all stimuli tested, were rtIFN3 and the short transcript form of rtIFN1. Gene expression of rtIFN-??1 and rtIFN-??2 was highly up-regulated by IHNV infection and DNA vaccination but rtIFN-??2 was induced to a greater magnitude. The specificity of the qRT-PCR assays reported here will be useful for future studies aimed at identifying which cells produce IFNs at early time points after infection. ?? 2008 Elsevier Ltd.

  6. Systemic Cytokine and Interferon Responsiveness Patterns in HIV and HCV Mono and Co-Infections

    PubMed Central

    Fernandez-Botran, Rafael; Joshi-Barve, Swati; Ghare, Smita; Barve, Shirish; Young, Mary; Plankey, Michael

    2014-01-01

    The role of host response-related factors in the fast progression of liver disease in individuals co-infected with HIV and HCV viruses remains poorly understood. This study compared patterns of cytokines, caspase-1 activation, endotoxin exposure in plasma as well as interferon signaling in peripheral blood mononuclear cells from HIV/HCV co-infected (HIV+/HCV+), HCV mono-infected (HIV−/HCV+), HIV mono-infected (HIV+/HCV−) female patients and HIV- and HCV-uninfected women (HIV−/HCV−) who had enrolled in the Women's Interagency HIV Study (WIHS). HIV+/HCV+ women had higher plasma levels of pro-inflammatory cytokines as well as caspase-1 compared with other groups. Both HIV+/HCV+ and HIV+/HCV− women had significantly higher sCD14 levels compared with other groups. Peripheral blood mononuclear cells from HCV mono-infected patients had reduced levels of phosphorylation of STAT1 compared with other groups as well as lower basal levels of expression of the IFN-stimulated genes, OAS1, ISG15, and USP18 (UBP43). Basal expression of USP18, a functional antagonist of ISG15, as well as USP18/ISG15 ratios were increased in the HIV+/HCV+ group compared with HIV−/HCV+ and HIV+/HCV− groups. A more pronounced systemic inflammatory profile as well as increased expression ratios of USP18 to ISG15 may contribute to the more rapid progression of liver disease in HIV+/HCV+ individuals. PMID:24955730

  7. Systemic cytokine and interferon responsiveness Patterns in HIV and HCV mono and co-infections.

    PubMed

    Fernandez-Botran, Rafael; Joshi-Barve, Swati; Ghare, Smita; Barve, Shirish; Young, Mary; Plankey, Michael; Bordon, Jose

    2014-11-01

    The role of host response-related factors in the fast progression of liver disease in individuals co-infected with HIV and HCV viruses remains poorly understood. This study compared patterns of cytokines, caspase-1 activation, endotoxin exposure in plasma as well as interferon signaling in peripheral blood mononuclear cells from HIV/HCV co-infected (HIV(+)/HCV(+)), HCV mono-infected (HIV(-)/HCV(+)), HIV mono-infected (HIV(+)/HCV(-)) female patients and HIV- and HCV-uninfected women (HIV(-)/HCV(-)) who had enrolled in the Women's Interagency HIV Study (WIHS). HIV(+)/HCV(+) women had higher plasma levels of pro-inflammatory cytokines as well as caspase-1 compared with other groups. Both HIV(+)/HCV(+) and HIV(+)/HCV(-) women had significantly higher sCD14 levels compared with other groups. Peripheral blood mononuclear cells from HCV mono-infected patients had reduced levels of phosphorylation of STAT1 compared with other groups as well as lower basal levels of expression of the IFN-stimulated genes, OAS1, ISG15, and USP18 (UBP43). Basal expression of USP18, a functional antagonist of ISG15, as well as USP18/ISG15 ratios were increased in the HIV(+)/HCV(+) group compared with HIV(-)/HCV(+) and HIV(+)/HCV(-) groups. A more pronounced systemic inflammatory profile as well as increased expression ratios of USP18 to ISG15 may contribute to the more rapid progression of liver disease in HIV(+)/HCV(+) individuals. PMID:24955730

  8. Type I and type II interferon responses in two human liver cell lines (Huh-7 and HuH6).

    PubMed

    Grünvogel, Oliver; Esser-Nobis, Katharina; Windisch, Marc P; Frese, Michael; Trippler, Martin; Bartenschlager, Ralf; Lohmann, Volker; Binder, Marco

    2016-03-01

    Most studies investigating the biology of Hepatitis C virus (HCV) have used the human hepatoma cell line Huh-7 or subclones thereof, as these are the most permissive cell lines for HCV infection and replication. Other cell lines also support replication of HCV, most notably the human hepatoblastoma cell line HuH6. HCV replication in cell culture is generally highly sensitive to interferons (IFNs) and differences in the IFN-mediated inhibition of virus replication may reflect alterations in the IFN-induced antiviral response inherent to different host cells. For example, HCV replication is highly sensitive to IFN-γ treatment in Huh-7, but not in HuH6 cells. In this study, we used microarray-based gene expression profiling to compare the response of Huh-7 and HuH6 cells to stimulation with IFN-α and IFN-γ. Furthermore, we determined whether the resistance of HCV replication in HuH6 cells can be linked to differences in the expression profile of IFN-regulated genes. Although both cells lines responded to IFNs with rapid changes in gene expression, thereby demonstrating functional type I and type II signaling pathways, differences were observed for a number of genes. Raw and normalized expression data have been deposited in GEO under accession number GSE68927. PMID:26981398

  9. A candidate gene study of the type I interferon pathway implicates IKBKE and IL8 as risk loci for SLE

    PubMed Central

    Sandling, Johanna K; Garnier, Sophie; Sigurdsson, Snaevar; Wang, Chuan; Nordmark, Gunnel; Gunnarsson, Iva; Svenungsson, Elisabet; Padyukov, Leonid; Sturfelt, Gunnar; Jönsen, Andreas; Bengtsson, Anders A; Truedsson, Lennart; Eriksson, Catharina; Rantapää-Dahlqvist, Solbritt; Mälarstig, Anders; Strawbridge, Rona J; Hamsten, Anders; Criswell, Lindsey A; Graham, Robert R; Behrens, Timothy W; Eloranta, Maija-Leena; Alm, Gunnar; Rönnblom, Lars; Syvänen, Ann-Christine

    2011-01-01

    Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease in which the type I interferon pathway has a crucial role. We have previously shown that three genes in this pathway, IRF5, TYK2 and STAT4, are strongly associated with risk for SLE. Here, we investigated 78 genes involved in the type I interferon pathway to identify additional SLE susceptibility loci. First, we genotyped 896 single-nucleotide polymorphisms in these 78 genes and 14 other candidate genes in 482 Swedish SLE patients and 536 controls. Genes with P<0.01 in the initial screen were then followed up in 344 additional Swedish patients and 1299 controls. SNPs in the IKBKE, TANK, STAT1, IL8 and TRAF6 genes gave nominal signals of association with SLE in this extended Swedish cohort. To replicate these findings we extracted data from a genomewide association study on SLE performed in a US cohort. Combined analysis of the Swedish and US data, comprising a total of 2136 cases and 9694 controls, implicates IKBKE and IL8 as SLE susceptibility loci (Pmeta=0.00010 and Pmeta=0.00040, respectively). STAT1 was also associated with SLE in this cohort (Pmeta=3.3 × 10−5), but this association signal appears to be dependent of that previously reported for the neighbouring STAT4 gene. Our study suggests additional genes from the type I interferon system in SLE, and highlights genes in this pathway for further functional analysis. PMID:21179067

  10. "Bad genes" & criminal responsibility.

    PubMed

    González-Tapia, María Isabel; Obsuth, Ingrid

    2015-01-01

    The genetics of the accused is trying to break into the courts. To date several candidate genes have been put forward and their links to antisocial behavior have been examined and documented with some consistency. In this paper, we focus on the so called "warrior gene", or the low-activity allele of the MAOA gene, which has been most consistently related to human behavior and specifically to violence and antisocial behavior. In preparing this paper we had two objectives. First, to summarize and analyze the current scientific evidence, in order to gain an in depth understanding of the state of the issue and determine whether a dominant line of generally accepted scientific knowledge in this field can be asserted. Second, to derive conclusions and put forward recommendations related to the use of genetic information, specifically the presence of the low-activity genotype of the MAOA gene, in modulation of criminal responsibility in European and US courts. PMID:25708001

  11. Reduced sputum expression of interferon-stimulated genes in severe COPD

    PubMed Central

    Hilzendeger, Clarissa; da Silva, Jane; Henket, Monique; Schleich, Florence; Corhay, Jean Louis; Kebadze, Tatiana; Edwards, Michael R; Mallia, Patrick; Johnston, Sebastian L; Louis, Renaud

    2016-01-01

    Background Exacerbations of COPD are frequent and commonly triggered by respiratory tract infections. The purpose of our study was to investigate innate immunity in stable COPD patients. Methods Induced sputum was collected from 51 stable consecutive COPD patients recruited from the COPD Clinic of CHU Liege and 35 healthy subjects. Expression of interferons beta (IFN-β) and lambda1 (IL-29), IFN-stimulated genes (ISGs) MxA, OAS, and viperin were measured in total sputum cells by reverse transcription quantitative polymerase chain reaction (RT-qPCR). The presence of Picornaviruses was assessed by RT-PCR, while potential pathogenic microorganisms (PPM) were identified by sputum bacteriology. Results Expression of IL-29 was found in 16 of 51 COPD patients (31%) and in nine of 35 healthy subjects (26%), while IFN-β was detected in six of 51 COPD patients (12%) and in two of 35 healthy subjects (6%). ISGs were easily detectable in both groups. In the whole group of COPD patients, OAS expression was decreased (P<0.05), while that of viperin was increased (P<0.01) compared to healthy subjects. No difference was found with respect to MxA. COPD patients from group D of Global Initiative for Chronic Obstructive Lung Disease (GOLD) had reduced expression of all three ISGs (P<0.01 for MxA, P<0.05 for OAS, and P<0.01 for viperin) as compared to those of group B patients. Picornaviruses were detected in eight of 51 (16%) COPD patients vs four of 33 (12%) healthy subjects, while PPM were detected in seven of 39 (18%) COPD patients and associated with raised sputum neutrophil counts. IFN-β expression was raised when either picornavirus or PPM were detected (P=0.06), but no difference was seen regarding IL-29 or ISGs. Conclusion ISGs expression was reduced in severe COPD that may favor exacerbation and contribute to disease progress by altering response to infection. PMID:27418822

  12. Annotation of long non-coding RNAs expressed in Collaborative Cross founder mice in response to respiratory virus infection reveals a new class of interferon-stimulated transcripts

    PubMed Central

    Josset, Laurence; Tchitchek, Nicolas; Gralinski, Lisa E; Ferris, Martin T; Eisfeld, Amie J; Green, Richard R; Thomas, Matthew J; Tisoncik-Go, Jennifer; Schroth, Gary P; Kawaoka, Yoshihiro; Pardo-Manuel de Villena, Fernando; Baric, Ralph S; Heise, Mark T; Peng, Xinxia; Katze, Michael G

    2014-01-01

    The outcome of respiratory virus infection is determined by a complex interplay of viral and host factors. Some potentially important host factors for the antiviral response, whose functions remain largely unexplored, are long non-coding RNAs (lncRNAs). Here we systematically inferred the regulatory functions of host lncRNAs in response to influenza A virus and severe acute respiratory syndrome coronavirus (SARS-CoV) based on their similarity in expression with genes of known function. We performed total RNA-Seq on viral-infected lungs from eight mouse strains, yielding a large data set of transcriptional responses. Overall 5,329 lncRNAs were differentially expressed after infection. Most of the lncRNAs were co-expressed with coding genes in modules enriched in genes associated with lung homeostasis pathways or immune response processes. Each lncRNA was further individually annotated using a rank-based method, enabling us to associate 5,295 lncRNAs to at least one gene set and to predict their potential cis effects. We validated the lncRNAs predicted to be interferon-stimulated by profiling mouse responses after interferon-α treatment. Altogether, these results provide a broad categorization of potential lncRNA functions and identify subsets of lncRNAs with likely key roles in respiratory virus pathogenesis. These data are fully accessible through the MOuse NOn-Code Lung interactive database (MONOCLdb). PMID:24922324

  13. Annotation of long non-coding RNAs expressed in collaborative cross founder mice in response to respiratory virus infection reveals a new class of interferon-stimulated transcripts.

    PubMed

    Josset, Laurence; Tchitchek, Nicolas; Gralinski, Lisa E; Ferris, Martin T; Eisfeld, Amie J; Green, Richard R; Thomas, Matthew J; Tisoncik-Go, Jennifer; Schroth, Gary P; Kawaoka, Yoshihiro; Manuel de Villena, Fernando Pardo; Baric, Ralph S; Heise, Mark T; Peng, Xinxia; Katze, Michael G

    2014-01-01

    The outcome of respiratory virus infection is determined by a complex interplay of viral and host factors. Some potentially important host factors for the antiviral response, whose functions remain largely unexplored, are long non-coding RNAs (lncRNAs). Here we systematically inferred the regulatory functions of host lncRNAs in response to influenza A virus and severe acute respiratory syndrome coronavirus (SARS-CoV) based on their similarity in expression with genes of known function. We performed total RNA-Seq on viral-infected lungs from eight mouse strains, yielding a large data set of transcriptional responses. Overall 5,329 lncRNAs were differentially expressed after infection. Most of the lncRNAs were co-expressed with coding genes in modules enriched in genes associated with lung homeostasis pathways or immune response processes. Each lncRNA was further individually annotated using a rank-based method, enabling us to associate 5,295 lncRNAs to at least one gene set and to predict their potential cis effects. We validated the lncRNAs predicted to be interferon-stimulated by profiling mouse responses after interferon-α treatment. Altogether, these results provide a broad categorization of potential lncRNA functions and identify subsets of lncRNAs with likely key roles in respiratory virus pathogenesis. These data are fully accessible through the MOuse NOn-Code Lung interactive database (MONOCLdb). PMID:24922324

  14. Ultrasound-mediated interferon {beta} gene transfection inhibits growth of malignant melanoma

    SciTech Connect

    Yamaguchi, Kazuki; Feril, Loreto B.; Tachibana, Katsuro; Takahashi, Akira; Matsuo, Miki; Endo, Hitomi; Harada, Yoshimi; Nakayama, Juichiro

    2011-07-22

    Highlights: {yields} Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-{beta} genes both in vitro and in vivo. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited proliferation of melanoma cells in vitro. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon {beta} (IFN-{beta}) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-{beta} in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-{beta} genes mixed with microbubbles. Successful sonotransfection with IFN-{beta} gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-{beta} gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.

  15. Distinct Roles of Kaposi's Sarcoma-Associated Herpesvirus-Encoded Viral Interferon Regulatory Factors in Inflammatory Response and Cancer

    PubMed Central

    Baresova, Petra; Pitha, Paula M.

    2013-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent associated with Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD). Similar to other herpesviruses, KSHV has two life cycles, latency and lytic replication. In latency, the KSHV genome persists as a circular episome in the nucleus of the host cell and only a few viral genes are expressed. In this review, we focus on oncogenic, antiapoptotic, and immunomodulating properties of KSHV-encoded homologues of cellular interferon regulatory factors (IRFs)—viral IRF1 (vIRF1) to vIRF4—and their possible role in the KSHV-mediated antiviral response, apoptosis, and oncogenicity. PMID:23785197

  16. Success of measles virotherapy in ATL depends on type I interferon secretion and responsiveness

    PubMed Central

    Parrula, Cecilia; Fernandez, Soledad A.; Landes, Kristina; Huey, Devra; Lairmore, Michael; Niewiesk, Stefan

    2014-01-01

    Adult T cell leukemia/lymphoma (ATL) is a highly aggressive CD4+/CD25+ T-cell malignancy caused by human T cell lymphotropic virus type 1 (HTLV-1). Previous studies in the MET-1 cell /NOD/SCID mouse model of ATL demonstrated that MET-1 cells are very susceptible to measles virus (MV) oncolytic therapy. To further evaluate the potential of MV therapy in ATL, the susceptibility of several HTLV-1 transformed CD4+ T cell lines (MT-1, MT-2, MT-4 and C8166-45 ) as well as HTLV-1 negative CD4+ T cell lines (Jurkat and CCRF-CEM) to infection with MV was tested in vitro. All cell lines were permissive to MV infection and subsequent cell death, except MT-1 and CCRF-CEM cells which were susceptible and permissive to MV infection, but resistant to cell death. The resistance to MV-mediated cell death was associated with IFNβ produced by MT-1 and CCRF-CEM cells. Inhibition of IFNβ rendered MT-1 and CCRF-CEM cells susceptible to MV-mediated cell death. Cells susceptible to MV-induced cell death did not produce nor were they responsive to IFNβ. Upon infection with NDV, MT-1 and CCRF-CEM but not the susceptible cell lines up-regulated pSTAT-2. In vivo, treatment of tumors induced by MT-1 cell lines which produce IFNβ demonstrated only small increases in mean survival time, while only two treatments prolonged mean survival time in mice with MET-1 tumors deficient in type I interferon production. These results indicate that type I interferon production is closely linked with the inability of tumor cells to respond to type I interferon. Screening of tumor cells for type I interferon could be a useful strategy to select candidate patients for MV virotherapy. PMID:24911240

  17. Recombinant interferon-α in myelofibrosis reduces bone marrow fibrosis, improves its morphology and is associated with clinical response.

    PubMed

    Pizzi, Marco; Silver, Richard T; Barel, Ariella; Orazi, Attilio

    2015-10-01

    Recombinant interferon-α represents a well-established therapeutic option for the treatment of polycythemia vera and essential thrombocythemia. Recent studies also suggest a role for recombinant interferon-α in the treatment of 'early stage' primary myelofibrosis, but few studies have reported the bone marrow changes after clinically successful interferon therapy. The aim of the present study is to detail the histological responses to recombinant interferon-α in primary myelofibrosis and post-polycythemia vera/post-essential thrombocythemia myelofibrosis and to correlate these with clinical findings. We retrospectively studied 12 patients with primary myelofibrosis or post-polycythemia vera/post-essential thrombocythemia myelofibrosis, who had been treated with recombinant interferon-α. Six patients had received other prior cytoreductive therapies. Bone marrow biopsy was assessed for the following histological parameters: (i) cellularity; (ii) myeloid-to-erythroid ratio; (iii) megakaryocyte tight clusters; (iv) megakaryocyte and naked nuclei density; (v) megakaryocytic atypia; (vi) fibrosis; and (vii) the percentage of blasts. Clinical and laboratory data were included: (i) constitutional symptoms; (ii) splenomegaly, if present; and (iii) complete cell blood count. The clinical response to therapy was evaluated using the International Working Group for Myelofibrosis Research and Treatment/European LeukemiaNet response criteria. The Dynamic International Prognostic Scoring System (DIPSS) score was calculated before and after recombinant interferon-α administration. Successful interferon therapy for myelofibrosis was associated with a significant reduction of marrow fibrosis, cellularity, megakaryocyte density and naked nuclei density. The presence of JAK2(V617F) mutation correlated with improved DIPSS score. JAK2(V617F)-negative cases showed worsening of such score or evolution to acute myeloid leukemia. Cytogenetic analysis documented a normal karyotype in all

  18. Gamma interferon release assay for monitoring of treatment response for active tuberculosis: an explosion in the spaghetti factory.

    PubMed

    Denkinger, Claudia M; Pai, Madhukar; Patel, Meena; Menzies, Dick

    2013-02-01

    Few studies have correlated the results of interferon (gamma interferon) release assays (IGRAs) with known markers of tuberculosis (TB) treatment response. We report the results of serial QuantiFERON-TB gold in-tube assay (QFT) testing on 149 patients with active tuberculosis and correlate the results with smear and culture conversion. We show that QFT results do not offer much value for treatment monitoring of TB disease. PMID:23175268

  19. Interferons and Their Receptors in Birds: A Comparison of Gene Structure, Phylogenetic Analysis, and Cross Modulation

    PubMed Central

    Zhou, Hao; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2014-01-01

    Interferon may be thought of as a key, with the interferon receptor as the signal lock: Crosstalk between them maintains their balance during viral infection. In this review, the protein structure of avian interferon and the interferon receptor are discussed, indicating remarkable similarity between different species. However, the structures of the interferon receptors are more sophisticated than those of the interferons, suggesting that the interferon receptor is a more complicated signal lock system and has considerable diversity in subtypes or structures. Preliminary evolutionary analysis showed that the subunits of the interferon receptor formed a distinct clade, and the orthologs may be derived from the same ancestor. Furthermore, the development of interferons and interferon receptors in birds may be related to an animal’s age and the maintenance of a balanced state. In addition, the equilibrium between interferon and its receptor during pathological and physiological states revealed that the virus and the host influence this equilibrium. Birds could represent an important model for studies on interferon’s antiviral activities and may provide the basis for new antiviral strategies. PMID:25405736

  20. Interferon Response Factors 3 and 7 Protect against Chikungunya Virus Hemorrhagic Fever and Shock

    PubMed Central

    Rudd, Penny A.; Wilson, Jane; Gardner, Joy; Larcher, Thibaut; Babarit, Candice; Le, Thuy T.; Anraku, Itaru; Kumagai, Yutaro; Loo, Yueh-Ming; Gale, Michael; Akira, Shizuo; Khromykh, Alexander A.

    2012-01-01

    Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7−/−) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-α/β) in serum, ∼50- and ∼10-fold increases in levels of IFN-γ and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-α/β receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7−/− mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7−/− mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-α/β induction, with IRF7 being upregulated >100-fold in infected wild-type mice. These studies suggest that inadequate IFN-α/β responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome. PMID:22761364

  1. Interferon response factors 3 and 7 protect against Chikungunya virus hemorrhagic fever and shock.

    PubMed

    Rudd, Penny A; Wilson, Jane; Gardner, Joy; Larcher, Thibaut; Babarit, Candice; Le, Thuy T; Anraku, Itaru; Kumagai, Yutaro; Loo, Yueh-Ming; Gale, Michael; Akira, Shizuo; Khromykh, Alexander A; Suhrbier, Andreas

    2012-09-01

    Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7(-/-)) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-α/β) in serum, ∼50- and ∼10-fold increases in levels of IFN-γ and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-α/β receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7(-/-) mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7(-/-) mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-α/β induction, with IRF7 being upregulated >100-fold in infected wild-type mice. These studies suggest that inadequate IFN-α/β responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome. PMID:22761364

  2. Searching for Interferon-Induced Genes That Inhibit Hepatitis B Virus Replication in Transgenic Mouse Hepatocytes†

    PubMed Central

    Wieland, Stefan F.; Vega, Raquel G.; Müller, Rolf; Evans, Claire F.; Hilbush, Brian; Guidotti, Luca G.; Sutcliffe, J. Gregor; Schultz, Peter G.; Chisari, Francis V.

    2003-01-01

    We have previously shown that alpha/beta interferon (IFN-α/β) and IFN-γ inhibit hepatitis B virus (HBV) replication noncytopathically in the livers of HBV transgenic mice and in hepatocyte cell lines derived from these mice. The present study was designed to identify transcriptionally controlled hepatocellular genes that are tightly associated with the inhibition of HBV replication and that might, therefore, mediate the antiviral effect of these cytokines. Twenty-nine genes were identified, many of which have known or potential antiviral activity. Notably, multiple components of the immunoproteasome and ubiquitin-like proteins were strongly induced by both IFN-α/β and IFN-γ, as were a number of GTP-binding proteins, including GTPases with known antiviral activity, chemokines, signaling molecules, and miscellaneous genes associated with antigen processing, DNA-binding, or cochaperone activity and several expressed sequence tags. The results suggest that one or more members of this relatively small subset of genes may mediate the antiviral effect of IFN-α/β and IFN-γ against HBV. We have already exploited this information by demonstrating that the antiviral activity of IFN-α/β and IFN-γ is proteasome dependent. PMID:12502840

  3. Single Nucleotide Polymorphisms within Interferon Signaling Pathway Genes Are Associated with Colorectal Cancer Susceptibility and Survival

    PubMed Central

    Lu, Shun; Pardini, Barbara; Cheng, Bowang; Naccarati, Alessio; Huhn, Stefanie; Vymetalkova, Veronika; Vodickova, Ludmila; Buchler, Thomas; Hemminki, Kari; Vodicka, Pavel; Försti, Asta

    2014-01-01

    Interferon (IFN) signaling has been suggested to play an important role in colorectal carcinogenesis. Our study aimed to examine potentially functional genetic variants in interferon regulatory factor 3 (IRF3), IRF5, IRF7, type I and type II IFN and their receptor genes with respect to colorectal cancer (CRC) risk and clinical outcome. Altogether 74 single nucleotide polymorphisms (SNPs) were covered by the 34 SNPs genotyped in a hospital-based case-control study of 1327 CRC cases and 758 healthy controls from the Czech Republic. We also analyzed these SNPs in relation to overall survival and event-free survival in a subgroup of 483 patients. Seven SNPs in IFNA1, IFNA13, IFNA21, IFNK, IFNAR1 and IFNGR1 were associated with CRC risk. After multiple testing correction, the associations with the SNPs rs2856968 (IFNAR1) and rs2234711 (IFNGR1) remained formally significant (P = 0.0015 and P<0.0001, respectively). Multivariable survival analyses showed that the SNP rs6475526 (IFNA7/IFNA14) was associated with overall survival of the patients (P = 0.041 and event-free survival among patients without distant metastasis at the time of diagnosis, P = 0.034). The hazard ratios (HRs) for rs6475526 remained statistically significant even after adjustment for age, gender, grade and stage (P = 0.029 and P = 0.036, respectively), suggesting that rs6475526 is an independent prognostic marker for CRC. Our data suggest that genetic variation in the IFN signaling pathway genes may play a role in the etiology and survival of CRC and further studies are warranted. PMID:25350395

  4. Hepatitis C virus RNA codes for proteins and replicates: does it also trigger the interferon response?

    PubMed

    Branch, A D

    2000-01-01

    Hepatitis C virus (HCV) is a positive sense virus with a genomic RNA molecule roughly 9,600 nucleotides in length. The single-stranded genomic RNA has a nontranslated region (NTR) at each end and a long open reading frame (coding region) in between. The 5'NTR and portions of the 3'NTR are the most conserved parts of HCV RNA. These conserved regions contain signals for replication and translation. Much of the 5'NTR is folded into a structure that binds ribosomes. This structure, an internal ribosome entry site, promotes the initiation of protein synthesis and is critical for HCV gene expression. The ribosome binding site may extend into the coding region; its exact boundaries are not known. The open reading frame encodes the HCV polyprotein, which is slightly more than 3,000 amino acids in length. The 3'NTR plays a key role in HCV replication and may also influence the rate of HCV protein synthesis. During replication, the genomic RNA is copied by virally encoded enzymes into a complementary antigenomic RNA, which itself is a template for the synthesis of progeny RNAs. At steady state, genomic strands outnumber antigenomic strands about 10 to 1. HCV RNA replication is thought to take place in the cytoplasm and is an error-prone process. It generates a mixed population of RNA sequences (quasispecies), including mutants that may be more fit than the parental type, less fit, or equally fit (but distinct). Natural selection acts upon the progeny RNAs, causing the population to change and drift. Over time, mutation, selection, and population bottlenecks led to the evolution of varied genotypes. The HCV replication complex is a potential source of double-stranded RNA, a powerful inducer of interferon. Thus, HCV-specific double-stranded RNA may trigger the first steps of innate immunity; however, for unknown reasons, the immune system often fails to clear the infection. The plasticity of the HCV genome and the low level of HCV gene expression may counterbalance any

  5. Interferon-gamma gene polymorphism influences the frequency of a Chlamydia trachomatis cervical infection in young women.

    PubMed

    Eleutério, José; Teles, Rosiane A; Linhares, Iara M; Normand, Neil; Witkin, Steven S

    2015-11-01

    Cervicitis associated with Chlamydia trachomatis is frequent worldwide, but the factors determining susceptibility to infection remain incompletely determined. We evaluated whether a functional single nucleotide polymorphism at position +874 in the gene coding for interferon gamma (rs2430561) influenced the likelihood of having a cervical C. trachomatis infection. This was a cross-sectional study of 142 sexually-active women attending a general gynaecology service on the outskirts of the city of Fortaleza in northeastern Brazil between August 2011 and August 2012. Endocervical swabs were evaluated for C. trachomatis DNA using hybrid capture. DNA from buccal swabs was utilised for detection of the interferon gamma 874 T/A single nucleotide polymorphism by gene amplification, endonuclease digestion and gel electrophoresis. Nineteen women (13.4%) were positive for C. trachomatis in their cervix. Positivity was 21.7% in women with the A,A genotype versus 7.0% in women with one or two T alleles (p = 0.0227). The variant T allele frequency, associated with elevated interferon gamma production, was 36.2% in women who were negative for C. trachomatis as opposed to 18.4% in women who were positive for a cervical infection with this organism (p = 0.0415). Possession of the T allele at position +874 in the gene coding for interferon gamma is associated with a reduced likelihood of a C. trachomatis cervical infection. PMID:25505046

  6. cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells.

    PubMed

    Paijo, Jennifer; Döring, Marius; Spanier, Julia; Grabski, Elena; Nooruzzaman, Mohammed; Schmidt, Tobias; Witte, Gregor; Messerle, Martin; Hornung, Veit; Kaever, Volkhard; Kalinke, Ulrich

    2016-04-01

    Human cytomegalovirus (HCMV) infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS) senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING) and thus induces antiviral type I interferon (IFN-I) responses. We found that plasmacytoid dendritic cells (pDC) as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages. PMID:27058035

  7. cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells

    PubMed Central

    Paijo, Jennifer; Döring, Marius; Spanier, Julia; Grabski, Elena; Nooruzzaman, Mohammed; Schmidt, Tobias; Witte, Gregor; Messerle, Martin; Hornung, Veit; Kaever, Volkhard; Kalinke, Ulrich

    2016-01-01

    Human cytomegalovirus (HCMV) infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS) senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING) and thus induces antiviral type I interferon (IFN-I) responses. We found that plasmacytoid dendritic cells (pDC) as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages. PMID:27058035

  8. Serum interferon-related microRNAs as biomarkers to predict the response to interferon therapy in chronic hepatitis C genotype 4.

    PubMed

    Motawi, Tarek Kamal; Shaker, Olfat Gamil; El-Maraghy, Shohda Assem; Senousy, Mahmoud Ahmed

    2015-01-01

    MicroRNAs are messengers during interferon-virus interplay and are involved in antiviral immunity, however, little is known about interferon-related microRNAs regarding their detection in serum and their potential use as non-invasive diagnostic and prognostic biomarkers in chronic hepatitis C (CHC). To elucidate some of the molecular aspects underlying failure of pegylated interferon-α/ribavirin therapy, we investigated pretreatment expression profiles of seven selected interferon-related microRNAs (miR-146a, miR-34a, miR-130a, miR-19a, miR-192, miR-195, and miR-296) by quantitative RT-PCR custom array technology in serum of Egyptian CHC genotype 4 patients and whether their pretreatment levels would predict patient response to the combination therapy. One hundred and six CHC patients and forty matched healthy controls were included. Patients were divided into sustained virological response (SVR) and non-responder (NR) groups. Serum miR-34a, miR-130a, miR-19a, miR-192, miR-195, and miR-296 were upregulated, whereas serum miR-146a was downregulated in CHC compared to controls. Significant correlations were found between expression levels of studied microRNAs and also with clinical data. Pretreatment levels of miR-34a, miR-130a, and miR-195 were significantly higher, whereas miR-192 and miR-296 levels were significantly lower in SVR than NR patients. miR-19a and miR-146a levels were not significantly different between the two groups. miR-34a was superior to differentiate CHC from controls, whereas miR-296 was superior to discriminate SVR from NR patients by receiver operating characteristic analysis. Multivariate logistic analysis revealed miR-34a and miR-195 as independent predictors for SVR and miR-192 as an independent variable for non-response. In conclusion, pretreatment expression profiles of five interferon-related microRNAs are associated with treatment outcome in CHC. Of these, miR-34a, miR-195, and miR-192 could predict treatment response. The profiling

  9. Serum Interferon-Related MicroRNAs as Biomarkers to Predict the Response to Interferon Therapy in Chronic Hepatitis C Genotype 4

    PubMed Central

    Motawi, Tarek Kamal; Shaker, Olfat Gamil; El-Maraghy, Shohda Assem; Senousy, Mahmoud Ahmed

    2015-01-01

    MicroRNAs are messengers during interferon-virus interplay and are involved in antiviral immunity, however, little is known about interferon-related microRNAs regarding their detection in serum and their potential use as non-invasive diagnostic and prognostic biomarkers in chronic hepatitis C (CHC). To elucidate some of the molecular aspects underlying failure of pegylated interferon-α/ribavirin therapy, we investigated pretreatment expression profiles of seven selected interferon-related microRNAs (miR-146a, miR-34a, miR-130a, miR-19a, miR-192, miR-195, and miR-296) by quantitative RT-PCR custom array technology in serum of Egyptian CHC genotype 4 patients and whether their pretreatment levels would predict patient response to the combination therapy. One hundred and six CHC patients and forty matched healthy controls were included. Patients were divided into sustained virological response (SVR) and non-responder (NR) groups. Serum miR-34a, miR-130a, miR-19a, miR-192, miR-195, and miR-296 were upregulated, whereas serum miR-146a was downregulated in CHC compared to controls. Significant correlations were found between expression levels of studied microRNAs and also with clinical data. Pretreatment levels of miR-34a, miR-130a, and miR-195 were significantly higher, whereas miR-192 and miR-296 levels were significantly lower in SVR than NR patients. miR-19a and miR-146a levels were not significantly different between the two groups. miR-34a was superior to differentiate CHC from controls, whereas miR-296 was superior to discriminate SVR from NR patients by receiver operating characteristic analysis. Multivariate logistic analysis revealed miR-34a and miR-195 as independent predictors for SVR and miR-192 as an independent variable for non-response. In conclusion, pretreatment expression profiles of five interferon-related microRNAs are associated with treatment outcome in CHC. Of these, miR-34a, miR-195, and miR-192 could predict treatment response. The profiling

  10. Antiviral activity and host gene induction by tamarin and marmoset interferon-α and interferon-γ in the GBV-B primary hepatocyte culture model

    PubMed Central

    Chavez, Deborah; Guerra, Bernadette; Lanford, Robert E.

    2009-01-01

    GBV-B induces hepatitis in tamarins and marmosets and is a surrogate model for HCV infections. Here, we cloned and characterized the antiviral activity of tamarin and marmoset interferon (IFN)α and IFNγ. Potent antiviral activity was observed for tamarin and marmoset IFNα in primary hepatocyte cultures infected with GBV-B. The antiviral activity was greater in cultures exposed to IFNα prior to GBV-B infection, suggesting that either GBV-B was capable of inhibition of the antiviral activity of exogenous IFNα or that the preexisting endogenous IFN response to the virus reduced efficacy to exogenous IFNα. IFNγ also exhibited antiviral activity in GBV-B infected hepatocytes. The transcriptional response to IFNα in marmoset hepatocytes was characterized using human genome microarrays. Since the GBV-B hepatocyte culture model possesses a functional innate immune response, it will provide opportunities to explore the nature of the antiviral response to a virus closely related to HCV. PMID:19501869

  11. Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages.

    PubMed

    Tallam, Aravind; Perumal, Thaneer M; Antony, Paul M; Jäger, Christian; Fritz, Joëlle V; Vallar, Laurent; Balling, Rudi; Del Sol, Antonio; Michelucci, Alessandro

    2016-01-01

    Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions. Its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalysing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. To this end, we studied IRG1 expression in human immune cells under different inflammatory stimuli, such as TNFα and IFNγ, in addition to lipopolysaccharides. Under these conditions, as previously shown in mouse macrophages, IRG1/CAD accumulates in mitochondria. Furthermore, using literature information and transcription factor prediction models, we re-constructed raw gene regulatory networks (GRNs) for IRG1 in mouse and human macrophages. We further implemented a contextualization algorithm that relies on genome-wide gene expression data to infer putative cell type-specific gene regulatory interactions in mouse and human macrophages, which allowed us to predict potential transcriptional regulators of IRG1. Among the computationally identified regulators, siRNA-mediated gene silencing of interferon regulatory factor 1 (IRF1) in macrophages significantly decreased the expression of IRG1/CAD at the gene and protein level, which correlated with a reduced production of itaconic acid. Using a synergistic approach of both computational and experimental methods, we here shed more light on the transcriptional machinery of IRG1 expression and could pave the way to therapeutic approaches targeting itaconic acid levels

  12. Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages

    PubMed Central

    Tallam, Aravind; Perumal, Thaneer M.; Antony, Paul M.; Jäger, Christian; Fritz, Joëlle V.; Vallar, Laurent; Balling, Rudi; del Sol, Antonio; Michelucci, Alessandro

    2016-01-01

    Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions. Its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalysing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. To this end, we studied IRG1 expression in human immune cells under different inflammatory stimuli, such as TNFα and IFNγ, in addition to lipopolysaccharides. Under these conditions, as previously shown in mouse macrophages, IRG1/CAD accumulates in mitochondria. Furthermore, using literature information and transcription factor prediction models, we re-constructed raw gene regulatory networks (GRNs) for IRG1 in mouse and human macrophages. We further implemented a contextualization algorithm that relies on genome-wide gene expression data to infer putative cell type-specific gene regulatory interactions in mouse and human macrophages, which allowed us to predict potential transcriptional regulators of IRG1. Among the computationally identified regulators, siRNA-mediated gene silencing of interferon regulatory factor 1 (IRF1) in macrophages significantly decreased the expression of IRG1/CAD at the gene and protein level, which correlated with a reduced production of itaconic acid. Using a synergistic approach of both computational and experimental methods, we here shed more light on the transcriptional machinery of IRG1 expression and could pave the way to therapeutic approaches targeting itaconic acid levels

  13. Transcriptional Activation of Interferon-Stimulated Genes but Not of Cytokine Genes after Primary Infection of Rhesus Macaques with Dengue Virus Type 1▿

    PubMed Central

    Sariol, Carlos A.; Muñoz-Jordán, Jorge L.; Abel, Kristina; Rosado, Lymarie C.; Pantoja, Petraleigh; Giavedoni, Luis; Rodriguez, Idia Vanessa; White, Laura J.; Martínez, Melween; Arana, Teresa; Kraiselburd, Edmundo N.

    2007-01-01

    Macaques are the only animal model used to test dengue virus (DENV) vaccine candidates. Nevertheless, the pathogenesis of DENV in macaques is not well understood. In this work, by using Affymetrix oligonucleotide microarrays, we studied the broad transcriptional modifications and cytokine expression profile after infecting rhesus macaques with DENV serotype 1. Five days after infection, these animals produced a potent, innate antiviral immune response by inducing the transcription of signature genes from the interferon (IFN) pathway with demonstrated antiviral activity, such as myxoprotein, 2′,5′-oligoadenylate synthetase, phospholipid scramblase 1, and viperin. Also, IFN regulatory element 7, IFN-stimulated gene 15, and protein ligases linked to the ISGylation process were up-regulated. Unexpectedly, no up-regulation of IFN-α, -β, or -γ genes was detected. Transcription of the genes of interleukin-10 (IL-10), IL-8, IL-6, and tumor necrosis factor alpha was neither up-regulated nor down-regulated. Results were confirmed by real-time PCR and by multiplex cytokine detection in serum samples. PMID:17428947

  14. Topical Non-Invasive Gene Delivery using Gemini Nanoparticles in Interferon-gamma-deficient Mice

    SciTech Connect

    Badea,I.; Wettig, S.; Verrall, R.; Foldvari, M.

    2007-01-01

    Cutaneous gene therapy, although a promising approach for many dermatologic diseases, has not progressed to the stage of clinical trials, mainly due to the lack of an effective gene delivery system. The main objective of this study was to construct and evaluate gemini nanoparticles as a topical formulation for the interferon gamma (IFN-{gamma}) gene in an IFN-{gamma}-deficient mouse model. Nanoparticles based on the gemini surfactant 16-3-16 (NP16-DNA) and another cationic lipid cholesteryl 3{beta}-(-N-[dimethylamino-ethyl] carbamate) [Dc-chol] (NPDc-DNA) were prepared and characterized. Zetasizer measurement indicated a bimodal distribution of 146 and 468 nm average particle sizes for the NP16-DNA ({zeta}-potential +51 mV) nanoparticles and monomodal distribution of 625 nm ({zeta}-potential +44 mV) for the NPDc-DNA. Circular dichroism studies showed that the gemini surfactant compacted the plasmid more efficiently compared to the Dc-chol. Small-angle X-ray scattering measurements revealed structural polymorphism in the NP16-DNA nanoparticles, with lamellar and Fd3m cubic phases present, while for the NPDc-DNA two lamellar phases could be distinguished. In vivo, both topically applied nanoparticles induced higher gene expression compared to untreated control and naked DNA (means of 0.480 and 0.398 ng/cm{sup 2} vs 0.067 and 0.167 ng/cm{sup 2}). However, treatment with NPDc-DNA caused skin irritation, and skin damage, whereas NP16-DNA showed no skin toxicity. In this study, we demonstrated that topical cutaneous gene delivery using gemini surfactant-based nanoparticles in IFN-{gamma}-deficient mice was safe and may provide increased gene expression in the skin due to structural complexity of NP16 nanoparticles (lamellar-cubic phases).

  15. Steroid receptor coactivator 1 links the steroid and interferon gamma response pathways.

    PubMed

    Tzortzakaki, Eleni; Spilianakis, Charalambos; Zika, Eleni; Kretsovali, Androniki; Papamatheakis, Joseph

    2003-12-01

    We show here that steroid receptor coactivator 1 (SRC-1) is a coactivator of MHC class II genes that stimulates their interferon gamma (IFNgamma) and class II transactivator (CIITA)-mediated expression. SRC-1 interacts physically with the N-terminal activation domain of CIITA through two regions: one central [extending from amino acids (aa) 360-839] that contains the nuclear receptors binding region and one C-terminal (aa 1138-1441) that contains the activation domain 2. Using chromatin immunoprecipitation assays we show that SRC-1 recruitment on the class II promoter is enhanced upon IFNgamma stimulation. Most importantly, SRC-1 relieves the inhibitory action of estrogens on the IFNgamma-mediated induction of class II genes in transient transfection assays. We provide evidence that inhibition by estradiol is due to multiple events such as slightly reduced recruitment of CIITA and SRC-1 and severely inhibited assembly of the preinitiation complex. PMID:12933903

  16. Liver-Specific Alpha 2 Interferon Gene Expression Results in Protection from Induced Hepatitis

    PubMed Central

    Aurisicchio, Luigi; Delmastro, Paola; Salucci, Valentina; Paz, Odalys Gonzalez; Rovere, Patrizia; Ciliberto, Gennaro; La Monica, Nicola; Palombo, Fabio

    2000-01-01

    The current therapy for hepatitis B and C is based on systemic administration of recombinant human alpha interferon (r-hIFN-α). However, systemic delivery of r-hIFN-α is associated with severe side effects, but more importantly, it is effective in only a small percentage of patients. In an effort to maximize IFN-α antiviral efficacy, we have explored the therapeutic potential of murine IFN-α2 (mIFNα2) selectively expressed in the liver. To this end, we have developed a helper-dependent adenovirus vector (HD) containing the mIFN-α2 gene under the control of the liver-specific transthyretin promoter (HD-IFN). Comparison with a first-generation adenovirus carrying the same mIFN-α2 expression cassette indicates that at certain HD-IFN doses, induction of antiviral genes can be achieved in the absence of detectable circulating mIFN-α2. Challenge of injected mice with mouse hepatitis virus type 3 showed that HD-IFN provides high liver protection. Moreover, liver protection was also observed in acute nonviral liver inflammation hepatitis induced by concanavalin A at 1 month postinfection. These results hold promise for the development of a gene therapy treatment for chronic viral hepatitis based on liver-restricted expression of IFN-α2. PMID:10775620

  17. STAT2 Knockout Syrian Hamsters Support Enhanced Replication and Pathogenicity of Human Adenovirus, Revealing an Important Role of Type I Interferon Response in Viral Control.

    PubMed

    Toth, Karoly; Lee, Sang R; Ying, Baoling; Spencer, Jacqueline F; Tollefson, Ann E; Sagartz, John E; Kong, Il-Keun; Wang, Zhongde; Wold, William S M

    2015-08-01

    Human adenoviruses have been studied extensively in cell culture and have been a model for studies in molecular, cellular, and medical biology. However, much less is known about adenovirus replication and pathogenesis in vivo in a permissive host because of the lack of an adequate animal model. Presently, the most frequently used permissive immunocompetent animal model for human adenovirus infection is the Syrian hamster. Species C human adenoviruses replicate in these animals and cause pathology that is similar to that seen with humans. Here, we report findings with a new Syrian hamster strain in which the STAT2 gene was functionally knocked out by site-specific gene targeting. Adenovirus-infected STAT2 knockout hamsters demonstrated an accentuated pathology compared to the wild-type control animals, and the virus load in the organs of STAT2 knockout animals was 100- to 1000-fold higher than that in wild-type hamsters. Notably, the adaptive immune response to adenovirus is not adversely affected in STAT2 knockout hamsters, and surviving hamsters cleared the infection by 7 to 10 days post challenge. We show that the Type I interferon pathway is disrupted in these hamsters, revealing the critical role of interferon-stimulated genes in controlling adenovirus infection. This is the first study to report findings with a genetically modified Syrian hamster infected with a virus. Further, this is the first study to show that the Type I interferon pathway plays a role in inhibiting human adenovirus replication in a permissive animal model. Besides providing an insight into adenovirus infection in humans, our results are also interesting from the perspective of the animal model: STAT2 knockout Syrian hamster may also be an important animal model for studying other viral infections, including Ebola-, hanta-, and dengue viruses, where Type I interferon-mediated innate immunity prevents wild type hamsters from being effectively infected to be used as animal models. PMID

  18. STAT2 Knockout Syrian Hamsters Support Enhanced Replication and Pathogenicity of Human Adenovirus, Revealing an Important Role of Type I Interferon Response in Viral Control

    PubMed Central

    Spencer, Jacqueline F.; Tollefson, Ann E.; Sagartz, John E.; Kong, Il-Keun; Wang, Zhongde; Wold, William S. M.

    2015-01-01

    Human adenoviruses have been studied extensively in cell culture and have been a model for studies in molecular, cellular, and medical biology. However, much less is known about adenovirus replication and pathogenesis in vivo in a permissive host because of the lack of an adequate animal model. Presently, the most frequently used permissive immunocompetent animal model for human adenovirus infection is the Syrian hamster. Species C human adenoviruses replicate in these animals and cause pathology that is similar to that seen with humans. Here, we report findings with a new Syrian hamster strain in which the STAT2 gene was functionally knocked out by site-specific gene targeting. Adenovirus-infected STAT2 knockout hamsters demonstrated an accentuated pathology compared to the wild-type control animals, and the virus load in the organs of STAT2 knockout animals was 100- to 1000-fold higher than that in wild-type hamsters. Notably, the adaptive immune response to adenovirus is not adversely affected in STAT2 knockout hamsters, and surviving hamsters cleared the infection by 7 to 10 days post challenge. We show that the Type I interferon pathway is disrupted in these hamsters, revealing the critical role of interferon-stimulated genes in controlling adenovirus infection. This is the first study to report findings with a genetically modified Syrian hamster infected with a virus. Further, this is the first study to show that the Type I interferon pathway plays a role in inhibiting human adenovirus replication in a permissive animal model. Besides providing an insight into adenovirus infection in humans, our results are also interesting from the perspective of the animal model: STAT2 knockout Syrian hamster may also be an important animal model for studying other viral infections, including Ebola-, hanta-, and dengue viruses, where Type I interferon-mediated innate immunity prevents wild type hamsters from being effectively infected to be used as animal models. PMID

  19. Macrophage Expression of Inflammatory Genes in Response to EMCV Infection

    PubMed Central

    Shaheen, Zachary R.; Corbett, John A.

    2015-01-01

    The expression and production of type 1 interferon is the classic cellular response to virus infection. In addition to this antiviral response, virus infection also stimulates the production of proinflammatory mediators. In this review, the pathways controlling the induction of inflammatory genes and the roles that these inflammatory mediators contribute to host defense against viral pathogens will be discussed. Specific focus will be on the role of the chemokine receptor CCR5, as a signaling receptor controlling the activation of pathways leading to virus-induced inflammatory gene expression. PMID:26295266

  20. Efficient Virus Assembly, but Not Infectivity, Determines the Magnitude of Hepatitis C Virus-Induced Interferon Alpha Responses of Plasmacytoid Dendritic Cells

    PubMed Central

    Grabski, Elena; Wappler, Ilka; Pfaender, Stephanie; Steinmann, Eike; Haid, Sibylle; Dzionek, Andrzej

    2014-01-01

    nonstructural genes of Japanese fulminant hepatitis C virus (JFH1) induced massive type I interferon responses, whereas the original genotype 2a JFH1 strain did not. Our detailed analyses revealed that, not the virus infectivity, but rather, the efficiency of virus assembly and core protein envelopment critically determined the magnitude of interferon responses. To our knowledge, this is the first example of hepatitis C virus-associated genetic variations that determine the magnitude of innate host responses. PMID:25552725

  1. Lymphocytic Choriomeningitis Virus Differentially Affects the Virus-Induced Type I Interferon Response and Mitochondrial Apoptosis Mediated by RIG-I/MAVS

    PubMed Central

    Pythoud, Christelle; Rothenberger, Sylvia; Martínez-Sobrido, Luis; de la Torre, Juan Carlos

    2015-01-01

    ABSTRACT Arenaviruses are important emerging human pathogens maintained by noncytolytic persistent infection in their rodent reservoir hosts. Despite high levels of viral replication, persistently infected carrier hosts show only mildly elevated levels of type I interferon (IFN-I). Accordingly, the arenavirus nucleoprotein (NP) has been identified as a potent IFN-I antagonist capable of blocking activation of interferon regulatory factor 3 (IRF3) via the retinoic acid inducible gene (RIG)-I/mitochondrial antiviral signaling (MAVS) pathway. Another important mechanism of host innate antiviral defense is represented by virus-induced mitochondrial apoptosis via RIG-I/MAVS and IRF3. In the present study, we investigated the ability of the prototypic Old World arenavirus lymphocytic choriomeningitis virus (LCMV) to interfere with RIG-I/MAVS-dependent apoptosis. We found that LCMV does not induce apoptosis at any time during infection. While LCMV efficiently blocked induction of IFN-I via RIG-I/MAVS in response to superinfection with cytopathic RNA viruses, virus-induced mitochondrial apoptosis remained fully active in LCMV-infected cells. Notably, in LCMV-infected cells, RIG-I was dispensable for virus-induced apoptosis via MAVS. Our study reveals that LCMV infection efficiently suppresses induction of IFN-I but does not interfere with the cell's ability to undergo virus-induced mitochondrial apoptosis as a strategy of innate antiviral defense. The RIG-I independence of mitochondrial apoptosis in LCMV-infected cells provides the first evidence that arenaviruses can reshape apoptotic signaling according to their needs. IMPORTANCE Arenaviruses are important emerging human pathogens that are maintained in their rodent hosts by persistent infection. Persistent virus is able to subvert the cellular interferon response, a powerful branch of the innate antiviral defense. Here, we investigated the ability of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) to

  2. Impact of the Type I Interferon Receptor on the Global Gene Expression Program During the Course of Dendritic Cell Maturation Induced by Polyinosinic Polycytidylic Acid.

    PubMed

    Olex, Amy L; Turkett, William H; Brzoza-Lewis, Kristina L; Fetrow, Jacquelyn S; Hiltbold, Elizabeth M

    2016-06-01

    Dendritic cell (DC) maturation involves widespread changes in cellular function and gene expression. The regulatory role of IFNAR in the program of DC maturation remains incompletely defined. Thus, the time evolution impact of IFNAR on this process was evaluated. Changes in DC phenotype, function, and gene expression induced by poly I:C were measured in wild-type and IFNAR(-/-) DC at 9 time points over 24 h. Temporal gene expression profiles were filtered on consistency and response magnitude across replicates. The number of genes whose expression was altered by poly I:C treatment was greatly reduced in IFNAR(-/-) DC, including the majority of the downregulated gene expression program previously observed in wild-type (WT) DC. Furthermore, the number of genes upregulated was almost equal between WT and IFNAR(-/-) DC, yet the identities of those genes were distinct. Integrating these data with protein-protein interaction data revealed several novel subnetworks active during maturation, including nucleotide synthesis, metabolism, and repair. A subnetwork associated with redox activity was uniquely identified in IFNAR(-/-) DC. Overall, temporal gene expression and network analyses identified many genes regulated by the type I interferon response and revealed previously unidentified aspects of the DC maturation process. PMID:27035059

  3. Involvement of GATA transcription factors in the regulation of endogenous bovine interferon-tau gene transcription.

    PubMed

    Bai, Hanako; Sakurai, Toshihiro; Kim, Min-Su; Muroi, Yoshikage; Ideta, Atsushi; Aoyagi, Yoshito; Nakajima, Hiromi; Takahashi, Masashi; Nagaoka, Kentaro; Imakawa, Kazuhiko

    2009-12-01

    Expression of interferon-tau (IFNT), necessary for pregnancy establishment in ruminant ungulates, is regulated in a temporal and spatial manner. However, molecular mechanisms by which IFNT gene transcription is regulated in this manner have not been firmly established. In this study, DNA microarray/RT-PCR analysis between bovine trophoblast CT-1 and Mardin-Darby bovine kidney (MDBK) cells was initially performed, finding that transcription factors GATA2, GATA3, and GATA6 mRNAs were specific to CT-1 cells. These mRNAs were also found in Days 17, 20, and 22 (Day 0 = day of estrus) bovine conceptuses. In examining other bovine cell lines, ovary cumulus granulosa (oCG) and ear fibroblast (EF) cells, GATA2 and GATA3, but not GATA6, were found specific to the bovine trophoblast cells. In transient transfection analyses using the upstream region (-631 to +59 bp) of bovine IFNT gene (bIFNT, IFN-tau-c1), over-expression of GATA2/GATA3 did not affect the transcription of bIFNT-reporter construct in human choriocarcinoma JEG3 cells. Transfection of GATA2, GATA3, ETS2, and/or CDX2, however, was effective in the up-regulation of the bIFNT construct transfected into bovine oCG and EF cells. One Point mutation studies revealed that among six potential GATA binding sites located on the upstream region of the bIFNT gene, the one next to ETS2 site exhibited reduced luciferase activity. In CT-1 cells, endogenous bIFNT gene transcription was up-regulated by over-expression of GATA2 or GATA3, but down-regulated by siRNA specific to GATA2 mRNA. These data suggest that GATA2/3 is involved in trophoblast-specific regulation of bIFNT gene transcription. PMID:19598245

  4. Interferon-regulatory factor 1 is an immediate-early gene under transcriptional regulation by prolactin in Nb2 T cells.

    PubMed Central

    Yu-Lee, L Y; Hrachovy, J A; Stevens, A M; Schwarz, L A

    1990-01-01

    The pituitary peptide hormone prolactin (Prl) is a potent inducer of Nb2 T lymphoma cell proliferation. To analyze the early genetic response to the mitogenic signals of Prl, a cDNA library was constructed from Nb2 T cells stimulated for 4 h with Prl and the protein synthesis inhibitor cycloheximide. Of 26 distinct clones isolated by differential screening, one clone, designated c25, exhibited extremely rapid but transient kinetics of induction by Prl and superinduction by Prl plus cycloheximide. Run-on transcription analysis indicated that c25 gene transcription was induced greater than 20-fold within 30 to 60 min of Prl stimulation. Surprisingly, DNA sequence analysis of c25 cDNA revealed that this Prl-inducible early-response gene is the rat homolog of the mouse transcription factor interferon-regulatory factor 1 (IRF-1), sharing 91% coding sequence similarity with mouse IRF-1. At the protein level, rat IRF-1 shares 97% and 92% homology with mouse IRF-1 and human IRF-1, respectively, suggesting that this molecule has been functionally conserved throughout evolution. Our studies show that the gene for IRF-1 is an immediate-early gene in Prl-stimulated T cells, which suggests that IRF-1 is a multifunctional molecule. In addition to its role in regulating growth-inhibitory interferon genes, IRF-1 may, therefore, also play a stimulatory role in cell proliferation. The gene for IRF-1 is one of the earliest genes known to be transcriptionally regulated by Prl. Images PMID:2342469

  5. Regulation of Interferon-Stimulated Gene BST2 by a lncRNA Transcribed from a Shared Bidirectional Promoter

    PubMed Central

    Kambara, Hiroto; Gunawardane, Lalith; Zebrowski, Elizabeth; Kostadinova, Lenche; Jobava, Raul; Krokowski, Dawid; Hatzoglou, Maria; Anthony, Donald D.; Valadkhan, Saba

    2015-01-01

    Recent genome-wide studies have revealed the presence of thousands of long non-protein-coding RNAs (lncRNAs), some of which may play critical roles in the cell. We have previously shown that a large number of lncRNAs show differential expression in response to interferon (IFN)α stimulation in primary human cells. Here, we show that a subset of IFN-induced lncRNAs are positioned in proximity of protein-coding IFN-stimulated genes (ISGs). The majority of gene pairs originated from bidirectional promoters and showed positively correlated expression. We focused our analysis on a pair consisting of the known protein-coding ISG, BST2, and an un-studied putative lncRNA originating from the promoter region of BST2 in a divergent orientation. We showed that this transcript was a multi-exonic, polyadenylated long RNA that lacked protein-coding capacity. BST2 and the lncRNA were both induced in response to IFNα in diverse cell types. The induction of both genes was mediated through the JAK–STAT pathway, suggesting that IFN-stimulated response elements within the shared promoter activated the transcription of both genes. RNAi-mediated knock-down of the lncRNA resulted in down-regulation of BST2, and we could show that this down-regulation occurred at the level of transcription. Forced overexpression of this lncRNA, which we named BST2 IFN-Stimulated Positive Regulator (BISPR), resulted in up-regulation of BST2, indicating that the regulation of expression of BST2 by BISPR is mediated through interactions involving BISPR RNA itself, rather than the impact of its transcription from an adjacent locus. Importantly, upon IFN stimulation, transcriptional activation of BISPR preceded the induction of BST2, suggesting that expression of BISPR facilitated the initiation of transcription in its paired protein-coding gene. The lncRNA-mediated transcriptional regulation described in this study may help govern the expression of additional protein-coding RNAs involved in IFN response

  6. Engineered mammalian RNAi can elicit antiviral protection that negates the requirement for the interferon response

    PubMed Central

    Bouhaddou, Mehdi; Sachs, David; tenOever, Benjamin Robert

    2015-01-01

    SUMMARY While the intrinsic antiviral cell defenses of many kingdoms utilize pathogen-specific small RNAs, the antiviral response of chordates is primarily protein-based and not uniquely tailored to the incoming microbe. In an effort to explain this evolutionary bifurcation, we determined whether antiviral RNA interference (RNAi) was sufficient to replace the protein-based type I interferon (IFN-I) system of mammals. To this end, we recreated an RNAi-like response in mammals and determined its effectiveness to combat influenza A virus in vivo in the presence and absence of the canonical IFN-I system. Mammalian antiviral RNAi, elicited by either host- or virus-derived small RNAs, effectively attenuated virus and prevented disease independently of the innate immune response. These data find that chordates could have utilized RNAi as their primary antiviral cell defense and suggest that the IFN-I system emerged as a result of natural selection imposed by ancient pathogens. PMID:26549455

  7. Cellular immune responses in multiple sclerosis patients treated with interferon-beta

    PubMed Central

    Bustamante, M. F.; Rio, J.; Castro, Z.; Sánchez, A.; Montalban, X.; Comabella, M.

    2013-01-01

    Summary We investigated cellular immune responses at baseline in peripheral blood mononuclear cells (PBMC) of patients with multiple sclerosis (MS) treated with interferon (IFN)-β and classified into responders and non-responders according to clinical response criteria. Levels for IFN-γ, interleukin (IL)-17A, IL-17F, IL-10 and IL-4 were determined in activated PBMC of 10 responders, 10 non-responders and 10 healthy controls by cytometric bead arrays. Cytokine levels in cell culture supernatants were similar between responders and non-responders, and comparable to those obtained in healthy controls. These findings do not support differential cellular immune responses in PBMC at baseline between IFN-β responders and non-responders. PMID:23379429

  8. MBL2 Genetic Variants in HCV Infection Susceptibility, Spontaneous Viral Clearance and Pegylated Interferon Plus Ribavirin Treatment Response.

    PubMed

    Zupin, L; Polesello, V; Alberi, G; Moratelli, G; Crocè, S L; Masutti, F; Pozzato, G; Crovella, S; Segat, L

    2016-07-01

    Hepatitis C is disease that damages the liver, and it is caused by the hepatitis C virus (HCV). The pathology became chronic in about 80% of the cases due to virus persistence in the host organism. The standard of care consists of pegylated interferon plus ribavirin; however, the treatment response is very variable and different host/viral factors may concur in the disease outcome. The mannose-binding protein C (MBL) is a component of the innate immune system, able to recognize HCV and consecutively activating the immune response. MBL is encoded by MBL2 gene, and polymorphisms, two in the promoter region (H/L and X/Y) and three in exon 1 (at codon 52, 54 and 57), have been described as functionally influencing protein expression. In this work, 203 Italian HCV patients and 61 healthy controls were enrolled and genotyped for the five MBL2 polymorphisms mentioned above to investigate their role in HCV infection susceptibility, spontaneous viral clearance and treatment response. MBL2 polymorphisms were not associated with HCV infection susceptibility and with spontaneous viral clearance, while MBL2 O allele, O/O genotype, HYO haplotype and DP combined genotype (all correlated with low or deficient MBL expression) were associated with sustained virological response. Moreover, a meta-analysis to assess the role of MBL2 polymorphisms in HCV infection susceptibility was also performed: YA haplotype could be associated with protection towards HCV infection. PMID:27136459

  9. ADAP2 Is an Interferon Stimulated Gene That Restricts RNA Virus Entry.

    PubMed

    Shu, Qian; Lennemann, Nicholas J; Sarkar, Saumendra N; Sadovsky, Yoel; Coyne, Carolyn B

    2015-09-01

    Interferon stimulated genes (ISGs) target viruses at various stages of their infectious life cycles, including at the earliest stage of viral entry. Here we identify ArfGAP with dual pleckstrin homology (PH) domains 2 (ADAP2) as a gene upregulated by type I IFN treatment in a STAT1-dependent manner. ADAP2 functions as a GTPase-activating protein (GAP) for Arf6 and binds to phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and PI(3,4)P2. We show that overexpression of ADAP2 suppresses dengue virus (DENV) and vesicular stomatitis virus (VSV) infection in an Arf6 GAP activity-dependent manner, while exerting no effect on coxsackievirus B (CVB) or Sendai virus (SeV) replication. We further show that ADAP2 expression induces macropinocytosis and that ADAP2 strongly associates with actin-enriched membrane ruffles and with Rab8a- and LAMP1-, but not EEA1- or Rab7-, positive vesicles. Utilizing two techniques--light-sensitive neutral red (NR)-containing DENV and fluorescence assays for virus internalization--we show that ADAP2 primarily restricts DENV infection at the stage of virion entry and/or intracellular trafficking and that incoming DENV and VSV particles associate with ADAP2 during their entry. Taken together, this study identifies ADAP2 as an ISG that exerts antiviral effects against RNA viruses by altering Arf6-mediated trafficking to disrupt viral entry. PMID:26372645

  10. Retinyl Palmitate Supplementation Modulates T-bet and Interferon Gamma Gene Expression in Multiple Sclerosis Patients.

    PubMed

    Mohammadzadeh Honarvar, Niyaz; Harirchian, Mohammad Hossein; Abdolahi, Mina; Abedi, Elahe; Bitarafan, Sama; Koohdani, Fariba; Siassi, Feridoun; Sahraian, Mohammad Ali; Chahardoli, Reza; Zareei, Mahnaz; Salehi, Eisa; Geranmehr, Maziyar; Saboor-Yaraghi, Ali Akbar

    2016-07-01

    Vitamin A derivatives such as retinoic acid may improve the impaired balance of CD4+ T cells in autoimmune and inflammatory diseases. This study is a double-blind randomized trial to evaluate the effect of vitamin A (as form of retinyl palmitate) supplementation on multiple sclerosis (MS) patients. Thirty-nine patients were enrolled and randomly assigned to two groups. Both groups were followed for 6 months. The experimental group received 25,000 IU of retinyl palmitate daily, while the control group received a placebo. Before and after the study, the expression of interferon gamma (IFN-γ) and T-bet genes was evaluated in peripheral blood mononuclear cells of patients by RT-PCR. The results showed that after 6 months of supplementation, expression of IFN-γ and T-bet was significantly decreased. These data suggest that retinyl palmitate supplementation can modulate the impaired balance of Th1 and Th2 cells and vitamin A products that may be involved in the therapeutic mechanism of vitamin A in MS patients. This study provides information regarding the decreased gene expression of IFN-γ and T-bet in MS by retinyl palmitate supplementation. PMID:27122150

  11. Association of IFNL3 rs12979860 and rs8099917 with Biochemical Predictors of Interferon Responsiveness in Chronic Hepatitis C Virus Infection

    PubMed Central

    Fischer, Janett; Böhm, Stephan; Müller, Tobias; Witt, Heiko; Sarrazin, Christoph; Susser, Simone; Migaud, Pascal; Schott, Eckart; Stewart, Graeme; Brodzinski, Annika; Fülöp, Balazs; van Bömmel, Florian; George, Jacob; Berg, Thomas

    2013-01-01

    Background & Aims Genetic variations near the interferon lambda 3 gene (IFNL3, IL28B) are the most powerful predictors for sustained virologic response (SVR) in patients with chronic hepatitis C virus (HCV) infection, compared to other biochemical or histological baseline parameters. We evaluated whether the interplay of both IFNL3 polymorphisms rs12979860 and rs8099917 together with non-genetic clinical factors contributes to the predictive role of these genetic variants. Methods The cohort comprised 1,402 patients of European descent with chronic HCV type 1 infection. 1,298 patients received interferon-based antiviral therapy, and 719 (55%) achieved SVR. The IFNL3 polymorphisms were genotyped by polymerase chain reaction and melting curve analysis. Results A significant correlation was found between the IFNL3 polymorphisms and biochemical as well as virologic predictors of treatment outcome such as ALT, GGT, cholesterol, and HCV RNA levels. In multivariate regression analysis, IFLN3 SNPs, HCV RNA levels, and the GGT/ALT ratio were independent predictors of SVR. Dependent on the GGT/ALT ratio and on the HCV RNA concentration, significant variations in the likelihood for achieving SVR were observed in both, carriers of the responder as well as non-responder alleles. Conclusions Our data support a clear association between IFNL3 genotypes and baseline parameters known to impact interferon responsiveness. Improved treatment outcome prediction was achieved when these predictors were considered in combination with the IFNL3 genotype. PMID:24204859

  12. Genomic Analysis and mRNA Expression of Equine Type I Interferon Genes

    PubMed Central

    Detournay, Olivier; Morrison, David A.; Wagner, Bettina; Zarnegar, Behdad

    2013-01-01

    This study aimed at identifying all of the type I interferon (IFN) genes of the horse and at monitoring their expression in equine cells on in vitro induction. We identified 32 putative type I IFN loci on horse chromosome 23 and an unplaced genomic scaffold. A phylogentic analysis characterized these into 8 different type I IFN classes, that is, putative functional genes for 6 IFN-α, 4 IFN-β, 8 IFN-ω (plus 4 pseudogenes), 3 IFN-δ (plus 1 pseudogene), 1 IFN-κ and 1 IFN-ɛ, plus 1 IFN-ν pseudogene, and 3 loci belonging to what has previously been called IFN-αω. Our analyses indicate that the IFN-αω genes are quite distinct from both IFN-α and IFN-ω, and we refer to this type I IFN as IFN-μ. Results from cell cultures showed that leukocytes readily expressed IFN-α, IFN-β, IFN-δ, IFN-μ, and IFN-ω mRNA on induction with, for example, live virus; while fibroblasts only expressed IFN-β mRNA on stimulation. IFN-κ or IFN-ɛ expression was not consistently induced in these cell cultures. Thus, the equine type I IFN family comprised 8 classes, 7 of which had putative functional genes, and mRNA expression of 5 was induced in vitro. Moreover, a relatively low number of IFN-α subtypes was found in the horse compared with other eutherian mammals. PMID:23772953

  13. Molecular cloning and expression analysis of interferon stimulated gene 15 (ISG15) in turbot, Scophthalmus maximus.

    PubMed

    Lin, Jing-Yun; Hu, Guo-Bin; Liu, Da-Hai; Li, Song; Liu, Qiu-Ming; Zhang, Shi-Cui

    2015-08-01

    The interferon stimulated gene 15 (ISG15) is strongly induced in many cell types by double-stranded RNA (polyinosinic: polycytidylic acid, poly I:C) and viral infection. In this study, we described the nucleotide, mRNA tissue distribution and regulation of an ISG15 gene from turbot, Scophthalmus maximus (SmISG15). SmISG15 gene is 862 bp in length, composed of two exons and one intron, and encodes 158 amino acids. The deduced protein exhibits the highest homology (44.7-71.2% identity) with ISG15s from other fishes and possesses two conserved tandem ubiquitin-like (UBL) domains and a C-terminal RLRGG conjugating motif known to be important for the functions of ISG15s in vertebrates. Phylogenetic analysis grouped SmISG15 into fish ISG15. SmISG15 mRNA was constitutively expressed in all tissues examined, with higher levels observed in immune organs. Gene expression analysis was performed for SmISG15 in the spleen, head kidney, gills and muscle of turbots challenged with poly I:C or turbot reddish body iridovirus (TRBIV) over a 7-day time course. The result showed that SmISG15 was upregulated by both stimuli in all four tissues, with induction by poly I:C apparently stronger and initiated more quickly. A two-wave induced expression of SmISG15 was seen in the spleen, head kidney and gills, suggesting an induction of SmISG15 either by IFN-dependent or -independent pathway. These results provide insights into the roles of fish ISG15 in antiviral immunity. PMID:26095010

  14. Highly Pathogenic New World and Old World Human Arenaviruses Induce Distinct Interferon Responses in Human Cells

    PubMed Central

    Huang, Cheng; Kolokoltsova, Olga A.; Yun, Nadezhda E.; Seregin, Alexey V.; Ronca, Shannon; Koma, Takaaki

    2015-01-01

    ABSTRACT The arenavirus family includes several important pathogens that cause severe and sometimes fatal diseases in humans. The highly pathogenic Old World (OW) arenavirus Lassa fever virus (LASV) is the causative agent of Lassa fever (LF) disease in humans. LASV infections in severe cases are generally immunosuppressive without stimulating interferon (IFN) induction, a proinflammatory response, or T cell activation. However, the host innate immune responses to highly pathogenic New World (NW) arenaviruses are not well understood. We have previously shown that the highly pathogenic NW arenavirus, Junin virus (JUNV), induced an IFN response in human A549 cells. Here, we report that Machupo virus (MACV), another highly pathogenic NW arenavirus, also induces an IFN response. Importantly, both pathogenic NW arenaviruses, in contrast to the OW highly pathogenic arenavirus LASV, readily elicited an IFN response in human primary dendritic cells and A549 cells. Coinfection experiments revealed that LASV could potently inhibit MACV-activated IFN responses even at 6 h after MACV infection, while the replication levels of MACV and LASV were not affected by virus coinfection. Our results clearly demonstrated that although all viruses studied herein are highly pathogenic to humans, the host IFN responses toward infections with the NW arenaviruses JUNV and MACV are quite different from responses to infections with the OW arenavirus LASV, a discovery that needs to be further investigated in relevant animal models. This finding might help us better understand various interplays between the host immune system and highly pathogenic arenaviruses as well as distinct mechanisms underlying viral pathogenesis. IMPORTANCE Infections of humans with the highly pathogenic OW LASV are accompanied by potent suppression of interferon or proinflammatory cytokine production. In contrast, infections with the highly pathogenic NW arenavirus JUNV are associated with high levels of IFNs and

  15. The signalling pathways of interleukin-6 and gamma interferon converge by the activation of different transcription factors which bind to common responsive DNA elements.

    PubMed Central

    Yuan, J; Wegenka, U M; Lütticken, C; Buschmann, J; Decker, T; Schindler, C; Heinrich, P C; Horn, F

    1994-01-01

    Interleukin-6 (IL-6) and gamma interferon (IFN-gamma) induce a partially overlapping set of genes, including the genes for interferon regulatory factor 1 (IRF-1), intercellular adhesion molecule 1 (ICAM-1), and the acute-phase protein alpha 2-macroglobulin. We report here that the rat alpha 2-macroglobulin promoter is activated by IFN-gamma in human hepatoma (HepG2) cells and that the IFN-gamma response element maps to the same site previously defined as the acute-phase response element (APRE), which binds the IL-6-activated transcription factor APRF (acute-phase response factor). As was reported for fibroblasts, the IFN-gamma-regulated transcription factor GAF is phosphorylated at tyrosine after IFN-gamma treatment of HepG2 cells. IFN-gamma posttranslationally activates a protein which specifically binds to the alpha 2-macroglobulin APRE. This protein is shown to be identical or closely related to GAF. Although APRF and GAF are shown to represent different proteins, their binding sequence specificities are very similar. APRF and GAF bind equally well to the APRE sequences of various acute-phase protein genes as well as to the IFN-gamma response elements of the IRF-1, ICAM-1, and other IFN-gamma-inducible genes. Transient transfection analysis revealed that the IFN-gamma response elements of the IRF-1 and ICAM-1 promoters are able to confer responsiveness to both IFN-gamma and IL-6 onto a heterologous promoter. Therefore, APRF and GAF are likely to be involved in the transcriptional induction of these immediate-early genes by IL-6 and IFN-gamma, respectively. Taken together, these results demonstrate that two functionally distinct hormones, IL-6 and IFN-gamma, act through common regulatory elements to which different transcription factors sharing almost the same sequence specificity bind. Images PMID:7509445

  16. ELF4 is critical for induction of type I interferon and the host antiviral response

    PubMed Central

    You, Fuping; Wang, Penghua; Yang, Long; Yang, Guang; Zhao, Yang O; Qian, Feng; Walker, Wendy; Sutton, Richard; Montgomery, Ruth; Lin, Rongtuan; Iwasaki, Akiko; Fikrig, Erol

    2014-01-01

    Induction of type I interferon is a central event of innate immunity, essential for host defense. Here we report that the transcription factor ELF4 is induced by type I interferon and upregulates interferon expression in a feed-forward loop. ELF4 deficiency leads to reduced interferon production, resulting in enhanced susceptibility to West Nile virus encephalitis in mice. After viral infection, ELF4 is recruited by STING, interacts with and is activated by the MAVS-TBK1 complex, and translocates into the nucleus to bind interferon promoters. Cooperative binding with ELF4 increases the binding affinity of interferon regulatory factors IRF3 and IRF7, which is mediated by EICE elements. Thus, in addition to identifying a regulator of innate immune signaling, we uncovered a role for EICE elements in interferon transactivation. PMID:24185615

  17. Cytotoxic effects induced by interferongene lipofection through ROS generation and mitochondrial membrane potential disruption in feline mammary carcinoma cells.

    PubMed

    Villaverde, Marcela Solange; Targovnik, Alexandra Marisa; Miranda, María Victoria; Finocchiaro, Liliana María Elena; Glikin, Gerardo Claudio

    2016-08-01

    Progress in comparative oncology promises advances in clinical cancer treatments for both companion animals and humans. In this context, feline mammary carcinoma (FMC) cells have been proposed as a suitable model to study human breast cancer. Based on our previous data about the advantages of using type I interferon gene therapy over the respective recombinant DNA derived protein, the present work explored the effects of feline interferongene (fIFNω) transfer on FMC cells. Three different cell variants derived from a single spontaneous highly aggressive FMC tumor were successfully established and characterized. Lipofection of the fIFNω gene displayed a significant cytotoxic effect on the three cell variants. The extent of the response was proportional to ROS generation, mitochondrial membrane potential disruption and calcium uptake. Moreover, a lower sensitivity to the treatment correlated with a higher malignant phenotype. Our results suggest that fIFNω lipofection could offer an alternative approach in veterinary oncology with equal or superior outcome and with less adverse effects than recombinant fIFNω therapy. PMID:27236354

  18. Hepatitis B virus genome replication triggers toll-like receptor 3-dependent interferon responses in the absence of hepatitis B surface antigen.

    PubMed

    Real, Catherine Isabell; Lu, Mengji; Liu, Jia; Huang, Xuan; Trippler, Martin; Hossbach, Markus; Deckert, Jochen; Jahn-Hofmann, Kerstin; Ickenstein, Ludger Markus; John, Matthias Johannes; Gibbert, Kathrin; Dittmer, Ulf; Vornlocher, Hans-Peter; Schirmbeck, Reinhold; Gerken, Guido; Schlaak, Joerg Friedrich; Broering, Ruth

    2016-01-01

    The hepatitis B virus (HBV) has been described as stealth virus subverting immune responses initially upon infection. Impaired toll-like receptor signaling by the HBV surface antigen (HBsAg) attenuates immune responses to facilitate chronic infection. This implies that HBV replication may trigger host innate immune responses in the absence of HBsAg. Here we tested this hypothesis, using highly replicative transgenic mouse models. An HBV replication-dependent expression of antiviral genes was exclusively induced in HBsAg-deficient mice. These interferon responses attributed to toll-like receptor 3 (TLR3)-activated Kupffer and liver sinusoidal endothelial cells and further controlled the HBV genome replication. However, activation of TLR3 with exogenous ligands indicated additional HBs-independent immune evasion events. Our data demonstrate that in the absence of HBsAg, hepatic HBV replication leads to Tlr3-dependent interferon responses in non-parenchymal liver cells. We hypothesize that HBsAg is a major HBV-mediated evasion mechanism controlling endogenous antiviral responses in the liver. Eradication of HBsAg as a therapeutic goal might facilitate the induction of endogenous antiviral immune responses in patients chronically infected with HBV. PMID:27121087

  19. Hepatitis B virus genome replication triggers toll-like receptor 3-dependent interferon responses in the absence of hepatitis B surface antigen

    PubMed Central

    Real, Catherine Isabell; Lu, Mengji; Liu, Jia; Huang, Xuan; Trippler, Martin; Hossbach, Markus; Deckert, Jochen; Jahn-Hofmann, Kerstin; Ickenstein, Ludger Markus; John, Matthias Johannes; Gibbert, Kathrin; Dittmer, Ulf; Vornlocher, Hans-Peter; Schirmbeck, Reinhold; Gerken, Guido; Schlaak, Joerg Friedrich; Broering, Ruth

    2016-01-01

    The hepatitis B virus (HBV) has been described as stealth virus subverting immune responses initially upon infection. Impaired toll-like receptor signaling by the HBV surface antigen (HBsAg) attenuates immune responses to facilitate chronic infection. This implies that HBV replication may trigger host innate immune responses in the absence of HBsAg. Here we tested this hypothesis, using highly replicative transgenic mouse models. An HBV replication-dependent expression of antiviral genes was exclusively induced in HBsAg-deficient mice. These interferon responses attributed to toll-like receptor 3 (TLR3)-activated Kupffer and liver sinusoidal endothelial cells and further controlled the HBV genome replication. However, activation of TLR3 with exogenous ligands indicated additional HBs-independent immune evasion events. Our data demonstrate that in the absence of HBsAg, hepatic HBV replication leads to Tlr3-dependent interferon responses in non-parenchymal liver cells. We hypothesize that HBsAg is a major HBV-mediated evasion mechanism controlling endogenous antiviral responses in the liver. Eradication of HBsAg as a therapeutic goal might facilitate the induction of endogenous antiviral immune responses in patients chronically infected with HBV. PMID:27121087

  20. The Role of MicroRNAs in Response to Interferon Treatment of Chronic Hepatitis C patients

    PubMed Central

    El-Ahwany, Eman; Nagy, Faten; Zoheiry, Mona; ELGhannam, Maged; Shemis, Mohamed; Aboul-Ezz, Mohamed; Zada, Suher

    2016-01-01

    Introduction Treatment of HCV using a combination of pegylated interferon (PEG-IFN) and ribavirin fails in about 40% of the patients with HCV genotype 4 infections, and it is physically and economically demanding. Thus, it is highly important to identify factors that can help to predict the likelihood that a patient will respond to this treatment. Methods In this study, five miRNAs, i.e., miRNA-122, miRNA-199, miRNA-192, miRNA-30, and miRNA-128, were selected according to previous studies that demonstrated their noticeable functions in viral replication, indicating that they potentially could be used by host cells to control viral infections. The five miRNAs were measured using real-time, reverse transcription-polymerase chain reactions. The data were analyzed using the t-test and chi-squared test. Results We found that the expression level of miRNA-122 was significantly increased in the responders’ group (p < 0.01) over that in the non-responders’ groups before and after treatment; both increased significantly (p < 0.01) compared with the normal control group. Conclusion miR-122 might be a useful predictor for virological responses to treatment with PEG-interferon plus ribavirin therapy in patients with HCV. PMID:27054010

  1. Induction of a Unique Isoform of the NCOA7 Oxidation Resistance Gene by Interferon β-1b

    PubMed Central

    Yu, Lijian; Croze, Ed; Yamaguchi, Ken D.; Tran, Tiffany; Reder, Anthony T.; Litvak, Vladimir

    2015-01-01

    We demonstrate that interferon (IFN)-β-1b induces an alternative-start transcript containing the C-terminal TLDc domain of nuclear receptor coactivator protein 7 (NCOA7), a member of the OXR family of oxidation resistance proteins. IFN-β-1b induces NCOA7-AS (alternative start) expression in peripheral blood mononuclear cells (PBMCs) obtained from healthy individuals and multiple sclerosis patients and human fetal brain cells, astrocytoma, neuroblastoma, and fibrosarcoma cells. NCOA7-AS is a previously undocumented IFN-β-inducible gene that contains only the last 5 exons of full-length NCOA7 plus a unique first exon (exon 10a) that is not found in longer forms of NCOA7. This exon encodes a domain closely related to an important class of bacterial aldo-keto oxido-reductase proteins that play a critical role in regulating redox activity. We demonstrate that NCOA7-AS is induced by IFN and LPS, but not by oxidative stress and exhibits, independently, oxidation resistance activity. We further demonstrate that induction of NCOA7-AS by IFN is dependent on IFN-receptor activation, the Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathway, and a canonical IFN-stimulated response element regulatory sequence upstream of exon 10a. We describe a new role for IFN-βs involving a mechanism of action that leads to an increase in resistance to inflammation-mediated oxidative stress. PMID:25330068

  2. Induction of a unique isoform of the NCOA7 oxidation resistance gene by interferon β-1b.

    PubMed

    Yu, Lijian; Croze, Ed; Yamaguchi, Ken D; Tran, Tiffany; Reder, Anthony T; Litvak, Vladimir; Volkert, Michael R

    2015-03-01

    We demonstrate that interferon (IFN)-β-1b induces an alternative-start transcript containing the C-terminal TLDc domain of nuclear receptor coactivator protein 7 (NCOA7), a member of the OXR family of oxidation resistance proteins. IFN-β-1b induces NCOA7-AS (alternative start) expression in peripheral blood mononuclear cells (PBMCs) obtained from healthy individuals and multiple sclerosis patients and human fetal brain cells, astrocytoma, neuroblastoma, and fibrosarcoma cells. NCOA7-AS is a previously undocumented IFN-β-inducible gene that contains only the last 5 exons of full-length NCOA7 plus a unique first exon (exon 10a) that is not found in longer forms of NCOA7. This exon encodes a domain closely related to an important class of bacterial aldo-keto oxido-reductase proteins that play a critical role in regulating redox activity. We demonstrate that NCOA7-AS is induced by IFN and LPS, but not by oxidative stress and exhibits, independently, oxidation resistance activity. We further demonstrate that induction of NCOA7-AS by IFN is dependent on IFN-receptor activation, the Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathway, and a canonical IFN-stimulated response element regulatory sequence upstream of exon 10a. We describe a new role for IFN-βs involving a mechanism of action that leads to an increase in resistance to inflammation-mediated oxidative stress. PMID:25330068

  3. Salmonella Suppresses the TRIF-Dependent Type I Interferon Response in Macrophages

    PubMed Central

    Owen, Katherine A.; Anderson, C. J.

    2016-01-01

    ABSTRACT Salmonella enterica is an intracellular pathogen that causes diseases ranging from gastroenteritis to typhoid fever. Salmonella bacteria trigger an autophagic response in host cells upon infection but have evolved mechanisms for suppressing this response, thereby enhancing intracellular survival. We recently reported that S. enterica serovar Typhimurium actively recruits the host tyrosine kinase focal adhesion kinase (FAK) to the surface of the Salmonella-containing vacuole (SCV) (K. A. Owen et al., PLoS Pathog 10:e1004159, 2014). FAK then suppresses autophagy through activation of the Akt/mTORC1 signaling pathway. In FAK−/− macrophages, bacteria are captured in autophagosomes and intracellular survival is attenuated. Here we show that the cell-autonomous bacterial suppression of autophagy also suppresses the broader innate immune response by inhibiting production of beta interferon (IFN-β). Induction of bacterial autophagy (xenophagy), but not autophagy alone, triggers IFN-β production through a pathway involving the adapter TRIF and endosomal Toll-like receptor 3 (TLR3) and TLR4. Selective FAK knockout in macrophages resulted in rapid bacterial clearance from mucosal tissues after oral infection. Clearance correlated with increased IFN-β production by intestinal macrophages and with IFN-β-dependent induction of IFN-γ by intestinal NK cells. Blockade of either IFN-β or IFN-γ increased host susceptibility to infection, whereas experimental induction of IFN-β was protective. Thus, bacterial suppression of autophagy not only enhances cell-autonomous survival but also suppresses more-systemic innate immune responses by limiting type I and type II interferons. PMID:26884434

  4. [HIV-1 infection up-regulating expression of interferon-stimulated gene 15 in cell lines].

    PubMed

    Wu, Huan-mei; Sun, Jun; Meng, Zhe-feng; Zhang, Xiao-yan; Xu, Jian-qing

    2013-09-01

    To investigate whether HIV-1 infection affects expression of interferon-stimulated gene 15 (ISG15) and determine the antiviral effect of ISG15 in vitro, ISG15 expression at transcription and protein level and supernatant p24 of HIV-1 was detected in various HIV-1 infected or transfected cell lines, respec tively. HIV-1 molecular clone pNL4-3 was used to transfect 293T, TZM-bl and HeLa cells while HIV-1 pseudo-typed virus was used to infect Jurkat, MT-1 and THP-1 cells. After twenty-four hours post infection or transfection, cells were harvested for extraction of total RNAs and subsequently used in real time PCR for quantification of ISG15 transcriptional expression. After forty-eight hours post infection or transfection, cells were harvested for extraction of total proteins to detect ISG15 protein expression. A significant up-regulation of ISG15 at transcription level was observed in HIV-1 infected or transfected cell lines, particulaly in THP-1 and TZM-bl cells. Up-regulation of ISG15 protein was observed only in TZM-bl cell. Cotransfection of ISG15 and HIV-1 indicated that ISG15 inhibited production of HIV-1 progeny virus in a dose and time depend manner in 293T cell but not TZM-bl cell. These results revealed upregulating ISG15 expression in transcriptional level and potential antagonistic mechanism against ISG15 by HIV-1 infection, simultanelusly. PMID:24386835

  5. Intrahepatic Transcriptional Signature Associated with Response to Interferon-α Treatment in the Woodchuck Model of Chronic Hepatitis B

    PubMed Central

    Fletcher, Simon P.; Chin, Daniel J.; Gruenbaum, Lore; Bitter, Hans; Rasmussen, Erik; Ravindran, Palanikumar; Swinney, David C.; Birzele, Fabian; Schmucki, Roland; Lorenz, Stefan H.; Kopetzki, Erhard; Carter, Jade; Triyatni, Miriam; Thampi, Linta M.; Yang, Junming; AlDeghaither, Dalal; Murredu, Marta G.; Cote, Paul; Menne, Stephan

    2015-01-01

    Recombinant interferon-alpha (IFN-α) is an approved therapy for chronic hepatitis B (CHB), but the molecular basis of treatment response remains to be determined. The woodchuck model of chronic hepatitis B virus (HBV) infection displays many characteristics of human disease and has been extensively used to evaluate antiviral therapeutics. In this study, woodchucks with chronic woodchuck hepatitis virus (WHV) infection were treated with recombinant woodchuck IFN-α (wIFN-α) or placebo (n = 12/group) for 15 weeks. Treatment with wIFN-α strongly reduced viral markers in the serum and liver in a subset of animals, with viral rebound typically being observed following cessation of treatment. To define the intrahepatic cellular and molecular characteristics of the antiviral response to wIFN-α, we characterized the transcriptional profiles of liver biopsies taken from animals (n = 8–12/group) at various times during the study. Unexpectedly, this revealed that the antiviral response to treatment did not correlate with intrahepatic induction of the majority of IFN-stimulated genes (ISGs) by wIFN-α. Instead, treatment response was associated with the induction of an NK/T cell signature in the liver, as well as an intrahepatic IFN-γ transcriptional response and elevation of liver injury biomarkers. Collectively, these data suggest that NK/T cell cytolytic and non-cytolytic mechanisms mediate the antiviral response to wIFN-α treatment. In summary, by studying recombinant IFN-α in a fully immunocompetent animal model of CHB, we determined that the immunomodulatory effects, but not the direct antiviral activity, of this pleiotropic cytokine are most closely correlated with treatment response. This has important implications for the rational design of new therapeutics for the treatment of CHB. PMID:26352406

  6. Intrahepatic Transcriptional Signature Associated with Response to Interferon-α Treatment in the Woodchuck Model of Chronic Hepatitis B.

    PubMed

    Fletcher, Simon P; Chin, Daniel J; Gruenbaum, Lore; Bitter, Hans; Rasmussen, Erik; Ravindran, Palanikumar; Swinney, David C; Birzele, Fabian; Schmucki, Roland; Lorenz, Stefan H; Kopetzki, Erhard; Carter, Jade; Triyatni, Miriam; Thampi, Linta M; Yang, Junming; AlDeghaither, Dalal; Murreddu, Marta G; Murredu, Marta G; Cote, Paul; Menne, Stephan

    2015-09-01

    Recombinant interferon-alpha (IFN-α) is an approved therapy for chronic hepatitis B (CHB), but the molecular basis of treatment response remains to be determined. The woodchuck model of chronic hepatitis B virus (HBV) infection displays many characteristics of human disease and has been extensively used to evaluate antiviral therapeutics. In this study, woodchucks with chronic woodchuck hepatitis virus (WHV) infection were treated with recombinant woodchuck IFN-α (wIFN-α) or placebo (n = 12/group) for 15 weeks. Treatment with wIFN-α strongly reduced viral markers in the serum and liver in a subset of animals, with viral rebound typically being observed following cessation of treatment. To define the intrahepatic cellular and molecular characteristics of the antiviral response to wIFN-α, we characterized the transcriptional profiles of liver biopsies taken from animals (n = 8-12/group) at various times during the study. Unexpectedly, this revealed that the antiviral response to treatment did not correlate with intrahepatic induction of the majority of IFN-stimulated genes (ISGs) by wIFN-α. Instead, treatment response was associated with the induction of an NK/T cell signature in the liver, as well as an intrahepatic IFN-γ transcriptional response and elevation of liver injury biomarkers. Collectively, these data suggest that NK/T cell cytolytic and non-cytolytic mechanisms mediate the antiviral response to wIFN-α treatment. In summary, by studying recombinant IFN-α in a fully immunocompetent animal model of CHB, we determined that the immunomodulatory effects, but not the direct antiviral activity, of this pleiotropic cytokine are most closely correlated with treatment response. This has important implications for the rational design of new therapeutics for the treatment of CHB. PMID:26352406

  7. HLA-C and KIR combined genotype as new response marker for HBeAg-positive chronic hepatitis B patients treated with interferon-based combination therapy.

    PubMed

    Stelma, F; Jansen, L; Sinnige, M J; van Dort, K A; Takkenberg, R B; Janssen, H L A; Reesink, H W; Kootstra, N A

    2016-08-01

    Current treatment for chronic hepatitis B infection (CHB) consists of interferon-based therapy. However, for unknown reasons, a large proportion of patients with CHB do not respond to this treatment. Hence, there is a pressing need to establish response markers to select patients who will benefit from therapy and to spare potential nonresponders from unnecessary side effects of antiviral therapy. Here, we assessed whether HLA-C and KIR genotypes were associated with treatment outcome for CHB. Twelve SNPs in or near the HLA-C gene were genotyped in 86 CHB patients (41 HBeAg positive; 45 HBeAg negative) treated with peginterferon alfa-2a + adefovir. Genotyping of killer immunoglobin-like receptors (KIRs) was performed by SSP-PCR. One SNP in HLA-C (rs2308557) was significantly associated with combined response in HBeAg-positive CHB patients (P = 0.003). This SNP is linked to the HLA-C group C1 or C2 classification, which controls KIR binding. The combination of KIR2DL1 with its ligand HLA-C2 was observed significantly more often in HBeAg-positive patients with a combined response (13/14) than in nonresponders (11/27, P = 0.001). Patients with the KIR2DL1/C2 genotype had significantly higher baseline ALT levels (136 vs 50 U/L, P = 0.002) than patients without this combination. Furthermore, KIR2DL1-C2 predicted response independent of HBV genotype and ALT at baseline. HLA-C and KIR genotype is strongly associated with response in HBeAg-positive CHB patients treated with interferon-based therapy. In combination with other known response markers, HLA-C/KIR genotype could enable the selection of patients more likely to respond to interferon-based therapy. PMID:26945896

  8. Cytokine changes during interferon-beta therapy in multiple sclerosis: correlations with interferon dose and MRI response.

    PubMed

    Graber, Jerome J; Ford, David; Zhan, Min; Francis, Gordon; Panitch, Hillel; Dhib-Jalbut, Suhayl

    2007-04-01

    We investigated serum (IL-10 and IL-12p70) and cellular cytokine levels (IL-10, IL-12p40, IL-12p70, IFN-gamma) in stimulated PBMC over 24 weeks in 15 relapsing-remitting multiple sclerosis (MS) patients randomized to receive once-weekly (qw) IFN-beta-1a 30 microg intramuscularly (IM) (n=8) or three-times-weekly (tiw) IFN-beta-1a 44 microg subcutaneously (SC) (n=7). Overall, IFN-beta treatment increased cellular IL-10 (p<0.01) levels and the ratios of cellular IL-10/IL-12p40 (p<0.01) and IL-10/IL-12p70 (p<0.02) while cellular IFN-gamma levels were reduced (p<0.01). Serum IL-10 levels were decreased in non-responders to therapy based on MRI-defined criteria (p<0.01) but did not change in responders over the course of treatment. In addition, non-responders demonstrated a decrease in serum IL-10/IL-12p70 ratio (p=0.031) and a decrease in cellular IL-12p70 (p<0.02). A decrease in cellular IFN-gamma was observed in responders (p=0.013). This is the first study that compares cytokine changes between the two IFN-beta regimes and demonstrates that serum IL-10 levels decrease in those patients who continue to have active MRI lesions while on interferon-beta therapy. PMID:17328965

  9. Gene therapy of multiple sclerosis using interferon β-secreting human bone marrow mesenchymal stem cells.

    PubMed

    Ryu, Chung Heon; Park, Kwang Ywel; Hou, Yun; Jeong, Chang Hyun; Kim, Seong Muk; Jeun, Sin-Soo

    2013-01-01

    Interferon-beta (IFN- β ), a well-established standard treatment for multiple sclerosis (MS), has proved to exhibit clinical efficacy. In this study, we first evaluated the therapeutic effects for MS using human bone marrow-derived mesenchymal stem cells (hBM-MSCs) as delivery vehicles with lesion-targeting capability and IFN- β as therapeutic gene. We also engineered hBM-MSCs to secret IFN- β (MSCs-IFN β ) via adenoviral transduction and confirmed the secretory capacity of MSCs-IFN β by an ELISA assay. MSCs-IFN β -treated mice showed inhibition of experimental autoimmune encephalomyelitis (EAE) onset, and the maximum and average score for all animals in each group was significantly lower in the MSCs-IFN β -treated EAE mice when compared with the MSCs-GFP-treated EAE mice. Inflammatory infiltration and demyelination in the lumbar spinal cord also significantly decreased in the MSCs-IFN β -treated EAE mice compared to PBS- or MSCs-GFP-treated EAE mice. Moreover, MSCs-IFN β treatment enhanced the immunomodulatory effects, which suppressed proinflammatory cytokines (IFN-γ and TNF-α) and conversely increased anti-inflammatory cytokines (IL-4 and IL-10). Importantly, injected MSCs-IFN β migrated into inflamed CNS and significantly reduced further injury of blood-brain barrier (BBB) permeability in EAE mice. Thus, our results provide the rationale for designing novel experimental protocols to enhance the therapeutic effects for MS using hBM-MSCs as an effective gene vehicle to deliver the therapeutic cytokines. PMID:23710456

  10. Adenovirus-mediated delivery of interferongene inhibits the growth of nasopharyngeal carcinoma

    PubMed Central

    2012-01-01

    Background Interferon-γ (IFN-γ) is regarded as a potent antitumor agent, but its clinical application is limited by its short half-life and significant side effects. In this paper, we tried to develop IFN-γ gene therapy by a replication defective adenovirus encoding the human IFN-γ (Ad-IFNγ), and evaluate the antitumoral effects of Ad-IFNγ on nasopharyngeal carcinoma (NPC) cell lines in vitro and in xenografts model. Methods The mRNA levels of human IFN-γ in Ad-IFNγ-infected NPC cells were detected by reverse transcription-polymerase chain reaction (RT-PCR), and IFN-γ protein concentrations were measured by enzyme-linked immunosorbent assay (ELISA) in the culture supernatants of NPC cells and tumor tissues and bloods of nude mice treated with Ad-IFNγ. The effects of Ad-IFNγ on NPC cell proliferation was determined using MTT assay, cell cycle distribution was determined by flow cytometry analysis for DNA content, and cells apoptosis were analyzed by Annexin V-FITC/7-AAD binding assay and hoechst 33342/PI double staining. The anti-tumor effects and toxicity of Ad-IFNγ were evaluated in BALB/c nude mice carrying NPC xenografts. Results The results demonstrated that Ad-IFNγ efficiently expressed human IFN-γ protein in NPC cell lines in vitro and in vivo. Ad-IFNγ infection resulted in antiproliferative effects on NPC cells by inducing G1 phase arrest and cell apoptosis. Intratumoral administration of Ad-IFNγ significantly inhibited the growth of CNE-2 and C666-1 cell xenografts in nude mice, while no significant toxicity was observed. Conclusions These findings indicate IFN-γ gene therapy mediated by replication defective adenoviral vector is likely a promising approach in the treatment of nasopharyngeal carcinoma. PMID:23272637