Science.gov

Sample records for interleukin-12 p40 homodimer

  1. IL-12p40 Homodimer Ameliorates Experimental Autoimmune Arthritis

    PubMed Central

    Lee, Seon-Yeong; Jung, Young Ok; Kim, Doo-Jin; Kang, Chang-Min; Moon, Young-Mee; Heo, Yu-Jung; Oh, Hye-Jwa; Park, Seong-Jeong; Yang, Se-Hwan; Kwok, Seung Ki; Ju, Ji-Hyeon; Park, Sung-Hwan; Sung, Young Chul

    2015-01-01

    IL-23 is the key cytokine that induces the expansion of Th17 cells. It is composed of p19 and p40 subunits of IL-12. The p40 subunit binds competitively to the receptor of IL-23 and blocks its activity. Our aim was to assess the preventive and therapeutic effect of the IL-12p40 homodimer (p40)2 subunit in autoimmune arthritis animal models. In the current study, using IL-1R antagonist–knockout mice and a collagen-induced arthritis model, we investigated the suppressive effect of (p40)2 on inflammatory arthritis. We demonstrated that the recombinant adenovirus-expressing mouse (p40)2 model prevented the development of arthritis when given before the onset of arthritis. It also decreased the arthritis index and joint erosions in the mouse model if transferred after arthritis was established. (p40)2 inhibited the production of inflammatory cytokines and Ag-specific T cell proliferation. It also induced CD4+CD25+Foxp3 regulatory T (Treg) cells in vitro and in vivo, whereas the generation of retinoic acid receptor–related organ receptor γt and Th17 cells was suppressed. The induction of Treg cells and the suppression of Th17 cells were mediated via activated STAT5 and suppressed STAT3. Our data suggest that (p40)2 suppressed inflammatory arthritis successfully. This could be a useful therapeutic approach in autoimmune arthritis to regulate the Th17/Treg balance and IL-23 signaling. PMID:26324771

  2. IL-12p40 Homodimer Ameliorates Experimental Autoimmune Arthritis.

    PubMed

    Lee, Seon-Yeong; Jung, Young Ok; Kim, Doo-Jin; Kang, Chang-Min; Moon, Young-Mee; Heo, Yu-Jung; Oh, Hye-Jwa; Park, Seong-Jeong; Yang, Se-Hwan; Kwok, Seung Ki; Ju, Ji-Hyeon; Park, Sung-Hwan; Sung, Young Chul; Kim, Ho-Youn; Cho, Mi-La

    2015-10-01

    IL-23 is the key cytokine that induces the expansion of Th17 cells. It is composed of p19 and p40 subunits of IL-12. The p40 subunit binds competitively to the receptor of IL-23 and blocks its activity. Our aim was to assess the preventive and therapeutic effect of the IL-12p40 homodimer (p40)2 subunit in autoimmune arthritis animal models. In the current study, using IL-1R antagonist-knockout mice and a collagen-induced arthritis model, we investigated the suppressive effect of (p40)2 on inflammatory arthritis. We demonstrated that the recombinant adenovirus-expressing mouse (p40)2 model prevented the development of arthritis when given before the onset of arthritis. It also decreased the arthritis index and joint erosions in the mouse model if transferred after arthritis was established. (p40)2 inhibited the production of inflammatory cytokines and Ag-specific T cell proliferation. It also induced CD4(+)CD25(+)Foxp3 regulatory T (Treg) cells in vitro and in vivo, whereas the generation of retinoic acid receptor-related organ receptor γt and Th17 cells was suppressed. The induction of Treg cells and the suppression of Th17 cells were mediated via activated STAT5 and suppressed STAT3. Our data suggest that (p40)2 suppressed inflammatory arthritis successfully. This could be a useful therapeutic approach in autoimmune arthritis to regulate the Th17/Treg balance and IL-23 signaling. PMID:26324771

  3. Azithromycin suppresses interleukin-12p40 expression in lipopolysaccharide and interferon-γ stimulated macrophages

    PubMed Central

    Yamauchi, Keiko; Shibata, Yoko; Kimura, Tomomi; Abe, Shuichi; Inoue, Sumito; Osaka, Daisuke; Sato, Michiko; Igarashi, Akira; Kubota, Isao

    2009-01-01

    Azithromycin (AZM), a 15-member macrolide antibiotic, possesses anti-inflammatory activity. Macrophages are important in innate and acquired immunity, and produce pro-inflammatory cytokines such as interleukin (IL)-12, which are composed of subunit p40 and p35. The key function of IL-12 is the induction and maintenance of T-helper-1 responses, which is associated with the pathogenesis of chronic inflammatory diseases. We investigated the effect of azithromycin on IL-12p40 production in macrophages after lipopolysaccharide (LPS)/interferon (IFN)-γ stimulation. RAW264.7 macrophage cell line was pre-treated with vehicle or AZM, followed by the stimulation with LPS/IFN-γ. We measured IL-12 production by RT-PCR and ELISA. IL-12 transcriptional regulation was assessed by electrophoretic mobility shift assay and reporter assay. Phosphorylation of activator protein (AP)-1 and interferon consensus sequence binding protein (ICSBP) was assessed by immunoprecipitation using phosphotyrosine antibody, and immunoblotting using specific antibodies against JunB and ICSBP. AZM reduced the induction of IL-12p40 by LPS/IFN-γ in a dose dependent manner. AZM inhibited the binding of AP-1, nuclear factor of activated T cells (NFAT), and ICSBP, to the DNA binding site in the IL-12p40 promoter. AZM also reduced LPS/IFN-γ-induced IL-12p40 promoter activity. Phosphorylation of JunB and ICSBP was inhibited by azithromycin-treatment in stimulated cells. In conclusion, AZM reduced IL-12p40 transcriptional activity by inhibiting the binding of AP-1, NFAT, and ICSBP to the promoter site. This may represent an important mechanism for regulating the anti-inflammatory effects of AZM in macrophages. PMID:19893639

  4. Inflammation and Elevation of Interleukin-12p40 in Patients with Schizophrenia.

    PubMed

    Bedrossian, Nora; Haidar, Mariam; Fares, Jawad; Kobeissy, Firas H; Fares, Youssef

    2016-01-01

    Schizophrenia is a serious mental illness with chronic symptoms and significant impairment in psychosocial functioning, which suggests that it likely has neurodegenerative characteristics. Inflammatory markers such as pro-inflammatory cytokines are well-known etiological contributors for psychiatric disorders, including schizophrenia. Although, the role of inflammation in schizophrenia is becoming evident, the number of studies in this area is relatively scarce, especially in Lebanon, and increased procedural thoroughness is needed. Cytokines play a key role in the activation of the immune system and strongly influence neurotransmission. Previous investigation of plasma levels showed dysregulation of interleukin (IL)-12. However, genotypical variations of this interleukin have not been investigated for patients with schizophrenia yet. Thus, in this paper, we aimed to compute and assess IL-12p40 levels in the sera of individuals with schizophrenia from different provinces in Lebanon and compare it to controls. Healthy subjects comprised 60 individuals with a male/female (M/F) ratio of 31/29, whereas patients with schizophrenia consisted of 63 subjects with an M/F ratio of 30/33. The mean age for healthy controls was 30 years, whereas that for patients with schizophrenia was 35 years. A standardized enzyme-linked immunosorbent assay (ELISA) technique was used to measure the concentration of IL-12p40 in all collected sera (n = 123). The mean IL-12p40 levels in patients with schizophrenia were significantly higher than in healthy controls (p = 0.002). Healthy females had a significantly higher concentration of IL-12p40 than healthy males (p = 0.009). Female patients with schizophrenia had significantly higher concentrations of IL-12p40 than their male counterparts (p < 0.001), healthy females (p = 0.018), and healthy males (p < 0.001), respectively. Male patients with schizophrenia had significantly higher concentrations of IL-12p40 than healthy males (p = 0.023). The

  5. Inflammation and Elevation of Interleukin-12p40 in Patients with Schizophrenia

    PubMed Central

    Bedrossian, Nora; Haidar, Mariam; Fares, Jawad; Kobeissy, Firas H.; Fares, Youssef

    2016-01-01

    Schizophrenia is a serious mental illness with chronic symptoms and significant impairment in psychosocial functioning, which suggests that it likely has neurodegenerative characteristics. Inflammatory markers such as pro-inflammatory cytokines are well-known etiological contributors for psychiatric disorders, including schizophrenia. Although, the role of inflammation in schizophrenia is becoming evident, the number of studies in this area is relatively scarce, especially in Lebanon, and increased procedural thoroughness is needed. Cytokines play a key role in the activation of the immune system and strongly influence neurotransmission. Previous investigation of plasma levels showed dysregulation of interleukin (IL)-12. However, genotypical variations of this interleukin have not been investigated for patients with schizophrenia yet. Thus, in this paper, we aimed to compute and assess IL-12p40 levels in the sera of individuals with schizophrenia from different provinces in Lebanon and compare it to controls. Healthy subjects comprised 60 individuals with a male/female (M/F) ratio of 31/29, whereas patients with schizophrenia consisted of 63 subjects with an M/F ratio of 30/33. The mean age for healthy controls was 30 years, whereas that for patients with schizophrenia was 35 years. A standardized enzyme-linked immunosorbent assay (ELISA) technique was used to measure the concentration of IL-12p40 in all collected sera (n = 123). The mean IL-12p40 levels in patients with schizophrenia were significantly higher than in healthy controls (p = 0.002). Healthy females had a significantly higher concentration of IL-12p40 than healthy males (p = 0.009). Female patients with schizophrenia had significantly higher concentrations of IL-12p40 than their male counterparts (p < 0.001), healthy females (p = 0.018), and healthy males (p < 0.001), respectively. Male patients with schizophrenia had significantly higher concentrations of IL-12p40 than healthy males (p = 0.023). The

  6. Essential Role of Interleukin-12/23p40 in the Development of Graft-versus-Host Disease in Mice.

    PubMed

    Wu, Yongxia; Bastian, David; Schutt, Steven; Nguyen, Hung; Fu, Jianing; Heinrichs, Jessica; Xia, Changqing; Yu, Xue-Zhong

    2015-07-01

    Graft-versus-host disease (GVHD), in both its acute (aGVHD) and chronic (cGVHD) forms, remains a major obstacle impeding successful allogeneic hematopoietic stem cell transplantation (allo-HSCT). T cells, in particular pathogenic T helper (Th) 1 and Th17 subsets, are a driving force for the induction of GVHD. IL-12 and IL-23 cytokines share a common p40 subunit and play a critical role in driving Th1 differentiation and in stabilizing the Th17 phenotype, respectively. In our current study, we hypothesized that p40 is an essential cytokine in the development of GVHD. By using p40-deficient mice, we found that both donor- and host-derived p40 contribute to the development of aGVHD. Neutralization of p40 with an anti-p40 mAb inhibited Th1- and Th17-polarization in vitro. Furthermore, anti-p40 treatment reduced aGVHD severity while preserving the graft-versus-leukemia (GVL) activity. Alleviation of aGVHD was associated with an increase of Th2 differentiation and a decrease of Th1 and Th17 effector T cells in the GVHD target organs. In addition, anti-p40 treatment attenuated the severity of sclerodermatous cGVHD. These results provide a strong rationale that blockade of p40 may represent a promising therapeutic strategy in preventing and treating aGVHD and cGVHD while sparing the GVL effect after allo-HSCT. PMID:25846718

  7. The Structure of Interleukin-23 Reveals in the Molecular Basis of P40 Subunit Sharing With Interleukin-12

    SciTech Connect

    Lupardus, P.J.; Garcia, K.C.

    2009-05-19

    Interleukin-23 is a recently identified member of the IL-12 family of heterodimeric cytokines that modulate subpopulations of T helper cells, and both IL-12 and IL-23 are attractive targets for therapy of autoimmune diseases. IL-23 is a binary complex of a four-helix bundle cytokine (p19) and a soluble class I cytokine receptor p40. IL-12 and IL-23 share p40 as an {alpha}-receptor subunit, yet show only 15% sequence homology between their four-helix cytokines p19 and p35, respectively, and signal through different combinations of shared receptors. In order to elucidate the structural basis of p40 sharing, we have determined a 2.3{angstrom} crystal structure of IL-23 for comparison to the previously determined structure of IL-12. The docking mode of p19 to p40 is altered compared to p35, deviating by a 'tilt' and 'roll' that results in an altered footprint of p40 on the A and D helices of the respective cytokines. Binding of p19 to p40 is mediated primarily by an Arginine residue on helix D of p19 that forms an extensive charge and hydrogen-bonding network with residues at the base of the pocket on p40. This 'Arginine pocket' is lined with an inner shell of hydrophobic interactions that are ringed by an outer shell of polar interactions. Comparative analysis indicates that the IL-23 and IL-12 complexes 'mimic' the network of interactions constituting the central Arginine pocket despite p19 and p35 having limited sequence homology. The majority of the structural epitopes in the two complexes are composed of unique p19 and p35 pair-wise contacts with common residues on p40. Thus, while the critical hotspot is maintained in the two complexes, the majority of the interfaces are structurally distinct and, therefore, provide a basis for the therapeutic targeting of IL-12 versus IL-23 heterodimer formation despite their use of a common receptor subunit.

  8. Differential expression of interleukin-12 p35 and p40 subunits in response to Aeromonas hydrophila and Aquareovirus infection in grass carp, Ctenopharyngodon idella.

    PubMed

    Pandit, N P; Shen, Y B; Xu, X Y; Yu, H Y; Wang, W J; Wang, R Q; Xuan, Y F; Li, J L

    2015-01-01

    The grass carp (Ctenopharyngodon idella) aquaculture industry in Asia is prone to bacterial and viral hemorrhagic diseases. Effective adjuvants for vaccine formulation are the need of the hour for control of these diseases and long-term sustainability of grass carp farming. In this study, the involvement of interleukin-12 (IL-12) from grass carp (gcIL‑12) in anti-bacterial and anti-viral immune responses was demonstrated via expression profiles of gcIL-12 subunits in immune tissues of the fish, following infection by Aeromonas hydrophila and Aquareovirus. Additionally, cDNA of the gcIL-12 subunits, p35 and p40 was cloned and characterized. We found that most of the structurally and functionally important features of vertebrate orthologues were conserved in gcIL-12 subunits, p35 and p40, with some features specific to grass carp. High levels of gcIL-12 p35 expression in the brain and gills suggest that IL-12 plays an important role in neural and immune systems. High expression levels in the heart, blood, and immune-related tissues suggest an important role in circulation and the immune system as well. Infections by both, A. hydrophila and Aquareovirus stimulated the mRNA expression of gcIL-12 subunits, p35 and p40 in most immune tissues. Significant upregulation or downregulation of gcIL-12 subunits, p35 and p40 by bacterial and viral infection confirms their potential role in anti-bacterial and anti-viral immune responses in fish. PMID:25730056

  9. Interferon Consensus Sequence Binding Protein–deficient Mice Display Impaired Resistance to Intracellular Infection Due to a Primary Defect in Interleukin 12 p40 Induction

    PubMed Central

    Scharton-Kersten, Tanya; Contursi, Cristina; Masumi, Atsuko; Sher, Alan; Ozato, Keiko

    1997-01-01

    Mice lacking the transcription factor interferon consensus sequence binding protein (ICSBP), a member of the interferon regulatory factor family of transcription proteins, were infected with the intracellular protozoan, Toxoplasma gondii. ICSBP-deficient mice exhibited unchecked parasite replication in vivo and rapidly succumbed within 14 d after inoculation with an avirulent Toxoplasma strain. In contrast, few intracellular parasites were observed in wild-type littermates and these animals survived for at least 60 d after infection. Analysis of cytokine synthesis in vitro and in vivo revealed a major deficiency in the expression of both interferon (IFN)-γ and interleukin (IL)-12 p40 in the T. gondii exposed ICSBP−/− animals. In related experiments, macrophages from uninfected ICSBP−/− mice were shown to display a selective impairment in the mRNA expression of IL-12 p40 but not IL-1α, IL-1β, IL-1Ra, IL-6, IL-10, or TNF-α in response to live parasites, parasite antigen, lipopolysaccharide, or Staphylococcus aureus. This selective defect in IL-12 p40 production was observed regardless of whether the macrophages had been primed with IFN-γ. We hypothesize that the impaired synthesis of IL-12 p40 in ICSBP−/− animals is the primary lesion responsible for the loss in resistance to T. gondii because IFN-γ–induced parasite killing was unimpaired in vitro and, more importantly, administration of exogenous IL-12 in vivo significantly prolonged survival of the infected mice. Together these findings implicate ICSBP as a major transcription factor which directly or indirectly regulates IL-12 p40 gene activation and, as a consequence, IFN-γ–dependent host resistance. PMID:9348310

  10. The Glycogen Synthase Kinase 3α and β Isoforms Differentially Regulates Interleukin-12p40 Expression in Endothelial Cells Stimulated with Peptidoglycan from Staphylococcus aureus

    PubMed Central

    Huante-Mendoza, Alejandro; Bravo-Patiño, Alejandro; Valdez-Alarcón, Juan J.; Finlay, B. Brett; Baizabal-Aguirre, Víctor M.

    2015-01-01

    Glycogen synthase kinase 3 (GSK3) is a constitutively active regulatory enzyme that is important in cancer, diabetes, and cardiovascular, neurodegenerative, and psychiatric diseases. While GSK3α is usually important in neurodegenerative and psychiatric diseases GSK3β is fundamental in the inflammatory response caused by bacterial components. Peptidoglycan (PGN), one of the most abundant cell-wall structures of Gram-positive bacteria, is an important inducer of inflammation. To evaluate whether inhibition of GSK3α and GSK3β activity in bovine endothelial cells (BEC) regulates the expression of the pro-inflammatory cytokine IL-12p40, we treated BEC with SDS-purified PGN from Staphylococcus aureus. We found that PGN triggered a TLR2/PI3K/Akt-dependent phosphorylation of GSK3α at Ser21, GSK3β at Ser9, and NF-κB p65 subunit (p65) at Ser536, and the phosphorylation of GSK3α was consistently higher than that of GSK3β. The expression of IL-12p40 was inhibited in BEC stimulated with PGN and pre-treated with a specific neutralizing anti-TLR2 antibody that targets the extracellular domain of TLR2 or by the addition of Akt-i IV (an Akt inhibitor). Inhibition of GSK3α and GSK3β with LiCl or SB216763 induced an increase in IL-12p40 mRNA and protein. The effect of each isoform on IL-12p40 expression was evaluated by siRNA-gene expression silencing of GSK3α and GSK3β. GSK3α gene silencing resulted in a marked increase in IL-12p40 mRNA and protein while GSK3β gene silencing had the opposite effect on IL-12p40 expression. These results indicate that the TLR2/PI3K/Akt-dependent inhibition of GSK3α activity also plays an important role in the inflammatory response caused by stimulation of BEC with PGN from S. aureus. PMID:26200352

  11. Interleukin-12 gene-expression of macrophages is regulated by nitric oxide.

    PubMed

    Rothe, H; Hartmann, B; Geerlings, P; Kolb, H

    1996-07-01

    Interleukin-12 is a heterodimeric cytokine, mainly produced by macrophages. In our present study we demonstrate that interleukin-12 expression is regulated by nitric oxide. Incubation of the macrophage cell line IC 21 with interferon-gamma gave rise to both interleukin-12 p40 mRNA and nitric oxide production. The concurrent addition of the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine inhibited nitrite production and in parallel completely suppressed interleukin-12 p40 mRNA formation. This indicated that endogenous nitric oxide synthase activity was required for IL-12 p40 gene expression. Exposure of the cells towards the nitric oxide generating compounds nitroprusside or S-nitroso-N-acetyl-penicillamine induced interleukin-12 p40 mRNA. Maximal mRNA levels were induced with nitric oxide donors at 1 microM concentration. We conclude that nitric oxide may exert an autoregulatory and paracrine control of interleukin-12 gene expression. PMID:8694804

  12. A protease-activated receptor 2 agonist (AC-264613) suppresses interferon regulatory factor 5 and decreases interleukin-12p40 production by lipopolysaccharide-stimulated macrophages: Role of p53.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-06-01

    The transcription factor interferon regulatory factor 5 (IRF5) has a key role in the production of interleukin (IL)-12 by macrophages. IRF5 is also a central mediator of toll-like receptor signaling and is a direct target of p53. Activation of protease-activated receptor 2 (PAR-2) upregulates p53 and suppresses apoptosis. This study investigated the influence of human neutrophil elastase (HNE) and PAR-2 agonists on expression of IRF5 and IL-12p40 by macrophages stimulated with lipopolysaccharide. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent macrophages showed upregulation of IRF5 expression, while HNE reduced expression of p53 and IRF5 in a concentration-dependent manner. HNE also caused a concentration-dependent decrease of IRF5 in macrophages transfected with small interfering RNA to silence p53, while silencing of β-arrestin 2 blunted the reduction of p53 or IRF5 by HNE. Incubation of macrophages with a PAR-2 agonist, AC-264613, caused a decrease of IRF5 expression and also significantly reduced p53 protein expression. HNE upregulated the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6) and caused transactivation of TLR4, while AC-264613 did not promote TLR4 transactivation. In conclusion, the PAR-2 agonist AC-264613 attenuated IRF5-associated IL-12p40 production by macrophages. PMID:26833899

  13. Interleukin-12 in infectious diseases.

    PubMed Central

    Romani, L; Puccetti, P; Bistoni, F

    1997-01-01

    Interleukin-12 (IL-12) is a potent immunoregulatory cytokine that is crucially involved in a wide range of infectious diseases. In several experimental models of bacterial, parasitic, viral, and fungal infection, endogenous IL-12 is required for early control of infection and for generation and perhaps maintenance of acquired protective immunity, directed by T helper type 1 (Th1) cells and mediated by phagocytes. Although the relative roles of IL-12 and gamma interferon in Th1-cell priming may be to a significant extent pathogen dependent, common to most infections is that IL-12 regulates the magnitude of the gamma interferon response at the initiation of infection, thus potentiating natural resistance, favoring Th1-cell development; and inhibiting Th2 responses. Treatment of animals with IL-12, either alone or as a vaccine adjuvant, has been shown to prevent disease by many of the same infectious agents, by stimulating innate resistance or promoting specific reactivity. Although IL-12 may enhance protective memory responses in vaccination or in combination with antimicrobial chemotherapy, it is yet unclear whether exogenous IL-12 can alter established responses in humans. Continued investigation into the possible application of IL-12 therapy to human infections is warranted by the role of the cytokine in inflammation, immunopathology, and autoimmunity. PMID:9336665

  14. Interleukin 12 at the site of disease in tuberculosis.

    PubMed Central

    Zhang, M; Gately, M K; Wang, E; Gong, J; Wolf, S F; Lu, S; Modlin, R L; Barnes, P F

    1994-01-01

    Interleukin 12 (IL-12), a heterodimeric cytokine composed of p40 and p35 chains, has potent immunologic effects in vitro. We used tuberculous pleuritis as a model to study the immunoregulatory potential of IL-12 in vivo at the site of human infectious disease. Messenger RNAs for p40 and p35 were detected in pleural fluid from six of six patients by reverse-transcription polymerase chain reaction. By using an ELISA that detected both free p40 and heterodimeric IL-12, we found that mean concentrations were 585 +/- 89 pg/ml in pleural fluid of patients with tuberculous pleuritis, which were significantly higher than those in serum of the same patients (54 +/- 36 pg/ml), or in malignant pleural effusions (123 +/- 35 pg/ml). By using an ELISA specific for heterodimeric IL-12, we found that mean concentrations in pleural fluid of patients with tuberculous pleuritis were 165 +/- 28 pg/ml and undetectable in serum of the same patients, or in malignant pleural effusions. Bioactive IL-12 was detectable in five of five supernatants of pleural fluid cells stimulated with Mycobacterium tuberculosis. Addition of anti-IL-12 antibodies suppressed proliferative responses of pleural fluid cells to M. tuberculosis by 36 +/- 7%. These data indicate that IL-12 may play a role in the human immune response to infectious agents in vivo. We hypothesize that IL-12 contributes to the antimycobacterial immune response by enhancing production of interferon-gamma, facilitating development of Th1 cells and augmenting cytotoxicity of antigen-specific T cells and natural killer cells. Images PMID:7909320

  15. Interleukin-12 is not essential for silicosis in mice

    PubMed Central

    Davis, Gerald S; Pfeiffer, Linda M; Hemenway, David R; Rincon, Mercedes

    2006-01-01

    Background Silicosis features foci of inflammation where macrophages and lymphocytes precede and accompany fibroblast proliferation, alveolar epithelial hyperplasia, and increased deposition of connective tissue matrix material. In the mouse following silica inhalation there is recruitment of natural killer-, B-, and CD4+ and CD8+ lymphocytes to the alveolar spaces, enlargement of bronchial-associated lymphoid tissues (BALT), and aggregation of lymphocytes surrounding small airways and blood vessels. A substantial fraction of the recruited lung lymphocytes produce interferon-γ (IFN-γ), and IFN-γ gene-deleted mice develop less silicosis than wild-type mice. Interleukin-12 (IL-12) is an important pathway for driving the adaptive immune response towards a TH1-like phenotype. We hypothesized that IL-12 might stimulate lymphocyte activation and the up-regulation of IFN-γ, and consequently be an essential mediator for silicosis. Results C57Bl/6 wild-type (WT) and IL-12 deficient (IL-12 KO) mice were exposed to sham-air or crystobalite silica (61 mg/m3) by inhalation for 5 hours/day for 12 days and then studied from 1 to 112 days after exposure. Mice exposed to sham-air had normal lung histology at all time points. WT mice exposed to titanium dioxide (72 mg/m3) showed pulmonary macrophage recruitment but no increase in lung collagen. Both WT and IL-12 KO mice exposed to silica showed similar progressive lung pathology, increased wet lung weight and increased total lung collagen (hydroxyproline). IL-12 p35 mRNA was not increased in either strain after silica exposure; IL-12 p40 mRNA was up-regulated after silica in WT mice and constitutively absent in the IL-12 KO mice. IL-18 mRNA was not increased after silica exposure. The expression of IL-15 (an important driver for innate immunity, Natural Killer cell activation, and IFN-γ production) was abundant in air-exposed mice and was increased slightly in the lungs of mice with silicosis. Conclusion The axis of IL-12

  16. Intrathecal production of interleukin-12 and gamma interferon in patients with bacterial meningitis.

    PubMed Central

    Kornelisse, R F; Hack, C E; Savelkoul, H F; van der Pouw Kraan, T C; Hop, W C; van Mierlo, G; Suur, M H; Neijens, H J; de Groot, R

    1997-01-01

    To assess the role of interleukin-12 (IL-12) and gamma interferon (IFN-gamma) in children with bacterial meningitis, bioactive IL-12 (p70) and the inactive subunit p40 and IFN-gamma were measured in serum and cerebrospinal fluid (CSF) from 35 children with bacterial meningitis and 10 control subjects. The production of IFN-gamma is induced by IL-12 with tumor necrosis factor alpha (TNF-alpha) as a costimulator and inhibited by IL-10. CSF concentrations of IL-12 p40 as well as those of IFN-gamma were markedly elevated, whereas IL-12 p70 was hardly detectable. Detectable CSF levels of IFN-gamma correlated positively with IL-12 p40 (r = 0.40, P = 0.02) and TNF-alpha (r = 0.46, P = 0.04) but not with IL-6, IL-8, or IL-10. In contrast to CSF levels of TNF-alpha, IL-12, and IL-10, those of IFN-gamma were significantly higher in patients with pneumococcal meningitis than in children with meningitis caused by Haemophilus influenzae and Neisseria meningitidis, presumably because of a high CSF TNF-alpha/IL-10 ratio in the former. We suggest that IL-12- and TNF-alpha-induced IFN-gamma production may contribute to the natural immunity against microorganisms in the CSF compartment during the acute phase of bacterial meningitis. PMID:9038291

  17. Inherited IL-12p40 Deficiency

    PubMed Central

    Prando, Carolina; Samarina, Arina; Bustamante, Jacinta; Boisson-Dupuis, Stéphanie; Cobat, Aurelie; Picard, Capucine; AlSum, Zobaida; Al-Jumaah, Suliman; Al-Hajjar, Sami; Frayha, Husn; Al-Mousa, Hamoud; Ben-Mustapha, Imen; Adimi, Parisa; Feinberg, Jacqueline; de Suremain, Maylis; Jannière, Lucile; Filipe-Santos, Orchidée; Mansouri, Nahal; Stephan, Jean-Louis; Nallusamy, Revathy; Kumararatne, Dinakantha S.; Bloorsaz, Mohamad Reza; Ben-Ali, Meriem; Elloumi-Zghal, Houda; Chemli, Jalel; Bouguila, Jihene; Bejaoui, Mohamed; Alaki, Emadia; AlFawaz, Tariq S.; Al Idrissi, Eman; ElGhazali, Gehad; Pollard, Andrew J.; Murugasu, Belinda; Wah Lee, Bee; Halwani, Rabih; Al-Zahrani, Mohammed; Al Shehri, Mohammed A.; Al-Zahrani, Mofareh; Bin-Hussain, Ibrahim; Mahdaviani, Seyed Alireza; Parvaneh, Nima; Abel, Laurent; Mansouri, Davood; Barbouche, Ridha; Al-Muhsen, Saleh

    2013-01-01

    Abstract Autosomal recessive interleukin (IL)-12 p40 (IL-12p40) deficiency is a rare genetic etiology of Mendelian susceptibility to mycobacterial disease (MSMD). We report the genetic, immunologic, and clinical features of 49 patients from 30 kindreds originating from 5 countries (India, Iran, Pakistan, Saudi Arabia, and Tunisia). There are only 9 different mutant alleles of the IL12B gene: 2 small insertions, 3 small deletions, 2 splice site mutations, and 1 large deletion, each causing a frameshift and leading to a premature stop codon, and 1 nonsense mutation. Four of these 9 variants are recurrent, affecting 25 of the 30 reported kindreds, due to founder effects in specific countries. All patients are homozygous and display complete IL-12p40 deficiency. As a result, the patients lack detectable IL-12p70 and IL-12p40 and have low levels of interferon gamma (IFN-γ). The clinical features are characterized by childhood onset of bacille Calmette-Guérin (attenuated Mycobacterium bovis strain) (BCG) and Salmonella infections, with recurrences of salmonellosis (36.4%) more common than recurrences of mycobacterial disease (25%). BCG vaccination led to BCG disease in 40 of the 41 patients vaccinated (97.5%). Multiple mycobacterial infections were rare, observed in only 3 patients, whereas the association of salmonellosis and mycobacteriosis was observed in 9 patients. A few other infections were diagnosed, including chronic mucocutaneous candidiasis (n = 3), nocardiosis (n = 2), and klebsiellosis (n = 1). IL-12p40 deficiency has a high but incomplete clinical penetrance, with 33.3% of genetically affected relatives of index cases showing no symptoms. However, the prognosis is poor, with mortality rates of up to 28.6%. Overall, the clinical phenotype of IL-12p40 deficiency closely resembles that of interleukin 12 receptor β1 (IL-12Rβ1) deficiency. In conclusion, IL-12p40 deficiency is more common than initially thought and should be considered worldwide in patients

  18. Anti-nociceptive effect of IL-12p40 in a rat model of neuropathic pain.

    PubMed

    Chen, I-Fang; Khan, Junad; Noma, Noboru; Hadlaq, Emad; Teich, Sorin; Benoliel, Rafael; Eliav, Eli

    2013-06-01

    IL-12p70 is a proinflammatory cytokine secreted by dendritic cells, monocytes and macrophages. It plays a crucial role in cell-mediated immunity by inducing proliferation of T cell and natural killer cells, and enhancing their cytotoxic activity. In adaptive immune response, it acts on naive T cells to differentiate into Th1-type cells. It is composed of two subunits, p35 and p40. The latter can be secreted in the form of monodimer or heterodimer, which is also referred as IL-12p80. Recently IL-12p70 has been proven to locally provoke nociceptive effect in naïve rats. This study investigated pain response following systemic administration of IL-12p70 and IL-12p40 homodimer in chronic neuropathic pain model, induced by chronic constriction injury. The doses tested were IL-12p40 homodimer or IL12p70 at 15, 150 and 1500ng/kg, respectively. Pain was assessed at 1, 4, 7 and 24h after injection, in the form of tactile allodynia and mechanical hyperalgesia. The side effect of sensory motor disability was measured by rotarod performance. By all behavioral measures, IL-12p70 of any dosage, at any time point, had no significant effect on tactile allodynia and mechanical hyperalgesia. A high dose of IL-12p40 homodimer induced significant analgesic effect by the measure of hind paw tactile allodynia from 1h to 4h after injection. Medium and low doses of IL-12p40 homodimer exerted their analgesic effect 4h post injection. Mechanical hyperalgesia, following high and medium doses of IL-12p40 administration, was significantly reduced at 4h after application. Also, no significant sensory motor dysfunction was detected for all dosage for both homodimers. These findings suggest that systemic application of IL-12p40 homodimer induces time-dependent analgesia to mechanical stimulation in rats exposed to neuropathic pain. PMID:23597590

  19. Interleukin-12 inhibits hepatitis B virus replication in transgenic mice.

    PubMed Central

    Cavanaugh, V J; Guidotti, L G; Chisari, F V

    1997-01-01

    Interleukin-12 (IL-12) is a heterodimeric cytokine produced by antigen-presenting cells that has the ability to induce gamma interferon (IFN-gamma) secretion by T and natural killer cells and to generate normal Th1 responses. These properties suggest that IL-12 may play an important role in the immune response to many viruses, including hepatitis B virus (HBV). Recently, we have shown that HBV-specific cytotoxic T lymphocytes inhibit HBV replication in the livers of transgenic mice by a noncytolytic process that is mediated in part by IFN-gamma. In the current study, we demonstrated that the same antiviral response can be initiated by recombinant murine IL-12 and we showed that the antiviral effect of IL-12 extends to extrahepatic sites such as the kidney. Southern blot analyses revealed the complete disappearance of HBV replicative intermediates from liver and kidney tissues at IL-12 doses that induce little or no inflammation in these tissues. In addition, immunohistochemical analysis demonstrated the disappearance of cytoplasmic hepatitis B core antigen from both tissues after IL-12 treatment, suggesting that IL-12 either prevents the assembly or triggers the degradation of the nucleocapsid particles within which HBV replication occurs. Importantly, we demonstrated that although IFN-gamma, tumor necrosis factor alpha, and IFN-alpha/beta mRNA are induced in the liver and kidney after IL-12 administration, the antiviral effect of IL-12 is mediated principally by its ability to induce IFN-gamma production in this model. These results suggest that IL-12, through its ability to induce IFN-gamma, probably plays an important role in the antiviral immune response to HBV during natural infection. Further, since relatively nontoxic doses of recombinant IL-12 profoundly inhibit HBV replication in the liver and extrahepatic sites in this model, IL-12 may have therapeutic value as an antiviral agent for the treatment of chronic HBV infection. PMID:9060687

  20. Development of Interleukin-12-Producing Capacity throughout Childhood

    PubMed Central

    Upham, John W.; Lee, Peter T.; Holt, Barbara J.; Heaton, Tricia; Prescott, Susan L.; Sharp, Mary J.; Sly, Peter D.; Holt, Patrick G.

    2002-01-01

    Increasing evidence indicates that the capacity to induce protective Th1 immune responses is impaired in early childhood, an observation that can be partially attributed to deficiencies in antigen-presenting-cell function. Synthesis of interleukin 12 (IL-12), a key Th1-trophic cytokine, is markedly reduced in the neonatal period, though there is a paucity of knowledge concerning the ontogeny of IL-12-synthetic capacity throughout the childhood years. Hence, we examined the production of bioactive IL-12 p70 by circulating mononuclear cells in a population of healthy individuals. As expected, the capacity to synthesize IL-12 p70 in response to either lipopolysaccharide or heat-killed Staphylococcus aureus was markedly impaired at birth, even after priming of cells with gamma interferon. Surprisingly however, IL-12 p70 synthesis by peripheral blood mononuclear cells from both 5- and 12-year-old children was still substantially below that seen in adults, and this did not appear to be related to excessive production of IL-10. In contrast, dendritic cells from adults and neonates, derived from monocytes with granulocyte-macrophage colony-stimulating factor and IL-4, synthesized equivalent amounts of IL-12 p70 in response to microbial stimulation. This indicates that the impaired capacity for IL-12 synthesis in childhood is not an intrinsic property of circulating mononuclear cells but rather can be readily overcome in response to appropriate maturational stimuli. Because IL-12 arose predominantly from circulating HLA-DR+ cells that lacked B-cell- and monocyte-specific markers, we propose that the slow maturation of IL-12-synthetic capacity in the childhood years can be attributed to deficiencies in the number and/or function of dendritic cells. PMID:12438328

  1. Curtiss P-40K Warhawk

    NASA Technical Reports Server (NTRS)

    1943-01-01

    Curtiss P-40K Warhawk: The Curtiss P-40K Warhawk was an improved version of the P-40E. This Warhawk was used by the NACA at Langley from July of 1942 until October of 1944. The P-40 gained most of its fame as the mount of the American Volunteer Group (AVG) 'Flying Tigers.' But shark mouthed P-40s were also flown by the Royal Air Force in North Africa.

  2. Expression of Epstein–Barr virus-induced gene 3 and other interleukin-12-related molecules by human intestinal epithelium

    PubMed Central

    Maaser, Christian; Egan, Laurence J; Birkenbach, Mark P; Eckmann, Lars; Kagnoff, Martin F

    2004-01-01

    Antigen-presenting cells, including dendritic cells, monocytes and macrophages, produce members of the interleukin-12 (IL-12) family that are important in initiating and maintaining cell-mediated immune responses. These include IL-12p35 and p19 that dimerize with IL-12p40 to form IL-12 (also termed IL-12p75) and IL-23, respectively, and Epstein–Barr virus-induced gene 3 (EBI3) protein (a protein related to IL-12p40), that forms a dimer with p28, termed IL-27. Intestinal epithelial cells, which are the initial site of contact between the host and enteric pathogens, can act as antigen-presenting cells, and are known to express mediators important in inflammatory and immune responses. In the current studies, we hypothesized that intestinal epithelial cells express members of the IL-12 family, which can function as an early signalling system important in mucosal immunity. Using in vitro and in vivo model systems of human intestinal epithelium, we demonstrate the regulated expression of EBI3, IL-12p35 and p19 by human intestinal epithelial cells. However, intestinal epithelial cells do not coexpress IL-12p40 or p28 that are required to generate heterodimeric IL-12p75, IL-23 and IL-27. To the extent that IL-12p35, p19 and EBI3 cannot form IL-12p75, IL-23 or IL-27 heterodimers in intestinal epithelial cells, these data suggest that those cells may express other, currently unknown, molecules that can associate with EBI3, IL-12p35 and/or p19 or, alternatively, intestinal epithelial cells may release IL-12-related molecules that by themselves, or in combination with other molecules in the mucosal microenvironment, mediate biological activities. PMID:15196212

  3. Cutaneous leukocytoclastic vasculitis in a child with interleukin-12 receptor beta-1 deficiency.

    PubMed

    Kutukculer, Necil; Genel, Ferah; Aksu, Guzide; Karapinar, Bulent; Ozturk, Can; Cavusoglu, Cengiz; Casanova, Jean-Laurent; Fieschi, Claire

    2006-03-01

    We report a patient with complete interleukin-12 receptor beta-1 deficiency associated with cutaneous leukocytoclastic vasculitis. The patient experienced Bacille Calmette Guérin, Mycobacterium chelonae, and Salmonella enteritidis infection. Vasculitis affecting both small arteries and postcapillary venules due to deposition of immune complexes was probably caused by S. enteritidis and/or M. chelonae infection. PMID:16615980

  4. Curtiss P-40E Warhawk

    NASA Technical Reports Server (NTRS)

    1942-01-01

    Curtiss P-40E Warhawk: The Curtiss P-40E Warhawk was powered by a liquid-cooled Allison V-1710 engine. Used for testing modifications to the tail, this Warhawk was used by the NACA at Langley from March to July 1942.

  5. Role of interleukin-12 in the regulation of CD4+ T cell apoptosis in a mouse model of asthma

    PubMed Central

    KODAMA, T; KURIBAYASHI, K; NAKAMURA, H; FUJITA, M; FUJITA, T; TAKEDA, K; DAKHAMA, A; GELFAND, E W; MATSUYAMA, T; KITADA, O

    2003-01-01

    Allergic asthma, a chronic inflammatory disease of the airways, is characterized by the presence of T helper 2 cells and eosinophils in sputum, bronchoalveolar lavage, and mucosal biopsy specimens. Although the T helper 1-promoting cytokine, interleukin-12, is capable of inhibiting the T helper 2-driven asthma symptoms and bronchial responsiveness, the specific mechanisms underlying these interleukin-12 actions are unclear. The anti-allergic response to interleukin-12 is only partially dependent on interferon-γ, which induces apoptosis by enhancing expression of Fas antigen. We therefore investigated in vivo whether the anti-allergic action of interleukin-12 is mediated through induction of apoptosis. C57BL/6 mice immunized to ovalbumin by intraperitoneal injection were challenged three times with an ovalbumin aerosol every second day for 7 days. Recombinant interleukin-12 was administered intravenously after the final challenge. After the last ovalbumin challenge, mice were examined for effects of interleukin-12 on inflammatory cell infiltration and apoptosis in the lung as detected by terminal deoxynucleotidyl transferase-mediated deoxyribonucleoside triphosphate nick end-labelling. Administration of interleukin-12 reduced ovalbumin-induced pulmonary eosinophilia (P < 0·01) and CD4+ T cell infiltration (P < 0·01). Moreover, treatment with interleukin-12 shortly after ovalbumin inhalation resulted in both increased interferon-γ production (P < 0·01) and enhanced apoptosis of CD4+ T cells in allergic airway infiltrates (P < 0·05). These results suggest that the beneficial effects of interleukin-12 in asthma may include enhancement of apoptosis of CD4+ T cells in airways. PMID:12562378

  6. Identification and functional characterization of multiple interleukin 12 in amberjack (Seriola dumerili).

    PubMed

    Matsumoto, Megumi; Hayashi, Kazuma; Suetake, Hiroaki; Yamamoto, Atsushi; Araki, Kyosuke

    2016-08-01

    Interleukin (IL) -12 is a heterodimeric cytokine mainly produced by monocytes, macrophages, and dendritic cells in mammals. IL-12p70 composed of IL-12p35 and IL-12p40, is known to play a crucial role in promoting cell-mediated immunity (CMI) through Th1 differentiation and IFN-γ production. Although two types of IL-12p35 (p35a, p35b) and three types of IL-12p40 (p40a, p40b and p40c) have been identified in several fish species, the knowledge on functional characteristics of teleost IL-12 is still limited. In the present study, we cloned two types of IL-12p35 and three types of IL-12p40 genes in amberjack and yellowtail, and analyzed their expressions in response to stimulation with Nocardia seriolae in amberjack. As a result, four types of IL-12 (IL-12p35a, p35b, p40a and p40b) and IFN-γ mRNA were increased by live-N. seriolae stimulation but not by formalin-killed N. seriolae, suggesting that four types of IL-12 (p35, p35b, p40a and p40c) participate in promoting CMI. Subsequently, we produced six types of recombinant IL-12p70 (rIL12p70) protein in insect cells. Head kidney leukocytes were cultured with formalin-killed N. seriolae and six types of rIL-12p70 to elucidate the role of amberjack IL-12p70 in induction of CMI. After stimulation, IFN-γ expression was elevated whereas IL-10 expression was suppressed in Head kidney leukocytes stimulated with four types of rIL-12 (p40a/p35a, p40c/p35a, p40a/p35b, p40a/p35b). On the other hand, two types of rIL-12 (p40b/p35a, p40b/p35b) only elicited down regulation of IL-10 expression. These results indicate that all amberjack IL-12p70 isoforms are involved in Th1 -differentiation and promotion of CMI with different manners. Fish IL-12 has a potential for the promising vaccine adjuvant. PMID:27238429

  7. Lecithin retinol acyltransferase forms functional homodimers.

    PubMed

    Jahng, Wan Jin; Cheung, Eric; Rando, Robert R

    2002-05-21

    Membrane-bound lecithin retinol acyltransferase (LRAT), an essential enzyme in vitamin A processing, catalyzes the formation of retinyl esters from vitamin A and lecithin. Cloned and expressed LRAT has a molecular mass of 25.3 kDa. The enzyme is not homologous to known enzymes and is, therefore, of substantial interest mechanistically. Along these lines, the functional protomeric state of LRAT is of importance. Gel electrophoretic studies on LRAT in the presence of SDS and disulfide reducing agents show the expected 25 kDa monomer. However, gel electrophoresis in the absence of a reducing agent and/or strong denaturing conditions reveals substantial dimer formation. LRAT monomers can be efficiently and irreversibly cross-linked by thiol reactive bismaleimides in retinal pigment epithelial (RPE) membranes generating LRAT homodimers. Cross-linked LRAT homodimers are fully active catalytically. The experiments suggest that LRAT monomers interact in membranes and form functional homodimers through protein-protein interactions and disulfide bond formation. PMID:12009892

  8. The SNARE VAMP7 Regulates Exocytic Trafficking of Interleukin-12 in Dendritic Cells.

    PubMed

    Chiaruttini, Giulia; Piperno, Giulia M; Jouve, Mabel; De Nardi, Francesca; Larghi, Paola; Peden, Andrew A; Baj, Gabriele; Müller, Sabina; Valitutti, Salvatore; Galli, Thierry; Benvenuti, Federica

    2016-03-22

    Interleukin-12 (IL-12), produced by dendritic cells in response to activation, is central to pathogen eradication and tumor rejection. The trafficking pathways controlling spatial distribution and intracellular transport of IL-12 vesicles to the cell surface are still unknown. Here, we show that intracellular IL-12 localizes in late endocytic vesicles marked by the SNARE VAMP7. Dendritic cells (DCs) from VAMP7-deficient mice are partially impaired in the multidirectional release of IL-12. Upon encounter with antigen-specific T cells, IL-12-containing vesicles rapidly redistribute at the immune synapse and release IL-12 in a process entirely dependent on VAMP7 expression. Consistently, acquisition of effector functions is reduced in T cells stimulated by VAMP7-null DCs. These results provide insights into IL-12 intracellular trafficking pathways and show that VAMP7-mediated release of IL-12 at the immune synapse is a mechanism to transmit innate signals to T cells. PMID:26972013

  9. Myxoma virus expressing human interleukin-12 does not induce myxomatosis in European rabbits.

    PubMed

    Stanford, Marianne M; Barrett, John W; Gilbert, Philippe-Alexandre; Bankert, Richard; McFadden, Grant

    2007-11-01

    Myxoma virus (MV) is a candidate for oncolytic virotherapy due to its ability to selectively infect and kill tumor cells, yet MV is a species-specific pathogen that causes disease only in European rabbits. To assess the ability of MV to deliver cytokines to tumors, we created an MV (vMyxIL-12) that expresses human interleukin-12 (IL-12). vMyxIL-12 replicates similarly to wild-type MV, and virus-infected cells secrete bioactive IL-12. Yet, vMyxIL-12 does not cause myxomatosis, despite expressing the complete repertoire of MV proteins. Thus, vMyxIL-12 exhibits promise as an oncolytic candidate and is safe in all known vertebrate hosts, including lagomorphs. PMID:17728229

  10. Interleukin 12 (IL-12) family cytokines: Role in immune pathogenesis and treatment of CNS autoimmune disease.

    PubMed

    Sun, Lin; He, Chang; Nair, Lekha; Yeung, Justine; Egwuagu, Charles E

    2015-10-01

    Cytokines play crucial roles in coordinating the activities of innate and adaptive immune systems. In response to pathogen recognition, innate immune cells secrete cytokines that inform the adaptive immune system about the nature of the pathogen and instruct naïve T cells to differentiate into the appropriate T cell subtypes required to clear the infection. These include Interleukins, Interferons and other immune-regulatory cytokines that exhibit remarkable functional redundancy and pleiotropic effects. The focus of this review, however, is on the enigmatic Interleukin 12 (IL-12) family of cytokines. This family of cytokines plays crucial roles in shaping immune responses during antigen presentation and influence cell-fate decisions of differentiating naïve T cells. They also play essential roles in regulating functions of a variety of effector cells, making IL-12 family cytokines important therapeutic targets or agents in a number of inflammatory diseases, such as the CNS autoimmune diseases, uveitis and multiple sclerosis. PMID:25796985

  11. The SNARE VAMP7 Regulates Exocytic Trafficking of Interleukin-12 in Dendritic Cells

    PubMed Central

    Chiaruttini, Giulia; Piperno, Giulia M.; Jouve, Mabel; De Nardi, Francesca; Larghi, Paola; Peden, Andrew A.; Baj, Gabriele; Müller, Sabina; Valitutti, Salvatore; Galli, Thierry; Benvenuti, Federica

    2016-01-01

    Summary Interleukin-12 (IL-12), produced by dendritic cells in response to activation, is central to pathogen eradication and tumor rejection. The trafficking pathways controlling spatial distribution and intracellular transport of IL-12 vesicles to the cell surface are still unknown. Here, we show that intracellular IL-12 localizes in late endocytic vesicles marked by the SNARE VAMP7. Dendritic cells (DCs) from VAMP7-deficient mice are partially impaired in the multidirectional release of IL-12. Upon encounter with antigen-specific T cells, IL-12-containing vesicles rapidly redistribute at the immune synapse and release IL-12 in a process entirely dependent on VAMP7 expression. Consistently, acquisition of effector functions is reduced in T cells stimulated by VAMP7-null DCs. These results provide insights into IL-12 intracellular trafficking pathways and show that VAMP7-mediated release of IL-12 at the immune synapse is a mechanism to transmit innate signals to T cells. PMID:26972013

  12. Interleukin-12 gene expression in human monocyte-derived macrophages stimulated with Mycobacterium bovis BCG: cytokine regulation and effect of NK cells.

    PubMed Central

    Matsumoto, H; Suzuki, K; Tsuyuguchi, K; Tanaka, E; Amitani, R; Maeda, A; Yamamoto, K; Sasada, M; Kuze, F

    1997-01-01

    Macrophage-derived interleukin-12 (IL-12) is essential for the activation of a protective immune response against intracellular pathogens. In this study, we examined the regulation of IL-12 mRNA expression by monocyte-derived macrophages (MDM) in response to Mycobacterium bovis BCG stimulation. A reverse transcription-PCR assay detected p40 mRNA of IL-12 at 3 h and showed a peak at 6 to 12 h with a subsequent decline. Semiquantitation of mRNA levels by competitive PCR revealed that pretreatment with gamma interferon (IFN-gamma) amplified the expression approximately 100-fold, while pretreatment with tumor necrosis factor alpha (TNF-alpha) or granulocyte-macrophage colony-stimulating factor augmented this expression about 10-fold. In contrast, pretreatment with IL-10 and IL-4 inhibited IL-12 mRNA expression. These results were further confirmed by measuring the p70 bioactive protein level in each conditioned medium by an enzyme-linked immunosorbent assay. Since IL-12 mRNA expression was weak without cytokine pretreatment and IFN-gamma strongly augmented production, we speculated that IFN-gamma might have a role in BCG stimulation of IL-12 mRNA expression. Unexpectedly, the addition of three different kinds of anti-IFN-gamma antibodies and anti-IFN-gamma receptor antibody and the coaddition of anti-TNF-alpha antibody with anti-IFN-gamma receptor antibody all failed to inhibit IL-12 mRNA expression. However, the MiniMACS method used to remove NK cells from a mononuclear cell suspension inhibited the expression of p40 mRNA but not the expression of mRNA of TNF-alpha or IL-1beta. We concluded that the coexistence of NK cells was essential for the induction of IL-12 in MDM stimulated with BCG rather than through the secretion of IFN-gamma. PMID:9353012

  13. (p40)2-Fc reduces immune-inflammatory response through the activation of T cells in collagen induced arthritis mice.

    PubMed

    Lee, Seon-Yeong; Lee, Seung Hoon; Park, Seong-Jeong; Kim, Doo-Jin; Kim, Eun-Kyung; Kim, Jae-Kyung; Yang, Se-Hwan; Park, Sung-Hwan; Sung, Young-Chul; Kim, Ho-Youn; Cho, Mi-La

    2016-08-01

    IL-12p40 homodimer, a natural antagonist of IL-12 and IL-23, performs an important role in the expression of proinflammatory cytokines that is essential for Th1 and Th17 immune responses. Here, we reveal the therapeutic and immunosuppressive effect of the IL-12p40 subunit ((p40)2-Fc) in an experimental autoimmune arthritis model. We hypothesized that (p40)2-Fc may reduce the inflammatory response and the activation of T cells. In this study, we intraperitoneally injected (p40)2-Fc into collagen induced arthritis (CIA) mice to identify whether (p40)2-Fc attenuates CIA severity. (p40)2-Fc reduced the development of CIA, joint inflammation and cartilage destruction. (p40)2-Fc also significantly decreased the concentration of serum immunoglobulin as well as the number of T cells and C II specific T cells. In addition, osteoclastogenesis in (p40)2-Fc treated mice was down-regulated compared to the mice treated with (p40)2-Fc control. We observed that (p40)2-Fc treatment alleviates arthritis in mice with CIA, reducing inflammation and osteoclast differentiation. These findings suggest that (p40)2-Fc can be a potential therapeutic approach for autoimmune arthritis. PMID:27229912

  14. Cancer Therapeutic Based on T Cell Receptors Designed to Regiospecifically Release Interleukin-12 | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Surgery Branch is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize a potential cancer therapeutic based on T cells genetically engineered to express the human interleukin 12 (IL-12) cytokine only in the tumor environment.

  15. GHR/PRLR Heteromultimer Is Composed of GHR Homodimers and PRLR Homodimers.

    PubMed

    Liu, Ying; Zhang, Yue; Jiang, Jing; Lobie, Peter E; Paulmurugan, Ramasamy; Langenheim, John F; Chen, Wen Y; Zinn, Kurt R; Frank, Stuart J

    2016-05-01

    GH receptor (GHR) and prolactin (PRL) receptor (PRLR) are homologous transmembrane cytokine receptors. Each prehomodimerizes and ligand binding activates Janus Kinase 2 (JAK2)-signal transducer and activator of transcription (STAT) signaling pathways by inducing conformational changes within receptor homodimers. In humans, GHR is activated by GH, whereas PRLR is activated by both GH and PRL. We previously devised a split luciferase complementation assay, in which 1 receptor is fused to an N-terminal luciferase (Nluc) fragment, and the other receptor is fused to a C-terminal luciferase (Cluc) fragment. When receptors approximate, luciferase activity (complementation) results. Using this assay, we reported ligand-independent GHR-GHR complementation and GH-induced complementation changes characterized by acute augmentation above basal signal, consistent with induction of conformational changes that bring GHR cytoplasmic tails closer. We also demonstrated association between GHR and PRLR in T47D human breast cancer cells by coimmunoprecipitation, suggesting that, in addition to forming homodimers, these receptors form hetero-assemblages with functional consequences. We now extend these analyses to examine basal and ligand-induced complementation of coexpressed PRLR-Nluc and PRLR-Cluc chimeras and coexpressed GHR-Nluc and PRLR-Cluc chimeras. We find that PRLR-PRLR and GHR-PRLR form specifically interacting ligand-independent assemblages and that either GH or PRL augments PRLR-PRLR complementation, much like the GH-induced changes in GHR-GHR dimers. However, in contrast to the complementation patterns for GHR-GHR or PRLR-PRLR homomers, both GH and PRL caused decline in luciferase activity for GHR-PRLR heteromers. These and other data suggest that GHR and PRLR associate in complexes comprised of GHR-GHR/PRLR-PRLR heteromers consisting of GHR homodimers and PRLR homodimers, rather than GHR-PRLR heterodimers. PMID:27003442

  16. Augmented anti-tumor effect of dendritic cells genetically engineered by interleukin-12 plasmid DNA.

    PubMed

    Yoshida, Masataka; Jo, Jun-Ichiro; Tabata, Yasuhiko

    2010-01-01

    The objective of this study was to genetically engineer dendritic cells (DC) for biological activation and evaluate their anti-tumor activity in a tumor-bearing mouse model. Mouse DC were incubated on the surface of culture dishes which had been coated with the complexes of a cationized dextran and luciferase plasmid DNA complexes plus a cell adhesion protein, Pronectin, for gene transfection (reverse transfection). When compared with the conventional transfection where DC were transfected in the medium containing the complexes, the level of gene expression by the reverse method was significantly higher and the time period of gene expression was prolonged. Following the reverse transfection of DC by a plasmid DNA of mouse interleukin-12 (mIL-12) complexed with the cationized dextran, the mIL-12 protein was secreted at higher amounts for a longer time period. When injected intratumorally into mice carrying a mass of B16 tumor cells, the DC genetically activated showed significant anti-tumor activity. PMID:20338099

  17. Enhancement of adaptive immunity to Neisseria gonorrhoeae by local intravaginal administration of microencapsulated interleukin 12.

    PubMed

    Liu, Yingru; Egilmez, Nejat K; Russell, Michael W

    2013-12-01

    Gonorrhea remains one of the most frequent infectious diseases, and Neisseria gonorrhoeae is emerging as resistant to most available antibiotics, yet it does not induce a state of specific protective immunity against reinfection. Our recent studies have demonstrated that N. gonorrhoeae proactively suppresses host T-helper (Th) 1/Th2-mediated adaptive immune responses, which can be manipulated to generate protective immunity. Here we show that intravaginally administered interleukin 12 (IL-12) encapsulated in sustained-release polymer microspheres significantly enhanced both Th1 and humoral immune responses in a mouse model of genital gonococcal infection. Treatment of mice with IL-12 microspheres during gonococcal challenge led to faster clearance of infection and induced resistance to reinfection, with the generation of gonococcus-specific circulating immunoglobulin G and vaginal immunoglobulin A and G antibodies. These results suggest that local administration of microencapsulated IL-12 can serve as a novel therapeutic and prophylactic strategy against gonorrhea, with implications for the development of an effective vaccine. PMID:24048962

  18. Interleukin 12 is effective treatment for an established systemic intracellular infection: experimental visceral leishmaniasis

    PubMed Central

    1995-01-01

    When administered at or near the initiation of experimental intracellular infection caused by Leishmania major, Toxoplasma gondii, or Cryptococcus neoformans, treatment with the immuno-regulatory cytokine interleukin 12 (IL-12), induces protective antimicrobial activity. In contrast, once infections are established, IL-12 exerts considerably less or no effect in the face of a suppressive Th2 cell- associated response (L. major) or rapidly progressive fatal infection (T. gondii). To test the efficacy of IL-12 in an established intracellular protozoal infection but under quite different immunologic conditions (Th1 cell response, acquired resistance), L. donovani- infected BALB/c mice were treated starting 2 wk after challenge coincident with the onset of the Th1 cell response. In this environment, 7 d of IL-12 treatment reduced liver parasite burdens by 47%, an effect comparable to that induced by exogenous interferon (IFN) gamma. The in vivo mechanism responsive to IL-12 was complex, and required both CD4+ and CD8+ T cells as well as natural killer cells and the action of multiple endogenous antileishmanial cytokines (IFN-gamma, IL-2, tumor necrosis factor alpha). Early treatment with IL-12 before the expression of the Th1 cell response was also effective and induced an accelerated, near-cure response via an IFN-gamma-dependent mechanism. These results extend the antimicrobial-inducing capacity of IL-12 beyond prophylaxis by indicating that IL-12 can exert clear-cut therapeutic activity in an established intracellular infection. PMID:7807019

  19. Interleukin-12 reverses the inhibitory impact of photodynamic therapy (PDT) on the murine contact hypersensitivity response

    NASA Astrophysics Data System (ADS)

    Simkin, Guillermo O.; Levy, Julia G.; Hunt, David W. C.

    1998-05-01

    Treatment of mice with certain photosensitizers combined with exposure to visible light limits the development of the immunologically-mediated contact hypersensitivity (CHS) response against topically-applied chemical haptens. Understanding of the inhibitory action of photosensitizers upon the CHS response is incomplete. Benzoporphyrin derivative monoacid ring A (BPD-MA, verteporfin), a photosensitizer with immunomodulatory activity, strongly depressed CHS responses to the hapten dinitrofluorobenzene (DNFB). However, if mice were administered 1 (mu) g of a recombinant preparation of the pro- inflammatory cytokine interleukin-12 (rIL-12), full-fledged CHS responses to DNFB ensued in animals treated with BPD-MA and light. In contrast, when rIL-12 was given in combination with an anti-IL-12 antibody the restorative effect of rIL-12 on the CHS response of PDT-treated mice was blocked. Evaluation of the cytokine status of spleen and draining lymph node cells showed for DNFB painted animals, that the release of the immunosuppressive cytokine IL-10 was increased by PDT and rIL-12 counter-acted the increase in IL-10 liberation associated with PDT. These studies indicate that IL-10 formation is upregulated and the availability of IL-12 may be limited in mice treated with PDT. These features may contribute to deficient CHS responses observed with PDT.

  20. Interleukin-12 preserves the cutaneous physical and immunological barrier after radiation exposure.

    PubMed

    Gerber, Scott A; Cummings, Ryan J; Judge, Jennifer L; Barlow, Margaret L; Nanduri, Julee; Johnson, Doug E Milano; Palis, James; Pentland, Alice P; Lord, Edith M; Ryan, Julie L

    2015-01-01

    The United States continues to be a prime target for attack by terrorist organizations in which nuclear detonation and dispersal of radiological material are legitimate threats. Such attacks could have devastating consequences to large populations, in the form of radiation injury to various human organ systems. One of these at risk organs is the cutaneous system, which forms both a physical and immunological barrier to the surrounding environment and is particularly sensitive to ionizing radiation. Therefore, increased efforts to develop medical countermeasures for treatment of the deleterious effects of cutaneous radiation exposure are essential. Interleukin-12 (IL-12) was shown to elicit protective effects against radiation injury on radiosensitive systems such as the bone marrow and gastrointestinal tract. In this article, we examined if IL-12 could protect the cutaneous system from a combined radiation injury in the form of sublethal total body irradiation and beta-radiation burn (β-burn) directly to the skin. Combined radiation injury resulted in a breakdown in skin integrity as measured by transepidermal water loss, size of β-burn lesion and an exacerbated loss of surveillant cutaneous dendritic cells. Interestingly, intradermal administration of IL-12 48 h postirradiation reduced transepidermal water loss and burn size, as well as retention of cutaneous dendritic cells. Our data identify IL-12 as a potential mitigator of radiation-induced skin injury and argue for the further development of this cytokine as a radiation countermeasure. PMID:25564716

  1. Toxoplasma gondii Upregulates Interleukin-12 To Prevent Plasmodium berghei-Induced Experimental Cerebral Malaria

    PubMed Central

    Settles, Erik W.; Moser, Lindsey A.; Harris, Tajie H.

    2014-01-01

    A chronic infection with the parasite Toxoplasma gondii has previously been shown to protect mice against subsequent viral, bacterial, or protozoal infections. Here we have shown that a chronic T. gondii infection can prevent Plasmodium berghei ANKA-induced experimental cerebral malaria (ECM) in C57BL/6 mice. Treatment with soluble T. gondii antigens (STAg) reduced parasite sequestration and T cell infiltration in the brains of P. berghei-infected mice. Administration of STAg also preserved blood-brain barrier function, reduced ECM symptoms, and significantly decreased mortality. STAg treatment 24 h post-P. berghei infection led to a rapid increase in serum levels of interleukin 12 (IL-12) and gamma interferon (IFN-γ). By 5 days after P. berghei infection, STAg-treated mice had reduced IFN-γ levels compared to those of mock-treated mice, suggesting that reductions in IFN-γ at the time of ECM onset protected against lethality. Using IL-10- and IL-12βR-deficient mice, we found that STAg-induced protection from ECM is IL-10 independent but IL-12 dependent. Treatment of P. berghei-infected mice with recombinant IL-12 significantly decreased parasitemia and mortality. These data suggest that IL-12, either induced by STAg or injected as a recombinant protein, mediates protection from ECM-associated pathology potentially through early induction of IFN-γ and reduction in parasitemia. These results highlight the importance of early IL-12 induction in protection against ECM. PMID:24396042

  2. Interleukin-12 Preserves the Cutaneous Physical and Immunological Barrier after Radiation Exposure

    PubMed Central

    Gerber, Scott A.; Cummings, Ryan J.; Judge, Jennifer L.; Barlow, Margaret L.; Nanduri, Julee; Milano Johnson, Doug E.; Palis, James; Pentland, Alice P.; Lord, Edith M.; Ryan, Julie L.

    2015-01-01

    The United States continues to be a prime target for attack by terrorist organizations in which nuclear detonation and dispersal of radiological material are legitimate threats. Such attacks could have devastating consequences to large populations, in the form of radiation injury to various human organ systems. One of these at risk organs is the cutaneous system, which forms both a physical and immunological barrier to the surrounding environment and is particularly sensitive to ionizing radiation. Therefore, increased efforts to develop medical countermeasures for treatment of the deleterious effects of cutaneous radiation exposure are essential. Interleukin-12 (IL-12) was shown to elicit protective effects against radiation injury on radiosensitive systems such as the bone marrow and gastrointestinal tract. In this article, we examined if IL-12 could protect the cutaneous system from a combined radiation injury in the form of sublethal total body irradiation and beta-radiation burn (β-burn) directly to the skin. Combined radiation injury resulted in a breakdown in skin integrity as measured by transepidermal water loss, size of β-burn lesion and an exacerbated loss of surveillant cutaneous dendritic cells. Interestingly, intradermal administration of IL-12 48 h postirradiation reduced transepidermal water loss and burn size, as well as retention of cutaneous dendritic cells. Our data identify IL-12 as a potential mitigator of radiation-induced skin injury and argue for the further development of this cytokine as a radiation countermeasure. PMID:25564716

  3. Evaluation of p21 promoter for interleukin 12 radiation induced transcriptional targeting in a mouse tumor model

    PubMed Central

    2013-01-01

    Background Radiation induced transcriptional targeting is a gene therapy approach that takes advantage of the targeting abilities of radiotherapy by using radio inducible promoters to spatially and temporally limit the transgene expression. Cyclin dependent kinase inhibitor 1 (CDKN1A), also known as p21, is a crucial regulator of the cell cycle, mediating G1 phase arrest in response to a variety of stress stimuli, including DNA damaging agents like irradiation. The aim of the study was to evaluate the suitability of the p21 promoter for radiation induced transcriptional targeting with the objective to test the therapeutic effectiveness of the combined radio-gene therapy with p21 promoter driven therapeutic gene interleukin 12. Methods To test the inducibility of the p21 promoter, three reporter gene experimental models with green fluorescent protein (GFP) under the control of p21 promoter were established by gene electrotransfer of plasmid DNA: stably transfected cells, stably transfected tumors, and transiently transfected muscles. Induction of reporter gene expression after irradiation was determined using a fluorescence microplate reader in vitro and by non-invasive fluorescence imaging using fluorescence stereomicroscope in vivo. The antitumor effect of the plasmid encoding the p21 promoter driven interleukin 12 after radio-gene therapy was determined by tumor growth delay assay and by quantification of intratumoral and serum levels of interleukin 12 protein and intratumoral concentrations of interleukin 12 mRNA. Results Using the reporter gene experimental models, p21 promoter was proven to be inducible with radiation, the induction was not dose dependent, and it could be re-induced. Furthermore radio-gene therapy with interleukin 12 under control of the p21 promoter had a good antitumor therapeutic effect with the statistically relevant tumor growth delay, which was comparable to that of the same therapy using a constitutive promoter. Conclusions In this

  4. Treatment of Chronic Viral Hepatitis in Woodchucks by Prolonged Intrahepatic Expression of Interleukin-12

    PubMed Central

    Crettaz, Julien; Otano, Itziar; Ochoa, Laura; Benito, Alberto; Paneda, Astrid; Aurrekoetxea, Igor; Berraondo, Pedro; Rodríguez-Madoz, Juan Roberto; Astudillo, Aurora; Kreppel, Florian; Kochanek, Stefan; Ruiz, Juan; Menne, Stephan; Prieto, Jesus; Gonzalez-Aseguinolaza, Gloria

    2009-01-01

    Chronic hepatitis B is a major cause of liver-related death worldwide. Interleukin-12 (IL-12) induction accompanies viral clearance in chronic hepatitis B virus infection. Here, we tested the therapeutic potential of IL-12 gene therapy in woodchucks chronically infected with woodchuck hepatitis virus (WHV), an infection that closely resembles chronic hepatitis B. The woodchucks were treated by intrahepatic injection of a helper-dependent adenoviral vector encoding IL-12 under the control of a liver-specific RU486-responsive promoter. All woodchucks with viral loads below 1010 viral genomes (vg)/ml showed a marked and sustained reduction of viremia that was accompanied by a reduction in hepatic WHV DNA, a loss of e antigen and surface antigen, and improved liver histology. In contrast, none of the woodchucks with higher viremia levels responded to therapy. The antiviral effect was associated with the induction of T-cell immunity against viral antigens and a reduction of hepatic expression of Foxp3 in the responsive animals. Studies were performed in vitro to elucidate the resistance to therapy in highly viremic woodchucks. These studies showed that lymphocytes from healthy woodchucks or from animals with low viremia levels produced gamma interferon (IFN-γ) upon IL-12 stimulation, while lymphocytes from woodchucks with high viremia failed to upregulate IFN-γ in response to IL-12. In conclusion, IL-12-based gene therapy is an efficient approach to treat chronic hepadnavirus infection in woodchucks with viral loads below 1010 vg/ml. Interestingly, this therapy is able to break immunological tolerance to viral antigens in chronic WHV carriers. PMID:19116251

  5. Safe and effective treatment of spontaneous neoplasms with interleukin 12 electro-chemo-gene therapy

    PubMed Central

    Cutrera, Jeffry; King, Glenn; Jones, Pamela; Kicenuik, Kristin; Gumpel, Elias; Xia, Xueqing; Li, Shulin

    2015-01-01

    Electroporation improves the anti-tumour efficacy of chemotherapeutic and gene therapies. Combining electroporation-mediated chemotherapeutics with interleukin 12 (IL-12) plasmid DNA produces a strong yet safe anti-tumour effect for treating primary and refractory tumours. A previously published report demonstrated the efficacy of a single cycle of IL-12 plasmid DNA and bleomycin in canines, and, similarly, this study further demonstrates the safety and efficacy of repeated cycles of chemotherapy plus IL-12 gene therapy for long-term management of aggressive tumours. Thirteen canine patients were enrolled in this study and received multiple cycles of electro-chemo-gene therapy (ECGT) with IL-12 pDNA and either bleomycin or gemcitabine. ECGT treatments are very effective for inducing tumour regression via an antitumour immune response in all tested histotypes except for sarcomas, and these treatments can quickly eradicate or debulk large squamous cell carcinomas. The versatility of ECGT allows for response-based modifications which can overcome treatment resistance for affecting refractory lesions. Importantly, not a single severe adverse event was noted even in animals receiving the highest doses of chemotherapeutics and IL12 pDNA over multiple treatment cycles. This report highlights the safety, efficacy and versatility of this treatment strategy. The data reveal the importance of inducing a strong anti-tumour response for successfully affecting not only the treated tumours, but also non-treated metastatic tumours. ECGT with IL12 pDNA plus chemotherapy is an effective strategy for treating multiple types of spontaneous cancers including large, refractory and multiple tumour burdens. PMID:25628149

  6. Neoadjuvant immunotherapy with chitosan and interleukin-12 to control breast cancer metastasis

    PubMed Central

    Vo, Jimmy LN; Yang, Lirong; Kurtz, Samantha L; Smith, Sean G; Koppolu, Bhanu prasanth; Ravindranathan, Sruthi; Zaharoff, David A

    2015-01-01

    Metastasis accounts for approximately 90% of breast cancer-related deaths. Therefore, novel approaches which prevent or control breast cancer metastases are of significant clinical interest. Interleukin-12 (IL-12)-based immunotherapies have shown promise in controlling metastatic disease, yet modest responses and severe toxicities due to systemic administration of IL-12 in early trials have hindered clinical application. We hypothesized that localized delivery of IL-12 co-formulated with chitosan (chitosan/IL-12) could elicit tumor-specific immunity and provide systemic protection against metastatic breast cancer while minimizing systemic toxicity. Chitosan is a biocompatible polysaccharide derived primarily from the exoskeletons of crustaceans. In a clinically relevant resection model, mice bearing spontaneously metastatic 4T1 mammary adenocarcinomas received intratumoral injections of chitosan/IL-12, or appropriate controls, prior to tumor resection. Neoadjuvant chitosan/IL-12 immunotherapy resulted in long-term tumor-free survival in 67% of mice compared to only 24% or 0% of mice treated with IL-12 alone or chitosan alone, respectively. Antitumor responses following chitosan/IL-12 treatment were durable and provided complete protection against rechallenge with 4T1, but not RENCA renal adenocarcinoma, cells. Lymphocytes from chitosan/IL-12-treated mice demonstrated robust tumor-specific lytic activity and interferon-γ production. Cell-mediated immune memory was confirmed in vivo via clinically relevant delayed-type hypersensitivity (DTH) assays. Comprehensive hematology and toxicology analyses revealed that chitosan/IL-12 induced transient, reversible leukopenia with no changes in critical organ function. Results of this study suggest that neoadjuvant chitosan/IL-12 immunotherapy prior to breast tumor resection is a promising translatable strategy capable of safely inducing to tumor-specific immunity and, in the long term, reducing breast cancer mortality due to

  7. Folate-Modified Lipoplexes Delivering the Interleukin-12 Gene for Targeting Colon Cancer Immunogene Therapy.

    PubMed

    Luo, Min; Liang, Xiao; Luo, Shun-Tao; Wei, Xia-Wei; Liu, Ting; Ren, Jun; Ma, Cui-Cui; Yang, Yu-Han; Wang, Bi-Lan; Liu, Li; Song, Xiang-Rong; He, Zhi-Yao; Wei, Yu-Quan

    2015-11-01

    The incidence and mortality rate of colorectal cancer increase every year, making it a serious threat to human health. Targeted immunogene therapy is a novel method of treating this type of cancer. Colon cancer overexpresses folate receptor α (FRα) and folate-modified liposomes for colon cancer immunogene therapy may suppress tumor growth effectively. In this study, F-PLP/pIL12, an FRα-targeted lipoplex loading plasmid interleukin-12 (pIL12) was prepared and its physicochemical properties were characterized. Then the antitumor effect of F-PLP/pIL12 was studied in an in vivo model of CT-26 colon cancer. F-PLP/pIL12 was associated with about 56.6% tumor growth inhibition compared with the saline control. The production of malignant ascites was significantly less pronounced than in controls, and there were fewer tumor nodules and less overall tumor mass (P < 0.01). There was more IL12 expression and IFN-γ secretion in F-PLP/pIL12-treated tumor tissues, but there was less FRα expression. The antitumor mechanisms involved inducing tumor cell apoptosis, reducing microvessel density, and stimulating TNF-α secretion. In addition, there were fewer M2 macrophages in the tumor microenvironment of tissues stimulated with F-PLP/pIL12, which also activated the natural killer cells. H&E staining of vital organs suggested that F-PLP/pIL12 is safe for use in intraperitoneally administered cancer therapy. It was here concluded that F-PLP/plL12 may be a suitable targeting formulation for colon cancer immunogene therapy. PMID:26554159

  8. Intratumoral administration of a recombinant canarypox virus expressing interleukin 12 in patients with metastatic melanoma.

    PubMed

    Triozzi, Pierre L; Strong, Theresa V; Bucy, R Pat; Allen, Karen O; Carlisle, Ronda R; Moore, Susan E; Lobuglio, Albert F; Conry, Robert M

    2005-01-01

    The aim of this study was to evaluate the tolerability and activity of intratumoral administered human interleukin 12 encoded by a vector derived from the canarypox virus (ALVAC-IL-12). Nine patients with surgically incurable metastatic melanoma who had subcutaneous nodules available for injection were enrolled. ALVAC-IL-12 was administered by intratumoral injection on days 1, 4, 8, and 11. Tumor nodules greater than 2 cm in diameter were injected with 2 x 10(6) median tissue culture infectious doses (TCID(50)), and smaller tumors were injected with 1 x 10(6) TCID(50). The total dose per patient per time point ranged from 1 x 10(6) to 4 x 10(6) TCID(50). Toxicity was mild to moderate and consisted of inflammatory reactions at the injection site and fever associated with chills, myalgia, and fatigue. No dose-limiting toxicities occurred. Increases in IL-12 mRNA, and also increases in interferon gamma mRNA, were observed in ALVAC-IL-12-injected tumors compared with saline-injected control tumors in four of the nine patients. ALVAC-IL-12-injected tumors were also characterized by T cell infiltration. Three patients demonstrated increases in serum IL-12 and in interferon gamma levels. All patients developed neutralizing IgG antibody to the canarypox vector. One patient manifested a complete response of injected subcutaneous metastases and uninjected in-transit metastases. The intratumoral injection of ALVAC-IL-12 at these dose levels and according to this schedule was well tolerated and resulted in measurable biologic response in patients with metastatic melanoma. PMID:15703492

  9. Anti-inflammatory cytokines in asthma and allergy: interleukin-10, interleukin-12, interferon-gamma.

    PubMed Central

    Chung, F

    2001-01-01

    Interleukin-10 (IL-10) is a cytokine derived from CD4+ T-helper type 2 (T(H2)) cells identified as a suppressor of cytokines from T-helper type 1(T(H1)) cells. Interleukin-12 (IL-12) is produced by B cells, macrophages and dendritic cells, and primarily regulates T(H1) cell differentiation, while suppressing the expansion of T(H2) cell clones. Interferon-gamma (IFN-gamma) is a product of T(H1) cells and exerts inhibitory effects on T(H2) cell differentiation. These cytokines have been implicated in the pathogenesis of asthma and allergies. In this context, IL-12 and IFN-gamma production in asthma have been found to be decreased, and this may reduce their capacity to inhibit IgE synthesis and allergic inflammation. IL-10 is a potent inhibitor of monocyte/macrophage function, suppressing the production of many pro-inflammatory cytokines. A relative underproduction of IL-10 from alveolar macrophages of atopic asthmatics has been reported. Therapeutic modulation of T(H1)/T(H2) imbalance in asthma and allergy by mycobacterial vaccine, specific immunotherapy and cytoline-guanosine dinucleotide motif may lead to increases in IL-12 and IFN-gamma production. Stimulation of IL-10 production by antigen-specific T-cells during immunotherapy may lead to anergy through inhibition of CD28-costimulatory molecule signalling by IL-10s anti-inflammatory effect on basophils, mast cells and eosinophils. PMID:11405550

  10. Mechanisms by Which Interleukin-12 Corrects Defective NK Cell Anticryptococcal Activity in HIV-Infected Patients

    PubMed Central

    Kyei, Stephen K.; Ogbomo, Henry; Li, ShuShun; Timm-McCann, Martina; Xiang, Richard F.; Huston, Shaunna M.; Ganguly, Anutosh; Colarusso, Pina; Gill, M. John

    2016-01-01

    ABSTRACT Cryptococcus neoformans is a pathogenic yeast and a leading cause of life-threatening meningitis in AIDS patients. Natural killer (NK) cells are important immune effector cells that directly recognize and kill C. neoformans via a perforin-dependent cytotoxic mechanism. We previously showed that NK cells from HIV-infected patients have aberrant anticryptococcal killing and that interleukin-12 (IL-12) restores the activity at least partially through restoration of NKp30. However, the mechanisms causing this defect or how IL-12 restores the function was unknown. By examining the sequential steps in NK cell killing of Cryptococcus, we found that NK cells from HIV-infected patients had defective binding of NK cells to C. neoformans. Moreover, those NK cells that bound to C. neoformans failed to polarize perforin-containing granules to the microbial synapse compared to healthy controls, suggesting that binding was insufficient to restore a defect in perforin polarization. We also identified lower expression of intracellular perforin and defective perforin release from NK cells of HIV-infected patients in response to C. neoformans. Importantly, treatment of NK cells from HIV-infected patients with IL-12 reversed the multiple defects in binding, granule polarization, perforin content, and perforin release and restored anticryptococcal activity. Thus, there are multiple defects in the cytolytic machinery of NK cells from HIV-infected patients, which cumulatively result in defective NK cell anticryptococcal activity, and each of these defects can be reversed with IL-12. PMID:27555306

  11. Safety and Comparative Immunogenicity of an HIV-1 DNA Vaccine in Combination with Plasmid Interleukin 12 and Impact of Intramuscular Electroporation for Delivery

    PubMed Central

    Kalams, Spyros A.; Parker, Scott D.; Elizaga, Marnie; Metch, Barbara; Edupuganti, Srilatha; Hural, John; De Rosa, Stephen; Carter, Donald K.; Rybczyk, Kyle; Frank, Ian; Fuchs, Jonathan; Koblin, Beryl; Kim, Denny H.; Joseph, Patrice; Keefer, Michael C.; Baden, Lindsey R.; Eldridge, John; Boyer, Jean; Sherwat, Adam; Cardinali, Massimo; Allen, Mary; Pensiero, Michael; Butler, Chris; Khan, Amir S.; Yan, Jian; Sardesai, Niranjan Y.; Kublin, James G.; Weiner, David B.

    2013-01-01

    Background. DNA vaccines have been very poorly immunogenic in humans but have been an effective priming modality in prime-boost regimens. Methods to increase the immunogenicity of DNA vaccines are needed. Methods. HIV Vaccine Trials Network (HVTN) studies 070 and 080 were multicenter, randomized, clinical trials. The human immunodeficiency virus type 1 (HIV-1) PENNVAX®-B DNA vaccine (PV) is a mixture of 3 expression plasmids encoding HIV-1 Clade B Env, Gag, and Pol. The interleukin 12 (IL-12) DNA plasmid expresses human IL-12 proteins p35 and p40. Study subjects were healthy HIV-1–uninfected adults 18–50 years old. Four intramuscular vaccinations were given in HVTN 070, and 3 intramuscular vaccinations were followed by electroporation in HVTN 080. Cellular immune responses were measured by intracellular cytokine staining after stimulation with HIV-1 peptide pools. Results. Vaccination was safe and well tolerated. Administration of PV plus IL-12 with electroporation had a significant dose-sparing effect and provided immunogenicity superior to that observed in the trial without electroporation, despite fewer vaccinations. A total of 71.4% of individuals vaccinated with PV plus IL-12 plasmid with electroporation developed either a CD4+ or CD8+ T-cell response after the second vaccination, and 88.9% developed a CD4+ or CD8+ T-cell response after the third vaccination. Conclusions. Use of electroporation after PV administration provided superior immunogenicity than delivery without electroporation. This study illustrates the power of combined DNA approaches to generate impressive immune responses in humans. PMID:23840043

  12. Interleukin-12 inhibits pathological neovascularization in mouse model of oxygen-induced retinopathy

    PubMed Central

    Zhou, Yedi; Yoshida, Shigeo; Kubo, Yuki; Kobayashi, Yoshiyuki; Nakama, Takahito; Yamaguchi, Muneo; Ishikawa, Keijiro; Nakao, Shintaro; Ikeda, Yasuhiro; Ishibashi, Tatsuro; Sonoda, Koh-Hei

    2016-01-01

    Hypoxia-induced retinal neovascularization is a major pathological condition in many vision-threatening diseases. In the present study, we determined whether interleukin (IL)-12, a cytokine that regulates angiogenesis, plays a role in the neovascularization in a mouse model of oxygen-induced retinopathy (OIR). We found that the expressions of the mRNAs of both IL-12p35 and IL-12p40 were significantly reduced in the OIR retinas compared to that of the room air-raised control. The sizes of the avascular areas and neovascular tufts were larger in IL-12p40 knock-out (KO) mice than that in wild type (WT) mice. In addition, an intravitreal injection of recombinant IL-12 reduced both avascular areas and neovascular tufts. IL-12 injection enhanced the expressions of interferon-gamma (IFN-γ) and other downstream chemokines. In an in vitro system, IL-12 had no significant effect on tube formation of human retinal microvascular endothelial cells (HRECs). Moreover, a blockade of IFN-γ suppressed the inhibitory effect of IL-12 on pathological neovascularization. These results suggest that IL-12 plays important roles in inhibiting pathological retinal neovascularization. PMID:27312090

  13. Interleukin-12 inhibits pathological neovascularization in mouse model of oxygen-induced retinopathy.

    PubMed

    Zhou, Yedi; Yoshida, Shigeo; Kubo, Yuki; Kobayashi, Yoshiyuki; Nakama, Takahito; Yamaguchi, Muneo; Ishikawa, Keijiro; Nakao, Shintaro; Ikeda, Yasuhiro; Ishibashi, Tatsuro; Sonoda, Koh-Hei

    2016-01-01

    Hypoxia-induced retinal neovascularization is a major pathological condition in many vision-threatening diseases. In the present study, we determined whether interleukin (IL)-12, a cytokine that regulates angiogenesis, plays a role in the neovascularization in a mouse model of oxygen-induced retinopathy (OIR). We found that the expressions of the mRNAs of both IL-12p35 and IL-12p40 were significantly reduced in the OIR retinas compared to that of the room air-raised control. The sizes of the avascular areas and neovascular tufts were larger in IL-12p40 knock-out (KO) mice than that in wild type (WT) mice. In addition, an intravitreal injection of recombinant IL-12 reduced both avascular areas and neovascular tufts. IL-12 injection enhanced the expressions of interferon-gamma (IFN-γ) and other downstream chemokines. In an in vitro system, IL-12 had no significant effect on tube formation of human retinal microvascular endothelial cells (HRECs). Moreover, a blockade of IFN-γ suppressed the inhibitory effect of IL-12 on pathological neovascularization. These results suggest that IL-12 plays important roles in inhibiting pathological retinal neovascularization. PMID:27312090

  14. Computational design and experimental verification of a symmetric protein homodimer.

    PubMed

    Mou, Yun; Huang, Po-Ssu; Hsu, Fang-Ciao; Huang, Shing-Jong; Mayo, Stephen L

    2015-08-25

    Homodimers are the most common type of protein assembly in nature and have distinct features compared with heterodimers and higher order oligomers. Understanding homodimer interactions at the atomic level is critical both for elucidating their biological mechanisms of action and for accurate modeling of complexes of unknown structure. Computation-based design of novel protein-protein interfaces can serve as a bottom-up method to further our understanding of protein interactions. Previous studies have demonstrated that the de novo design of homodimers can be achieved to atomic-level accuracy by β-strand assembly or through metal-mediated interactions. Here, we report the design and experimental characterization of a α-helix-mediated homodimer with C2 symmetry based on a monomeric Drosophila engrailed homeodomain scaffold. A solution NMR structure shows that the homodimer exhibits parallel helical packing similar to the design model. Because the mutations leading to dimer formation resulted in poor thermostability of the system, design success was facilitated by the introduction of independent thermostabilizing mutations into the scaffold. This two-step design approach, function and stabilization, is likely to be generally applicable, especially if the desired scaffold is of low thermostability. PMID:26269568

  15. Prospects for use of interleukin-12 as a mucosal adjuvant for vaccination of humans to protect against respiratory pneumococcal infection.

    PubMed

    Wright, A K A; Briles, D E; Metzger, D W; Gordon, S B

    2008-09-01

    Mucosal vaccination against pneumococcal disease offers potential protection against otitis media, pneumonia and invasive disease, including providing herd benefit by reducing pathogen carriage. The major obstacle, however, remains the lack of a suitable adjuvant for use in humans. Animal models have demonstrated success of interleukin-12 (IL-12) as an adjuvant for mucosal vaccines using recombinant pneumococcal protein antigens. This review examines the biology of the IL-12 cytokine family, the toxicity of IL-12 in human studies and suggests approaches by which IL-12 could be developed as a mucosal adjuvant with pneumococcal protein based vaccines, for use in humans. PMID:18602438

  16. Interleukin-12 suppresses immunoglobulin E production but enhances immunoglobulin G4 production by human peripheral blood mononuclear cells.

    PubMed Central

    de Boer, B A; Kruize, Y C; Rotmans, P J; Yazdanbakhsh, M

    1997-01-01

    The effect of interleukin-12 (IL-12) on human immunoglobulin G4 (IgG4) and IgE production was examined with cells derived from filarial patients and European controls. IL-12 inhibited IgE release but enhanced IgG4 production in cultures of peripheral blood mononuclear cells stimulated with anti-CD2 plus IL-2. When purified T- and B-cell cocultures were examined, IL-12 again markedly enhanced IgG4, whereas IgE production was no longer inhibited. PMID:9038328

  17. Observation of an E2 (Ubc9)-homodimer by crystallography.

    PubMed

    Alontaga, Aileen Y; Ambaye, Nigus D; Li, Yi-Jia; Vega, Ramir; Chen, Chih-Hong; Bzymek, Krzysztof P; Williams, John C; Hu, Weidong; Chen, Yuan

    2016-06-01

    Post-translational modifications by the small ubiquitin-like modifiers (SUMO), in particular the formation of poly-SUMO-2 and -3 chains, regulates essential cellular functions and its aberration leads to life-threatening diseases (Geoffroy and Hay, 2009) [1]. It was shown previously that the non-covalent interaction between SUMO and the conjugating enzyme (E2) for SUMO, known as Ubc9, is required for poly-SUMO-2/3 chain formation (Knipscheer et al., 2007) [2]. However, the structure of SUMO-Ubc9 non-covalent complex, by itself, could not explain how the poly-SUMO-2/3 chain forms and consequently a Ubc9 homodimer, although never been observed, was proposed for poly-SUMO-2/3 chain formation (Knipscheer et al., 2007) [2]. Here, we solved the crystal structure of a heterotrimer containing a homodimer of Ubc9 and the RWD domain from RWDD3. The asymmetric Ubc9 homodimer is mediated by the N-terminal region of one Ubc9 molecule and a surface near the catalytic Cys of the second Ubc9 molecule (Fig. 1A). This N-terminal surface of Ubc9 that is involved in the homodimer formation also interacts with the RWD domain, the ubiquitin-fold domain of the SUMO activating enzyme (E1), SUMO, and the E3 ligase, RanBP2 (Knipscheer et al., 2007; Tong et al.. 1997; Tatham et al., 2005; Reverter and Lima, 2005; Capili and Lima, 2007; Wang et al., 2009, 2010; Wang and Chen, 2010; Alontaga et al., 2015) [2], [3], [4], [5], [6], [7], [8], [9], [10]. The existence of the Ubc9 homodimer in solution is supported by previously published solution NMR studies of rotational correlation time and chemical shift perturbation (Alontaga et al., 2015; Yuan et al., 1999) [10], [11]. Site-directed mutagenesis and biochemical analysis suggests that this dimeric arrangement of Ubc9 is likely important for poly-SUMO chain formation (Fig. 1B and C). The asymmetric Ubc9 homodimer described for the first time in this work could provide the critical missing link in the poly-SUMO chain formation mechanism. The

  18. A Model to Explain How the Bacille Calmette Guérin (BCG) Vaccine Drives Interleukin-12 Production in Neonates

    PubMed Central

    Kativhu, Chido Loveness; Libraty, Daniel H.

    2016-01-01

    The Bacille Calmette Guérin (BCG) vaccine is the only routine vaccination at birth that effectively induces neonatal T-helper 1 (Th1)-polarized immune responses. The primary cytokine that drives CD4+ T-cell Th1 differentiation is interleukin (IL)-12 p70, a heterodimeric cytokine composed of the IL-12 p35 and IL-12 p40 subunits. We therefore examined the mechanisms involved in BCG vaccine stimulation of IL-12 p35 and p40 production from human umbilical cord (neonatal) cells. We found that BCG bacilli did not upregulate IL-12 p35 mRNA production, but upregulated IL-12 p40 mRNA production in a Toll-like receptor (TLR)2-dependent manner, in human neonatal monocyte-derived dendritic cells (mdDCs). The combination of TLR2 signaling, Type I interferon (IFN), and Type II IFN induced maximal levels of IL-12 p35 and p40 mRNA production in human neonatal mdDCs. The cell-free supernatants of reconstituted BCG vaccine vials contained extracellular mycobacterial (BCG) DNA which could induce IFN-α (Type I IFN) production in human neonatal plasmacytoid dendritic cells (pDCs). BCG bacilli also stimulated human neonatal CD16lo natural killer (NK) cells to produce IFN-γ (Type II IFN) in a TLR2-dependent manner. We have therefore proposed a model where BCG vaccine could stimulate the combination of neonatal conventional DCs (cDCs), pDCs, and CD16lo NK cells to produce optimal neonatal IL-12 p35 and p40 (IL-12 p70) production and subsequent CD4+ T-cell Th1 polarization. An adjuvant that emulates the mechanism by which the BCG vaccine stimulates neonatal IL-12 p35 and p40 production could improve vaccine strategies at birth for protection against intracellular pathogens and toxins. PMID:27571272

  19. A Model to Explain How the Bacille Calmette Guérin (BCG) Vaccine Drives Interleukin-12 Production in Neonates.

    PubMed

    Kativhu, Chido Loveness; Libraty, Daniel H

    2016-01-01

    The Bacille Calmette Guérin (BCG) vaccine is the only routine vaccination at birth that effectively induces neonatal T-helper 1 (Th1)-polarized immune responses. The primary cytokine that drives CD4+ T-cell Th1 differentiation is interleukin (IL)-12 p70, a heterodimeric cytokine composed of the IL-12 p35 and IL-12 p40 subunits. We therefore examined the mechanisms involved in BCG vaccine stimulation of IL-12 p35 and p40 production from human umbilical cord (neonatal) cells. We found that BCG bacilli did not upregulate IL-12 p35 mRNA production, but upregulated IL-12 p40 mRNA production in a Toll-like receptor (TLR)2-dependent manner, in human neonatal monocyte-derived dendritic cells (mdDCs). The combination of TLR2 signaling, Type I interferon (IFN), and Type II IFN induced maximal levels of IL-12 p35 and p40 mRNA production in human neonatal mdDCs. The cell-free supernatants of reconstituted BCG vaccine vials contained extracellular mycobacterial (BCG) DNA which could induce IFN-α (Type I IFN) production in human neonatal plasmacytoid dendritic cells (pDCs). BCG bacilli also stimulated human neonatal CD16lo natural killer (NK) cells to produce IFN-γ (Type II IFN) in a TLR2-dependent manner. We have therefore proposed a model where BCG vaccine could stimulate the combination of neonatal conventional DCs (cDCs), pDCs, and CD16lo NK cells to produce optimal neonatal IL-12 p35 and p40 (IL-12 p70) production and subsequent CD4+ T-cell Th1 polarization. An adjuvant that emulates the mechanism by which the BCG vaccine stimulates neonatal IL-12 p35 and p40 production could improve vaccine strategies at birth for protection against intracellular pathogens and toxins. PMID:27571272

  20. Feline Leukemia Virus DNA Vaccine Efficacy Is Enhanced by Coadministration with Interleukin-12 (IL-12) and IL-18 Expression Vectors

    PubMed Central

    Hanlon, Linda; Argyle, David; Bain, Derek; Nicolson, Lesley; Dunham, Stephen; Golder, Matthew C.; McDonald, Michael; McGillivray, Christine; Jarrett, Oswald; Neil, James C.; Onions, David E.

    2001-01-01

    The expectation that cell-mediated immunity is important in the control of feline leukemia virus (FeLV) infection led us to test a DNA vaccine administered alone or with cytokines that favored the development of a Th1 immune response. The vaccine consisted of two plasmids, one expressing the gag/pol genes and the other expressing the env gene of FeLV-A/Glasgow-1. The genetic adjuvants were plasmids encoding the feline cytokines interleukin-12 (IL-12), IL-18, or gamma interferon (IFN-γ). Kittens were immunized by three intramuscular inoculations of the FeLV DNA vaccine alone or in combination with plasmids expressing IFN-γ, IL-12, or both IL-12 and IL-18. Control kittens were inoculated with empty plasmid. Following immunization, anti-FeLV antibodies were not detected in any kitten. Three weeks after the final immunization, the kittens were challenged by the intraperitoneal inoculation of FeLV-A/Glasgow-1 and were then monitored for a further 15 weeks for the presence of virus in plasma and, at the end of the trial, for latent virus in bone marrow. The vaccine consisting of FeLV DNA with the IL-12 and IL-18 genes conferred significant immunity, protecting completely against transient and persistent viremia, and in five of six kittens protecting against latent infection. None of the other vaccines provided significant protection. PMID:11507187

  1. In vivo activity of plant-based interleukin-12 in the lung of Balb/c mouse

    PubMed Central

    2010-01-01

    Background In the last years, plants are being used for the production of a wide variety of biopharmaceuticals, including cytokines, and have the potential to serve as vehicles for mucosal administration of these molecules. We had previously reported the expression of a cytokine, interleukin-12 (IL-12), in transgenic tomato plants and had demonstrated that it retained its biologic activity in vitro. Findings In this work, we administered crude extracts of IL-12-containing tomato fruits to mice through the intratracheal route, measuring endogenous IL-12 and determining biologic activity by quantification of interferon-gamma (IFN-γ) in lungs and by histological analysis. IFN-γ expression in lungs, as well as histological analysis, indicate that tomato-expressed IL-12 retains its biologic activity and, most importantly, its effects are restricted to the site of administration. Conclusion Our results indicate that the functional activity of tomato-expressed IL-12 is comparable to that of commercial recombinant IL-12 when given via the mucosal route. This opens the possibility of using crude extracts prepared from tomatoes expressing IL-12 for certain immunotherapies. PMID:20507618

  2. Mouse interleukin-12/FasTI: A novel bi-functional fusion protein for cancer immuno/gene therapy.

    PubMed

    Yang, Xi; Tietje, Ashlee H; Yu, Xianzhong; Wei, Yanzhang

    2016-06-01

    Whereas cancer immunotherapy with cytokines in recent research was demonstrated effective in activating immune response against tumor cells, one major obstacle with the use of these cytokines is their severe side effects when delivered systemically at high doses. Another challenge is that advanced tumor cells often evade immunosurveillance of the immune system as well as of the Fas-mediated apoptosis by various mechanisms. We report the design and preliminary evaluation of the antitumor activity of a novel fusion protein-mIL-12/FasTI, consisting of mouse interleukin-12 and the transmembrane and intracellular domains of mouse Fas. The fusion construct (pmIL-12/FasTI) was transfected into mouse lung carcinoma cell line TC-1. Stable cell clones expressing the fusion protein were established as assayed by RT-PCR and immunohistochemistry. ELISA and cell proliferation analyses demonstrated that NK cells were effectively activated by the fusion protein with increased IFN-γ production and cytotoxicity. Enhanced caspase-3 activity of the clones when co-cultured with NK cells indicated that apoptosis was induced through Fas/FasL signaling pathway. The preliminary results suggest a synergized anticancer activity of the fusion protein. It may represent a promising therapeutic agent for cancer treatment. PMID:27081758

  3. Protection against feline immunodeficiency virus using replication defective proviral DNA vaccines with feline interleukin-12 and -18.

    PubMed

    Dunham, Stephen P; Flynn, J Norman; Rigby, Mark A; Macdonald, Julie; Bruce, Jennifer; Cannon, Celia; Golder, Matthew C; Hanlon, Linda; Harbour, David A; Mackay, Nancy A; Spibey, Norman; Jarrett, Oswald; Neil, James C

    2002-02-22

    A molecular clone of the Glasgow-8 isolate of FIV (FIVGL8) was rendered replication defective by an in-frame deletion in either reverse transcriptase (deltaRT) or integrase (deltaIN) genes for use as DNA vaccines. To test the ability of these multi-gene vaccines to protect against two feline immunodeficiency virus (FIV) isolates of differing virulence, cats were immunized using either DNA vaccine alone or co-administered with interleukin-12 (IL-12) and/or interleukin-18 (IL-18) cytokine DNA. Animals were challenged sequentially with FIV-Petaluma (FIVPET) an FIV isolate of relatively low virulence and subsequently with the more virulent FIVGL8. A proportion of vaccinates (5/18 deltaIN and 2/12 deltaRT) were protected against primary challenge with FIV(PET). Five of the vaccinated-protected cats were re-challenged with FIV(PET); four (all deltaIN) remained free of viraemia whilst all naive controls became viraemic. Following subsequent challenge with the more virulent FIVGL8 these four vaccinated-protected animals all became viraemic but showed lower proviral loads than naive cats. This study suggests that while our current DNA vaccines may not produce sterilizing immunity against more virulent isolates of FIV, they may nevertheless significantly reduce the impact of infection. PMID:11858854

  4. Enhanced Delivery of Plasmid Encoding Interleukin-12 Gene by Diethylene Triamine Penta-Acetic Acid (DTPA)-Conjugated PEI Nanoparticles.

    PubMed

    Dehshahri, Ali; Sadeghpour, Hossein; Keykhaee, Maryam; Khalvati, Bahman; Sheikhsaran, Fatemeh

    2016-05-01

    Recombinant therapeutic proteins have been considered as an efficient category of medications used for the treatment of various diseases. Despite their effectiveness, there are some reports on the systemic adverse effects of recombinant therapeutic proteins limiting their wide clinical applications. Among different cytokines used for cancer immunotherapy, interleukin-12 (IL-12) has shown great ability as a powerful antitumor and antiangiogenic agent. However, significant toxic reactions following the systemic administration of IL-12 have led researchers to seek for alternative approaches such as the delivery and local expression of the IL-12 gene inside the tumor tissues. In order to transfer the plasmid encoding IL-12 gene, the most extensively investigated polycationic polymer, polyethylenimine (PEI), was modified by diethylene triamine penta-acetic acid (DTPA) to modulate the hydrophobic-hydrophilic balance of the polymer as well as its toxicity. DTPA-conjugated PEI derivatives were able to form complexes in the size range around 100-180 nm with great condensation ability and protection of the plasmid against enzymatic degradation. The highest gene transfer ability was achieved by the DTPA-conjugated PEI at the conjugation degree of 0.1 % where the level of IL-12 production increased up to twofold compared with that of the unmodified PEI. Results of the present study demonstrated that modulation of the surface positive charge of PEI along with the improvement of the polymer hydrophobic balance could be considered as a successful strategy to develop safe and powerful nanocarriers. PMID:26801817

  5. Interleukin-12 and photocarcinogenesis

    SciTech Connect

    Katiyar, Santosh K.

    2007-11-01

    UV radiation induces immunosuppression and inflammatory responses, as well as oxidative stress and DNA damage, in skin cells and these various effects have been implicated in melanoma and nonmelanoma skin cancers, i.e., photocarcinogenesis. The cytokine interleukin (IL)-12 has been shown to possess potent antitumor activity in a wide variety of murine tumor models. In this review, we summarize the evidence that IL-12 plays a role in preventing photocarcinogenesis, and present a model of its possible mechanisms of action. Treatment of mice with IL-12 prevents UV-induced immunosuppression in a process mediated by repair of UV-induced damaged DNA. After exposure to the photocarcinogenesis protocol, the development of UV-induced tumors is more rapid and the tumor multiplicity and tumor size are significantly greater in IL-12-deficient or knockout (KO) mice than their wild-type counterparts. IL-12-deficiency in mice enhances the proliferation potential of tumor cells, and this may be one of the reasons for the rapid growth of the tumors and their greater size. The rate of malignant transformation of UV-induced papillomas to carcinomas also is higher in the IL-12 KO mice than in their wild-type counterparts in terms of carcinoma incidence and carcinoma multiplicity. UV-induced DNA damage in the form of cyclobutane pyrimidine dimers (CPDs) and sunburn cells is lower, or repaired more rapidly, in wild-type mice than IL-12 KO mice. The IL-12-associated reduction in UV-specific CPDs is due to induction of DNA repair, and particularly enhancement of nucleotide-excision repair. We suggest that endogenous stimulation of IL-12 may protect the skin from UV-induced immunosuppression, DNA damage, and, ultimately, the risk of photocarcinogenesis. Taken together, this information suggests that augmentation of IL-12 should be considered as a strategy for the prevention and treatment of photocarcinogenesis.

  6. Interleukin-12-secreting human papillomavirus type 16-transformed cells provide a potent cancer vaccine that generates E7-directed immunity.

    PubMed

    Hallez, S; Detremmerie, O; Giannouli, C; Thielemans, K; Gajewski, T F; Burny, A; Leo, O

    1999-05-01

    The development of a vaccine that would be capable of preventing or curing the (pre)cancerous lesions induced by genital oncogenic human papillomaviruses (HPVs) is the focus of much research. Many studies are presently evaluating vaccines based on the viral E6 and E7 oncoproteins, both of which are continually expressed by tumor cells. The success of a cancer vaccine relies, in large part, on the induction of a tumor-specific Th1-type immunity. In this study, we have evaluated the ability of B7-related and/or interleukin-12 (IL-12)-expressing, non-immunogenic murine HPV16-transformed BMK-16/myc cells, to achieve this goal. BMK-16/myc cells engineered to express surface B7-1 or B7-2 molecules remain tumorigenic in syngeneic BALB/c mice, suggesting that expression of these molecules alone is not sufficient to induce tumor regression. In contrast, mice injected with tumor cells engineered to secrete IL-12 remained tumor-free, demonstrating that IL-12 expression is sufficient to induce tumor rejection. IL-12-secreting BMK-16/myc cells were further shown to induce potent and specific long-term tumor resistance, even after irradiation. B7-1 was found to slightly but systematically improve anti-tumor immunity elicited by IL-12-secreting BMK-16/myc cells. Injection of irradiated B7-1/IL-12+ BMK-16/myc cells generates long-lasting, Th1-type, BMK-16/myc-directed immunity in tumor-resistant mice. These mice display a memory-type, E7-specific, cell-mediated immune response, which is potentially significant for clinical applications. PMID:10209958

  7. Combined gene therapy of endostatin and interleukin 12 with polyvinylpyrrolidone induces a potent antitumor effect on hepatoma

    PubMed Central

    Li, Pei-Yuan; Lin, Ju-Sheng; Feng, Zuo-Hua; He, Yu-Fei; Zhou, He-Jun; Ma, Xin; Cai, Xiao-Kun; Tian, De-An

    2004-01-01

    AIM: To study the antitumor effect of combined gene therapy of endostatin and interleukin 12 (IL-12) with polyvinylpyrrolidone (PVP) on mouse transplanted hepatoma. METHODS: Mouse endostatin eukaryotic plasmid (pSecES) with a mouse Igκ signal sequence inside and mouse IL-12 eukaryotic plasmid (pmIL-12) were transfected into BHK-21 cells respectively. Endostatin and IL-12 were assayed by ELISA from the supernant and used to culture endothelial cells and spleen lymphocytes individually. Proliferation of the latter was evaluated by MTT. H22 cells were inoculated into the leg muscle of mouse, which was injected intratumorally with pSecES/PVP, pmIL-12/PVP or pSecES + pmIL-12/PVP repeatedly. Tumor weight, serum endostatin and serum IL-12 were assayed. Tumor infiltrating lymphocytes, tumor microvessel density and apoptosis of tumor cells were also displayed by HE staining, CD31 staining and TUNEL. RESULTS: Endostatin and IL-12 were secreted after transfection, which could inhibit the proliferation of endothelial cells or promote the proliferation of spleen lymphocytes. Tumor growth was highly inhibited by 91.8% after injection of pSecES + pmIL-12/PVP accompanied by higher serum endostatin and IL-12, more infiltrating lymphocytes, fewer tumor vessels and more apoptosis cells compared with injection of pSecES/PVP, pmIL-12/PVP or vector/PVP. CONCLUSION: Mouse endostatin gene and IL-12 gene can be expressed after intratumoral injection with PVP. Angiogenesis of hepatoma can be inhibited synergisticly, lymphocytes can be activated to infiltrate, and tumor cells are induced to apoptosis. Hepatoma can be highly inhibited or eradiated. PMID:15259064

  8. Endogenous Interleukin-12 Is Not Required for Resolution of Chlamydophila abortus (Chlamydia psittaci Serotype 1) Infection in Mice

    PubMed Central

    Del Río, Laura; Buendía, Antonio J.; Sánchez, Joaquín; Gallego, María C.; Caro, María R.; Ortega, Nieves; Seva, Juan; Pallarés, Francisco J.; Cuello, Francisco; Salinas, Jesús

    2001-01-01

    A Th1 immune response involving gamma interferon (IFN-γ) production is required to eliminate Chlamydophila abortus infections. In this study, the role of interleukin-12 (IL-12) in protecting against C. abortus infection was investigated using IL-12−/− and wild-type (WT) C57BL/6 mice to determine the role of this Th1-promoting cytokine. IL-12−/− mice were able to eliminate the C. abortus infection in a primary infection. However, there was a delay in the clearance of bacteria when IL-12−/− mice were infected with a sublethal dose of C. abortus, the delay being associated with a lower production of IFN-γ. The low level of IFN-γ was essential for survival of IL-12−/− infected mice. Both WT and IL-12−/− mice developed a Th1 immune response against C. abortus infection, since they both produced IFN-γ and immunoglobulin G2a antibody isotype. In addition, when mice were given a secondary infectious challenge with C. abortus, a protective host response which resolved the secondary infection was developed by both WT and IL-12−/− mice. The lack of IL-12 resulted in few infiltrating CD4+ T cells in the liver relative to the number in WT mice, although the number of CD8+ T cells was slightly higher. The more intense Th1 response presented by WT mice may have a pathogenic effect, as the animals showed higher morbidity after the infection. In conclusion, these results suggest that although IL-12 expedites the clearance of C. abortus infection, this cytokine is not essential for the establishment of a protective host response against the infection. PMID:11447154

  9. Tumor Infiltrating Lymphocytes Genetically Engineered with an Inducible Gene Encoding Interleukin-12 for the Immunotherapy of Metastatic Melanoma

    PubMed Central

    Zhang, Ling; Morgan, Richard A.; D.Beane, Joal; Zheng, Zhili; Dudley, Mark E.; Kassim, Sadik H.; Nahvi, Azam V.; Ngo, Lien T.; Sherry, Richard M.; Phan, Giao Q.; Hughes, Marybeth S.; Kammula, Udai S.; Feldman, Steven A.; Toomey, Mary Ann; Kerkar, Sid. P.; Restifo, Nicholas P.; Yang, James C.; Rosenberg, Steven A.

    2015-01-01

    Purpose Infusion of interleukin-12 (IL-12) can mediate anti-tumor immunity in animal models, yet its systemic administration to patients with cancer results in minimal efficacy and severe toxicity. Here, we evaluated the anti-tumor activity of adoptively transferred human tumor infiltrating lymphocytes (TIL) genetically engineered to secrete single-chain IL-12 selectively at the tumor site. Experimental design Thirty-three patients with metastatic melanoma were treated in a cell-dose escalation trial of autologous TIL transduced with a gene encoding a single chain IL-12 driven by a nuclear factor of activated T cells promoter (NFAT.IL12). No IL-2 was administered. Results The administration of 0.001-0.1 X 109 NFAT.IL12 transduced TIL to 17 patients resulted in a single objective response (5.9%). However, at doses between 0.3-3 X 109 cells, 10 of 16 patients (63%) exhibited objective clinical responses. The responses tended to be short and the administered IL-12 producing cells rarely persisted at one month. Increasing cell doses were associated with high serum levels of IL-12 and gamma-interferon as well as clinical toxicities including liver dysfunction, high fevers and sporadic life threatening hemodynamic instability. Conclusions In this first-in-man trial, administration of TIL transduced with an inducible IL-12 gene mediated tumor responses in the absence of IL-2 administration using cell doses 10-100 fold lower than conventional TIL. However, due to toxicities, likely attributable to the secreted IL-12, further refinement will be necessary before this approach can be safely utilized in the treatment of cancer patients. PMID:25695689

  10. Tumor necrosis factor alpha and interleukin-12 contribute to resistance to the intracellular bacterium Brucella abortus by different mechanisms.

    PubMed Central

    Zhan, Y; Liu, Z; Cheers, C

    1996-01-01

    Both interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-alpha) are produced early in intracellular bacterial infection. Depletion of either IL-12 or TNF-alpha by a single injection of specific antibody 4 h before the injection of Brucella abortus 19 led to the exacerbation of infection 2 weeks later. Whereas the effect of IL-12 depletion on resistance was persistent and exacerbation was still significant 6 weeks later, the bacterial numbers in mice depleted of TNF-alpha were similar to the bacterial numbers in control infected mice by 6 weeks postinfection. Massive splenomegaly, which is often seen in 2-week Brucella-infected mice, was not observed in IL-12- or TNF-alpha-depleted mice. Both IL-12- and TNF-alpha-depleted mice showed reduced cell accumulation in the spleen compared with the massive cell accumulation in control infected mice. Granuloma formation in livers was much reduced in IL-12-depleted mice but not in TNF-alpha-depleted mice. Gamma interferon (IFN-gamma) production by cells from TNF-alpha-depleted mice was not significantly different from that of cells from control infected mice. In contrast, the production of IFN-gamma by both CD4+ and CD8+ T cells from IL-12-depleted mice was greatly reduced, compared with that from control infected mice. This effect was still observed when the antibody injection was delayed for up to 7 days postinfection, but injections of anti-IL-12 antibody into mice with established Brucella infection had no significant effect on IFN-gamma production by T cells. Taken together, these results suggested that IL-12 contributed to resistance mainly via an IFN-gamma-dependent pathway and had a profound effect on the induction of acquired cellular resistance. In contrast, TNF-alpha was involved in resistance possibly via direct action on effector cells and may not be essential for the induction of acquired cellular resistance. PMID:8698508

  11. Natural Killer Cells and Helicobacter pylori Infection: Bacterial Antigens and Interleukin-12 Act Synergistically To Induce Gamma Interferon Production

    PubMed Central

    Yun, Cheol H.; Lundgren, Anna; Azem, Josef; Sjöling, Åsa; Holmgren, Jan; Svennerholm, Ann-Mari; Lundin, B. Samuel

    2005-01-01

    Helicobacter pylori is known to induce a local immune response, which is characterized by activation of lymphocytes and the production of IFN-γ in the stomach mucosa. Since not only T cells, but also natural killer (NK) cells, are potent producers of gamma interferon (IFN-γ), we investigated whether NK cells play a role in the immune response to H. pylori infection. Our results showed that NK cells were present in both the gastric and duodenal mucosae but that H. pylori infection did not affect the infiltration of NK cells into the gastrointestinal area. Furthermore, we could show that NK cells could be activated directly by H. pylori antigens, as H. pylori bacteria, as well as lysate from H. pylori, induced the secretion of IFN-γ by NK cells. NK cells were also activated without direct contact when separated from the bacteria by an epithelial cell layer, indicating that the activation of NK cells by H. pylori can also occur in vivo, in the infected stomach mucosa. Moreover, the production of IFN-γ by NK cells was greatly enhanced when a small amount of interleukin-12 (IL-12) was added, and this synergistic effect was associated with increased expression of the IL-12 receptor β2. It was further evident that bacterial lysate alone was sufficient to induce the activation of cytotoxicity-related molecules. In conclusion, we demonstrated that NK cells are present in the gastroduodenal mucosa of humans and that NK cells produce high levels of IFN-γ when stimulated with a combination of H. pylori antigen and IL-12. We propose that NK cells play an active role in the local immune response to H. pylori infection. PMID:15731046

  12. RNA of Enterococcus faecalis Strain EC-12 Is a Major Component Inducing Interleukin-12 Production from Human Monocytic Cells

    PubMed Central

    Nishibayashi, Ryoichiro; Inoue, Ryo; Harada, Yuri; Watanabe, Takumi; Makioka, Yuko; Ushida, Kazunari

    2015-01-01

    Interleukin-12 (IL-12) is an important cytokine for the immunomodulatory effects of lactic acid bacteria (LAB). Using murine immune cells, we previously reported that the RNA of Enterococcus faecalis EC-12, a LAB strain exerting probiotic-like beneficial effects, is the major IL-12-inducing immunogenic component. However, it was recently revealed that bacterial RNA can be a ligand for Toll-like receptor (TLR) 13, which is only expressed in mice. Because TLR13 is not expressed in humans, the immuno-stimulatory and -modulatory effects of LAB RNA in human cells should be augmented excluding TLR13 contribution. In experiment 1 of this study, the role of LAB RNA in IL-12 induction in human immune cells was studied using three LAB strains, E.faecalis EC-12, Lactobacillus gasseri JCM5344, and Bifidobacterium breve JCM1192. RNase A treatment of heat-killed LAB significantly decreased the IL-12 production of human peripheral blood mononuclear cells on stimulation, while RNase III treatment revealed virtually no effects. Further, IL-12 production against heat-killed E. faecalis EC-12 was abolished by depleting monocytes. These results demonstrated that single stranded RNA (ssRNA) of LAB is a strong inducer of IL-12 production from human monocytes. In experiment 2, major receptor for ssRNA of E. faecalis EC-12 was identified using THP-1 cells, a human monocytic cell line. The type of RNA molecules of E. faecalis EC-12 responsible for IL-12 induction was also identified. IL-12 production induced by the total RNA of E. faecalis EC-12 was significantly reduced by the treatment of siRNA for TLR8 but not for TLR7. Furthermore, both 23S and 16S rRNA, but not mRNA, of E. faecalis EC-12 markedly induced IL-12 production from THP-1 cells. These results suggested that the recognition of ssRNA of E. faecalis EC-12 was mediated by TLR8 and that rRNA was the RNA molecule that exhibited IL-12-inducing ability in human cells. PMID:26083838

  13. RNA of Enterococcus faecalis Strain EC-12 Is a Major Component Inducing Interleukin-12 Production from Human Monocytic Cells.

    PubMed

    Nishibayashi, Ryoichiro; Inoue, Ryo; Harada, Yuri; Watanabe, Takumi; Makioka, Yuko; Ushida, Kazunari

    2015-01-01

    Interleukin-12 (IL-12) is an important cytokine for the immunomodulatory effects of lactic acid bacteria (LAB). Using murine immune cells, we previously reported that the RNA of Enterococcus faecalis EC-12, a LAB strain exerting probiotic-like beneficial effects, is the major IL-12-inducing immunogenic component. However, it was recently revealed that bacterial RNA can be a ligand for Toll-like receptor (TLR) 13, which is only expressed in mice. Because TLR13 is not expressed in humans, the immuno-stimulatory and -modulatory effects of LAB RNA in human cells should be augmented excluding TLR13 contribution. In experiment 1 of this study, the role of LAB RNA in IL-12 induction in human immune cells was studied using three LAB strains, E.faecalis EC-12, Lactobacillus gasseri JCM5344, and Bifidobacterium breve JCM1192. RNase A treatment of heat-killed LAB significantly decreased the IL-12 production of human peripheral blood mononuclear cells on stimulation, while RNase III treatment revealed virtually no effects. Further, IL-12 production against heat-killed E. faecalis EC-12 was abolished by depleting monocytes. These results demonstrated that single stranded RNA (ssRNA) of LAB is a strong inducer of IL-12 production from human monocytes. In experiment 2, major receptor for ssRNA of E. faecalis EC-12 was identified using THP-1 cells, a human monocytic cell line. The type of RNA molecules of E. faecalis EC-12 responsible for IL-12 induction was also identified. IL-12 production induced by the total RNA of E. faecalis EC-12 was significantly reduced by the treatment of siRNA for TLR8 but not for TLR7. Furthermore, both 23S and 16S rRNA, but not mRNA, of E. faecalis EC-12 markedly induced IL-12 production from THP-1 cells. These results suggested that the recognition of ssRNA of E. faecalis EC-12 was mediated by TLR8 and that rRNA was the RNA molecule that exhibited IL-12-inducing ability in human cells. PMID:26083838

  14. Irsogladine Maleate Prevents Colitis in Interleukin-10 Gene-Deficient Mice by Reducing Interleukin-12 and -23 Production.

    PubMed

    Nakagawa, Tomoo; Katsuno, Tatsuro; Noguchi, Yoshiko; Mandai, Yasushi; Yoshihama, Sayuri; Saito, Keiko; Maruoka, Daisuke; Matsumura, Tomoaki; Arai, Makoto; Yokosuka, Osamu

    2015-01-01

    Irsogladine maleate (2,4-diamino-6-[2,5-dichlorophenyl]-s-triazine maleate; IM), an anti-peptic ulcer drug, may have a protective effect on the gastrointestinal mucosa. This study investigated the effects of IM on spontaneous colitis in interleukin-10 gene-deficient (IL-10(-/-)) mice. Five-week-old IL-10(-/-) mice were fed a control diet or one containing 100 ppm of IM for 10 weeks. Colonic tissues were evaluated morphologically and histologically. J774A.1 murine monocyte/macrophage cells were incubated with IM after lipopolysaccharide stimulation. mRNA expression was assessed by quantitative polymerase chain reaction (PCR) and protein concentration by enzyme-linked immunosorbent assay (ELISA). Colonic length, weight, and histological scores clearly demonstrated that spontaneous colitis was prevented in IL-10(-/-) mice fed a diet containing IM compared with those fed control diet. Levels of tumor necrosis factor-alpha (TNF-α) (-2.5-fold), IL-1β (-5.4), interferon-gamma (IFN-γ) (-4.5), IL-17 (-113.0), IL-12p35 (-21.0), IL-12p40 (-3.4), and IL-23p19 (-4.2) mRNA expression were significantly decreased in the colonic tissues of IM-treated animals, suggesting that oral treatment with IM suppressed the T-helper (Th)1/Th17 immune response in the colonic mucosa. An in vitro study using monocyte/macrophage cells to clarify the pharmacological action of IM indicated that IL-12p40 and IL-23p19 mRNA expression levels were dose-dependently decreased by IM treatment. ELISA showed that IL-12p40 and IL-23 protein secretion were significantly decreased by IM in a dose-dependent manner. Oral treatment with IM prevented spontaneous colitis in IL-10(-/-) mice by suppressing the colonic mucosal Th1/Th17 immune response through inhibition of IL-12 and -23 production in monocyte/macrophage cells. PMID:26521820

  15. A covalent homodimer probing early oligomers along amyloid aggregation.

    PubMed

    Halabelian, Levon; Relini, Annalisa; Barbiroli, Alberto; Penco, Amanda; Bolognesi, Martino; Ricagno, Stefano

    2015-01-01

    Early oligomers are crucial in amyloid aggregation; however, due to their transient nature they are among the least structurally characterized species. We focused on the amyloidogenic protein beta2-microglobulin (β2m) whose early oligomers are still a matter of debate. An intermolecular interaction between D strands of facing β2m molecules was repeatedly observed, suggesting that such interface may be relevant for β2m dimerization. In this study, by mutating Ser33 to Cys, and assembling the disulphide-stabilized β2m homodimer (DimC33), such DD strand interface was locked. Although the isolated DimC33 display a stability similar to wt β2m under native conditions, it shows enhanced amyloid aggregation propensity. Three distinct crystal structures of DimC33 suggest that dimerization through the DD interface is instrumental for enhancing DimC33 aggregation propensity. Furthermore, the crystal structure of DimC33 in complex with the amyloid-specific dye Thioflavin-T pinpoints a second interface, which likely participates in the first steps of β2m aggregation. The present data provide new insight into β2m early steps of amyloid aggregation. PMID:26420657

  16. A covalent homodimer probing early oligomers along amyloid aggregation

    PubMed Central

    Halabelian, Levon; Relini, Annalisa; Barbiroli, Alberto; Penco, Amanda; Bolognesi, Martino; Ricagno, Stefano

    2015-01-01

    Early oligomers are crucial in amyloid aggregation; however, due to their transient nature they are among the least structurally characterized species. We focused on the amyloidogenic protein beta2-microglobulin (β2m) whose early oligomers are still a matter of debate. An intermolecular interaction between D strands of facing β2m molecules was repeatedly observed, suggesting that such interface may be relevant for β2m dimerization. In this study, by mutating Ser33 to Cys, and assembling the disulphide-stabilized β2m homodimer (DimC33), such DD strand interface was locked. Although the isolated DimC33 display a stability similar to wt β2m under native conditions, it shows enhanced amyloid aggregation propensity. Three distinct crystal structures of DimC33 suggest that dimerization through the DD interface is instrumental for enhancing DimC33 aggregation propensity. Furthermore, the crystal structure of DimC33 in complex with the amyloid-specific dye Thioflavin-T pinpoints a second interface, which likely participates in the first steps of β2m aggregation. The present data provide new insight into β2m early steps of amyloid aggregation. PMID:26420657

  17. Vector description of electric and hydrophobic interactions in protein homodimers.

    PubMed

    Mozo-Villarías, Angel; Cedano, Juan; Querol, Enrique

    2016-05-01

    This article describes the formation of homodimers from their constituting monomers, based on the rules set by a simple model of electric and hydrophobic interactions. These interactions are described in terms of the electric dipole moment (D) and hydrophobic moment vectors (H) of proteins. The distribution of angles formed by the two dipole moments of monomers constituting dimers were analysed, as well as the distribution of angles formed by the two hydrophobic moments. When these distributions were fitted to Gaussian curves, it was found that for biological dimers, the D vectors tend mostly to adopt a perpendicular arrangement with respect to each other, in which the constituting dipoles have the least interaction. A minor population tends towards an antiparallel arrangement implying maximum electric attraction. Also in biological dimers, the H vectors of most monomers tend to interact in such a way that the total hydrophobic moment of the dimer increases with respect to those of the monomers. This shows that hydrophobic moments have a tendency to align. In dimers originating in the crystallisation process, the distribution of angles formed by both hydrophobic and electric dipole moments appeared rather featureless, probably because of unspecific interactions in the crystallisation processes. The model does not describe direct interactions between H and D vectors although the distribution of angles formed by both vectors in dimers was analysed. It was found that in most cases these angles tended to be either small (both moments aligned parallel to each other) or large (antiparallel disposition). PMID:26658743

  18. Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications.

    PubMed

    Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin

    2016-04-21

    Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO2C(CH2)nCO2(-)[HO2C(CH2)nCO2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that upon formation of the dimer complexes the electron binding energies increase by 1.3-1.7 eV (30.0-39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with the previously studied HSO4(-)[HO2C(CH2)2CO2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO2C(CH2)2CO2(-)[HO2C(CH2)2CO2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids but also can promote the formation of homogeneous complexes by involving dicarboxylic acids themselves. PMID:27032015

  19. Chemical shift imprint of intersubunit communication in a symmetric homodimer.

    PubMed

    Falk, Bradley T; Sapienza, Paul J; Lee, Andrew L

    2016-08-23

    Allosteric communication is critical for protein function and cellular homeostasis, and it can be exploited as a strategy for drug design. However, unlike many protein-ligand interactions, the structural basis for the long-range communication that underlies allostery is not well understood. This lack of understanding is most evident in the case of classical allostery, in which a binding event in one protomer is sensed by a second symmetric protomer. A primary reason why study of interdomain signaling is challenging in oligomeric proteins is the difficulty in characterizing intermediate, singly bound species. Here, we use an NMR approach to isolate and characterize a singly ligated state ("lig1") of a homodimeric enzyme that is otherwise obscured by rapid exchange with apo and saturated forms. Mixed labeled dimers were prepared that simultaneously permit full population of the lig1 state and isotopic labeling of either protomer. Direct visualization of peaks from lig1 yielded site-specific ligand-state multiplets that provide a convenient format for assessing mechanisms of intersubunit communication from a variety of NMR measurements. We demonstrate this approach on thymidylate synthase from Escherichia coli, a homodimeric enzyme known to be half-the-sites reactive. Resolving the dUMP1 state shows that active site communication occurs not upon the first dUMP binding, but upon the second. Surprisingly, for many sites, dUMP1 peaks are found beyond the limits set by apo and dUMP2 peaks, indicating that binding the first dUMP pushes the enzyme ensemble to further conformational extremes than the apo or saturated forms. The approach used here should be generally applicable to homodimers. PMID:27466406

  20. Structural Heterogeneity in Transmembrane Amyloid Precursor Protein Homodimer Is a Consequence of Environmental Selection

    PubMed Central

    2015-01-01

    The 99 amino acid C-terminal fragment of amyloid precursor protein (C99), consisting of a single transmembrane (TM) helix, is known to form homodimers. Homodimers can be processed by γ-secretase to produce amyloid-β (Aβ) protein, which is implicated in Alzheimer’s disease (AD). While knowledge of the structure of C99 homodimers is of great importance, experimental NMR studies and simulations have produced varying structural models, including right-handed and left-handed coiled-coils. In order to investigate the structure of this critical protein complex, simulations of the C9915–55 homodimer in POPC membrane bilayer and DPC surfactant micelle environments were performed using a multiscale approach that blends atomistic and coarse-grained models. The C9915–55 homodimer adopts a dominant right-handed coiled-coil topology consisting of three characteristic structural states in a bilayer, only one of which is dominant in the micelle. Our structural study, which provides a self-consistent framework for understanding a number of experiments, shows that the energy landscape of the C99 homodimer supports a variety of slowly interconverting structural states. The relative importance of any given state can be modulated through environmental selection realized by altering the membrane or micelle characteristics. PMID:24926593

  1. Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers

    PubMed Central

    Ghosh, Ritwik; Narasanna, Archana; Wang, Shizhen Emily; Liu, Shuying; Chakrabarty, Anindita; Balko, Justin M.; González-Angulo, Ana María; Mills, Gordon B.; Penuel, Elicia; Winslow, John; Sperinde, Jeff; Dua, Rajiv; Pidaparthi, Sailaja; Mukherjee, Ali; Leitzel, Kim; Kostler, Wolfgang J.; Lipton, Allan; Bates, Michael; Arteaga, Carlos L.

    2011-01-01

    In breast cancer cells with HER2 gene amplification, HER2 receptors exist on the cell surface as monomers, homodimers and heterodimers with EGFR/HER3. The therapeutic antibody trastuzumab, an approved therapy for HER2+ breast cancer, cannot block ligand-induced HER2 heterodimers, suggesting it cannot effectively inhibit HER2 signaling. Hence, HER2 oligomeric states may predict the odds of a clinical response to trastuzumab in HER2-driven tumors. To test this hypothesis, we generated non-transformed human MCF10A mammary epithelial cells stably expressing a chimeric HER2-FKBP molecule that could be conditionally induced to homodimerize by adding the FKBP ligand AP1510, or instead induced to heterodimerize with EGFR or HER3 by adding the heterodimer ligands EGF/TGFα or heregulin. AP1510, EGF, and heregulin each induced growth of MCF10A cells expressing HER2-FKBP. As expected, trastuzumab inhibited homodimer-mediated but not heterodimer-mediated cell growth. In contrast, the HER2 antibody pertuzumab, which blocks HER2 heterodimerization, inhibited growth induced by heregulin but not AP1510. Lastly, HER2/EGFR tyrosine kinase inhibitor lapatinib blocked both homodimer- and heterodimer-induced growth. AP1510 triggered phosphorylation of Erk1/2 but not AKT, whereas trastuzumab inhibited AP1510-induced Erk1/2 phosphorylation and Shc-HER2 homodimer binding, but not TGFα-induced AKT phosphorylation. Consistent with these observations, high levels of HER2 homodimers correlated with longer time to progression following trastuzumab therapy in a cohort of HER2-overexpressing patients. Together, our findings corroborate the hypothesis that HER2 oligomeric states regulate HER2 signaling, also arguing that trastuzumab sensitivity of homodimers reflects an inability to activate the PI3K/AKT pathway. One of the most important clinical implications of our results is that high levels of HER2 homodimers may predict a positive response to trastuzumab. PMID:21324925

  2. Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers.

    PubMed

    Ghosh, Ritwik; Narasanna, Archana; Wang, Shizhen Emily; Liu, Shuying; Chakrabarty, Anindita; Balko, Justin M; González-Angulo, Ana María; Mills, Gordon B; Penuel, Elicia; Winslow, John; Sperinde, Jeff; Dua, Rajiv; Pidaparthi, Sailaja; Mukherjee, Ali; Leitzel, Kim; Kostler, Wolfgang J; Lipton, Allan; Bates, Michael; Arteaga, Carlos L

    2011-03-01

    In breast cancer cells with HER2 gene amplification, HER2 receptors exist on the cell surface as monomers, homodimers, and heterodimers with EGFR/HER3. The therapeutic antibody trastuzumab, an approved therapy for HER2(+) breast cancer, cannot block ligand-induced HER2 heterodimers, suggesting it cannot effectively inhibit HER2 signaling. Hence, HER2 oligomeric states may predict the odds of a clinical response to trastuzumab in HER2-driven tumors. To test this hypothesis, we generated nontransformed human MCF10A mammary epithelial cells stably expressing a chimeric HER2-FKBP molecule that could be conditionally induced to homodimerize by adding the FKBP ligand AP1510, or instead induced to heterodimerize with EGFR or HER3 by adding the heterodimer ligands EGF/TGFα or heregulin. AP1510, EGF, and heregulin each induced growth of MCF10A cells expressing HER2-FKBP. Trastuzumab inhibited homodimer-mediated but not heterodimer-mediated cell growth. In contrast, the HER2 antibody pertuzumab, which blocks HER2 heterodimerization, inhibited growth induced by heregulin but not AP1510. Lastly, the HER2/EGFR tyrosine kinase inhibitor lapatinib blocked both homodimer- and heterodimer-induced growth. AP1510 triggered phosphorylation of Erk1/2 but not AKT, whereas trastuzumab inhibited AP1510-induced Erk1/2 phosphorylation and Shc-HER2 homodimer binding, but not TGFα-induced AKT phosphorylation. Consistent with these observations, high levels of HER2 homodimers correlated with longer time to progression following trastuzumab therapy in a cohort of patients with HER2-overexpressing breast cancer. Together, our findings confirm the notion that HER2 oligomeric states regulate HER2 signaling, also arguing that trastuzumab sensitivity of homodimers may reflect their inability to activate the PI3K (phosphoinositide 3-kinase)/AKT pathway. A clinical implication of our results is that high levels of HER2 homodimers may predict a positive response to trastuzumab. PMID:21324925

  3. Examination of Sec22 Homodimer Formation and Role in SNARE-dependent Membrane Fusion*

    PubMed Central

    Flanagan, John J.; Mukherjee, Indrani; Barlowe, Charles

    2015-01-01

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein complexes play essential roles in catalyzing intracellular membrane fusion events although the assembly pathway and molecular arrangement of SNARE complexes in membrane fusion reactions are not well understood. Here we monitored interactions of the R-SNARE protein Sec22 through a cysteine scanning approach and detected efficient formation of cross-linked Sec22 homodimers in cellular membranes when cysteine residues were positioned in the SNARE motif or C terminus of the transmembrane domain. When specific Sec22 cysteine derivatives are present on both donor COPII vesicles and acceptor Golgi membranes, the formation of disulfide cross-links provide clear readouts on trans- and cis-SNARE arrangements during this fusion event. The Sec22 transmembrane domain was required for efficient homodimer formation and for membrane fusion suggesting a functional role for Sec22 homodimers. We propose that Sec22 homodimers promote assembly of higher-order SNARE complexes to catalyze membrane fusion. Sec22 is also reported to function in macroautophagy and in formation of endoplasmic reticulum-plasma membrane contact sites therefore homodimer assembly may regulate Sec22 activity across a range of cellular processes. PMID:25750128

  4. Structures of the Yeast Ribonucleotide Reductase Rnr2 and Rnr4 Homodimers

    SciTech Connect

    Sommerhalter, M.; Voegtli, W.C.; Perlstein, D.L.; Ge, J.; Stubbe, J.; Rosenzweig, A.C.

    2010-03-08

    Class I ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides. Eukaryotic RNRs comprise two subunits, the R1 subunit, which contains substrate and allosteric effector binding sites, and the R2 subunit, which houses a catalytically essential diiron-tyrosyl radical cofactor. In Saccharomyces cerevisiae, there are two variants of the R2 subunit, called Rnr2 and Rnr4. Rnr4 is unique in that it lacks three iron-binding residues conserved in all other R2s. Nevertheless, Rnr4 is required to activate Rnr2, and the functional species in vivo is believed to be a heterodimeric complex between the two proteins. The crystal structures of the Rnr2 and Rnr4 homodimers have been determined and are compared to that of the heterodimer. The homodimers are very similar to the heterodimer and to mouse R2 in overall fold, but there are several key differences. In the Rnr2 homodimer, one of the iron-binding helices, helix {alpha}B, is not well-ordered. In the heterodimer, interactions with a loop region connecting Rnr4 helices {alpha}A and {alpha}3 stabilize this Rnr2 helix, which donates iron ligand Asp 145. Sequence differences between Rnr2 and Rnr4 prevent the same interactions from occurring in the Rnr2 homodimer. These findings provide a structural rationale for why the heterodimer is the preferred complex in vivo. The active-site region in the Rnr4 homodimer reveals interactions not apparent in the heterodimer, supporting previous conclusions that this subunit does not bind iron. When taken together, these results support a model in which Rnr4 stabilizes Rnr2 for cofactor assembly and activity.

  5. Co-expression of interleukin 12 enhances antitumor effects of a novel chimeric promoter-mediated suicide gene therapy in an immunocompetent mouse model

    SciTech Connect

    Xu, Yu; Liu, Zhengchun; Kong, Haiyan; Sun, Wenjie; Liao, Zhengkai; Zhou, Fuxiang; Xie, Conghua; and others

    2011-09-09

    Highlights: {yields} A novel chimeric promoter consisting of CArG element and hTERT promoter was developed. {yields} The promoter was characterized with radiation-inducibility and tumor-specificity. {yields} Suicide gene system driven by the promoter showed remarkable cytotoxicity in vitro. {yields} Co-expression of IL12 enhanced the promoter mediated suicide gene therapy in vivo. -- Abstract: The human telomerase reverse transcriptase (hTERT) promoter has been widely used in target gene therapy of cancer. However, low transcriptional activity limited its clinical application. Here, we designed a novel dual radiation-inducible and tumor-specific promoter system consisting of CArG elements and the hTERT promoter, resulting in increased expression of reporter genes after gamma-irradiation. Therapeutic and side effects of adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic (IAA) system downstream of the chimeric promoter were evaluated in mice bearing Lewis lung carcinoma, combining with or without adenovirus-mediated interleukin 12 (IL12) gene driven by the cytomegalovirus promoter. The combination treatment showed more effective suppression of tumor growth than those with single agent alone, being associated with pronounced intratumoral T-lymphocyte infiltration and minor side effects. Our results suggest that the combination treatment with HRP/IAA system driven by the novel chimeric promoter and the co-expression of IL12 might be an effective and safe target gene therapy strategy of cancer.

  6. Single low-dose cyclophosphamide combined with interleukin-12 gene therapy is superior to a metronomic schedule in inducing immunity against colorectal carcinoma in mice

    PubMed Central

    Malvicini, Mariana; Alaniz, Laura; Bayo, Juan; Garcia, Mariana; Piccioni, Flavia; Fiore, Esteban; Atorrasagasti, Catalina; Aquino, Jorge B.; Matar, Pablo; Mazzolini, Guillermo

    2012-01-01

    The use of conventional cytotoxic agents at metronomic schedules, alone or in combination with targeted agents or immunotherapy, is being explored as a promising anticancer strategy. We previously reported a potent antitumor effect of a single low-dose cyclophosphamide and interleukin-12 (IL-12) gene therapy against advanced gastrointestinal carcinoma, in mice. Here, we assessed whether the delivery of IL-12 by gene therapy together with metronomic cyclophosphamide exerts antitumor effects in a murine model of colorectal carcinoma. This combination therapy was able, at least in part, to reverse immunosuppression, by decreasing the number of regulatory T cells (Tregs) as well as of splenic myeloid-derived suppressor cells (MDSCs). However, metronomic cyclophosphamide plus IL-12 gene therapy failed to increase the number of tumor-infiltrating T lymphocytes and, more importantly, to induce a specific antitumor immune response. With respect to this, cyclophosphamide at a single low dose displayed a superior anticancer profile than the same drug given at a metronomic schedule. Our results may have important implications in the design of new therapeutic strategies against colorectal carcinoma using cyclophosphamide in combination with immunotherapy. PMID:23170252

  7. Preclinical Evaluation of Oncolytic Δγ134.5 Herpes Simplex Virus Expressing Interleukin-12 for Therapy of Breast Cancer Brain Metastases

    PubMed Central

    Cody, James J.; Scaturro, Pietro; Cantor, Alan B.; Yancey Gillespie, G.; Parker, Jacqueline N.; Markert, James M.

    2012-01-01

    The metastasis of breast cancer to the brain and central nervous system (CNS) is a problem of increasing importance. As improving treatments continue to extend patient survival, the incidence of CNS metastases from breast cancer is on the rise. New treatments are needed, as current treatments are limited by deleterious side effects and are generally palliative. We have previously described an oncolytic herpes simplex virus (HSV), designated M002, which lacks both copies of the γ134.5 neurovirulence gene and carries a murine interleukin 12 (IL-12) expression cassette, and have validated its antitumor efficacy in a variety of preclinical models of primary brain tumors. However, M002 has not been yet evaluated for use against metastatic brain tumors. Here, we demonstrate the following: both human breast cancer and murine mammary carcinoma cells support viral replication and IL-12 expression from M002; M002 replicates in and destroys breast cancer cells from a variety of histological subtypes, including “triple-negative” and HER2 overexpressing; M002 improves survival in an immunocompetent model more effectively than does a non-cytokine control virus. Thus, we conclude from this proof-of-principle study that a γ134.5-deleted IL-12 expressing oncolytic HSV may be a potential new therapy for breast cancer brain metastases. PMID:23346408

  8. Encapsulation and Characterization of Proton-Bound Amine Homodimers in a Water Soluble, Self-Assembled Supramolecular Host

    SciTech Connect

    Pluth, Michael; Fiedler, Dorothea; Mugridge, Jeffrey; Bergman, Robert; Raymond, Kenneth

    2008-10-01

    Cyclic amines can be encapsulated in a water-soluble self-assembled supramolecular host upon protonation. The hydrogen bonding ability of the cyclic amines, as well as the reduced degrees of rotational freedom, allows for the formation of proton-bound homodimers inside of the assembly which are otherwise not observable in aqueous solution. The generality of homodimer formation was explored with small N-alkyl aziridines, azetidines, pyrrolidines and piperidines. Proton-bound homodimer formation is observed for N-alkylaziridines (R = methyl, isopropyl, tert-butyl), N-alkylazetidines (R = isopropyl, tertbutyl), and N-methylpyrrolidine. At high concentration, formation of a proton-bound homotrimer is observed in the case of N-methylaziridine. The homodimers stay intact inside the assembly over a large concentration range, thereby suggesting cooperative encapsulation. Both G3(MP2)B3 and G3B3 calculations of the proton-bound homodimers were used to investigate the enthalpy of the hydrogen bond in the proton-bound homodimers and suggest that the enthalpic gain upon formation of the proton-bound homodimers may drive guest encapsulation.

  9. From Homodimer to Heterodimer and Back: Elucidating the TonB Energy Transduction Cycle

    PubMed Central

    Gresock, Michael G.; Kastead, Kyle A.

    2015-01-01

    ABSTRACT The TonB system actively transports large, scarce, and important nutrients through outer membrane (OM) transporters of Gram-negative bacteria using the proton gradient of the cytoplasmic membrane (CM). In Escherichia coli, the CM proteins ExbB and ExbD harness and transfer proton motive force energy to the CM protein TonB, which spans the periplasmic space and cyclically binds OM transporters. TonB has two activity domains: the amino-terminal transmembrane domain with residue H20 and the periplasmic carboxy terminus, through which it binds to OM transporters. TonB is inactivated by all substitutions at residue H20 except H20N. Here, we show that while TonB trapped as a homodimer through its amino-terminal domain retained full activity, trapping TonB through its carboxy terminus inactivated it by preventing conformational changes needed for interaction with OM transporters. Surprisingly, inactive TonB H20A had little effect on homodimerization through the amino terminus and instead decreased TonB carboxy-terminal homodimer formation prior to reinitiation of an energy transduction cycle. That result suggested that the TonB carboxy terminus ultimately interacts with OM transporters as a monomer. Our findings also suggested the existence of a separate equimolar pool of ExbD homodimers that are not in contact with TonB. A model is proposed where interaction of TonB homodimers with ExbD homodimers initiates the energy transduction cycle, and, ultimately, the ExbD carboxy terminus modulates interactions of a monomeric TonB carboxy terminus with OM transporters. After TonB exchanges its interaction with ExbD for interaction with a transporter, ExbD homodimers undergo a separate cycle needed to re-energize them. IMPORTANCE Canonical mechanisms of active transport across cytoplasmic membranes employ ion gradients or hydrolysis of ATP for energy. Gram-negative bacterial outer membranes lack these resources. The TonB system embodies a novel means of active transport

  10. Production and characterization of active recombinant interleukin-12/eGFP fusion protein in stably-transfected DF1 chicken cells.

    PubMed

    Wu, Hsing Chieh; Chen, Yu San; Shen, Pin Chun; Shien, Jui Hung; Lee, Long Huw; Chiu, Hua Hsien

    2015-01-01

    The adjuvant activity of chicken interleukin-12 (chIL-12) protein has been described as similar to that of mammalian IL-12. Recombinant chIL-12 can be produced using several methods, but chIL-12 production in eukaryotic cells is lower than that in prokaryotic cells. Stimulating compounds, such as dimethyl sulfoxide (DMSO), can be added to animal cell cultures to overcome this drawback. In this study, we constructed a cell line, DF1/chIL-12 which stably expressed a fusion protein, chIL-12 and enhanced green fluorescent protein (eGFP) connected by a (G4 S)3 linker sequence. Fusion protein production was increased when cells were cultured in the presence of DMSO. When 1 × 10(6) DF1/chIL-12 cells were inoculated in a T-175 flask containing 30 mL of media, incubated for 15 h, and further cultivated in the presence of 4% DMSO for 48 h, the production of total fusion protein was mostly enhanced compared with the production of total fusion protein by using cell lysates induced with DMSO at other concentrations. The concentrations of the unpurified and purified total fusion proteins in cell lysates were 2,781 ± 2.72 ng mL(-1) and 2,207 ± 3.28 ng mL(-1) , respectively. The recovery rate was 79%. The fusion protein stimulated chicken splenocytes to produce IFN-γ, which was measured using an enzyme-linked immunosorbent assay, in the culture supernatant, indicating that treating DF1/chIL-12 cells with DMSO or producing chIL-12 in a fusion protein form does not have adverse effects on the bioactivity of chIL-12. PMID:25583174

  11. Silibinin Inhibits Ultraviolet B Radiation-Induced DNA-Damage and Apoptosis by Enhancing Interleukin-12 Expression in JB6 Cells and SKH-1 Hairless Mouse Skin

    PubMed Central

    Narayanapillai, Sreekanth; Agarwal, Chapla; Deep, Gagan; Agarwal, Rajesh

    2013-01-01

    Recent studies have demonstrated silibinin efficacy against ultraviolet B (UVB)-induced skin carcinogenesis via different mechanisms in cell lines and animal models; however, its role in regulating interleukin-12 (IL-12), an immunomodulatory cytokine that reduces UVB-induced DNA damage and apoptosis, is not known. Here, we report that UVB irradiation causes caspase 3 and PARP cleavage and apoptosis, and addition of recombinant IL-12 or silibinin immediately after UVB significantly protects UVB-induced apoptosis in JB6 cells. IL-12 antibody-mediated blocking of IL-12 activity compromised the protective effects of both IL-12 and silibinin. Both silibinin and IL-12 also accelerated the repair of UVB-caused cyclobutane-pyrimidine dimers (CPDs) in JB6 cells. Additional studies confirmed that indeed silibinin causes a significant increase in IL-12 levels in UVB-irradiated JB6 cells as well as in mouse skin epidermis, and that similar to cell-culture findings, silibinin topical application immediately after UVB exposure causes a strong protection against UVB-induced TUNEL positive cells in epidermis possibly through a significantly accelerated repair of UVB-caused CPDs. Together, these findings for the first time provide an important insight regarding the pharmacological mechanism wherein silibinin induces endogenous IL-12 in its efficacy against UVB-caused skin damages. In view of the fact that an enhanced endogenous IL-12 level could effectively remove UVB-caused DNA damage and associated skin cancer, our findings suggest that the use of silibinin in UVB-damaged human skin would also be a practical and translational strategy to manage solar radiation-caused skin damages as well as skin cancer. PMID:23359305

  12. Chronic Helminth Infection Induces Alternatively Activated Macrophages Expressing High Levels of CCR5 with Low Interleukin-12 Production and Th2-Biasing Ability

    PubMed Central

    Rodríguez-Sosa, Miriam; Satoskar, Abhay R.; Calderón, Rodrigo; Gomez-Garcia, Lorena; Saavedra, Rafael; Bojalil, Rafael; Terrazas, Luis I.

    2002-01-01

    Helminth infections induce Th2-type biased immune responses. Although the mechanisms involved in this phenomenon are not yet clearly defined, antigen-presenting cells (APC) could play an important role in this process. Here, we have used peritoneal macrophages (F4/80+) recruited at different times after challenge with Taenia crassiceps as APC and tested their ability to regulate Th1/Th2 differentiation. Macrophages from acute infections produced high levels of interleukin-12 (IL-12) and nitric oxide (NO), paralleled with low levels of IL-6 and prostaglandin E2 (PGE2) and with the ability to induce strong antigen-specific CD4+ T-cell proliferation in response to nonrelated antigens. In contrast, macrophages from chronic infections produced higher levels of IL-6 and PGE2 and had suppressed production of IL-12 and NO, associated with a poor ability to induce antigen-specific proliferation in CD4+ T cells. Failure to induce proliferation was not due to a deficient expression of accessory molecules, since major histocompatibility complex class II, CD40, and B7-2 were up-regulated, together with CD23 and CCR5 as infection progressed. These macrophages from chronic infections were able to bias CD4+ T cells to produce IL-4 but not gamma interferon (IFN-γ), contrary to macrophages from acute infections. Blockade of B7-2 and IL-6 and inhibition of PGE2 failed to restore the proliferative response in CD4+ T cells. Furthermore, studies using STAT6−/− mice revealed that STAT6-mediated signaling was essential for the expansion of these alternatively activated macrophages. These data demonstrate that helminth infections can induce different macrophage populations that have Th2-biasing properties. PMID:12065507

  13. Therapeutic effect of interleukin 12 on mouse haemangiosarcomas is not associated with an increased anti-tumour cytotoxic T-lymphocyte activity.

    PubMed Central

    Vizler, C.; Rosato, A.; Calderazzo, F.; Quintieri, L.; Fruscella, P.; Wainstok de Calmanovici, R.; Mantovani, A.; Vecchi, A.; Zanovello, P.; Collavo, D.

    1998-01-01

    In syngeneic mice, the H5V polyoma middle-T oncogene-transformed endothelioma cell line induces Kaposi's sarcoma-like cavernous haemangiomas that regress transiently, probably because of an anti-tumour immune response, but eventually grow progressively and kill the host. To evaluate the generation of tumour-specific cytotoxic T lymphocytes (CTLs), spleen cells of tumour-bearing mice were restimulated with irradiated H5V cells in mixed leucocyte-tumour cell cultures. Tumour-specific CTLs were demonstrable only when low numbers of H5V stimulator cells were used (<1 H5V cell per 50 splenocytes). We found that H5V cells secrete immunosuppressive mediators because CTL generation was blocked when H5V cells culture supernatants were added to allogeneic mixed leucocyte cultures. As numerous tumour-derived immunosuppressive mediators may interfere with interleukin 12 (IL-12) production, we tested whether IL-12 treatment of the tumour-bearing mice would augment their immune response and thus suppress tumour growth. Indeed, IL-12 inhibited tumour growth and prevented mortality, but did not increase anti-H5V CTL generation either in vitro or in vivo. Moreover, the anti-tumour activity in IL-12-treated mice was abrogated by anti-interferon (IFN)-gamma monoclonal antibody (MAb) co-administration. These results strongly suggest that the anti-tumour effect of IL-12 is principally mediated by IFN-gamma release that in turn blocks H5V cell proliferation and induces the release of factors that suppress angiogenesis. PMID:9484826

  14. Depletion of myeloid-derived suppressor cells during interleukin-12 immunogene therapy does not confer a survival advantage in experimental malignant glioma

    PubMed Central

    Thaci, B; Ahmed, AU; Ulasov, IV; Wainwright, DA; Nigam, P; Auffinger, B; Tobias, AL; Han, Y; Zhang, L; Moon, K-S; Lesniak, MS

    2014-01-01

    Myeloid-derived suppressor cells (MDSCs) accumulate in the glioma microenvironment during tumor progression and promote immunosuppression. Interleukin-12 (IL-12) immunogene therapy can alter MDSCs toward an antigen-presenting cell phenotype and these mature cells can have a central role in antigen presentation. It remains unclear, however, how MDSC depletion can affect glioma immunotherapy. In this study, we generated a replication-deficient adenoviral vector, Ad.5/3.cRGD-mIL12p70, that transduces the GL261-based murine glioma cell line, resulting in the induction of biologically active, murine IL12p70 expression. Ex vivo, IL-12 expressed by GL261 cells induced interferon-γ synthesis in CD8 +T cells (P<0.001), CD4 +T cells (P =0.009) and natural killer cells (P =0.036). When injected 1 week after tumor implantation, Ad.5/3.cRGD-mIL12p70 successfully prolonged the survival of glioma-bearing mice. Sixty percent of animals treated with IL-12 immunotherapy were long-term survivors over 175 days, whereas all the control group animals expired by 40 days after tumor implantation (P =0.026). Mice receiving Ad.5/3.cRGD-mIL12p70 also accumulated 50% less MDSCs in the brain than the control group (P =0.007). Moreover, in the IL-12 group, MDSCs significantly overexpressed CD80 and major histocompatibility complex class II molecules (P =0.041). Depletion of MDSCs with Gr1 +antibody had no survival benefit induced by IL-12-mediated immunotherapy. Of note, IL-12 therapy increased the presence of myeloid dendritic cells (mDCs) in the glioma microenvironment (P =0.0069). Ultimately, the data show that in the context of IL-12 immunogene therapy, MDSCs are dispensable and mDCs may provide the majority of antigen presentation in the brain. PMID:24434573

  15. Depletion of myeloid-derived suppressor cells during interleukin-12 immunogene therapy does not confer a survival advantage in experimental malignant glioma.

    PubMed

    Thaci, B; Ahmed, A U; Ulasov, I V; Wainwright, D A; Nigam, P; Auffinger, B; Tobias, A L; Han, Y; Zhang, L; Moon, K-S; Lesniak, M S

    2014-01-01

    Myeloid-derived suppressor cells (MDSCs) accumulate in the glioma microenvironment during tumor progression and promote immunosuppression. Interleukin-12 (IL-12) immunogene therapy can alter MDSCs toward an antigen-presenting cell phenotype and these mature cells can have a central role in antigen presentation. It remains unclear, however, how MDSC depletion can affect glioma immunotherapy. In this study, we generated a replication-deficient adenoviral vector, Ad.5/3.cRGD-mIL12p70, that transduces the GL261-based murine glioma cell line, resulting in the induction of biologically active, murine IL12p70 expression. Ex vivo, IL-12 expressed by GL261 cells induced interferon-γ synthesis in CD8(+) T cells (P<0.001), CD4(+) T cells (P=0.009) and natural killer cells (P=0.036). When injected 1 week after tumor implantation, Ad.5/3.cRGD-mIL12p70 successfully prolonged the survival of glioma-bearing mice. Sixty percent of animals treated with IL-12 immunotherapy were long-term survivors over 175 days, whereas all the control group animals expired by 40 days after tumor implantation (P=0.026). Mice receiving Ad.5/3.cRGD-mIL12p70 also accumulated 50% less MDSCs in the brain than the control group (P=0.007). Moreover, in the IL-12 group, MDSCs significantly overexpressed CD80 and major histocompatibility complex class II molecules (P=0.041). Depletion of MDSCs with Gr1(+) antibody had no survival benefit induced by IL-12-mediated immunotherapy. Of note, IL-12 therapy increased the presence of myeloid dendritic cells (mDCs) in the glioma microenvironment (P=0.0069). Ultimately, the data show that in the context of IL-12 immunogene therapy, MDSCs are dispensable and mDCs may provide the majority of antigen presentation in the brain. PMID:24434573

  16. Interleukin 12B (IL12B) Genetic Variation and Pulmonary Tuberculosis: A Study of Cohorts from The Gambia, Guinea-Bissau, United States and Argentina

    PubMed Central

    Hill, Philip C.; Wejse, Christian; Bisseye, Cyrille; Olesen, Rikke; Edwards, Todd L.; Gilbert, John R.; Myers, Jamie L.; Stryjewski, Martin E.; Abbate, Eduardo; Estevan, Rosa; Hamilton, Carol D.; Tacconelli, Alessandra; Novelli, Giuseppe; Brunetti, Ercole; Aaby, Peter; Sodemann, Morten; Østergaard, Lars; Adegbola, Richard; Williams, Scott M.; Scott, William K.; Sirugo, Giorgio

    2011-01-01

    We examined whether polymorphisms in interleukin-12B (IL12B) associate with susceptibility to pulmonary tuberculosis (PTB) in two West African populations (from The Gambia and Guinea-Bissau) and in two independent populations from North and South America. Nine polymorphisms (seven SNPs, one insertion/deletion, one microsatellite) were analyzed in 321 PTB cases and 346 controls from Guinea-Bissau and 280 PTB cases and 286 controls from The Gambia. For replication we studied 281 case and 179 control African-American samples and 221 cases and 144 controls of European ancestry from the US and Argentina. First-stage single locus analyses revealed signals of association at IL12B 3′ UTR SNP rs3212227 (unadjusted allelic p = 0.04; additive genotypic p = 0.05, OR = 0.78, 95% CI [0.61–0.99]) in Guinea-Bissau and rs11574790 (unadjusted allelic p = 0.05; additive genotypic p = 0.05, OR = 0.76, 95% CI [0.58–1.00]) in The Gambia. Association of rs3212227 was then replicated in African-Americans (rs3212227 allelic p = 0.002; additive genotypic p = 0.05, OR = 0.78, 95% CI [0.61–1.00]); most importantly, in the African-American cohort, multiple significant signals of association (seven of the nine polymorphisms tested) were detected throughout the gene. These data suggest that genetic variation in IL12B, a highly relevant candidate gene, is a risk factor for PTB in populations of African ancestry, although further studies will be required to confirm this association and identify the precise mechanism underlying it. PMID:21339808

  17. Subtherapeutic doses of interleukin-15 augment the antitumor effect of interleukin-12 in a B16F10 melanoma model in mice.

    PubMed

    Lasek, W; Golab, J; Maśliński, W; Switaj, T; Bałkowiec, E Z; Stokłosa, T; Giermasz, A; Malejczyk, M; Jakóbisiak, M

    1999-09-01

    Interleukin-12 (IL-12) is a potent immunoregulatory cytokine that exhibits antitumor activity in many experimental tumor models. In the present study, we investigated the ability of IL-15, a cytokine sharing many functions of IL-2, to modulate antitumor effectiveness of IL-12 against B16F10 melanoma in mice. In a model of locally growing tumor, intratumoral (i.t.) administration of IL-12, in three cycles of five consecutive daily injections (0.1 mug) followed by 2 days of rest, led to considerable delay of tumor development but no curative response was achieved. When combined with IL-12, subtherapeutic doses of IL-15 (0.4 mug) pontentiated the antitumor effects of IL-12 and induced complete tumor regressions in 50% of mice. Similar results were obtained in a model in which tumor-bearing mice were intravenously co-injected with melanoma cells to induce metastases. Combined administration of IL-12 and IL-15 yielded greater antitumor activity than injections of either cytokine alone and resulted in prolonged survival of mice bearing locally growing tumor and metastases. Studies of immunological parameters in mice treated with both IL-12 and IL-15 have shown enhanced NK activity (against YAC-1 cells) in the spleen and stimulation of both NK activity and specific anti-B16F10 cytotoxic effector cells in tumor-draining lymph nodes (LN). The strong antitumor effect of the IL-12 + IL-15 combination correlated with a high serum level of IFN-gamma in the treated mice. Moreover, increased expression of IL-15Ralpha was demonstrated in LN lymphocytes isolated from mice injected with IL-12. This result together with findings of other authors showing enhanced expression of IL-12 receptor by IL-15 [1] suggests that the augmentation of the antitumor effect during the course of IL-12/IL-15-based therapy could result from reciprocal upregulation of receptors by both cytokines and synergistic effects on IFN-gamma induction. PMID:10477391

  18. Interleukin-12-Producing CD103+ CD11b− CD8+ Dendritic Cells Are Responsible for Eliciting Gut Intraepithelial Lymphocyte Response against Encephalitozoon cuniculi

    PubMed Central

    Moretto, Magali M.; Harrow, Danielle I.; Hawley, Teresa S.

    2015-01-01

    Microsporidia, which belong to the kingdom Fungi, are important opportunistic pathogens in HIV-infected populations and organ transplant recipients that are often associated with a broad range of symptoms, such as diarrhea, nephritis, and encephalitis. Natural infection occurs via the oral route, and as a consequence, gut immunity plays an important role in restricting the dissemination of these pathogens. Studies from our laboratory have reported that the pathogens induce a rapid intraepithelial lymphocyte (IEL) response important for host protection. Although mucosal dendritic cells (DC) are likely involved in triggering an antigen-specific IEL response, the specific subset(s) responsible has yet to be identified. Toward this goal, we demonstrate a very important role for mucosal CD11b− CD8+ DC in the initiation of an antigen-specific IEL in vivo. Effectively, after Encephalitozoon cuniculi infection, CD11b− CD8+ DC were activated in the lamina propria (LP) and acquired the ability to process retinoic acid (RA). However, this subset did not produce interleukin 12 (IL-12) but upregulated CD103, which is essential for migration to the mesenteric lymph nodes (MLN). Interestingly, CD103+ CD11b− CD8+ DC in the MLN, in addition to processing RA, also secreted IL-12 and were responsible for gut imprinting specificity on mucosal CD8 T cells. To the best of our knowledge, this is the first report describing the importance of MLN CD103+ CD11b− CD8+ DC isolated from infected animals in the generation of an IEL response against a live pathogen. PMID:26416905

  19. Altered interleukin-12 responsiveness in Th1 and Th2 cells is associated with the differential activation of STAT5 and STAT1.

    PubMed

    Gollob, J A; Murphy, E A; Mahajan, S; Schnipper, C P; Ritz, J; Frank, D A

    1998-02-15

    T-cell activation in response to interleukin-12 (IL-12) is mediated through signaling events that include the tyrosine phosphorylation of STAT4. IL-12 responsiveness and the ability of IL-12 to activate STAT4 is different in T cells induced to differentiate into a Th1 or Th2 phenotype. In this report, we show that STAT5, STAT1alpha, and STAT1beta, in addition to STAT4, are tyrosine phosphorylated in response to IL-12 in phytohemagglutinin (PHA)-activated human T cells. To understand how the activation of these STATs contributes to T-cell IL-12 responsiveness, we analyzed the IL-12-induced activation of STAT5 and STAT1 in T cells stimulated to undergo Th1 or Th2 differentiation. The IL-12-induced tyrosine phosphorylation of STAT5 and STAT1, but not STAT4, is augmented in T cells activated into Th1 cells with PHA + interferon-gamma (IFN-gamma) compared with T cells activated with PHA alone. STAT5 DNA binding induced by IL-12 is also augmented in T cells activated with PHA + IFN-gamma compared with T cells activated with PHA alone, whereas STAT4 DNA binding is not increased. In contrast, the IL-12-induced activation of these STATs is inhibited in T cells activated into Th2 cells with PHA + IL-4. The enhancement of IL-12 signaling by IFN-gamma is not a direct effect of IFN-gamma on T cells, but rather is mediated by IL-12 that is produced by antigen-presenting cells in response to IFN-gamma. This positive autoregulatory effect of IL-12 on the activation of select STATs correlates with an increase in T-cell IFN-gamma production in response to IL-12. These findings suggest that the activation of STAT5 and STAT1 may augment select STAT4-dependent functional responses to IL-12 in Th1 cells. PMID:9454765

  20. Polydnavirus Ank Proteins Bind NF-κB Homodimers and Inhibit Processing of Relish

    PubMed Central

    Strand, Michael R.

    2012-01-01

    Recent studies have greatly increased understanding of how the immune system of insects responds to infection, whereas much less is known about how pathogens subvert immune defenses. Key regulators of the insect immune system are Rel proteins that form Nuclear Factor-κB (NF-κB) transcription factors, and inhibitor κB (IκB) proteins that complex with and regulate NF-κBs. Major mortality agents of insects are parasitoid wasps that carry immunosuppressive polydnaviruses (PDVs). Most PDVs encode ank genes that share features with IκBs, while our own prior studies suggested that two ank family members from Microplitis demolitor bracovirus (MdBV) (Ank-H4 and Ank-N5) behave as IκB mimics. However, the binding affinities of these viral mimics for Rel proteins relative to endogenous IκBs remained unclear. Surface plasmon resonance (SPR) and co-immunoprecipitation assays showed that the IκB Cactus from Drosophila bound Dif and Dorsal homodimers more strongly than Relish homodimers. Ank-H4 and –N5 bound Dif, Dorsal and Relish homodimers with higher affinity than the IκB domain of Relish (Rel-49), and also bound Relish homodimers more strongly than Cactus. Ank-H4 and –N5 inhibited processing of compound Relish and reduced the expression of several antimicrobial peptide genes regulated by the Imd signaling pathway in Drosophila mbn2 cells. Studies conducted in the natural host Pseudoplusia includens suggested that parasitism by M. demolitor also activates NF-κB signaling and that MdBV inhibits this response. Overall, our data provide the first quantitative measures of insect and viral IκB binding affinities, while also showing that viral mimics disable Relish processing. PMID:22654665

  1. Assembly of Bak homodimers into higher order homooligomers in the mitochondrial apoptotic pore.

    PubMed

    Mandal, Tirtha; Shin, Seungjin; Aluvila, Sreevidya; Chen, Hui-Chen; Grieve, Carter; Choe, Jun-Yong; Cheng, Emily H; Hustedt, Eric J; Oh, Kyoung Joon

    2016-01-01

    In mitochondrial apoptosis, Bak is activated by death signals to form pores of unknown structure on the mitochondrial outer membrane via homooligomerization. Cytochrome c and other apoptotic factors are released from the intermembrane space through these pores, initiating downstream apoptosis events. Using chemical crosslinking and double electron electron resonance (DEER)-derived distance measurements between specific structural elements in Bak, here we clarify how the Bak pore is assembled. We propose that previously described BH3-in-groove homodimers (BGH) are juxtaposed via the 'α3/α5' interface, in which the C-termini of helices α3 and α5 are in close proximity between two neighboring Bak homodimers. This interface is observed concomitantly with the well-known 'α6:α6' interface. We also mapped the contacts between Bak homodimers and the lipid bilayer based on EPR spectroscopy topology studies. Our results suggest a model for the lipidic Bak pore, whereby the mitochondrial targeting C-terminal helix does not change topology to accommodate the lining of the pore lumen by BGH. PMID:27488021

  2. A Role for the PERIOD:PERIOD Homodimer in the Drosophila Circadian Clock

    PubMed Central

    Wolf, Eva; Stanewsky, Ralf

    2009-01-01

    Circadian clocks in eukaryotes rely on transcriptional feedback loops, in which clock genes repress their own transcription resulting in molecular oscillations with a period of ∼24 h. In Drosophila, the clock proteins Period (PER) and Timeless (TIM) operate in such a feedback loop, whereby they first accumulate in the cytoplasm of clock cells as a heterodimer. Nuclear translocation of the complex or the individual PER and TIM proteins is followed by repression of per and tim transcription, whereby PER seems to act as the prime repressor. We found that in addition to PER:TIM complexes, functional PER:PER homodimers exist in flies. Specific disruption of PER homodimers results in drastically impaired behavioral and molecular rhythmicity, pointing the biological importance of this clock protein complex. Analysis of PER subcellular distribution and repressor competence in the PER dimer mutant revealed defects in PER nuclear translocation and a disruption of rhythmic period transcription. The striking similarity of these phenotypes with that of reduced CKII activity suggests that the formation or function of the PER dimer is closely linked to this kinase. Our results confirm a previous structural model for PER and provide strong evidence that PER homodimers are important for circadian clock function. PMID:19402744

  3. Assembly of Bak homodimers into higher order homooligomers in the mitochondrial apoptotic pore

    PubMed Central

    Mandal, Tirtha; Shin, Seungjin; Aluvila, Sreevidya; Chen, Hui-Chen; Grieve, Carter; Choe, Jun-Yong; Cheng, Emily H.; Hustedt, Eric J.; Oh, Kyoung Joon

    2016-01-01

    In mitochondrial apoptosis, Bak is activated by death signals to form pores of unknown structure on the mitochondrial outer membrane via homooligomerization. Cytochrome c and other apoptotic factors are released from the intermembrane space through these pores, initiating downstream apoptosis events. Using chemical crosslinking and double electron electron resonance (DEER)-derived distance measurements between specific structural elements in Bak, here we clarify how the Bak pore is assembled. We propose that previously described BH3-in-groove homodimers (BGH) are juxtaposed via the ‘α3/α5’ interface, in which the C-termini of helices α3 and α5 are in close proximity between two neighboring Bak homodimers. This interface is observed concomitantly with the well-known ‘α6:α6’ interface. We also mapped the contacts between Bak homodimers and the lipid bilayer based on EPR spectroscopy topology studies. Our results suggest a model for the lipidic Bak pore, whereby the mitochondrial targeting C-terminal helix does not change topology to accommodate the lining of the pore lumen by BGH. PMID:27488021

  4. Synthesis of diketopiperazine-based carboline homodimers and in vitro growth inhibition of human carcinomas.

    PubMed

    Deveau, Amy M; Costa, Nancy E; Joshi, Elizabeth M; Macdonald, Timothy L

    2008-06-15

    Starting from d- or l-tryptophan, we have synthesized and characterized six compounds 2.29-2.31a and b that belong to a class of nitrogen heterocycles: the carboline-based homodimers. Each individual homodimer features a 1,3-trans relationship on each side of the central diketopiperazine core, but differs in absolute stereochemistry and also in substitution on the 4' and 4'' oxygens (-Bn, -CH(3), or -H). The in vitro cytotoxicity of the six compounds was evaluated by measuring the growth inhibition in NCI-H520 and PC-3 human carcinoma cells. Phenol 2.30a inhibited cancer cell growth approximately three times better than its enantiomer 2.30b and possessed a GI(50) comparable to the clinically used agent etoposide in both cell lines. We have concluded that both the stereochemistry imparted by l-tryptophan and the presence of hydroxy substituents at the 4' and 4'' positions are necessary to generate cytotoxic properties in the homodimer class. We are now employing 2.30a as a new lead compound in our efforts to discover improved indole-based cancer chemotherapeutics. PMID:18502124

  5. HemaMax™, a Recombinant Human Interleukin-12, Is a Potent Mitigator of Acute Radiation Injury in Mice and Non-Human Primates

    PubMed Central

    Basile, Lena A.; Ellefson, Dolph; Gluzman-Poltorak, Zoya; Junes-Gill, Katiana; Mar, Vernon; Mendonca, Sarita; Miller, Joseph D.; Tom, Jamie; Trinh, Alice; Gallaher, Timothy K.

    2012-01-01

    HemaMax, a recombinant human interleukin-12 (IL-12), is under development to address an unmet medical need for effective treatments against acute radiation syndrome due to radiological terrorism or accident when administered at least 24 hours after radiation exposure. This study investigated pharmacokinetics, pharmacodynamics, and efficacy of m-HemaMax (recombinant murine IL-12), and HemaMax to increase survival after total body irradiation (TBI) in mice and rhesus monkeys, respectively, with no supportive care. In mice, m-HemaMax at an optimal 20 ng/mouse dose significantly increased percent survival and survival time when administered 24 hours after TBI between 8–9 Gy (p<0.05 Pearson's chi-square test). This survival benefit was accompanied by increases in plasma interferon-γ (IFN-γ) and erythropoietin levels, recovery of femoral bone hematopoiesis characterized with the presence of IL-12 receptor β2 subunit–expressing myeloid progenitors, megakaryocytes, and osteoblasts. Mitigation of jejunal radiation damage was also examined. At allometrically equivalent doses, HemaMax showed similar pharmacokinetics in rhesus monkeys compared to m-HemaMax in mice, but more robustly increased plasma IFN-γ levels. HemaMax also increased plasma erythropoietin, IL-15, IL-18, and neopterin levels. At non-human primate doses pharmacologically equivalent to murine doses, HemaMax (100 ng/Kg and 250 ng/Kg) administered at 24 hours after TBI (6.7 Gy/LD50/30) significantly increased percent survival of HemaMax groups compared to vehicle (p<0.05 Pearson's chi-square test). This survival benefit was accompanied by a significantly higher leukocyte (neutrophils and lymphocytes), thrombocyte, and reticulocyte counts during nadir (days 12–14) and significantly less weight loss at day 12 compared to vehicle. These findings indicate successful interspecies dose conversion and provide proof of concept that HemaMax increases survival in irradiated rhesus monkeys by promoting

  6. Differences in binding behavior of (-)-epigallocatechin gallate to β-lactoglobulin heterodimers (AB) compared to homodimers (A) and (B).

    PubMed

    Keppler, Julia K; Martin, Dierk; Garamus, Vasil M; Schwarz, Karin

    2015-11-01

    The lipocalin β-lactoglobulin (β-LG) exists in different natural genetic variants--of which β-LG A and B are predominant in bovine milk. At physiological conditions the protein dimerizes--building homodimers of β-LG A and β-LG B and heterodimers of β-LG AB. Although β-LG is one of the most intensely characterized lipocalins, the interaction behavior of ligands with hetero- and homodimers of β-LG is largely unknown. The present findings revealed significant differences for hetero- and homodimers regarding ligand binding capacity as tested with a model ligand (i.e. surface binding (-)-epigallocatechin gallate (EGCG)). These findings were confirmed using FT-IR, where the addition of EGCG influenced the β-sheet backbone of homodimer A and B with significantly higher intensity compared to heterodimer AB. Further, shape analysis by SAXS revealed oligomerization of both types of dimers upon addition of EGCG; however, homodimer A and B produced significantly larger aggregates compared to the heterodimer AB. In summary, the present study revealed that EGCG showed significantly different interaction reactivity (binding sites, aggregation size and conformational changes) to the hetero and homodimers of β-LG in the order β-LG A > B > AB. The results suggest that conformational differences between homodimers and heterodimers strongly influence the EGCG binding ability. This may also occur with other polyphenols and ligands of β-LG and gives not only important information for β-LG binding studies, but may also apply for polymorphisms of other self-aggregating lipocalins. PMID:26038095

  7. PMLRAR homodimers: distinct DNA binding properties and heteromeric interactions with RXR.

    PubMed Central

    Perez, A; Kastner, P; Sethi, S; Lutz, Y; Reibel, C; Chambon, P

    1993-01-01

    Fusion proteins (named PMLRAR) between PML and the retinoic acid receptor alpha (RAR alpha) are generated as a result of the t(15;17) chromosomal translocation found in acute promyelocytic leukemia (APL). We show here that PMLRAR proteins exist in solution as stable homodimers whose formation is mediated by a presumptive coiled coil in the PML moiety. In contrast to RAR alpha, which requires heterodimerization with RXR for efficient DNA binding, PMLRAR homodimers can bind to target sequences in the absence of RXR, and the binding pattern of PMLRAR homodimeric complexes to directly repeated motif (DR) response elements with 1-5 bp spacers is different from that of RAR/RXR heterodimeric complexes. We show that the presence of RXR induces the formation of PMLRAR/RXR heteromeric complexes which bind to DNA via one RAR DNA binding domain (DBD) and one RXR DBD, like 'classical' RAR/RXR heterodimers. PMLRAR interaction with RXR occurs in solution and in transfected cultured Cos cells, and PMLRAR is able to sequester RXR efficiently in the cytoplasm, suggesting that dominant 'inactivation' of RXR may be a possible mechanism of action for PMLRAR. Accordingly, we show that PMLRAR can both prevent the binding of the vitamin D3 receptor (VDR) to a target sequence in vitro and inhibit vitamin D3-dependent activation of a VDR-responsive reporter gene in transfected cells. These results suggest that both the distinct DNA binding properties of PMLRAR homodimers and the sequestration of RXR by PMLRARs may contribute to the molecular mechanisms which underlie the pathogenesis of APL. We also report that RXR alpha transcripts are down-regulated by RA-treatment in promyelocytic cells. Images PMID:8393784

  8. Structure-based network analysis of an evolved G protein-coupled receptor homodimer interface

    PubMed Central

    Nichols, Sara E; Hernández, Carlos X; Wang, Yi; McCammon, James Andrew

    2013-01-01

    Crystallographic structures and experimental assays of human CXC chemokine receptor type 4 (CXCR4) provide strong evidence for the capacity to homodimerize, potentially as a means of allosteric regulation. Even so, how this homodimer forms and its biological significance has yet to be fully characterized. By applying principles from network analysis, sequence-based approaches such as statistical coupling analysis to determine coevolutionary residues, can be used in conjunction with molecular dynamics simulations to identify residues relevant to dimerization. Here, the predominant coevolution sector lies along the observed dimer interface, suggesting functional relevance. Furthermore, coevolution scoring provides a basis for determining significant nodes, termed hubs, in the network formed by residues found along the interface of the homodimer. These node residues coincide with hotspots indicating potential druggability. Drug design efforts targeting such key residues could potentially result in modulation of binding and therapeutic benefits for disease states, such as lung cancers, lymphomas and latent HIV-1 infection. Furthermore, this method may be applied to any protein–protein interaction. PMID:23553730

  9. Synthesis and activity of novel homodimers of Morita-Baylis-Hillman adducts against Leishmania donovani: A twin drug approach.

    PubMed

    da Silva, Wagner A V; Rodrigues, Daniele C; de Oliveira, Ramon G; Mendes, Rhuan K S; Olegário, Tayná R; Rocha, Juliana C; Keesen, Tatjana S L; Lima-Junior, Claudio G; Vasconcellos, Mário L A A

    2016-09-15

    It is reported here the synthesis of novel Homodimers 12-19 of Morita-Baylis-Hillman adducts (MBHA) from one-pot Morita-Baylis-Hillman Reaction (MBHR) between aromatic aldehydes as eletrophiles and ethylene glycol diacrylate as Michael acceptor (35-94% yields) using cheap and green conditions. The bioactivities were evaluated against promastigote form of Leishmania donovani. All homodimers showed to be more potent than corresponding monomers. It is worth highlighting that the halogenated homodimers 17 and 18 (0.50μM) is almost 400 times more active than the corresponding monomer 10 and 1.24 times more potent than the second-line drug amphotericin B (0.62μM). Moreover, the selectivity index to 18 is very high (SIrb>400) far better than amphotericin B (SIrb=18.73). This is the first report of twin drugs strategy applied on Morita-Baylis-Hillman adducts. PMID:27520941

  10. A Novel Styryldehydropyridocolinium Homodimer: Synthesis and Fluorescence Properties Upon Interaction with DNA.

    PubMed

    Yao, Huirong; Chang, Lifang; Liu, Chang; Jiao, Xiaojie; He, Song; Liu, Haijun; Zeng, Xianshun

    2015-11-01

    A novel homodimer of the styryldehydropyridocolinium dye (TPTP) has been synthesized and characterized. Free TPTP exhibited low fluorescence quantum yield and large Stokes shift (over 160 nm) in water. However, it showed a significant fluorescence turn-on effect upon intercalation into DNA base pairs. Meanwhile, the fluorescence intensity of the intercalated structures formed by TPTP and DNA decreased quickly upon addition of deoxyribonuclease I, indicating that the dye can be used to monitor deoxyribonuclease I activity and DNA hydrolysis. Electrophoresis analysis revealed that the dye had intercalative binding to DNA and can potentially be used for DNA staining in electrophoresis. Thus, the innate nature of large Stokes shift and excellent fluorescence turn on effect upon interaction with DNA endue the dye with a wide range of applications. PMID:26384336

  11. Heterodimers and homodimers of inhibin subunits have different paracrine action in the modulation of luteinizing hormone-stimulated androgen biosynthesis

    SciTech Connect

    Hsueh, A.J.W.; Dahl, K.D.; Vaughan, J.; Tucker, E.; Rivier, J.; Bardin, C.W.; Vale, W.

    1987-07-01

    Inhibin, a gonadal hormone capable of preferential suppression of pituitary follicle-stimulating hormone (FSH) secretion, has recently been purified. The major form of this protein is an ..cap alpha beta.. heterodimer encoded by two separate genes. In contrast to the FSH-suppressing action of the ..cap alpha beta.. heterodimer, the ..beta beta.. homodimer stimulates FSH secretion. Luteinizing hormone (LH)-secreting pituitary cells and gonadal androgen-producing cells have long been shown to form a closed-loop feedback axis. Based on recent studies demonstrated the FSH stimulation of inhibin biosynthesis by ovarian granulosa and testis Sertoli cells, an additional closed-loop feedback axis exists between pituitary FSH- and gonadal inhibin-producing cells. Because uncharacterized Sertoli cell factors have been suggested to either stimulate or inhibit androgen production by testicular Leydig cells, the authors have tested the intragonadal paracrine actions of heterodimers and homodimers of inhibin subunits. In primary cultures of testis cells, the ..cap alpha beta.. heterodimer of inhibin enhances Leydig cell androgen biosynthesis stimulated by LH, whereas the ..beta beta.. homodimer suppresses androgen production. The data indicate that the inhibin-related gene products synthesized by Sertoli and granulosa cells may form heterodimers or homodimers to serve as intragonadal paracrine signals in the modulation of LH-stimulated androgen biosynthesis and allow cross-communication between the two feedback loops.

  12. Crystal structure of schistatin, a disintegrin homodimer from saw-scaled viper (Echis carinatus) at 2.5 A resolution.

    PubMed

    Bilgrami, Sameeta; Tomar, Shailly; Yadav, Savita; Kaur, Punit; Kumar, Janesh; Jabeen, Talat; Sharma, Sujata; Singh, Tej P

    2004-08-13

    This is the first structure of a biological homodimer of disintegrin. Disintegrins are a class of small (4-14 kDa) proteins that bind to transmembrane integrins selectively. The present molecule is the first homodimer that has been isolated from the venom of Echis carinatus. The monomeric chain contains 64 amino acid residues. The three-dimensional structure of schistatin has been determined by the multiple isomorphous replacement method. It has been refined to an R-factor of 0.190 using all the data to 2.5 A resolution. The two subunits of the disintegrin homodimer are related by a 2-fold crystallographic symmetry. Thus, the crystallographic asymmetric unit contains a monomer of disintegrin. The monomer folds into an up-down topology with three sets of antiparallel beta-strands. The structure is well ordered with four intramolecular disulfide bonds. the two monomers are firmly linked to each other through two intermolecular disulfide bridges at their N termini together with several other interactions. This structure has corrected the error in the disulfide bond pattern of the two intermolecular disulfide bridges that was reported earlier using chemical methods. Unique sequence and structural features of the schistatin monomers suggest that they have the ability to bind well with both alphaIIb beta3 and alphav beta3 integrins. The N termini anchored two chains of the dimer diverge away at their C termini exposing the Arg-Gly-Asp motif into opposite directions thus enhancing their binding efficiency to integrins. This is one of the unique features of the present disintegrin homodimer and seems to be responsible for the clustering of integrin molecules. The homodimer binds to integrins apparently with a higher affinity than the monomers and also plays a role in the signaling pathway. PMID:15317139

  13. The United Stirling P40 engine for solar dish concentrator application

    NASA Technical Reports Server (NTRS)

    Ortegren, L.; Sjostedt, L. E.

    1980-01-01

    The United Stirling P40 engine is a key component in a solar concentration based energy conversion system, to be demonstrated and tested during 1980-81. The inherent characteristics of modern Stirling engines is reviewed focusing on the baseline P40 double-acting engine. The extent of modifications required for the solar application is reviewed and performance data are predicted. Finally, the potential of an advanced solar Stirling engine is briefly considered.

  14. Plasmon-mediated binding forces on gold or silver homodimer and heterodimer

    NASA Astrophysics Data System (ADS)

    Liaw, Jiunn-Woei; Kuo, Ting-Yu; Kuo, Mao-Kuen

    2016-02-01

    This study theoretically investigates plasmon-mediated optical binding forces, which are exerted on metal homo or heterodimers, induced by the normal illumination of a linearly polarized plane wave or Gaussian beam. Using the multiple multipole method, we analyzed the optical force in terms of Maxwell's stress tensor for various interparticle distance at some specific wavelengths. Numerical results show that for a given wavelength there are several stable equilibrium distances between two nanoparticles (NPs) of a homodimer, which are slightly shorter than some integer multiples of the wavelength in medium, such that metal dimer acts as bonded together. At these specific interparticle distances, the optical force between dimer is null and serves a restoring force, which is repulsive and attractive, respectively, as the two NPs are moving closer to and away from each other. The spring constant of the restoring force at the first stable equilibrium is always the largest, indicating that the first stable equilibrium distance is the most stable one. Moreover, the central line (orientation) of a dimer tends to be perpendicular to the polarization of light. For the cases of heterodimers, the phenomenon of stable equilibrium interparticle distance still exists, except there is an extra net photophoretic force drifting the heterodimer as one. Moreover, gradient force provided by a Gaussian beam may reduce the stability of these equilibriums, so larger NPs are preferred to stabilize a dimer under illumination of Gaussian beam. The finding may pave the way for using optical manipulation on the gold or silver colloidal self-assembly.

  15. Regulation of the PI3K pathway through a p85α monomer–homodimer equilibrium

    PubMed Central

    Cheung, Lydia WT; Walkiewicz, Katarzyna W; Besong, Tabot MD; Guo, Huifang; Hawke, David H; Arold, Stefan T; Mills, Gordon B

    2015-01-01

    The canonical action of the p85α regulatory subunit of phosphatidylinositol 3-kinase (PI3K) is to associate with the p110α catalytic subunit to allow stimuli-dependent activation of the PI3K pathway. We elucidate a p110α-independent role of homodimerized p85α in the positive regulation of PTEN stability and activity. p110α-free p85α homodimerizes via two intermolecular interactions (SH3:proline-rich region and BH:BH) to selectively bind unphosphorylated activated PTEN. As a consequence, homodimeric but not monomeric p85α suppresses the PI3K pathway by protecting PTEN from E3 ligase WWP2-mediated proteasomal degradation. Further, the p85α homodimer enhances the lipid phosphatase activity and membrane association of PTEN. Strikingly, we identified cancer patient-derived oncogenic p85α mutations that target the homodimerization or PTEN interaction surface. Collectively, our data suggest the equilibrium of p85α monomer–dimers regulates the PI3K pathway and disrupting this equilibrium could lead to disease development. DOI: http://dx.doi.org/10.7554/eLife.06866.001 PMID:26222500

  16. Metal-Mediated Affinity and Orientation Specificity in a Computationally Designed Protein Homodimer

    SciTech Connect

    Der, Bryan S.; Machius, Mischa; Miley, Michael J.; Mills, Jeffrey L.; Szyperski, Thomas; Kuhlman, Brian

    2015-10-15

    Computationally designing protein-protein interactions with high affinity and desired orientation is a challenging task. Incorporating metal-binding sites at the target interface may be one approach for increasing affinity and specifying the binding mode, thereby improving robustness of designed interactions for use as tools in basic research as well as in applications from biotechnology to medicine. Here we describe a Rosetta-based approach for the rational design of a protein monomer to form a zinc-mediated, symmetric homodimer. Our metal interface design, named MID1 (NESG target ID OR37), forms a tight dimer in the presence of zinc (MID1-zinc) with a dissociation constant <30 nM. Without zinc the dissociation constant is 4 {micro}M. The crystal structure of MID1-zinc shows good overall agreement with the computational model, but only three out of four designed histidines coordinate zinc. However, a histidine-to-glutamate point mutation resulted in four-coordination of zinc, and the resulting metal binding site and dimer orientation closely matches the computational model (C{alpha} rmsd = 1.4 {angstrom}).

  17. Photoelectron spectroscopic and density functional theoretical studies of the 2'-deoxycytidine homodimer radical anion.

    PubMed

    Storoniak, Piotr; Rak, Janusz; Ko, Yeon Jae; Wang, Haopeng; Bowen, Kit H

    2013-08-21

    The intact (parent) 2'-deoxycytidine homodimer anion, (dC)2 (●-), was generated in the gas phase (in vacuo) using an infrared desorption∕photoemission source and its photoelectron spectrum was recorded using a pulsed, magnetic bottle photoelectron spectrometer. The photoelectron spectrum (PES) revealed a broad peak with the maximum at an electron binding energy between 1.6 and 1.9 eV and with a threshold at ∼1.2 eV. The relative energies and vertical detachment energies of possible anion radicals were calculated at the B3LYP/6-31++G(∗∗) level of theory. The most stable anion radicals are the complexes involving combinations of the sugar[middle dot][middle dot][middle dot]base and base[middle dot][middle dot][middle dot]base interactions. The calculated adiabatic electron affinities and vertical detachment energies of the most stable (dC)2 (●-) anions agree with the experimental values. In contrast with previous experimental-computational studies on the anionic complexes involving nucleobases with various proton-donors, the electron-induced proton transferred structures of (dC)2 (●-) are not responsible for the shape of PES. PMID:23968113

  18. Photoelectron spectroscopic and density functional theoretical studies of the 2'-deoxycytidine homodimer radical anion

    NASA Astrophysics Data System (ADS)

    Storoniak, Piotr; Rak, Janusz; Ko, Yeon Jae; Wang, Haopeng; Bowen, Kit H.

    2013-08-01

    The intact (parent) 2'-deoxycytidine homodimer anion, (dC)2•-, was generated in the gas phase (in vacuo) using an infrared desorption/photoemission source and its photoelectron spectrum was recorded using a pulsed, magnetic bottle photoelectron spectrometer. The photoelectron spectrum (PES) revealed a broad peak with the maximum at an electron binding energy between 1.6 and 1.9 eV and with a threshold at ˜1.2 eV. The relative energies and vertical detachment energies of possible anion radicals were calculated at the B3LYP/6-31++G** level of theory. The most stable anion radicals are the complexes involving combinations of the sugar...base and base...base interactions. The calculated adiabatic electron affinities and vertical detachment energies of the most stable (dC)2•- anions agree with the experimental values. In contrast with previous experimental-computational studies on the anionic complexes involving nucleobases with various proton-donors, the electron-induced proton transferred structures of (dC)2•- are not responsible for the shape of PES.

  19. Secreted Progranulin Is a Homodimer and Is Not a Component of High Density Lipoproteins (HDL)*

    PubMed Central

    Nguyen, Andrew D.; Nguyen, Thi A.; Cenik, Basar; Yu, Gang; Herz, Joachim; Walther, Tobias C.; Davidson, W. Sean; Farese, Robert V.

    2013-01-01

    Progranulin is a secreted glycoprotein, and the GRN gene is mutated in some cases of frontotemporal dementia. Progranulin has also been implicated in cell growth, wound healing, inflammation, and cancer. We investigated the molecular nature of secreted progranulin and provide evidence that progranulin exists as a homodimer. Although recombinant progranulin has a molecular mass of ∼85 kDa by SDS-PAGE, it elutes in fractions corresponding to ∼170–180 kDa by gel-filtration chromatography. Additionally, recombinant progranulin can be intermolecularly cross-linked, yielding a complex corresponding to a dimer (∼180 kDa), and progranulins containing different epitope tags physically interact. In plasma, progranulin similarly forms complexes of ∼180–190 kDa. Although progranulin partially co-fractionated with high density lipoproteins (HDL) by gel-filtration chromatography, we found no evidence that progranulin in mouse or human plasma is a component of HDL either by ultracentrifugation or by lipid binding assays. We conclude that circulating progranulin exists as a dimer and is not likely a component of HDL. PMID:23364791

  20. The infrared band intensities and other properties of the homodimers of the methyl and silyl halides: An ab initio study

    NASA Astrophysics Data System (ADS)

    Ford, Thomas A.

    2012-02-01

    The properties of the homodimers of methyl and silyl fluoride, chloride and bromide have been determined by means of ab initio molecular orbital calculations. The interaction energies, molecular structures, vibrational spectra and molecular orbital properties have been investigated, and some common features within each family have been observed. A number of systematic differences in the properties of the dimers have also been noted and rationalized. Typically, discussion of the results of such calculations has focused on the vibrational wavenumber shifts occurring on complexation, and the accompanying changes in the infrared band intensities have received relatively little attention. This paper aims to reposition infrared intensities as valid and useful parameters with which to interpret the formation of the homodimers of polar molecules.

  1. Native serotonin 5-HT2C receptors are expressed as homodimers on the apical surface of choroid plexus epithelial cells.

    PubMed

    Herrick-Davis, Katharine; Grinde, Ellinor; Lindsley, Tara; Teitler, Milt; Mancia, Filippo; Cowan, Ann; Mazurkiewicz, Joseph E

    2015-04-01

    G protein-coupled receptors (GPCRs) are a prominent class of plasma membrane proteins that regulate physiologic responses to a wide variety of stimuli and therapeutic agents. Although GPCR oligomerization has been studied extensively in recombinant cells, it remains uncertain whether native receptors expressed in their natural cellular environment are monomers, dimers, or oligomers. The goal of this study was to determine the monomer/oligomer status of a native GPCR endogenously expressed in its natural cellular environment. Native 5-HT2C receptors in choroid plexus epithelial cells were evaluated using fluorescence correlation spectroscopy (FCS) with photon counting histogram (PCH). An anti-5-HT2C fragment antigen binding protein was used to label native 5-HT2C receptors. A known monomeric receptor (CD-86) served as a control for decoding the oligomer status of native 5-HT2C receptors by molecular brightness analysis. FCS with PCH revealed molecular brightness values for native 5-HT2C receptors equivalent to the molecular brightness of a homodimer. 5-HT2C receptors displayed a diffusion coefficient of 5 × 10(-9) cm(2)/s and were expressed at 32 receptors/μm(2) on the apical surface of choroid plexus epithelial cells. The functional significance and signaling capabilities of the homodimer were investigated in human embryonic kidney 293 cells using agonists that bind in a wash-resistant manner to one or both protomers of the homodimer. Whereas agonist binding to one protomer resulted in G protein activation, maximal stimulation required occupancy of both protomers. This study is the first to demonstrate the homodimeric structure of 5-HT2C receptors endogenously expressed in their native cellular environment, and identifies the homodimer as a functional signaling unit. PMID:25609374

  2. Native Serotonin 5-HT2C Receptors Are Expressed as Homodimers on the Apical Surface of Choroid Plexus Epithelial Cells

    PubMed Central

    Grinde, Ellinor; Lindsley, Tara; Teitler, Milt; Mancia, Filippo; Cowan, Ann; Mazurkiewicz, Joseph E.

    2015-01-01

    G protein–coupled receptors (GPCRs) are a prominent class of plasma membrane proteins that regulate physiologic responses to a wide variety of stimuli and therapeutic agents. Although GPCR oligomerization has been studied extensively in recombinant cells, it remains uncertain whether native receptors expressed in their natural cellular environment are monomers, dimers, or oligomers. The goal of this study was to determine the monomer/oligomer status of a native GPCR endogenously expressed in its natural cellular environment. Native 5-HT2C receptors in choroid plexus epithelial cells were evaluated using fluorescence correlation spectroscopy (FCS) with photon counting histogram (PCH). An anti–5-HT2C fragment antigen binding protein was used to label native 5-HT2C receptors. A known monomeric receptor (CD-86) served as a control for decoding the oligomer status of native 5-HT2C receptors by molecular brightness analysis. FCS with PCH revealed molecular brightness values for native 5-HT2C receptors equivalent to the molecular brightness of a homodimer. 5-HT2C receptors displayed a diffusion coefficient of 5 × 10−9 cm2/s and were expressed at 32 receptors/μm2 on the apical surface of choroid plexus epithelial cells. The functional significance and signaling capabilities of the homodimer were investigated in human embryonic kidney 293 cells using agonists that bind in a wash-resistant manner to one or both protomers of the homodimer. Whereas agonist binding to one protomer resulted in G protein activation, maximal stimulation required occupancy of both protomers. This study is the first to demonstrate the homodimeric structure of 5-HT2C receptors endogenously expressed in their native cellular environment, and identifies the homodimer as a functional signaling unit. PMID:25609374

  3. Heterodimers and homodimers of inhibin subunits have different paracrine action in the modulation of luteinizing hormone-stimulated androgen biosynthesis.

    PubMed Central

    Hsueh, A J; Dahl, K D; Vaughan, J; Tucker, E; Rivier, J; Bardin, C W; Vale, W

    1987-01-01

    Inhibin, a gonadal hormone capable of preferential suppression of pituitary follicle-stimulating hormone (FSH) secretion, has recently been purified. The major form of this protein is an alpha beta heterodimer encoded by two separate genes. In contrast to the FSH-suppressing action of the alpha beta heterodimer, the beta beta homodimer stimulates FSH secretion. Luteinizing hormone (LH)-secreting pituitary cells and gonadal androgen-producing cells have long been shown to form a closed-loop feedback axis. Based on recent studies demonstrating the FSH stimulation of inhibin biosynthesis by ovarian granulosa and testis Sertoli cells, an additional closed-loop feedback axis exists between pituitary FSH- and gonadal inhibin-producing cells. Because uncharacterized Sertoli cell factors have been suggested to either stimulate or inhibit androgen production by testicular Leydig cells, we have tested the intragonadal paracrine actions of heterodimers and homodimers of inhibin subunits. In primary cultures of testis cells, the alpha beta heterodimer of inhibin enhances Leydig cell androgen biosynthesis stimulated by LH, whereas the beta beta homodimer suppresses androgen production. Furthermore, similar modulatory actions of inhibin-related proteins were found in cultured ovarian theca-interstitial cells and theca explants treated with LH. In contrast, treatment with the inhibin-related proteins alone did not affect gonadal steroidogenesis. Our data indicate that the inhibin-related gene products synthesized by Sertoli and granulosa cells may form heterodimers or homodimers to serve as intragonadal paracrine signals in the modulation of LH-stimulated androgen biosynthesis and allow cross-communication between the two feedback loops. PMID:3474640

  4. Structure of a Thyroid Hormone Receptor DNA-Binding Domain Homodimer Bound to an Inverted Palindrome DNA Response Element

    SciTech Connect

    Chen, Yi; Young, Matthew A.

    2010-10-22

    Thyroid hormone receptor (TR), as a member of the nuclear hormone receptor family, can recognize and bind different classes of DNA response element targets as either a monomer, a homooligomer, or a heterooligomer. We report here the first crystal structure of a homodimer TR DNA-binding domain (DBD) in complex with an inverted repeat class of thyroid response element (TRE). The structure shows a nearly symmetric structure of the TR DBD assembled on the F2 TRE where the base recognition contacts in the homodimer DNA complex are conserved relative to the previously published structure of a TR-9-cis-retinoic acid receptor heterodimer DNA complex. The new structure also reveals that the T-box region of the DBD can function as a structural hinge that enables a large degree of flexibility in the position of the C-terminal extension helix that connects the DBD to the ligand-binding domain. Although the isolated TR DBDs exist as monomers in solution, we have measured highly cooperative binding of the two TR DBD subunits onto the inverted repeat DNA sequence. This suggests that elements of the DBD can influence the specific TR oligomerization at target genes, and it is not just interactions between the ligand-binding domains that are responsible for TR oligomerization at target genes. Mutational analysis shows that intersubunit contacts at the DBD C terminus account for some, but not all, of the cooperative homodimer TR binding to the inverted repeat class TRE.

  5. Further Studies on the Origins of Asymmetric Charge Partitioning in Protein Homodimers

    PubMed Central

    Jurchen, John C.; Garcia, David E.; Williams, Evan R.

    2005-01-01

    Dissociation of gas-phase protonated protein dimers into their constituent monomers can result in either symmetric or asymmetric charge partitioning. Dissociation of α-lactalbumin homodimers with 15+ charges results in a symmetric, but broad, distribution of protein monomers with charge states centered around 8+/7+. In contrast, dissociation of the 15+ heterodimer consisting of one molecule in the oxidized form and one in the reduced form results in highly asymmetric charge partitioning in which the reduced species carries away predominantly 11+ charges, and the oxidized molecule carries away 4+ charges. This result cannot be adequately explained by differential charging occurring either in solution or in the electrospray process, but appears to be best explained by the reduced species unfolding upon activation in the gas phase with subsequent separation and proton transfer to the unfolding species in the dissociation complex to minimize Coulomb repulsion. For dimers of cytochrome c formed directly from solution, the 17+ charge state undergoes symmetric charge partitioning whereas dissociation of the 13+ is asymmetric. Reduction of the charge state of dimers with 17+ charges to 13+ via gas-phase proton transfer and subsequent dissociation of the mass selected 13+ ions results in a symmetric charge partitioning. This result clearly shows that the structure of the dimer ions with 13+ charges depends on the method of ion formation and that the structural difference is responsible for the symmetric versus asymmetric charge partitioning observed. This indicates that the asymmetry observed when these ions are formed directly from solution must come about due either to differences in the monomer conformations in the dimer that exist in solution or that occur during the electrospray ionization process. These results provide additional evidence for the origin of charge asymmetry that occurs in the dissociation of multiply charged protein complexes and indicate that some

  6. Comparison of Cyclooxygenase-1 Crystal Structures: Cross-Talk between Monomers Comprising Cyclooxygenase-1 Homodimers

    SciTech Connect

    Sidhu, Ranjinder S.; Lee, Jullia Y.; Yuan, Chong; Smith, William L.

    2010-11-01

    Prostaglandin endoperoxide H synthases (PGHSs)-1 and -2 (also called cyclooxygenases (COXs)-1 and -2) catalyze the committed step in prostaglandin biosynthesis. Both isoforms are targets of nonsteroidal antiinflammatory drugs (NSAIDs). PGHSs are homodimers that exhibit half-of-sites COX activity; moreover, some NSAIDs cause enzyme inhibition by binding only one monomer. To learn more about the cross-talk that must be occurring between the monomers comprising each PGHS-1 dimer, we analyzed structures of PGHS-1 crystallized under five different conditions including in the absence of any tightly binding ligand and in the presence of nonspecific NSAIDs and of a COX-2 inhibitor. When crystallized with substoichiometric amounts of an NSAID, both monomers are often fully occupied with inhibitor; thus, the enzyme prefers to crystallize in a fully occupied form. In comparing the five structures, we only observe changes in the positions of residues 123-129 and residues 510-515. In cases where one monomer is fully occupied with an NSAID and the partner monomer is incompletely occupied, an alternate conformation of the loop involving residues 123-129 is seen in the partially occupied monomer. We propose, on the basis of this observation and previous cross-linking studies, that cross-talk between monomers involves this mobile 123-129 loop, which is located at the dimer interface. In ovine PGHS-1 crystallized in the absence of an NSAID, there is an alternative route for substrate entry into the COX site different than the well-known route through the membrane binding domain.

  7. Comparison of Cyclooxygenase-1 Crystal Structures: Cross-Talk Between Monomers Comprising Cyclooxygenase-1 Homodimers

    PubMed Central

    Sidhu, Ranjinder S.; Lee, Jullia Y.; Yuan, Chong; Smith, William L.

    2010-01-01

    Prostaglandin endoperoxide H synthases (PGHSs)-1 and -2 (also called cyclooxygenases (COXs)-1 and -2) catalyze the committed step in prostaglandin biosynthesis. Both isoforms are targets of nonsteroidal anti-inflammatory drugs (NSAIDs). PGHSs are homodimers that exhibit half-of-sites COX activity; moreover, some NSAIDs cause enzyme inhibition by binding only one monomer. To learn more about the cross-talk that must be occurring between the monomers comprising each PGHS-1 dimer, we analyzed structures of PGHS-1 crystallized under five different conditions including in the absence of any tightly binding ligand and in the presence of non-specific NSAIDs and of a COX-2 inhibitor. When crystallized with sub-stoichiometric amounts of an NSAID, both monomers are often fully occupied with inhibitor; thus, the enzyme prefers to crystallize in a fully occupied form. In comparing the five structures, we only observe changes in the positions of residues 123-129 and residues 510-515. In cases where one monomer is fully occupied with an NSAID and the partner monomer is incompletely occupied, an alternate conformation of the loop involving residues 123-129 is seen in the partially occupied monomer. We propose, based on this observation and previous cross-linking studies, that cross-talk between monomers involves this mobile 123-129 loop, which is located at the dimer interface. In ovine PGHS-1 crystallized in the absence of an NSAID, there is an alternative route for substrate entry into the COX site different than the well-known route through the membrane binding domain. PMID:20669977

  8. Pre-existent Asymmetry in the Human Cyclooxygenase-2 Sequence Homodimer*

    PubMed Central

    Dong, Liang; Sharma, Narayan P.; Jurban, Brice J.; Smith, William L.

    2013-01-01

    Prostaglandin endoperoxide H synthase-2 (PGHS-2), also known as cyclooxygenase-2 (COX-2), is a sequence homodimer. However, the enzyme exhibits half-site heme and inhibitor binding and functions as a conformational heterodimer having a catalytic subunit (Ecat) with heme bound and an allosteric subunit (Eallo) lacking heme. Some recombinant heterodimers composed of a COX-deficient mutant subunit and a native subunit (i.e. Mutant/Native PGHS-2) have COX activities similar to native PGHS-2. This suggests that the presence of heme plus substrate leads to the subunits becoming lodged in a semi-stable Eallo-mutant/Ecat-Native∼heme form during catalysis. We examined this concept using human PGHS-2 dimers composed of combinations of Y385F, R120Q, R120A, and S530A mutant or native subunits. With some heterodimers (e.g. Y385F/Native PGHS-2), heme binds with significantly higher affinity to the native subunit. This correlates with near native COX activity for the heterodimer. With other heterodimers (e.g. S530A/Native PGHS-2), heme binds with similar affinities to both subunits, and the COX activity approximates that expected for an enzyme in which each monomer contributes equally to the net COX activity. With or without heme, aspirin acetylates one-half of the subunits of the native PGHS-2 dimer, the Ecat subunits. Subunits having an S530A mutation are refractory to acetylation. Curiously, aspirin acetylates only one-quarter of the monomers of S530A/Native PGHS-2 with or without heme. This implies that there are comparable amounts of two noninterchangeable species of apoenzymes, Eallo-S530A/Ecat-Native and Eallo-Native/Ecat-S530A. These results suggest that native PGHS-2 assumes a reasonably stable, asymmetric Eallo/Ecat form during its folding and processing. PMID:23955344

  9. Pre-existent asymmetry in the human cyclooxygenase-2 sequence homodimer.

    PubMed

    Dong, Liang; Sharma, Narayan P; Jurban, Brice J; Smith, William L

    2013-10-01

    Prostaglandin endoperoxide H synthase-2 (PGHS-2), also known as cyclooxygenase-2 (COX-2), is a sequence homodimer. However, the enzyme exhibits half-site heme and inhibitor binding and functions as a conformational heterodimer having a catalytic subunit (Ecat) with heme bound and an allosteric subunit (Eallo) lacking heme. Some recombinant heterodimers composed of a COX-deficient mutant subunit and a native subunit (i.e. Mutant/Native PGHS-2) have COX activities similar to native PGHS-2. This suggests that the presence of heme plus substrate leads to the subunits becoming lodged in a semi-stable Eallo-mutant/Ecat-Native∼heme form during catalysis. We examined this concept using human PGHS-2 dimers composed of combinations of Y385F, R120Q, R120A, and S530A mutant or native subunits. With some heterodimers (e.g. Y385F/Native PGHS-2), heme binds with significantly higher affinity to the native subunit. This correlates with near native COX activity for the heterodimer. With other heterodimers (e.g. S530A/Native PGHS-2), heme binds with similar affinities to both subunits, and the COX activity approximates that expected for an enzyme in which each monomer contributes equally to the net COX activity. With or without heme, aspirin acetylates one-half of the subunits of the native PGHS-2 dimer, the Ecat subunits. Subunits having an S530A mutation are refractory to acetylation. Curiously, aspirin acetylates only one-quarter of the monomers of S530A/Native PGHS-2 with or without heme. This implies that there are comparable amounts of two noninterchangeable species of apoenzymes, Eallo-S530A/Ecat-Native and Eallo-Native/Ecat-S530A. These results suggest that native PGHS-2 assumes a reasonably stable, asymmetric Eallo/Ecat form during its folding and processing. PMID:23955344

  10. Human cyclooxygenase-2 is a sequence homodimer that functions as a conformational heterodimer.

    PubMed

    Dong, Liang; Vecchio, Alex J; Sharma, Narayan P; Jurban, Brice J; Malkowski, Michael G; Smith, William L

    2011-05-27

    Prostaglandin endoperoxide H synthases 1 and 2, also known as cyclooxygenases (COXs) 1 and 2, convert arachidonic acid (AA) to prostaglandin endoperoxide H(2). Prostaglandin endoperoxide H synthases are targets of nonspecific nonsteroidal anti-inflammatory drugs and COX-2-specific inhibitors called coxibs. PGHS-2 is a sequence homodimer. Each monomer has a peroxidase and a COX active site. We find that human PGHS-2 functions as a conformational heterodimer having a catalytic monomer (E(cat)) and an allosteric monomer (E(allo)). Heme binds tightly only to the peroxidase site of E(cat), whereas substrates, as well as certain inhibitors (e.g. celecoxib), bind the COX site of E(cat). E(cat) is regulated by E(allo) in a manner dependent on what ligand is bound to E(allo). Substrate and nonsubstrate fatty acids (FAs) and some COX inhibitors (e.g. naproxen) preferentially bind to the COX site of E(allo). AA can bind to E(cat) and E(allo), but the affinity of AA for E(allo) is 25 times that for E(cat). Palmitic acid, an efficacious stimulator of human PGHS-2, binds only E(allo) in palmitic acid/murine PGHS-2 co-crystals. Nonsubstrate FAs can potentiate or attenuate actions of COX inhibitors depending on the FA and whether the inhibitor binds E(cat) or E(allo). Our studies suggest that the concentration and composition of the free FA pool in the environment in which PGHS-2 functions in cells, the FA tone, is a key factor regulating PGHS-2 activity and its responses to COX inhibitors. We suggest that differences in FA tone occurring with different diets will likely affect both base-line prostanoid synthesis and responses to COX inhibitors. PMID:21467029

  11. IFN-γ induction by neutrophil-derived IL-17A homodimer augments pulmonary antibacterial defense.

    PubMed

    Cai, S; Batra, S; Langohr, I; Iwakura, Y; Jeyaseelan, S

    2016-05-01

    The role of interleukin-17A (IL-17A) in host defense against Legionella pneumophila remains elusive. To address this issue, we used Il17a(-/-), Il17f(-/-), and Il17a/Il17f(-/-) mice on a C57Bl/6 (non-permissive) background and IL-17 neutralizing Abs in mice on an A/J (permissive) background. Higher bacterial (L. pneumophila) counts in the lung and blood along with reduced neutrophil recruitment were detected in Il17a(-/-), but not Il17f(-/-), mice. We found that neutrophils produce IL-17A homodimer (IL-17A) during L. pneumophila infection, and hematopoietic cell-derived IL-17A is known to be important for bacterial clearance. Thus, intratracheal administration of wild-type neutrophils or recombinant IL-17A restored bacterial clearance and neutrophil recruitment in Il17a(-/-) mice. Furthermore, neutrophil-depleted Rag2(-/-) and Rag2/Il-2rγ(-/-) mice exhibited increased bacterial burden, reduced neutrophil influx and IL-17A production in the lung. Recombinant IFN-γ administration in Il17a(-/-) mice augmented bacterial elimination, whereas IL-17A administration in Ifnγ(-/-) mice did not augment bacterial clearance. IFN-γ is produced by T cells, but not neutrophils or macrophages, suggesting that neutrophil-derived IL-17A induces IFN-γ in a paracrine fashion. Human pneumonic lungs and human neutrophils challenged with L. pneumophila exhibited increased numbers of IL-17A producing cells. These findings display a novel function of neutrophil-derived IL-17A in antibacterial defense via the induction of IFN-γ in a paracrine manner. PMID:26349661

  12. Comparative analysis of three-dimensional structures of homodimers of uridine phosphorylase from Salmonella typhimurium in the unligated state and in a complex with potassium ion

    SciTech Connect

    Lashkov, A. A.; Zhukhlistova, N. E.; Gabdulkhakov, A. G.; Mikhailov, A. M.

    2009-03-15

    The spatial organization of the homodimer of unligated uridine phosphorylase from Salmonella typhimurium (St UPh) was determined with high accuracy. The structure was refined at 1.80 A resolution to R{sub work} = 16.1% and R{sub free} = 20.0%. The rms deviations for the bond lengths, bond angles, and chiral angles are 0.006 A, 1.042{sup o}, and 0.071{sup o}, respectively. The coordinate error estimated by the Luzzati plot is 0.166 A. The coordinate error based on the maximum likelihood is 0.199 A. A comparative analysis of the spatial organization of the homodimer in two independently refined structures and the structure of the homodimer St UPh in the complex with a K{sup +} ion was performed. The substrate-binding sites in the homodimers StUPhs in the unligated state were found to act asynchronously. In the presence of a potassium ion, the three-dimensional structures of the subunits in the homodimer are virtually identical, which is apparently of importance for the synchronous action of both substrate-binding sites. The atomic coordinates of the refined structure of the homodimer and structure factors have been deposited in the Protein Data Bank (PDB ID code 3DPS).

  13. Role of Anthocyanin-enriched Purple-fleshed Sweet Potato P40 in Colorectal Cancer Prevention

    PubMed Central

    Lim, Soyoung; Xu, Jianteng; Kim, Jaeyong; Chen, Tzu-Yu; Su, Xiaoyu; Standard, Joseph; Carey, Edward; Griffin, Jason; Herndon, Betty; Katz, Benjamin; Tomich, John; Wang, Weiqun

    2013-01-01

    Scope Anthocyanins, the natural pigments in plant foods, have been associated with cancer prevention. However, the content of anthocyanins in staple foods is typically low and the mechanisms by which they exert anti-cancer activity is not yet fully defined. Methods and results We selected an anthocyanin-enriched purple-fleshed sweet potato clone, P40, and investigated its potential anti-cancer effect in both in vitro cell culture and in vivo animal model. In addition to a high level of total phenolics and antioxidant capacity, P40 possesses a high content of anthocyanins at 7.5 mg/g dry matter. Treatment of human colonic SW480 cancer cells with P40 anthocyanin extracts at 0–40 μM of peonidin-3-glucoside equivalent resulted in a dose-dependent decrease in cell number due to cytostatic arrest of cell cycle at G1 phase but not cytotoxicity. Furthermore, dietary P40 at 10–30% significantly suppressed azoxymethane-induced formation of aberrant crypt foci in the colons of CF-1 mice in conjunction with, at least in part, a lesser proliferative PCNA and a greater apoptotic caspase-3 expression in the colon mucosal epithelial cells. Conclusion These observations, coupled with both in vitro and in vivo studies reported here, suggest anthocyanin-enriched sweet potato P40 may protect against colorectal cancer by inducing cell cycle arrest, anti-proliferative and apoptotic mechanisms. PMID:23784800

  14. Functional Analysis of the p40 and p75 Proteins from Lactobacillus casei BL23

    PubMed Central

    Bäuerl, Christine; Pérez-Martínez, Gaspar; Yan, Fang; Polk, D. Brent; Monedero, Vicente

    2011-01-01

    The genomes of Lactobacillus casei/paracasei and Lactobacillus rhamnosus strains carry two genes encoding homologues of p40 and p75 from L. rhamnosus GG, two secreted proteins which display anti-apoptotic and cell protective effects on human intestinal epithelial cells. p40 and p75 carry cysteine, histidine-dependent aminohydrolase/peptidase (CHAP) and NLPC/P60 domains, respectively, which are characteristic of proteins with cell-wall hydrolase activity. In L. casei BL23 both proteins were secreted to the growth medium and were also located at the bacterial cell surface. The genes coding for both proteins were inactivated in this strain. Inactivation of LCABL_00230 (encoding p40) did not result in a significant difference in phenotype, whereas a mutation in LCABL_02770 (encoding p75) produced cells that formed very long chains. Purified glutathione-S-transferase (GST)-p40 and -p75 fusion proteins were able to hydrolyze the muropeptides from L. casei cell walls. Both fusions bound to mucin, collagen and to intestinal epithelial cells and, similar to L. rhamnosus GG p40, stimulated epidermal growth factor receptor phosphorylation in mouse intestine ex vivo. These results indicate that extracellular proteins belonging to the machinery of cell-wall metabolism in the closely related L. casei/paracasei-L. rhamnosus group are most likely involved in the probiotic effects described for these bacteria PMID:21178363

  15. Functional analysis of the p40 and p75 proteins from Lactobacillus casei BL23.

    PubMed

    Bäuerl, Christine; Pérez-Martínez, Gaspar; Yan, Fang; Polk, D Brent; Monedero, Vicente

    2010-01-01

    The genomes of Lactobacillus casei/paracasei and Lactobacillus rhamnosus strains carry two genes encoding homologues of p40 and p75 from L. rhamnosus GG, two secreted proteins which display anti-apoptotic and cell protective effects on human intestinal epithelial cells. p40 and p75 carry cysteine, histidine-dependent aminohydrolase/peptidase (CHAP) and NLPC/P60 domains, respectively, which are characteristic of proteins with cell-wall hydrolase activity. In L. casei BL23 both proteins were secreted to the growth medium and were also located at the bacterial cell surface. The genes coding for both proteins were inactivated in this strain. Inactivation of LCABL_00230 (encoding p40) did not result in a significant difference in phenotype, whereas a mutation in LCABL_02770 (encoding p75) produced cells that formed very long chains. Purified glutathione-S-transferase (GST)-p40 and -p75 fusion proteins were able to hydrolyze the muropeptides from L. casei cell walls. Both fusions bound to mucin, collagen and to intestinal epithelial cells and, similar to L. rhamnosus GG p40, stimulated epidermal growth factor receptor phosphorylation in mouse intestine ex vivo. These results indicate that extracellular proteins belonging to the machinery of cell-wall metabolism in the closely related L. casei/paracasei-L. rhamnosus group are most likely involved in the probiotic effects described for these bacteria. PMID:21178363

  16. Crystallization and preliminary crystallographic analysis of p40{sup phox}, a regulatory subunit of NADPH oxidase

    SciTech Connect

    Honbou, Kazuya; Yuzawa, Satoru; Suzuki, Nobuo N.; Fujioka, Yuko; Sumimoto, Hideki; Inagaki, Fuyuhiko

    2006-10-01

    Human p40{sup phox} was expressed, purified and crystallized. Diffraction data were collected to a resolution of 3.0 Å. p40{sup phox} is a cytosolic component of the phagocyte NADPH oxidase, which is responsible for production of the superoxide that kills invasive microorganisms. Full-length p40{sup phox} was expressed in Escherichia coli, purified and crystallized by the sitting-drop vapour-diffusion method at 293 K using polyethylene glycol 20 000 as a precipitant. Diffraction data were collected to 3.0 Å resolution at 100 K using synchrotron radiation. The crystal belongs to space group C222{sub 1}, with unit-cell parameters a = 146.27, b = 189.81, c = 79.88 Å. This crystal was estimated to contain two or three protein molecules per asymmetric unit from the acceptable range of volume-to-weight ratio values.

  17. The effects of Alcea rosea L., Malva sylvestris L. and Salvia libanotica L. water extracts on the production of anti-egg albumin antibodies, interleukin-4, gamma interferon and interleukin-12 in BALB/c mice.

    PubMed

    El Ghaoui, Walid Bou Jaber; Ghanem, Elsa Bou; Chedid, Lara Abou; Abdelnoor, Alexander M

    2008-12-01

    Polysaccharides obtained from certain plants have been reported to have immunomodulatory properties. As a consequence of these reports the aim of this study was to investigate some immunomodulatory properties of water extracts of Alcea rosea L. (ARE), Malva sylvestris L. (MSE) and Salvia libanotica L. (SLE).Groups of egg albumin (EA)-immunized and -non-immunized Balb/c mice were treated with the carbohydrate-rich water extracts. Mice from each group were bled and their spleens removed at 3, 6 and 10 days post-immunization/treatment. Anti-egg albumin antibody levels in the processed sera were determined by an enzyme linked immunosorbent assay (ELISA). RNA was extracted from spleen cells and interleukin-4 (IL-4), interleukin-12 (IL-12) and gamma-interferon transcripts were determined by the reverse transcription polymerase chain reaction (RT-PCR).ARE appeared to boost the antibody response to EA, but had no effect on IL-4 and gamma-interferon gene transcription. MSE and SLE appeared to have no effect on anti-EA antibody production, but enhanced IL-12 and gamma-interferon gene transcription. MSE appeared to switch off, and SLE had no effect on, IL-4 transcription.In conclusion, it appears that ARE is a B-lymphocyte polyclonal activator, and MSE and SLE are macrophage and T helper-1 (Th-1) activators. PMID:18688815

  18. The C-terminal domain of the MutL homolog from Neisseria gonorrhoeae forms an inverted homodimer.

    PubMed

    Namadurai, Sivakumar; Jain, Deepti; Kulkarni, Dhananjay S; Tabib, Chaitanya R; Friedhoff, Peter; Rao, Desirazu N; Nair, Deepak T

    2010-01-01

    The mismatch repair (MMR) pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD) of the MutL homolog of Neisseria gonorrhoeae (NgoL) determined to a resolution of 2.4 Å. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage. PMID:21060849

  19. Characterisation and stability of anthocyanins in purple-fleshed sweet potato P40.

    PubMed

    Xu, Jianteng; Su, Xiaoyu; Lim, Soyoung; Griffin, Jason; Carey, Edward; Katz, Benjamin; Tomich, John; Smith, J Scott; Wang, Weiqun

    2015-11-01

    Purple-fleshed sweet potato P40 has been shown to prevent colorectal cancer in a murine model. This study is to identify anthocyanins by using HPLC/MS-MS and assess the stability during various cooking conditions. P40 possesses a high content of anthocyanins up to 14 mg/g dry matter. Total 12 acylated anthocyanins are identified. Top three anthocyanins, e.g., cyanidin 3-caffeoyl-p-hydroxybenzoyl sophoroside-5-glucoside, peonidin 3-caffeoyl sophoroside-5-glucoside, and cyanidin 3-(6"-caffeoyl-6"-feruloylsophoroside)-5-glucoside, account for half of the anthocyanin contents. Over 80% of anthocyanins measured by acid hydrolysis were cyanidin derivatives, indicating P40 is unique when compared with other purple-fleshed sweet potatoes that usually contain more peonidin than cyanidin. Steaming, pressure cooking, microwaving, and frying but not baking significantly reduced 8-16% of total anthocyanin contents. Mono-acylated anthocyanins showed a higher resistance against heat than di- and non-acylated. Among of which, cyanidin 3-p-hydroxybenzoylsophoroside-5-glucoside exhibited the best thermal stability. The stable acylated and cyanidin-predominated anthocyanins in P40 may provide extra benefits for cancer prevention. PMID:25976796

  20. Expression of the p40 isoform of p63 has high specificity for cutaneous sarcomatoid squamous cell carcinoma.

    PubMed

    Ha Lan, Thanh T; Chen, Stephanie J T; Arps, David P; Fullen, Douglas R; Patel, Rajiv M; Siddiqui, Javed; Carskadon, Shannon; Palanisamy, Nallasivam; Harms, Paul W

    2014-11-01

    Cutaneous spindle cell malignancies such as sarcomatoid squamous cell carcinoma (SCC), leiomyosarcoma, desmoplastic melanoma (DM) and atypical fibroxanthoma (AFX) may be morphologically indistinguishable, yet accurate diagnosis is important for appropriate clinical management. The distinction among these entities relies on immunohistochemical evaluation for epidermal, muscle or melanocytic differentiation. Epidermal differentiation markers include cytokeratins and p63. p63 is expressed as two distinct isoforms, ΔNp63 (p40) and TAp63. p40 positivity is highly specific for pulmonary SCC and head and neck sarcomatoid SCC. We examined the utility of p40 vs. p63 immunostaining in the differentiation of a variety of cutaneous spindle cell malignancies, including sarcomatoid SCC (n = 27), AFX (n = 34) and DM (n = 10). p40 was less sensitive than p63 for detecting sarcomatoid SCC (56% and 81%, respectively). p63 and p40 were comparably specific for sarcomatoid SCC relative to AFX, with only rare weak staining of tumor cells for p63 and/or p40 in a minority of AFX cases, including one case with approximately 10% of cells staining weakly for p40. All cases of DM were negative for p40 and p63. Our results support continued use of p63 for diagnosis of cutaneous sarcomatoid SCC because of greater sensitivity relative to p40. PMID:25263756

  1. Interleukin-12- and Gamma Interferon-Dependent Innate Immunity Are Essential and Sufficient for Long-Term Survival of Passively Immunized Mice Infected with Herpes Simplex Virus Type 1

    PubMed Central

    Vollstedt, Sabine; Franchini, Marco; Alber, Gottfried; Ackermann, Mathias; Suter, Mark

    2001-01-01

    Interferon (IFN) type I (alpha/beta IFN [IFN-α/β]) is very important in directly controlling herpes simplex virus type I (HSV-1) replication as well as in guiding and upregulating specific immunity against this virus. By contrast, the roles of IFN type II (IFN-γ) and antibodies in the defense against HSV-1 are not clear. Mice without a functional IFN system and no mature B and T cells (AGR mice) did not survive HSV-1 infection in the presence or absence of neutralizing antibodies to the virus. Mice without a functional IFN type I system and with no mature B and T cells (AR129 mice) were unable to control infection with as little as 10 PFU of HSV-1 strain F. By contrast, in the presence of passively administered neutralizing murine antibodies to HSV-1, some AR129 mice survived infection with up to104 PFU of HSV-1. This acute immune response was dependent on the presence of interleukin-12 (IL-12) p75. Interestingly, some virus-infected mice stayed healthy for several months, at which time antibody to HSV-1 was no longer detectable. Treatment of these virus-exposed mice with dexamethasone led to death in approximately 40% of the mice. HSV-1 was found in brains of mice that did not survive dexamethasone treatment, whereas HSV-1 was absent in those that survived the treatment. We conclude that in the presence of passively administered HSV-1-specific antibodies, the IL-12-induced IFN-γ-dependent innate immune response is able to control low doses of virus infection. Surprisingly, in a significant proportion of these mice, HSV-1 appears to persist in the absence of antibodies and specific immunity. PMID:11559791

  2. The alkyl linkers in tandem-homodimers of a β-sheet-forming nonapeptide affect the self-assembled nanostructures.

    PubMed

    Tomizaki, Kin-Ya; Tanaka, Atsushi; Shimada, Hiroki; Nishizawa, Koki; Wada, Tsubasa; Imai, Takahito

    2016-06-01

    There is increasing interest in designing smart biomaterials by employing the self-assembly characteristics of synthetic peptides. The use of amyloid-like fibrils is one approach to nanometer- and micrometer-sized supramolecular structures. However, it is generally difficult to predict and/or analyze peptide conformations in nanostructures generated by the self-assembly of β-sheet-forming peptides such as amyloid-β peptide because each peptide experiences a slightly different environment. Therefore, a methodology for rationally designing peptide-based smart materials is required. In this study, we demonstrate the design and synthesis of tandem-homodimers of a β-sheet-forming peptide where the amino acid sequence is duplicated in series and joined via alkyl linkers of different chain length. The conformations of these tandem-homodimers within the self-assembled nanoarchitectures in aqueous solution were characterized. Our findings demonstrate that the hydrophobicity and/or flexibility of the alkyl linkers significantly affect the peptide conformation (extended or bent) of the self-assembled peptide nanostructures. We believe that the present tandem-homodimerization method represents a new direction for the rational design of peptide-based smart biomaterials. PMID:27117426

  3. Antiparallel protocadherin homodimers use distinct affinity- and specificity-mediating regions in cadherin repeats 1-4

    PubMed Central

    Nicoludis, John M; Vogt, Bennett E; Green, Anna G; Schärfe, Charlotta PI; Marks, Debora S; Gaudet, Rachelle

    2016-01-01

    Protocadherins (Pcdhs) are cell adhesion and signaling proteins used by neurons to develop and maintain neuronal networks, relying on trans homophilic interactions between their extracellular cadherin (EC) repeat domains. We present the structure of the antiparallel EC1-4 homodimer of human PcdhγB3, a member of the γ subfamily of clustered Pcdhs. Structure and sequence comparisons of α, β, and γ clustered Pcdh isoforms illustrate that subfamilies encode specificity in distinct ways through diversification of loop region structure and composition in EC2 and EC3, which contains isoform-specific conservation of primarily polar residues. In contrast, the EC1/EC4 interface comprises hydrophobic interactions that provide non-selective dimerization affinity. Using sequence coevolution analysis, we found evidence for a similar antiparallel EC1-4 interaction in non-clustered Pcdh families. We thus deduce that the EC1-4 antiparallel homodimer is a general interaction strategy that evolved before the divergence of these distinct protocadherin families. DOI: http://dx.doi.org/10.7554/eLife.18449.001 PMID:27472898

  4. Antiparallel protocadherin homodimers use distinct affinity- and specificity-mediating regions in cadherin repeats 1-4.

    PubMed

    Nicoludis, John M; Vogt, Bennett E; Green, Anna G; Schärfe, Charlotta Pi; Marks, Debora S; Gaudet, Rachelle

    2016-01-01

    Protocadherins (Pcdhs) are cell adhesion and signaling proteins used by neurons to develop and maintain neuronal networks, relying on trans homophilic interactions between their extracellular cadherin (EC) repeat domains. We present the structure of the antiparallel EC1-4 homodimer of human PcdhγB3, a member of the γ subfamily of clustered Pcdhs. Structure and sequence comparisons of α, β, and γ clustered Pcdh isoforms illustrate that subfamilies encode specificity in distinct ways through diversification of loop region structure and composition in EC2 and EC3, which contains isoform-specific conservation of primarily polar residues. In contrast, the EC1/EC4 interface comprises hydrophobic interactions that provide non-selective dimerization affinity. Using sequence coevolution analysis, we found evidence for a similar antiparallel EC1-4 interaction in non-clustered Pcdh families. We thus deduce that the EC1-4 antiparallel homodimer is a general interaction strategy that evolved before the divergence of these distinct protocadherin families. PMID:27472898

  5. Free IL-12p40 Monomer is a Polyfunctional Adapter for Generating Novel IL-12-Like Heterodimers Extracellularly

    PubMed Central

    Abdi, Kaveh; Singh, Nevil J.; Spooner, Eric; Kessler, Benedikt M.; Radaev, Sergei; Lantz, Larry; Xiao, Tsan Sam; Matzinger, Polly; Sun, Peter D.; Ploegh, Hidde L.

    2014-01-01

    IL-12p40 partners with the p35 and p19 polypeptides to generate the heterodimeric cytokines IL-12 and IL-23 respectively. These cytokines play critical and distinct roles in host defense. The assembly of these heterodimers is thought to take place within the cell, resulting in the secretion of fully functional cytokines. Although the p40 subunit alone can also be rapidly secreted in response to inflammatory signals, its biological significance remains unclear. Here, we show that the secreted p40 monomer can generate de novo IL-12-like activities by combining extracellulary with p35 released from other cells. Surprisingly, an unbiased proteomic analysis reveals multiple such extracellular binding partners for p40 in the serum of mice after an endotoxin challenge. We biochemically validate the binding of one of these novel partners—the CD5 antigen-like glycoprotein CD5L— to the p40 monomer. Nevertheless, the assembled p40-CD5L heterodimer does not recapitulate the biological activity of IL-12. These findings underscore the plasticity of secreted free p40 monomer, suggesting that p40 functions as an adapter which is able to generate multiple de novo composites in combination with other locally available polypeptide partners, post secretion. PMID:24821971

  6. Non-averaged human brain potentials in somatic attention: the short-latency cognition-related P40 component.

    PubMed Central

    Tomberg, C; Desmedt, J E

    1996-01-01

    1. Non-averaged scalp-recorded brain potentials were studied in humans during selective attention to randomly intermixed series of stimuli to fingers. Physiological tests were use for validating the presence or absence of the short-latency cognition-related P40 electrogeneses in parietal cortex in the response to a single-target stimulus (P40 signifies a positive polarity of about 40 ms peak latency). 2. To minimize interference from the electroencephalogram and noise we mapped single brain responses over the scalp and identified P40 topographies by an updated form of the numerical estimator Z for assessment of recorded potentials over time. We found that Z should exceed 0.96 for at least 15 ms for validation of the topographical congruity between the single P40 and an averaged P40 template. 3. Individual responses to 145 target finger stimuli correctly identified by the subject were analysed. P40 occurred only intermittently (34.5%) in a series of targets, but its voltage was unexpectedly large, exceeding the P40 voltage in averaged responses by a factor of about 10. 4. The usual assumption in the averaging method that the single brain responses combined in the average are stable but merely contaminated by unrelated noise was shown to be false for the cognition-related P40, which was considerably underestimated because of its intermittency in the averaged single trials. 5. The reaction time of the subject was on average 19% shorter in the trials in which a P40 was present, thus suggesting that P40 can influence subsequent perceptual processing by the brain in the same trial. 6. The feasibility of identifying specific cognition-related electrogeneses in single brain responses opens up the study of momentary shifts in brain processing strategies thereby allowing the neurophysiology of cognition to be based in real time. Images Figure 5 Figure 6 Figure 8 Figure 11 Figure 12 PMID:8910238

  7. Lactic Acid Bacteria Inducing a Weak Interleukin-12 and Tumor Necrosis Factor Alpha Response in Human Dendritic Cells Inhibit Strongly Stimulating Lactic Acid Bacteria but Act Synergistically with Gram-Negative Bacteria

    PubMed Central

    Zeuthen, Louise Hjerrild; Christensen, Hanne Risager; Frøkiær, Hanne

    2006-01-01

    The development and maintenance of immune homeostasis indispensably depend on signals from the gut flora. Lactic acid bacteria (LAB), which are gram-positive (G+) organisms, are plausible significant players and have received much attention. Gram-negative (G−) commensals, such as members of the family Enterobacteriaceae, may, however, be immunomodulators that are as important as G+ organisms but tend to be overlooked. Dendritic cells (DCs) are crucial immune regulators, and therefore, the present study aimed at investigating differences among human gut flora-derived LAB and G− bacteria in their patterns of DC polarization. Human monocyte-derived DCs were exposed to UV-killed bacteria, and cytokine secretion and surface marker expression were analyzed. Profound differences in the DC polarization patterns were found among the strains. While strains of LAB varied greatly in their capacity to induce interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-α), G− strains were consistently weak IL-12 and TNF-α inducers. All strains induced significant amounts of IL-10, but G− bacteria were far more potent IL-10 inducers than LAB. Interestingly, we found that when weakly IL-12- and TNF-α-inducing LAB and strong IL-12- and TNF-α-inducing LAB were mixed, the weakly IL-12- and TNF-α-inducing LAB efficiently inhibited otherwise strong IL-12- and TNF-α-inducing LAB, yet when weakly IL-12- and TNF-α-inducing LAB were mixed with G− bacteria, they synergistically induced IL-12 and TNF-α. Furthermore, strong IL-12- and TNF-α-inducing LAB efficiently up-regulated surface markers (CD40, CD83, CD86, and HLA-DR), which were inhibited by weakly IL-12- and TNF-α-inducing LAB. All G− bacteria potently up-regulated surface markers; however, these markers were not inhibited by weakly IL-12- and TNF-α-inducing LAB. These much divergent DC stimulation patterns among intestinal bacteria, which encompass both antagonistic and synergistic relationships, support the

  8. A novel EID family member, EID-3, inhibits differentiation and forms a homodimer or heterodimer with EID-2

    SciTech Connect

    Sasajima, Yuka; Tanaka, Hiroyuki; Miyake, Satoshi; Yuasa, Yasuhito . E-mail: yuasa.monc@tmd.ac.jp

    2005-08-05

    The EID family members, i.e., E1A-like inhibitor of differentiation-1 (EID-1) and EID-1-like inhibitor of differentiation-2 (EID-2), were identified as negative regulators of cellular differentiation. EID-1 seems to inhibit differentiation by blocking histone acetyltransferase activity and EID-2 possibly inhibits differentiation through binding to class I histone deacetylases (HDACs). Here, we report a novel inhibitor of differentiation exhibiting homology with EID-2 termed EID-3 (EID-2-like inhibitor of differentiation-3). Like EID-2, EID-3 inhibited MyoD- and GR{alpha}-dependent transcription and blocked muscle differentiation in cultured cells by binding to class I HDACs. Unlike that of EID-2, the C-terminus, but not the N-terminus, of EID-3 was required for nuclear localization. EID-3 formed a homodimer or heterodimer with EID-2. These results suggest that EID-3 inhibits differentiation by blocking transcription as a complex in cells.

  9. DNA binding of Jun and Fos bZip domains: homodimers and heterodimers induce a DNA conformational change in solution.

    PubMed Central

    John, M; Leppik, R; Busch, S J; Granger-Schnarr, M; Schnarr, M

    1996-01-01

    We constructed plasmids encoding the sequences for the bZip modules of c-Jun and c-Fos which could then be expressed as soluble proteins in Escherichia coli. The purified bZip modules were tested for their binding capacities of synthetic oligonucleotides containing either TRE or CRE recognition sites in electrophoretic mobility shift assays and circular dichroism (CD). Electrophoretic mobility shift assays showed that bZip Jun homodimers and bZip Jun/Fos heterodimers bind a collagenase-like TRE (CTGACTCAT) with dissociation constants of respectively 1.4 x 10(-7) M and 5 x 10(-8) M. As reported earlier [Patel et al. (1990) Nature 347, 572-575], DNA binding induces a marked change of the protein structure. However, we found that the DNA also undergoes a conformational change. This is most clearly seen with small oligonucleotides of 13 or 14 bp harboring respectively a TRE (TGACTCA) or a CRE (TGACGTCA) sequence. In this case, the positive DNA CD signal at 280 nm increases almost two-fold with a concomitant blue-shift of 3-4 nm. Within experimental error the same spectral changes are observed for TRE and CRE containing DNA fragments. The spectral changes observed with a non-specific DNA fragment are weaker and the signal of free DNA is recovered upon addition of much smaller salt concentrations than required for a specific DNA fragment. Surprisingly the spectral changes induced by Jun/Jun homodimers are not identical to those induced by Jun/Fos heterodimers. However, in both cases the increase of the positive CD band and the concomitant blue shift would be compatible with a B to A-transition of part of the binding site or a DNA conformation intermediate between the canonical A and B structures. PMID:8948639

  10. An HLA-B27 Homodimer Specific Antibody Recognizes a Discontinuous Mixed-Disulfide Epitope as Identified by Affinity-Mass Spectrometry.

    PubMed

    Iuraşcu, Marius-Ionuţ; Marroquin Belaunzanar, Osiris; Cozma, Claudia; Petrausch, Ulf; Renner, Christoph; Przybylski, Michael

    2016-06-01

    HLA-B27 homodimer formation is believed to be a hallmark of HLA-B27 associated spondyloarthritides. Recently, we have generated a homodimer-specific monoclonal antibody (HD6) and have demonstrated that HLA-B27 homodimer complexes are present on monocytes of healthy HLA-B27 gene carriers at low levels, with significantly increased levels at active disease. The capability of the HD6 antibody to discriminate between correctly formed HLA-B27 heterotrimers and pathology-associated homodimers is striking and cannot be explained by the primary structure of HLA-B27. We hypothesized that HD6 accesses a unique epitope and used affinity-mass spectrometry for its identification. The HD6 antibody was immobilized on an activated sepharose affinity column, and HLA-B27 homodimer characterized for affinity. The epitope was identified by proteolytic epitope excision and MALDI mass spectrometry, and shown to comprise a discontinuous Cys-203- 257-Cys mixed-disulfide peptide structure that is not accessible in HLA-B27 heterotrimers due to protection by noncovalently linked β2-microglobulin. The epitope peptides were synthesized by solid phase peptide synthesis, and the two monomeric peptide components, HLA-B27(203-219) and HLA-B27(257-273), as well as the homo- and hetero-dimeric disulfide linked combinations prepared. The affinity binding constants KD towards the antibodies were determined using a surface acoustic wave (SAW) biosensor, and showed the highest affinity with a KD of approximately 40 nM to the HD6 antibody for the (203-219)-SS-(257-273) mixed disulfide epitope. Graphical Abstract ᅟ. PMID:27067900

  11. An HLA-B27 Homodimer Specific Antibody Recognizes a Discontinuous Mixed-Disulfide Epitope as Identified by Affinity-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Iuraşcu, Marius-Ionuţ; Marroquin Belaunzanar, Osiris; Cozma, Claudia; Petrausch, Ulf; Renner, Christoph; Przybylski, Michael

    2016-06-01

    HLA-B27 homodimer formation is believed to be a hallmark of HLA-B27 associated spondyloarthritides. Recently, we have generated a homodimer-specific monoclonal antibody (HD6) and have demonstrated that HLA-B27 homodimer complexes are present on monocytes of healthy HLA-B27 gene carriers at low levels, with significantly increased levels at active disease. The capability of the HD6 antibody to discriminate between correctly formed HLA-B27 heterotrimers and pathology-associated homodimers is striking and cannot be explained by the primary structure of HLA-B27. We hypothesized that HD6 accesses a unique epitope and used affinity-mass spectrometry for its identification. The HD6 antibody was immobilized on an activated sepharose affinity column, and HLA-B27 homodimer characterized for affinity. The epitope was identified by proteolytic epitope excision and MALDI mass spectrometry, and shown to comprise a discontinuous Cys-203- 257-Cys mixed-disulfide peptide structure that is not accessible in HLA-B27 heterotrimers due to protection by noncovalently linked β2-microglobulin. The epitope peptides were synthesized by solid phase peptide synthesis, and the two monomeric peptide components, HLA-B27(203-219) and HLA-B27(257-273), as well as the homo- and hetero-dimeric disulfide linked combinations prepared. The affinity binding constants KD towards the antibodies were determined using a surface acoustic wave (SAW) biosensor, and showed the highest affinity with a KD of approximately 40 nM to the HD6 antibody for the (203-219)-SS-(257-273) mixed disulfide epitope.

  12. An HLA-B27 Homodimer Specific Antibody Recognizes a Discontinuous Mixed-Disulfide Epitope as Identified by Affinity-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Iuraşcu, Marius-Ionuţ; Marroquin Belaunzanar, Osiris; Cozma, Claudia; Petrausch, Ulf; Renner, Christoph; Przybylski, Michael

    2016-04-01

    HLA-B27 homodimer formation is believed to be a hallmark of HLA-B27 associated spondyloarthritides. Recently, we have generated a homodimer-specific monoclonal antibody (HD6) and have demonstrated that HLA-B27 homodimer complexes are present on monocytes of healthy HLA-B27 gene carriers at low levels, with significantly increased levels at active disease. The capability of the HD6 antibody to discriminate between correctly formed HLA-B27 heterotrimers and pathology-associated homodimers is striking and cannot be explained by the primary structure of HLA-B27. We hypothesized that HD6 accesses a unique epitope and used affinity-mass spectrometry for its identification. The HD6 antibody was immobilized on an activated sepharose affinity column, and HLA-B27 homodimer characterized for affinity. The epitope was identified by proteolytic epitope excision and MALDI mass spectrometry, and shown to comprise a discontinuous Cys-203- 257-Cys mixed-disulfide peptide structure that is not accessible in HLA-B27 heterotrimers due to protection by noncovalently linked β2-microglobulin. The epitope peptides were synthesized by solid phase peptide synthesis, and the two monomeric peptide components, HLA-B27(203-219) and HLA-B27(257-273), as well as the homo- and hetero-dimeric disulfide linked combinations prepared. The affinity binding constants KD towards the antibodies were determined using a surface acoustic wave (SAW) biosensor, and showed the highest affinity with a KD of approximately 40 nM to the HD6 antibody for the (203-219)-SS-(257-273) mixed disulfide epitope.

  13. Association of Common Genetic Polymorphisms with Melanoma Patient IL-12p40 Blood Levels, Risk, and Outcomes

    PubMed Central

    Fang, Shenying; Wang, Yuling; Chun, Yun S; Liu, Huey; Ross, Merrick I; Gershenwald, Jeffrey E; Cormier, Janice N; Royal, Richard E; Lucci, Anthony; Schacherer, Christopher W; Reveille, John D; Chen, Wei; Sui, Dawen; Bassett, Roland L; Wang, Li-E; Wei, Qingyi; Amos, Christopher I; Lee, Jeffrey E

    2015-01-01

    Recent investigation has identified association of IL-12p40 blood levels with melanoma recurrence and patient survival. No studies have investigated associations of single-nucleotide polymorphisms (SNPs) with melanoma patient IL-12p40 blood levels or their potential contributions to melanoma susceptibility or patient outcome. In the current study, 818,237 SNPs were available for 1,804 melanoma cases and 1,026 controls. IL-12p40 blood levels were assessed among 573 cases (discovery), 249 cases (case validation), and 299 controls (control validation). SNPs were evaluated for association with log[IL-12p40] levels in the discovery data set and replicated in two validation data sets, and significant SNPs were assessed for association with melanoma susceptibility and patient outcomes. The most significant SNP associated with log[IL-12p40] was in the IL-12B gene region (rs6897260, combined P=9.26 × 10−38); this single variant explained 13.1% of variability in log[IL-12p40]. The most significant SNP in EBF1 was rs6895454 (combined P=2.24 × 10−9). A marker in IL12B was associated with melanoma susceptibility (rs3213119, multivariate P=0.0499; OR=1.50, 95% CI 1.00–2.24), whereas a marker in EBF1 was associated with melanoma-specific survival in advanced-stage patients (rs10515789, multivariate P=0.02; HR=1.93, 95% CI 1.11–3.35). Both EBF1 and IL12B strongly regulate IL-12p40 blood levels, and IL-12p40 polymorphisms may contribute to melanoma susceptibility and influence patient outcome. PMID:25848976

  14. wrwyrggrywrw is a single-chain functional analog of the Holliday junction-binding homodimer, (wrwycr)2

    PubMed Central

    Rideout, Marc C.; Naili, Ilham; Boldt, Jeffrey L.; Flores-Fujimoto, America; Patra, Sukanya; Rostron, Jason E.; Segall, Anca M.

    2013-01-01

    DNA repair pathways in bacteria that use homologous recombination involve the formation and subsequent resolution of Holliday junction (HJ) intermediates. We have previously identified several hexameric peptides that bind to HJs and interfere with HJ processing enzymes in vitro. The peptide WRWYCR and its D-amino acid stereoisomer wrwycr, are potent antibacterial agents. These hexapeptides must form homodimers in order to interact stably with HJs, and inhibit bacterial growth, and this represents a potential limitation. Herein we describe a disulfide bond-independent inhibitor, WRWYRGGRYWRW and its D-stereoisomer wrwyrggrywrw. We have characterized these single-chain, linear analogs of the hexapeptides, and show that in addition to effectively binding to HJs, and inhibiting the activity of DNA repair enzymes that process HJs, they have equal or greater potency against Gram-positive and Gram-negative bacterial growth. The analogs were also shown to cause DNA damage in bacteria, and disrupt the integrity of the bacterial cytoplasmic membrane. Finally, we found that they have little toxicity toward several eukaryotic cell types at concentrations needed to inhibit bacterial growth. PMID:23291222

  15. IκBβ enhances the generation of the low-affinity NFκB/RelA homodimer

    PubMed Central

    Tsui, Rachel; Kearns, Jeffrey D.; Lynch, Candace; Vu, Don; Ngo, Kim; Basak, Soumen; Ghosh, Gourisankar; Hoffmann, Alexander

    2015-01-01

    The NFκB family of dimeric transcription factors regulate inflammatory and immune responses. While the dynamic control of NFκB dimer activity via the IκB-NFκB signaling module is well understood, there is little information on how specific dimer repertoires are generated from Rel family polypeptides. Here we report the iterative construction – guided by in vitro and in vivo experimentation – of a mathematical model of the Rel-NFκB generation module. Our study reveals that IκBβ has essential functions within the Rel-NFκB generation module, specifically for the RelA:RelA homodimer, which controls a subset of NFκB target genes. Our findings revise the current dogma of the three classical, functionally-related IκB proteins by distinguishing between a positive ‘licensing’ factor (IκBβ) that contributes to determining the available NFκB dimer repertoire in a cell’s steady state, and negative feedback regulators (IκBα and -ε) that determine the duration and dynamics of the cellular response to an inflammatory stimulus. PMID:25946967

  16. Sulfasalazine Treatment Suppresses the Formation of HLA-B27 Heavy Chain Homodimer in Patients with Ankylosing Spondylitis.

    PubMed

    Yu, Hui-Chun; Lu, Ming-Chi; Huang, Kuang-Yung; Huang, Hsien-Lu; Liu, Su-Qin; Huang, Hsien-Bin; Lai, Ning-Sheng

    2016-01-01

    Human leukocytic antigen-B27 heavy chain (HLA-B27 HC) has the tendency to fold slowly, in turn gradually forming a homodimer, (B27-HC)₂ via a disulfide linkage to activate killer cells and T-helper 17 cells and inducing endoplasmic reticulum (ER) stress to trigger the IL-23/IL-17 axis for pro-inflammatory reactions. All these consequences lead to the pathogenesis of ankylosing spondylitis (AS). Sulfasalazine (SSA) is a common medication used for treatment of patients with AS. However, the effects of SSA treatment on (B27-HC)₂ formation and on suppression of IL-23/IL-17 axis of AS patients remain to be determined. In the current study, we examine the (B27-HC)₂ of peripheral blood mononuclear cells (PBMC), the mean grade of sarcoiliitis and lumbar spine Bath Ankylosing Spondylitis Radiology Index (BASRI) scores of 23 AS patients. The results indicated that AS patients without (B27-HC)₂ on PBMC showed the lower levels of mean grade of sarcoiliitis and the lumbar spine BASRI scores. In addition, after treatment with SSA for four months, the levels of (B27-HC)₂ on PBMCs were significantly reduced. Cytokines mRNA levels, including TNFα, IL-17A, IL-17F and IFNγ, were also significantly down-regulated in PBMCs. However, SSA treatment did not affect the levels of IL-23 and IL-23R mRNAs. PMID:26729099

  17. Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo.

    PubMed

    Tropak, Michael B; Yonekawa, Sayuri; Karumuthil-Melethil, Subha; Thompson, Patrick; Wakarchuk, Warren; Gray, Steven J; Walia, Jagdeep S; Mark, Brian L; Mahuran, Don

    2016-01-01

    Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM), CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels. PMID:26966698

  18. Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo

    PubMed Central

    Tropak, Michael B; Yonekawa, Sayuri; Karumuthil-Melethil, Subha; Thompson, Patrick; Wakarchuk, Warren; Gray, Steven J; Walia, Jagdeep S; Mark, Brian L; Mahuran, Don

    2016-01-01

    Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM), CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels. PMID:26966698

  19. Effect of p40tax trans-activator of human T cell lymphotropic virus type I on expression of autoantigens.

    PubMed

    Banki, K; Ablonczy, E; Nakamura, M; Perl, A

    1994-03-01

    The possibility of a retroviral etiology has long been raised in a number of autoimmune disorders. More recently, Sjögren's syndrome and rheumatoid arthritis were noted in transgenic mice carrying the tax gene of human T cell leukemia virus type I (HTLV-I). To evaluate the involvement of HTLV-I Tax in autoimmunity, its effect on expression of autoantigens was investigated. A metallothionein promoter-driven p40tax expression plasmid, pMAXRHneo-1, was stably transfected into Molt4 and Jurkat cells and the p40tax protein was induced with CdCl2. trans-Activation or trans-repression of autoantigens by HTLV-I Tax was studied by Western blot analysis utilizing autoantigen-specific murine monoclonal and rabbit polyvalent antibodies as well as sera from 161 autoimmune patients. Induction of p40tax of HTLV-I had no significant effect on levels of expression of common autoantigens U1 snRNP, Sm, Ro, La, HSP-70, topoisomerase I/Scl70, PCNA, and HRES-1. Expression of two potentially novel autoantigens, 44 and 46 kDa, was induced by p40tax as detected by sera of progressive systemic sclerosis patients, BAK and VAR. By contrast, expression of 24- and 34-kDa proteins was suppressed in response to induction of p40tax as detected by sera of systemic lupus erythematosus patients PUS and HOR. Because none of these patients were infected by HTLV-I, a protein functionally similar to p40tax may be involved in eliciting autoantigen expression and a subsequent autoantibody response in a minority of patients with PSS and SLE. Sera of autoimmune patients may also be utilized to detect novel proteins trans-activated or trans-repressed by p40tax of HTLV-I. PMID:8018391

  20. A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer.

    PubMed

    Shen, Huaishun; Cao, Kaiming; Wang, Xiping

    2007-10-19

    Two putative Arabidopsis E group bZIP transcript factors, AtbZIP34 and AtbZIP61, are nuclear-localized and their transcriptional activation domain is in their N-terminal region. By searching GenBank, we found other eight plant homologues of AtbZIP34 and AtbZIP61. All of them have a proline residue in the third heptad of zipper region. Yeast two-hybrid assay and EMSA showed that AtbZIP34 and AtbZIP61 could not form homodimer while their mutant forms, AtbZIP34m and AtbZIP61m, which the proline residue was replaced by an alanine residue in the zipper region, could form homodimer and bind G-box element. These results suggest that the conserved proline residue interferes with the homodimer formation. However, both AtbZIP34 and AtbZIP61 could form heterodimers with members of I group and S group transcription factors in which some members involved in vascular development. So we speculate that AtbZIP34 and AtbZIP61 may participate in plant development via interacting with other group bZIP transcription factors. PMID:17719007

  1. Structural Analysis of Guanylyl Cyclase-Activating Protein-2 (GCAP-2) Homodimer by Stable Isotope-Labeling, Chemical Cross-Linking, and Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Pettelkau, Jens; Thondorf, Iris; Theisgen, Stephan; Lilie, Hauke; Schröder, Thomas; Arlt, Christian; Ihling, Christian H.; Sinz, Andrea

    2013-12-01

    The topology of the GCAP-2 homodimer was investigated by chemical cross-linking and high resolution mass spectrometry. Complementary conducted size-exclusion chromatography and analytical ultracentrifugation studies indicated that GCAP-2 forms a homodimer both in the absence and in the presence of Ca2+. In-depth MS and MS/MS analysis of the cross-linked products was aided by 15 N-labeled GCAP-2. The use of isotope-labeled protein delivered reliable structural information on the GCAP-2 homodimer, enabling an unambiguous discrimination between cross-links within one monomer (intramolecular) or between two subunits (intermolecular). The limited number of cross-links obtained in the Ca2+-bound state allowed us to deduce a defined homodimeric GCAP-2 structure by a docking and molecular dynamics approach. In the Ca2+-free state, GCAP-2 is more flexible as indicated by the higher number of cross-links. We consider stable isotope-labeling to be indispensable for deriving reliable structural information from chemical cross-linking data of multi-subunit protein assemblies.

  2. A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer

    SciTech Connect

    Shen Huaishun; Cao Kaiming; Wang Xiping

    2007-10-19

    Two putative Arabidopsis E group bZIP transcript factors, AtbZIP34 and AtbZIP61, are nuclear-localized and their transcriptional activation domain is in their N-terminal region. By searching GenBank, we found other eight plant homologues of AtbZIP34 and AtbZIP61. All of them have a proline residue in the third heptad of zipper region. Yeast two-hybrid assay and EMSA showed that AtbZIP34 and AtbZIP61 could not form homodimer while their mutant forms, AtbZIP34m and AtbZIP61m, which the proline residue was replaced by an alanine residue in the zipper region, could form homodimer and bind G-box element. These results suggest that the conserved proline residue interferes with the homodimer formation. However, both AtbZIP34 and AtbZIP61 could form heterodimers with members of I group and S group transcription factors in which some members involved in vascular development. So we speculate that AtbZIP34 and AtbZIP61 may participate in plant development via interacting with other group bZIP transcription factors.

  3. Structures of a minimal human CFTR first nucleotide-binding domain as a monomer, head-to-tail homodimer, and pathogenic mutant

    SciTech Connect

    Atwell, Shane; Brouillette, Christie G.; Conners, Kris; Emtage, Spencer; Gheyi, Tarun; Guggino, William B.; Hendle, Jorg; Hunt, John F.; Lewis, Hal A.; Lu, Frances; Protasevich, Irina I.; Rodgers, Logan A.; Romero, Rich; Wasserman, Stephen R.; Weber, Patricia C.; Wetmore, Diana; Zhang, Feiyu F.; Zhao, Xun

    2010-04-26

    Upon removal of the regulatory insert (RI), the first nucleotide binding domain (NBD1) of human cystic fibrosis transmembrane conductance regulator (CFTR) can be heterologously expressed and purified in a form that remains stable without solubilizing mutations, stabilizing agents or the regulatory extension (RE). This protein, NBD1 387-646({Delta}405-436), crystallizes as a homodimer with a head-to-tail association equivalent to the active conformation observed for NBDs from symmetric ATP transporters. The 1.7-{angstrom} resolution X-ray structure shows how ATP occupies the signature LSGGQ half-site in CFTR NBD1. The {Delta}F508 version of this protein also crystallizes as a homodimer and differs from the wild-type structure only in the vicinity of the disease-causing F508 deletion. A slightly longer construct crystallizes as a monomer. Comparisons of the homodimer structure with this and previously published monomeric structures show that the main effect of ATP binding at the signature site is to order the residues immediately preceding the signature sequence, residues 542-547, in a conformation compatible with nucleotide binding. These residues likely interact with a transmembrane domain intracellular loop in the full-length CFTR channel. The experiments described here show that removing the RI from NBD1 converts it into a well-behaved protein amenable to biophysical studies yielding deeper insights into CFTR function.

  4. Structure of the beta 2 homodimer of bacterial luciferase from Vibrio harveyi: X-ray analysis of a kinetic protein folding trap.

    PubMed Central

    Thoden, J. B.; Holden, H. M.; Fisher, A. J.; Sinclair, J. F.; Wesenberg, G.; Baldwin, T. O.; Rayment, I.

    1997-01-01

    Luciferase, as isolated from Vibrio harveyi, is an alpha beta heterodimer. When allowed to fold in the absence of the alpha subunit, either in vitro or in vivo, the beta subunit of enzyme will form a kinetically stable homodimer that does not unfold even after prolonged incubation in 5 M urea at pH 7.0 and 18 degrees C. This form of the beta subunit, arising via kinetic partitioning on the folding pathway, appears to constitute a kinetically trapped alternative to the heterodimeric enzyme (Sinclair JF, Ziegler MM, Baldwin TO. 1994. Kinetic partitioning during protein folding yields multiple native states. Nature Struct Biol 1: 320-326). Here we describe the X-ray crystal structure of the beta 2 homodimer of luciferase from V. harveyi determined and refined at 1.95 A resolution. Crystals employed in the investigational belonged to the orthorhombic space group P2(1)2(1)2(1) with unit cell dimensions of a = 58.8 A, b = 62.0 A, and c = 218.2 A and contained one dimer per asymmetric unit. Like that observed in the functional luciferase alpha beta heterodimer, the major tertiary structural motif of each beta subunit consists of an (alpha/beta)8 barrel (Fisher AJ, Raushel FM, Baldwin TO, Rayment I. 1995. Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 A resolution. Biochemistry 34: 6581-6586). The root-mean-square deviation of the alpha-carbon coordinates between the beta subunits of the hetero- and homodimers is 0.7 A. This high resolution X-ray analysis demonstrated that "domain" or "loop" swapping has not occurred upon formation of the beta 2 homodimer and thus the stability of the beta 2 species to denaturation cannot be explained in such simple terms. In fact, the subunit:subunit interfaces observed in both the beta 2 homodimer and alpha beta heterodimer are remarkably similar in hydrogen-bonding patterns and buried surface areas. PMID:9007973

  5. Structural Basis for a Munc13–1 Homodimer to Munc13–1/RIM Heterodimer Switch

    PubMed Central

    Lu, Jun; Machius, Mischa; Dulubova, Irina; Dai, Han; Südhof, Thomas C; Tomchick, Diana R

    2006-01-01

    C 2 domains are well characterized as Ca 2+/phospholipid-binding modules, but little is known about how they mediate protein–protein interactions. In neurons, a Munc13–1 C 2A-domain/RIM zinc-finger domain (ZF) heterodimer couples synaptic vesicle priming to presynaptic plasticity. We now show that the Munc13–1 C 2A domain homodimerizes, and that homodimerization competes with Munc13–1/RIM heterodimerization. X-ray diffraction studies guided by nuclear magnetic resonance (NMR) experiments reveal the crystal structures of the Munc13–1 C 2A-domain homodimer and the Munc13–1 C 2A-domain/RIM ZF heterodimer at 1.44 Å and 1.78 Å resolution, respectively. The C 2A domain adopts a β-sandwich structure with a four-stranded concave side that mediates homodimerization, leading to the formation of an eight-stranded β-barrel. In contrast, heterodimerization involves the bottom tip of the C 2A-domain β-sandwich and a C-terminal α-helical extension, which wrap around the RIM ZF domain. Our results describe the structural basis for a Munc13–1 homodimer–Munc13–1/RIM heterodimer switch that may be crucial for vesicle priming and presynaptic plasticity, uncovering at the same time an unexpected versatility of C 2 domains as protein–protein interaction modules, and illustrating the power of combining NMR spectroscopy and X-ray crystallography to study protein complexes. PMID:16732694

  6. Substrate-Modulated Thermal Fluctuations Affect Long-Range Allosteric Signaling in Protein Homodimers: Exemplified in CAP

    PubMed Central

    Toncrova, Hedvika; McLeish, Tom C.B.

    2010-01-01

    Abstract The role of conformational dynamics in allosteric signaling of proteins is increasingly recognized as an important and subtle aspect of this ubiquitous phenomenon. Cooperative binding is commonly observed in proteins with twofold symmetry that bind two identical ligands. We construct a coarse-grained model of an allosteric coupled dimer and show how the signal can be propagated between the distant binding sites via change in slow global vibrational modes alone. We demonstrate that modulation on substrate binding of as few as 5–10 slow modes can give rise to cooperativity observed in biological systems and that the type of cooperativity is given by change of interaction between the two monomers upon ligand binding. To illustrate the application of the model, we apply it to a challenging test case: the catabolite activator protein (CAP). CAP displays negative cooperativity upon association with two identical ligands. The conformation of CAP is not affected by the binding, but its vibrational spectrum undergoes a strong modification. Intriguingly, the first binding enhances thermal fluctuations, yet the second quenches them. We show that this counterintuitive behavior is, in fact, necessary for an optimal anticooperative system, and captured within a well-defined region of the model's parameter space. From analyzing the experimental results, we conclude that fast local modes take an active part in the allostery of CAP, coupled to the more-global slow modes. By including them into the model, we elucidate the role of the modes on different timescales. We conclude that such dynamic control of allostery in homodimers may be a general phenomenon and that our model framework can be used for extended interpretation of thermodynamic parameters in other systems. PMID:20483341

  7. The enzyme engineering of mutant homodimer and heterodimer of coproporphyinogen oxidase contributes to new insight into hereditary coproporphyria and harderoporphyria.

    PubMed

    Kim, Dao Hoang Thien; Hino, Ryoko; Adachi, Yuka; Kobori, Akio; Taketani, Shigeru

    2013-12-01

    Hereditary coproporphyria (HCP) is an autosomal dominant-inherited disease of haem biosynthesis caused by partial deficiency of the enzyme coproporphyrinogen oxidase (CPOX). Patients with HCP show <50% of normal activity and those with the rare autosomal recessive harderoporphyria accumulate harderoporphyrinogen, an intermediate porphyrin of the CPOX reaction. To clarify the relationship of the low enzyme activity with these diseases, we expressed mutant CPOX carrying His-tag from these porphyria patients and co-expressed mutant CPOX carrying His-tag and normal CPOX carrying HA-tag in a tandem fashion in Escherichia coli. Purification of the His-tag-containing enzyme revealed that the His-enzyme forms a heterodimer in association with the HA-enzyme, and analysis using a cross-link reagent confirmed that the enzyme is a dimer (∼70 kDa). Then, we expressed homo- and heterodimers composed of the wild-type (wt) and engineered mutants of the enzyme or mutants from HCP patients. The monomer form of mutated CPOX did not show any activity and homodimeric enzymes derived from HCP mutant showed low activity (<20% of the control). Some mutations of amino acids 401-404 were associated with marked accumulation of harderoporphyrinogen, with a decrease in the production of protoporphyrinogen, whereas K404E derived from patients with harderoporphyria produced less harderoporphyrinogen. The heterodimers with wt and mutated subunits from HCP patients showed low protoporphyrinogen producing activity. These results show that the substitution of amino acids from R401 to K404 results in extremely low enzyme activity with either mutant homodimer or heterodimers containing normal and mutated subunits and can be linked to HCP disease. PMID:24078084

  8. On a fully closed state of native human type-1 VDAC enriched in Nonidet P40.

    PubMed

    Thinnes, Friedrich P; Burckhardt, Gerhard

    2012-11-01

    There is indication that human type-1 VDAC/Porin31HL complexes, when purified from highly enriched cell membrane preparations of human B-lymphocytes by classical ion-exchange chromatography in the detergent Nonidet P40, rest in fully closed state, its N-terminus being accessible for mAbs. Cholesterol appears to be involved as a channel modulator. The channel switches to anion-selective or "open state" while being incorporated into black membranes at zero transmembrane potential. In this case, its N-terminus is hidden in the channel lumen. The cation-selective or "closed state" can be induced by transmembrane potentials beyond 30 mV, the N-terminus putatively now being positioned outside the channel lumen. The latter situation might allow one to decide if type-1 VDAC, preincubated with adequate antibodies against its N-terminal part, would enter black membranes in fully closed state or stay in the application medium, respectively, may be complexed to dimers. PMID:23000107

  9. Regulation of alveolar macrophage p40phox: hierarchy of activating kinases and their inhibition by PGE2

    PubMed Central

    Bourdonnay, Emilie; Serezani, Carlos H.; Aronoff, David M.; Peters-Golden, Marc

    2012-01-01

    PGE2, produced in the lung during infection with microbes such as Klebsiella pneumoniae, inhibits alveolar macrophage (AM) antimicrobial functions by preventing H2O2 production by NADPH oxidase (NADPHox). Activation of the NADPHox complex is poorly understood in AMs, although in neutrophils it is known to be mediated by kinases including PI3K/Akt, protein kinase C (PKC) δ, p21-activated protein kinase (PAK), casein kinase 2 (CK2), and MAPKs. The p40phox cytosolic subunit of NADPHox has been recently recognized to function as a carrier protein for other subunits and a positive regulator of oxidase activation, a role previously considered unique to another subunit, p47phox. The regulation of p40phox remains poorly understood, and the effect of PGE2 on its activation is completely undefined. We addressed these issues in rat AMs activated with IgG-opsonized K. pneumoniae. The kinetics of kinase activation and the consequences of kinase inhibition and silencing revealed a critical role for a PKCδ-PAK-class I PI3K/Akt1 cascade in the regulation of p40phox activation upon bacterial challenge in AMs; PKCα, ERK, and CK2 were not involved. PGE2 inhibited the activation of p40phox, and its effects were mediated by protein kinase A type II, were independent of interactions with anchoring proteins, and were directed at the distal class I PI3K/Akt1 activation step. Defining the kinases that control AM p40phox activation and that are the targets for inhibition by PGE2 provides new insights into immunoregulation in the infected lung. PMID:22544939

  10. Suppression of IL-12p40-related regulatory cytokines by suberoylanilide hydroxamic acid an inhibitor of histone deacetylases.

    PubMed

    Dobreva, Zlatka Georgieva; Grigorov, Boncho Grigorov; Stanilova, Spaska Angelova

    2016-08-01

    Small molecule inhibitors of histone deacetylases (HDACs) are a new class drugs used in clinical trials for the treatment of various malignancies. Emerging evidence suggest that HDAC inhibitors may also have anti-inflammatory properties, although the molecular mechanisms remain poorly defined. Our study investigates the effect of the HDACs inhibitor suberoylanilide hydroxamic acid (SAHA) on the expression of IL-12p40-related cytokines. For this purpose, human peripheral blood mononuclear cells (PBMC) were stimulated with LPS and C3bgp with or without SAHA. IL-12p40, IL-12p35 and IL-23p19 mRNA was determined at 6 h by qRT-PCR. Cytokine levels were determined in culture supernatants at 6 and 24 h, by ELISA. SAHA significantly inhibited IL-12p40 and IL-23p19 mRNA synthesis and did not change IL-12p35 mRNA transcription. Early at 6 h, we detected significantly decreased IL-12p40 and IL-23, but not IL-12p70 protein production in cultures treated with SAHA. Results also showed that the suppression of IL-12p40-related cytokines was clearly defined at 24 h. However, this suppression was less pronounced regarding IL-12p70. The present study showed that SAHA suppressed the gene expression of IL-23p19 stronger than the expression of IL-12p35, as well as the synthesis of IL-23 compared to that of IL-12p70. We suggest that this inhibitory effect of SAHA may be beneficial during treatment of inflammatory and autoimmune diseases mediated by Th17 immune response. PMID:27240992

  11. Atypical OmpR/PhoB Subfamily Response Regulator GlnR of Actinomycetes Functions as a Homodimer, Stabilized by the Unphosphorylated Conserved Asp-focused Charge Interactions*

    PubMed Central

    Lin, Wei; Wang, Ying; Han, Xiaobiao; Zhang, Zilong; Wang, Chengyuan; Wang, Jin; Yang, Huaiyu; Lu, Yinhua; Jiang, Weihong; Zhao, Guo-Ping; Zhang, Peng

    2014-01-01

    The OmpR/PhoB subfamily protein GlnR of actinomycetes is an orphan response regulator that globally coordinates the expression of genes related to nitrogen metabolism. Biochemical and genetic analyses reveal that the functional GlnR from Amycolatopsis mediterranei is unphosphorylated at the potential phosphorylation Asp50 residue in the N-terminal receiver domain. The crystal structure of this receiver domain demonstrates that it forms a homodimer through the α4-β5-α5 dimer interface highly similar to the phosphorylated typical response regulator, whereas the so-called “phosphorylation pocket” is not conserved, with its space being occupied by an Arg52 from the β3-α3 loop. Both in vitro and in vivo experiments confirm that GlnR forms a functional homodimer via its receiver domain and suggest that the charge interactions of Asp50 with the highly conserved Arg52 and Thr9 in the receiver domain may be crucial in maintaining the proper conformation for homodimerization, as also supported by molecular dynamics simulations of the wild type GlnR versus the deficient mutant GlnR(D50A). This model is backed by the distinct phenotypes of the total deficient GlnR(R52A/T9A) double mutant versus the single mutants of GlnR (i.e. D50N, D50E, R52A and T9A), which have only minor effects upon both dimerization and physiological function of GlnR in vivo, albeit their DNA binding ability is weakened compared with that of the wild type. By integrating the supportive data of GlnRs from the model Streptomyces coelicolor and the pathogenic Mycobacterium tuberculosis, we conclude that the actinomycete GlnR is atypical with respect to its unphosphorylated conserved Asp residue being involved in the critical Arg/Asp/Thr charge interactions, which is essential for maintaining the biologically active homodimer conformation. PMID:24733389

  12. Differential survival following trastuzumab treatment based on quantitative HER2 expression and HER2 homodimers in a clinic-based cohort of patients with metastatic breast cancer

    PubMed Central

    2010-01-01

    Background We have recently described the correlation between quantitative measures of HER2 expression or HER2 homodimers by the HERmark assay and objective response (RR), time-to progression (TTP), and overall survival (OS) in an expanded access cohort of trastuzumab-treated HER2-positive patients with metastatic breast cancer (MBC) who were stringently selected by fluorescence in situ hybridization (FISH). Multivariate analyses suggested a continuum of HER2 expression that correlated with outcome following trastuzumab. Here we investigate the relationship between HER2 expression or HER2 homodimers and OS in a clinic-based population of patients with MBC selected primarily by IHC. Methods HERmark, a proximity-based assay designed to detect and quantitate protein expression and dimerization in formalin-fixed paraffin-embedded (FFPE) tissues, was used to measure HER2 expression and HER2 homodimers in FFPE samples from patients with MBC. Assay results were correlated with OS using univariate Kaplan-Meier, hazard function plots, and multivariate Cox regression analyses. Results Initial analyses revealed a parabolic relationship between continuous measures of HER2 expression and risk of death, suggesting that the assumption of linearity for the HER2 expression measurements may be inappropriate in subsequent multivariate analyses. Cox regression analyses using the categorized variable of HER2 expression level demonstrated that higher HER2 levels predicted better survival outcomes following trastuzumab treatment in the high HER2-expressing group. Conclusions These data suggest that the quantitative amount of HER2 expression measured by Hermark may be a new useful marker to identify a more relevant target population for trastuzumab treatment in patients with MBC. PMID:20178580

  13. Assembly of the Bak apoptotic pore: a critical role for the Bak protein α6 helix in the multimerization of homodimers during apoptosis.

    PubMed

    Ma, Stephen; Hockings, Colin; Anwari, Khatira; Kratina, Tobias; Fennell, Stephanie; Lazarou, Michael; Ryan, Michael T; Kluck, Ruth M; Dewson, Grant

    2013-09-01

    Bak and Bax are the essential effectors of the intrinsic pathway of apoptosis. Following an apoptotic stimulus, both undergo significant changes in conformation that facilitates their self-association to form pores in the mitochondrial outer membrane. However, the molecular structures of Bak and Bax oligomeric pores remain elusive. To characterize how Bak forms pores during apoptosis, we investigated its oligomerization under native conditions using blue native PAGE. We report that, in a healthy cell, inactive Bak is either monomeric or in a large complex involving VDAC2. Following an apoptotic stimulus, activated Bak forms BH3:groove homodimers that represent the basic stable oligomeric unit. These dimers multimerize to higher-order oligomers via a labile interface independent of both the BH3 domain and groove. Linkage of the α6:α6 interface is sufficient to stabilize higher-order Bak oligomers on native PAGE, suggesting an important role in the Bak oligomeric pore. Mutagenesis of the α6 helix disrupted apoptotic function because a chimera of Bak with the α6 derived from Bcl-2 could be activated by truncated Bid (tBid) and could form BH3:groove homodimers but could not form high molecular weight oligomers or mediate cell death. An α6 peptide could block Bak function but did so upstream of dimerization, potentially implicating α6 as a site for activation by BH3-only proteins. Our examination of native Bak oligomers indicates that the Bak apoptotic pore forms by the multimerization of BH3:groove homodimers and reveals that Bak α6 is not only important for Bak oligomerization and function but may also be involved in how Bak is activated by BH3-only proteins. PMID:23893415

  14. High Brightness Picture Technology In SD-P40 Projection TV

    NASA Astrophysics Data System (ADS)

    Hasegawa, Shinichi

    1987-04-01

    Pioneer Electric Company has developed a new generation 40-inch rear projection SD-P40 television, a revolutionary, new television that realizes white peak brightness of 300 ft-I and high contrast. The combination of high brightness and high contrast is made possible primarily by newly developed optical-coupling technology that utilizes newly developed concepts. This new optical coupling technology cools the CRT quite efficiently, making it possible to greatly increase the CRT power input to obtain high brightness and at the same time provides greater reliability than direct view televisions. The new optical-coupling technology also makes it possible to almost completely eliminate the reflectance at the boundaries between the CRT and the lens and air, which gives much higher contrast than previous televisions. Not only does this optical-coupling technology provide high performance, in addition since the liquid coolant it employs functions as a liquid lens, the coupling lens can be designed to a uniform thinness and a small aperture. This greatly reduces the cost of the lens. Our newly developed optical-coupling technology is the ultimate form of cooling for the CRT tubes of projection televisions and coupling with the lens and will become the mainstream technology in the future. It is forecast that other manufacturers will also adopt this type of technology. The optical lens section, which is the heart of a projection television, is a hybrid structure with three aspherical plastic lenses and one glass spherical lens. It has higher performance image formation and greater temperature stability than previous televisions. The plastic lenses are all finished with multi-coating to hold down light loss and maximize transparency. This con-tributes greatly to increasing the brightness for a projection television. Previous 3-tube type projection televisions were bothered by low color uniformity, color shift, and low color rela-tive illumination. This model uses three bends

  15. A Lactobacillus rhamnosus GG-derived Soluble Protein, p40, Stimulates Ligand Release from Intestinal Epithelial Cells to Transactivate Epidermal Growth Factor Receptor*

    PubMed Central

    Yan, Fang; Liu, Liping; Dempsey, Peter J.; Tsai, Yu-Hwai; Raines, Elaine W.; Wilson, Carole L.; Cao, Hailong; Cao, Zheng; Liu, LinShu; Polk, D. Brent

    2013-01-01

    p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis, and preserves barrier function by transactivation of the EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study is to determine the mechanisms by which p40 transactivates the EGFR in intestinal epithelial cells. Here we show that p40-conditioned medium activates EGFR in young adult mouse colon epithelial cells and human colonic epithelial cell line, T84 cells. p40 up-regulates a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) catalytic activity, and broad spectrum metalloproteinase inhibitors block EGFR transactivation by p40 in these two cell lines. In ADAM17-deficient mouse colonic epithelial (ADAM17−/− MCE) cells, p40 transactivation of EGFR is blocked, but can be rescued by re-expression with WT ADAM17. Furthermore, p40 stimulates release of heparin binding (HB)-EGF, but not transforming growth factor (TGF)α or amphiregulin, in young adult mouse colon cells and ADAM17−/− MCE cells overexpressing WT ADAM17. Knockdown of HB-EGF expression by siRNA suppresses p40 effects on transactivating EGFR and Akt, preventing apoptosis, and preserving tight junction function. The effects of p40 on HB-EGF release and ADAM17 activation in vivo are examined after administration of p40-containing pectin/zein hydrogel beads to mice. p40 stimulates ADAM17 activity and EGFR activation in colonic epithelial cells and increases HB-EGF levels in blood from WT mice, but not from mice with intestinal epithelial cell-specific ADAM17 deletion. Thus, these data define a mechanism of a probiotic-derived soluble protein in modulating intestinal epithelial cell homeostasis through ADAM17-mediated HB-EGF release, leading to transactivation of EGFR. PMID:24043629

  16. Subcellular localisation of the p40phox component of NADPH oxidase involves direct interactions between the Phox homology domain and F-actin

    PubMed Central

    Shao, Dongmin; Segal, Anthony W.; Dekker, Lodewijk V.

    2010-01-01

    Cytosolic components of the NADPH oxidase interact with the actin cytoskeleton. These interactions are thought to be important for the activation of this enzyme system but they are poorly characterised at the molecular level. Here we have explored the interaction between the actin cytoskeleton and p40phox, one of the cytosolic components of NADPH oxidase. Full length p40phox expressed in COS cells co-localised with F-actin in a peripheral lamellar compartment. The co-localisation was lost after deletion of the Phox homology (PX) domain and the PX domain in isolation (p40PX) showed the same F-actin co-localisation as the full length protein. PX domains are known lipid-binding modules however, a mutant p40PX which did not bind lipids still co-localised with F-actin suggesting that lipid-independent interactions underlie the localisation. Affinity chromatography identified actin as a binding partner for p40PX in neutrophil extracts. Pure actin interacted with both p40phox and with p40PX suggesting it is a direct interaction. Disruption of the actin cytoskeleton with cytochalasin D resulted in actin rearrangement and concomitantly the localisation of full length p40phox proteins and that of p40PX changed. Thus p40PX is a dual F-actin/lipid-binding module and F-actin interactions with the PX domain dictate at least in part the intracellular localisation of the cytosolic p40phox subunit of the NADPH oxidase. PMID:20637895

  17. Microbiota downregulates dendritic cell expression of miR-10a, which targets IL-12/IL-23p40.

    PubMed

    Xue, Xiaochang; Feng, Ting; Yao, Suxia; Wolf, Kyle J; Liu, Chang-Gong; Liu, Xiuping; Elson, Charles O; Cong, Yingzi

    2011-12-01

    Commensal flora plays important roles in the regulation of the gene expression involved in many intestinal functions and the maintenance of immune homeostasis, as well as in the pathogenesis of inflammatory bowel diseases. The microRNAs (miRNAs), a class of small, noncoding RNAs, act as key regulators in many biological processes. The miRNAs are highly conserved among species and appear to play important roles in both innate and adaptive immunity, as they can control the differentiation of various immune cells, as well as their functions. However, it is still largely unknown how microbiota regulates miRNA expression, thereby contributing to intestinal homeostasis and pathogenesis of inflammatory bowel disease. In our current study, we found that microbiota negatively regulated intestinal miR-10a expression, because the intestines, as well as intestinal epithelial cells and dendritic cells of specific pathogen-free mice, expressed much lower levels of miR-10a compared with those in germ-free mice. Commensal bacteria downregulated dendritic cell miR-10a expression via TLR-TLR ligand interactions through a MyD88-dependent pathway. We identified IL-12/IL-23p40, a key molecule for innate immune responses to commensal bacteria, as a target of miR-10a. The ectopic expression of the miR-10a precursor inhibited, whereas the miR-10a inhibitor promoted, the expression of IL-12/IL-23p40 in dendritic cells. Mice with colitis expressing higher levels of IL-12/IL-23p40 exhibited lower levels of intestinal miR-10a compared with control mice. Collectively, our data demonstrated that microbiota negatively regulates host miR-10a expression, which may contribute to the maintenance of intestinal homeostasis by targeting IL-12/IL-23p40 expression. PMID:22068236

  18. A lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis and preserves barrier function by activation of EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study was to determine the mechanisms by which p40...

  19. FcγR-stimulated activation of the NADPH oxidase: phosphoinositide-binding protein p40phox regulates NADPH oxidase activity after enzyme assembly on the phagosome

    PubMed Central

    Tian, Wei; Li, Xing Jun; Stull, Natalie D.; Ming, Wenyu; Suh, Chang-Il; Bissonnette, Sarah A.; Yaffe, Michael B.; Grinstein, Sergio; Atkinson, Simon J.

    2008-01-01

    The phagocyte NADPH oxidase generates superoxide for microbial killing, and includes a membrane-bound flavocytochrome b558 and cytosolic p67phox, p47phox, and p40phox subunits that undergo membrane translocation upon cellular activation. The function of p40phox, which binds p67phox in resting cells, is incompletely understood. Recent studies showed that phagocytosis-induced superoxide production is stimulated by p40phox and its binding to phosphatidylinositol-3-phosphate (PI3P), a phosphoinositide enriched in membranes of internalized phagosomes. To better define the role of p40phox in FcγR-induced oxidase activation, we used immunofluorescence and real-time imaging of FcγR-induced phagocytosis. YFP-tagged p67phox and p40phox translocated to granulocyte phagosomes before phagosome internalization and accumulation of a probe for PI3P. p67phox and p47phox accumulation on nascent and internalized phagosomes did not require p40phox or PI3 kinase activity, although superoxide production before and after phagosome sealing was decreased by mutation of the p40phox PI3P-binding domain or wortmannin. Translocation of p40phox to nascent phagosomes required binding to p67phox but not PI3P, although the loss of PI3P binding reduced p40phox retention after phagosome internalization. We conclude that p40phox functions primarily to regulate FcγR-induced NADPH oxidase activity rather than assembly, and stimulates superoxide production via a PI3P signal that increases after phagosome internalization. PMID:18711001

  20. Neutrophil elastase enhances IL-12p40 production by lipopolysaccharide-stimulated macrophages via transactivation of the PAR-2/EGFR/TLR4 signaling pathway.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-07-01

    Proteinase-activated receptor 2 (PAR-2) and toll-like receptor 4 (TLR4) are involved in innate immune responses and signaling cross-talk between these receptor molecules has the potential to augment an ongoing inflammatory response. The aim of this study was to evaluate the possible cooperative influence of PAR-2 and TLR4 on IL-12p40 production by macrophages after stimulation with lipopolysaccharide (LPS). During culture, GM-CSF upregulated PAR-2 expression by macrophages in a time-dependent manner. Stimulation with LPS enhanced IL-12p40 production by macrophages in a concentration-dependent manner. While human neutrophil elastase (HNE) did not induce IL-12p40 production, pretreatment of macrophages with HNE synergistically increased the IL-12p40 protein level after LPS exposure. Silencing of TLR4 with small interfering RNA blunted the synergistic enhancement of IL-12p40 by HNE combined with LPS. Silencing of β-arrestin 2, p22phox, or ERK1/2 also inhibited an increase of IL-12p40. Interestingly, transfection of macrophages with small interfering RNA duplexes for DUOX-2, EGFR, TLR4, or TRAF6 significantly blunted the increase of IL-12p40 in response to treatment with HNE plus LPS. U73122 and Rottlerin also inhibited the increased production of IL-12p40. In conclusion, HNE is involved in transactivation of TLR4 through activation of DUOX-2/EGFR and synergistically enhances IL-12p40 production by macrophages stimulated with LPS. PMID:27282560

  1. An in Vitro and in Vivo Investigation of Bivalent Ligands That Display Preferential Binding and Functional Activity for Different Melanocortin Receptor Homodimers.

    PubMed

    Lensing, Cody J; Freeman, Katie T; Schnell, Sathya M; Adank, Danielle N; Speth, Robert C; Haskell-Luevano, Carrie

    2016-04-14

    Pharmacological probes for the melanocortin receptors have been utilized for studying various disease states including cancer, sexual function disorders, Alzheimer's disease, social disorders, cachexia, and obesity. This study focused on the design and synthesis of bivalent ligands to target melanocortin receptor homodimers. Lead ligands increased binding affinity by 14- to 25-fold and increased cAMP signaling potency by 3- to 5-fold compared to their monovalent counterparts. Unexpectedly, different bivalent ligands showed preferences for particular melanocortin receptor subtypes depending on the linker that connected the binding scaffolds, suggesting structural differences between the various dimer subtypes. Homobivalent compound 12 possessed a functional profile that was unique from its monovalent counterpart providing evidence of the discrete effects of bivalent ligands. Lead compound 7 significantly decreased feeding in mice after intracerebroventricular administration. To the best of our knowledge, this is the first report of a melanocortin bivalent ligand's in vivo physiological effects. PMID:26959173

  2. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats

    PubMed Central

    Marroquin Belaunzaran, Osiris; Kleber, Sascha; Schauer, Stefan; Hausmann, Martin; Nicholls, Flora; Van den Broek, Maries; Payeli, Sravan; Ciurea, Adrian; Milling, Simon; Stenner, Frank; Shaw, Jackie; Kollnberger, Simon; Bowness, Paul; Petrausch, Ulf; Renner, Christoph

    2015-01-01

    Objectives HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272–specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. Methods The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. Results HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. Conclusion HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders. PMID:26125554

  3. Use of the α-mannosidase I inhibitor kifunensine allows the crystallization of apo CTLA-4 homodimer produced in long-term cultures of Chinese hamster ovary cells

    PubMed Central

    Yu, Chao; Crispin, Max; Sonnen, Andreas F.-P.; Harvey, David J.; Chang, Veronica T.; Evans, Edward J.; Scanlan, Christopher N.; Stuart, David I.; Gilbert, Robert J. C.; Davis, Simon J.

    2011-01-01

    Glycoproteins present problems for structural analysis since they often have to be glycosylated in order to fold correctly and because their chemical and conformational heterogeneity generally inhibits crystallization. It is shown that the α-mannosidase I inhibitor kifunensine, which has previously been used for the purpose of glycoprotein crystallization in short-term (3–5 d) cultures, is apparently stable enough to be used to produce highly endoglycosidase H-sensitive glycoprotein in long-term (3–4 week) cultures of stably transfected Chinese hamster ovary (CHO) cells. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based analysis of the extracellular region of the cytotoxic T-lymphocyte antigen 4 (CTLA-4; CD152) homodimer expressed in long-term CHO cell cultures in the presence of kifunensine revealed that the inhibitor restricted CTLA-4 glycan processing to Man9GlcNAc2 and Man5GlcNAc2 structures. Complex-type glycans were undetectable, suggesting that the inhibitor was active for the entire duration of the cultures. Endoglycosidase treatment of the homodimer yielded protein that readily formed orthorhombic crystals with unit-cell parameters a = 43.9, b = 51.5, c = 102.9 Å and space group P212121 that diffracted to Bragg spacings of 1.8 Å. The results indicate that kifunensine will be effective in most, if not all, transient and long-term mammalian cell-based expression systems. PMID:21795794

  4. Negative cooperativity across β1-adrenoceptor homodimers provides insights into the nature of the secondary low-affinity CGP 12177 β1-adrenoceptor binding conformation.

    PubMed

    Gherbi, Karolina; May, Lauren T; Baker, Jillian G; Briddon, Stephen J; Hill, Stephen J

    2015-07-01

    At the β1-adrenoceptor, CGP 12177 potently antagonizes agonist responses at the primary high-affinity catecholamine conformation while also exerting agonist effects of its own through a secondary low-affinity conformation. A recent mutagenesis study identified transmembrane region (TM)4 of the β1-adrenoceptor as key for this low-affinity conformation. Others suggested that TM4 has a role in β1-adrenoceptor oligomerization. Here, assessment of the dissociation rate of a fluorescent analog of CGP 12177 [bordifluoropyrromethane-tetramethylrhodamine-(±)CGP 12177 (BODIPY-TMR-CGP)] at the human β1-adrenoceptor expressed in Chinese hamster ovary cells revealed negative cooperative interactions between 2 distinct β1-adrenoceptor conformations. The dissociation rate of 3 nM BODIPY-TMR-CGP was 0.09 ± 0.01 min(-1) in the absence of competitor ligands, and this was enhanced 2.2- and 2.1-fold in the presence of 1 µM CGP 12177 and 1 µM propranolol, respectively. These effects on the BODIPY-TMR-CGP dissociation rate were markedly enhanced in β1-adrenoceptor homodimers constrained by bimolecular fluorescence complementation (9.8- and 9.9-fold for 1 µM CGP 12177 and 1 µM propranolol, respectively) and abolished in β1-adrenoceptors containing TM4 mutations vital for the second conformation pharmacology. This study suggests that negative cooperativity across a β1-adrenoceptor homodimer may be responsible for generating the low-affinity pharmacology of the secondary β1-adrenoceptor conformation. PMID:25837585

  5. Carcinogenic heavy metals replace Ca{sup 2+} for DNA binding and annealing activities of mono-ubiquitinated annexin A1 homodimer

    SciTech Connect

    Hirata, Aiko; Corcoran, George B.; Hirata, Fusao

    2010-10-01

    Mono-ubiquitinated annexin A1 was purified from rat liver nuclei. The homodimer form of mono-ubiquitinated annexin A1 was able to unwind dsDNA in a Mg{sup 2+}- and ATP-dependent manner, and to anneal ssDNA in a Ca{sup 2+}-dependent manner. Phospholipids decreased the concentration of Ca{sup 2+} required for maximal annealing activity. Heavy metals such as As{sup 3+}, Cr{sup 6+}, Pb{sup 2+} and Cd{sup 2+} substituted for Ca{sup 2+} in the ssDNA binding and annealing activities of annexin A1. While these metals inhibited the unwinding of dsDNA by nuclear annexin A1 in the presence of Mg{sup 2+} and ATP, they enhanced dsDNA-dependent ATPase activity of annexin A1. Heavy metals may have produced dsDNA, a substrate for the DNA unwinding reaction, via the DNA annealing reaction. DNA synthesomes were isolated from L5178Y tk(+/-) mouse lymphoma cells in exponential growth, and were found to contain helicase activities. The As{sup 3+}- or Cr{sup 6+}-induced increases in ssDNA binding activity of DNA synthesomes were reduced by a mono-specific anti-annexin A1 antibody, but not by anti-Ig antibody. Anti-annexin A1 antibody also blocked the inhibitory and stimulatory effects of As{sup 3+} or Cr{sup 6+} towards DNA unwinding and annealing activities of DNA synthesomes. Based on these observations, it can be concluded that the effects of heavy metals on DNA annealing and unwinding activities are mediated, at least in substantial part, through actions of the mono-ubiquitinated annexin A1 homodimer.

  6. Next Step toward Optimization of GRP Receptor Avidities: Determination of the Minimal Distance between BBN(7-14) Units in Peptide Homodimers.

    PubMed

    Fischer, G; Lindner, S; Litau, S; Schirrmacher, R; Wängler, B; Wängler, C

    2015-08-19

    As the gastrin releasing peptide receptor (GRPR) is overexpressed on several tumor types, it represents a promising target for the specific in vivo imaging of these tumors using positron emission tomography (PET). We were able to show that PESIN-based peptide multimers can result in substantially higher GRPR avidities, highly advantageous in vivo pharmacokinetics and tumor imaging properties compared to the respective monomers. However, the minimal distance between the peptidic binders, resulting in the lowest possible system entropy while enabling a concomitant GRPR binding and thus optimized receptor avidities, has not been determined so far. Thus, we aimed here to identify the minimal distance between two GRPR-binding peptides in order to provide the basis for the development of highly avid GRPR-specific PET imaging agents. We therefore synthesized dimers of the GRPR-binding bombesin analogue BBN(7-14) on a dendritic scaffold, exhibiting different distances between both peptide binders. The homodimers were further modified with the chelator NODAGA, radiolabeled with (68)Ga, and evaluated in vitro regarding their GRPR avidity. We found that the most potent of the newly developed radioligands exhibits GRPR avidity twice as high as the most potent reference compound known so far, and that a minimal distance of 62 bond lengths between both peptidic binders within the homodimer can result in concomitant peptide binding and optimal GRPR avidities. These findings answer the question as to what molecular design should be chosen when aiming at the development of highly avid homobivalent peptidic ligands addressing the GRPR. PMID:26200324

  7. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity

    PubMed Central

    Abdiche, Yasmina Noubia; Yeung, Yik Andy; Chaparro-Riggers, Javier; Barman, Ishita; Strop, Pavel; Chin, Sherman Michael; Pham, Amber; Bolton, Gary; McDonough, Dan; Lindquist, Kevin; Pons, Jaume; Rajpal, Arvind

    2015-01-01

    The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG's variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG's serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates. PMID:25658443

  8. p40 is the best marker for diagnosing pulmonary squamous cell carcinoma: comparison with p63, cytokeratin 5/6, desmocollin-3, and sox2.

    PubMed

    Tatsumori, Takahiro; Tsuta, Koji; Masai, Kyohei; Kinno, Tomoaki; Taniyama, Tomoko; Yoshida, Akihiko; Suzuki, Kenji; Tsuda, Hitoshi

    2014-01-01

    Histologic distinction among non-small cell lung carcinomas, particularly between squamous cell carcinoma (SQC) and adenocarcinoma (ADC), has become more important. Recently, a p40 antibody was suggested to be a highly specific marker for SQC. We evaluated p40 expression and compared it with the expression of other SQC markers in 580 primary lung carcinomas, including 158 SQCs, 156 ADCs, 50 carcinoid tomors, 107 large cell neuroendocrine carcinomas, 68 small cell lung carcinomas, and 41 malignant mesotheliomas. Detailed histologic distributions of p40-positive cases were as follows: 153 (96.8%) of 158 SQCs, 7 (4.6%) of 152 ADCs, 0 (0%) of 50 carcinoid tomors, 4 (3.6%) of 107 large cell neuroendocrine carcinomas, 1 (1.5%) of 68 small cell lung carcinomas, and 1 (2.4%) of 41 mesotheliomas. p40 staining yields high sensitivity as well as high specificity for distinguishing SQC from ADC, neuroendocrine carcinomas, and malignant mesothelioma. PMID:24805133

  9. Identification and immuno-electron microscopy localization of p40, a protein component of immunosuppressive virus-like particles from Leptopilina heterotoma, a virulent parasitoid wasp of Drosophila.

    PubMed

    Chiu, Hsiling; Morales, Jorge; Govind, Shubha

    2006-02-01

    Lamellocytes are specialized larval blood cells of Drosophila that carry out encapsulation of metazoan pathogens such as parasitoid wasps. Large virus-like particles (VLPs) from two closely related virulent parasitoid wasp species, Leptopilina heterotoma and Leptopilina victoriae, suppress the host encapsulation response by promoting lysis of lamellocytes. The molecular basis of VLP-lamellocyte interaction and lamellocyte lysis is not understood. Here, it was shown that mature VLPs are composed of at least four major proteins. Polyclonal antisera against the most abundant L. heterotoma VLP protein, p40, cross-reacted with the most abundant L. victoriae VLP protein, p47.5. Immuno-electron microscopy (EM) of the long gland-reservoir complex revealed that p40 was expressed early in VLP biogenesis and was detected along with VLP precursors within the long gland cells and lumen. In the reservoir, VLPs had an angular core, resembled mature particles and p40 was detected outside the VLP cores. Immuno-EM staining of mature VLPs from both species localized the p40 and p47.5 proteins largely to the periphery of the VLPs and along the VLP spike-like projections. p40 staining was observed in VLP-treated host haemocytes. In vitro, anti-p40 antibody almost completely blocked the ability of L. heterotoma VLPs to promote lamellocyte lysis. Anti-p40 antibody blocked lysis by L. victoriae VLPs by >50%. It is proposed that the VLP surface proteins p40 and p47.5 share antigenic determinants and significantly contribute to the strong virulence of their Hymenopteran hosts. PMID:16432035

  10. Comparison of p63 and p40 (ΔNp63) as Basal, Squamoid, and Myoepithelial Markers in Salivary Gland Tumors.

    PubMed

    Owosho, Adepitan A; Aguilar, Cristina E; Seethala, Raja R

    2016-08-01

    p40 is selective for ΔNp63 isoforms and appears to be more specific for squamous differentiation than p63. Its performance as a basal/myoepithelial marker in salivary gland tumors has only rarely been addressed in the literature. We thus compared the performance of p63 and p40 (ΔNp63) immunohistochemical stain as markers of basal, squamoid, and myoepithelial differentiation in 105 salivary gland tumors selected from our archives. The neoplasms were categorized according to their presumed phenotype as ductoacinar (n=45), biphasic (dual ductal and myoepithelial/basal differentiation, n=44), purely myoepithelial (n=5), and excretory duct phenotype (n=11). Only nuclear staining for p63 and p40 was considered positive. Distribution of staining was scored as: 0 (no staining), 1+ (1% to 25%), 2+ (26% to 50%), 3+ (51% to 75%), and 4+ (76% to 100%). Intensity was scored as weak, moderate, or strong. p63 and p40 highlighted the basal and myoepithelial cells in normal salivary gland tissue as well as basal/myoepithelial/squamoid elements in biphasic tumors, purely myoepithelial tumors, and excretory duct type tumors (4+ with strong staining for p63, and moderate staining for p40). All ductal tumors were negative for p40. However, 13/13 polymorphous low-grade adenocarcinoma/cribriform adenocarcinomas of salivary gland, 7/9 canalicular adenomas, and 3/5 mammary analog secretory carcinomas showed some degree of p63 staining. Thus, we confirm that p40 is a more specific basal/myoepithelial/squamoid marker than p63 in salivary gland tumors. A subset of ductal tumors show a discordant p63+/p40- immunoprofile that can be a pitfall if not recognized, but may also help distinguish these tumors from truly biphasic tumors and myoepithelial tumors. PMID:26230372

  11. Herpes simplex virus type 1 and 2 intracellular p40: type-specific and cross-reactive antigenic determinants on peptides generated by partial proteolysis.

    PubMed Central

    Heilman, C J; Zweig, M; Hampar, B

    1981-01-01

    Intracellular p40 is a class of protein ranging in molecular weight from 39,000 to 45,000 that is immunoprecipitated from herpes simplex virus type 1 (HSV-1)- and HSV-2-infected cell extracts by mouse monoclonal antibodies or guinea pig antisera against HSV-1 and HSV-2 nucleocapsid p40. Analysis by a two-dimensional gel system showed that HSV-1 and HSV-2 intracellular p40 each consisted of three major components. However, these HSV-1 and HSV-2 proteins differed in charge and size. Analysis of Staphylococcus aureus V8 protease partial digests by two-dimensional gel electrophoresis indicated that none of the peptides of HSV-1 and HSV-2 intracellular p40 were identical. Immunoprecipitation of the partial digest products of intracellular p40-1 and p40-2 with homologous and heterologous guinea pig antisera resulted in the precipitation of various combinations of peptides indicating the presence of either type-specific or cross-reactive antigenic determinants. Images PMID:6172597

  12. Single Nucleotide Polymorphisms in IL-10, IL-12p40, and IL-13 Genes and Susceptibility to Glioma

    PubMed Central

    Shamran, Haidar A.; Ghazi, Haidar F.; AL-Salman, Ahmed; Al-Juboory, Ahmad A.; Taub, Dennis D.; Price, Robert L.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.; Singh, Udai P.

    2015-01-01

    Glioma is one of the most aggressive and most common tumors of the central nervous system (CNS) in humans. The exact causes of glioma are not well known, but evidence suggests the involvement of genetic factors in addition to environmental risk factors. The present study aimed to determine whether polymorphisms in IL-10-1082A/G, IL-12p40 1188C/A, and IL-13+2044G/A (rs20541) are associated with the incidence of glioma in Iraqi patients. Ninety-six patients with different grades of glioma and 40 apparently healthy individuals were recruited. A blood sample and genomic DNA were collected from all subjects. The amplification refractory mutation system and sequence-specific primer polymerase chain reaction (PCR) were used for genotyping of IL-10-1082A/G and IL-12p40 1188C/A, respectively; whereas, the IL-13+2044G/A was detected by DNA sequencing after amplification of the genes by PCR. All SNPs were within Hardy-Weinberg equilibrium and each appeared in three genotypes in patients and controls. In IL-10-1082A/G, these genotypes frequencies were AA (75%), AG (22.93%) and GG (2.07%) in patients as compared to similar frequencies (62.5%), (27.5%) and (10%) respectively, in controls. The variant IL-12p40 1188C/A genotype was AA (72.92%), AC (23.96%), and CC (3.13%%) in patients as compared to 65%, 30%, and 5%, respectively, in controls. The frequencies of IL-13+2044G/A genotypes (GG, GA, and AA) were 89.58%, 9.37%, and 1.04% among patients versus 47.5%, 32.5% and 20%, respectively, among controls. These results suggest a protective role of mutant alleles G and A in IL-10-1082A/G and IL-13+2044G/A against gliomas. Further studies with more rigorous parameter designs will be needed to confirm the current findings. PMID:26516307

  13. Proton-bound dimers of nitrogen heterocyclic molecules: Substituent effects on the structures and binding energies of homodimers of diazine, triazine, and fluoropyridine

    SciTech Connect

    Attah, Isaac K.; Platt, Sean P.; Meot-Ner, Michael; El-Shall, M. S.; Aziz, Saadullah G.; Alyoubi, Abdulrahman O.

    2014-03-21

    The bonding energies of proton-bound homodimers BH{sup +}B were measured by ion mobility equilibrium studies and calculated at the DFT B3LYP/6-311++G{sup **} level, for a series of nitrogen heterocyclic molecules (B) with electron-withdrawing in-ring N and on-ring F substituents. The binding energies (ΔH°{sub dissoc}) of the proton-bound dimers (BH{sup +}B) vary significantly, from 29.7 to 18.1 kcal/mol, decreasing linearly with decreasing the proton affinity of the monomer (B). This trend differs significantly from the constant binding energies of most homodimers of other organic nitrogen and oxygen bases. The experimentally measured ΔH°{sub dissoc} for (1,3-diazine){sub 2}H{sup +}, i.e., (pyrimidine){sub 2}H{sup +} and (3-F-pyridine){sub 2}H{sup +} are 22.7 and 23.0 kcal/mol, respectively. The measured ΔH°{sub dissoc} for the pyrimidine{sup ·+}(3-F-pyridine) radical cation dimer (19.2 kcal/mol) is signifcantly lower than that of the proton-bound homodimers of pyrimidine and 3-F-pyridine, reflecting the stronger interaction in the ionic H-bond of the protonated dimers. The calculated binding energies for (1,2-diazine){sub 2}H{sup +}, (pyridine){sub 2}H{sup +}, (2-F-pyridine){sub 2}H{sup +}, (3-F-pyridine){sub 2}H{sup +}, (2,6-di-F-pyridine){sub 2}H{sup +}, (4-F-pyridine){sub 2}H{sup +}, (1,3-diazine){sub 2}H{sup +}, (1,4-diazine){sub 2}H{sup +}, (1,3,5-triazine){sub 2}H{sup +}, and (pentafluoropyridine){sub 2}H{sup +} are 29.7, 24.9, 24.8, 23.3, 23.2, 23.0, 22.4, 21.9, 19.3, and 18.1 kcal/mol, respectively. The electron-withdrawing substituents form internal dipoles whose electrostatic interactions contribute to both the decreased proton affinities of (B) and the decreased binding energies of the protonated dimers BH{sup +}B. The bonding energies also vary with rotation about the hydrogen bond, and they decrease in rotamers where the internal dipoles of the components are aligned efficiently for inter-ring repulsion. For compounds substituted at the 3 or 4

  14. Proton-bound dimers of nitrogen heterocyclic molecules: Substituent effects on the structures and binding energies of homodimers of diazine, triazine, and fluoropyridine

    NASA Astrophysics Data System (ADS)

    Attah, Isaac K.; Platt, Sean P.; Meot-Ner Mautner, Michael; El-Shall, M. S.; Aziz, Saadullah G.; Alyoubi, Abdulrahman O.

    2014-03-01

    The bonding energies of proton-bound homodimers BH+B were measured by ion mobility equilibrium studies and calculated at the DFT B3LYP/6-311++G** level, for a series of nitrogen heterocyclic molecules (B) with electron-withdrawing in-ring N and on-ring F substituents. The binding energies (ΔH°dissoc) of the proton-bound dimers (BH+B) vary significantly, from 29.7 to 18.1 kcal/mol, decreasing linearly with decreasing the proton affinity of the monomer (B). This trend differs significantly from the constant binding energies of most homodimers of other organic nitrogen and oxygen bases. The experimentally measured ΔH°dissoc for (1,3-diazine)2H+, i.e., (pyrimidine)2H+ and (3-F-pyridine)2H+ are 22.7 and 23.0 kcal/mol, respectively. The measured ΔH°dissoc for the pyrimidine.+(3-F-pyridine) radical cation dimer (19.2 kcal/mol) is signifcantly lower than that of the proton-bound homodimers of pyrimidine and 3-F-pyridine, reflecting the stronger interaction in the ionic H-bond of the protonated dimers. The calculated binding energies for (1,2-diazine)2H+, (pyridine)2H+, (2-F-pyridine)2H+, (3-F-pyridine)2H+, (2,6-di-F-pyridine)2H+, (4-F-pyridine)2H+, (1,3-diazine)2H+, (1,4-diazine)2H+, (1,3,5-triazine)2H+, and (pentafluoropyridine)2H+ are 29.7, 24.9, 24.8, 23.3, 23.2, 23.0, 22.4, 21.9, 19.3, and 18.1 kcal/mol, respectively. The electron-withdrawing substituents form internal dipoles whose electrostatic interactions contribute to both the decreased proton affinities of (B) and the decreased binding energies of the protonated dimers BH+B. The bonding energies also vary with rotation about the hydrogen bond, and they decrease in rotamers where the internal dipoles of the components are aligned efficiently for inter-ring repulsion. For compounds substituted at the 3 or 4 (meta or para) positions, the lowest energy rotamers are T-shaped with the planes of the two rings rotated by 90° about the hydrogen bond, while the planar rotamers are weakened by repulsion between the

  15. Localized interleukin-12 delivery for immunotherapy of solid tumours.

    PubMed

    Wei, Louis Z; Xu, Yixin; Nelles, E Megan; Furlonger, Caren; Wang, James C M; Di Grappa, Marco A; Khokha, Rama; Medin, Jeffrey A; Paige, Christopher J

    2013-11-01

    Interleukin (IL)-12 is the key cytokine in the initiation of a Th1 response and has shown promise as an anti-cancer agent; however, clinical trials involving IL-12 have been unsuccessful due to toxic side-effects. To address this issue, lentiviral vectors were used to transduce tumour cell lines that were injected as an autologous tumour cell vaccine. The focus of the current study was to test the efficacy of this approach in a solid tumour model. SCCVII cells that were transduced to produce IL-12 at different concentrations were then isolated. Subcutaneous injection of parental SCCVII cells results in tumour development, while a mixture of IL-12-producing and non-producing cells results in tumour clearance. Interestingly, when comparing mice injected a mixture of SCCVII and either high IL-12-producing tumour cells or low IL-12-producing tumour cells, we observed that mixtures containing small amounts of high producing cells lead to tumour clearance, whereas mixtures containing large amounts of low producing cells fail to elicit protection, despite the production of equal amounts of total IL-12 in both mixtures. Furthermore, immunizing mice with IL-12-producing cells leads to the establishment of both local and systemic immunity against challenge with SCCVII. Using depletion antibodies, it was shown that both CD4(+) and CD8(+) cells are crucial for therapy. Lastly, we have established cell clones of other solid tumour cell lines (RM-1, LLC1 and moto1.1) that produce IL-12. Our results show that the delivery of IL-12 by cancer cells is an effective route for immune activation. PMID:24251770

  16. Localized interleukin-12 delivery for immunotherapy of solid tumours

    PubMed Central

    Wei, Louis Z; Xu, Yixin; E Nelles, Megan; Furlonger, Caren; Wang, James CM; Di Grappa, Marco A; Khokha, Rama; Medin, Jeffrey A; Paige, Christopher J

    2013-01-01

    Interleukin (IL)-12 is the key cytokine in the initiation of a Th1 response and has shown promise as an anti-cancer agent; however, clinical trials involving IL-12 have been unsuccessful due to toxic side-effects. To address this issue, lentiviral vectors were used to transduce tumour cell lines that were injected as an autologous tumour cell vaccine. The focus of the current study was to test the efficacy of this approach in a solid tumour model. SCCVII cells that were transduced to produce IL-12 at different concentrations were then isolated. Subcutaneous injection of parental SCCVII cells results in tumour development, while a mixture of IL-12-producing and non-producing cells results in tumour clearance. Interestingly, when comparing mice injected a mixture of SCCVII and either high IL-12-producing tumour cells or low IL-12-producing tumour cells, we observed that mixtures containing small amounts of high producing cells lead to tumour clearance, whereas mixtures containing large amounts of low producing cells fail to elicit protection, despite the production of equal amounts of total IL-12 in both mixtures. Furthermore, immunizing mice with IL-12-producing cells leads to the establishment of both local and systemic immunity against challenge with SCCVII. Using depletion antibodies, it was shown that both CD4+ and CD8+ cells are crucial for therapy. Lastly, we have established cell clones of other solid tumour cell lines (RM-1, LLC1 and moto1.1) that produce IL-12. Our results show that the delivery of IL-12 by cancer cells is an effective route for immune activation. PMID:24251770

  17. A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of Electroporated HIV DNA with or without Interleukin 12 in Prime-Boost Combinations with an Ad35 HIV Vaccine in Healthy HIV-Seronegative African Adults

    PubMed Central

    Ingabire, Rosine; Nanvubya, Annet; Anzala, Omu; Karita, Etienne; Hayes, Peter; Kopycinski, Jakub; Dally, Len; Hannaman, Drew; Egan, Michael A.; Eldridge, John H.; Syvertsen, Kristen; Lehrman, Jennifer; Rasmussen, Beth; Gilmour, Jill; Cox, Josephine H.; Fast, Patricia E.; Schmidt, Claudia

    2015-01-01

    Background Strategies to enhance the immunogenicity of DNA vaccines in humans include i) co-administration of molecular adjuvants, ii) intramuscular administration followed by in vivo electroporation (IM/EP) and/or iii) boosting with a different vaccine. Combining these strategies provided protection of macaques challenged with SIV; this clinical trial was designed to mimic the vaccine regimen in the SIV study. Methods Seventy five healthy, HIV-seronegative adults were enrolled into a phase 1, randomized, double-blind, placebo-controlled trial. Multi-antigenic HIV (HIVMAG) plasmid DNA (pDNA) vaccine alone or co-administered with pDNA encoding human Interleukin 12 (IL-12) (GENEVAX IL-12) given by IM/EP using the TriGrid Delivery System was tested in different prime-boost regimens with recombinant Ad35 HIV vaccine given IM. Results All local reactions but one were mild or moderate. Systemic reactions and unsolicited adverse events including laboratory abnormalities did not differ between vaccine and placebo recipients. No serious adverse events (SAEs) were reported. T cell and antibody response rates after HIVMAG (x3) prime—Ad35 (x1) boost were independent of IL-12, while the magnitude of interferon gamma (IFN-γ) ELISPOT responses was highest after HIVMAG (x3) without IL-12. The quality and phenotype of T cell responses shown by intracellular cytokine staining (ICS) were similar between groups. Inhibition of HIV replication by autologous T cells was demonstrated after HIVMAG (x3) prime and was boosted after Ad35. HIV specific antibodies were detected only after Ad35 boost, although there was a priming effect with 3 doses of HIVMAG with or without IL-12. No anti-IL-12 antibodies were detected. Conclusion The vaccines were safe, well tolerated and moderately immunogenic. Repeated administration IM/EP was well accepted. An adjuvant effect of co-administered plasmid IL-12 was not detected. Trial Registration ClinicalTrials.gov NCT01496989 PMID:26252526

  18. The movement protein of barley yellow dwarf virus-GAV self-interacts and forms homodimers in vitro and in vivo.

    PubMed

    Xia, Zongliang; Cao, Rufei; Sun, Kaile; Zhang, Hua

    2012-07-01

    The 17-kDa movement protein (MP) of the GAV strain of barley yellow dwarf virus (BYDV-GAV) can bind the viral RNA and target to the nucleus. However, much less is known about the active form of the MP in planta. In this study, the ability of the MP to self-interact was analyzed by yeast two-hybrid assay and bimolecular fluorescence complementation. The BYDV-GAV MP has a strong potential to self-interact in vitro and in vivo, and self-interaction was mediated by the N-terminal domain spanning the second α-helix (residues 17-39). Chemical cross-linking and heterologous MP expression from a pea early browning virus (PEBV) vector further showed that MP self-interacts to form homodimers in vitro and in planta. Interestingly, the N-terminal domain necessary for MP self-interaction has previously been identified as important for nuclear targeting. Based on these findings, a functional link between MP self-interaction and nuclear targeting is discussed. PMID:22437255

  19. Replication-specific conversion of the Staphylococcus aureus pT181 initiator protein from an active homodimer to an inactive heterodimer.

    PubMed Central

    Rasooly, A; Wang, P Z; Novick, R P

    1994-01-01

    The Staphylococcus aureus rolling circle plasmid pT181 regulates its replication by controlling the synthesis of its initiator protein RepC. RepC is inactivated during pT181 replication by the addition of an oligodeoxynucleotide, giving rise to a new form, RepC*. We analyzed RepC and RepC* in four classes of mutants: plasmid copy number mutants, two classes of RepC mutants affecting different portions of the protein and oriC (origin) mutants. We have found that in the cell with wild-type RepC there are similar relative amounts of RepC and RepC*, regardless of copy number, and that the conversion of RepC to RepC* is replication dependent. Genetic and biochemical evidence is presented that RepC functions as a dimer and that during replication the RepC homodimer is converted to the RepC/RepC* heterodimer. Images PMID:7957090

  20. Treatment with a Monoclonal Anti-IL-12p40 Antibody Induces Substantial Gut Microbiota Changes in an Experimental Colitis Model.

    PubMed

    Castro-Mejía, Josué; Jakesevic, Maja; Krych, Łukasz; Nielsen, Dennis S; Hansen, Lars H; Sondergaard, Bodil C; Kvist, Peter H; Hansen, Axel K; Holm, Thomas L

    2016-01-01

    Background and Aim. Crohn's disease is associated with gut microbiota (GM) dysbiosis. Treatment with the anti-IL-12p40 monoclonal antibody (12p40-mAb) has therapeutic effect in Crohn's disease patients. This study addresses whether a 12p40-mAb treatment influences gut microbiota (GM) composition in mice with adoptive transfer colitis (AdTr-colitis). Methods. AdTr-colitis mice were treated with 12p40-mAb or rat-IgG2a or NaCl from days 21 to 47. Disease was monitored by changes in body weight, stool, endoscopic and histopathology scores, immunohistochemistry, and colonic cytokine/chemokine profiles. GM was characterized through DGGE and 16S rRNA gene-amplicon high-throughput sequencing. Results. Following 12p40-mAb treatment, most clinical and pathological parameters associated with colitis were either reduced or absent. GM was shifted towards a higher Firmicutes-to-Bacteroidetes ratio compared to rat-IgG2a treated mice. Significant correlations between 17 bacterial genera and biological markers were found. The relative abundances of the RF32 order (Alphaproteobacteria) and Akkermansia muciniphila were positively correlated with damaged histopathology and colonic inflammation. Conclusions. Shifts in GM distribution were observed with clinical response to 12p40-mAb treatment, whereas specific GM members correlated with colitis symptoms. Our study implicates that specific changes in GM may be connected with positive clinical outcomes and suggests preventing or correcting GM dysbiosis as a treatment goal in inflammatory bowel disease. PMID:26880890

  1. Treatment with a Monoclonal Anti-IL-12p40 Antibody Induces Substantial Gut Microbiota Changes in an Experimental Colitis Model

    PubMed Central

    Castro-Mejía, Josué; Jakesevic, Maja; Krych, Łukasz; Nielsen, Dennis S.; Hansen, Lars H.; Sondergaard, Bodil C.; Kvist, Peter H.; Hansen, Axel K.; Holm, Thomas L.

    2016-01-01

    Background and Aim. Crohn's disease is associated with gut microbiota (GM) dysbiosis. Treatment with the anti-IL-12p40 monoclonal antibody (12p40-mAb) has therapeutic effect in Crohn's disease patients. This study addresses whether a 12p40-mAb treatment influences gut microbiota (GM) composition in mice with adoptive transfer colitis (AdTr-colitis). Methods. AdTr-colitis mice were treated with 12p40-mAb or rat-IgG2a or NaCl from days 21 to 47. Disease was monitored by changes in body weight, stool, endoscopic and histopathology scores, immunohistochemistry, and colonic cytokine/chemokine profiles. GM was characterized through DGGE and 16S rRNA gene-amplicon high-throughput sequencing. Results. Following 12p40-mAb treatment, most clinical and pathological parameters associated with colitis were either reduced or absent. GM was shifted towards a higher Firmicutes-to-Bacteroidetes ratio compared to rat-IgG2a treated mice. Significant correlations between 17 bacterial genera and biological markers were found. The relative abundances of the RF32 order (Alphaproteobacteria) and Akkermansia muciniphila were positively correlated with damaged histopathology and colonic inflammation. Conclusions. Shifts in GM distribution were observed with clinical response to 12p40-mAb treatment, whereas specific GM members correlated with colitis symptoms. Our study implicates that specific changes in GM may be connected with positive clinical outcomes and suggests preventing or correcting GM dysbiosis as a treatment goal in inflammatory bowel disease. PMID:26880890

  2. An Interleukin-6 Receptor-dependent Molecular Switch Mediates Signal Transduction of the IL-27 Cytokine Subunit p28 (IL-30) via a gp130 Protein Receptor Homodimer*

    PubMed Central

    Garbers, Christoph; Spudy, Björn; Aparicio-Siegmund, Samadhi; Waetzig, Georg H.; Sommer, Jan; Hölscher, Christoph; Rose-John, Stefan; Grötzinger, Joachim; Lorenzen, Inken; Scheller, Jürgen

    2013-01-01

    IL-27 consists of the cytokine subunit p28 and the non-signaling α-receptor EBI3. p28 was shown to additionally act via the non-signaling membrane-bound IL-6 α-receptor (IL-6R) as an agonistic cytokine but also as a gp130 β-receptor antagonist, leading to inhibition of IL-6 signaling. Here, we developed a strategy for bacterial expression, purification, and refolding of murine p28. We show that p28 did not interfere with IL-6- or IL-27-induced signaling, indicating that p28 has no antagonistic properties. Moreover, we demonstrate that murine p28 acts as an agonistic cytokine via the murine and human IL-6R, indicating that p28 exhibits no species specificity. p28 was able to induce p28-trans-signaling via the soluble IL-6R (sIL-6R), a characteristic property that was initially described for trans-signaling of IL-6 via the sIL-6R. Of notice, p28/sIL-6R trans-signaling was inhibited by the IL-6 trans-signaling antagonist, soluble gp130. At higher concentrations, p28 but not IL-6 was able to induce signaling even in the absence of IL-6R or EBI3. Although IL-27 signals via a heterodimer of the β-receptor chains gp130 and Wsx-1, p28/IL-6R specifically recruits two gp130 β-receptor chains for signal transduction. The binding of p28 to a gp130/Wsx-1 heterodimer or a gp130 homodimer is highly selective and controlled by a novel molecular switch induced by EBI3 or IL-6R, respectively. PMID:23209286

  3. IL-10-induced microRNA-187 negatively regulates TNF-α, IL-6, and IL-12p40 production in TLR4-stimulated monocytes.

    PubMed

    Rossato, Marzia; Curtale, Graziella; Tamassia, Nicola; Castellucci, Monica; Mori, Laura; Gasperini, Sara; Mariotti, Barbara; De Luca, Mariacristina; Mirolo, Massimiliano; Cassatella, Marco A; Locati, Massimo; Bazzoni, Flavia

    2012-11-01

    IL-10 is a potent anti-inflammatory molecule that, in phagocytes, negatively targets cytokine expression at transcriptional and posttranscriptional levels. Posttranscriptional checkpoints also represent the specific target of a recently discovered, evolutionary conserved class of small silencing RNAs known as "microRNAs" (miRNAs), which display the peculiar function of negatively regulating mRNA processing, stability, and translation. In this study, we report that activation of primary human monocytes up-regulates the expression of miR-187 both in vitro and in vivo. Accordingly, we identify miR-187 as an IL-10-dependent miRNA playing a role in IL-10-mediated suppression of TNF-α, IL-6, and the p40 subunit of IL-12 (IL-12p40) produced by primary human monocytes following activation of Toll-like receptor 4 (TLR4). Ectopic expression of miR-187 consistently and selectively reduces TNFα, IL-6, and IL-12p40 produced by LPS-activated monocytes. Conversely, the production of LPS-induced TNF-α, IL-6, and IL-12p40 is increased significantly when miR-187 expression is silenced. Our data demonstrate that miR-187 directly targets TNF-α mRNA stability and translation and indirectly decreases IL-6 and IL-12p40 expression via down-modulation of IκBζ, a master regulator of the transcription of these latter two cytokines. These results uncover an miRNA-mediated pathway controlling cytokine expression and demonstrate a central role of miR-187 in the physiological regulation of IL-10-driven anti-inflammatory responses. PMID:23071313

  4. Early infiltration of p40IL12+CCR7+CD11b+ cells is critical for fibrosis development

    PubMed Central

    Correa‐Costa, Matheus; Azevedo, Hatylas; Silva, Reinaldo Correia; Cruz, Mario Costa; Almeida, Maira Estanislau Soares; Hiyane, Meire Ioshie; Moreira‐Filho, Carlos Alberto; Santos, Marinilce Fagundes; Perez, Katia Regina; Cuccovia, Iolanda Midea; Camara, Niels Olsen Saraiva

    2016-01-01

    Abstract Introduction Macrophages are heterogeneous and thus can be correlated with distinct tissue outcomes after injury. Conflicting data have indicated that the M2‐related phenotype directly triggers fibrosis. Conversely, we hypothesize here that the inflammatory milieu provided by early infiltration of pro‐inflammatory macrophages dictates tissue scarring after injury. Methods and Results We first determined that tissue‐localized macrophages exhibit a pro‐inflammatory phenotype (p40IL12+CCR7+CD11b+) during the early phase of a chronic injury model, in contrast to a pro‐resolving phenotype (Arg1+IL10+CD206+CD11b+) at a later stage. Then, we evaluated the effects of injecting macrophages differentiated in vitro in the presence of IFNγ + LPS or IL4 + IL13 or non‐differentiated macrophages (hereafter, M0) on promoting inflammation and progression of chronic injury in macrophage‐depleted mice. In addition to enhancing the expression of pro‐inflammatory cytokines, the injection of M (IFNγ + LPS), but not M (IL4 + IL13) or M0, accentuated fibrosis while augmenting levels of anti‐inflammatory molecules, increasing collagen deposition and impairing organ function. We observed a similar profile after injection of sorted CCR7+CD11b+ cells and a more pronounced effect of M (IFNγ + LPS) cells originated from Stat6−/− mice. The injection of M (IFNγ + LPS) cells was associated with the up‐regulation of inflammation‐ and fibrosis‐related proteins (Thbs1, Mmp7, Mmp8, and Mmp13). Conclusions Our results suggest that pro‐inflammatory macrophages promote microenvironmental changes that may lead to fibrogenesis by inducing an inflammatory milieu that alters a network of extracellular‐related genes, culminating in tissue fibrosis. PMID:27621813

  5. The Human Sodium-Glucose Cotransporter (hSGLT1) Is a Disulfide-Bridged Homodimer with a Re-Entrant C-Terminal Loop.

    PubMed

    Sasseville, Louis J; Morin, Michael; Coady, Michael J; Blunck, Rikard; Lapointe, Jean-Yves

    2016-01-01

    Na-coupled cotransporters are proteins that use the trans-membrane electrochemical gradient of Na to activate the transport of a second solute. The sodium-glucose cotransporter 1 (SGLT1) constitutes a well-studied prototype of this transport mechanism but essential molecular characteristics, namely its quaternary structure and the exact arrangement of the C-terminal transmembrane segments, are still debated. After expression in Xenopus oocytes, human SGLT1 molecules (hSGLT1) were labelled on an externally accessible cysteine residue with a thiol-reactive fluorophore (tetramethylrhodamine-C5-maleimide, TMR). Addition of dipicrylamine (DPA, a negatively-charged amphiphatic fluorescence "quencher") to the fluorescently-labelled oocytes is used to quench the fluorescence originating from hSGLT1 in a voltage-dependent manner. Using this arrangement with a cysteine residue introduced at position 624 in the loop between transmembrane segments 12 and 13, the voltage-dependent fluorescence signal clearly indicated that this portion of the 12-13 loop is located on the external side of the membrane. As the 12-13 loop begins on the intracellular side of the membrane, this suggests that the 12-13 loop is re-entrant. Using fluorescence resonance energy transfer (FRET), we observed that different hSGLT1 molecules are within molecular distances from each other suggesting a multimeric complex arrangement. In agreement with this conclusion, a western blot analysis showed that hSGLT1 migrates as either a monomer or a dimer in reducing and non-reducing conditions, respectively. A systematic mutational study of endogenous cysteine residues in hSGLT1 showed that a disulfide bridge is formed between the C355 residues of two neighbouring hSGLT1 molecules. It is concluded that, 1) hSGLT1 is expressed as a disulfide bridged homodimer via C355 and that 2) a portion of the intracellular 12-13 loop is re-entrant and readily accessible from the extracellular milieu. PMID:27137918

  6. The Human Sodium-Glucose Cotransporter (hSGLT1) Is a Disulfide-Bridged Homodimer with a Re-Entrant C-Terminal Loop

    PubMed Central

    Sasseville, Louis J.; Morin, Michael; Coady, Michael J.; Blunck, Rikard; Lapointe, Jean-Yves

    2016-01-01

    Na-coupled cotransporters are proteins that use the trans-membrane electrochemical gradient of Na to activate the transport of a second solute. The sodium-glucose cotransporter 1 (SGLT1) constitutes a well-studied prototype of this transport mechanism but essential molecular characteristics, namely its quaternary structure and the exact arrangement of the C-terminal transmembrane segments, are still debated. After expression in Xenopus oocytes, human SGLT1 molecules (hSGLT1) were labelled on an externally accessible cysteine residue with a thiol-reactive fluorophore (tetramethylrhodamine-C5-maleimide, TMR). Addition of dipicrylamine (DPA, a negatively-charged amphiphatic fluorescence “quencher”) to the fluorescently-labelled oocytes is used to quench the fluorescence originating from hSGLT1 in a voltage-dependent manner. Using this arrangement with a cysteine residue introduced at position 624 in the loop between transmembrane segments 12 and 13, the voltage-dependent fluorescence signal clearly indicated that this portion of the 12–13 loop is located on the external side of the membrane. As the 12–13 loop begins on the intracellular side of the membrane, this suggests that the 12–13 loop is re-entrant. Using fluorescence resonance energy transfer (FRET), we observed that different hSGLT1 molecules are within molecular distances from each other suggesting a multimeric complex arrangement. In agreement with this conclusion, a western blot analysis showed that hSGLT1 migrates as either a monomer or a dimer in reducing and non-reducing conditions, respectively. A systematic mutational study of endogenous cysteine residues in hSGLT1 showed that a disulfide bridge is formed between the C355 residues of two neighbouring hSGLT1 molecules. It is concluded that, 1) hSGLT1 is expressed as a disulfide bridged homodimer via C355 and that 2) a portion of the intracellular 12–13 loop is re-entrant and readily accessible from the extracellular milieu. PMID:27137918

  7. High-sensitivity two-color detection of double-stranded DNA with a confocal fluorescence gel scanner using ethidium homodimer and thiazole orange.

    PubMed Central

    Rye, H S; Quesada, M A; Peck, K; Mathies, R A; Glazer, A N

    1991-01-01

    Ethidium homodimer (EthD; lambda Fmax 620 nm) at EthD:DNA ratios up to 1 dye:4-5 bp forms stable fluorescent complexes with double-stranded DNA (dsDNA) which can be detected with high sensitivity using a confocal fluorescence gel scanner (Glazer, A.N., Peck, K. & Mathies, R.A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 3851-3855). However, on incubation with unlabeled DNA partial migration of EthD takes place from its complex with dsDNA to the unlabeled DNA. It is shown here that this migration is dependent on the fractional occupancy of intercalating sites in the original dsDNA-EthD complex and that there is no detectable transfer from dsDNA-EthD complexes formed at 50 bp: 1 dye. The monointercalator thiazole orange (TO; lambda Fmax 530 nm) forms readily dissociable complexes with dsDNA with a large fluorescence enhancement on binding (Lee, L.G., Chen, C. & Liu, L.A. (1986) Cytometry 7, 508-517). However, a large molar excess of TO does not displace EthD from its complex with dsDNA. When TO and EthD are bound to the same dsDNA molecule, excitation of TO leads to efficient energy transfer from TO to EthD. This observation shows the practicability of 'sensitizing' EthD fluorescence with a second intercalating dye having a very high absorption coefficient and efficient energy transfer characteristics. Electrophoresis on agarose gels, with TO in the buffer, of preformed linearized M13mp18 DNA-EthD complex together with unlabeled linearized pBR322 permits sensitive fluorescence detection in the same lane of pBR322 DNA-TO complex at 530 nm and of M13mp18 DNA-EthD complex at 620 nm. These observations lay the groundwork for the use of stable DNA-dye intercalation complexes carrying hundreds of chromophores in two-color applications such as the physical mapping of chromosomes. Images PMID:2014172

  8. The role of charge and multiple faces of the CD8 alpha/alpha homodimer in binding to major histocompatibility complex class I molecules: support for a bivalent model.

    PubMed Central

    Giblin, P A; Leahy, D J; Mennone, J; Kavathas, P B

    1994-01-01

    The CD8 dimer interacts with the alpha 3 domain of major histocompatibility complex class I molecules through two immunoglobulin variable-like domains. In this study a crystal structure-informed mutational analysis has been performed to identify amino acids in the CD8 alpha/alpha homodimer that are likely to be involved in binding to class I. Several key residues are situated on the top face of the dimer within loops analogous to the complementarity-determining regions (CDRs) of immunoglobulin. In addition, other important amino acids are located in the A and B beta-strands on the sides of the dimer. The potential involvement of amino acids on both the top and the side faces of the molecule is consistent with a bivalent model for the interaction between a single CD8 alpha/alpha homodimer and two class I molecules and may have important implications for signal transduction in class I-expressing cells. This study also demonstrates a role for the positive surface potential of CD8 in class I binding and complements previous work demonstrating the importance of a negatively charged loop on the alpha 3 domain of class I for CD8 alpha/alpha-class I interaction. We propose a model whereby residues located on the CDR-like loops of the CD8 homodimer interact with the alpha 3 domain of MHC class I while amino acids on the side of the molecule containing the A and B beta-strands contact the alpha 2 domain of class I. Images PMID:8127870

  9. Novel T-cell epitopes on Schistosoma japonicum SjP40 protein and their preventive effect on allergic asthma in mice.

    PubMed

    Ren, Jiling; Hu, Lizhi; Yang, Jing; Yang, Liang; Gao, Fei; Lu, Ping; Fan, Mengyu; Zhu, Yunjuan; Liu, Junyan; Chen, Lingling; Gupta, Shimpy; Yang, Xi; Liu, Peimei

    2016-05-01

    Allergic asthma is a chronic inflammatory disease mediated by Th2 cell immune responses. Currently, immunotherapies based on immune deviation are attractive, preventive, and therapeutic strategies for asthma. Many studies have shown that intracellular bacterial infections such as mycobacteria and their components can suppress asthmatic reactions by enhancing Th1 responses, while helminth infections and their proteins can inhibit allergic asthma via immune regulation. However, some helminth proteins such as SmP40, the major egg antigen of Schistosoma mansoni, are found as Th1 type antigens. Using a panel of overlapping peptides, we identified T-cell epitopes on SjP40 protein of Schistosoma japonicum, which can induce Th1 cytokine and inhibit the production of Th2 cytokines and airway inflammation in a mouse model of allergic asthma. These results reveal a novel form of immune protective mechanism, which may play an important role in the modulating effect of helminth infection on allergic asthmatic reactions. PMID:26840774

  10. p40 as a Basal Cell Marker in the Diagnosis of Prostate Glandular Proliferations: A Comparative Immunohistochemical Study with 34betaE12

    PubMed Central

    Brustmann, Hermann

    2015-01-01

    Immunohistochemistry is important for the accurate diagnosis of basal cells in atypical glandular proliferations of the prostate. p40, an isoform of p63, may be an adjunct to a marker panel in this setting. Biopsies of 68 patients were analyzed by immunohistochemistry using antibodies to 34betaE12 and p40. Basal cell staining was classified as negative, partial (<60%), or diffuse (≥60%); irregular staining was defined as discordant staining patterns. In acinar proliferations (N = 41), partial staining for both markers was seen in 42%, and diffuse staining in 46% of reactive cases. An irregular reactivity was noted in one case only (2%). Finally, these lesions were signed out as benign. Acinar proliferations negative for both markers and limited amount of glands (≤4) were termed atypical small acinar proliferations (ASAP). Out of six PIN lesions two cases showed partial, three cases showed diffuse reactivity for both markers, and one case was stained irregular. All cases diagnosed as prostate carcinomas (N = 20) had no evidence of basal cell staining for neither of the markers. p40 expression is closely correlated to 34betaE12 with respect to demonstration of basal cells of prostate glands and may provide further information on the dignity of glandular proliferations of the prostate. PMID:25852959

  11. Two markers, IS901-IS902 and p40, identified by PCR and by using monoclonal antibodies in Mycobacterium avium strains.

    PubMed Central

    Ahrens, P; Giese, S B; Klausen, J; Inglis, N F

    1995-01-01

    The occurrence of two markers, a newly identified 40-kDa protein (p40) and the insertion sequence IS901-IS902, in strains of Mycobacterium avium subspp. was evaluated. Analysis of 184 type and field strains of the M. avium complex from human, animal, and environmental sources by PCR specific to IS901 and by a monoclonal antibody specific to p40 demonstrated the presence of the two molecular markers in all of the M. avium subsp. silvaticum strains examined and also in a number of M. avium subsp. avium strains (the latter isolated mainly from pigs). The appearance of the two markers was completely concurrent in all strains. Further, the marker-positive M. avium subsp. avium strains were mainly serotype 2, whereas M. avium complex strains of serotypes 4, 6, 8, 9, and 10 were marker negative. The M. avium subsp. avium type strains ATCC 25291 and approximately 50% of the M. avium subsp. avium field strains isolated from animals contained the markers, while only one strain of human origin was found to be marker positive. Therefore, IS901 and p40 appear to have substantial potential to differentiate among isolates of the M. avium complex. This observation raises new issues regarding classification of strains, since the presence of the markers was found to be inconsistent with the present taxonomic grouping of M. avium subspp. PMID:7615703

  12. Prostaglandin E2 inhibits IL-23 and IL-12 production by human monocytes through down-regulation of their common p40 subunit.

    PubMed

    Kalim, Khalid W; Groettrup, Marcus

    2013-03-01

    The heterodimeric cytokine IL-23 is important for the maintenance of Th17 cells, which are pivotal mediators of autoimmune diseases like rheumatoid arthritis, colitis, and multiple sclerosis. Prostaglandin E2 (PGE2) is a soluble regulator of inflammation that has both pro- and anti-inflammatory properties. PGE2 has been shown to elevate the IL-23 production by dendritic cells (DC). Monocytes are also producers of IL-23 but the effect of PGE2 on IL-23 production by human monocytes has hardly been investigated. We show here that PGE2 blocks the production of IL-23 by LPS-stimulated monocytes in an IL-10 and IL-1β independent manner. This effect was due to the down-regulation of the p40 subunit of IL-23 on mRNA and protein level. The p40 subunit is shared by IL-12 and, consistently, PGE2 also lowered the IL-12 production by monocytes. These effects of PGE2 were cAMP-dependent since the cAMP enhancer forskolin strongly reduced IL-23 and IL-12 production by monocytes. Taken together, PGE2 acts in an anti-inflammatory manner by lowering IL-23 production by monocytes while it has the opposite effect in DC. Our data may help to reconcile controversial point of views on the pro- and anti-inflammatory nature of PGE2 by making a strong case for a cell type-dependent function. PMID:22982753

  13. Myeloid-Restricted AMPKα1 Promotes Host Immunity and Protects against IL-12/23p40-Dependent Lung Injury during Hookworm Infection.

    PubMed

    Nieves, Wildaliz; Hung, Li-Yin; Oniskey, Taylor K; Boon, Louis; Foretz, Marc; Viollet, Benoit; Herbert, De'Broski R

    2016-06-01

    How the metabolic demand of parasitism affects immune-mediated resistance is poorly understood. Immunity against parasitic helminths requires M2 cells and IL-13, secreted by CD4(+) Th2 and group 2 innate lymphoid cells (ILC2), but whether certain metabolic enzymes control disease outcome has not been addressed. This study demonstrates that AMP-activated protein kinase (AMPK), a key driver of cellular energy, regulates type 2 immunity and restricts lung injury following hookworm infection. Mice with a selective deficiency in the AMPK catalytic α1 subunit in alveolar macrophages and conventional dendritic cells produced less IL-13 and CCL17 and had impaired expansion of ILC2 in damaged lung tissue compared with wild-type controls. Defective type 2 responses were marked by increased intestinal worm burdens, exacerbated lung injury, and increased production of IL-12/23p40, which, when neutralized, restored IL-13 production and improved lung recovery. Taken together, these data indicate that defective AMPK activity in myeloid cells negatively impacts type 2 responses through increased IL-12/23p40 production. These data support an emerging concept that myeloid cells and ILC2 can coordinately regulate tissue damage at mucosal sites through mechanisms dependent on metabolic enzyme function. PMID:27183598

  14. In silico analysis of the three-dimensional structures of the homodimer of uridine phosphorylase from Yersinia Pseudotuberculosis in the ligand-free state and in a complex with 5-fluorouracil

    NASA Astrophysics Data System (ADS)

    Lashkov, A. A.; Sotnichenko, S. E.; Mikhailov, A. M.

    2013-03-01

    Pseudotuberculosis is an acute infectious disease characterized by a lesion of the gastrointestinal tract. A positive therapeutic effect can be achieved by selectively suppressing the activity of uridine phosphorylase from the causative agent of the disease Yersinia pseudotuberculosis. The synergistic effect of a combination of the chemotherapeutic agent 5-fluorouracil and antimicrobial drugs, which block the synthesis of pyrimidine bases, on the cells of pathogenic protozoa and bacteria is described in the literature. The three-dimensional structures of uridine phosphorylase from Yersinia pseudotuberculosis ( YptUPh) both in the ligand-free state and in complexes with pharmacological agents are unknown, which hinders the search for and design of selective inhibitors of YptUPh. The three-dimensional structure of the ligand-free homodimer of YptUPh was determined by homology-based molecular modeling. The three-dimensional structure of the subunit of the YptUPh molecule belongs to α/β proteins, and its topology is a three-layer α/β/α sandwich. The subunit monomer of the YptUPh molecule consists of 38% helices and 24% β strands. A model of the homodimer structure of YptUPh in a complex with 5-FU was obtained by the molecular docking. The position of 5-FU in the active site of the molecule is very consistent with the known data on the X-ray diffraction structures of other bacterial uridine phosphorylases (the complex of uridine phosphorylase from Salmonella typhimurium ( StUPh) with 5-FU, ID PDB: 4E1V and the complex of uridine phosphorylase from Escherichia coli ( EcUPh) with 5-FU and ribose 1-phosphate, ID PDB: 1RXC).

  15. The human parasite Leishmania amazonensis downregulates iNOS expression via NF-κB p50/p50 homodimer: role of the PI3K/Akt pathway

    PubMed Central

    Calegari-Silva, Teresa C.; Vivarini, Áislan C.; Miqueline, Marina; Dos Santos, Guilherme R. R. M.; Teixeira, Karina Luiza; Saliba, Alessandra Mattos; Nunes de Carvalho, Simone; de Carvalho, Laís; Lopes, Ulisses G.

    2015-01-01

    Leishmania amazonensis activates the NF-κB transcriptional repressor homodimer (p50/p50) and promotes nitric oxide synthase (iNOS) downregulation. We investigated the role of PI3K/Akt in p50/p50 NF-κB activation and the effect on iNOS expression in L. amazonensis infection. The increased occupancy of p50/p50 on the iNOS promoter of infected macrophages was observed and we demonstrated that both p50/p50 NF-κB induction and iNOS downregulation in infected macrophages depended on PI3K/Akt activation. Importantly, the intracellular growth of the parasite was also impaired during PI3K/Akt signalling inhibition and in macrophages knocked-down for Akt 1 expression. It was also observed that the increased nuclear levels of p50/p50 in L. amazonensis-infected macrophages were associated with reduced phosphorylation of 907 Ser p105, the precursor of p50. Corroborating these data, we demonstrated the increased levels of phospho-9 Ser GSK3β in infected macrophages, which is associated with GSK3β inhibition and, consequently, its inability to phosphorylate p105. Remarkably, we found that the levels of pPTEN 370 Ser, a negative regulator of PI3K, increased due to L. amazonensis infection. Our data support the notion that PI3K/Akt activity is sustained during the parasite infection, leading to NF-κB 105 phosphorylation and further processing to originate p50/p50 homodimers and the consequent downregulation of iNOS expression. PMID:26400473

  16. The human parasite Leishmania amazonensis downregulates iNOS expression via NF-κB p50/p50 homodimer: role of the PI3K/Akt pathway.

    PubMed

    Calegari-Silva, Teresa C; Vivarini, Áislan C; Miqueline, Marina; Dos Santos, Guilherme R R M; Teixeira, Karina Luiza; Saliba, Alessandra Mattos; Nunes de Carvalho, Simone; de Carvalho, Laís; Lopes, Ulisses G

    2015-09-01

    Leishmania amazonensis activates the NF-κB transcriptional repressor homodimer (p50/p50) and promotes nitric oxide synthase (iNOS) downregulation. We investigated the role of PI3K/Akt in p50/p50 NF-κB activation and the effect on iNOS expression in L. amazonensis infection. The increased occupancy of p50/p50 on the iNOS promoter of infected macrophages was observed and we demonstrated that both p50/p50 NF-κB induction and iNOS downregulation in infected macrophages depended on PI3K/Akt activation. Importantly, the intracellular growth of the parasite was also impaired during PI3K/Akt signalling inhibition and in macrophages knocked-down for Akt 1 expression. It was also observed that the increased nuclear levels of p50/p50 in L. amazonensis-infected macrophages were associated with reduced phosphorylation of 907 Ser p105, the precursor of p50. Corroborating these data, we demonstrated the increased levels of phospho-9 Ser GSK3β in infected macrophages, which is associated with GSK3β inhibition and, consequently, its inability to phosphorylate p105. Remarkably, we found that the levels of pPTEN 370 Ser, a negative regulator of PI3K, increased due to L. amazonensis infection. Our data support the notion that PI3K/Akt activity is sustained during the parasite infection, leading to NF-κB 105 phosphorylation and further processing to originate p50/p50 homodimers and the consequent downregulation of iNOS expression. PMID:26400473

  17. In silico analysis of the three-dimensional structures of the homodimer of uridine phosphorylase from Yersinia Pseudotuberculosis in the ligand-free state and in a complex with 5-fluorouracil

    SciTech Connect

    Lashkov, A. A. Sotnichenko, S. E.; Mikhailov, A. M.

    2013-03-15

    Pseudotuberculosis is an acute infectious disease characterized by a lesion of the gastrointestinal tract. A positive therapeutic effect can be achieved by selectively suppressing the activity of uridine phosphorylase from the causative agent of the disease Yersinia pseudotuberculosis. The synergistic effect of a combination of the chemotherapeutic agent 5-fluorouracil and antimicrobial drugs, which block the synthesis of pyrimidine bases, on the cells of pathogenic protozoa and bacteria is described in the literature. The three-dimensional structures of uridine phosphorylase from Yersinia pseudotuberculosis (YptUPh) both in the ligand-free state and in complexes with pharmacological agents are unknown, which hinders the search for and design of selective inhibitors of YptUPh. The three-dimensional structure of the ligand-free homodimer of YptUPh was determined by homology-based molecular modeling. The three-dimensional structure of the subunit of the YptUPh molecule belongs to {alpha}/{beta} proteins, and its topology is a three-layer {alpha}/{beta}/{alpha} sandwich. The subunit monomer of the YptUPh molecule consists of 38% helices and 24% {beta} strands. A model of the homodimer structure of YptUPh in a complex with 5-FU was obtained by the molecular docking. The position of 5-FU in the active site of the molecule is very consistent with the known data on the X-ray diffraction structures of other bacterial uridine phosphorylases (the complex of uridine phosphorylase from Salmonella typhimurium (StUPh) with 5-FU, ID PDB: 4E1V and the complex of uridine phosphorylase from Escherichia coli (EcUPh) with 5-FU and ribose 1-phosphate, ID PDB: 1RXC).

  18. IL-12p40/IL-10 Producing preCD8α/Clec9A+ Dendritic Cells Are Induced in Neonates upon Listeria monocytogenes Infection

    PubMed Central

    Delbauve, Sandrine; Caminschi, Irina; Lahoud, Mireille H.; Shortman, Ken; Flamand, Véronique

    2016-01-01

    Infection by Listeria monocytogenes (Lm) causes serious sepsis and meningitis leading to mortality in neonates. This work explored the ability of CD11chigh lineage DCs to induce CD8+ T-cell immune protection against Lm in mice before 7 days of life, a period symbolized by the absence of murine IL-12p70-producing CD11chighCD8α+ dendritic cells (DCs). We characterized a dominant functional Batf3-dependent precursor of CD11chigh DCs that is Clec9A+CD205+CD24+ but CD8α- at 3 days of life. After Lm-OVA infection, these pre-DCs that cross-present Ag display the unique ability to produce high levels of IL-12p40 (not IL-12p70 nor IL-23), which enhances OVA-specific CD8+ T cell response, and regulatory IL-10 that limits OVA-specific CD8+ T cell response. Targeting these neonatal pre-DCs for the first time with a single treatment of anti-Clec9A-OVA antibody in combination with a DC activating agent such as poly(I:C) increased the protection against later exposure to the Lm-OVA strain. Poly(I:C) was shown to induce IL-12p40 production, but not IL-10 by neonatal pre-DCs. In conclusion, we identified a new biologically active precursor of Clec9A+ CD8α- DCs, endowed with regulatory properties in early life that represents a valuable target to augment memory responses to vaccines. PMID:27074026

  19. Egg antigen p40 of Schistosoma japonicum promotes senescence in activated hepatic stellate cells by activation of the STAT3/p53/p21 pathway

    PubMed Central

    Chen, Jinling; Xu, Tianhua; Zhu, Dandan; Wang, Jianxin; Huang, Caiqun; Lyu, Lei; Hu, Bin; Sun, Wei; Duan, Yinong

    2016-01-01

    Liver fibrosis is a serious disease that is characterized by the excess deposition of extracellular matrix (ECM) components. Activated hepatic stellate cells (HSCs) are a major source of ECM and serve as a key regulator in liver fibrogenesis. Inactivation of HSCs is essential for liver fibrotic regression. The present study explores the underlying mechanisms of Schistosoma japonicum egg antigen p40 (Sjp40) promoting senescence in HSCs and antifibrosis. For the first time we report that Sjp40 inhibits the activation and proliferation of an immortalized human HSC line (LX-2 cells) and promotes cellular senescence and cell cycle arrest. Sjp40 through action on the STAT3/p53/p21 pathway triggered cellular senescence, while knockdown of p53 or STAT3 partly restored cell senescence. In addition, Sjp40-induced cellular senescence caused LX-2 cells to be more sensitive to a human NK cell line (YT cells). Together these findings provide novel insights into the mechanism of antifibrosis and may have implications for the development of antifibrosis therapies. PMID:27468691

  20. Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4.

    PubMed

    Wang, K S; Frank, D A; Ritz, J

    2000-05-15

    Interleukin (IL)-12 plays a critical role in modulating the activities of natural killer (NK) cells and T lymphocytes. In animal models, IL-12 has potent antitumor effects that are likely mediated by its ability to enhance the cytotoxic activity of NK cells and cytotoxic T lymphocytes, and to induce the production of interferon (IFN)-gamma by NK and T cells. In addition to IL-12, NK cells are responsive to IL-2, and may mediate some of the antitumor effects of IL-2. In this study, we examine the interaction between IL-2 and the signaling events induced by IL-12 in NK cells. We find that IL-2 not only up-regulates the expression of IL-12Rbeta1 and IL-12Rbeta2, it also plays an important role in up-regulating and maintaining the expression of STAT4, a critical STAT protein involved in IL-12 signaling in NK cells. In contrast to the effects of IL-2 alone, expression of IL-12 receptors and STAT4 are unaffected or decreased by IL-12 or the combination of IL-2 and IL-12. Through expression of high levels of IL-12 receptors and STAT4, IL-2-primed NK cells show enhanced functional responses to IL-12 as measured by IFN-gamma production and the killing of target cells. NK cells from cancer patients who received low-dose IL-2 treatment also exhibited increased expression of IL-12 receptor chains, suggesting that IL-2 may enhance the response to IL-12 in vivo. These findings provide a molecular framework to understand the interaction between IL-2 and IL-12 in NK cells, and suggest strategies for improving the effectiveness of these cytokines in the immunotherapy of cancer. PMID:10807786

  1. Platelet-derived growth factor (BB homodimer), transforming growth factor-beta 1, and basic fibroblast growth factor in dermal wound healing. Neovessel and matrix formation and cessation of repair.

    PubMed Central

    Pierce, G. F.; Tarpley, J. E.; Yanagihara, D.; Mustoe, T. A.; Fox, G. M.; Thomason, A.

    1992-01-01

    Recombinant platelet-derived growth factor (BB homodimer, rPDGF-BB), transforming growth factor beta 1 (rTGF-beta 1), and basic fibroblast growth factor (rbFGF) can accelerate healing of soft tissues. However, little information is available characterizing the components of wound matrix induced by these growth factors and the molecular mechanisms underlying accelerated repair and wound maturation. In this study, the composition, quantity, and rate of extracellular matrix deposition within growth factor-treated lapine ear excisional wounds were analyzed at different stages of healing using specific histochemical and immunohistochemical stains, coupled with image analysis techniques. Single application of optimal concentrations of each growth factor accelerated normal healing by 30% (P less than 0.0003); rPDGF-BB markedly augmented early glycosaminoglycan (GAG) and fibronectin deposition, but induced significantly greater levels of collagen later in the repair process, compared with untreated wounds rTGF-beta 1 treatment led to rapidly enhanced collagen synthesis and maturation, without increased GAG deposition. In contrast, rbFGF treatment induced a predominantly angiogenic response in wounds, with a marked increase in endothelia and neovessels (P less than 0.0001), and increased wound collagenolytic activity (P less than 0.03). rbFGF-treated wounds did not evolve into collagen-containing scars and continued to accumulate only provisional matrix well past wound closure. These results provide new evidence that growth factors influence wound repair via different mechanisms: 1) rPDGF-BB accelerates deposition of provisional wound matrix; 2) rTGF-beta 1 accelerates deposition and maturation of collagen; and 3) rbFGF induces a profound monocellular angiogenic response which may lead to a marked delay in wound maturation, and the possible loss of the normal signal(s) required to stop repair. These results suggest that specific growth factors may selectively regulate

  2. Interleukin-12 Immunomodulation Delays the Onset of Lethal Peritoneal Disease of Ovarian Cancer.

    PubMed

    Cohen, Courtney A; Shea, Amanda A; Heffron, C Lynn; Schmelz, Eva M; Roberts, Paul C

    2016-01-01

    The omental fat band (OFB) is the predominant site for metastatic seeding of ovarian cancer. Previously, we highlighted the influx and accumulation of neutrophils and macrophages in the OFB following syngeneic ovarian cancer cell seeding as an important factor in the development of a protumorigenic cascade. Here we investigated localized immunomodulation as a means of promoting a successful protective response. As an important TH1-type immunomodulator, interleukin (IL)-12 has previously been investigated clinically as an anticancer therapeutic. However, systemic IL-12 administration was associated with serious side effects, galvanizing the development of immune or accessory cells engineered to express secreted or membrane-bound IL-12 (mbIL-12). Using an mbIL-12-expressing cell variant, we demonstrate that localized IL-12 in the tumor microenvironment significantly delays disease development. The mbIL-12-mediated decrease in tumor burden was associated with a significant reduction in neutrophil and macrophage infiltration in the OFB, and correlated with a reduced expression of neutrophil and macrophage chemoattractants (CXCL1, -2, -3 and CCL2, -7). Vaccination with mitotically impaired tumor cells did not confer protection against subsequent tumor challenge, indicating that IL-12 did not impact the immunogenicity of the cancer cells. Our findings are in agreement with previous reports suggesting that IL-12 may hold promise when delivered in a targeted and sustained manner to the omental microenvironment. Furthermore, resident cells within the omental microenvironment may provide a reservoir that can be activated and mobilized to prevent metastatic seeding within the peritoneum and, therefore, may be targets for chemotherapeutics. PMID:26430781

  3. LOWER LEVELS OF INTERLEUKIN-12 PRECEDE THE DEVELOPMENT OF TUBERCULOSIS AMONG HIV-INFECTED WOMEN

    PubMed Central

    Bordón, José; Plankey, Michael W.; Young, Mary; Greenblatt, Ruth M.; Villacres, Maria C.; French, Audrey L.; Zhang, Jie; Brock, Guy; Appana, Savitri; Herold, Betsy; Durkin, Helen; Golub, Jonathan E.; Fernandez-Botran, Rafael

    2012-01-01

    Tuberculosis (TB) is the worldwide leading cause of death among HIV-infected individuals, accounting for more than half of AIDS-related deaths. A high risk of tuberculosis (TB) has been shown in early stages of the HIV disease, even in the presence of normal CD4+ cell counts. Moreover, the factors that determine protective immunity vs. susceptibility to M. tuberculosis cannot be fully explained by simple changes in IFNγ levels or a shift from Th1 to Th2 cytokines. This work investigated the relationship between cytokine expression profiles in peripheral blood mononuclear cells (PBMC) and susceptibility to M. tuberculosis in ten HIV+ women who went on to develop TB. RNA transcripts for IL-4, IL-4δ2, IL-10, IL-12(p35), IL-13, IL-17A, IFNγ and TNFα were measured by real-time quantitative PCR in unstimulated or TB peptide antigen-stimulated PBMCs from ten HIV+ women with positive tuberculin skin tests (TST) and compared with HIV-seropositive and seronegative women without previous TB and negative TST. Stimulated PBMC cultures showed significantly lower expression of IL-12p35 (p=0.004) and IL-10 (p=0.026) in the HIV+TB+ group six to twelve months before onset of TB compared to HIV+TB− women. Unstimulated PBMC from HIV+TB+ women also had lower expression of Th2 cytokines [IL-4 (p=0.056) and IL-13 (p=0.050)] compared to HIV+TB− women. These results suggest that lower IL-12 production by PBMC in response to TB antigens and lower levels of both Th1 and Th2 cytokines by PBMC correlate with future development of TB in HIV-infected women and may be responsible for their increased susceptibility. PMID:21880503

  4. Interleukin-12 Followed by Interferon Alfa in Treating Patients With Advanced Cancer

    ClinicalTrials.gov

    2013-01-31

    Chronic Myeloproliferative Disorders; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Precancerous Condition; Unspecified Adult Solid Tumor, Protocol Specific

  5. Interleukin-12 in Treating Patients With Previously Treated Non-Hodgkin's Lymphoma or Hodgkin's Disease

    ClinicalTrials.gov

    2015-04-14

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Waldenström Macroglobulinemia

  6. Rituximab and Interleukin-12 in Treating Patients With B-Cell Non-Hodgkin's Lymphoma

    ClinicalTrials.gov

    2013-08-23

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma

  7. Interleukin-12 in Treating Patients With Hematologic Cancers or Solid Tumors

    ClinicalTrials.gov

    2014-09-09

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Testicular Germ Cell Tumor

  8. Role of chitosan co-formulation in enhancing interleukin-12 delivery and antitumor activity.

    PubMed

    Yang, Lirong; Zaharoff, David A

    2013-05-01

    Local delivery systems that provide sustained, high concentrations of antitumor cytokines in the tumor microenvironment while minimizing systemic dissemination are needed to realize the potential of cytokine-based immunotherapies. Recently, co-formulations of cytokines with chitosan solutions have been shown to increase local cytokine retention and bioactivity. In particular, intratumoral (i.t.) injections of chitosan/IL-12 can eliminate established tumors and generate tumor-specific immune responses. In the present study, we explored the mechanisms by which chitosan potentiated IL-12's antitumor activity. The location of chitosan/IL-12 injection was found to be critical for optimal cytokine delivery. I.t. injections eliminated 9 of 10 MC38 adenocarcinomas while contralateral and peritumoral injections delayed tumor growth but could not eliminate tumors. Microdosing studies demonstrated that IL-12 depots, simulated through daily i.t. injections with IL-12 alone, were not as effective as weekly i.t. chitosan/IL-12. 50-75% of mice receiving daily IL-12 microdoses and 87.5% of mice receiving weekly chitosan/IL-12 were cured of MC38 tumors. Chitosan was found to increase IL-12-mediated leukocytic expansion in tumors and tumor-draining lymph nodes (TDLNs) by 40 and 100%, respectively. Immunophenotyping studies demonstrated that chitosan co-formulation amplified IL-12-induced increases in important effector populations, such as CD8(+)IFN-γ(+) and NKT cells, in tumors and dendritic cell populations in TDLNs. Remarkable increases in Gr-1(+)CD11b(+) tumor infiltrates were also observed in mice receiving chitosan or chitosan/IL-12. This population does not appear be suppressive and may facilitate the local antitumor response. Presented data suggest that chitosan-mediated depot formation and enhanced local cytokine retention is significantly, but not entirely, responsible for increased cytokine bioactivity. PMID:23453060

  9. Interleukin-12 and Interleukin-2 in Treating Patients With Mycosis Fungoides

    ClinicalTrials.gov

    2013-01-15

    Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome

  10. Interleukin-12, Paclitaxel, and Trastuzumab in Treating Patients With Solid Tumors

    ClinicalTrials.gov

    2013-06-03

    Male Breast Cancer; Recurrent Breast Cancer; Recurrent Endometrial Carcinoma; Recurrent Gastric Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Small Cell Lung Cancer

  11. Gene therapy approaches against cancer using in vivo and ex vivo gene transfer of interleukin-12.

    PubMed

    Hernandez-Alcoceba, Ruben; Poutou, Joanna; Ballesteros-Briones, María Cristina; Smerdou, Cristian

    2016-02-01

    IL-12 is an immunostimulatory cytokine with strong antitumor properties. Systemic administration of IL-12 in cancer patients led to severe toxic effects, prompting the development of gene therapy vectors able to express this cytokine locally in tumors. Both nonviral and viral vectors have demonstrated a high antitumor efficacy in preclinical tumor models. Some of these vectors, including DNA electroporation, adenovirus and ex vivo transduced dendritic cells, were tested in patients, showing low toxicity and moderate antitumor efficacy. IL-12 activity can be potentiated by molecules with immunostimulatory, antiangiogenic or cytotoxic activity. These combination therapies are of clinical interest because they could lower the threshold for IL-12 efficacy, increasing the therapeutic potential of gene therapy and preventing the toxicity mediated by this cytokine. PMID:26786809

  12. Adenovirus-mediated interleukin-12 gene therapy for metastatic colon carcinoma.

    PubMed Central

    Caruso, M; Pham-Nguyen, K; Kwong, Y L; Xu, B; Kosai, K I; Finegold, M; Woo, S L; Chen, S H

    1996-01-01

    Recombinant adenoviral mediated delivery of suicide and cytokine genes has been investigated as a treatment for hepatic metastases of colon carcinoma in mice. Liver tumors were established by intrahepatic implantation of a poorly immunogenic colon carcinoma cell line (MCA-26), which is syngeneic in BALB/c mice. Intratumoral transfer of the herpes simplex virus type 1 thymidine kinase (HSV-tk) and the murine interleukin (mIL)-2 genes resulted in substantial hepatic tumor regression, induced an effective systemic antitumoral immunity in the host and prolonged the median survival time of the treated animals from 22 to 35 days. The antitumoral immunity declined gradually, which led to tumor recurrence over time. A recombinant adenovirus expressing the mIL-12 gene was constructed and tested in the MCA-26 tumor model. Intratumoral administration of this cytokine vector alone increased significantly survival time of the animals with 25% of the treated animals still living over 70 days. These data indicate that local expression of IL-12 may also be an attractive treatment strategy for metastatic colon carcinoma. Images Fig. 5 PMID:8876130

  13. Utility of a novel triple marker (combination of thyroid transcription factor 1, Napsin A, and P40) in the subclassification of non-small cell lung carcinomas using fine-needle aspiration cases.

    PubMed

    Sharma, Rajni; Wang, Yuting; Chen, Li; Gurda, Grzegorz T; Geddes, Susan; Gabrielson, Edward; Askin, Frederic; Li, Qing Kay

    2016-08-01

    Personalized treatment of lung cancer requires an accurate subclassification of non-small cell lung carcinoma (NSCLC) into adenocarcinoma (ADC), squamous cell carcinoma (SqCC), and other subtypes. In poorly differentiated tumors especially on small fine-needle aspirate specimens, the subclassification could be difficult in certain cases. Our previous study using resected tumor tissue has shown that the combination of commonly used individual markers (thyroid transcription factor 1 [TTF-1], P40, and Napsin A) into a novel triple marker has high sensitivity and specificity in subclassification of NSCLC and also the advantage of using minimal tumor tissue. In this study, we further evaluated the utility of this novel triple marker using fine-needle aspirate cases. We included primary NSCLC, consisting of 37 SqCCs (primary, 35; metastasis, 2) and 50 ADCs (primary, 29; metastasis, 21), 12 metastatic ADCs of nonpulmonary primary, and 10 small cell lung carcinomas. The immunohistochemical patterns were semiquantitatively scored. In lung SqCCs and ADCs, the sensitivity and specificity of the triple marker were 100% and 97.1% and 86.0% and 100%, respectively. The triple marker showed no immunoreactivity in 12 metastatic nonpulmonary ADCs. In 10 small cell lung carcinomas, TTF-1 had focal positivity in 40% of cases. The limitations of the triple marker include staining of alveolar macrophages (by TTF-1 and Napsin A), basal layer of bronchial epithelial cells (by P40), and nonspecific cytoplasmic staining of TTF-1. Our study not only supports our previous finding using resected tumor specimens but also provides evidence that the triple marker can be used for cytological material and preserving tumor tissue for molecular testing. PMID:27045515

  14. Molecules Altering the Intracellular Thiol Content Modulate NF-kB and STAT-1/IRF-1 Signalling Pathways and IL-12 p40 and IL-27 p28 Production in Murine Macrophages

    PubMed Central

    Fraternale, Alessandra; Crinelli, Rita; Casabianca, Anna; Paoletti, Maria Filomena; Orlandi, Chiara; Carloni, Elisa; Smietana, Michaël; Palamara, Anna Teresa; Magnani, Mauro

    2013-01-01

    Background The aim of this study was to investigate the molecular mechanisms involved in the production of Th1 cytokines, namely IL-12 and IL-27, when the intra-macrophage redox state was altered by different chemical entities such as GSH-C4, which is reduced glutathione carrying an aliphatic chain, or I-152, a pro-drug of N-acetyl-cysteine (NAC) and beta-mercaptoethylamine. We had already demonstrated that GSH-C4 and I-152 could shift the immune response towards Th1 in Ovalbumin-immunized mice as well as enhance Th1 response in HIV-1 Tat-immunized mice. Methodology/Principal Findings By a new high performance liquid chromatography method, we found that 20 mM GSH-C4 provided a number of thiol species in the form of GSH, while 20 mM I-152 decreased GSH and increased the thiols in the form of NAC and I-152. Under these experimental conditions, GSH-C4 and I-152 enhanced and suppressed respectively the mRNA expression levels of IL-12 p40 induced by LPS/IFN-γ as assessed by Real-Time PCR. The protein production of IL-12 p40 was increased by GSH-C4 and decreased by I-152 as determined by Enzyme-linked immunosorbent assay. Western immunoblot and electrophoretic mobility shift assays revealed that Nuclear Factor -kB (NF-kB) activation was inhibited by I-152 and prolonged by GSH-C4. Twenty mM I-152 stimulated IL-27 p28 gene expression and sustained Signal Transducer and Activator of Transcription (STAT)-mediated interferon regulator factor 1 (IRF-1) de novo synthesis. By contrast, 20 mM GSH-C4 did not exert any effect on IL-27 p28 gene expression. Conclusions and Significance an increase in the intra-macrophage redox state by GSH-C4 and I-152 enhances Th1 cytokine production although the chemical structure and the intra-cellular metabolism influence differently signalling pathways involved in IL-27 or IL-12 production. GSH-C4 and I-152 may be used as Th1 immunomodulators in some pathologies and in ageing where GSH depletion may contribute to the Th1/Th2 imbalance, and in

  15. Defining the functional binding sites of interleukin 12 receptor β1 and interleukin 23 receptor to Janus kinases.

    PubMed

    Floss, Doreen M; Klöcker, Tobias; Schröder, Jutta; Lamertz, Larissa; Mrotzek, Simone; Strobl, Birgit; Hermanns, Heike; Scheller, Jürgen

    2016-07-15

    The interleukin (IL)-12-type cytokines IL-12 and IL-23 are involved in T-helper (Th) 1 and Th17 immunity, respectively. They share the IL-12 receptor β1 (IL-12Rβ1) as one component of their receptor signaling complexes, with IL-12Rβ2 as second receptor for IL-12 and IL-23R for IL-23 signal transduction. Stimulation with IL-12 and IL-23 results in activation of receptor-associated Janus kinases (Jak) and phosphorylation of STAT proteins in target cells. The Janus kinase tyrosine kinase (Tyk) 2 associates with IL-12Rβ1, whereas Jak2 binds to IL-23R and also to IL-12Rβ2. Receptor association of Jak2 is mediated by Box1 and Box2 motifs located within the intracellular domain of the receptor chains. Here we define the Box1 and Box2 motifs in IL-12Rβ1 and an unusual Jak2-binding site in IL-23R by the use of deletion and site-directed mutagenesis. Our data show that nonfunctional box motifs abolish IL-12- and IL-23-induced STAT3 phosphorylation and cytokine-dependent proliferation of Ba/F3 cells. Coimmunoprecipitation of Tyk2 by IL-12Rβ1 and Jak2 by IL‑23R supported these findings. In addition, our data demonstrate that association of Jak2 with IL-23R is mandatory for IL-12 and/or IL-23 signaling, whereas Tyk2 seems to be dispensable. PMID:27193299

  16. Interleukin-18, interleukin-12B and interferon-γ gene polymorphisms in Brazilian patients with rheumatoid arthritis: a pilot study.

    PubMed

    Angelo, H D; Gomes Silva, I I F; Oliveira, R D R; Louzada-Júnior, P; Donadi, E A; Crovella, S; Maia, M M D; de Souza, P R E; Sandrin-Garcia, P

    2015-10-01

    Polymorphisms in interleukin (IL)-18, IL-12 and interferon (IFN)-γ genes are associated with different levels of cytokines expression and have been associated with rheumatoid arthritis (RA). IL-18 +105 A/C, IL-12B +1188 A/C and IFN-γ +874 T/A polymorphisms were analyzed by restriction fragment length polymorphism-polymerase chain reaction (PCR) and amplification refractory mutation system PCR from 90 RA patients and 186 healthy individuals. There were significant differences to IL-18 +105 A/C polymorphism between the RA and control groups (odds ratio = 3.77; P < 0.0001). Individual carriers of the variant allele C had a 3.77-fold increased risk of for RA (P = 0.0032). No association was observed for IL-12B and IFN-γ polymorphisms. Our finds suggest a possible role for IL-18 polymorphism in the RA susceptibility in studied population. PMID:26302971

  17. Modulation of host responses to blood-stage malaria by interleukin-12: from therapy to adjuvant activity.

    PubMed

    Stevenson, M M; Su, Z; Sam, H; Mohan, K

    2001-01-01

    This review focuses on the role of interleukin (IL)-12, a proinflammatory cytokine with pleiotropic effects as a potent immunoregulatory molecule and hematopoietic growth factor, in infection with Plasmodium parasites, the causative agents of malaria. IL-12 has been demonstrated to have profound effects on the immune response to blood-stage malaria, to induce protection, and to alleviate malarial anemia. In combination with an anti-malarial drug, IL-12 is effective in an established malaria infection. This cytokine also has potent immune effects as a malaria vaccine adjuvant. However, IL-12 can also mediate pathology during blood-stage malaria. PMID:11226854

  18. Adjuvant activity of chicken interleukin-12 co-administered with infectious bursal disease virus recombinant VP2 antigen in chickens.

    PubMed

    Su, Bor Sheu; Chiu, Hua Hsien; Lin, Cheng Chung; Shien, Jui Hung; Yin, Hsien Sheng; Lee, Long Huw

    2011-02-15

    A recombinant fowlpox virus (rFPV/VP2) expressing infectious bursal diseases virus (IBDV) VP2 gene has been constructed. After purification and identification of rFPV/VP2, the adjuvant activity of the recombinant chicken IL-12 (rchIL-12), synthesized by our previous construct of rFPV/chIL-12, in rFPV/VP2-expressed rVP2 antigen was assessed in one-week-old specific-pathogen free chickens. The results indicated that rchIL-12 alone or rchIL-12 plus mineral oil (MO) co-administered with rVP2 antigen significantly enhanced the production of serum neutralization (SN) antibody against IBDV, compared to those with MO alone. The SN titers in groups receiving rVP2 antigen with MO alone were more inconsistent after vaccination. On the other hand, rchIL-12 significantly stimulated IFN-γ production in serum and in splenocyte cultured supernatant, suggesting that rchIL-12 alone or plus MO significantly induced a cell-mediated immune response. Finally, bursal lesion protection from very virulent IBDV (vvIBDV) challenge in chickens receiving rVP2 antigen with rchIL-12 alone or plus MO was much more effective than that with MO alone at two weeks after boosting. Taken together, rchIL-12 alone augmented in vivo the induction of a primary and also a secondary SN antibody production and a cell-mediated immunity against IBDV rVP2 antigen, which conferred the enhancement of bursal lesion protective efficacy from vvIBDV challenge. These data indicated that a potential for chIL-12 as immunoadjuvant for chicken vaccine development such as IBDV rVP2 antigen. PMID:21035196

  19. Interleukin-12 and Trastuzumab in Treating Patients With Cancer That Has High Levels of HER2/Neu

    ClinicalTrials.gov

    2013-02-27

    Advanced Adult Primary Liver Cancer; Anaplastic Thyroid Cancer; Bone Metastases; Carcinoma of the Appendix; Distal Urethral Cancer; Fallopian Tube Cancer; Gastrinoma; Glucagonoma; Inflammatory Breast Cancer; Insulinoma; Liver Metastases; Localized Unresectable Adult Primary Liver Cancer; Lung Metastases; Male Breast Cancer; Malignant Pericardial Effusion; Malignant Pleural Effusion; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Parathyroid Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Newly Diagnosed Carcinoma of Unknown Primary; Occult Non-small Cell Lung Cancer; Pancreatic Polypeptide Tumor; Primary Peritoneal Cavity Cancer; Proximal Urethral Cancer; Pulmonary Carcinoid Tumor; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adrenocortical Carcinoma; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Bladder Cancer; Recurrent Breast Cancer; Recurrent Carcinoma of Unknown Primary; Recurrent Cervical Cancer; Recurrent Colon Cancer; Recurrent Endometrial Carcinoma; Recurrent Esophageal Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Pancreatic Cancer; Recurrent Parathyroid Cancer; Recurrent Prostate Cancer; Recurrent Rectal Cancer; Recurrent Renal Cell Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Thyroid Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Urethral Cancer; Recurrent Vaginal Cancer; Recurrent Vulvar Cancer; Skin Metastases; Small Intestine Adenocarcinoma; Somatostatinoma; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Adrenocortical Carcinoma; Stage III Bladder Cancer; Stage III Cervical Cancer; Stage III Colon Cancer; Stage III Endometrial Carcinoma; Stage III Esophageal Cancer; Stage III Follicular Thyroid Cancer; Stage III Gastric Cancer; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Ovarian Epithelial Cancer; Stage III Pancreatic Cancer; Stage III Papillary Thyroid Cancer; Stage III Prostate Cancer; Stage III Rectal Cancer; Stage III Renal Cell Cancer; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Vaginal Cancer; Stage III Vulvar Cancer; Stage IIIA Anal Cancer; Stage IIIA Breast Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Anal Cancer; Stage IIIB Breast Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Adrenocortical Carcinoma; Stage IV Anal Cancer; Stage IV Bladder Cancer; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Endometrial Carcinoma; Stage IV Esophageal Cancer; Stage IV Follicular Thyroid Cancer; Stage IV Gastric Cancer; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Pancreatic Cancer; Stage IV Papillary Thyroid Cancer; Stage IV Prostate Cancer; Stage IV Rectal Cancer; Stage IV Renal Cell Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IVA Cervical Cancer; Stage IVA Vaginal Cancer; Stage IVB Cervical Cancer; Stage IVB Vaginal Cancer; Stage IVB Vulvar

  20. A derivative of Lactococcus lactis strain H61 with less interleukin-12 induction has a different cell wall.

    PubMed

    Kimoto-Nira, H; Suzuki, C; Aoki, R; Kobayashi, M; Mizumachi, K

    2012-06-01

    Lactococcus lactis H61 can increase the cellular immune responses of aged (14-mo-old) senescence-accelerated mice. The aim of this study was to investigate the factors contributing to IL-12 induction by strain H61 by analyzing strains derived from it. Strain H61 derivative no. 13 was obtained by growing the parent strain at 37°C. This derivative induced significantly lower production of IL-12 from J774.1 macrophage cells than did the parent strain H61. The 2 strains differed in the resistance of their whole cells or cell walls to lysozyme, a cell wall-degrading enzyme. Sodium hydroxide treatment to de-O-acetylate muramic acid in the cell walls of the 2 strains reduced the lysozyme resistance, compared with untreated cell walls: at 3h after adding lysozyme, the lysozyme resistance of untreated and NaOH treated cell wall from strain H61 was 55.4% and 11.7%, respectively. The values of untreated and NaOH-treated cell walls from strain no.13 were 73.7 and 42.8%, respectively. The reduction was higher in strain H61, indicating that the cell walls of strain H61 were highly O-acetylated. Trichloroacetic acid treatment to remove wall-associated polymers such as teichoic acids made the lysozyme resistance of the cell walls of both strains similar. The sugar content of cell walls prepared from strain H61 was significantly higher than that of strain no. 13 cell wall. A derivative with less activity for inducing IL-12 by macrophage cells had less O-acetylation and had lower sugar content in the cell wall than did strain H61. Modifying the cell wall of strain H61 may be a useful way to regulate its ability to induce IL-12. Strain H61 has been used as a starter bacterium in the dairy industry. This study could lead to enhancing the value of dairy products made by strain H61 by characterizing the key factor(s) responsible for its stimulation of immunity. PMID:22612923

  1. Interleukin-12 is synthesized by mesangial cells and stimulates platelet-activating factor synthesis, cytoskeletal reorganization, and cell shape change.

    PubMed

    Bussolati, B; Mariano, F; Biancone, L; Foà, R; David, S; Cambi, V; Camussi, G

    1999-02-01

    Preliminary studies indicate the involvement of interleukin (IL)-12 in experimental renal pathology. In the present study, we evaluated whether cultured glomerular mesangial cells are able to produce IL-12 and whether IL-12 may regulate some of their functions, including the cytoskeletal reorganization, the change in cell shape, and the production of platelet-activating factor (PAF). The results obtained indicate that pro-inflammatory stimuli, such as tumor necrosis factor-alpha and bacterial polysaccharides, induce the expression of IL-12 mRNA and the synthesis of the protein by cultured mesangial cells. Moreover, cultured mesangial cells were shown to bind IL-12 and to express the human low-affinity IL-12 beta1-chain receptor. When challenged with IL-12, mesangial cells produced PAF in a dose- and time-dependent manner and superoxide anions. No production of tumor necrosis factor-alpha and IL-8 was observed. Moreover, we demonstrate that IL-12 induced a delayed and sustained shape change of mesangial cells that reached its maximum between 90 and 120 minutes of incubation. The changes in cell shape occurred concomitantly with cytoskeletal rearrangements and may be consistent with cell contraction. As IL-12-dependent shape change of mesangial cells was concomitant with the synthesis of PAF, which is known to promote mesangial cell contraction, we investigated the role of PAF using two chemically different PAF receptor antagonists. Both antagonists inhibited almost completely the cell shape change induced by IL-12, whereas they were ineffective on angiotensin-II-induced cell shape change. In conclusion, our results suggest that mesangial cells can either produce IL-12 or be stimulated by this cytokine to synthesize PAF and to undergo shape changes compatible with cell contraction. PMID:10027419

  2. Characterization of a novel subset of CD8(+) T cells that expands in patients receiving interleukin-12.

    PubMed

    Gollob, J A; Schnipper, C P; Orsini, E; Murphy, E; Daley, J F; Lazo, S B; Frank, D A; Neuberg, D; Ritz, J

    1998-08-01

    IL-12 has significant antitumor activity in mice that may be mediated by CD8(+) T cells. We show in this report that repeated subcutaneous injections of IL-12 in patients with cancer resulted in the selective expansion of a subset of peripheral blood CD8(+) T cells. This T cell subset expressed high levels of CD18 and upregulated IL-12 receptor expression after IL-12 treatment in vivo. In normal subjects, these CD3(+)CD8(+)CD18(bright) T cells expressed IL-12 and IL-2 receptors and adhesion/costimulatory molecules to a greater degree than other CD8(+) and CD4(+) T cells. They appeared morphologically as large granular lymphocytes, although they did not express NK cell markers such as CD56. In addition, CD8(+)CD18(bright) T cells were almost exclusively T cell receptor (TCR) alphabeta+, and exhibited a TCR Vbeta repertoire that was strikingly oligoclonal, whereas the Vbeta repertoire of CD18(dim) T cells was polyclonal. Although CD8+CD18(bright) T cells demonstrated little functional responsiveness to IL-12 or IL-2 alone in vitro, they responded to the combination of IL-12+IL-2 with strong IFN-gamma production and proliferation and enhanced non-MHC-restricted cytolytic activity. In contrast, CD18(dim) T cells were not activated by IL-12 or IL-2, alone or in combination. These findings demonstrate that CD8+CD18(bright) T cells are a unique population of peripheral blood lymphocytes with features of both memory and effector cells that are capable of TCR-independent activation through combined stimulation with IL-12+IL-2. As this activation results in IFN-gamma production and enhanced cytolytic activity, these T cells may play a role in innate as well as acquired immunity to tumors and infectious pathogens. Additional studies will be necessary to determine whether CD8+CD18(bright) T cells mediate the antitumor effect of IL-12 or IL-2 administered to cancer patients, and if so, whether maximal activation of these T cells with the combination of IL-12+IL-2 in vivo can augment the clinical effectiveness of these cytokines. PMID:9691093

  3. Parallel topology of genetically fused EmrE homodimers.

    PubMed

    Steiner-Mordoch, Sonia; Soskine, Misha; Solomon, Dalia; Rotem, Dvir; Gold, Ayala; Yechieli, Michal; Adam, Yoav; Schuldiner, Shimon

    2008-01-01

    EmrE is a small H+-coupled multidrug transporter in Escherichia coli. Claims have been made for an antiparallel topology of this homodimeric protein. However, our own biochemical studies performed with detergent-solubilized purified protein support a parallel topology of the protomers. We developed an alternative approach to constrain the relative topology of the protomers within the dimer so that their activity can be assayed also in vivo before biochemical handling. Tandem EmrE was built with two identical monomers genetically fused tail to head (C-terminus of the first to N-terminus of the second monomer) with hydrophilic linkers of varying length. All the constructs conferred resistance to ethidium by actively removing it from the cytoplasm. The purified proteins bound substrate and transported methyl viologen into proteoliposomes by a proton-dependent mechanism. A tandem where one of the essential glutamates was replaced with glutamine transported only monovalent substrates and displayed a modified stoichiometry. The results support a parallel topology of the protomers in the functional dimer. The implications regarding insertion and evolution of membrane proteins are discussed. PMID:18059473

  4. Non-heat pipe receiver/p-40 Stirling engine

    NASA Technical Reports Server (NTRS)

    Haglund, R. A.

    1981-01-01

    The technology for a full-up hybrid dish-Stirling Solar Thermal Power system is discussed. Overall solar-to-electric efficiency for the dish-Stirling system demonstration is approximately 30%. Hybrid operation is provided by fossil fuel combustion augmentation, which enables the Stirling engine to operate continuously at constant speed and power, regardless of insolation level, thus providing the capability to operate on cloudy days and at night.

  5. In vivo electroporation-mediated transfer of interleukin-12 and interleukin-18 genes induces significant antitumor effects against melanoma in mice.

    PubMed

    Kishida, T; Asada, H; Satoh, E; Tanaka, S; Shinya, M; Hirai, H; Iwai, M; Tahara, H; Imanishi, J; Mazda, O

    2001-08-01

    Direct intratumoral transfection of cytokine genes was performed by means of the in vivo electroporation as a novel therapeutic strategy for cancer. Plasmid vectors carrying the firefly luciferase, interleukin (IL)-12 and IL-18 genes were injected into established subcutaneous B16-derived melanomas followed by electric pulsation. When plasmid vectors with Epstein--Barr virus (EBV) nuclear antigen 1 (EBNA1) gene were employed, the expression levels of the transgenes were significantly higher in comparison with those obtained with conventional plasmid vectors. In consequence of the transfection with IL-12 and IL-18 genes, serum concentrations of the cytokines were significantly elevated, while interferon (IFN)-gamma also increased in the sera of the animals. The IL-12 gene transfection resulted in significant suppression of tumor growth, while the therapeutic effect was further improved by co-transfection with IL-12 and IL-18 genes. Repetitive co-transfection with IL-12 and IL-18 genes resulted in significant prolongation of survival of the animals. Natural killer (NK) and cytotoxic T lymphocyte (CTL) activities were markedly enhanced in the mice transfected with the cytokine genes. The present data suggest that the cytokine gene transfer can be successfully achieved by in vivo electroporation, leading to both specific and nonspecific antitumoral immune responses and significant therapeutic outcome. PMID:11509956

  6. A recombinant Leishmania antigen that stimulates human peripheral blood mononuclear cells to express a Th1-type cytokine profile and to produce interleukin 12

    PubMed Central

    1995-01-01

    Leishmania braziliensis causes cutaneous and mucosal leishmaniasis in humans. Most patients with cutaneous leishmaniasis heal spontaneously and may therefore have developed protective immunity. There appears to be a mixed cytokine profile associated with active cutaneous or mucosal disease, and a dominant T helper (Th)1-type response associated with healing. Leishmanial antigens that elicit these potent proliferative and cytokine responses from peripheral blood mononuclear cells (PBMC) are now being identified. Herein, we report on the cloning and expression of a L. braziliensis gene homologous to the eukaryotic ribosomal protein eIF4A (LeIF) and patient PBMC responses to rLeIF. Patients with mucosal and self-healing cutaneous disease had significantly higher proliferative responses than those with cutaneous lesions. Whereas the parasite lysate stimulated patient PBMC to produce a mixed Th1/Th2-type cytokine profile, LeIF stimulated the production of interferon gamma (IFN-gamma), interleukin 2 (IL-2), and tumor necrosis factor alpha but not IL-4 or IL-10. Recombinant LeIF (rLeIF) downregulated both IL-10 mRNA in the "resting" PBMC of leishmaniasis patients and LPS-induced IL-10 production by patient PBMC. rLeIF also stimulated the production of IL-12 in cultured PBMC from both patients and uninfected individuals. The production of IFN-gamma by patient PBMC stimulated with either rLeIF or parasite lysate was IL-12 dependent, whereas anti-IFN-gamma monoclonal antibody only partially blocked the LeIF-induced production of IL-12. In vitro production of both IFN-gamma and IL-12 was abrogated by exogenous human recombinant IL-10. Therefore, we have identified a recombinant leishmanial antigen that elicits IL-12 production and Th1-type responses in patients as well as IL-12 production in normal human PBMC. PMID:7699334

  7. Innate immune responses in Lyme borreliosis: enhanced tumour necrosis factor-α and interleukin-12 in asymptomatic individuals in response to live spirochetes

    PubMed Central

    Sjöwall, J; Carlsson, A; Vaarala, O; Bergström, S; Ernerudh, J; Forsberg, P; Ekerfelt, C

    2005-01-01

    Innate immunity is important for early defence against borrelia spirochetes and should play a role in the clinical outcome of the infection. In order to study early cytokine responses, in vitro differentiated dendritic cells (DCs) and whole blood cells from 21 patients with different clinical outcomes of Lyme neuroborreliosis were stimulated with live borrelia spirochetes. The borrelia-induced secretion of interleukin (IL)-4, IL-10, IL-12p70, interferon (IFN)-γ and tumour necrosis factor (TNF)-α in DCs and IL-1β, IL-6, IL-8, IL-10, IL-12p70, TNF-α, regulated upon activation normal T cell expressed and secreted (RANTES), monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, MIP-1β and eotaxin in whole blood cells was measured by enzyme-linked immunospot (ELISPOT) and multiplex arrays, respectively. We found increased numbers of TNF-α-secreting DCs (P = 0·018) in asymptomatic seropositive individuals compared to patients with subacute neuroborreliosis and seronegative controls. Asymptomatic individuals were also found to have elevated levels of IL-12p70 (P = 0·031) in whole blood cell supernatants compared to seronegative controls. These results are in line with previous experiments using cells of the adaptive immune response, indicating that strong T helper type 1 (Th1) proinflammatory responses might be associated with a successful resolution of Lyme disease. PMID:15958074

  8. Cell-surface bound pertussis toxin induces polyclonal T cell responses with high levels of interferon-gamma in the absence of interleukin-12.

    PubMed

    Wakatsuki, Ayako; Borrow, Persephone; Rigley, Kevin; Beverley, Peter C L

    2003-07-01

    Pertussis toxin (PTx), an exotoxin produced by Bordetella pertussis, has long been used as a mucosal adjuvant. We examined the T cell stimulatory properties of PTx in order to dissect its mechanisms of adjuvanticity. PTx or the B-oligomer of PTx (PTxB) failed to activate purified murine CD4+ or CD8+ T cells, as measured by a lack of proliferation or expression of early T cell activation markers. However, these T cells proliferated extensively in response to the toxin in the presence of syngeneic DC, and proliferation was accompanied by a high level of IFN-gamma production in the absence of IL-12. Interestingly, such responses were independent of signals mediated by MHC-TCR interaction. Both PTx and PTxB were found to bind stably to the surface of DC, and increased the adherence of DC to surrounding cells. These data suggest that polyclonal T cell responses mediated by the toxin are likely to be caused by the toxin bound on the surface of APC, either cross-linking cell surface molecules on T cells, or directly stimulating T cells together with the co-stimulatory molecules expressed on APC. B. pertussis may use this toxin as a mechanism to evade a specific immune response. PMID:12811846

  9. Interferon (IFN) Consensus Sequence-binding Protein, a Transcription Factor of the IFN Regulatory Factor Family, Regulates Immune Responses In Vivo through Control of Interleukin 12 Expression

    PubMed Central

    Giese, Nathalia A.; Gabriele, Lucia; Doherty, T. Mark; Klinman, Dennis M.; Tadesse-Heath, Lekidelu; Contursi, Christina; Epstein, Suzanne L.; Morse, Herbert C.

    1997-01-01

    Mice with a null mutation of the gene encoding interferon consensus sequence-binding protein (ICSBP) develop a chronic myelogenous leukemia-like syndrome and mount impaired responses to certain viral and bacterial infections. To gain a mechanistic understanding of the contributions of ICSBP to humoral and cellular immunity, we characterized the responses of control and ICSBP−/− mice to infection with influenza A (flu) and Leishmania major (L. major). Mice of both genotypes survived infections with flu, but differed markedly in the isotype distribution of antiflu antibodies. In sera of normal mice, immunoglobulin (Ig)G2a antibodies were dominant over IgG1 antibodies, a pattern indicative of a T helper cell type 1 (Th1)-driven response. In sera of ICSBP−/− mice, however, IgG1 antibodies dominated over IgG2a antibodies, a pattern indicative of a Th2-driven response. The dominance of IgG1 and IgE over IgG2a was detected in the sera of uninfected mice as well. A seeming Th2 bias of ICSBP-deficient mice was also uncovered in their inability to control infection with L. major, where resistance is known to be dependent on IL-12 and IFN-γ as components of a Th1 response. Infected ICSBP-deficient mice developed fulminant, disseminated leishmaniasis as a result of failure to mount a Th1-mediated curative response, although T cells remained capable of secreting IFN-γ and macrophages of producing nitric oxide. Compromised Th1 differentiation in ICSBP−/− mice could not be attributed to hyporesponsiveness of CD4+ T cells to interleukin (IL)-12; however, the ability of uninfected and infected ICSBP-deficient mice to produce IL-12 was markedly impaired. This indicates that ICSBP is a deciding factor in Th responses governing humoral and cellular immunity through its role in regulating IL-12 expression. PMID:9348311

  10. Interleukin-12 inhibits the hepatocellular carcinoma growth by inducing macrophage polarization to the M1-like phenotype through downregulation of Stat-3.

    PubMed

    Wang, Qin; Cheng, Feng; Ma, Ting-Ting; Xiong, Hai-Yu; Li, Zi-Wei; Xie, Chang-Li; Liu, Cui-Ying; Tu, Zhi-Guang

    2016-04-01

    Hepatocellular carcinoma is the third most common cause of cancer death worldwide. Novel early detection biomarkers and efficacious therapy strategies are needed. Macrophages recruited from circulation monocytes are the major component of solid cancer and play an important role in the carcinogenesis. Whether overexpression of L-12 in monocytes could induce the phenotype directional differentiation into tumoricidal M1 macrophages and inhibit HCC growth in tumor microenvironment was investigated in this study. For the establishment of the monocyte/IL-12 and polarization of M1-like macrophage, the IL-12 overexpressing recombinant monocyte/IL-12 cells were established by infecting with pAd5F35-CMV/IL-12 adenovirus and co-cultured with HCC SMMC-7721 and Hep3B cells. It was found that the phenotype of monocyte/IL-12 polarized to M1-like macrophages with CD197high IL-12high CD206low IL-10low, and decreased expression of TGF-β, VEGF-A, and MMP-9. In order to explore the mechanism underlying the macrophages polarization, we detected the Stat-3 pathway and its downstream transcription factor c-myc, and found that the p-Stat-3 and c-myc were down-regulated. To evaluate the effects of monocyte/IL-12 on inhibiting HCC growth, various assays including CCK8, flow cytometry, colony-forming and Transwell assays in vitro, and xenograft mouse models and immunohistochemical analyses in vivo were used to detect the HCC growth and relative markers. Treated with IL-12 overexpressing monocytes, the xenograft tumor growth was significantly inhibited in vivo. These results have proven that IL-12-overexpressed monocytes could directionally differentiate to M1-like macrophages through downregulation of Stat-3 and result in the inhibition of HCC growth. PMID:27003285

  11. Therapeutic Administration of KM+ Lectin Protects Mice Against Paracoccidioides brasiliensis Infection via Interleukin-12 Production in a Toll-Like Receptor 2-Dependent Mechanism

    PubMed Central

    Coltri, Kely C.; Oliveira, Leandro L.; Pinzan, Camila F.; Vendruscolo, Patrícia E.; Martinez, Roberto; Goldman, Maria Helena; Panunto-Castelo, Ademilson; Roque-Barreira, Maria-Cristina

    2008-01-01

    KM+ is a mannose-binding lectin from Artocarpus integrifolia that induces interleukin (IL)-12 production by macrophages and protective T helper 1 immune response against Leishmania major infection. In this study, we performed experiments to evaluate the therapeutic activity of jackfruit KM+ (jfKM+) and its recombinant counterpart (rKM+) in experimental paracoccidioidomycosis. To this end, jfKM+ or rKM+ was administered to BALB/c mice 10 days after infection with Paracoccidiodes brasiliensis. Thirty days postinfection, lungs from the KM+-treated mice contained significantly fewer colony-forming units and little to no organized granulomas compared to the controls. In addition, lung homogenates from the KM+-treated mice presented higher levels of nitric oxide, IL-12, interferon-γ, and tumor necrosis factor-α, whereas higher levels of IL-4 and IL-10 were detected in the control group. With mice deficient in IL-12, Toll-like receptor (TLR) 2, TLR4, or TLR adaptor molecule MyD88, we demonstrated that KM+ led to protection against P. brasiliensis infection through IL-12 production, which was dependent on TLR2. These results demonstrated a beneficial effect of KM+ on the severity of P. brasiliensis infection and may expand its potential use as a novel immunotherapeutic molecule. PMID:18599609

  12. Prostaglandin E2 is a potent regulator of interleukin-12- and interleukin-18-induced natural killer cell interferon-γ synthesis

    PubMed Central

    Walker, William; Rotondo, Dino

    2004-01-01

    Synthesis of interferon (IFN)-γ by natural killer (NK) cells is an important pro-inflammatory event with interleukin (IL)-12 and IL-18 playing major inductive roles. However, other temporal events are likely to regulate such processes and as prostaglandin E2 (PGE2) is ubiquitous during inflammation this study tested the hypothesis that PGE2 was capable of directly modulating cytokine-induced NK cell IFN-γ synthesis in the absence of other immune cells. Using homogenous NK cell lines to establish direct effects, PGE2 (0·1–1 µm) was found to suppress NK cell IFN-γ synthesis and antagonized the potent synergistic IFN-γ-inducing effects of IL-12 and IL-18. The actions of PGE2 were mimicked by synthetic PGE2 analogues including misoprostol and butaprost. The selective EP2 receptor agonist butaprost, but not the EP1/EP3 agonist sulprostone, suppressed IFN-γ synthesis and exclusively competed with PGE2 for receptor binding on NK cells. Further analysis showed that PGE2 did not modulate IL-12 receptor mRNA expression and the effects of PGE2 could be mimicked by the phosphodiesterase inhibitor 3-iosobutyl-1-methylxanthine. The absence of demonstrable receptor modulation coupled with the observed suppression of IFN-γ synthesis by both EP2 receptor-selective agonists and IBMX suggest that PGE2 acts directly on NK cells via EP2 receptors with its downstream effects on cAMP metabolism. This conclusion is further supported by findings that PGE2 and its analogues consistently elevated levels of cAMP in NK cells. The ability of PGE2 to antagonize the potent inductive signal provided by the combination of IL-12 and IL-18 supports the concept that PGE2 may play an important role in limiting innate inflammatory processes in vivo through direct suppression of NK cell IFN-γ synthesis. PMID:15009430

  13. Excited State Dynamics of 7-AZAINDOLE Homodimer in Frozen Nitrogen Matrix

    NASA Astrophysics Data System (ADS)

    Mukherjee, Moitrayee; Bandyopadhyay, Biman; Karmakar, Shreetama; Chakraborty, Tapas

    2011-06-01

    In a fluid medium (liquid or gas), the doubly hydrogen bonded dimer of 7-azaindole (7AI) undergoes tautomerization via simultaneous exchange of two H-atoms/protons between the two moieties upon UV excitation to lowest excited singlet state. The excited dimer emits exclusively visible fluorescence from tautomeric configuration, and no UV fluorescence is detected from the locally excited state. We show here for the first time that this generic excited state dynamics of 7AI dimer is totally altered if the species is synthesized and confined in frozen nitrogen at 8 K. The dimer has been found to emit only from the locally excited state, and the photophysical channel leading to excited state tautomerization is completely blocked. The formation of the centrosymmetric dimer in nitrogen matrix is ensured by recording the FTIR spectrum of the dimer before initiating the photophysical measurements. The details of our findings and interpretation of the measured data will be presented in the talk.

  14. Functional Importance of Covalent Homodimer of Reelin Protein Linked via Its Central Region*

    PubMed Central

    Yasui, Norihisa; Kitago, Yu; Beppu, Ayako; Kohno, Takao; Morishita, Shunsuke; Gomi, Hiroki; Nagae, Masamichi; Hattori, Mitsuharu; Takagi, Junichi

    2011-01-01

    Reelin is a 3461-residue secreted glycoprotein that plays a critical role in brain development through its action on target neurons. Although it is known that functional reelin protein exists as multimer formed by interchain disulfide bond(s) as well as through non-covalent interactions, the chemical nature of the multimer assembly has been elusive. In the present study, we identified, among 122 cysteines present in full-length reelin, the single critical cysteine residue (Cys2101) responsible for the covalent multimerization. C2101A mutant reelin failed to assemble into disulfide-bonded multimers, whereas it still exhibited non-covalently associated high molecular weight oligomeric states in solution. Detailed analysis of tryptic fragments produced from the purified reelin proteins revealed that the minimum unit of the multimer is a homodimeric reelin linked via Cys2101 present in the central region and that this cysteine does not connect to the N-terminal region of reelin, which had been postulated as the primary oligomerization domain. A surface plasmon resonance binding assay confirmed that C2101A mutant reelin retained binding capability toward two neuronal receptors apolipoprotein E receptor 2 and very low density lipoprotein receptor. However, it failed to show signaling activity in the assay using the cultured neurons. These results indicate that an intact higher order architecture of reelin multimer maintained by both Cys2101-mediated homodimerization and other non-covalent association present elsewhere in the reelin primary structure are essential for exerting its full biological activity. PMID:21844191

  15. The X-ray Structure of a BAK Homodimer Reveals an Inhibitory Zinc Binding Site

    SciTech Connect

    Modoveanu,T.; Liu, Q.; Tocilj, A.; Watson, M.; Shore, G.; Gehring, K.

    2006-01-01

    BAK/BAX-mediated mitochondrial outer-membrane permeabilization (MOMP) drives cell death during development and tissue homeostasis from zebrafish to humans. In most cancers, this pathway is inhibited by BCL-2 family antiapoptotic members, which bind and block the action of proapoptotic BCL proteins. We report the 1.5 {angstrom} crystal structure of calpain-proteolysed BAK, cBAK, to reveal a zinc binding site that regulates its activity via homodimerization. cBAK contains an occluded BH3 peptide binding pocket that binds a BID BH3 peptide only weakly . Nonetheless, cBAK requires activation by truncated BID to induce cytochrome c release in mitochondria isolated from bak/bax double-knockout mouse embryonic fibroblasts. The BAK-mediated MOMP is inhibited by low micromolar zinc levels. This inhibition is alleviated by mutation of the zinc-coordination site in BAK. Our results link directly the antiapoptotic effects of zinc to BAK.

  16. Synthesis and Evaluation of Chloramphenicol Homodimers: Molecular Target, Antimicrobial Activity, and Toxicity against Human Cells

    PubMed Central

    Kostopoulou, Ourania N.; Magoulas, George E.; Papadopoulos, Georgios E.; Mouzaki, Athanasia; Dinos, George P.; Papaioannou, Dionissios; Kalpaxis, Dimitrios L.

    2015-01-01

    As fight against antibiotic resistance must be strengthened, improving old drugs that have fallen in reduced clinical use because of toxic side effects and/or frequently reported resistance, like chloramphenicol (CAM), is of special interest. Chloramphenicol (CAM), a prototypical wide-spectrum antibiotic has been shown to obstruct protein synthesis via binding to the bacterial ribosome. In this study we sought to identify features intensifying the bacteriostatic action of CAM. Accordingly, we synthesized a series of CAM-dimers with various linker lengths and functionalities and compared their efficiency in inhibiting peptide-bond formation in an Escherichia coli cell-free system. Several CAM-dimers exhibited higher activity, when compared to CAM. The most potent of them, compound 5, containing two CAM bases conjugated via a dicarboxyl aromatic linker of six successive carbon-bonds, was found to simultaneously bind both the ribosomal catalytic center and the exit-tunnel, thus revealing a second, kinetically cryptic binding site for CAM. Compared to CAM, compound 5 exhibited comparable antibacterial activity against MRSA or wild-type strains of Staphylococcus aureus, Enterococcus faecium and E. coli, but intriguingly superior activity against some CAM-resistant E. coli and Pseudomonas aeruginosa strains. Furthermore, it was almost twice as active in inhibiting the growth of T-leukemic cells, without affecting the viability of normal human lymphocytes. The observed effects were rationalized by footprinting tests, crosslinking analysis, and MD-simulations. PMID:26267355

  17. Ustekinumab in Crohn’s disease: evidence to date and place in therapy

    PubMed Central

    Engel, Tal; Kopylov, Uri

    2016-01-01

    Crohn’s disease (CD) is an inflammatory bowel disease (IBD) with uncertain etiology. Biologic agents have revolutionized the treatment of CD but nonresponders remain a challenge. Ustekinumab is an interleukin 12/23p40 inhibitor that was recently found effective in treating CD. We reviewed the current literature regarding the efficacy of ustekinumab in treating CD and concluded that ustekinumab is a novel, promising and relatively safe agent for the treatment of moderate to severe CD. Additional data from randomized controlled studies and real-life cohorts are pending. PMID:27433311

  18. Effect of a recombinant lectin, Viscum album agglutinin on the secretion of interleukin-12 in cultured human peripheral blood mononuclear cells and on NK-cell-mediated cytotoxicity of rat splenocytes in vitro and in vivo.

    PubMed

    Hajto, T; Hostanska, K; Weber, K; Zinke, H; Fischer, J; Mengs, U; Lentzen, H; Saller, R

    1998-01-01

    A plant lectin, Viscum album agglutinin-I (VAA-I) has been shown to increase the number and cytotoxic activity of natural killer (NK) cells in animal models, but the mechanisms underlying these effects are poorly understood. We investigated the effects of the recombinant form of this lectin (rVAA) on secretion of interleukin (IL)-12 and on NK-mediated cytotoxicity against K562 target cells in cultures of human peripheral blood mononuclear cells (PBMC) as well as against YAC-1 target cells in cultured rat spleen cells. In 24-hour cultures of PBMC, 10 ng/ml plant VAA-I and 50 ng/ml rVAA induced significant increases in the secretion of total IL-12. Its biologically active heterodimeric form, p70, was also significantly induced by rVAA. Preincubation of PBMC or splenocytes for 48 h with rVAA in concentrations ranging between 10 pg/ml and 100 pg/ml resulted in moderate enhancements of NK-mediated cytotoxicity. However, coincubation of a low dose of rVAA (100 pg/ml) together with IL-2 and IL-12 (60 U/ml and 2 U/ml, respectively) led to additive stimulation of NK activity. In in vivo experiments, rVAA showed an enhancing effect on NK activity with a bell-shaped curve of efficacy. Forty-eight hours after a single intravenous injection of its most effective doses, 0.5 and 1 ng/kg, into Wistar rats, the NK cytotoxicity of splenocytes against YAC-1 targets doubled, and the frequency of large granular lymphocytes in peripheral blood showed 2.1- and 3-fold increases as compared to control animals. Twenty-four hours following these low lectin doses, the number of large granular lymphocytes was also significantly elevated. After 48 h, 0.5 ng/kg rVAA induced a significant augmentation in the percentage of peripheral Mac-1+ mononuclear cells, including activated monocytes and NK cells. The present results suggest that rVAA augments the secretion of an active form of IL-12 and potentiates the cytokine-induced NK activation. These effects of rVAA may be related to its stimulatory effects on MHC-unrestricted cytotoxicity in vivo. PMID:9789123

  19. Molecular and immunological characterisation of recombinant Brucella abortus glyceraldehyde-3-phosphate-dehydrogenase, a T- and B-cell reactive protein that induces partial protection when co-administered with an interleukin-12-expressing plasmid in a DNA vaccine formulation.

    PubMed

    Rosinha, Gracia M S; Myioshi, Anderson; Azevedo, Vasco; Splitter, Gary A; Oliveira, Sergio C

    2002-08-01

    To identify antigens of Brucella spp. that are potentially involved in stimulating a protective T-cell-mediated immune response, previous studies identified 10 clones from a Brucella abortus 2308 genomic library with primed lymphocytes as probes. One selected positive clone (182) contained an insert of 1.2 kb which was identified, sequenced and characterised. The deduced amino acid sequence of the open reading frame (ORF) revealed 82% and 81% identity to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) enzymes from Agrobacterium tumefaciens and Xanthobacter flavus, respectively. Southern blot analysis demonstrated that the gap gene is present in only one copy in the Brucella genome. B. abortus GAPDH was then expressed in Escherichia coli as a fusion protein with the maltose-binding protein (MBP). To demonstrate the functional activity of Brucella GAPDH, E. coli gap mutants were transformed with a Brucella pMAL-gap construct. Genetic complementation was achieved and as a result E. coli mutants were able to grow on glucose or other carbon source medium. The humoral and cellular immune responses to the recombinant (r) GAPDH were characterised. In Western blots, sera from naturally infected cattle and sheep showed antibody reactivity against rGAPDH. In response to in-vitro stimulation by rGAPDH, splenocytes from mice vaccinated with rGAPDH or B. abortus S19 were able to produce gamma-interferon and tumour necrosis factor-a but not interleukin (IL)-4. Furthermore, gap associated with murine IL-12 gene in a DNA vaccine formulation partially protected mice against experimental infection. PMID:12171297

  20. Selected commensal-related bacteria and Toll-like receptor 3 agonist combinatorial codes synergistically induce interleukin-12 production by dendritic cells to trigger a T helper type 1 polarizing programme

    PubMed Central

    Baba, Nobuyasu; Samson, Sandrine; Bourdet-Sicard, Raphaëlle; Rubio, Manuel; Sarfati, Marika

    2009-01-01

    Enteric infections remain a major health problem causing millions of deaths in developing countries. The interplay among the host intestinal epithelium, the mucosa-associated immune system and microbiota performs an essential role in gut homeostasis and protection against infectious diseases. Dendritic cells (DCs) play a key role in orchestrating protective immunity and tolerance in the gut. The mechanisms by which DCs adapt their responses and discriminate between virulent microbes and trillions of innocuous bacteria remain ill-defined. Here we investigated the effect of cross-talk between commensal-related bacteria (CB) and Toll-like receptor (TLR) agonists on DC activation and the outcome of the in vitro T helper response. Human monocyte-derived DCs were exposed to eight different Gram-positive or Gram-negative CB strains prior to activation with five different TLR agonists. The key polarizing cytokines interleukin (IL)-12p70, IL-10, IL-1β and IL-6 were quantified and the fate of naïve T-cell differentiation was evaluated. We identified a unique combination of Lactobacillus casei and TLR3 signals that acted in synergy to selectively increase IL-12p70 secretion. Exposure to poly(I:C) converted L. casei-treated DCs into potent promoters of T helper type 1 (Th1) responses. We propose that DCs can integrate harmless and dangerous non-self signals delivered by viral products, to mount robust Th1 responses. Thus, in vivo DC targeting with selective probiotics may improve strategies for the management of enteric diseases. PMID:19740313

  1. Regulation of Signal Transducer and Activator of Transcription and Suppressor of Cytokine-Signaling Gene Expression in the Brain of Mice with Astrocyte-Targeted Production of Interleukin-12 or Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Maier, Joachim; Kincaid, Carrie; Pagenstecher, Axel; Campbell, Iain L.

    2002-01-01

    Interleukin (IL)-12 and interferon (IFN)-γ are implicated in the pathogenesis of immune disorders of the central nervous system (CNS). To define the basis for the actions of these cytokines in the CNS, we examined the temporal and spatial regulation of key signal transducers and activators of transcription (STATs) and suppressors of cytokine signaling (SOCS) in the brain of transgenic mice with astrocyte production of IL-12 or in mice with experimental autoimmune encephalomyelitis (EAE). In healthy mice, with the exception of STAT4 and STAT6, the expression of a number of STAT and SOCS genes was detectable. However, in symptomatic transgenic mice and in EAE significant up-regulation of STAT1, STAT2, STAT3, STAT4, IRF9, and SOCS1 and SOCS3 RNA transcripts was observed. Although the increased expression of STAT1 RNA was widely distributed and included neurons, astrocytes, and microglia, STAT4 and STAT3 and SOCS1 and SOCS3 RNA was primarily restricted to the infiltrating mononuclear cell population. The level and location of the STAT1, STAT3, and STAT4 proteins overlapped with their corresponding RNA and additionally showed nuclear localization indicative of activation of these molecules. Thus, in both the glial fibrillary acidic protein-IL-12 mice and in EAE the CNS expression of key STAT and SOCS genes that regulate IL-12 (STAT4) and IFN-γ (STAT1, SOCS1, and SOCS3) receptor signaling is highly regulated and compartmentalized. We conclude the interaction between these positive and negative signaling circuits and their distinct cellular locations likely play a defining role in coordinating the actions of IL-12 and IFN-γ during the pathogenesis of type 1 immune responses in the CNS. PMID:11786421

  2. Neospora caninum surface antigen (p40) is a potential diagnostic marker for cattle neosporosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neospora caninum is an intracellular protozoan that infects domestic and wild canids as well as many warm-blooded animals as shown by the isolation of viable parasites. The effectiveness of diagnostic tests for detecting specific antibodies against N. caninum is hampered by potential cross-reaction ...

  3. Antibodies in the Treatment of Psoriasis: IL-12/23 p40 and IL-17a.

    PubMed

    Leonardi, Craig L

    2016-06-01

    The anti-tumor necrosis factor (TNF)-α agents represent the second generation of psoriasis therapy. Research has produced a third generation of biologic treatments, some of which offer greater efficacy than the TNF-α inhibitors. This article reviews the data documenting the efficacy and safety of three types of biologics. PMID:27551698

  4. Altered Dendritic Cell Phenotype in Response to Leishmania amazonensis Amastigote Infection Is Mediated by MAP Kinase, ERK

    PubMed Central

    Boggiatto, Paola Mercedes; Jie, Fei; Ghosh, Mousumi; Gibson-Corley, Katherine Nicole; Ramer-Tait, Amanda Ellen; Jones, Douglas Elliot; Petersen, Christine Anne

    2009-01-01

    Initiation of productive immune responses against Leishmania depends on the successful transition of dendritic cells (DC) from an immature to a mature phenotype. This process is characterized by high CD40 surface expression as well as interleukin-12 production, which are frequently seen in response to L. major infection. In vivo footpad infection of C3HeB/FeJ mice for 7 days with L. amazonensis promoted an immature CD11c+ DC phenotype characterized by both significantly low CD40 surface expression and significantly decreased interleukin-12p40 production compared with L. major infection of these same mice. In vitro infection of bone marrow-derived dendritic cells with L. amazonensis amastigotes resulted in rapid and significant phosphorylation of the mitogen activated protein kinase, extracellular signal-regulated kinase 1/2, observed within minutes of exposure to the parasite. Infection with L. amazonensis promastigotes led to increased 1/2 phosphorylation after 4 hours of infection compared with L. major infection, which correlated with promastigote transformation into amastigotes. Treatment of bone marrow-derived dendritic cells with a mitogen activated protein kinase kinase-specific inhibitor, PD98059, led to regained surface CD40 expression and interleukin-12p40 production following L. amazonensis amastigote infection compared with non-treated, infected DC. Treatment of L. amazonensis-infected mice with the highly-specific mitogen activated protein kinase kinase inhibitor, CI-1040, enhanced surface CD40 expression on CD11c+ DC obtained from the draining lymph node. L. amazonensis amastigotes, through activation of extracellular signal-regulated kinase 1/2, inhibit the ability of DC to undergo proper maturation both in vitro and in vivo. PMID:19349356

  5. Regulation of the PI3K pathway through a p85α monomer–homodimer equilibrium | Office of Cancer Genomics

    Cancer.gov

    The canonical action of the p85α regulatory subunit of phosphatidylinositol 3-kinase (PI3K) is to associate with the p110α catalytic subunit to allow stimuli-dependent activation of the PI3K pathway. We elucidate a p110α-independent role of homodimerized p85α in the positive regulation of PTEN stability and activity. p110α-free p85α homodimerizes via two intermolecular interactions (SH3:proline-rich region and BH:BH) to selectively bind unphosphorylated activated PTEN.

  6. Mis-translation of a Computationally Designed Protein Yields an Exceptionally Stable Homodimer: Implications for Protein Engineering and Evolution.

    SciTech Connect

    Dantas, Gautam; Watters, Alexander L.; Lunde, Bradley; Eletr, Ziad; Isern, Nancy G.; Roseman, Toby; Lipfert, Jan; Doniach, Sebastian; Tompa, Martin; Kuhlman, Brian; Stoddard, Barry L.; Varani, Gabriele; Baker, David

    2006-10-06

    We recently used computational protein design to create an extremely stable, globular protein, Top7, with a sequence and fold not observed previously in nature. Since Top7 was created in the absence of genetic selection, it provides a rare opportunity to investigate aspects of the cellular protein production and surveillance machinery that are subject to natural selection. Here we show that a portion of the Top7 protein corresponding to the final 49 C-terminal residues is efficiently mistranslated and accumulates at high levels in E. coli. We used circular dichroism spectroscopy, size-exclusion chromatography, small-angle x-ray scattering, analytical ultra-centrifugation, and NMR spectroscopy to show that the resulting CFr protein adopts a compact, extremely-stable, obligate, symmetric, homo-dimeric structure. Based on the solution structure, we engineered an even more stable variant of CFr by disulfide-induced covalent circularisation that should be an excellent platform for design of novel functions. The accumulation of high levels of CFr exposes the high error rate of the protein translation machinery, and the rarity of correspondingly stable fragments in natural proteins implies a stringent evolutionary pressure against protein sub-fragments that can independently fold into stable structures. The symmetric self-association between two identical mistranslated CFr sub-units to generate an extremely stable structure parallels a mechanism for natural protein-fold evolution by modular recombination of stable protein sub-structures.

  7. PKA RIα Homodimer Structure Reveals an Intermolecular Interface with Implications for Cooperative cAMP Binding and Carney Complex Disease

    PubMed Central

    Bruystens, Jessica G.H.; Wu, Jian; Fortezzo, Audrey; Kornev, Alexandr P.; Blumenthal, Donald K.; Taylor, Susan S.

    2014-01-01

    Summary The regulatory (R) subunit is the cAMP receptor of protein kinase A. Following cAMP binding, the inactive PKA holoenzyme complex separates into two active catalytic (C) subunits and a cAMP-bound R dimer. Thus far, only monomeric R structures have been solved, which fell short in explaining differences of cAMP binding for the full-length protein as compared to the truncated R subunits. Here we solved a full-length R-dimer structure that reflects the biologically relevant conformation, and this structure agrees well with small angle X-ray scattering. An isoform-specific interface is revealed between the protomers. This interface acts as an intermolecular sensor for cAMP and explains the cooperative character of cAMP binding to the RIα dimer. Mutagenesis of residues on this interface not only leads to structural and biochemical changes, but is also linked to Carney complex disease. PMID:24316401

  8. Turning a Negative into a Positive: Conversion of a Homodimer into a Heterodimer Using Negative State Repertoires.

    PubMed

    Davey, James A; Chica, Roberto A

    2016-04-01

    In this issue of Structure, Leaver-Fay et al. (2016) engineer bispecific antibodies using multistate computational protein design with negative state repertoires. In combination with additional mutations selected rationally, they produced antibodies that assembled as heterodimers with up to 93% purity. PMID:27050684

  9. Crystal structure of a carbohydrate induced homodimer of phospholipase A2 from Bungarus caeruleus at 2.1A resolution.

    PubMed

    Singh, Garima; Gourinath, S; Sarvanan, K; Sharma, Sujata; Bhanumathi, S; Betzel, Ch; Yadav, Savita; Srinivasan, A; Singh, T P

    2005-03-01

    This is the first crystal structure of a carbohydrate induced dimer of phospholipase A(2) (PLA(2)). This is an endogenous complex formed between two PLA(2) molecules and two mannoses. It was isolated from Krait venom (Bungarus caeruleus) and crystallized as such. The complete amino acid sequence of PLA(2) was determined using cDNA method. Three-dimensional structure of the complex has been solved with molecular replacement method and refined to a final R-factor of 0.192 for all the data in the resolution range 20.0-2.1A. The presence of mannose molecules in the protein crystals was confirmed using dinitrosalicylic acid test and the molecular weight of the dimer was verified with MALDI-TOF. As indicated by dynamic light scattering and analytical ultracentrifugation the dimer was also stable in solution. The good quality non-protein electron density at the interface of two PLA(2) molecules enabled us to model two mannoses. The mannoses are involved extensively in interactions with protein atoms of both PLA(2) molecules. Some of the critical amino acid residues such as Asp 49 and Tyr 31, which are part of the substrate-binding site, are found facing the interface and interacting with mannoses. The structure of the complex clearly shows that the dimerization is caused by mannoses and it results in the loss of enzymatic activity. PMID:15721580

  10. N15 Cro And Gamma Cro Orthologous DNA-Binding Domains With Completely Different But Equally Effective Homodimer Interfaces

    SciTech Connect

    Dubrava, M.S.; Ingram, W.M.; Roberts, S.A.; Weichsel, A.; Montfort, W.R.; Cordes, M.H.J.

    2009-05-18

    Bacteriophage Cro proteins bind to target DNA as dimers but do not all dimerize with equal strength, and differ in fold in the region of the dimer interface. We report the structure of the Cro protein from Enterobacteria phage N15 at 1.05 {angstrom} resolution. The subunit fold contains five alpha-helices and is closely similar to the structure of P22 Cro (1.3 {angstrom} backbone room mean square difference over 52 residues), but quite different from that of lambda Cro, a structurally diverged member of this family with a mixed alpha-helix/beta-sheet fold. N15 Cro crystallizes as a biological dimer with an extensive interface (1303 {angstrom}{sub 2} change in accessible surface area per dimer) and also dimerizes in solution with a K(d) of 5.1 {+-} 1.5 {micro}M. Its dimerization is much stronger than that of its structural homolog P22 Cro, which does not self-associate detectably in solution. Instead, the level of self-association and interfacial area for N15 Cro is similar to that of lambda Cro, even though these two orthologs do not share the same fold and have dimer interfaces that are qualitatively different in structure. The common Cro ancestor is thought to be an all-helical monomer similar to P22 Cro. We propose that two Cro descendants independently developed stronger dimerization by entirely different mechanisms.

  11. Binding of nitrogen-containing bisphosphonates (N-BPs) to the Trypanosoma cruzi farnesyl diphosphate synthase homodimer

    SciTech Connect

    Huang, Chuan-Hsiang; Gabelli, Sandra B.; Oldfield, Eric; Amzel, L. Mario

    2010-11-15

    Bisphosphonates (BPs) are a class of compounds that have been used extensively in the treatment of osteoporosis and malignancy-related hypercalcemia. Some of these compounds act through inhibition of farnesyl diphosphate synthase (FPPS), a key enzyme in the synthesis of isoprenoids. Recently, nitrogen-containing bisphosphonates (N-BPs) used in bone resorption therapy have been shown to be active against Trypanosoma cruzi, the parasite that causes American trypanosomiasis (Chagas disease), suggesting that they may be used as anti-trypanosomal agents. The crystal structures of TcFPPS in complex with substrate (isopentenyl diphosphate, IPP) and five N-BP inhibitors show that the C-1 hydroxyl and the nitrogen-containing groups of the inhibitors alter the binding of IPP and the conformation of two TcFPPS residues, Tyr94 and Gln167. Isothermal titration calorimetry experiments suggest that binding of the first N-BPs to the homodimeric TcFPPS changes the binding properties of the second site. This mechanism of binding of N-BPs to TcFPPS is different to that reported for the binding of the same compounds to human FPPS.

  12. SU-E-P-40: Dosimetric Characteristics of Field Aperture Margin Design in Stereotactic Body Radiation Therapy (SBRT)

    SciTech Connect

    Zhu, J

    2015-06-15

    Purpose: To characterize the dosimetric effects of field aperture margin design in Stereotactic Body Radiation Therapy (SBRT). Methods: Three artificial spherical PTVs, with diameter of 10mm, 20mm and 30mm, were created on CT images of a human body thoracic phantom. Seven non-coplanar isocentric fields were used for treatment planning. For each PTV, treatment plans with margins 0mm, 1mm, 2mm and 3mm were planned. Dosimetric comparison among plans was done considering the following parameters: prescribed isodose line for target coverage, maximum dose, mean dose as well as dose spillages of V80, V50, and V20. Results: Corresponding to aperture margins of 0mm, 1mm,2m and 3mm used in the treatment planning, the percentage of isodose line chosen for dose prescription increases from 65% to 93% for 10mm PTV, 70% to 92% for 20mm PTV, and 75% to 92% for 30mm PTV. The maximum dose decrease accordingly from 155.7% to 109.5% for 10mm PTV, 145% to 111.6% for 20mm PTV, 137% to 112.2% for 30mm PTV. The mean dose decrease from 138.% to 104.4% for 10mm PTV, 122.8% to 106.1% for 20mm PTV, 121.3% to 106% for 30mm PTV. Dose spillages (mm3) increase (V80−2.6 to 4.02, V50−4.55 to 9.3, V20–87.86 to 101.71) for 10 mm PTV, (V80−6.78 to 9.89, V50–13.46 to 20.4, V20-119.16 to 219.1) for 20 mm PTV, (V80–22.01 to 28.59, V50–41.56 to 52.66, V20-532.71 to 551.84) for 30 mm PTV. Conclusion: In SBRT treatment planning, tight field aperture margin requires prescribing dose to lower isodose line that leading to higher dose inhomogeneity and higher mean dose to PTV. Loose margin allows prescribing dose to higher isodose line, therefore improves the dose homogeneity. However, it increases dose spillages. Clinician could try different margins according to the PTV size and location of surrounding critical organs to optimize the dose delivered to the patient.

  13. Role of Mannoprotein in Induction and Regulation of Immunity to Cryptococcus neoformans

    PubMed Central

    Pietrella, Donatella; Cherniak, Robert; Strappini, Carla; Perito, Stefano; Mosci, Paolo; Bistoni, Francesco; Vecchiarelli, Anna

    2001-01-01

    Our previous observations showed that mannoprotein (MP) induces early and massive production of interleukin-12 (IL-12) in vitro. This study was designed to investigate whether this phenomenon could be applied in vivo and to determine the biological significance of MP in Cryptococcus neoformans infection. The results reported here show that MP treatment induces IL-12 secretion by splenic macrophages and IL-12 p40 mRNA in the brain. During C. neoformans infection, MP reinforced IL-12 and IFN-γ secretion that coincided with enhanced antifungal activity of natural effector cells, early resolution of the inflammatory process, and clearance of fungal load from the brain. These studies show that MP is a key inflammatory mediator that induces a protective immune response against C. neoformans infection. This information can be used to facilitate the design of a rational approach to manipulate the immune response to C. neoformans. PMID:11292692

  14. Inhibitory effect of ginsenosides from steamed ginseng-leaves and flowers on the LPS-stimulated IL-12 production in bone marrow-derived dendritic cells.

    PubMed

    Tung, Nguyen Huu; Quang, Tran Hong; Son, Jeong-Hyun; Koo, Jung-Eun; Hong, Hye-Jin; Koh, Young-Sang; Song, Gyu Yong; Kim, Young Ho

    2011-04-01

    Interleukin-12, a heterodimeric cytokine comprising p40 and p35 subunits, plays an essential role in the regulating the differentiation of Th cells, which establish and maximize the capabilities of the immune system. The aim of present study is to screen the effect of 21 ginsenosides from steamed ginseng-leaves and flowers on IL-12 production in bone marrow-derived dendritic cells induced by lipopolysaccharide. Noticeably, ginsenoside Rg(6) (12) and ginsenoside F(4) (13) exhibited particularly inhibitory effect on LPS-induced IL-12 production with the inhibition values of 80 and 82%; and ginsenoside ST(1) (4), ginsenoside SL(2) (8), ginsenoside SL(3) (9), ginsenoside Rh(3) (14), ginsenoside Rk(2) (15), and ginsenoside Rs(4) (18) showed moderate effects with inhibition rates of 63, 65, 67, 68, 71, 73, and 67%, respectively. These results warrant further studies concerning potential of saponin extracts of steamed ginseng-leaves and flowers for medicinal uses. PMID:21544734

  15. Infectious Dose Dictates the Host Response during Staphylococcus aureus Orthopedic-Implant Biofilm Infection.

    PubMed

    Vidlak, Debbie; Kielian, Tammy

    2016-07-01

    Staphylococcus aureus is a leading cause of prosthetic joint infections (PJIs) that are typified by biofilm formation. Given the diversity of S. aureus strains and their propensity to cause community- or hospital-acquired infections, we investigated whether the immune response and biofilm growth during PJI were conserved among distinct S. aureus clinical isolates. Three S. aureus strains representing USA200 (UAMS-1), USA300 (LAC), and USA400 (MW2) lineages were equally effective at biofilm formation in a mouse model of PJI and elicited similar leukocyte infiltrates and cytokine/chemokine profiles. Another factor that may influence the course of PJI is infectious dose. In particular, higher bacterial inocula could accelerate biofilm formation and alter the immune response, making it difficult to discern underlying pathophysiological mechanisms. To address this issue, we compared the effects of two bacterial doses (10(3) or 10(5) CFU) on inflammatory responses in interleukin-12p40 (IL-12p40) knockout mice that were previously shown to have reduced myeloid-derived suppressor cell recruitment concomitant with bacterial clearance after low-dose challenge (10(3) CFU). Increasing the infectious dose of LAC to 10(5) CFU negated these differences in IL-12p40 knockout animals, demonstrating the importance of bacterial inoculum on infection outcome. Collectively, these observations highlight the importance of considering infectious dose when assessing immune responsiveness, whereas biofilm formation during PJI is conserved among clinical isolates commonly used in mouse S. aureus infection models. PMID:27091926

  16. CDK-activating kinase (Ee;CDKF;1) of leafy spurge (Euphorbia esula) forms both homo-dimers and homo-trimers in its native state

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leafy spurge is a deep rooted perennial weed that propagates both by seeds and underground adventitious buds located on the crown and roots (crown and root buds). As buds develop during the normal growing season, they are maintained in a quiescent state through correlative inhibition. To enhance our...

  17. Identification of Specific Transmembrane Residues and Ligand-Induced Interface Changes Involved In Homo-Dimer Formation of A Yeast G Protein-Coupled Receptor

    PubMed Central

    Kim, Heejung; Lee, Byung-Kwon; Naider, Fred; Becker, Jeffrey M.

    2009-01-01

    The S. cerevisiae α-factor pheromone receptor, Ste2p, has been studied as a model for G protein-coupled receptor (GPCR) structure and function. Dimerization has been demonstrated for many GPCRs, although the role(s) of dimerization in receptor function is disputed. Transmembrane domains one (TM1) and four (TM4) of Ste2p were shown previously to play a role in dimerization. In this study, single cysteine substitutions were introduced into a Cys-less Ste2p, and disulfide-mediated dimerization was assessed. Six residues in TM1 (L64 to M69) that had not been previously investigated and nineteen residues in TM7 (T278 to A296) of which fifteen were not previously investigated were mutated to create 25 single Cys-containing Ste2p molecules. Ste2p mutants V68C in TM1 and nine mutants in TM7 (cysteine substituted into residues 278, 285, 289, and 291 to 296) showed increased dimerization upon addition of an oxidizing agent in comparison to the background dimers formed by the Cys-less receptor. The formation of dimers was decreased for TM7 mutant receptors in the presence of α-factor indicating that ligand binding resulted in a conformational change that influenced dimerization. The effect of ligand on dimer formation suggests that dimers are formed in the resting state and the activated state of the receptor by different TM interactions. PMID:19839649

  18. Alternatively Spliced EDA Domain of Fibronectin Is a Target for Pharmacodelivery Applications in Inflammatory Bowel Disease.

    PubMed

    Bootz, Franziska; Schmid, Anja Sophie; Neri, Dario

    2015-08-01

    The antibody-based pharmacodelivery of cytokines to sites of disease has been extensively studied for various indications but not for the treatment of inflammatory bowel diseases. Here, we report that the alternatively spliced EDA domain of fibronectin, a marker of angiogenesis and of tissue remodeling, is expressed in the dextran sodium sulfate mouse model of colitis and in patients with inflammatory bowel conditions, while being virtually undetectable in most normal adult tissues. Radiolabeled preparations of the F8 antibody, specific to the EDA domain of fibronectin, were shown to selectively localize to sites of inflammation in mice with colitis, as revealed by autoradiographic analysis. Fusion proteins of the F8 antibody with various murine payloads (interleukin-4, the p40 subunit of interleukin-12, interleukin-13) were administered to mice with colitis. IL12p40-F8 mediated an anti-inflammatory activity, which was comparable with the one of cyclosporine, whereas F8-IL4 did not inhibit colitis and F8-IL13 worsened the inflammatory conditions. PMID:25993691

  19. Novel Cell Preservation Technique to Extend Bovine In Vitro White Blood Cell Viability

    PubMed Central

    Laurin, Emilie L.; McKenna, Shawn L. B.; Sanchez, Javier; Bach, Horacio; Rodriguez-Lecompte, Juan Carlos; Chaffer, Marcelo; Keefe, Greg P.

    2015-01-01

    Although cell-mediated immunity based diagnostics can be integral assays for early detection of various diseases of dairy cows, processing of blood samples for these tests is time-sensitive, often within 24 hours of collection, to maintain white blood cell viability. Therefore, to improve utility and practicality of such assays, the objective of this study was to assess the use of a novel white blood cell preservation technology in whole bovine blood. Blood samples from ten healthy cows were each divided into an unpreserved control sample and a test sample preserved with commercially-available cell transport medium. Samples were maintained at room temperature and stimulated with the mitogens pokeweed and concanavalinA, as well as with interleukin-12 p40. Stimulation was completed on days 1, 5, and 8 post-sampling. Viability of white blood cells was assessed through interferon gamma production determined with a commercial enzyme linked immunosorbent assay. In addition, mononuclear cell viability was assessed with propidium iodide flow cytometry. Greater interferon gamma production was observed on days 5 and 8 post-collection in preserved samples, with both pokeweed and concanavalinA stimulating positive interferon gamma production on day 5 post-collection. A greater proportion of the amount of interferon gamma produced on day 1 continued to be produced on days 5 and 8 post-collection with concanavalinA stimulation (with or without interleukin 12) as compared to pokeweed stimulation. Additionally, viable mononuclear cells were still present at eight days post-collection, with a higher mean proportion detected at days 5 and 8 in all stimulated preserved samples. This practical and simple method to extend in vitro white blood cell viability could benefit the efficient utilization of cell-based blood tests in ruminants. PMID:26447691

  20. Oxazolone-Induced Contact Hypersensitivity Reduces Lymphatic Drainage but Enhances the Induction of Adaptive Immunity

    PubMed Central

    Aebischer, David; Willrodt, Ann-Helen; Halin, Cornelia

    2014-01-01

    Contact hypersensitivity (CHS) induced by topical application of haptens is a commonly used model to study dermal inflammatory responses in mice. Several recent studies have indicated that CHS-induced skin inflammation triggers lymphangiogenesis but may negatively impact the immune-function of lymphatic vessels, namely fluid drainage and dendritic cell (DC) migration to draining lymph nodes (dLNs). On the other hand, haptens have been shown to exert immune-stimulatory activity by inducing DC maturation. In this study we investigated how the presence of pre-established CHS-induced skin inflammation affects the induction of adaptive immunity in dLNs. Using a mouse model of oxazolone-induced skin inflammation we observed that lymphatic drainage was reduced and DC migration from skin to dLNs was partially compromised. At the same time, a significantly stronger adaptive immune response towards ovalbumin (OVA) was induced when immunization had occurred in CHS-inflamed skin as compared to uninflamed control skin. In fact, immunization with sterile OVA in CHS-inflamed skin evoked a delayed-type hypersensitivity (DTH) response comparable to the one induced by conventional immunization with OVA and adjuvant in uninflamed skin. Striking phenotypic and functional differences were observed when comparing DCs from LNs draining uninflamed or CHS-inflamed skin. DCs from LNs draining CHS-inflamed skin expressed higher levels of co-stimulatory molecules and MHC molecules, produced higher levels of the interleukin-12/23 p40 subunit (IL-12/23-p40) and more potently induced T cell activation in vitro. Immunization experiments revealed that blockade of IL-12/23-p40 during the priming phase partially reverted the CHS-induced enhancement of the adaptive immune response. Collectively, our findings indicate that CHS-induced skin inflammation generates an overall immune-stimulatory milieu, which outweighs the potentially suppressive effect of reduced lymphatic vessel function. PMID:24911791

  1. Leishmania major Phosphoglycans Influence the Host Early Immune Response by Modulating Dendritic Cell Functions▿

    PubMed Central

    Liu, Dong; Kebaier, Chahnaz; Pakpour, Nazzy; Capul, Althea A.; Beverley, Stephen M.; Scott, Phillip; Uzonna, Jude E.

    2009-01-01

    The precise role of Leishmania glycoconjugate molecules including phosphoglycans (PGs) and lipophosphoglycan (LPG) on host cellular responses is still poorly defined. Here, we investigated the interaction of Leishmania major LPG2 null mutant (lpg2−), which lacks both PGs and LPG, with dendritic cells (DCs) and the subsequent early immune response in infected mice. Surprisingly, the absence of phosphoglycans did not influence expression pattern of major histocompatibility complex class II (MHC II), CD40, CD80, and CD86 on DCs in vitro and in vivo. However, lpg2− L. major induced significantly higher production of interleukin-12p40 (IL-12p40) by infected bone marrow-derived DCs (BMDCs) than wild-type (WT) parasites in vitro. Furthermore, the production of IL-12p40 by draining lymph node cells from lpg2− mutant-infected mice was higher than those from WT L. major-infected mice. In model antigen presentation experiments, DCs from lpg2− mutant-infected mice induced more gamma interferon (IFN-γ) and IL-2 production by Leishmania-specific T cells than those from WT-infected mice. Lymphocytes isolated from mice infected for 3 days with lpg2− parasites produce similar levels of IFN-γ, but significantly less IL-4 and IL-10 than WT controls. Decreased IL-4 production was also seen in another general PG-deficient mutant lacking the Golgi UDP-galactose transporters (lpg5A− lpg5B−), but not with the lpg1− mutant lacking only LPG, thereby implicating PGs generally in the reduction of IL-4 production. Thus, Leishmania PGs influence host early immune response by modulating DC functions in a way that inhibits antigen presentation and promotes early IL-4 response, and their absence may impact the balance between Th1 and Th2 responses. PMID:19487470

  2. Oligomer size of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor revealed by fluorescence correlation spectroscopy with photon counting histogram analysis: evidence for homodimers without monomers or tetramers.

    PubMed

    Herrick-Davis, Katharine; Grinde, Ellinor; Lindsley, Tara; Cowan, Ann; Mazurkiewicz, Joseph E

    2012-07-01

    Fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) are techniques with single molecule sensitivity that are well suited for examining the biophysical properties of protein complexes in living cells. In the present study, FCS and PCH were applied to determine the diffusion coefficient and oligomeric size of G-protein-coupled receptors. FCS was used to record fluctuations in fluorescence intensity arising from fluorescence-tagged 5-hydroxytryptamine 2C (5-HT(2C)) receptors diffusing within the plasma membrane of HEK293 cells and rat hippocampal neurons. Autocorrelation analysis yielded diffusion coefficients ranging from 0.8 to 1.2 μm(2)/s for fluorescence-tagged receptors. Because the molecular brightness of a fluorescent protein is directly proportional to the number of fluorescent proteins traveling together within a protein complex, it can be used to determine the oligomeric size of the protein complex. FCS and PCH analysis of fluorescence-tagged 5-HT(2C) receptors provided molecular brightness values that were twice that of GFP and YFP monomeric controls, similar to a dimeric GFP control, and unaltered by 5-HT. Bimolecular fluorescence complementation of the N- and C-terminal halves of YFP attached to 5-HT(2C) receptors was observed in endoplasmic reticulum/Golgi and plasma membranes with a brightness equal to monomeric YFP. When GFP-tagged 5-HT(2C) receptors were co-expressed with a large excess of untagged, non-fluorescent 5-HT(2C) receptors, the molecular brightness was reduced by half. PCH analysis of the FCS data were best described by a one-component dimer model without monomers or tetramers. Therefore, it is concluded that 5-HT(2C) receptors freely diffusing within the plasma membrane are dimeric. PMID:22593582

  3. Modulation of Cytokine Response of Pneumonic Foals by Virulent Rhodococcus equi

    PubMed Central

    Giguère, Steeve; Wilkie, Bruce N.; Prescott, John F.

    1999-01-01

    The ability of Rhodococcus equi to induce pneumonia in foals depends on the presence of an 85- to 90-kb plasmid. In this study, we evaluated whether plasmid-encoded products mediate virulence by modulating the cytokine response of foals. Foals infected intrabronchially with a virulence plasmid-containing strain of R. equi had similar gamma interferon (IFN-γ) and interleukin-12 (IL-12) p35 but significantly higher IL-1β, IL-10, IL-12 p40, and tumor necrosis factor alpha (TNF-α) mRNA expression in lung tissue compared to foals infected with the plasmid-cured derivative. IFN-γ mRNA expression levels in CD4+ T lymphocytes isolated from bronchial lymph nodes (BLN) were similar for the two groups of R. equi-infected foals on day 3 postinfection. However, on day 14, in association with pneumonia and marked multiplication of virulent R. equi but with complete clearance of the plasmid-cured derivative, IFN-γ mRNA expression in BLN CD4+ T lymphocytes was significantly (P < 0.001) higher in foals infected with the plasmid-cured derivative. These results suggests an immunomodulating role for R. equi virulence plasmid-encoded products in downregulating IFN-γ mRNA expression by CD4+ T lymphocytes. PMID:10496876

  4. A novel IL-23p19/Ebi3 (IL-39) cytokine mediates inflammation in Lupus-like mice.

    PubMed

    Wang, Xiaoqian; Wei, Yinxiang; Xiao, He; Liu, Xiaoling; Zhang, Yu; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Ma, Ning; Shen, Beifen; Li, Yan; Egwuagu, Charles E; Wang, Renxi

    2016-06-01

    Interleukin-12 family cytokines have emerged as critical regulators of immunity with some members (IL-12, IL-23) associated with disease pathogenesis while others (IL-27, IL-35) mitigate autoimmune diseases. Each IL-12 family member is comprised of an α and a β chain, and chain-sharing is a key feature. Although four bona fide members have thus far been described, promiscuous chain-pairing between alpha (IL-23p19, IL-27p28, IL-12/IL-35p35) and beta (IL-12/IL-23p40, IL-27/IL-35Ebi3) subunits, predicts six possible heterodimeric IL-12 family cytokines. Here, we describe a new IL-12 member composed of IL-23p19 and Ebi3 heterodimer (IL-39) that is secreted by LPS-stimulated B cells and GL7(+) activated B cells of lupus-like mice. We further show that IL-39 mediates inflammatory responses through activation of STAT1/STAT3 in lupus-like mice. Taken together, our results show that IL-39 might contribute to immunopathogenic mechanisms of systemic lupus erythematosus, and could be used as a possible target for its treatment. PMID:27019190

  5. Long term efficacy and safety of etanercept in the treatment of psoriasis and psoriatic arthritis

    PubMed Central

    Kivelevitch, Dario; Mansouri, Bobbak; Menter, Alan

    2014-01-01

    Psoriasis is a chronic, immune-mediated inflammatory disease affecting both the skin and joints. Approximately 20% of patients suffer a moderate to severe form of skin disease and up to 30% have joint involvement. Standard therapies for psoriasis include topical medications, phototherapy, and both oral systemic and biological therapies whereas therapies for psoriatic arthritis include nonsteroidal anti-inflammatory drugs followed by disease modifying antirheumatic drugs and/or tumor necrosis factor (TNF)-α inhibitors and interleukin-12/23p40 inhibitors. Treatment of both diseases is typically driven by disease severity. In the past decade, major advances in the understanding of the immunopathogenesis of psoriasis and psoriatic arthritis have led to the development of numerous biological therapies, which have revolutionized the treatment for moderate to severe plaque psoriasis and psoriatic arthritis. Anti-TNF-α agents are currently considered as first line biological therapies for the treatment of moderate to severe psoriasis and psoriatic arthritis. Currently approved anti-TNF-α agents include etanercept, adalimumab, and infliximab for psoriasis and psoriatic arthritis as well as golimumab and certolizumab for psoriatic arthritis. In this article, we aim to evaluate the long term safety and efficacy of etanercept in psoriasis and psoriatic arthritis. PMID:24790410

  6. Obesity Related Alterations in Plasma Cytokines and Metabolic Hormones in Chimpanzees

    PubMed Central

    Nehete, Pramod; Magden, Elizabeth R.; Nehete, Bharti; Hanley, Patrick W.; Abee, Christian R.

    2014-01-01

    Obesity is characterized by chronic low-grade inflammation and serves as a major risk factor for hypertension, coronary artery disease, dyslipidemias, and type-2 diabetes. The purpose of this study was to examine changes in metabolic hormones, inflammatory cytokines, and immune function, in lean, overweight, and obese chimpanzees in a controlled environment. We observed increased plasma circulating levels of proinflammatory TH-1 cytokines, Interferon gamma, interleukin-6, interleukin-12p40, tumor necrosis factor, soluble CD40 ligand, and Interleukin-1β and anti-inflammatory TH-2 cytokines, Interleukin-4, Interleukin-RA, Interleukin-10, and Interleukin-13 in overweight and obese chimpanzees. We also observed increased levels of metabolic hormones glucagon-like-peptide-1, glucagon, connecting peptide, insulin, pancreatic peptide YY3–36, and leptin in the plasma of overweight and obese chimpanzees. Chemokine, eotaxin, fractalkine, and monocyte chemoattractant protein-1 were higher in lean compared to obese chimpanzees, while chemokine ligand 8 increased in plasma of obese chimpanzees. We also observed an obesity-related effect on immune function as demonstrated by lower mitogen induced proliferation, and natural killer activity and higher production of IFN-γ by PBMC in Elispot assay, These findings suggest that lean, overweight, and obese chimpanzees share circulating inflammatory cytokines and metabolic hormone levels with humans and that chimpanzees can serve as a useful animal model for human studies. PMID:25309773

  7. Mycobacterial Phosphatidylinositol Mannosides Negatively Regulate Host Toll-like Receptor 4, MyD88-dependent Proinflammatory Cytokines, and TRIF-dependent Co-stimulatory Molecule Expression*

    PubMed Central

    Doz, Emilie; Rose, Stéphanie; Court, Nathalie; Front, Sophie; Vasseur, Virginie; Charron, Sabine; Gilleron, Martine; Puzo, Germain; Fremaux, Isabelle; Delneste, Yves; Erard, François; Ryffel, Bernhard; Martin, Olivier R.; Quesniaux, Valerie F. J.

    2009-01-01

    Mycobacterium tuberculosis modulates host immune responses through proteins and complex glycolipids. Here, we report that the glycosylphosphatidylinositol anchor phosphatidyl-myo-inositol hexamannosides PIM6 or PIM2 exert potent anti-inflammatory activities. PIM strongly inhibited the Toll-like receptor (TLR4) and myeloid differentiation protein 88 (MyD88)-mediated release of NO, cytokines, and chemokines, including tumor necrosis factor (TNF), interleukin 12 (IL-12) p40, IL-6, keratinocyte-derived chemokine, and also IL-10 by lipopolysaccharide (LPS)-activated macrophages. This effect was independent of the presence of TLR2. PIM also reduced the LPS-induced MyD88-independent, TIR domain-containing adaptor protein inducing interferon β (TRIF)-mediated expression of co-stimulatory receptors. PIM inhibited LPS/TLR4-induced NFκB translocation. Synthetic PIM1 and a PIM2 mimetic recapitulated these in vitro activities and inhibited endotoxin-induced airway inflammation, TNF and keratinocyte-derived chemokine secretion, and neutrophil recruitment in vivo. Mannosyl, two acyl chains, and phosphatidyl residues are essential for PIM anti-inflammatory activity, whereas the inosityl moiety is dispensable. Therefore, PIM exert potent antiinflammatory effects both in vitro and in vivo that may contribute to the strategy developed by mycobacteria for repressing the host innate immunity, and synthetic PIM analogs represent powerful anti-inflammatory leads. PMID:19561082

  8. Modulation of Innate Cytokine Responses by Products of Helicobacter pylori

    PubMed Central

    Meyer, Frank; Wilson, Keith T.; James, Stephen P.

    2000-01-01

    The gastric inflammatory and immune response in Helicobacter pylori infection may be due to the effect of different H. pylori products on innate immune mechanisms. The aim of this study was to determine whether bacterial components could modulate cytokine production in vitro and thus contribute to Th1 polarization of the gastric immune response observed in vivo. The effect of H. pylori recombinant urease, bacterial lysate, intact bacteria, and bacterial DNA on proliferation and cytokine production by peripheral blood mononuclear cells (PBMCs) from H. pylori-negative donors was examined as a model for innate cytokine responses. Each of the different H. pylori preparations induced gamma interferon (IFN-γ) and interleukin-12p40 (IL-12p40), but not IL-2 or IL-5, production, and all but H. pylori DNA stimulated release of IL-10. Addition of anti-IL-12 antibody to cultures partially inhibited IFN-γ production. In addition, each bacterial product inhibited mitogen-stimulated IL-2 production by PBMCs and Jurkat T cells. The inhibitory effect of bacterial products on IL-2 production correlated with inhibition of mitogen-stimulated lymphocyte proliferation, although urease inhibited IL-2 production without inhibiting proliferation, suggesting that inhibition of IL-2 production alone is not sufficient to inhibit lymphocyte proliferation. The results of these studies demonstrate that Th1 polarization of the gastric immune response may be due in part to the direct effects of multiple different H. pylori components that enhance IFN-γ and IL-12 production while inhibiting both IL-2 production and cell proliferation that may be necessary for Th2 responses. PMID:11035734

  9. Nocardia farcinica Activates Human Dendritic Cells and Induces Secretion of Interleukin-23 (IL-23) Rather than IL-12p70

    PubMed Central

    Eisenblätter, Martin; Buchal, Ariane; Gayum, Hermine; Jasny, Edith; Renner Viveros, Pablo; Ulrichs, Timo; Schneider, Thomas; Schumann, Ralf R.; Zweigner, Janine

    2012-01-01

    Studying the interaction of dendritic cells (DCs) with bacteria controlled by T-cell-mediated immune responses may reveal novel adjuvants for the induction of cellular immunity. Murine studies and the observation that nocardias infect predominantly immunosuppressed patients have suggested that these bacteria may possess an adjuvant potential. Moreover, adjuvants on the basis of the nocardial cell wall have been applied in clinical studies. Since the handling of adjuvants by DCs may determine the type of immune responses induced by a vaccine, the present study aimed at investigating the interaction of immature human monocyte-derived DCs with live or inactivated Nocardia farcinica in vitro and determining the cellular phenotypic changes as well as alterations in characteristic functions, such as phagocytosis, induction of T-cell proliferation, and cytokine secretion. Human DCs ingested N. farcinica and eradicated the bacterium intracellularly. DCs exposed to inactivated N. farcinica were activated, i.e., they developed a mature phenotype, downregulated their phagocytic capacity, and stimulated allogeneic T cells in mixed leukocyte reactions. Soluble factors were not involved in this process. To elucidate the potential adjuvant effect of N. farcinica on the induction of T-cell-mediated immune responses, we characterized the cytokines produced by nocardia-exposed DCs and detected substantial amounts of tumor necrosis factor alpha (TNF-α) and interleukin-12 p40 (IL-12p40). However, nocardia-treated DCs secreted only small amounts of IL-12p70, which were significantly smaller than the amounts of IL-23. Thus, N. farcinica activates DCs, but adjuvants based on this bacterium may have only a limited capacity to induce Th1 immune responses. PMID:22988018

  10. Mycobacterium indicus pranii and Mycobacterium bovis BCG lead to differential macrophage activation in Toll-like receptor-dependent manner.

    PubMed

    Kumar, Pawan; Tyagi, Rohit; Das, Gobardhan; Bhaskar, Sangeeta

    2014-10-01

    Mycobacterium indicus pranii (MIP) is an atypical mycobacterial species possessing strong immunomodulatory properties. It is a potent vaccine candidate against tuberculosis, promotes Th1 immune response and protects mice from tumours. In previous studies, we demonstrated higher protective efficacy of MIP against experimental tuberculosis as compared with bacillus Calmette-Guérin (BCG). Since macrophages play an important role in the pathology of mycobacterial diseases and cancer, in the present study, we evaluated the MIP in live and killed form for macrophage activation potential, compared it with BCG and investigated the underlying mechanisms. High levels of tumour necrosis factor-α, interleukin-12p40 (IL-12p40), IL-6 and nitric oxide were produced by MIP-stimulated macrophages as compared with BCG-stimulated macrophages. Prominent up-regulation of co-stimulatory molecules CD40, CD80 and CD86 was also observed in response to MIP. Loss of response in MyD88-deficient macrophages showed that both MIP and BCG activate the macrophages in a MyD88-dependent manner. MyD88 signalling pathway culminates in nuclear factor-κB/activator protein-1 (NF-κB/AP-1) activation and higher activation of NF-κB/AP-1 was observed in response to MIP. With the help of pharmacological inhibitors and Toll-like receptor (TLR) -deficient macrophages, we observed the role of TLR2, TLR4 and intracellular TLRs in MIP-mediated macrophage activation. Stimulation of HEK293 cells expressing TLR2 in homodimeric or heterodimeric form showed that MIP has a distinctly higher level of TLR2 agonist activity compared with BCG. Further experiments suggested that TLR2 ligands are well exposed in MIP whereas they are obscured in BCG. Our findings establish the higher macrophage activation potential of MIP compared with BCG and delineate the underlying mechanism. PMID:24766519

  11. Ex vivo recovery and activation of dysfunctional, anergic, monocyte-derived dendritic cells from patients with operable breast cancer: critical role of IFN-alpha

    PubMed Central

    Satthaporn, Sukchai; Aloysius, Mark M; Robins, Richard A; Verma, Chandan; Chuthapisith, Suebwong; Mckechnie, Alasdair J; El-Sheemy, Mohamad; Vassanasiri, Wichai; Valerio, David; Clark, David; Jibril, Jibril A; Eremin, Oleg

    2008-01-01

    Background Dendritic cells (DCs) play a crucial role in initiating effective cell-mediated immune responses, but are dysfunctional and anergic in breast cancer. Reversal of this dysfunction and establishment of optimal DC function is a key prerequisite for the induction of effective anti-cancer immune responses. Results Peripheral blood DCs (PBDCs) and lymph node DCs (LNDCs) generated in vitro from adherent cultures of peripheral blood monocytes (PBMs) and lymph node monocytes (LNMs), respectively, using the 4 cytokine conditioned medium (CCM) (GM-CSF+IL-4+TNF-α+IFN-α) or 3 CCM (GM-CSF+IL-4+TNF-α) demonstrated a significantly higher degree of recovery and functional capacity in a mixed lymphocyte DC reaction (MLDCR, p < 0.001), expressed significantly higher levels of HLA-DR, CD86, compared with 2 CCM (GM-CSF+IL-4) or medium alone generated DCs from PBMs and LNMs (p < 0.001). The PBDCs generated with 3 CCM or 4 CCM showed a significantly (p < 0.001) enhanced macropinocytotic capability (dextran particles) and induced increased production and secretion of interleukin-12p40 (IL-12p40) in vitro (p < 0.001), compared with PBDCs generated from monocytes using 2 CCM or medium alone. Lipopolysaccharide (LPS) stimulation of PBDCs generated with 4 CCM demonstrated enhanced secretion of IL-6 but not IL-12p70, compared with control DCs unstimulated with LPS (p < 0.001). Conclusion Dysfunctional and anergic PBDCs and LNDCs from patients with operable breast cancer can be optimally reversed by ex vivo culturing of precursor adherent monocytes using a 4 CCM containing IFN-α. Maximal immunophenotypic recovery and functional reactivation of DCs is seen in the presence of IFN-α. However, 4 CCM containing IFN-α generated-PBDCs, do not produce and secrete IL-12p70 in vitro. PMID:18588665

  12. The Correlation of Serum IL-12B Expression With Disease Activity in Patients With Inflammatory Bowel Disease

    PubMed Central

    Lee, Hye Won; Chung, Sook Hee; Moon, Chang Mo; Che, Xiumei; Kim, Seung Won; Park, Soo Jung; Hong, Sung Pil; Kim, Tae Il; Kim, Won Ho; Cheon, Jae Hee

    2016-01-01

    Abstract Genetic variants in IL12B, encoding the p40 subunit common in interleukin-12 (IL-12) and interleukin-23, were identified as the susceptibility loci for inflammatory bowel disease (IBD). This study aimed to identify the correlation of serum IL-12B expression with disease activity in patients with IBD and evaluate the possibility of IL-12B as a biomarker for assessing inflammatory status in IBD. A total of 102 patients with IBD, including 38, 32, and 32 patients with Crohn's disease (CD), ulcerative colitis (UC), and intestinal Behçet's disease (intestinal BD), respectively, were included. The clinical and laboratory data from the patients were collected at the time of serum IL-12B measurement. Serum IL-12B levels were measured using an enzyme-linked immunosorbent assay. The median IL-12B levels in patients with CD, UC, and intestinal BD were significantly higher than those in controls (1.87, 2.74, and 2.73 pg/mL, respectively, vs. 1.42 pg/mL, all P <0.05). IL-12B concentrations were associated with disease activity in patients with UC and intestinal BD but not in those with CD. IL-12B levels were increased with increasing disease activity in patients with UC (P <0.001). Likewise, patients with active intestinal BD had higher IL-12B levels than those without active disease (P = 0.008). IL-12B levels were correlated with the endoscopic disease activity of UC (P = 0.002) and intestinal BD (P = 0.001) but not that of CD. Serum IL-12B levels were significantly correlated with clinical and endoscopic disease activity in patients with UC and intestinal BD, suggesting its potential use as a biomarker for assessing disease activity in these patients. PMID:27281077

  13. Macrophage Migration Inhibitory Factor Contributes to Host Defense against Acute Trypanosoma cruzi Infection

    PubMed Central

    Reyes, José L.; Terrazas, Luis I.; Espinoza, Bertha; Cruz-Robles, David; Soto, Virgilia; Rivera-Montoya, Irma; Gómez-García, Lorena; Snider, Heidi; Satoskar, Abhay R.; Rodríguez-Sosa, Miriam

    2006-01-01

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is involved in the host defense against several pathogens. Here we used MIF−/− mice to determine the role of endogenous MIF in the regulation of the host immune response against Trypanosoma cruzi infection. MIF−/− mice displayed high levels of blood and tissue parasitemia, developed severe heart and skeletal muscle immunopathology, and succumbed to T. cruzi infection faster than MIF+/+ mice. The enhanced susceptibility of MIF−/− mice to T. cruzi was associated with reduced levels of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-12 (IL-12), IL-18, gamma interferon (IFN-γ), and IL-1β, in their sera and reduced production of IL-12, IFN-γ, and IL-4 by spleen cells during the early phase of infection. At all time points, antigen-stimulated splenocytes from MIF+/+ and MIF−/− mice produced comparable levels of IL-10. MIF−/− mice also produced significantly less Th1-associated antigen-specific immunoglobulin G2a (IgG2a) throughout the infection, but both groups produced comparable levels of Th2-associated IgG1. Lastly, inflamed hearts from T. cruzi-infected MIF−/− mice expressed increased transcripts for IFN-γ, but fewer for IL-12 p35, IL-12 p40, IL-23, and inducible nitric oxide synthase, compared to MIF+/+ mice. Taken together, our findings show that MIF plays a role in controlling acute T. cruzi infection. PMID:16714544

  14. Anti-Tumor Effects after Adoptive Transfer of IL-12 Transposon-Modified Murine Splenocytes in the OT-I-Melanoma Mouse Model.

    PubMed

    Galvan, Daniel L; O'Neil, Richard T; Foster, Aaron E; Huye, Leslie; Bear, Adham; Rooney, Cliona M; Wilson, Matthew H

    2015-01-01

    Adoptive transfer of gene modified T cells provides possible immunotherapy for patients with cancers refractory to other treatments. We have previously used the non-viral piggyBac transposon system to gene modify human T cells for potential immunotherapy. However, these previous studies utilized adoptive transfer of modified human T cells to target cancer xenografts in highly immunodeficient (NOD-SCID) mice that do not recapitulate an intact immune system. Currently, only viral vectors have shown efficacy in permanently gene-modifying mouse T cells for immunotherapy applications. Therefore, we sought to determine if piggyBac could effectively gene modify mouse T cells to target cancer cells in a mouse cancer model. We first demonstrated that we could gene modify cells to express murine interleukin-12 (p35/p40 mIL-12), a transgene with proven efficacy in melanoma immunotherapy. The OT-I melanoma mouse model provides a well-established T cell mediated immune response to ovalbumin (OVA) positive B16 melanoma cells. B16/OVA melanoma cells were implanted in wild type C57Bl6 mice. Mouse splenocytes were isolated from C57Bl6 OT-I mice and were gene modified using piggyBac to express luciferase. Adoptive transfer of luciferase-modified OT-I splenocytes demonstrated homing to B16/OVA melanoma tumors in vivo. We next gene-modified OT-I cells to express mIL-12. Adoptive transfer of mIL-12-modified mouse OT-I splenocytes delayed B16/OVA melanoma tumor growth in vivo compared to control OT-I splenocytes and improved mouse survival. Our results demonstrate that the piggyBac transposon system can be used to gene modify splenocytes and mouse T cells for evaluating adoptive immunotherapy strategies in immunocompetent mouse tumor models that may more directly mimic immunotherapy applications in humans. PMID:26473608

  15. Serum C-reactive protein levels in Japanese patients with psoriasis and psoriatic arthritis: Long-term differential effects of biologics.

    PubMed

    Asahina, Akihiko; Umezawa, Yoshinori; Yanaba, Koichi; Nakagawa, Hidemi

    2016-07-01

    Psoriasis has been shown to accompany systemic inflammation. We aimed to examine serum C-reactive protein (CRP) levels in Japanese psoriatic patients, and to elucidate their long-term as well as short-term changes by treatment with different biologics. A retrospective study was conducted in those who initiated and successfully continued the treatment for up to 24 months with either infliximab, adalimumab or ustekinumab, at the psoriasis special clinic of Jikei University School of Medicine. A total of 212 patients were included, 171 with plaque-type psoriasis (PsV) and 41 with psoriatic arthritis (PsA). A statistically significant elevation of CRP values was found in the group with a Psoriasis Area and Severity Index (PASI) of 12 or more compared with the PASI of less than 12 for both PsV and PsA. The CRP-positive patients had a higher proportion of PsA compared with the CRP-negative patients, and they had significantly higher PASI scores. Serum CRP values declined as early as at 3 months after systemic treatment with biologics. Tumor necrosis factor (TNF)-α antagonists did lead to a notable and sustained CRP decline up to 24 months. Infliximab showed rapid decline, while CRP decline by adalimumab treatment was time-dependent. The interleukin-12/23 p40 antagonist, ustekinumab, appeared to be less potent than TNF-α antagonists in stabilizing CRP values at low levels despite good control of cutaneous lesions. In conclusion, serum CRP levels can be used to assess disease severity in Japanese psoriatic patients as a marker of systemic inflammation. TNF-α antagonists may be more beneficial than ustekinumab in this regard. PMID:26704718

  16. Up regulation of the maternal immune response in the placenta of cattle naturally infected with Neospora caninum.

    PubMed

    Rosbottom, Anne; Gibney, Helen; Kaiser, Peter; Hartley, Catherine; Smith, Robert F; Robinson, Rebecca; Kipar, Anja; Williams, Diana J L

    2011-01-01

    Neospora caninum is an intracellular protozoan parasite which is a major cause of abortion in cattle worldwide. It forms persistent infections which recrudesce during pregnancy leading to foetal infection and in a proportion of cases, abortion. The mechanisms underlying abortion are not understood. In this study, recrudescence of a persistent infection in eight naturally infected cows occurred between 20 and 33 weeks of gestation. Animals were killed at the time of recrudescence and parasites were detected in the placentae and foetuses. An active maternal immune response consisting of an infiltration of CD4+ and CD8+ T cells and a 46-49 fold increase in interferon-γ and interleukin-4 mRNA was detected. Other cytokines, notably interleukin-12 p40, interleukin-10 and tumour necrosis factor-α were also significantly increased and Major Histocompatibility Class II antigen was expressed on maternal and foetal epithelial and stromal fibroblastoid cells. Significantly, despite the presence of an active maternal immune response in the placenta, all the foetuses were alive at the time of maternal euthanasia. There was evidence of parasites within foetal tissues; their distribution was restricted to the central nervous system and skeletal muscle and their presence was associated with tissue necrosis and a non-suppurative inflammatory response involving lymphocytes and macrophages, irrespective of the gestational age of the foetus. Whilst an active maternal immune response to a pathogen in the placenta is generally considered to be damaging to the foetal trophoblast, our findings suggest that the presence of a parasite-induced maternal immune response in the placenta is not detrimental to foetal survival but may contribute to the control of placental parasitosis. PMID:21283810

  17. Up Regulation of the Maternal Immune Response in the Placenta of Cattle Naturally Infected with Neospora caninum

    PubMed Central

    Rosbottom, Anne; Gibney, Helen; Kaiser, Peter; Hartley, Catherine; Smith, Robert F.; Robinson, Rebecca; Kipar, Anja; Williams, Diana J. L.

    2011-01-01

    Neospora caninum is an intracellular protozoan parasite which is a major cause of abortion in cattle worldwide. It forms persistent infections which recrudesce during pregnancy leading to foetal infection and in a proportion of cases, abortion. The mechanisms underlying abortion are not understood. In this study, recrudescence of a persistent infection in eight naturally infected cows occurred between 20 and 33 weeks of gestation. Animals were killed at the time of recrudescence and parasites were detected in the placentae and foetuses. An active maternal immune response consisting of an infiltration of CD4+ and CD8+ T cells and a 46–49 fold increase in interferon-γ and interleukin-4 mRNA was detected. Other cytokines, notably interleukin-12 p40, interleukin-10 and tumour necrosis factor-α were also significantly increased and Major Histocompatibility Class II antigen was expressed on maternal and foetal epithelial and stromal fibroblastoid cells. Significantly, despite the presence of an active maternal immune response in the placenta, all the foetuses were alive at the time of maternal euthanasia. There was evidence of parasites within foetal tissues; their distribution was restricted to the central nervous system and skeletal muscle and their presence was associated with tissue necrosis and a non-suppurative inflammatory response involving lymphocytes and macrophages, irrespective of the gestational age of the foetus. Whilst an active maternal immune response to a pathogen in the placenta is generally considered to be damaging to the foetal trophoblast, our findings suggest that the presence of a parasite-induced maternal immune response in the placenta is not detrimental to foetal survival but may contribute to the control of placental parasitosis. PMID:21283810

  18. Anti-Tumor Effects after Adoptive Transfer of IL-12 Transposon-Modified Murine Splenocytes in the OT-I-Melanoma Mouse Model

    PubMed Central

    Foster, Aaron E.; Huye, Leslie; Bear, Adham; Rooney, Cliona M.; Wilson, Matthew H.

    2015-01-01

    Adoptive transfer of gene modified T cells provides possible immunotherapy for patients with cancers refractory to other treatments. We have previously used the non-viral piggyBac transposon system to gene modify human T cells for potential immunotherapy. However, these previous studies utilized adoptive transfer of modified human T cells to target cancer xenografts in highly immunodeficient (NOD-SCID) mice that do not recapitulate an intact immune system. Currently, only viral vectors have shown efficacy in permanently gene-modifying mouse T cells for immunotherapy applications. Therefore, we sought to determine if piggyBac could effectively gene modify mouse T cells to target cancer cells in a mouse cancer model. We first demonstrated that we could gene modify cells to express murine interleukin-12 (p35/p40 mIL-12), a transgene with proven efficacy in melanoma immunotherapy. The OT-I melanoma mouse model provides a well-established T cell mediated immune response to ovalbumin (OVA) positive B16 melanoma cells. B16/OVA melanoma cells were implanted in wild type C57Bl6 mice. Mouse splenocytes were isolated from C57Bl6 OT-I mice and were gene modified using piggyBac to express luciferase. Adoptive transfer of luciferase-modified OT-I splenocytes demonstrated homing to B16/OVA melanoma tumors in vivo. We next gene-modified OT-I cells to express mIL-12. Adoptive transfer of mIL-12-modified mouse OT-I splenocytes delayed B16/OVA melanoma tumor growth in vivo compared to control OT-I splenocytes and improved mouse survival. Our results demonstrate that the piggyBac transposon system can be used to gene modify splenocytes and mouse T cells for evaluating adoptive immunotherapy strategies in immunocompetent mouse tumor models that may more directly mimic immunotherapy applications in humans. PMID:26473608

  19. Anti-metastatic immunotherapy based on mucosal administration of flagellin and immunomodulatory P10.

    PubMed

    de Melo, Filipe M; Braga, Catarina J M; Pereira, Felipe V; Maricato, Juliana T; Origassa, Clarice S T; Souza, Mariana F; Melo, Amanda C; Silva, Priscila; Tomaz, Samanta L; Gimenes, Karina P; Scutti, Jorge A B; Juliano, Maria A; Zamboni, Dario S; Câmara, Niels O; Travassos, Luiz R; Ferreira, Luis C S; Rodrigues, Elaine G

    2015-01-01

    Current therapies against malignant melanoma generally fail to increase survival in most patients, and immunotherapy is a promising approach as it could reduce the dosage of toxic therapeutic drugs. In the present study, we show that an immunotherapeutic approach based on the use of the Toll-like receptor (TLR)-5 ligand flagellin (Salmonella Typhimurium FliCi) combined with the major histocompatibility complex class II-restricted P10 peptide, derived from the Paracoccidioides brasiliensis gp43 major surface protein, reduced the number of lung metastasis in a murine melanoma model. Compounds were administered intranasally into C57Bl/6 mice intravenously challenged with syngeneic B16F10-Nex2 melanoma cells, aiming at the local (pulmonary) immune response modulation. Along with a marked reduction in the number of lung nodules, a significant increase in survival was observed. The immunization regimen induced both local and systemic proinflammatory responses. Lung macrophages were polarized towards a M1 phenotype, lymph node cells, and splenocytes secreted higher interleukin-12p40 and interferon (IFN)-γ levels when re-stimulated with tumor antigens. The protective effect of the FliCi+P10 formulation required TLR-5, myeloid differentiation primary response gene 88 and IFN-γ expression, but caspase-1 knockout mice were only partially protected, suggesting that intracellular flagellin receptors are not involved with the anti-tumor effect. The immune therapy resulted in the activation of tumor-specific CD4(+) T lymphocytes, which conferred protection to metastatic melanoma growth after adoptive transfer. Taken together, our results report a new immunotherapeutic approach based on TLR-5 activation and IFN-γ production capable to control the metastatic growth of B16F10-Nex2 melanoma, being a promising alternative to be associated with chemotherapeutic drugs for an effective anti-tumor responses. PMID:25223833

  20. Loss of Interleukin 1 Receptor Antagonist Enhances Susceptibility to Ebola Virus Infection.

    PubMed

    Hill-Batorski, Lindsay; Halfmann, Peter; Marzi, Andrea; Lopes, Tiago J S; Neumann, Gabriele; Feldmann, Heinz; Kawaoka, Yoshihiro

    2015-10-01

    The current outbreak of Ebola virus (EBOV) infection in West Africa is unprecedented, with nearly 26 000 confirmed cases and >10 000 deaths. Comprehensive data on the pathogenesis of EBOV infection are lacking; however, recent studies suggested that fatal EBOV infections are characterized by dysregulation of the innate immune response and a subsequent cytokine storm. Specifically, several studies suggested that hypersecretion of interleukin 1 receptor antagonist (IL-1Ra) correlates with lethal EBOV infections. To examine the significance of IL-1Ra in EBOV infections, we infected mice that lack the gene encoding IL-1Ra, Il1rn (IL-1RN-KO), and mice with wild-type Il1rn (IL-1RN-WT) with a mouse-adapted EBOV (MA-EBOV). Infected IL-1RN-KO mice lost more weight and had a lower survival rate than IL-1RN-WT mice infected with MA-EBOV. In addition, IL-1RN-KO mice infected with wild-type EBOV, which does not cause lethal infection in adult immunocompetent mice, such as C57BL/6 mice, experienced greater weight loss than IL-1RN-WT mice infected with wild-type EBOV. Further studies revealed that the levels of 6 cytokines in spleens-IL-1α, IL-1β, interleukin 12p40, interleukin 17, granulocyte colony-stimulating factor, and regulated on activation, normal T-cell expressed and secreted-were significantly different between IL-1RN-KO mice and IL-1RN-WT mice infected with MA-EBOV. Collectively, our data suggest that IL-1Ra may have a protective effect upon EBOV infection, likely by damping an overactive proinflammatory immune response. PMID:26209680

  1. Characterization of suppressive oligodeoxynucleotides that inhibit Toll-like receptor-9-mediated activation of innate immunity

    PubMed Central

    Peter, Mirjam; Bode, Konrad; Lipford, Grayson B; Eberle, Florian; Heeg, Klaus; Dalpke, Alexander H

    2008-01-01

    Synthetic oligodeoxynucleotides containing unmethylated CpG sequences (CpG-ODNs) stimulate Toll-like receptor-9 (TLR-9), thereby activating innate immunity. Stimulatory CpG-ODNs have been shown to be valuable in modifying immune responses in allergy, infection and cancer. Recently, it has been reported that the stimulation of TLR-9 by endogenous DNA might contribute to the pathogenesis of autoimmune diseases. We here report the identification of a suppressive, guanosine-rich ODN (G-ODN) that inhibited the activation of TLR-9 by stimulatory CpG-ODNs. The G-ODN was suppressive in murine macrophages and dendritic cells as well as in human plasmacytoid dendritic cells in vitro. G-ODN blocked the secretion of tumour necrosis factor-α (TNF-α) and interleukin-12p40 and interfered with the up-regulation of major histocompatibility complex (MHC) class II and costimulatory molecules. G-ODN was inhibitory even at a molar ratio of 1 : 10 (G-ODN:CpG-ODN) and when administered up to 7 hr after stimulation with CpG. G-ODN specifically inhibited TLR-9 but not other TLRs. Inhibition was dependent on a string of five guanosines. G-ODN was also inhibitory in an in vivo model of CpG/galactosamin (GalN) lethal shock. G-ODN interfered with upstream TLR-9 signalling. However, by extensive analysis we can exclude that G-ODN acts at the stage of cellular uptake. G-ODN therefore represents a class of suppressive ODNs that could be of therapeutic use in situations with pathologic TLR-9 activation, as has been proposed for certain autoimmune diseases. PMID:17961163

  2. Immobilization antigen vaccine adjuvanted by parasitic heat shock protein 70C confers high protection in fish against cryptocaryonosis.

    PubMed

    Josepriya, T A; Chien, Kuo-Hsuan; Lin, Hsin-Yun; Huang, Han-Ning; Wu, Chang-Jer; Song, Yen-Ling

    2015-08-01

    The immobilization antigen (iAg) has been demonstrated as a protective immunogen against Cryptocaryon irritans infection. In this study, C-terminal domain of heat shock protein 70 cloned from C. irritans (Hsp70C) was tested for its immuno-stimulatory effects. The iAg and Hsp70C cDNAs were constructed independently in secretory forms and were encapsulated in chitosan nanoparticles. In the first immunization trial, grouper fingerlings orally intubated with iAg and iAg:Hsp70C presented 96% and 100% relative percent survival (RPS), respectively, after a lethal challenge. In the second trial, both iAg and iAg:Hsp70C groups showed 100% RPS and the skin trophont burden was significantly lowered. The iAg:Hsp70C still provides a significantly high protection of 51% RPS at 49 days post immunization, when an even more serious lethal infection occurs. RT-qPCR results showed that Hsp70C could up-regulate the expression of i) T cell markers: Cluster of Differentiation 8 alpha (CD8α) and CD4, ii) cytokine genes: Interferon gamma (IFNγ), Tumor Necrosis Factor alpha (TNFα) and Interleukin 12 p40 (IL-12/P40), iii) antibody genes: Immunoglobulin M heavy chain (IgMH) and IgTH, and iv) major histocompatibility complex (MHC-I & MHC-II), in the spleen of iAg:Hsp70C group. Furthermore, significantly high levels of iAg-specific IgM was detected in skin mucus which efficiently immobilized live theronts in iAg- and iAg:Hsp70C-immunized fish at 5 weeks post immunization. Hsp70C significantly increased the number of nonspecific CD8(+) skin leucocytes which exerted cytotoxicity against theronts, although cytotoxic activity showed no difference among the various groups. Because of this complementary cooperation of cellular and humoral immune responses, Hsp70C enhances the efficacy of iAg vaccine and constrains C. irritans infection. In view of the severe loss caused by cryptocaryonosis, application of this parasitic vaccine in farmed and ornamental fish, is worthy to be considered. PMID

  3. Deregulation of Fas ligand expression as a novel cause of autoimmune lymphoproliferative syndrome-like disease

    PubMed Central

    Nabhani, Schafiq; Ginzel, Sebastian; Miskin, Hagit; Revel-Vilk, Shoshana; Harlev, Dan; Fleckenstein, Bernhard; Hönscheid, Andrea; Oommen, Prasad T.; Kuhlen, Michaela; Thiele, Ralf; Laws, Hans-Jürgen; Borkhardt, Arndt; Stepensky, Polina; Fischer, Ute

    2015-01-01

    Autoimmune lymphoproliferative syndrome is frequently caused by mutations in genes involved in the Fas death receptor pathway, but for 20–30% of patients the genetic defect is unknown. We observed that treatment of healthy T cells with interleukin-12 induces upregulation of Fas ligand and Fas ligand-dependent apoptosis. Consistently, interleukin-12 could not induce apoptosis in Fas ligand-deficient T cells from patients with autoimmune lymphoproliferative syndrome. We hypothesized that defects in the interleukin-12 signaling pathway may cause a similar phenotype as that caused by mutations of the Fas ligand gene. To test this, we analyzed 20 patients with autoimmune lymphoproliferative syndrome of unknown cause by whole-exome sequencing. We identified a homozygous nonsense mutation (c.698G>A, p.R212*) in the interleukin-12/interleukin-23 receptor-component IL12RB1 in one of these patients. The mutation led to IL12RB1 protein truncation and loss of cell surface expression. Interleukin-12 and -23 signaling was completely abrogated as demonstrated by deficient STAT4 phosphorylation and interferon γ production. Interleukin-12-mediated expression of membrane-bound and soluble Fas ligand was lacking and basal expression was much lower than in healthy controls. The patient presented with the classical symptoms of autoimmune lymphoproliferative syndrome: chronic non-malignant, non-infectious lymphadenopathy, splenomegaly, hepatomegaly, elevated numbers of double-negative T cells, autoimmune cytopenias, and increased levels of vitamin B12 and interleukin-10. Sanger sequencing and whole-exome sequencing excluded the presence of germline or somatic mutations in genes known to be associated with the autoimmune lymphoproliferative syndrome. Our data suggest that deficient regulation of Fas ligand expression by regulators such as the interleukin-12 signaling pathway may be an alternative cause of autoimmune lymphoproliferative syndrome-like disease. PMID:26113417

  4. Alpha/Beta Interferon Protects Adult Mice from Fatal Sindbis Virus Infection and Is an Important Determinant of Cell and Tissue Tropism

    PubMed Central

    Ryman, Kate D.; Klimstra, William B.; Nguyen, Khuong B.; Biron, Christine A.; Johnston, Robert E.

    2000-01-01

    Infection of adult 129 Sv/Ev mice with consensus Sindbis virus strain TR339 is subclinical due to an inherent restriction in early virus replication and viremic dissemination. By comparing the pathogenesis of TR339 in 129 Sv/Ev mice and alpha/beta interferon receptor null (IFN-α/βR−/−) mice, we have assessed the contribution of IFN-α/β in restricting virus replication and spread and in determining cell and tissue tropism. In adult 129 Sv/Ev mice, subcutaneous inoculation with 100 PFU of TR339 led to extremely low-level virus replication and viremia, with clearance under way by 96 h postinoculation (p.i.). In striking contrast, adult IFN-α/βR−/− mice inoculated subcutaneously with 100 PFU of TR339 succumbed to the infection within 84 h. By 24 h p.i. a high-titer serum viremia had seeded infectious virus systemically, coincident with the systemic induction of the proinflammatory cytokines interleukin-12 (IL-12) p40, IFN-γ, tumor necrosis factor alpha, and IL-6. Replicating virus was located in macrophage-dendritic cell (DC)-like cells at 24 h p.i. in the draining lymph node and in the splenic marginal zone. By 72 h p.i. virus replication was widespread in macrophage-DC-like cells in the spleen, liver, lung, thymus, and kidney and in fibroblast-connective tissue and periosteum, with sporadic neuroinvasion. IFN-α/β-mediated restriction of TR339 infection was mimicked in vitro in peritoneal exudate cells from 129 Sv/Ev versus IFN-α/βR−/− mice. Thus, IFN-α/β protects the normal adult host from viral infection by rapidly conferring an antiviral state on otherwise permissive cell types, both locally and systemically. Ablation of the IFN-α/β system alters the apparent cell and tissue tropism of the virus and renders macrophage-DC-lineage cells permissive to infection. PMID:10708454

  5. TLR3 drives IRF6-dependent IL-23p19 expression and p19/EBI3 heterodimer formation in keratinocytes.

    PubMed

    Ramnath, Divya; Tunny, Kathryn; Hohenhaus, Daniel M; Pitts, Claire M; Bergot, Anne-Sophie; Hogarth, P Mark; Hamilton, John A; Kapetanovic, Ronan; Sturm, Richard A; Scholz, Glen M; Sweet, Matthew J

    2015-10-01

    Interferon regulatory factor (IRF) family members impart cell-type specificity to toll-like receptor (TLR) signalling, and we recently identified a role for IRF6 in TLR2 signalling in epithelial cells. TLR3 has a well-characterized role in wound healing in the skin, and here, we examined TLR3-dependent IRF6 functions in human keratinocytes. Primary keratinocytes responded robustly to the TLR3 agonist poly(IC) with upregulation of mRNAs for interferon-β (IFN-β), the interleukin-12 (IL-12) family member IL-23p19 and the chemokines IL-8 and chemokine (C-C motif) ligand 5 (CCL5). Silencing of IRF6 expression enhanced poly(IC)-inducible IFN-β mRNA levels and inhibited poly(IC)-inducible IL-23p19 mRNA expression in primary keratinocytes. Consistent with these data, co-transfection of IRF6 increased poly(IC)-inducible IL-23p19 promoter activity, but inhibited poly(IC)-inducible IFN-β promoter activity in reporter assays. Surprisingly, poly(IC) did not regulate IL-12p40 expression in keratinocytes, suggesting that TLR3-inducible IL-23p19 may have an IL-23-independent function in these cells. The only other IL-12 family member that was strongly poly(IC) inducible was EBI3, which has not been shown to heterodimerize with IL-23p19. Both co-immunoprecipitation and proximity ligation assays revealed that IL-23p19 and EBI3 interact in cells. Co-expression of IL-23p19 and EBI3, as compared with IL-23p19 alone, resulted in increased levels of secreted IL-23p19, implying a functional role for this heterodimer. In summary, we report that IRF6 regulates a subset of TLR3 responses in human keratinocytes, including the production of a novel IL-12 family heterodimer (p19/EBI3). We propose that the TLR3-IRF6-p19/EBI3 axis may regulate keratinocyte and/or immune cell functions in the context of cell damage and wound healing in the skin. PMID:26303210

  6. Glucocorticoids Reduce Sepsis by Diminishing Dendritic Cell Responses.

    PubMed

    Robinson, Richard

    2015-10-01

    How does the body's immune system strike the delicate balance between under- and over-response? A new study shows that glucocorticoids limit the production of the proinflammatory cytokine interleukin-12 by dendritic cells in response to invading bacteria, thereby helping to avoid sepsis. Read the Research Article. PMID:26441144

  7. The transcription factor GATA3 actively represses RUNX3 protein-regulated production of interferon-gamma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transcription factor GATA3 is crucial for the differentiation of naive CD4+ T cells into T helper 2 (Th2) cells. Here, we show that deletion of Gata3 allowed the appearance of interferon-g (IFN-g)-producing cells in the absence of interleukin-12 (IL-12) and IFN-g. Such IFN-g production was tra...

  8. Structural basis of the heterodimerization of the MST and RASSF SARAH domains in the Hippo signalling pathway

    SciTech Connect

    Hwang, Eunha; Cheong, Hae-Kap; Mushtaq, Ameeq Ul; Kim, Hye-Yeon; Yeo, Kwon Joo; Kim, Eunhee; Lee, Woo Cheol; Hwang, Kwang Yeon; Cheong, Chaejoon; Jeon, Young Ho

    2014-07-01

    The heterodimeric structure of the MST1 and RASSF5 SARAH domains is presented. A comparison of homodimeric and heterodimeric interactions provides a structural basis for the preferential association of the SARAH heterodimer. Despite recent progress in research on the Hippo signalling pathway, the structural information available in this area is extremely limited. Intriguingly, the homodimeric and heterodimeric interactions of mammalian sterile 20-like (MST) kinases through the so-called ‘SARAH’ (SAV/RASSF/HPO) domains play a critical role in cellular homeostasis, dictating the fate of the cell regarding cell proliferation or apoptosis. To understand the mechanism of the heterodimerization of SARAH domains, the three-dimensional structures of an MST1–RASSF5 SARAH heterodimer and an MST2 SARAH homodimer were determined by X-ray crystallography and were analysed together with that previously determined for the MST1 SARAH homodimer. While the structure of the MST2 homodimer resembled that of the MST1 homodimer, the MST1–RASSF5 heterodimer showed distinct structural features. Firstly, the six N-terminal residues (Asp432–Lys437), which correspond to the short N-terminal 3{sub 10}-helix h1 kinked from the h2 helix in the MST1 homodimer, were disordered. Furthermore, the MST1 SARAH domain in the MST1–RASSF5 complex showed a longer helical structure (Ser438–Lys480) than that in the MST1 homodimer (Val441–Lys480). Moreover, extensive polar and nonpolar contacts in the MST1–RASSF5 SARAH domain were identified which strengthen the interactions in the heterodimer in comparison to the interactions in the homodimer. Denaturation experiments performed using urea also indicated that the MST–RASSF heterodimers are substantially more stable than the MST homodimers. These findings provide structural insights into the role of the MST1–RASSF5 SARAH domain in apoptosis signalling.

  9. Extent of structural asymmetry in homodimeric proteins: prevalence and relevance.

    PubMed

    Swapna, Lakshmipuram Seshadri; Srikeerthana, Kuchi; Srinivasan, Narayanaswamy

    2012-01-01

    Most homodimeric proteins have symmetric structure. Although symmetry is known to confer structural and functional advantage, asymmetric organization is also observed. Using a non-redundant dataset of 223 high-resolution crystal structures of biologically relevant homodimers, we address questions on the prevalence and significance of asymmetry. We used two measures to quantify global and interface asymmetry, and assess the correlation of several molecular and structural parameters with asymmetry. We have identified rare cases (11/223) of biologically relevant homodimers with pronounced global asymmetry. Asymmetry serves as a means to bring about 2:1 binding between the homodimer and another molecule; it also enables cellular signalling arising from asymmetric macromolecular ligands such as DNA. Analysis of these cases reveals two possible mechanisms by which possible infinite array formation is prevented. In case of homodimers associating via non-topologically equivalent surfaces in their tertiary structures, ligand-dependent mechanisms are used. For stable dimers binding via large surfaces, ligand-dependent structural change regulates polymerisation/depolymerisation; for unstable dimers binding via smaller surfaces that are not evolutionarily well conserved, dimerisation occurs only in the presence of the ligand. In case of homodimers associating via interaction surfaces with parts of the surfaces topologically equivalent in the tertiary structures, steric hindrance serves as the preventive mechanism of infinite array. We also find that homodimers exhibiting grossly symmetric organization rarely exhibit either perfect local symmetry or high local asymmetry. Binding of small ligands at the interface does not cause any significant variation in interface asymmetry. However, identification of biologically relevant interface asymmetry in grossly symmetric homodimers is confounded by the presence of similar small magnitude changes caused due to artefacts of

  10. Neuroadaptations in Human Chronic Alcoholics: Dysregulation of the NF-κB System

    PubMed Central

    Ökvist, Anna; Johansson, Sofia; Kuzmin, Alexander; Bazov, Igor; Merino-Martinez, Roxana; Ponomarev, Igor; Mayfield, R. Dayne; Harris, R. Adron; Sheedy, Donna; Garrick, Therese; Harper, Clive; Hurd, Yasmin L.; Terenius, Lars; Ekström, Tomas J.

    2007-01-01

    Background Alcohol dependence and associated cognitive impairments apparently result from neuroadaptations to chronic alcohol consumption involving changes in expression of multiple genes. Here we investigated whether transcription factors of Nuclear Factor-kappaB (NF-κB) family, controlling neuronal plasticity and neurodegeneration, are involved in these adaptations in human chronic alcoholics. Methods and Findings Analysis of DNA-binding of NF-κB (p65/p50 heterodimer) and the p50 homodimer as well as NF-κB proteins and mRNAs was performed in postmortem human brain samples from 15 chronic alcoholics and 15 control subjects. The prefrontal cortex involved in alcohol dependence and cognition was analyzed and the motor cortex was studied for comparison. The p50 homodimer was identified as dominant κB binding factor in analyzed tissues. NF-κB and p50 homodimer DNA-binding was downregulated, levels of p65 (RELA) mRNA were attenuated, and the stoichiometry of p65/p50 proteins and respective mRNAs was altered in the prefrontal cortex of alcoholics. Comparison of a number of p50 homodimer/NF-κB target DNA sites, κB elements in 479 genes, down- or upregulated in alcoholics demonstrated that genes with κB elements were generally upregulated in alcoholics. No significant differences between alcoholics and controls were observed in the motor cortex. Conclusions We suggest that cycles of alcohol intoxication/withdrawal, which may initially activate NF-κB, when repeated over years downregulate RELA expression and NF-κB and p50 homodimer DNA-binding. Downregulation of the dominant p50 homodimer, a potent inhibitor of gene transcription apparently resulted in derepression of κB regulated genes. Alterations in expression of p50 homodimer/NF-κB regulated genes may contribute to neuroplastic adaptation underlying alcoholism. PMID:17895971

  11. Noggin regulation of bone morphogenetic protein (BMP) 2/7 heterodimer activity in vitro

    PubMed Central

    Zhu, Wei; Kim, Jaehon; Cheng, Christina; Rawlins, Bernard A.; Boachie-Adjei, Oheneba; Crystal, Ronald G.; Hidaka, Chisa

    2010-01-01

    Bone morphogenic proteins (BMPs) are growth factors important for skeletal development and bone growth. Noggin, one of the soluble BMP antagonists, regulates the action of BMPs on mesenchymal precursor cells, partially through a feedback type of inhibition. In this study, we constructed a novel BMP2/7 ‘fusion gene’ that encodes both BMP2 and BMP7 genes in tandem by a linker. Polymerase chain reaction (PCR) and Western blotting showed that the BMP2/7 fusion gene construct led to the production of BMP2/7 heterodimers in A549 ‘producer’ cells. When applied to C2C12 myoblastic cells, BMP2/7 heterodimers increased alkaline phosphatase (ALP) activity and osteocalcin (OCN) expression (markers of osteoblastic differentiation) more effectively than either BMP2 or BMP7 homodimers. Moreover, this heterodimer induced significantly lower levels of Noggin expression in C2C12 cells than respective homodimers at similar doses. The addition of Noggin did not affect the heterodimer’s activities in increasing osteoblastic differentiation in C2C12 cells. In contrast, BMP2 and BMP7 homodimers were largely inhibited by Noggin. Our finding suggests that the ‘fusion gene’ construct led to the production of bioactive BMP2/7 heterodimers, which were not antagonized by Noggin as effectively as it to BMP homodimers. The weaker Noggin antagonism on BMP heterodimers compared to homodimers may contribute to increased osteogenic potency of heterodimers in vitro and in vivo. PMID:16488673

  12. Evidence for Homodimerization of the c-Fos Transcription Factor in Live Cells Revealed by Fluorescence Microscopy and Computer Modeling

    PubMed Central

    Szalóki, Nikoletta; Krieger, Jan Wolfgang; Komáromi, István; Tóth, Katalin

    2015-01-01

    The c-Fos and c-Jun transcription factors, members of the activator protein 1 (AP-1) complex, form heterodimers and bind to DNA via a basic leucine zipper and regulate the cell cycle, apoptosis, differentiation, etc. Purified c-Jun leucine zipper fragments could also form stable homodimers, whereas c-Fos leucine zipper homodimers were found to be much less stable in earlier in vitro studies. The importance of c-Fos overexpression in tumors and the controversy in the literature concerning c-Fos homodimerization prompted us to investigate Fos homodimerization. Förster resonance energy transfer (FRET) and molecular brightness analysis of fluorescence correlation spectroscopy data from live HeLa cells transfected with fluorescent-protein-tagged c-Fos indicated that c-Fos formed homodimers. We developed a method to determine the absolute concentrations of transfected and endogenous c-Fos and c-Jun, which allowed us to determine dissociation constants of c-Fos homodimers (Kd = 6.7 ± 1.7 μM) and c-Fos–c-Jun heterodimers (on the order of 10 to 100 nM) from FRET titrations. Imaging fluorescence cross-correlation spectroscopy (SPIM-FCCS) and molecular dynamics modeling confirmed that c-Fos homodimers were stably associated and could bind to the chromatin. Our results establish c-Fos homodimers as a novel form of the AP-1 complex that may be an autonomous transcription factor in c-Fos-overexpressing tissues and could contribute to tumor development. PMID:26303532

  13. Absolute Quantitation of Intact Recombinant Antibody Product Variants Using Mass Spectrometry.

    PubMed

    Macchi, Frank D; Yang, Feng; Li, Charlene; Wang, Chenchen; Dang, Anh Nguyen; Marhoul, Joseph C; Zhang, Hui-min; Tully, Timothy; Liu, Hongbin; Yu, X Christopher; Michels, David A

    2015-10-20

    Accurate and precise quantitative measurement of product-related variants of a therapeutic antibody is essential for product development and testing. Bispecific antibodies (bsAbs) are Abs composed of two different half antibody arms, each of which recognizes a distinct target, and recently they have attracted substantial therapeutic interest. Because of the increased complexity of its structure and its production process, as compared to a conventional monoclonal antibody, additional product-related variants, including covalent and noncovalent homodimers of half antibodies (hAbs), may be present in the bsAb product. Sufficient separation and reliable quantitation of these bsAb homodimers using liquid chromatography (LC) or capillary electrophoresis-based methods is challenging because these homodimer species and the bsAb often have similar physicochemical properties. Formation of noncovalent homodimers and heterodimers can also occur. In addition, since homodimers share common sequences with their corresponding halves and bsAb, it is not suitable to use peptides as surrogates for their quantitation. To tackle these analytical challenges, we developed a mass spectrometry-based quantitation method. Chip-based nanoflow LC-time-of-flight mass spectrometry coupled with a standard addition approach provided unbiased absolute quantitation of these drug-product-related variants. Two methods for the addition of known levels of standard (multi- or single-addition) were evaluated. Both methods demonstrated accurate and reproducible quantitation of homodimers at the 0.2% (w/w) level, with the single-addition method having the promise of higher analytical throughput. PMID:26376221

  14. Evidence for Homodimerization of the c-Fos Transcription Factor in Live Cells Revealed by Fluorescence Microscopy and Computer Modeling.

    PubMed

    Szalóki, Nikoletta; Krieger, Jan Wolfgang; Komáromi, István; Tóth, Katalin; Vámosi, György

    2015-11-01

    The c-Fos and c-Jun transcription factors, members of the activator protein 1 (AP-1) complex, form heterodimers and bind to DNA via a basic leucine zipper and regulate the cell cycle, apoptosis, differentiation, etc. Purified c-Jun leucine zipper fragments could also form stable homodimers, whereas c-Fos leucine zipper homodimers were found to be much less stable in earlier in vitro studies. The importance of c-Fos overexpression in tumors and the controversy in the literature concerning c-Fos homodimerization prompted us to investigate Fos homodimerization. Förster resonance energy transfer (FRET) and molecular brightness analysis of fluorescence correlation spectroscopy data from live HeLa cells transfected with fluorescent-protein-tagged c-Fos indicated that c-Fos formed homodimers. We developed a method to determine the absolute concentrations of transfected and endogenous c-Fos and c-Jun, which allowed us to determine dissociation constants of c-Fos homodimers (Kd = 6.7 ± 1.7 μM) and c-Fos-c-Jun heterodimers (on the order of 10 to 100 nM) from FRET titrations. Imaging fluorescence cross-correlation spectroscopy (SPIM-FCCS) and molecular dynamics modeling confirmed that c-Fos homodimers were stably associated and could bind to the chromatin. Our results establish c-Fos homodimers as a novel form of the AP-1 complex that may be an autonomous transcription factor in c-Fos-overexpressing tissues and could contribute to tumor development. PMID:26303532

  15. Crystal Structure of a Complex of NOD1 CARD and Ubiquitin

    PubMed Central

    Ver Heul, Aaron M.; Gakhar, Lokesh; Piper, Robert C.; Subramanian, Ramaswamy

    2014-01-01

    The Caspase Recruitment Domain (CARD) from the innate immune receptor NOD1 was crystallized with Ubiquitin (Ub). NOD1 CARD was present as a helix-swapped homodimer similar to other structures of NOD1 CARD, and Ub monomers formed a homodimer similar in conformation to Lys48-linked di-Ub. The interaction between NOD1 CARD and Ub in the crystal was mediated by novel binding sites on each molecule. Comparisons of these sites to previously identified interaction surfaces on both molecules were made along with discussion of their potential functional significance. PMID:25127239

  16. The neuropeptide bursicon acts in cuticle metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bursicon is a heterodimeric neuropeptide formed of bursicon a (burs a) and bursicon B (burs B) that controls cuticle tanning and wing expansion in insects. Burs a-a and burs B-B homodimers are also formed; they act via an unknown receptor to induce expression of prophylactic immune and stress genes ...

  17. Both Homo and Heterodimers of Marek's Disease Virus Encoded Meq Protein Contribute to Transformation of Lymphocytes in Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus (MDV) elicits T-cell lymphomas in chickens. The MDV genome encodes an oncoprotein, Meq, with similarity to the Jun/Fos family of proteins. Similar to Jun, the leucine zipper region of Meq allows the formation of homo- and heterodimers. We have previously shown that Meq homodime...

  18. Mechanisms of Ricin Toxin Neutralization Revealed through Engineered Homodimeric and Heterodimeric Camelid Antibodies.

    PubMed

    Herrera, Cristina; Tremblay, Jacqueline M; Shoemaker, Charles B; Mantis, Nicholas J

    2015-11-13

    Novel antibody constructs consisting of two or more different camelid heavy-chain only antibodies (VHHs) joined via peptide linkers have proven to have potent toxin-neutralizing activity in vivo against Shiga, botulinum, Clostridium difficile, anthrax, and ricin toxins. However, the mechanisms by which these so-called bispecific VHH heterodimers promote toxin neutralization remain poorly understood. In the current study we produced a new collection of ricin-specific VHH heterodimers, as well as VHH homodimers, and characterized them for their ability neutralize ricin in vitro and in vivo. We demonstrate that the VHH heterodimers, but not homodimers were able to completely protect mice against ricin challenge, even though the two classes of antibodies (heterodimers and homodimers) had virtually identical affinities for ricin holotoxin and similar IC50 values in a Vero cell cytotoxicity assay. The VHH heterodimers did differ from the homodimers in their ability to promote toxin aggregation in solution, as revealed through analytical ultracentrifugation. Moreover, the VHH heterodimers that were most effective at promoting ricin aggregation in solution were also the most effective at blocking ricin attachment to cell surfaces. Collectively, these data suggest that heterodimeric VHH-based neutralizing agents may function through the formation of antibody-toxin complexes that are impaired in their ability to access host cell receptors. PMID:26396190

  19. Substitution of specific cysteine residues in E1 glycoprotein of classical swine fever virus strain Brescia affects formation of E1-E2 heterodimers and alters virulence in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    E1, along with E^rns and E2, is one of the three envelope glycoproteins of Classical Swine Fever Virus (CSFV). E1 and E2 are anchored to the virus envelope at their carboxyl termini and E^rns loosely associates with the viral envelope. In infected cells, E2 forms homodimers and heterodimers with E1,...

  20. Identification and Characterization of a Novel Estrogenic Ligand Actinopolymorphol A

    PubMed Central

    Powell, Emily; Huang, Sheng-Xiong; Xu, Yong; Rajski, Scott R.; Wang, Yidan; Peters, Noel; Guo, Song; Xu, H. Eric; Hoffmann, F. Michael; Shen, Ben; Xu, Wei

    2010-01-01

    Xenoestrogenic compounds are abundant in the modern environment including phytoestrogens from plants, chemical by-products from industry, and secondary metabolites from microbes; all can profoundly affect human health. Consequently mechanism-based screens are urgently needed to improve the rate at which the xenoestrogens are discovered. Estrogen Receptor (ER) dimerization is required for target gene transcription. The three ER dimer pairs (ERα/α homodimers, ERβ/β homodimers, and ERα/β heterodimers) exhibit diverse physiological responses in response to ligand-dependent activation with ERα/α homodimers being pro-proliferative and ERβ/β homodimers being anti-proliferative. The biological role of the ERα/β heterodimer remains unclear. We previously developed a cell-based, bioluminescence resonance energy transfer (BRET) assay that can distinguish natural estrogenic compounds based on their abilities to activate the three diverse ER dimer pairs. Using BRET assays, we sought to identify novel xenoestrogens from soil bacteria that preferentially activate ERα/β heterodimer with hopes of shedding light on the biological function of this elusive dimer pair. Here we describe the application of BRET assays in high throughput screens of crude bacterial extracts not previously screened for ER modulatory function and originating from unique ecological niches. Here we report the discovery and biological evaluation of a new natural product, actinopolymorphol A (1), that preferentially induces ERα/β dimerization. Actinopolymorphol A represents the first representative of a new ER modulatory scaffold. PMID:20599778

  1. Diversification of Paralogous α-Isopropylmalate Synthases by Modulation of Feedback Control and Hetero-Oligomerization in Saccharomyces cerevisiae

    PubMed Central

    Quezada, Héctor; Duhne, Mariana; González, James; Lezama, Mijail; El-Hafidi, Mohammed; Colón, Maritrini; Martínez de la Escalera, Ximena; Flores-Villegas, Mirelle Citlali; Scazzocchio, Claudio; DeLuna, Alexander; González, Alicia

    2015-01-01

    Production of α-isopropylmalate (α-IPM) is critical for leucine biosynthesis and for the global control of metabolism. The budding yeast Saccharomyces cerevisiae has two paralogous genes, LEU4 and LEU9, that encode α-IPM synthase (α-IPMS) isozymes. Little is known about the biochemical differences between these two α-IPMS isoenzymes. Here, we show that the Leu4 homodimer is a leucine-sensitive isoform, while the Leu9 homodimer is resistant to such feedback inhibition. The leu4Δ mutant, which expresses only the feedback-resistant Leu9 homodimer, grows slowly with either glucose or ethanol and accumulates elevated pools of leucine; this phenotype is alleviated by the addition of leucine. Transformation of the leu4Δ mutant with a centromeric plasmid carrying LEU4 restored the wild-type phenotype. Bimolecular fluorescent complementation analysis showed that Leu4-Leu9 heterodimeric isozymes are formed in vivo. Purification and kinetic analysis showed that the hetero-oligomeric isozyme has a distinct leucine sensitivity behavior. Determination of α-IPMS activity in ethanol-grown cultures showed that α-IPM biosynthesis and growth under these respiratory conditions depend on the feedback-sensitive Leu4 homodimer. We conclude that retention and further diversification of two yeast α-IPMSs have resulted in a specific regulatory system that controls the leucine–α-IPM biosynthetic pathway by selective feedback sensitivity of homomeric and heterodimeric isoforms. PMID:25841022

  2. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    E2, along with E^rns and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions including cell attachment, host range susceptibility and virulence in natural hosts. In infected cells, E2 forms homodimers as well as heterodimers with E1, media...

  3. Zebra reaction or the recipe for the synthesis of heterodimeric zinc complexes.

    PubMed

    Jędrzkiewicz, D; Ejfler, J; John, Ł; Szafert, S

    2016-02-21

    A series of asymmetric heterodimeric zinc complexes have been synthesized in a direct reaction between conformationally flexible chiral/achiral homodimers. The cooperative activity of steric factors and coordination codes resulted in an intriguing chiral self-sorting process. Herein, we are reporting our recent exploration of the first example of such a type of reaction. PMID:26658768

  4. Tomato gamma-glutamylhydrolases: expression, characterization, and evidence for heterodimer formation.

    PubMed

    Akhtar, Tariq A; McQuinn, Ryan P; Naponelli, Valeria; Gregory, Jesse F; Giovannoni, James J; Hanson, Andrew D

    2008-10-01

    Folates typically have gamma-linked polyglutamyl tails that make them better enzyme substrates and worse transport substrates than the unglutamylated forms. The tail can be shortened or removed by the vacuolar enzyme gamma-glutamyl hydrolase (GGH). It is known that GGH is active only as a dimer and that plants can have several GGH genes whose homodimeric products differ functionally. However, it is not known whether GGH dimers dissociate under in vivo conditions, whether heterodimers form, or how heterodimerization impacts enzyme activity. These issues were explored using the GGH system of tomato (Solanum lycopersicum). Tomato has three GGH genes that, like those in other eudicots, apparently diverged recently. LeGGH1 and LeGGH2 are expressed in fruit and all other organs, whereas LeGGH3 is expressed mainly in flower buds. LeGGH1 and LeGGH2 homodimers differ in bond cleavage preference; the LeGGH3 homodimer is catalytically inactive. Homodimers did not dissociate in physiological conditions. When coexpressed in Escherichia coli, LeGGH1 and LeGGH2 formed heterodimers with an intermediate bond cleavage preference, whereas LeGGH3 formed heterodimers with LeGGH1 or LeGGH2 that had one-half the activity of the matching homodimer. E. coli cells expressing LeGGH2 showed approximately 85% reduction in folate polyglutamates, but cells expressing LeGGH3 did not, confirming that LeGGH2 can function in vivo and LeGGH3 cannot. The formation of LeGGH1-LeGGH2 heterodimers was demonstrated in planta using bimolecular fluorescence complementation. Plant GGH heterodimers thus appear to form wherever different GGH genes are expressed simultaneously and to have catalytic characteristics midway between those of the corresponding homodimers. PMID:18757550

  5. A novel proximity assay for the detection of proteins and protein complexes: quantitation of HER1 and HER2 total protein expression and homodimerization in formalin-fixed, paraffin-embedded cell lines and breast cancer tissue.

    PubMed

    Shi, Yining; Huang, Weidong; Tan, Yuping; Jin, Xueguang; Dua, Rajiv; Penuel, Elicia; Mukherjee, Ali; Sperinde, Jeff; Pannu, Herjit; Chenna, Ahmed; DeFazio-Eli, Lisa; Pidaparthi, Sailaja; Badal, Youssouf; Wallweber, Gerald; Chen, Lili; Williams, Steve; Tahir, Hasan; Larson, Jeff; Goodman, Laurie; Whitcomb, Jeannette; Petropoulos, Christos; Winslow, John

    2009-03-01

    The availability of drugs targeting the EGFR/HER/erbB signaling pathway has created a need for diagnostics that accurately predict treatment responses. We have developed and characterized a novel assay to provide sensitive and quantitative measures of HER proteins and homodimers in formalin-fixed, paraffin-embedded (FFPE) cell lines and breast tumor tissues, to test these variables. In the VeraTag assay, HER proteins and homodimers are detected through the release of fluorescent tags conjugated to specific HER antibodies, requiring proximity to a second HER antibody. HER2 protein quantification was normalized to tumor area, and compared to receptor numbers in 12 human tumor cell lines determined by fluorescence-activated cell sorting (FACS), and with HER immunohistochemistry (IHC) test categories and histoscores in cell lines and 170 breast tumors. HER1 and HER2 expression levels determined by the VeraTag assay are proportional to receptor number over more than a 2 log10 range, and HER homodimer levels are consistent with crosslinking and immunoprecipitation results. VeraTag HER2 measurements of breast tumor tissue and cell lines correlate with standard IHC test categories (P<0.001). VeraTag HER2 levels also agree with IHC histoscores at lower HER2 protein levels, but are continuous and overlapping between IHC test categories, extending the dynamic range 5-fold to 10-fold at higher HER2 levels. The VeraTag assay specifically and reproducibly measures HER1 and HER2 protein and homodimers in FFPE tissues. The continuous measure of HER2 protein levels over a broad dynamic range, and the novel HER2 homodimer measure, are presently being assessed as predictive markers for responses to targeted HER2 therapy. PMID:19214113

  6. Takayasu's Arteritis and Crohn's Disease in a Young Hispanic Female

    PubMed Central

    Saurabh, Shireesh; Tan, Irene J.

    2014-01-01

    Takayasu's arteritis (TA) and Crohn's disease (CD) are chronic inflammatory granulomatous disorders of undetermined etiology. TA is a large vessel vasculitis with a predilection for the aorta and its branches in young women of Asian descent; whereas CD has characteristic gastrointestinal manifestations more prevalent in young Caucasians. We describe a case of both diseases in a young Hispanic female, review the literature, and impart new insight on possible genetic linkage and the role of interleukin 12 B (IL-12B) as the common autoimmune mechanism and potential therapeutic target in this rare disease combination. PMID:25152825

  7. New targeted therapies such as anti-adhesion molecules, anti-IL-12/23 and anti-Janus kinases are looking toward a more effective treatment of inflammatory bowel disease.

    PubMed

    Bravatà, Ivana; Fiorino, Gionata; Allocca, Mariangela; Repici, Alessandro; Danese, Silvio

    2015-01-01

    Antitumor necrosis factor α agents have dramatically changed the management of inflammatory bowel disease (IBD). However, a significant proportion of patients does not respond or lose response over time. Hence, there is an urgent need for new molecules, with different mechanisms of action, and with a targeted and more effective approach. These new drugs include either small molecules or biological agents. We describe the three most promising classes of molecules in the field of IBD: anti-adhesion, anti-interleukin 12/23 and anti-Janus Kinases therapies. PMID:25523561

  8. Interleukin-17 inhibitors. A new era in treatment of psoriasis and other skin diseases

    PubMed Central

    Wasilewska, Agnieszka; Winiarska, Marta; Olszewska, Małgorzata

    2016-01-01

    Psoriasis is a chronic skin disease caused by the excessive secretion of inflammatory cytokines. Available therapeutic options include biologic drugs such as tumor necrosis factor alpha inhibitors and interleukin 12/23 (IL-12/23) inhibitors. The recent discovery of IL-17, which contributes to development of psoriasis, opened new possibilities for further treatment modalities. Currently, one anti-IL17 biological agent is approved for the treatment – a fully human monoclonal antibody that targets IL-17A (secukinumab). Further clinical trials, including a humanized IgG4 specific for IL-17 (ixekizumab) and a fully human antibody that targets the IL-17 receptor A (brodalumab). PMID:27605893

  9. Interleukin-17 inhibitors. A new era in treatment of psoriasis and other skin diseases.

    PubMed

    Wasilewska, Agnieszka; Winiarska, Marta; Olszewska, Małgorzata; Rudnicka, Lidia

    2016-08-01

    Psoriasis is a chronic skin disease caused by the excessive secretion of inflammatory cytokines. Available therapeutic options include biologic drugs such as tumor necrosis factor alpha inhibitors and interleukin 12/23 (IL-12/23) inhibitors. The recent discovery of IL-17, which contributes to development of psoriasis, opened new possibilities for further treatment modalities. Currently, one anti-IL17 biological agent is approved for the treatment - a fully human monoclonal antibody that targets IL-17A (secukinumab). Further clinical trials, including a humanized IgG4 specific for IL-17 (ixekizumab) and a fully human antibody that targets the IL-17 receptor A (brodalumab). PMID:27605893

  10. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells

    PubMed Central

    Ma, Xiaojing; Yan, Wenjun; Zheng, Hua; Du, Qinglin; Zhang, Lixing; Ban, Yi; Li, Na; Wei, Fang

    2015-01-01

    Interleukin-10 and Interleukin-12 are produced primarily by pathogen-activated antigen-presenting cells, particularly macrophages and dendritic cells. IL-10 and IL-12 play very important immunoregulatory roles in host defense and immune homeostasis. Being anti- and pro-inflammatory in nature, respectively, their functions are antagonistically opposing. A comprehensive and in-depth understanding of their immunological properties and signaling mechanisms will help develop better clinical intervention strategies in therapy for a wide range of human disorders. Here, we provide an update on some emerging concepts, controversies, unanswered questions, and opinions regarding the immune signaling of IL-10 and IL-12. PMID:26918147

  11. Identification and expression analysis of two interleukin-23α (p19) isoforms, in rainbow trout Oncorhynchus mykiss and Atlantic salmon Salmo salar.

    PubMed

    Jiang, Yousheng; Husain, Mansourah; Qi, Zhitao; Bird, Steve; Wang, Tiehui

    2015-08-01

    Interleukin (IL)-23 is a heterodimeric IL-12 family cytokine composed of a p19 α-chain, linked to a p40 β-chain that is shared with IL-12. IL-23 is distinguished functionally from IL-12 by its ability to induce the production of IL-17, and differentiation of Th17 cells in mammals. Three isoforms of p40 (p40a, p40b and p40c) have been found in some 3R teleosts. Salmonids also possess three p40 isoforms (p40b1, p40b2 and p40c) although p40a is missing, and two copies (paralogues) of p40b are present that have presumably been retained following the 4R duplication in this fish lineage. Teleost p19 has been discovered recently in zebrafish, but to date there is limited information on expression and modulation of this molecule. In this report we have cloned two p19 paralogues (p19a and p19b) in salmonids, suggesting that a salmonid can possess six potential IL-23 isoforms. Whilst Atlantic salmon has two active p19 genes, the rainbow trout p19b gene may have been pseudogenized. The salmonid p19 translations share moderate identities (22.8-29.9%) to zebrafish and mammalian p19 molecules, but their identity was supported by structural features, a conserved 4 exon/3 intron gene organisation, and phylogenetic tree analysis. The active salmonid p19 genes are highly expressed in blood and gonad. Bacterial (Yersinia ruckeri) and viral infection in rainbow trout induces the expression of p19a, suggesting pathogen-specific induction of IL-23 isoforms. Trout p19a expression was also induced by PAMPs (poly IC and peptidoglycan) and the proinflammatory cytokine IL-1β in primary head kidney macrophages. These data may indicate diverse functional roles of trout IL-23 isoforms in regulating the immune response in fish. PMID:25841173

  12. IL12B expression is sustained by a heterogenous population of myeloid lineages during tuberculosis

    PubMed Central

    Reeme, Allison E.; Miller, Halli E.; Robinson, Richard T.

    2015-01-01

    Summary IL12B is required for resistance to Mycobacterium tuberculosis (Mtb) infection, promoting the initiation and maintenance of Mtb-specific effector responses. While this makes the IL12-pathway an attractive target for experimental tuberculosis (TB) therapies, data regarding what lineages express IL12B after infection is established are limited. This is not obvious in the lung, an organ in which both hematopoietic and non-hematopoietic lineages produce IL12p40 upon pathogen encounter. Here, we use radiation bone marrow chimeras and Yet40 reporter mice to determine what lineages produce IL12p40 during experimental TB. We observed that hematopoietic IL12p40-production was sufficient to control Mtb, with no contribution by non-hematopoietic lineages. Furthermore, rather than being produced by a single subset, IL12p40 was produced by cells that were heterogenous in their size, granularity, autofluorescence and expression of CD11c, CD11b and CD8α. While depending on the timepoint and tissue examined, the surface phenotype of IL12p40-producers most closely resembled macrophages based on previous surveys of lung myeloid lineages. Importantly, depletion of CDllchi cells during infection had no affect on lung IL12p40-concentrations. Collectively, our data demonstrate that IL12p40 production is sustained by a heterogenous population of myeloid lineages during experimental TB, and that redundant mechanisms of IL12p40-production exist when CD11chi lineages are absent. PMID:23491716

  13. Exercise improves the Th1 response by modulating cytokine and NO production in BALB/c mice.

    PubMed

    Terra, R; Alves, P J F; Gonçalves da Silva, S A; Salerno, V P; Dutra, P M L

    2013-07-01

    Physical exercise can improve health and may lead to changes in the functionality of the immune system. Moderate intensity exercise can reduce the risk of infection by shifting the overall immune response towards a T helper type 1 pattern. This study investigates the effect of 12 weeks of swimming on the cytokine profile of lymph node cells and macrophages and of the nitric oxide production by these cells. BALB/c mice were divided into 2 groups. The exercise group was subjected to swimming exercise. Lymph node cells culture showed that concentrations of interferon-γ and tumour necrosis factor-α were higher in the exercised group, while levels of interleukine-4 and interleukine-10 were significantly decreased in this group. The interleukine-10/interferon-γ ratio tended towards a T helper type 1 profile. Moreover, macrophages isolated from exercised mice produced more interleukine-12 and tumour necrosis factor-α following lipopolysaccharide stimulus. Challenging these macrophages with Leishmania major resulted in higher interleukine-12 production than was observed with macrophages from the control group. Nitric oxide production was increased in macrophages isolated from exercised group following lipopolysaccharide stimulus but not following infection with Leishmania major. These data suggest that exercise biases the immune system towards a T helper type 1 response profile. PMID:23258605

  14. Effects of physical therapy on cytokines and two color analysis-lymphocyte subsets in patients with cerebrovascular diseases.

    PubMed

    Kurabayashi, H; Machida, I; Handa, H; Yoshida, Y; Akiba, T; Itoh, K; Tamura, J; Kubota, K

    1999-01-01

    The effects of physical therapy on immunological parameters were evaluated in 12 patients (8 males and 4 females, 69.2 +/- 9.0 years) with cerebrovascular diseases in a stable situation two to three months after the onset of stroke who entered in our hospital between 1994 and 1997. After a two-month physical therapy program, the proportions of helper-inducer T (Thi) cells and suppressor-inducer T (Tsi) cells were increased significantly and that of cytotoxic T (Tc) cells was decreased, although those of HLA-DR+, suppressor T (Ts) and activated T (Tac) cells were not changed. The antibody dependent cellular cytotoxicity (ADCC) was significantly increased, although natural killer (NK) cell activity was not changed. The serum levels of interleukin-2 receptor was significantly increased but those of interleukin-2, interleukin-6 and interleukin-12 were not changed. The serum levels of interleukin-10, interleukin-12 and tumor necrosis factor-alpha were not detectable, while interleukin-1beta was decreased in 2 patients and interleukin-10 was increased in 2 patients. These findings suggest that daily physical exercise may activate the immune system possibly through the cytokine network in patients with cerebrovascular diseases (CVD). PMID:10515238

  15. Isolation of a nucleocapsid polypeptide of herpes simplex virus types 1 and 2 possessing immunologically type-specific and cross-reactive determinants.

    PubMed

    Heilman, C J; Zweig, M; Stephenson, J R; Hampar, B

    1979-01-01

    A polypeptide (p40) of approximately 40,000 molecular weight was isolated from herpes simplex virus type 1 and 2 nucleocapsids by gel filtration and ion exchange chromatography. This protein appears to be the same as protein 22a described previously (Gibson and Roizman, J. Virol. 10:1044--1052, 1972). Competition immunoassays were developed by using purified p40 and antisera prepared in guinea pigs. The assays indicated that the p40's from herpes simplex virus types 1 and 2 possess both type-specific and cross-reactive antigenic determinants. Antibodies to the p40 cross-reactive determinant reacted with antigens in simian herpes virus SA8-infected cells, but not with antigens induced by pseudorabies virus. Preliminary results indicated that a radioimmunoprecipitation test can be used to detect type-specific herpes simplex virus p40 antibodies in human sera. PMID:85720

  16. The X-ray structures of two mutant crystallin domains shed light on the evolution of multi-domain proteins.

    PubMed

    Norledge, B V; Mayr, E M; Glockshuber, R; Bateman, O A; Slingsby, C; Jaenicke, R; Driessen, H P

    1996-03-01

    We use protein engineering and crystallography to simulate aspects of the early evolution of beta gamma-crystallins by observing how a single domain oligomerizes in response to changes in a sequence extension. The crystal structure of the C-terminal domain of gamma beta-crystallin with its four-residue C-terminal extension shows that the domain does not form a symmetric homodimer analogous to the two-domain pairing in beta gamma-crystallins. Instead the C-terminal extension now forms heterologous interactions with other domains leading to the solvent exposure of the natural hydrophobic interface with a consequent loss in protein solubility. However, this domain truncated by just the C-terminal tyrosine forms a symmetric homodimer of domains in the crystal lattice. PMID:8605629

  17. Receptor domains involved in signal transduction of prolactin and growth hormone

    SciTech Connect

    Kelly, P.A.; Edery, M.; Finidori, J.

    1994-12-31

    Prolactin (PRL) and growth hormone (GH) receptors are members of a superfamily that include receptors for a number of cytokines. GH and its receptor form an unusual homodimer consisting of one molecule of GH and two molecules of receptor. A similar homodimer of the PRL receptor is probably required for biological effects to be seen. Using specific assays to measure the functional activity of PRL and GH receptors, a 25 amino acid juxtamembrane region has been identified as essential but not sufficient for normal action. More detailed studies have limited the region to eight amino acids, rich in prolines, that is highly conserved in many members of the receptor superfamily. Finally, GH and PRL have been shown to induce the rapid tyrosine phosphorylation of an associated kinase, Janus kinase 2, and of the receptor itself. 28 refs., 1 fig.

  18. Crystal structures of the coil 2B fragment and the globular tail domain of human lamin B1

    SciTech Connect

    Ruan, Jianbin; Xu, Chao; Bian, Chuanbing; Lam, Robert; Wang, Jia-Pey; Kania, Joanna; Min, Jinrong; Zang, Jianye

    2012-07-18

    We present here the crystal structures of human lamin B1 globular tail domain and coiled 2B domain, which adopt similar folds to Ig-like domain and coiled-coil domain of lamin A, respectively. Despite the overall similarity, we found an extra intermolecular disulfide bond in the lamin B1 coil 2B domain, which does not exist in lamin A/C. In addition, the structural analysis indicates that interactions at the lamin B1 homodimer interface are quite different from those of lamin A/C. Thus our research not only reveals the diversely formed homodimers among lamin family members, but also sheds light on understanding the important roles of lamin B1 in forming the nuclear lamina matrix.

  19. Functional and Structural Characterization of the Antiphagocytic Properties of a Novel Transglutaminase from Streptococcus suis*

    PubMed Central

    Yu, Jie; Pian, Yaya; Ge, Jingpeng; Guo, Jie; Zheng, Yuling; Jiang, Hua; Hao, Huaijie; Yuan, Yuan; Jiang, Yongqiang; Yang, Maojun

    2015-01-01

    Streptococcus suis serotype 2 (Ss2) is an important swine and human zoonotic pathogen. In the present study, we identified a novel secreted immunogenic protein, SsTGase, containing a highly conserved eukaryotic-like transglutaminase (TGase) domain at the N terminus. We found that inactivation of SsTGase significantly reduced the virulence of Ss2 in a pig infection model and impaired its antiphagocytosis in human blood. We further solved the crystal structure of the N-terminal portion of the protein in homodimer form at 2.1 Å. Structure-based mutagenesis and biochemical studies suggested that disruption of the homodimer directly resulted in the loss of its TGase activity and antiphagocytic ability. Characterization of SsTGase as a novel virulence factor of Ss2 by acting as a TGase would be beneficial for developing new therapeutic agents against Ss2 infections. PMID:26085092

  20. Functional expression of miraculin, a taste-modifying protein in Escherichia coli.

    PubMed

    Matsuyama, Tomomi; Satoh, Makiko; Nakata, Rieko; Aoyama, Takashi; Inoue, Hiroyasu

    2009-04-01

    Miraculin isolated from red berries of Richadella dulcifica, a native shrub of West Africa, has the unusual property of modifying a sour taste into a sweet one. This homodimer protein consists of two glycosylated polypeptides that are cross-linked by a disulfide bond. Recently, functional expression of miraculin was reported in host cells with the ability to glycosylate proteins, such as lettuce, tomato and the microbe Aspergillus oryzae, but not Escherichia coli. Thus, a question remains as to whether glycosylation of miraculin is essential for its taste-modifying properties. Here we show that recombinant miraculin expressed in E. coli has taste-modifying properties as a homodimer, not as a monomer, indicating that glycosylation is not essential for the taste-modifying property. PMID:19122203

  1. Positive Control Mutations in the MyoD Basic Region Fail to Show Cooperative DNA Binding and Transcriptional Activation in vitro

    NASA Astrophysics Data System (ADS)

    Bengal, Eyal; Flores, Osvaldo; Rangarajan, Pundi N.; Chen, Amy; Weintraub, Harold; Verma, Inder M.

    1994-06-01

    An in vitro transcription system from HeLa cells has been established in which MyoD and E47 proteins activate transcription both as homodimers and heterodimers. However, heterodimers activate transcription more efficiently than homodimers, and function synergistically from multiple binding sites. Positive control mutants in the basic region of MyoD that have previously been shown to be defective in initiating the myogenic program, can bind DNA but have lost their ability to function as transcriptional activators in vitro. Additionally, positive control mutants, unlike wild-type MyoD, fail to bind cooperatively to DNA. We propose that binding of MyoD complexes to high affinity MyoD binding sites induces conformational changes that facilitate cooperative binding to multiple sites and promote transcriptional activation.

  2. Density functional theory study of adsorption and dissociation of HfCl4 and H2O on Ge /Si(100)-(2×1): Initial stage of atomic layer deposition of HfO2 on SiGe surface

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Lu, Hong-Liang; Zhang, David Wei; Xu, Min; Ren, Jie; Zhang, Jian-Yun; Wang, Ji-Tao; Wang, Li-Kang

    2005-04-01

    We have investigated adsorption and dissociation of water and HfCl4 on Ge /Si(100)-(2×1) surface with density functional theory. The Si-Ge heterodimer and Ge-Ge homodimer are employed to represent the Si1-xGex surface. The activation energy for adsorption of water on Ge-Ge homodimer is much higher than that on Si-Ge heterodimer. No net activation barrier exists during the adsorption of HfCl4 on both SiGe surface dimers. The differences in the potential energy surface between reactions on Si-Ge and Ge-Ge dimers are due to different bond strengths. It should also be noticed that the activation energy for HfCl4 is quite flat, thus HfCl4 adsorbs and dissociates on Ge /Si(100)-(2×1) easily.

  3. The GPCR heterotetramer: challenging classical pharmacology.

    PubMed

    Ferré, Sergi

    2015-03-01

    Two concepts are gaining increasing acceptance in G protein-coupled receptor (GPCR) pharmacology: (i) pre-coupling of GPCRs with their preferred signaling molecules, and (ii) GPCR oligomerization. This is begging for the introduction of new models such as GPCR oligomer-containing signaling complexes with GPCR homodimers as functional building blocks. This model favors the formation of GPCR heterotetramers - heteromers of homodimers coupled to their cognate G protein. The GPCR heterotetramer offers an optimal framework for a canonical antagonistic interaction between activated Gs and Gi proteins, which can simultaneously bind to their respective preferred receptors and to adenylyl cyclase (AC) catalytic units. This review addresses the current evidence for pre-coupling of the various specific components that provide the very elaborate signaling machinery exemplified by the Gs-Gi-AC-coupled GPCR heterotetramer. PMID:25704194

  4. In vivo phosphorylation and in vitro autophosphorylation-inactivation of Kluyveromyces lactis hexokinase KlHxk1.

    PubMed

    Kettner, Karina; Kuettner, E Bartholomeus; Otto, Albrecht; Lilie, Hauke; Golbik, Ralph P; Sträter, Norbert; Kriegel, Thomas M

    2013-05-31

    The bifunctional hexokinase KlHxk1 is a key component of glucose-dependent signal transduction in Kluyveromyces lactis. KlHxk1 is phosphorylated in vivo and undergoes ATP-dependent autophosphorylation-inactivation in vitro. This study identifies serine-15 as the site of in vivo phosphorylation and serine-157 as the autophosphorylation-inactivation site. X-ray crystallography of the in vivo phosphorylated enzyme indicates the existence of a ring-shaped symmetrical homodimer carrying two phosphoserine-15 residues. In contrast, small-angle X-ray scattering and equilibrium sedimentation analyses reveal the existence of monomeric phosphoserine-15 KlHxk1 in solution. While phosphorylation at serine-15 and concomitant homodimer dissociation are likely to be involved in glucose signalling, mechanism and putative physiological significance of KlHxk1 inactivation by autophosphorylation at serine-157 remain to be established. PMID:23583397

  5. The Dimerization State of the Mammalian High Mobility Group Protein AT-Hook 2 (HMGA2)

    PubMed Central

    Frost, Lorraine; Baez, Maria A. M.; Harrilal, Christopher; Garabedian, Alyssa; Fernandez-Lima, Francisco; Leng, Fenfei

    2015-01-01

    The mammalian high mobility group protein AT-hook 2 (HMGA2) is a chromosomal architectural transcription factor involved in cell transformation and oncogenesis. It consists of three positively charged “AT-hooks” and a negatively charged C-terminus. Sequence analyses, circular dichroism experiments, and gel-filtration studies showed that HMGA2, in the native state, does not have a defined secondary or tertiary structure. Surprisingly, using combined approaches of 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) chemical cross-linking, analytical ultracentrifugation, fluorescence resonance energy transfer (FRET), and mass spectrometry, we discovered that HMGA2 is capable of self-associating into homodimers in aqueous buffer solution. Our results showed that electrostatic interactions between the positively charged “AT-hooks” and the negatively charged C-terminus greatly contribute to the homodimer formation. PMID:26114780

  6. Snyder-Robinson Syndrome: Rescuing the Disease-Causing Effect of G56S mutant by Small Molecule Binding

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Martiny, Virginie; Lagorce, David; Alexov, Emil; Miteva, Maria; Clemson University Team; Université Paris Diderot Team

    2013-03-01

    Snyder-Robinson Syndrome (SRS) is an X-linked mental retardation disorder, which is caused by defects in a particular gene coding for the spermine synthase (SMS) protein. Among the missense mutations known to be disease-causing is the G56S, which is positioned at the interface of the SMS homo-dimer. Previous computational and experimental investigations have shown that G56S mutation destabilizes the homo-dimer and thus greatly reduces the SMS enzymatic activity. In this study, we explore the possibility of mitigating the effect of G56S mutation by binding small molecules to suitable pockets around the mutation site. It is done by combined efforts of molecular dynamics simulations and in silico screening. The binding of selected molecules was calculated to fully compensate the effect of the mutation and rescue the wild type dimer affinity. This work was supported by NIH, NLM grant. No. 1R03LM009748

  7. Crystal structure of calpain-3 penta-EF-hand (PEF) domain - a homodimerized PEF family member with calcium bound at the fifth EF-hand.

    PubMed

    Partha, Sarathy K; Ravulapalli, Ravikiran; Allingham, John S; Campbell, Robert L; Davies, Peter L

    2014-07-01

    Calpains are Ca(2+) dependent intracellular cysteine proteases that cleave a wide range of protein substrates to help implement Ca(2+) signaling in the cell. The major isoforms of this enzyme family, calpain-1 and calpain-2, are heterodimers of a large and a small subunit, with the main dimer interface being formed through their C-terminal penta-EF hand (PEF) domains. Calpain-3, or p94, is a skeletal muscle-specific isoform that is genetically linked to limb-girdle muscular dystrophy. Biophysical and modeling studies with the PEF domain of calpain-3 support the suggestion that full-length calpain-3 exists as a homodimer. Here, we report the crystallization of calpain-3's PEF domain and its crystal structure in the presence of Ca(2+) , which provides evidence for the homodimer architecture of calpain-3 and supports the molecular model that places a protease core at either end of the elongated dimer. Unlike other calpain PEF domain structures, the calpain-3 PEF domain contains a Ca(2+) bound at the EF5-hand used for homodimer association. Three of the four Ca(2+) -binding EF-hands of the PEF domains are concentrated near the protease core, and have the potential to radically change the local charge within the dimer during Ca(2+) signaling. Examination of the homodimer interface shows that there would be steric clashes if the calpain-3 large subunit were to try to pair with a calpain small subunit. Database Structural data are available in the Protein Data Bank database under accession number 4OKH. PMID:24846670

  8. Identification of BECN1 and ATG14 Coiled-Coil Interface Residues That Are Important for Starvation-Induced Autophagy.

    PubMed

    Mei, Yang; Su, Minfei; Sanishvili, Ruslan; Chakravarthy, Srinivas; Colbert, Christopher L; Sinha, Sangita C

    2016-08-01

    Autophagy, an essential eukaryotic homeostasis pathway, allows the sequestration of unwanted, damaged, or harmful cytoplasmic components in vesicles called autophagosomes, permitting subsequent lysosomal degradation and nutrient recycling. Autophagosome nucleation is mediated by class III phosphatidylinositol-3-kinase complexes that include two key autophagy proteins, BECN1/Beclin 1 and ATG14/BARKOR, which form parallel heterodimers via their coiled-coil domains (CCDs). Here we present the 1.46 Å X-ray crystal structure of the antiparallel, human BECN1 CCD homodimer, which represents BECN1 oligomerization outside the autophagosome nucleation complex. We use circular dichroism and small-angle X-ray scattering (SAXS) to show that the ATG14 CCD is significantly disordered but becomes more helical in the BECN1:ATG14 heterodimer, although it is less well-folded than the BECN1 CCD homodimer. SAXS also indicates that the BECN1:ATG14 heterodimer is more curved than other BECN1-containing CCD dimers, which has important implications for the structure of the autophagosome nucleation complex. A model of the BECN1:ATG14 CCD heterodimer that agrees well with the SAXS data shows that BECN1 residues at the homodimer interface are also responsible for heterodimerization, allowing us to identify ATG14 interface residues. Finally, we verify the role of BECN1 and ATG14 interface residues in binding by assessing the impact of point mutations of these residues on co-immunoprecipitation of the partner and demonstrate that these mutations abrogate starvation-induced upregulation of autophagy but do not impact basal autophagy. Thus, this research provides insights into structures of the BECN1 CCD homodimer and the BECN1:ATG14 CCD heterodimer and identifies interface residues that are important for BECN1:ATG14 heterodimerization and for autophagy. PMID:27383850

  9. The Roles of the RIIβ Linker and N-terminal Cyclic Nucleotide-binding Domain in Determining the Unique Structures of the Type IIβ Protein Kinase A

    PubMed Central

    Blumenthal, Donald K.; Copps, Jeffrey; Smith-Nguyen, Eric V.; Zhang, Ping; Heller, William T.; Taylor, Susan S.

    2014-01-01

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. The PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1–280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. Our results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA. PMID:25112875

  10. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins

    PubMed Central

    Caillat, Christophe; Fish, Alexander; Pefani, Dafni-Eleftheria; Taraviras, Stavros; Lygerou, Zoi; Perrakis, Anastassis

    2015-01-01

    GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin–Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells. PMID:26527144

  11. The presence of γ’ chain impairs fibrin polymerization

    PubMed Central

    Gersh, Kathryn C.; Nagaswami, Chandrasekaran; Weisel, John W.; Lord, Susan T.

    2009-01-01

    Introduction A fraction of fibrinogen molecules contain an alternatively spliced variant chain called γ’. Plasma levels of this variant have been associated with both myocardial infarction and venous thrombosis. Because clot structure has been associated with cardiovascular risk, we examined the effect of γ’ chain on clot structure. Materials and Methods We expressed three fibrinogen variants in Chinese hamster ovary (CHO) cells: γ/γ homodimer, γ/γ’ heterodimer, and γ’/γ’ homodimer. We observed thrombin-catalyzed fibrinopeptide release by HPLC, fibrin polymerization by turbidity, and clot structure by scanning electron microscopy. We characterized post-translational modifications by mass spectrometry. Results Fibrinopeptide A was released at the same rate for all three fibrinogens, while fibrinopeptide B was released faster from the γ’/γ’ homodimer. The rise in turbidity was slower and final absorbance was lower during polymerization of γ’-containing fibrinogens than for γ/γ fibrinogen. Micrographs showed that γ’/γ’ fibrin clots are composed of very thin fibers, while the diameter of γ/γ’ fibers is similar to γ/γ fibers. Further, the fiber networks formed from γ’-containing samples were non-uniform. Mass spectrometry showed heterogeneous addition of N-glycans and tyrosine sulfation in the γ’ chain. Conclusions The presence of γ’ chains slows lateral aggregation and alters fibrin structure. We suggest these changes are likely due to charge-charge repulsion, such that polymerization of the γ’/γ’ homodimer is more impaired than the heterodimer since these repulsions are partially offset by incorporation of γ chains in the γ/γ’ heterodimer. PMID:19138790

  12. The Atypical Response Regulator Protein ChxR Has Structural Characteristics and Dimer Interface Interactions That Are Unique within the OmpR/PhoB Subfamily

    SciTech Connect

    Hickey, John M.; Lovell, Scott; Battaile, Kevin P.; Hu, Lei; Middaugh, C. Russell; Hefty, P. Scott

    2013-05-29

    Typically as a result of phosphorylation, OmpR/PhoB response regulators form homodimers through a receiver domain as an integral step in transcriptional activation. Phosphorylation stabilizes the ionic and hydrophobic interactions between monomers. Recent studies have shown that some response regulators retain functional activity in the absence of phosphorylation and are termed atypical response regulators. The two currently available receiver domain structures of atypical response regulators are very similar to their phospho-accepting homologs, and their propensity to form homodimers is generally retained. An atypical response regulator, ChxR, from Chlamydia trachomatis, was previously reported to form homodimers; however, the residues critical to this interaction have not been elucidated. We hypothesize that the intra- and intermolecular interactions involved in forming a transcriptionally competent ChxR are distinct from the canonical phosphorylation (activation) paradigm in the OmpR/PhoB response regulator subfamily. To test this hypothesis, structural and functional studies were performed on the receiver domain of ChxR. Two crystal structures of the receiver domain were solved with the recently developed method using triiodo compound I3C. These structures revealed many characteristics unique to OmpR/PhoB subfamily members: typical or atypical. Included was the absence of two {alpha}-helices present in all other OmpR/PhoB response regulators. Functional studies on various dimer interface residues demonstrated that ChxR forms relatively stable homodimers through hydrophobic interactions, and disruption of these can be accomplished with the introduction of a charged residue within the dimer interface. A gel shift study with monomeric ChxR supports that dimerization through the receiver domain is critical for interaction with DNA.

  13. Anticooperative ligand binding properties of recombinant ferric Vitreoscilla homodimeric hemoglobin: a thermodynamic, kinetic and X-ray crystallographic study.

    PubMed

    Bolognesi, M; Boffi, A; Coletta, M; Mozzarelli, A; Pesce, A; Tarricone, C; Ascenzi, P

    1999-08-20

    Thermodynamics and kinetics for cyanide, azide, thiocyanate and imidazole binding to recombinant ferric Vitreoscilla sp. homodimeric hemoglobin (Vitreoscilla Hb) have been determined at pH 6.4 and 7.0, and 20.0 degrees C, in solution and in the crystalline state. Moreover, the three-dimensional structures of the diligated thiocyanate and imidazole derivatives of recombinant ferric Vitreoscilla Hb have been determined by X-ray crystallography at 1.8 A (Rfactor=19.9%) and 2.1 A (Rfactor=23.8%) resolution, respectively. Ferric Vitreoscilla Hb displays an anticooperative ligand binding behaviour in solution. This very unusual feature can only be accounted for by assuming ligand-linked conformational changes in the monoligated species, which lead to the observed 300-fold decrease in the affinity of cyanide, azide, thiocyanate and imidazole for the monoligated ferric Vitreoscilla Hb with respect to that of the fully unligated homodimer. In the crystalline state, thermodynamics for azide and imidazole binding to ferric Vitreoscilla Hb may be described as a simple process with an overall ligand affinity for the homodimer corresponding to that for diligation in solution. These data suggest that the ligand-free homodimer, observed in the crystalline state, is constrained in a low affinity conformation whose ligand binding properties closely resemble those of the monoligated species in solution. From the kinetic viewpoint, anticooperativity is reflected by the 300-fold decrease of the second-order rate constant for cyanide and imidazole binding to the monoligated ferric Vitreoscilla Hb with respect to that for ligand association to the ligand-free homodimer in solution. On the other hand, values of the first-order rate constant for cyanide and imidazole dissociation from the diligated and monoligated derivatives of ferric Vitreoscilla Hb in solution are closely similar. As a whole, ligand binding and structural properties of ferric Vitreoscilla Hb appear to be unique among

  14. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins

    SciTech Connect

    Caillat, Christophe; Fish, Alexander; Pefani, Dafni-Eleftheria; Taraviras, Stavros; Lygerou, Zoi; Perrakis, Anastassis

    2015-10-31

    The GemC1 coiled-coil structure has subtle differences compared with its homologues Geminin and Idas. Co-expression experiments in cells and biophysical stability analysis of the Geminin-family coiled coils suggest that the GemC1 coiled coil alone is unstable. GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin–Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.

  15. Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: Importance of non-secular contributions

    SciTech Connect

    Dinh, Thanh-Chung; Renger, Thomas

    2015-01-21

    A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Q{sub y} transition dipole moments in Chl b homodimers is larger by about 9{sup ∘} than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b.

  16. Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: Importance of non-secular contributions

    NASA Astrophysics Data System (ADS)

    Dinh, Thanh-Chung; Renger, Thomas

    2015-01-01

    A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Qy transition dipole moments in Chl b homodimers is larger by about 9∘ than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b.

  17. The roles of the RIIβ linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of the type IIβ protein kinase A: a small angle x-ray and neutron scattering study.

    PubMed

    Blumenthal, Donald K; Copps, Jeffrey; Smith-Nguyen, Eric V; Zhang, Ping; Heller, William T; Taylor, Susan S

    2014-10-10

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. The PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1-280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. Our results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA. PMID:25112875

  18. The roles of RIIbeta linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of Type IIbeta Protein Kinase A. A small angle X-ray and neutron scattering study

    DOE PAGESBeta

    Blumenthal, Donald K.; Copps, Jeffrey; Smith-Nguyen, Eric V.; Zhang, Ping; Heller, William T.; Taylor, Susan S.

    2014-08-11

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. Moreover, the PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme ismore » much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1–280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. These results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA.« less

  19. The roles of RIIbeta linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of Type IIbeta Protein Kinase A. A small angle X-ray and neutron scattering study

    SciTech Connect

    Blumenthal, Donald K.; Copps, Jeffrey; Smith-Nguyen, Eric V.; Zhang, Ping; Heller, William T.; Taylor, Susan S.

    2014-08-11

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. Moreover, the PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1–280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. These results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA.

  20. A synthetic gene increases TGFβ3 accumulation by 75-fold in tobacco chloroplasts enabling rapid purification and folding into a biologically active molecule.

    PubMed

    Gisby, Martin F; Mellors, Philip; Madesis, Panagiotis; Ellin, Marianne; Laverty, Hugh; O'Kane, Sharon; Ferguson, Mark W J; Day, Anil

    2011-06-01

    Human transforming growth factor-β3 (TGFβ3) is a new therapeutic protein used to reduce scarring during wound healing. The active molecule is a nonglycosylated, homodimer comprised of 13-kDa polypeptide chains linked by disulphide bonds. Expression of recombinant human TGFβ3 in chloroplasts and its subsequent purification would provide a sustainable source of TGFβ3 free of animal pathogens. A synthetic sequence (33% GC) containing frequent chloroplast codons raised accumulation of the 13-kDa TGFβ3 polypeptide by 75-fold compared to the native coding region (56% GC) when expressed in tobacco chloroplasts. The 13-kDa TGFβ3 monomer band was more intense than the RuBisCO 15-kDa small subunit on Coomassie blue-stained SDS-PAGE gels. TGFβ3 accumulated in insoluble aggregates and was stable in leaves of different ages but was not detected in seeds. TGFβ3 represented 12% of leaf protein and appeared as monomer, dimer and trimer bands on Western blots of SDS-PAGE gels. High yield and insolubility facilitated initial purification and refolding of the 13-kDa polypeptide into the TGFβ3 homodimer recognized by a conformation-dependent monoclonal antibody. The TGFβ3 homodimer and trace amounts of monomer were the only bands visible on silver-stained gels following purification by hydrophobic interaction chromatography and cation exchange chromatography. N-terminal sequencing and electronspray ionization mass spectrometry showed the removal of the initiator methionine and physical equivalence of the chloroplast-produced homodimer to standard TGFβ3. Functional equivalence was demonstrated by near-identical dose-response curves showing the inhibition of mink lung epithelial cell proliferation. We conclude that chloroplasts are an attractive production platform for synthesizing recombinant human TGFβ3. PMID:21535357

  1. NAD(P)-Dependent Aldehyde Dehydrogenases Induced during Growth of Ralstonia eutropha Strain Bo on Tetrahydrofurfuryl Alcohol

    PubMed Central

    Schräder, Thomas; Zarnt, Grit; Andreesen, Jan R.

    2001-01-01

    Different aldehyde dehydrogenases (AlDHs) were formed during growth of Ralstonia eutropha Bo on tetrahydrofurfuryl alcohol (THFA). One of these enzymes, AlDH 4, was purified and characterized as a homodimer containing no prosthetic groups, showing a strong substrate inhibition, and having an N-terminal sequence similar to those of various NAD(P)-dependent AlDHs. The conversion rate of THFA by the quinohemoprotein THFA dehydrogenase was increased by AlDH 4. PMID:11717302

  2. Crystal structure of calpain-3 penta-EF-hand (PEF) domain - a homodimerized PEF family member with calcium bound at the fifth EF-hand

    SciTech Connect

    Partha, Sarathy K.; Ravulapalli, Ravikiran; Allingham, John S.; Campbell, Robert L.; Davies, Peter L.

    2014-08-21

    Calpains are Ca2+dependent intracellular cysteine proteases that cleave a wide range of protein substrates to help implement Ca2+ signaling in the cell. The major isoforms of this enzyme family, calpain-1 and calpain-2, are heterodimers of a large and a small subunit, with the main dimer interface being formed through their C-terminal penta-EF hand (PEF) domains. Calpain-3, or p94, is a skeletal muscle-specific isoform that is genetically linked to limb-girdle muscular dystrophy. Biophysical and modeling studies with the PEF domain of calpain-3 support the suggestion that full-length calpain-3 exists as a homodimer. Here, we report the crystallization of calpain-3's PEF domain and its crystal structure in the presence of Ca2+, which provides evidence for the homodimer architecture of calpain-3 and supports the molecular model that places a protease core at either end of the elongated dimer. Unlike other calpain PEF domain structures, the calpain-3 PEF domain contains a Ca2+ bound at the EF5-hand used for homodimer association. Three of the four Ca2+-binding EF-hands of the PEF domains are concentrated near the protease core, and have the potential to radically change the local charge within the dimer during Ca2+ signaling. Examination of the homodimer interface shows that there would be steric clashes if the calpain-3 large subunit were to try to pair with a calpain small subunit.

  3. α-Tropomyosin with a D175N or E180G Mutation in Only One Chain Differs from Tropomyosin with Mutations in Both Chains

    PubMed Central

    2012-01-01

    α-Tropomyosin (Tm) carrying hypertrophic cardiomyopathy mutation D175N or E180G was expressed in Escherichia coli. We have assembled dimers of two polypeptide chains in vitro that carry one (αα*) or two (α*α*) copies of the mutation. We found that the presence of the mutation has little effect on dimer assembly, thereby predicting that individuals heterozygous for the Tm mutations are likely to express both αα* and α*α* Tm. Depending on the expression level, the heterodimer may be the predominant form in individuals carrying the mutation. Thus, it is important to define differences in the properties of Tm molecules carrying one or two copies of the mutation. We examined the Tm homo- and heterodimer properties: actin affinity, thermal stability, calcium regulation of myosin subfragment 1 binding, and calcium regulation of myofibril force. We report that the properties of the heterodimer may be similar to those of the wild-type homodimer (actin affinity, thermal stability, D175N αα*), similar to those of the mutant homodimer (calcium sensitivity, D175N αα*), intermediate between the two (actin affinity, E180G αα*), or different from both (thermal stability, E180G αα*). Thus, the properties of the homodimer are not a completely reliable guide to the properties of the heterodimer. PMID:23170982

  4. Structural asymmetry in the Thermus thermophilus RuvC dimer suggests a basis for sequential strand cleavages during Holliday junction resolution

    PubMed Central

    Chen, Luan; Shi, Ke; Yin, Zhiqi; Aihara, Hideki

    2013-01-01

    Holliday junction (HJ) resolvases are structure-specific endonucleases that cleave four-way DNA junctions (HJs) generated during DNA recombination and repair. Bacterial RuvC, a prototypical HJ resolvase, functions as homodimer and nicks DNA strands precisely across the junction point. To gain insights into the mechanisms underlying symmetrical strand cleavages by RuvC, we performed crystallographic and biochemical analyses of RuvC from Thermus thermophilus (T.th. RuvC). The crystal structure of T.th. RuvC shows an overall protein fold similar to that of Escherichia coli RuvC, but T.th. RuvC has a more tightly associated dimer interface possibly reflecting its thermostability. The binding mode of a HJ-DNA substrate can be inferred from the shape/charge complementarity between the T.th. RuvC dimer and HJ-DNA, as well as positions of sulfate ions bound on the protein surface. Unexpectedly, the structure of T.th. RuvC homodimer refined at 1.28 Å resolution shows distinct asymmetry near the dimer interface, in the region harboring catalytically important aromatic residues. The observation suggests that the T.th. RuvC homodimer interconverts between two asymmetric conformations, with alternating subunits switched on for DNA strand cleavage. This model provides a structural basis for the ‘nick-counter-nick’ mechanism in HJ resolution, a mode of HJ processing shared by prokaryotic and eukaryotic HJ resolvases. PMID:23118486

  5. Lack of substrate inhibition in a monomeric form of human cytosolic SULT2A1.

    PubMed

    Cook, Ian T; Leyh, Thomas S; Kadlubar, Susan A; Falany, Charles N

    2010-12-01

    Mammalian cytosolic sulfotransferases (SULTs) frequently show substrate inhibition during the sulfation of increasing concentrations of substrates. SULT2A1, a major human liver isoform responsible for the conjugation of hydroxysteroids, bile acids and aliphatic hydroxyl groups in drugs and xenobiotics, is a homodimer and displays substrate inhibition during the conjugation of dehydroepiandrosterone (DHEA). Maltose binding protein (MBP)-SULT2A1 fusion protein, produced as an intermediate step in the purification of the SULT2A1 homodimer, elutes during size exclusion chromatography as a monomer. The initial-rate parameters (Km and Vmax) of the monomer (MBP-SULT2A1) and native SULT2A1 dimer for DHEA sulfation are extremely similar; however, the monomer is not inhibited by DHEA. Intrinsic fluorescence studies show that two DHEA molecules bind each SULT2A1 subunit, one in the catalytic site and one in an apparent allosteric site. Lack of dimerization in the MBP-SULT2A1 fusion protein decreased the Kd for binding of DHEA at the allosteric site. These results suggest that formation of the homodimer is associated with structural re-arrangements leading to increased DHEA binding at an allo-steric site that is associated with substrate inhibition. PMID:25961208

  6. Lack of substrate inhibition in a monomeric form of human cytosolic SULT2A1.

    PubMed

    Cook, Ian T; Leyh, Thomas S; Kadlubar, Susan A; Falany, Charles N

    2010-12-01

    Mammalian cytosolic sulfotransferases (SULTs) frequently show substrate inhibition during the sulfation of increasing concentrations of substrates. SULT2A1, a major human liver isoform responsible for the conjugation of hydroxysteroids, bile acids and aliphatic hydroxyl groups in drugs and xenobiotics, is a homodimer and displays substrate inhibition during the conjugation of dehydroepiandrosterone (DHEA). Maltose binding protein (MBP)-SULT2A1 fusion protein, produced as an intermediate step in the purification of the SULT2A1 homodimer, elutes during size exclusion chromatography as a monomer. The initial-rate parameters (K(m) and V(max)) of the monomer (MBP-SULT2A1) and native SULT2A1 dimer for DHEA sulfation are extremely similar; however, the monomer is not inhibited by DHEA. Intrinsic fluorescence studies show that two DHEA molecules bind each SULT2A1 subunit, one in the catalytic site and one in an apparent allosteric site. Lack of dimerization in the MBP-SULT2A1 fusion protein decreased the K(d) for binding of DHEA at the allosteric site. These results suggest that formation of the homodimer is associated with structural rearrangements leading to increased DHEA binding at an allosteric site that is associated with substrate inhibition. PMID:21822453

  7. Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo

    PubMed Central

    Lim, Hee-Woong; Uhlenhaut, N. Henriette; Rauch, Alexander; Weiner, Juliane; Hübner, Sabine; Hübner, Norbert; Won, Kyoung-Jae; Lazar, Mitchell A.; Tuckermann, Jan; Steger, David J.

    2015-01-01

    Glucocorticoids (GCs) are commonly prescribed drugs, but their anti-inflammatory benefits are mitigated by metabolic side effects. Their transcriptional effects, including tissue-specific gene activation and repression, are mediated by the glucocorticoid receptor (GR), which is known to bind as a homodimer to a palindromic DNA sequence. Using ChIP-exo in mouse liver under endogenous corticosterone exposure, we report here that monomeric GR interaction with a half-site motif is more prevalent than homodimer binding. Monomers colocalize with lineage-determining transcription factors in both liver and primary macrophages, and the GR half-site motif drives transcription, suggesting that monomeric binding is fundamental to GR's tissue-specific functions. In response to exogenous GC in vivo, GR dimers assemble on chromatin near ligand-activated genes, concomitant with monomer evacuation of sites near repressed genes. Thus, pharmacological GCs mediate gene expression by favoring GR homodimer occupancy at classic palindromic sites at the expense of monomeric binding. The findings have important implications for improving therapies that target GR. PMID:25957148

  8. G Protein–Coupled Receptor Oligomerization Revisited: Functional and Pharmacological Perspectives

    PubMed Central

    Casadó, Vicent; Devi, Lakshmi A.; Filizola, Marta; Jockers, Ralf; Lohse, Martin J.; Milligan, Graeme; Pin, Jean-Philippe; Guitart, Xavier

    2014-01-01

    Most evidence indicates that, as for family C G protein–coupled receptors (GPCRs), family A GPCRs form homo- and heteromers. Homodimers seem to be a predominant species, with potential dynamic formation of higher-order oligomers, particularly tetramers. Although monomeric GPCRs can activate G proteins, the pentameric structure constituted by one GPCR homodimer and one heterotrimeric G protein may provide a main functional unit, and oligomeric entities can be viewed as multiples of dimers. It still needs to be resolved if GPCR heteromers are preferentially heterodimers or if they are mostly constituted by heteromers of homodimers. Allosteric mechanisms determine a multiplicity of possible unique pharmacological properties of GPCR homomers and heteromers. Some general mechanisms seem to apply, particularly at the level of ligand-binding properties. In the frame of the dimer-cooperativity model, the two-state dimer model provides the most practical method to analyze ligand–GPCR interactions when considering receptor homomers. In addition to ligand-binding properties, unique properties for each GPCR oligomer emerge in relation to different intrinsic efficacy of ligands for different signaling pathways (functional selectivity). This gives a rationale for the use of GPCR oligomers, and particularly heteromers, as novel targets for drug development. Herein, we review the functional and pharmacological properties of GPCR oligomers and provide some guidelines for the application of discrete direct screening and high-throughput screening approaches to the discovery of receptor-heteromer selective compounds. PMID:24515647

  9. Structural snapshots of full-length Jak1, a transmembrane gp130/IL-6/IL-6Rα cytokine receptor complex, and the receptor-Jak1 holocomplex

    PubMed Central

    Lupardus, Patrick J.; Skiniotis, Georgios; Rice, Amanda J.; Thomas, Christoph; Fischer, Suzanne; Walz, Thomas; Garcia, K. Christopher

    2011-01-01

    Summary The shared cytokine receptor gp130 signals as a homodimer or heterodimer through activation of Janus kinases (Jaks) associated with the receptor intracellular domains. Here we reconstitute, in parts and whole, the full-length gp130 homodimer in complex with the cytokine interleukin-6 (IL-6), its alpha receptor (IL-6Rα) and Jak1, for electron microscopy imaging. We find that the full-length gp130 homodimer complex has intimate interactions between the trans- and juxtamembrane segments of the two receptors, appearing to rigidify the connection between the extra- and intracellular regions. 2D averages and 3D reconstructions of full-length Jak1 reveal a three-lobed structure comprised of FERM-SH2, pseudokinase and kinase modules possessing extensive inter-segmental flexibility that likely facilitates allosteric activation. Single-particle imaging of the gp130/IL-6/IL-6Rα/Jak1 holocomplex shows Jak1 associated with the membrane proximal intracellular regions of gp130, abutting the would-be inner leaflet of the cell membrane. Jak1 association with gp130 is enhanced by the presence of a membrane environment. PMID:21220115

  10. Exploring Symmetry as an Avenue to the Computational Design of Large Protein Domains

    SciTech Connect

    Fortenberry, Carie; Bowman, Elizabeth Anne; Proffitt, Will; Dorr, Brent; Combs, Steven; Harp, Joel; Mizoue, Laura; Meiler, Jens

    2012-03-15

    It has been demonstrated previously that symmetric, homodimeric proteins are energetically favored, which explains their abundance in nature. It has been proposed that such symmetric homodimers underwent gene duplication and fusion to evolve into protein topologies that have a symmetric arrangement of secondary structure elements - 'symmetric superfolds'. Here, the ROSETTA protein design software was used to computationally engineer a perfectly symmetric variant of imidazole glycerol phosphate synthase and its corresponding symmetric homodimer. The new protein, termed FLR, adopts the symmetric ({beta}{alpha}){sub 8} TIM-barrel superfold. The protein is soluble and monomeric and exhibits two-fold symmetry not only in the arrangement of secondary structure elements but also in sequence and at atomic detail, as verified by crystallography. When cut in half, FLR dimerizes readily to form the symmetric homodimer. The successful computational design of FLR demonstrates progress in our understanding of the underlying principles of protein stability and presents an attractive strategy for the in silico construction of larger protein domains from smaller pieces.

  11. A Variable Light Domain Fluorogen Activating Protein Homodimerizes to Activate Dimethylindole Red†

    PubMed Central

    Senutovitch, Nina; Stanfield, Robyn L.; Bhattacharyya, Shantanu; Rule, Gordon S.; Wilson, Ian A.; Armitage, Bruce A.; Waggoner, Alan S.; Berget, Peter B.

    2012-01-01

    Novel fluorescent tools such as green fluorescent protein analogs and Fluorogen Activating Proteins (FAPs) are useful in biological imaging to track protein dynamics in real-time with low fluorescence background. FAPs are single-chain variable fragments (scFvs) selected from a yeast surface display library that produce fluorescence upon binding a specific dye or fluorogen that is normally not fluorescent when present in solution. FAPs generally consist of human immunoglobulin variable heavy (VH) and variable light (VL) domains covalently attached via a glycine and serine rich linker. Previously, we determined that the yeast surface clone, VH-VL M8, could bind and activate the fluorogen dimethylindole red (DIR), but that the fluorogen activation properties were localized to the M8VL domain. We report here that both NMR and X-ray diffraction methods indicate the M8VL forms non-covalent, anti-parallel homodimers that are the fluorogen activating species. The M8VL homodimers activate DIR by restriction of internal rotation of the bound dye. These structural results, together with directed evolution experiments of both VH-VL M8 and M8VL, led us to rationally design tandem, covalent homodimers of M8VL domains joined by a flexible linker that have a high affinity for DIR and good quantum yield. PMID:22390683

  12. Crystal structure of LeuD from Methanococcus jannaschii.

    PubMed

    Lee, Eun Hye; Cho, Yong Wook; Hwang, Kwang Yeon

    2012-03-01

    3-Isopropylmalate/citramalate (IPM) isomerase catalyzes the second step in the leucine biosynthesis pathway. IPM isomerase from Methanococcus jannaschii is a complex protein consisting of a large (MjLeuC) and a small subunit (MjLeuD). It has broad substrate specificity, unlike other bacterial IPM isomerases. In order to understand the reasons for this broad substrate specificity, we determined the crystal structure of MjLeuD at a resolution of 2.0 Å. The asymmetric unit contained 6 molecules of LeuD, including three homodimers. The overall structure had a β/β/α sandwich-fold consisting of 8 α-helices and 7 β-strands. The C-terminal helix, which is important in homodimer formation, showed conformational differences between two homodimer forms of MjLeuD. In addition, we identified a hydrophobic residue (Val28) near the substrate recognition region that may explain the broad substrate specificity of IPM isomerase. Therefore, we suggest that LeuD proteins can be divided into 2 subfamilies, LeuD subfamilies 1 and 2, which show differences in overall structure and in the substrate recognition region. PMID:22326391

  13. Organization of the Mitochondrial Apoptotic BAK Pore

    PubMed Central

    Aluvila, Sreevidya; Mandal, Tirtha; Hustedt, Eric; Fajer, Peter; Choe, Jun Yong; Oh, Kyoung Joon

    2014-01-01

    The multidomain pro-apoptotic Bcl-2 family proteins BAK and BAX are believed to form large oligomeric pores in the mitochondrial outer membrane during apoptosis. Formation of these pores results in the release of apoptotic factors including cytochrome c from the intermembrane space into the cytoplasm, where they initiate the cascade of events that lead to cell death. Using the site-directed spin labeling method of electron paramagnetic resonance (EPR) spectroscopy, we have determined the conformational changes that occur in BAK when the protein targets to the membrane and forms pores. The data showed that helices α1 and α6 disengage from the rest of the domain, leaving helices α2-α5 as a folded unit. Helices α2-α5 were shown to form a dimeric structure, which is structurally homologous to the recently reported BAX “BH3-in-groove homodimer.” Furthermore, the EPR data and a chemical cross-linking study demonstrated the existence of a hitherto unknown interface between BAK BH3-in-groove homodimers in the oligomeric BAK. This novel interface involves the C termini of α3 and α5 helices. The results provide further insights into the organization of the BAK oligomeric pores by the BAK homodimers during mitochondrial apoptosis, enabling the proposal of a BAK-induced lipidic pore with the topography of a “worm hole.” PMID:24337568

  14. Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo.

    PubMed

    Lim, Hee-Woong; Uhlenhaut, N Henriette; Rauch, Alexander; Weiner, Juliane; Hübner, Sabine; Hübner, Norbert; Won, Kyoung-Jae; Lazar, Mitchell A; Tuckermann, Jan; Steger, David J

    2015-06-01

    Glucocorticoids (GCs) are commonly prescribed drugs, but their anti-inflammatory benefits are mitigated by metabolic side effects. Their transcriptional effects, including tissue-specific gene activation and repression, are mediated by the glucocorticoid receptor (GR), which is known to bind as a homodimer to a palindromic DNA sequence. Using ChIP-exo in mouse liver under endogenous corticosterone exposure, we report here that monomeric GR interaction with a half-site motif is more prevalent than homodimer binding. Monomers colocalize with lineage-determining transcription factors in both liver and primary macrophages, and the GR half-site motif drives transcription, suggesting that monomeric binding is fundamental to GR's tissue-specific functions. In response to exogenous GC in vivo, GR dimers assemble on chromatin near ligand-activated genes, concomitant with monomer evacuation of sites near repressed genes. Thus, pharmacological GCs mediate gene expression by favoring GR homodimer occupancy at classic palindromic sites at the expense of monomeric binding. The findings have important implications for improving therapies that target GR. PMID:25957148

  15. Alternative pathways of disulfide bond formation yield secretion-competent, stable and functional immunoglobulins

    PubMed Central

    Elkabetz, Yechiel; Ofir, Ayala; Argon, Yair; Bar-Nun, Shoshana

    2009-01-01

    Disulfide bonds within and between proteins are responsible for stabilizing folding and covalent assembly. They are thought to form by an obligatory pathway that leads to a single native structure compatible with secretion. We have previously demonstrated that the intradomain disulfide in the CH1 domain of the Ig γ2b heavy chains was dispensable for secretion (Elkabetz et al., 2005). Here we show that the heavy chain-light chain interchain disulfide is also dispensable. γ2b with mutated Cys128, which normally disulfide bonds with the light chain, still assembled with λI light chain into a secretion-competent, tetrameric IgG2b. This assembly comprised of a covalent homo-dimer of mutant heavy chains (C128S2) accompanied non-covalently by a covalent homo-dimer of light chains (λ2). The λ2 homo-dimer formed only upon association with C128S2, through disulfide bonding of the two “orphan” heavy chain-interacting Cys214 in λI. The unique Ig tetramer was secreted efficiently as a functional antibody whose antigen binding capacity resembled that of normal IgG2b. Therefore, disulfide bonding of Ig manifests considerable plasticity and can generate more than one functional structure that is considered native by the cellular quality control system. PMID:18692901

  16. The Structural Basis for Partitioning of the XRCC1/DNA Ligase III-alpha BRCT-mediated Dimer Complexes

    SciTech Connect

    M Cuneo; S Gabel; J Krahn; M Ricker; R London

    2011-12-31

    The ultimate step common to almost all DNA repair pathways is the ligation of the nicked intermediate to form contiguous double-stranded DNA. In the mammalian nucleotide and base excision repair pathways, the ligation step is carried out by ligase III-{alpha}. For efficient ligation, ligase III-{alpha} is constitutively bound to the scaffolding protein XRCC1 through interactions between the C-terminal BRCT domains of each protein. Although structural data for the individual domains has been available, no structure of the complex has been determined and several alternative proposals for this interaction have been advanced. Interpretation of the models is complicated by the formation of homodimers that, depending on the model, may either contribute to, or compete with heterodimer formation. We report here the structures of both homodimer complexes as well as the heterodimer complex. Structural characterization of the heterodimer formed from a longer XRCC1 BRCT domain construct, including residues comprising the interdomain linker region, revealed an expanded heterodimer interface with the ligase III-{alpha} BRCT domain. This enhanced linker-mediated binding interface plays a significant role in the determination of heterodimer/homodimer selectivity. These data provide fundamental insights into the structural basis of BRCT-mediated dimerization, and resolve questions related to the organization of this important repair complex.

  17. The structural basis for partitioning of the XRCC1/DNA ligase III-[alpha] BRCT-mediated dimer complexes

    SciTech Connect

    Cuneo, Matthew J.; Gabel, Scott A.; Krahn, Joseph M.; Ricker, Melissa A.; London, Robert E.

    2011-11-17

    The ultimate step common to almost all DNA repair pathways is the ligation of the nicked intermediate to form contiguous double-stranded DNA. In the mammalian nucleotide and base excision repair pathways, the ligation step is carried out by ligase III-{alpha}. For efficient ligation, ligase III-{alpha} is constitutively bound to the scaffolding protein XRCC1 through interactions between the C-terminal BRCT domains of each protein. Although structural data for the individual domains has been available, no structure of the complex has been determined and several alternative proposals for this interaction have been advanced. Interpretation of the models is complicated by the formation of homodimers that, depending on the model, may either contribute to, or compete with heterodimer formation. We report here the structures of both homodimer complexes as well as the heterodimer complex. Structural characterization of the heterodimer formed from a longer XRCC1 BRCT domain construct, including residues comprising the interdomain linker region, revealed an expanded heterodimer interface with the ligase III-{alpha} BRCT domain. This enhanced linker-mediated binding interface plays a significant role in the determination of heterodimer/homodimer selectivity. These data provide fundamental insights into the structural basis of BRCT-mediated dimerization, and resolve questions related to the organization of this important repair complex.

  18. A structural dissection of large protein-protein crystal packing contacts

    PubMed Central

    Luo, Jiesi; Liu, Zhongyu; Guo, Yanzhi; Li, Menglong

    2015-01-01

    With the rapid increase in crystal structures of protein-protein complexes deposited in the Protein Data Bank (PDB), more and more crystal contacts have been shown to have similar or even larger interface areas than biological interfaces. However, little attention has been paid to these large crystal packing contacts and their structural principles remain unknown. To address this issue, we used a comparative feature analysis to analyze the geometric and physicochemical properties of large crystal packing contacts by comparing two types of specific protein-protein interactions (PPIs), weak transient complexes and permanent homodimers. Our results show that although large crystal packing contacts have a similar interface area and contact size as permanent homodimers, they tend to be more planar, loosely packed and less hydrophobic than permanent homodimers and cannot form a central core region that is fully buried during interaction. However, the properties of large crystal packing contacts, except for the interface area and contact size, more closely resemble those of weak transient complexes. The large overlap between biological and large crystal packing contacts indicates that interface properties are not efficient indicators for classification of biological interfaces from large crystal packing contacts and finding other specific features urgently needed. PMID:26370141

  19. Dimerization of matrix metalloproteinase-2 (MMP-2): functional implication in MMP-2 activation.

    PubMed

    Koo, Bon-Hun; Kim, Yeon Hyang; Han, Jung Ho; Kim, Doo-Sik

    2012-06-29

    Matrix metalloproteinase-2 (MMP-2) functions in diverse biological processes through the degradation of extracellular and non-extracellular matrix molecules. Because of its potential for tissue damage, there are several ways to regulate MMP-2 activity, including gene expression, compartmentalization, zymogen activation, and enzyme inactivation by extracellular inhibitors. Enzyme regulation through zymogen activation is important for the regulation of MMP-2 activity. In our previous studies, we showed that thrombin directly cleaved the propeptide of MMP-2 at specific sites for enzyme activation. We also demonstrated that heparan sulfate was required for thrombin-mediated activation of pro-MMP-2 by binding to thrombin, presumably through conformational changes at the active site of the enzyme. This suggests a regulatory mechanism for thrombin-mediated activation of pro-MMP-2. In this study, we found that MMP-2 formed a reduction-sensitive homodimer in a controlled manner and that Ca(2+) ion was essential for homodimerization of MMP-2. Homodimerization was not associated with protein kinase C-mediated phosphorylation of MMP-2. MMP-2 formed a homodimer through an intermolecular disulfide bond between Cys(102) and the neighboring Cys(102). Homodimerization of MMP-2 enhanced thrombin-mediated activation of pro-MMP-2. Moreover, the MMP-2 homodimer could cleave a small peptide substrate without removal of the propeptide. Taken together, our experimental data suggest a novel regulatory mechanism for pro-MMP-2 activation that is modulated through homodimerization of MMP-2. PMID:22577146

  20. A Variable Light Domain Fluorogen Activating Protein Homodimerizes To Activate Dimethylindole Red

    SciTech Connect

    Senutovitch, Nina; Stanfield, Robyn L.; Bhattacharyya, Shantanu; Rule, Gordon S.; Wilson, Ian A.; Armitage, Bruce A.; Waggoner, Alan S.; Berget, Peter B.

    2012-07-11

    Novel fluorescent tools such as green fluorescent protein analogues and fluorogen activating proteins (FAPs) are useful in biological imaging for tracking protein dynamics in real time with a low fluorescence background. FAPs are single-chain variable fragments (scFvs) selected from a yeast surface display library that produce fluorescence upon binding a specific dye or fluorogen that is normally not fluorescent when present in solution. FAPs generally consist of human immunoglobulin variable heavy (V{sub H}) and variable light (V{sub L}) domains covalently attached via a glycine- and serine-rich linker. Previously, we determined that the yeast surface clone, V{sub H}-V{sub L} M8, could bind and activate the fluorogen dimethylindole red (DIR) but that the fluorogen activation properties were localized to the M8V{sub L} domain. We report here that both nuclear magnetic resonance and X-ray diffraction methods indicate the M8V{sub L} forms noncovalent, antiparallel homodimers that are the fluorogen activating species. The M8V{sub L} homodimers activate DIR by restriction of internal rotation of the bound dye. These structural results, together with directed evolution experiments with both V{sub H}-V{sub L} M8 and M8V{sub L}, led us to rationally design tandem, covalent homodimers of M8V{sub L} domains joined by a flexible linker that have a high affinity for DIR and good quantum yields.

  1. A crystallographic study of human NONO (p54(nrb)): overcoming pathological problems with purification, data collection and noncrystallographic symmetry.

    PubMed

    Knott, Gavin J; Panjikar, Santosh; Thorn, Andrea; Fox, Archa H; Conte, Maria R; Lee, Mihwa; Bond, Charles S

    2016-06-01

    Non-POU domain-containing octamer-binding protein (NONO, a.k.a. p54(nrb)) is a central player in nuclear gene regulation with rapidly emerging medical significance. NONO is a member of the highly conserved Drosophila behaviour/human splicing (DBHS) protein family, a dynamic family of obligatory dimeric nuclear regulatory mediators. However, work with the NONO homodimer has been limited by rapid irreversible sample aggregation. Here, it is reported that L-proline stabilizes purified NONO homodimers, enabling good-quality solution small-angle X-ray structure determination and crystallization. NONO crystallized in the apparent space group P21 with a unique axis (b) of 408.9 Å and with evidence of twinning, as indicated by the cumulative intensity distribution L statistic, suggesting the possibility of space group P1. Structure solution by molecular replacement shows a superhelical arrangement of six NONO homodimers (or 12 in P1) oriented parallel to the long axis, resulting in extensive noncrystallographic symmetry. Further analysis revealed that the crystal was not twinned, but the collected data suffered from highly overlapping reflections that obscured the L-test. Optimized data collection on a new crystal using higher energy X-rays, a smaller beam width and an increased sample-to-detector distance produced non-overlapping reflections to 2.6 Å resolution. The steps taken to analyse and overcome this series of practical difficulties and to produce a biologically informative structure are discussed. PMID:27303796

  2. Immunochemical characterization and transacting properties of upstream stimulatory factor isoforms.

    PubMed

    Viollet, B; Lefrançois-Martinez, A M; Henrion, A; Kahn, A; Raymondjean, M; Martinez, A

    1996-01-19

    The ubiquitous upstream stimulatory factor (USF) transcription factors encoded by two distinct genes (USF1 and USF2) exist under the form of various dimers able to bind E-boxes. We report the molecular cloning and functional characterization of USF2 isoforms, corresponding to a 44-kDa subunit, USF2a, and a new 38-kDa subunit, USF2b, generated by differential splicing. Using specific anti-USF antibodies, we define the different binding complexes in various nuclear extracts. In vivo, the USF1/USF2a heterodimer represents over 66% of the USF binding activity whereas the USF1 and USF2a homodimers represent less than 10%, which strongly suggests an in vivo preferential association in heterodimers. In particular, an USF1/USF2b heterodimer accounted for almost 15% of the USF species in some cells. The preferential heterodimerization of USF subunits was reproduced ex vivo, while the in vitro association of cotranslated subunits, or recombinant USF proteins, appeared to be random. In transiently transfected HeLa or hepatoma cells, USF2a and USF1 homodimers transactivated a minimal promoter with similar efficiency, whereas USF2b, which lacks an internal 67-amino acid domain, was a poor transactivator. Additionally, USF2b was an efficient as USF1 and USF2a homodimers in transactivating the liver-specific pyruvate kinase gene promoter. PMID:8576131

  3. Picosecond Time-Resolved Ir-Uv Pump-Probe Spectroscopic Study on Vibrational Energy Relaxation of Benzene Dimer and Trimer in the CH Stretching Region

    NASA Astrophysics Data System (ADS)

    Kusaka, Ryoji; Inokuchi, Yoshiya; Ebata, Takayuki

    2012-06-01

    Vibrational energy relaxation (VER) in the CH stretching region of benzene dimer (Bz_2) and trimer (Bz_3) has been studied by IR-UV pump-probe spectroscopy in supersonic beams. Firstly, we investigated isotope-substituted hd heterodimer, where h=C_6H_6 and d=_6D_6, because the Stem and Top sites in the hd dimer can be site-selectively excited, different from hh homodimer. The two h(stem)d(top) and h(top)d(stem) isomers show remarkable difference in the lifetimes of intracluster vibrational energy redistribution (IVR). In the transient UV spectra, we observed a broad electronic transition due to the bath modes. The time evolutions of the bath modes can be described by a three step VER model involving IVR and vibrational predissociation (VP). This model was also confirmed by the observed rise profile of the Bz fragment. Secondly, we investigated hh homodimer. The hh homodimer shows the stepwise VER process with time constants similar to those of the hd dimer, suggesting a very weak excitation-exchange coupling of the vibrations between the two sites of the hh dimer. Finally, we found that Bz_3 also exhibits the stepwise VER process, though each step is faster than Bz_2.

  4. Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70.

    PubMed

    Carrello, Amerigo; Allan, Rudi K; Morgan, Sarah L; Owen, Barbara A L; Mok, Danny; Ward, Bryan K; Minchin, Rodney F; Toft, David O; Ratajczak, Thomas

    2004-01-01

    The high-affinity ligand-binding form of unactivated steroid receptors exists as a multicomponent complex that includes heat shock protein (Hsp)90; one of the immunophilins cyclophilin 40 (CyP40), FKBP51, or FKBP52; and an additional p23 protein component. Assembly of this heterocomplex is mediated by Hsp70 in association with accessory chaperones Hsp40, Hip, and Hop. A conserved structural element incorporating a tetratricopeptide repeat (TPR) domain mediates the interaction of the immunophilins with Hsp90 by accommodating the C-terminal EEVD peptide of the chaperone through a network of electrostatic and hydrophobic interactions. TPR cochaperones recognize the EEVD structural motif common to both Hsp90 and Hsp70 through a highly conserved clamp domain. In the present study, we investigated in vitro the molecular interactions between CyP40 and FKBP52 and other stress-related components involved in steroid receptor assembly, namely Hsp70 and Hop. Using a binding protein-retention assay with CyP40 fused to glutathione S-transferase immobilized on glutathione-agarose, we have identified the constitutively expressed form of Hsp70, heat shock cognate (Hsc)70, as an additional target for CyP40. Deletion mapping studies showed the binding determinants to be similar to those for CyP40-Hsp90 interaction. Furthermore, a mutational analysis of CyP40 clamp domain residues confirmed the importance of this motif in CyP40-Hsc70 interaction. Additional residues thought to mediate binding specificity through hydrophobic interactions were also important for Hsc70 recognition. CyP40 was shown to have a preference for Hsp90 over Hsc70. Surprisingly, FKBP52 was unable to compete with CyP40 for Hsc70 binding, suggesting that FKBP52 discriminates between the TPR cochaperone-binding sites in Hsp90 and Hsp70. Hop, which contains multiple units of the TPR motif, was shown to be a direct competitor with CyP40 for Hsc70 binding. Similar to Hop, CyP40 was shown not to influence the adenosine

  5. Primary Biliary Cirrhosis Associated with HLA, IL12A, and IL12RB2 Variants

    PubMed Central

    Hirschfield, Gideon M.; Liu, Xiangdong; Xu, Chun; Lu, Yue; Xie, Gang; Lu, Yan; Gu, Xiangjun; Walker, Erin J.; Jing, Kaiyan; Juran, Brian D.; Mason, Andrew L.; Myers, Robert P.; Peltekian, Kevork M.; Ghent, Cameron N.; Coltescu, Catalina; Atkinson, Elizabeth J.; Heathcote, E. Jenny; Lazaridis, Konstantinos N.; Amos, Christopher I.; Siminovitch, Katherine A.

    2010-01-01

    BACKGROUND Primary biliary cirrhosis is a chronic granulomatous cholangitis, characteristically associated with antimitochondrial antibodies. Twin and family aggregation data suggest that there is a significant genetic predisposition to primary biliary cirrhosis, but the susceptibility loci are unknown. METHODS To identify genetic loci conferring a risk for primary biliary cirrhosis, we carried out a genomewide association analysis in which DNA samples from 2072 Canadian and U.S. subjects (536 patients with primary biliary cirrhosis and 1536 controls) were genotyped for more than 300,000 single-nucleotide polymorphisms (SNPs). Sixteen of the SNPs most strongly associated with primary biliary cirrhosis were genotyped in two independent replication sets. We carried out fine-mapping studies across three loci associated with primary biliary cirrhosis. RESULTS We found significant associations between primary biliary cirrhosis and 13 loci across the HLA class II region; the HLA-DQB1 locus (encoding the major histocompatibility complex class II, DQ β chain 1) had the strongest association (P = 1.78×10−19; odds ratio for patients vs. controls, 1.75). Primary biliary cirrhosis was also significantly and reproducibly associated with two SNPs at the IL12A locus (encoding interleukin-12α), rs6441286 (P = 2.42×10−14; odds ratio, 1.54) and rs574808 (P = 1.88×10−13; odds ratio, 1.54), and one SNP at the IL12RB2 locus (encoding interleukin-12 receptor β2), rs3790567 (P = 2.76×10−11; odds ratio, 1.51). Fine-mapping analysis showed that a five-allele haplotype in the 3′ flank of IL12A was significantly associated with primary biliary cirrhosis (P = 1.15×10−34). We found a modest genomewide association (P<5.0×10−5) with the risk of disease for SNPs at the STAT4 locus (encoding signal transducer and activator of transcription 4) and the CTLA4 locus (encoding cytotoxic T-lymphocyte–associated protein 4) and 10 other loci. CONCLUSIONS Our data show significant

  6. Dimerization of Nitrophorin 4 at Low pH and Comparison to the K1A Mutant of Nitrophorin 1

    PubMed Central

    2015-01-01

    Nitrophorin 4, one of the four NO-carrying heme proteins from the salivary glands of Rhodnius prolixus, forms a homodimer at pH 5.0 with a Kd of ∼8 μM. This dimer begins to dissociate at pH 5.5 and is completely dissociated to monomer at pH 7.3, even at 3.7 mM. The dimer is significantly stabilized by binding NO to the heme and at pH 7.3 would require dilution to well below 0.2 mM to completely dissociate the NP4-NO homodimer. The primary techniques used for investigating the homodimer and the monomer–dimer equilibrium were size-exclusion fast protein liquid chromatography at pH 5.0 and 1H{15N} heteronuclear single-quantum coherence spectroscopy as a function of pH and concentration. Preparation of site-directed mutants of NP4 (A1K, D30A, D30N, V36A/D129A/L130A, K38A, R39A, K125A, K125E, D132A, L133V, and K38Q/R39Q/K125Q) showed that the N-terminus, D30, D129, D132, at least one heme propionate, and, by association, likely also E32 and D35 are involved in the dimerization. The “closed loop” form of the A–B and G–H flexible loops of monomeric NP4, which predominates in crystal structures of the monomeric protein reported at pH 5.6 but not at pH 7.5 and which involves all of the residues listed above except D132, is required for dimer formation. Wild-type NP1 does not form a homodimer, but NP1(K1A) and native N-terminal NP1 form dimers in the presence of NO. The homodimer of NP1, however, is considerably less stable than that of NP4 in the absence of NO. This suggests that additional aspartate or glutamate residues present in the C-terminal region of NP4, but not NP1, are also involved in stabilizing the dimer. PMID:25489673

  7. [Book review] Battle against extinction: Native fish management in the American West, by W. L. Minckley and J. E. Deacon

    USGS Publications Warehouse

    Walsh, S.J.

    1993-01-01

    Review of: BATTLE AGAINST EXTINCTION: NATIVE FISH MANAGEMENT IN THE AMERICAN WEST. W. L. Minckley and J. E. Deacon (eds.). 1991. The University of Arizona Press, Tucson. ISBN 0-8165-1221-3. 517 p., $40.00 (hardcover).

  8. Therapeutic advances for primary biliary cholangitis: the old and the new.

    PubMed

    Wang, Li; Zhang, Feng-Chun; Zhang, Xuan

    2016-06-01

    Primary biliary cholangitis (PBC, primary biliary cirrhosis) is an autoimmune cholestatic liver disease characterized by chronic nonsuppurative destructive cholangitis and the presence of serum antimitochondrial antibodies. Ursodeoxycholic acid is the only drug approved by the US Food and Drug Administration to treat PBC. However, one-third of patients show incomplete responses to ursodeoxycholic acid and a poor prognosis. A number of old and new medications have been used in these patients, such as fibrates, glucocorticoids, immunosuppressants, obeticholic acid, mesenchymal stem cells, biological agents (anti-interleukin-12, cytotoxic T-lymphocyte antigen 4 immunoglobulin, anti-CD20), and antifibrotic drugs. This article reviews the therapeutic advances of these old and new medications in patients with PBC. PMID:26862931

  9. Bone marrow-resident NK cells prime monocytes for regulatory function during infection

    PubMed Central

    Askenase, Michael H.; Han, Seong-Ji; Byrd, Allyson L.; da Fonseca, Denise Morais; Bouladoux, Nicolas; Wilhelm, Christoph; Konkel, Joanne E.; Hand, Timothy W.; Lacerda-Queiroz, Norinne; Su, Xin-Zhuan; Trinchieri, Giorgio; Grainger, John R.; Belkaid, Yasmine

    2015-01-01

    SUMMARY Tissue-infiltrating Ly6Chi monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DC) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals following tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function. PMID:26070484

  10. Mesenchymal stem cells as delivery vectors for anti-tumor therapy

    PubMed Central

    Li, Zhenzhen; Fan, Dongmei

    2015-01-01

    Recent studies have demonstrated mesenchymal stem cells (MSCs) are able to migrate specifically to tumors and their metastatic sites when administered intravenously. This characteristic tumor tropism has opened up an emerging field to utilize MSCs as vectors to deliver anti-cancer agents for targeted therapies. Genetically engineered MSCs can specifically migrate to various tumors and locally secrete therapeutic proteins, such as interferon β (IFN-β) and IFN-γ, interleukin 12 and 24, tumor necrosis factor-related apoptosis inducing ligand (TRAIL) or suicide gene/enzyme prodrug. In addition, MSCs have also been engineered to deliver oncolytic viruses and drug-loaded nanoparticles. Here, we present the characteristics of MSCs, the current progress on MSC mediated anti-cancer agents delivery systems and the interaction between MSCs and tumors.

  11. Interferon-Gamma Receptor-1 Gene Promoter Polymorphisms and Susceptibility to Leprosy in Children of a Single Family

    PubMed Central

    Velayati, Ali A.; Farnia, Parissa; Khalizadeh, Soheila; Farahbod, Amir M.; Hasanzadh, Maryam; Sheikolslam, Maryam F.

    2011-01-01

    The autosomal recessive disorder, because of a single mutation in interferon-γ receptor-1(IFNGR1) at position −56, was found to be associated with susceptibility to leprosy in children of the same family. The existence of such heterozygous carriers might explain the crucial role of IFNGR1 in the host defense against intracellular pathogens such as Mycobacterium leprae. The single nucleotide polymorphisms (SNPs) in major candidate genes, i.e., natural resistance-associated macrophage protein 1 (NRAMP1), vitamin D receptor (VDR), tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), interleukin-12-receptor 1 (IL-12R1), were not found to be associated with this disease. PMID:21460021

  12. Interferon-gamma receptor-1 gene promoter polymorphisms and susceptibility to leprosy in children of a single family.

    PubMed

    Velayati, Ali A; Farnia, Parissa; Khalizadeh, Soheila; Farahbod, Amir M; Hasanzadh, Maryam; Sheikolslam, Maryam F

    2011-04-01

    The autosomal recessive disorder, because of a single mutation in interferon-γ receptor-1(IFNGR1) at position -56, was found to be associated with susceptibility to leprosy in children of the same family. The existence of such heterozygous carriers might explain the crucial role of IFNGR1 in the host defense against intracellular pathogens such as Mycobacterium leprae. The single nucleotide polymorphisms (SNPs) in major candidate genes, i.e., natural resistance-associated macrophage protein 1 (NRAMP1), vitamin D receptor (VDR), tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), interleukin-12-receptor 1 (IL-12R1), were not found to be associated with this disease. PMID:21460021

  13. Targeting tumors with nonreplicating Toxoplasma gondii uracil auxotroph vaccines.

    PubMed

    Fox, Barbara A; Sanders, Kiah L; Chen, Shan; Bzik, David J

    2013-09-01

    Toxoplasma gondii is an intracellular parasite that has evolved to actively control its invaded host cells. Toxoplasma triggers then actively regulates host innate interleukin-12 (IL-12) and interferon-γ (IFN-γ) responses that elicit T cell control of infection. A live, nonreplicating avirulent uracil auxotroph vaccine strain (cps) of Toxoplasma triggers novel innate immune responses that stimulate amplified CD8(+) T cell responses and life-long immunity in vaccinated mice. Here, we review recent reports showing that intratumoral treatment with cps activated immune-mediated regression of established solid tumors in mice. We speculate that a better understanding of host-parasite interaction at the molecular level and applying improved genetic models based on Δku80 Toxoplasma strains will stimulate development of highly effective immunotherapeutic cancer vaccine strategies using engineered uracil auxotrophs. PMID:23928100

  14. Cyclophilin C-associated protein: A normal secreted glycoprotein that down-modulates endotoxin and proinflammatory responses in vivo

    PubMed Central

    Trahey, Meg; Weissman, Irving L.

    1999-01-01

    Mouse cyclophilin C-associated protein (CyCAP) is a member of the scavenger-receptor cysteine-rich domain superfamily and is 69% identical to the human Mac-2 binding protein. Here, we show that CyCAP is a widely expressed secreted glycoprotein that modulates the host response to endotoxin. Gene-targeted CyCAP-deficient mice are more sensitive to the lethal effects of endotoxin. In response to endotoxin, CyCAP-deficient mice overproduced interleukin 12 and interferon-γ systemically and tumor necrosis factor α locally; these are proinflammatory molecules that also promote T helper 1 responses. Furthermore, macrophages stimulated in vitro with endotoxin in serum deficient in CyCAP secreted more tumor necrosis factor α, supporting the proposal that CyCAP specifically down-modulates endotoxin signaling. PMID:10077627

  15. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells.

    PubMed

    Rimoldi, Monica; Chieppa, Marcello; Salucci, Valentina; Avogadri, Francesca; Sonzogni, Angelica; Sampietro, Gianluca M; Nespoli, Angelo; Viale, Giuseppe; Allavena, Paola; Rescigno, Maria

    2005-05-01

    The control of damaging inflammation by the mucosal immune system in response to commensal and harmful ingested bacteria is unknown. Here we show epithelial cells conditioned mucosal dendritic cells through the constitutive release of thymic stromal lymphopoietin and other mediators, resulting in the induction of 'noninflammatory' dendritic cells. Epithelial cell-conditioned dendritic cells released interleukins 10 and 6 but not interleukin 12, and they promoted the polarization of T cells toward a 'classical' noninflammatory T helper type 2 response, even after exposure to a T helper type 1-inducing pathogen. This control of immune responses seemed to be lost in patients with Crohn disease. Thus, the intimate interplay between intestinal epithelial cells and dendritic cells may help to maintain gut immune homeostasis. PMID:15821737

  16. Thyroid dysfunction in patients with diffuse large B-cell lymphoma receiving lenalidomide is mediated by TNF-α

    PubMed Central

    Iams, Wade T.; Hames, Megan L.; Tsai, Judy P.; Dahlman, Kimberly B.; Talbott, Mahsa S.; Richards, Kristy L.; Reddy, Nishitha M.

    2016-01-01

    As the use of lenalidomide expands, the poorly understood phenomenon of lenalidomide-induced thyroid abnormalities will increase. In this study we compared rates of therapy-induced hypothyroidism in 329 patients with DLBCL treated with conventional chemotherapy (DLBCL-c) or conventional chemotherapy plus lenalidomide (DLBCL-len). We measured serum levels of tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin-6 (IL-6), interleukin-12 (IL-12), and interleukin-15 (IL-15) before and after treatment. We found a significantly higher rate of therapy-induced hypothyroidism in the DLBCL-len group (25.8% vs 1.3%), and we found a statistically significant increase in serum TNF-α in patients with lenalidomide-induced hypothyroidism. PMID:25448491

  17. Biologics in the management of psoriasis

    PubMed Central

    Bahner, Jennifer D; Cao, Lauren Y; Korman, Neil J

    2009-01-01

    Psoriasis is a chronic inflammatory systemic disease for which there exist topical, ultraviolet, systemic, and biologic treatments. Biologic agents selectively interfere with the immune mechanisms responsible for psoriasis. Etanercept, infliximab, and adalimumab target tumor necrosis factor-alpha and have demonstrated efficacy in the treatment of psoriasis and psoriatic arthritis. Alefacept and efalizumab target T lymphocytes, are effective in the treatment of psoriasis, but are not approved for psoriatic arthritis. Finally, ustekinumab and ABT-874 target interleukin-12 and interleukin-23, and they have demonstrated efficacy in the treatment of psoriasis. The objective of this review is to present efficacy and safety data from randomized controlled trials of the biologic agents in the treatment of psoriasis. PMID:21436974

  18. [Current Research of the Roles of IL-35 in Tumor Progression].

    PubMed

    Huang, Chongbiao; Tian, Ye; Cui, Yan; Xu, Jie; Xin, Liang; Yang, Xueling; Qi, Daliang

    2016-04-20

    Interleukin(IL)-35 is a new member of the interleukin-12 superfamily. Since its first report in 2007, IL-35 rapidly became a research highlight in the field of immunology. Like other IL-12 superfamily members, IL-35 was a heterodimer which was composed of an α chain P35 and a β chain Epstein-Barr virus induced gene 3 (EBI3). Recent research work revealed two distinct roles of IL-35. Firstly, IL-35 is highly expressed in some kinds of inflammatory diseases and autoimmune diseases and plays import roles in the pathogenesis. Secondly, IL-35 is positively expressed in some cancers and plays some roles in the process of tumor progression. Here we demonstrate the structure and the signalling of IL-35. We reviewed the the roles of IL-35 in promoting tumor progression. PMID:27118652

  19. Cytotoxic and natural killer cell stimulatory constituents of Phyllanthus songboiensis

    PubMed Central

    Ren, Yulin; Yuan, Chunhua; Deng, Youcai; Kanagasabai, Ragu; Ninh, Tran Ngoc; Tu, Vuong Tan; Chai, Hee-Byung; Soejarto, Djaja D.; Fuchs, James R.; Yalowich, Jack C.; Yu, Jianhua; Kinghorn, A. Douglas

    2014-01-01

    A dichapetalin-type triterpenoid and a dibenzylbutyrolactone-type lignan, together with five known lignans, a known aromatic diterpenoid, and a known acylated phytosterol, were isolated from the aerial parts of Phyllanthus songboiensis, collected in Vietnam. Their structures were determined by interpretation of the spectroscopic data, and the inhibitory activity toward the HT-29 human colon cancer cells of all isolates was evaluated by a cytotoxicity assay. The known arylnaphthalene lignan, (+)-acutissimalignan A, was highly cytotoxic toward HT-29 cells, with an IC50 value of 19 nM, but this compound was inactive as a DNA topoisomerase IIα (topo IIα) poison. The known phytosterol, (−)-β-sitosterol-3-O-β-D-(6-O-palmitoyl)glucopyranoside, was found to stimulate natural killer (NK) cells at a concentration of 10 μM in the presence of interleukin 12 (IL-12). PMID:25596805

  20. Folate-conjugated immunoglobulin targets melanoma tumor cells for NK cell effector functions.

    PubMed

    Skinner, Cassandra C; McMichael, Elizabeth L; Jaime-Ramirez, Alena C; Abrams, Zachary B; Lee, Robert J; Carson, William E

    2016-08-01

    The folate receptor (FR) is overexpressed on the vascular side of cancerous cells including those of the breast, ovaries, testes, and cervix. We hypothesized that a folate-conjugated immunoglobulin (F-IgG) would bind to the FR that is overexpressed on melanoma tumor cells to target these cells for lysis by natural killer (NK) cells. Folate receptor expression was confirmed in the Mel-39 (human melanoma) cell line by flow cytometry and immunoblot analysis using KB (human oral epithelial) and F01 (human melanoma) as a positive and a negative control, respectively. FR-positive and FR-negative cell lines were treated with F-IgG or control immunoglobulin G in the presence or absence of cytokines to determine NK cell ability to lyse FR-positive cell lines. NK cell activation was significantly upregulated and lysis of Mel 39 tumor cells increased following treatment with F-IgG compared with control immunoglobulin G at all effector : target (E : T) ratios (P<0.01). This trend further increased by NK cell stimulation with the activating cytokine interleukin-12. NK cell production of cytokines such as interferon-gamma, macrophage inflammatory protein 1α, and regulated on activation normal T-cell expressed and secreted (RANTES) was also significantly increased in response to costimulation with interleukin-12 stimulation and F-IgG-coated Mel 39 target cells compared with controls (P<0.01). In contrast, F-IgG did not bind to the FR-negative cell line F01 and had no significant effect on NK cell lysis or cytokine production. This research indicates the potential use of F-IgG for its ability to induce an immune response from NK cells against FR-positive melanoma tumor cells, which can be further increased by the addition of cytokines. PMID:27035691

  1. Ginsenoside Rd alleviates mouse acute renal ischemia/reperfusion injury by modulating macrophage phenotype

    PubMed Central

    Ren, Kaixi; Jin, Chao; Ma, Pengfei; Ren, Qinyou; Jia, Zhansheng; Zhu, Daocheng

    2015-01-01

    Background Ginsenoside Rd (GSRd), a main component of the root of Panax ginseng, exhibits anti-inflammation functions and decreases infarct size in many injuries and ischemia diseases such as focal cerebral ischemia. M1 Macrophages are regarded as one of the key inflammatory cells having functions for disease progression. Methods To investigate the effect of GSRd on renal ischemia/reperfusion injury (IRI) and macrophage functional status, and their regulatory role on mouse polarized macrophages in vitro, GSRd (10–100 mg/kg) and vehicle were applied to mice 30 min before renal IRI modeling. Renal functions were reflected by blood serum creatinine and blood urea nitrogen level and histopathological examination. M1 polarized macrophages infiltration was identified by flow cytometry analysis and immunofluorescence staining with CD11b+, iNOS+/interleukin-12/tumor necrosis factor-α labeling. For the in vitro study, GSRd (10–100 μg/mL) and vehicle were added in the culture medium of M1 macrophages to assess their regulatory function on polarization phenotype. Results In vivo data showed a protective role of GSRd at 50 mg/kg on Day 3. Serum level of serum creatinine and blood urea nitrogen significantly dropped compared with other groups. Reduced renal tissue damage and M1 macrophage infiltration showed on hematoxylin–eosin staining and flow cytometry and immunofluorescence staining confirmed this improvement. With GSRd administration, in vitro cultured M1 macrophages secreted less inflammatory cytokines such as interleukin-12 and tumor necrosis factor-α. Furthermore, macrophage polarization-related pancake-like morphology gradually changed along with increasing concentration of GSRd in the medium. Conclusion These findings demonstrate that GSRd possess a protective function against renal ischemia/reperfusion injury via downregulating M1 macrophage polarization. PMID:27158241

  2. Activation of spleen cells by ArtinM may account for its immunomodulatory properties.

    PubMed

    Silva, Thiago Aparecido da; Souza, Maria Aparecida de; Cecílio, Nerry Tatiana; Roque-Barreira, Maria Cristina

    2014-09-01

    ArtinM is a D-mannose-binding lectin extracted from Artocarpus heterophyllus that promotes interleukin-12 production by macrophages and dendritic cells. This property is considered responsible for T helper 1 immunity induced in vivo after ArtinM administration. In this study, we investigated the effect of native (jArtinM) and recombinant (rArtinM) forms of lectin on murine spleen cells and isolated T lymphocytes. We found that ArtinM binds to the surface of spleen cells. This interaction, which was blocked by D-mannose, induced cell activation, as manifested by increased mitochondrial activity, interleukin-2 production, and cell proliferation. We verified that a 30-times higher concentration of rArtinM was required to trigger optimal activation of spleen cells compared with that needed with jArtinM, although these proteins have identical sugar recognition properties and use the same signaling molecules to trigger cell activation. Because the distinction between native and recombinant is restricted to their tertiary structure (tetrameric and monomeric, respectively), we postulated that the multi-valence of jArtinM accounts for its superiority in promoting clustering of cell surface glycoreceptors and activation. The jArtinM and rArtinM activation effect exerted on spleen cells was reproduced on purified CD4(+) T cells. Our results suggest that ArtinM interaction with T cells leads to responses that may act in concert with the interleukin-12 produced by antigen-presenting cells to modulate immunity toward the T helper 1 axis. Further studies are necessary to dissect ArtinM/T-cell interactions to more fully understand the immunomodulation induced by carbohydrate recognition. PMID:24842046

  3. Immunohistochemical analysis of the expression of cellular transcription NFκB (p65), AP-1 (c-Fos and c-Jun), and JAK/STAT in leprosy.

    PubMed

    Silva, Luciana Mota; Hirai, Kelly Emi; de Sousa, Jorge Rodrigues; de Souza, Juarez; Fuzii, Hellen Thais; Dias, Leonidas Braga; Carneiro, Francisca Regina Oliveira; de Souza Aarão, Tinara Leila; Quaresma, Juarez Antonio Simões

    2015-05-01

    Leprosy is a disease whose clinical spectrum depends on the cytokine patterns produced during the early stages of the immune response. The main objective of this study was to describe the activation pattern of cellular transcription factors and to correlate these factors with the clinical forms of leprosy. Skin samples were obtained from 16 patients with the tuberculoid (TT) form and 14 with the lepromatous (LL) form. The histologic sections were immunostained with anti-c-Fos and anti-c-Jun monoclonal antibodies for investigation of AP-1, anti-NFκB p65 for the study of NFκB, and anti-JAK2, STAT1, STAT3, and STAT4 for investigation of the JAK/STAT pathway. Cells expressing STAT1 were more frequent in the TT form than in LL lesions (P = .0096), in agreement with the protective immunity provided by IFN-γ. STAT4 was also more highly expressed in the TT form than in the LL form (P = .0098). This transcription factor is essential for the development of a Th1 response because it is associated with interleukin-12. NFκB (p65) and STAT4 expression in the TT form showed a strong and significant correlation (r = 0.7556 and P = .0007). A moderate and significant correlation was observed between JAK2 and STAT4 in the TT form (r = 0.6637 and P = .0051), with these factors responding to interleukin-12 in Th1 profiles. The results suggest that STAT1, JAK2, and NFκB, together with STAT4, contribute to the development of cell-mediated immunity, which is able to contain the proliferation of Mycobacterium leprae. PMID:25771902

  4. The Pathogenic Potential of Campylobacter concisus Strains Associated with Chronic Intestinal Diseases

    PubMed Central

    Kaakoush, Nadeem O.; Deshpande, Nandan P.; Wilkins, Marc R.; Tan, Chew Gee; Burgos-Portugal, Jose A.; Raftery, Mark J.; Day, Andrew S.; Lemberg, Daniel A.; Mitchell, Hazel

    2011-01-01

    Campylobacter concisus has garnered increasing attention due to its association with intestinal disease, thus, the pathogenic potential of strains isolated from different intestinal diseases was investigated. A method to isolate C. concisus was developed and the ability of eight strains from chronic and acute intestinal diseases to adhere to and invade intestinal epithelial cells was determined. Features associated with bacterial invasion were investigated using comparative genomic analyses and the effect of C. concisus on host protein expression was examined using proteomics. Our isolation method from intestinal biopsies resulted in the isolation of three C. concisus strains from children with Crohn's disease or chronic gastroenteritis. Four C. concisus strains from patients with chronic intestinal diseases can attach to and invade host cells using mechanisms such as chemoattraction to mucin, aggregation, flagellum-mediated attachment, “membrane ruffling”, cell penetration and damage. C. concisus strains isolated from patients with chronic intestinal diseases have significantly higher invasive potential than those from acute intestinal diseases. Investigation of the cause of this increased pathogenic potential revealed a plasmid to be responsible. 78 and 47 proteins were upregulated and downregulated in cells infected with C. concisus, respectively. Functional analysis of these proteins showed that C. concisus infection regulated processes related to interleukin-12 production, proteasome activation and NF-κB activation. Infection with all eight C. concisus strains resulted in host cells producing high levels of interleukin-12, however, only strains capable of invading host cells resulted in interferon-γ production as confirmed by ELISA. These findings considerably support the emergence of C. concisus as an intestinal pathogen, but more significantly, provide novel insights into the host immune response and an explanation for the heterogeneity observed in the

  5. The pathogenic potential of Campylobacter concisus strains associated with chronic intestinal diseases.

    PubMed

    Kaakoush, Nadeem O; Deshpande, Nandan P; Wilkins, Marc R; Tan, Chew Gee; Burgos-Portugal, Jose A; Raftery, Mark J; Day, Andrew S; Lemberg, Daniel A; Mitchell, Hazel

    2011-01-01

    Campylobacter concisus has garnered increasing attention due to its association with intestinal disease, thus, the pathogenic potential of strains isolated from different intestinal diseases was investigated. A method to isolate C. concisus was developed and the ability of eight strains from chronic and acute intestinal diseases to adhere to and invade intestinal epithelial cells was determined. Features associated with bacterial invasion were investigated using comparative genomic analyses and the effect of C. concisus on host protein expression was examined using proteomics. Our isolation method from intestinal biopsies resulted in the isolation of three C. concisus strains from children with Crohn's disease or chronic gastroenteritis. Four C. concisus strains from patients with chronic intestinal diseases can attach to and invade host cells using mechanisms such as chemoattraction to mucin, aggregation, flagellum-mediated attachment, "membrane ruffling", cell penetration and damage. C. concisus strains isolated from patients with chronic intestinal diseases have significantly higher invasive potential than those from acute intestinal diseases. Investigation of the cause of this increased pathogenic potential revealed a plasmid to be responsible. 78 and 47 proteins were upregulated and downregulated in cells infected with C. concisus, respectively. Functional analysis of these proteins showed that C. concisus infection regulated processes related to interleukin-12 production, proteasome activation and NF-κB activation. Infection with all eight C. concisus strains resulted in host cells producing high levels of interleukin-12, however, only strains capable of invading host cells resulted in interferon-γ production as confirmed by ELISA. These findings considerably support the emergence of C. concisus as an intestinal pathogen, but more significantly, provide novel insights into the host immune response and an explanation for the heterogeneity observed in the

  6. Test results and facility description for a 40-kilowatt Stirling engine

    SciTech Connect

    Kelm, G.G.; Cairelli, J.E.; Walter, R.J.

    1981-06-01

    NASA Lewis Research Center is conducting tests with a 40-kilowatt, P40 Stirling engine manufactured by United Stirling of Malmoe, Sweden, This experimental research is part of a project whose overall goal is to demonstrate by September 1984 the potential advantages this alternative engine offers for powering highway vehicles. The P40 was designed by United Stirling to be a reliable workhorse engine for testing and developing specific components (e.g., the heater head, piston rod seals, and piston rings). Because it was intended as a rugged experimental engine, the P40 is too heavy to be a practical automotive Stirling engine. Nevertheless, it was selected as the project's baseline engine because it was an available, convenient starting point from which to derive Stirling engine operating experience. Consequently, while the MOD I automotive Stirling engine is being designed and built for the project, several P40 engines are being evaluated in test cells and in vehicles by organizations involved in the development effort. NASA P40 tests are being conducted to establish the engine's baseline performance and emissions characteristics for comparison with other engines, to provide data for validating computer models, to identify problem areas which must be addressed in future Stirling engine designs, and to evaluate the performance of advanced systems or components installed in the engine. The NASA P40 engine testing activity which began in April 1979 is emphasized. Included is a description of the P40 engine along with its control systems and auxiliaries. Also described are the engine test support facilities, instrumentation, data acquisition systems, and experimental procedures. Finally, engine operating experience is discussed, and some initial test results are presented.

  7. Test results and facility description for a 40-kilowatt Stirling engine

    SciTech Connect

    Kelm, G.G.; Cairelli, J.E.; Walter, R.J.

    1981-06-01

    NASA Lewis Research Center is conducting tests with a 40-kilowatt, P40 Stirling engine manufactured by United Stirling of Malmoe, Sweden. This experimental research is part of a project whose overall goal is to demonstrate by Sept. 1984 the potential advantages this alternative engine offers for powering highway vehicles. The P40 was designed by United Stirling to be a reliable workhorse engine for testing and developing specific components (e.g., the heater head, piston rod seals, and piston rings). Because it was intended as a rugged experimental engine, the P40 is too heavy to be a practical automotive Stirling engine. Nevertheless, it was selected as the project's baseline engine because it was an available, convenient starting point from which to derive Stirling engine operating experience. Consequently, while the MOD I automotive Stirling engine is being designed and built for the project, several P40 engines are being evaluated in test cells and in vehicles by organizations involved in the development effort. NASA P40 tests are being conducted to establish the engine's baseline performance and emissions characteristics for comparison with other engines, to provide data for validating computer models, to identify problem areas which must be addressed in future Stirling engine designs, and to evaluate the performance of advanced systems or components installed in the engine. The NASA P40 engine testing activity which began in April 1979 is emphasized. Included is a description of the P40 engine along with its control systems and auxiliaries. Also described are the engine test support facilities, instrumentation, data acquisition systems, and experimental procedures. Finally, engine operating experience is discussed, and some initial test results are presented.

  8. Heterodimerization, Altered Subcellular Localization, and Function of Multiple Zinc Transporters in Viable Cells Using Bimolecular Fluorescence Complementation

    PubMed Central

    Golan, Yarden; Berman, Bluma; Assaraf, Yehuda G.

    2015-01-01

    Zinc plays a crucial role in numerous key physiological functions. Zinc transporters (ZnTs) mediate zinc efflux and compartmentalization in intracellular organelles; thus, ZnTs play a central role in zinc homeostasis. We have recently shown the in situ dimerization and function of multiple normal and mutant ZnTs using bimolecular fluorescence complementation (BiFC). Prompted by these findings, we here uncovered the heterodimerization, altered subcellular localization, and function of multiple ZnTs in live cells using this sensitive BiFC technique. We show that ZnT1, -2, -3, and -4 form stable heterodimers at distinct intracellular compartments, some of which are completely different from their homodimer localization. Specifically, unlike the plasma membrane (PM) localization of ZnT1 homodimers, ZnT1-ZnT3 heterodimers localized at intracellular vesicles. Furthermore, upon heterodimerization with ZnT1, the zinc transporters ZnT2 and ZnT4 surprisingly localized at the PM, as opposed to their vesicular homodimer localization. We further demonstrate the deleterious effect that the G87R-ZnT2 mutation, associated with transient neonatal zinc deficiency, has on ZnT1, ZnT3, and ZnT4 upon heterodimerization. The functionality of the various ZnTs was assessed by the dual BiFC-Zinquin assay. We also undertook a novel transfection competition assay with ZnT cDNAs to confirm that the driving force for heterodimer formation is the core structure of ZnTs and not the BiFC tags. These findings uncover a novel network of homo- and heterodimers of ZnTs with distinct subcellular localizations and function, hence highlighting their possible role in zinc homeostasis under physiological and pathological conditions. PMID:25657003

  9. Glucose-Sensing Receptor T1R3: A New Signaling Receptor Activated by Glucose in Pancreatic β-Cells.

    PubMed

    Kojima, Itaru; Nakagawa, Yuko; Hamano, Kunihisa; Medina, Johan; Li, Longfei; Nagasawa, Masahiro

    2015-01-01

    Subunits of the sweet taste receptors T1R2 and T1R3 are expressed in pancreatic β-cells. Compared with T1R3, mRNA expression of T1R2 is considerably lower. At the protein level, expression of T1R2 is undetectable in β-cells. Accordingly, a major component of the sweet taste-sensing receptor in β-cells may be a homodimer of T1R3 rather than a heterodimer of T1R2/T1R3. Inhibition of this receptor by gurmarin or deletion of the T1R3 gene attenuates glucose-induced insulin secretion from β-cells. Hence the T1R3 homodimer functions as a glucose-sensing receptor (GSR) in pancreatic β-cells. When GSR is activated by the T1R3 agonist sucralose, elevation of intracellular ATP concentration ([ATP]i) is observed. Sucralose increases [ATP]i even in the absence of ambient glucose, indicating that sucralose increases [ATP]i not simply by activating glucokinase, a rate-limiting enzyme in the glycolytic pathway. In addition, sucralose augments elevation of [ATP]i induced by methylsuccinate, suggesting that sucralose activates mitochondrial metabolism. Nonmetabolizable 3-O-methylglucose also increases [ATP]i and knockdown of T1R3 attenuates elevation of [ATP]i induced by high concentration of glucose. Collectively, these results indicate that the T1R3 homodimer functions as a GSR; this receptor is involved in glucose-induced insulin secretion by activating glucose metabolism probably in mitochondria. PMID:25947913

  10. A new and simple method to evaluate early membrane changes in frozen-thawed boar spermatozoa.

    PubMed

    Peña, F J; Saravia, F; Johannisson, A; Walgren, M; Rodríguez-Martínez, H

    2005-04-01

    Detection of early changes in the sperm plasma membrane during cryopreservation is of utmost importance when designing freezing protocols and has previously been studied in the pig species using annexin-V detection of phosphatidylserine translocation. In the present study we designed a new assay to detect these changes in boar spermatozoa, based on the slight increase of sperm membrane permeability occurring during the early stages of cryoinjury, using the combination of three fluorescent probes, SNARF-1, YO-PRO-1 and ethidium homodimer. Four ejaculates from five different boars were frozen-thawed and flow cytometrically (FC) evaluated as paired samples. One of the samples was assayed using the annexin-V/propidium iodide staining and the other sample was evaluated using the new triple staining. Using this combination of probes, four sperm subpopulations were easily detected: viable, with stable membranes (SNARF-1 positive cells), and three with compromised membranes, one of YO-PRO-1+/Eth- cells, one ethidium homodimer+ spermatozoa and, finally spermatozoa stained both with YO-PRO-1 and ethidium homodimer (YO-PRO-1+/Eth+). The latter three categories corresponded to dead spermatozoa, but with different degree of membrane damage, being YO-PRO+/Eth- an earlier stage of membrane destabilization, (manifested by an increase in membrane permeability, while still maintaining membrane integrity) than YO-PRO+/Eth+. A method agreement analysis between both methods was performed revealing good agreement, although the percentage of live cells was 9.44% larger for the triple stain than the annexin-V assay. The new assay stained all sperm sub-populations present in the sample, making it especially suitable for both fluorescence microscopy and flow cytometry, facilitating the exclusion of debris and egg-yolk particles when using FC. PMID:15811072

  11. The Conserved Lys-95 Charged Residue Cluster Is Critical for the Homodimerization and Enzyme Activity of Human Ribonucleotide Reductase Small Subunit M2*

    PubMed Central

    Chen, Xinhuan; Xu, Zhijian; Zhang, Lingna; Liu, Hongchuan; Liu, Xia; Lou, Meng; Zhu, Lijun; Huang, Bingding; Yang, Cai-Guang; Zhu, Weiliang; Shao, Jimin

    2014-01-01

    Ribonucleotide reductase (RR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides for DNA synthesis. Human RR small subunit M2 exists in a homodimer form. However, the importance of the dimer form to the enzyme and the related mechanism remain unclear. In this study, we tried to identify the interfacial residues that may mediate the assembly of M2 homodimer by computational alanine scanning based on the x-ray crystal structure. Co-immunoprecipitation, size exclusion chromatography, and RR activity assays showed that the K95E mutation in M2 resulted in dimer disassembly and enzyme activity inhibition. In comparison, the charge-exchanging double mutation of K95E and E98K recovered the dimerization and activity. Structural comparisons suggested that a conserved cluster of charged residues, including Lys-95, Glu-98, Glu-105, and Glu-174, at the interface may function as an ionic lock for M2 homodimer. Although the measurements of the radical and iron contents showed that the monomer (the K95E mutant) was capable of generating the diiron and tyrosyl radical cofactor, co-immunoprecipitation and competitive enzyme inhibition assays indicated that the disassembly of M2 dimer reduced its interaction with the large subunit M1. In addition, the immunofluorescent and fusion protein-fluorescent imaging analyses showed that the dissociation of M2 dimer altered its subcellular localization. Finally, the transfection of the wild-type M2 but not the K95E mutant rescued the G1/S phase cell cycle arrest and cell growth inhibition caused by the siRNA knockdown of M2. Thus, the conserved Lys-95 charged residue cluster is critical for human RR M2 homodimerization, which is indispensable to constitute an active holoenzyme and function in cells. PMID:24253041

  12. Structural reorganization of the interleukin-7 signaling complex

    SciTech Connect

    McElroy, Craig A.; Holland, Paul J.; Zhao, Peng; Lim, Jae-Min; Wells, Lance; Eisenstein, Edward; Walsh, Scott T.R.

    2012-06-29

    We report here an unliganded receptor structure in the common gamma-chain ({gamma}{sub c}) family of receptors and cytokines. The crystal structure of the unliganded form of the interleukin-7 alpha receptor (IL-7R{alpha}) extracellular domain (ECD) at 2.15 {angstrom} resolution reveals a homodimer forming an 'X' geometry looking down onto the cell surface with the C termini of the two chains separated by 110 {angstrom} and the dimer interface comprising residues critical for IL-7 binding. Further biophysical studies indicate a weak association of the IL-7R{alpha} ECDs but a stronger association between the {gamma}{sub c}/IL-7R{alpha} ECDs, similar to previous studies of the full-length receptors on CD4{sup +} T cells. Based on these and previous results, we propose a molecular mechanism detailing the progression from the inactive IL-7R{alpha} homodimer and IL-7R{alpha}-{gamma}{sub c} heterodimer to the active IL-7-IL-7R{alpha}-{gamma}{sub c} ternary complex whereby the two receptors undergo at least a 90{sup o} rotation away from the cell surface, moving the C termini of IL-7R{alpha} and {gamma}{sub c} from a distance of 110 {angstrom} to less than 30 {angstrom} at the cell surface. This molecular mechanism can be used to explain recently discovered IL-7- and {gamma}{sub c}-independent gain-of-function mutations in IL-7R{alpha} from B- and T-cell acute lymphoblastic leukemia patients. The mechanism may also be applicable to other {gamma}{sub c} receptors that form inactive homodimers and heterodimers independent of their cytokines.

  13. A pleiotropic element in the medium-chain acyl coenzyme A dehydrogenase gene promoter mediates transcriptional regulation by multiple nuclear receptor transcription factors and defines novel receptor-DNA binding motifs.

    PubMed Central

    Carter, M E; Gulick, T; Moore, D D; Kelly, D P

    1994-01-01

    We previously identified a complex regulatory element in the medium-chain acyl coenzyme A dehydrogenase gene promoter that confers transcriptional regulation by the retinoid receptors RAR and RXR and the orphan nuclear receptor HNF-4. In this study we demonstrate a trans-repressing regulatory function for the orphan receptor COUP-TF at this same nuclear receptor response element (NRRE-1). The transcriptional regulatory properties and receptor binding sequences of each nuclear receptor response element within NRRE-1 are also characterized. NRRE-1 consists of four potential nuclear hormone receptor hexamer binding sites, arranged as [<--1-(n)s-2-->-3-->(n)4<--4], three of which are used in alternative pairwise binding by COUP-TF and HNF-4 homodimers and by RAR-RXR heterodimers, as demonstrated by mobility shift assays and methylation interference analysis. Binding and transactivation studies with mutant NRRE-1 elements confirmed the existence of distinct retinoid, COUP-TF, and HNF-4 response elements that define novel receptor binding motifs: COUP-TF homodimers bound sites 1 and 3 (two hexamer repeat sequences arranged as an everted imperfect repeat separated by 14 bp or ER14), RAR-RXR heterodimers bound sites 1 and 2 (ER8), and HNF-4 homodimers bound sites 2 and 3 (imperfect DR0). Mixing cotransfection experiments demonstrated that the nuclear receptor dimers compete at NRRE-1 to modulate constitutive and ligand-mediated transcriptional activity. These data suggest a mechanism for the transcriptional modulation of genes encoding enzymes involved in cellular metabolism. Images PMID:8007945

  14. Functional analysis reveals the possible role of the C-terminal sequences and PI motif in the function of lily (Lilium longiflorum) PISTILLATA (PI) orthologues

    PubMed Central

    Chen, Ming-Kun; Hsieh, Wen-Ping; Yang, Chang-Hsien

    2012-01-01

    Two lily (Lilium longiflorum) PISTILLATA (PI) genes, Lily MADS Box Gene 8 and 9 (LMADS8/9), were characterized. LMADS9 lacked 29 C-terminal amino acids including the PI motif that was present in LMADS8. Both LMADS8/9 mRNAs were prevalent in the first and second whorl tepals during all stages of development and were expressed in the stamen only in young flower buds. LMADS8/9 could both form homodimers, but the ability of LMADS8 homodimers to bind to CArG1 was relatively stronger than that of LMADS9 homodimers. 35S:LMADS8 completely, and 35S:LMADS9 only partially, rescued the second whorl petal formation and partially converted the first whorl sepal into a petal-like structure in Arabidopsis pi-1 mutants. Ectopic expression of LMADS8-C (with deletion of the 29 amino acids of the C-terminal sequence) or LMADS8-PI (with only the PI motif deleted) only partially rescued petal formation in pi mutants, which was similar to what was observed in 35S:LMADS9/pi plants. In contrast, 35:LMADS9+L8C (with the addition of the 29 amino acids of the LMADS8 C-terminal sequence) or 35S:LMADS9+L8PI (with the addition of the LMADS8 PI motif) demonstrated an increased ability to rescue petal formation in pi mutants, which was similar to what was observed in 35S:LMADS8/pi plants. Furthermore, ectopic expression of LMADS8-M (with the MADS domain truncated) generated more severe dominant negative phenotypes than those seen in 35S:LMADS9-M flowers. These results revealed that the 29 amino acids including the PI motif in the C-terminal region of the lily PI orthologue are valuable for its function in regulating perianth organ formation. PMID:22068145

  15. Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy

    PubMed Central

    Peckys, Diana B.; Korf, Ulrike; de Jonge, Niels

    2015-01-01

    The formation of HER2 homodimers plays an important role in breast cancer aggressiveness and progression; however, little is known about its localization. We have studied the intra- and intercellular variation of HER2 at the single-molecule level in intact SKBR3 breast cancer cells. Whole cells were visualized in hydrated state with correlative fluorescence microscopy and environmental scanning electron microscopy (ESEM). The locations of individual HER2 receptors were detected using an anti-HER2 affibody in combination with a quantum dot (QD), a fluorescent nanoparticle. Fluorescence microscopy revealed considerable differences of HER2 membrane expression between individual cells and between different membrane regions of the same cell (that is, membrane ruffles and flat areas). Subsequent ESEM of the corresponding cellular regions provided images of individually labeled HER2 receptors. The high spatial resolution of 3 nm and the close proximity between the QD and the receptor allowed quantifying the stoichiometry of HER2 complexes, distinguishing between monomers, dimers, and higher-order clusters. Downstream data analysis based on calculating the pair correlation function from receptor positions showed that cellular regions exhibiting membrane ruffles contained a substantial fraction of HER2 in homodimeric state. Larger-order clusters were also present. Membrane areas with homogeneous membrane topography, on the contrary, displayed HER2 in random distribution. Second, HER2 homodimers appeared to be absent from a small subpopulation of cells exhibiting a flat membrane topography, possibly resting cells. Local differences in homodimer presence may point toward functional differences with possible relevance for studying metastasis and drug response. PMID:26601217

  16. N-Terminus of Cardiac Myosin Essential Light Chain Modulates Myosin Step-Size.

    PubMed

    Wang, Yihua; Ajtai, Katalin; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Burghardt, Thomas P

    2016-01-12

    Muscle myosin cyclically hydrolyzes ATP to translate actin. Ventricular cardiac myosin (βmys) moves actin with three distinct unitary step-sizes resulting from its lever-arm rotation and with step-frequencies that are modulated in a myosin regulation mechanism. The lever-arm associated essential light chain (vELC) binds actin by its 43 residue N-terminal extension. Unitary steps were proposed to involve the vELC N-terminal extension with the 8 nm step engaging the vELC/actin bond facilitating an extra ∼19 degrees of lever-arm rotation while the predominant 5 nm step forgoes vELC/actin binding. A minor 3 nm step is the unlikely conversion of the completed 5 to the 8 nm step. This hypothesis was tested using a 17 residue N-terminal truncated vELC in porcine βmys (Δ17βmys) and a 43 residue N-terminal truncated human vELC expressed in transgenic mouse heart (Δ43αmys). Step-size and step-frequency were measured using the Qdot motility assay. Both Δ17βmys and Δ43αmys had significantly increased 5 nm step-frequency and coincident loss in the 8 nm step-frequency compared to native proteins suggesting the vELC/actin interaction drives step-size preference. Step-size and step-frequency probability densities depend on the relative fraction of truncated vELC and relate linearly to pure myosin species concentrations in a mixture containing native vELC homodimer, two truncated vELCs in the modified homodimer, and one native and one truncated vELC in the heterodimer. Step-size and step-frequency, measured for native homodimer and at two or more known relative fractions of truncated vELC, are surmised for each pure species by using a new analytical method. PMID:26671638

  17. Binding of type II nuclear receptors and estrogen receptor to full and half-site estrogen response elements in vitro.

    PubMed Central

    Klinge, C M; Bodenner, D L; Desai, D; Niles, R M; Traish, A M

    1997-01-01

    The mechanism by which retinoids, thyroid hormone (T3) and estrogens modulate the growth of breast cancer cells is unclear. Since nuclear type II nuclear receptors, including retinoic acid receptor (RAR), retinoid X receptor (RXR) and thyroid hormone receptor (TR), bind direct repeats (DR) of the estrogen response elements (ERE) half-site (5'-AGGTCA-3'), we examined the ability of estrogen receptor (ER) versus type II nuclear receptors, i.e. RARalpha, beta and gamma, RXRbeta, TRalpha and TRbeta, to bind various EREs in vitro . ER bound a consensus ERE, containing a perfectly palindromic 17 bp inverted repeat (IR), as a homodimer. In contrast, ER did not bind to a single ERE half-site. Likewise, ER did not bind two tandem (38 bp apart) half-sites, but low ER binding was detected to three tandem copies of the same half-site. RARalpha,beta or gamma bound both ERE and half-site constructs as a homodimer. RXRbeta did not bind full or half-site EREs, nor did RXRbeta enhance RARalpha binding to a full ERE. However, RARalpha and RXRbeta bound a half-site ERE cooperatively forming a dimeric complex. The RARalpha-RXRbeta heterodimer bound the Xenopus vitellogenin B1 estrogen responsive unit, with two non-consensus EREs, with higher affinity than one or two copies of the full or half-site ERE. Both TRalpha and TRbeta bound the full and the half-site ERE as monomers and homodimers and cooperatively as heterodimers with RXRbeta. We suggest that the cellular concentrations of nuclear receptors and their ligands, and the nature of the ERE or half-site sequence and those of its flanking sequences determine the occupation of EREs in estrogen-regulated genes in vivo . PMID:9115356

  18. Anti-epidermal growth factor receptor monoclonal antibody cetuximab inhibits EGFR/HER-2 heterodimerization and activation.

    PubMed

    Patel, Dipa; Bassi, Rajiv; Hooper, Andrea; Prewett, Marie; Hicklin, Daniel J; Kang, Xiaoqiang

    2009-01-01

    Human carcinomas frequently express one or more members of the epidermal growth factor receptor family. Two family members, epidermal growth factor receptor (EGFR) and c-erbB2/neu (HER2), homodimerize or heterodimerize upon activation with ligand and trigger potent mechanisms of cellular proliferation, differentiation and migration. In this study, we examined the effect of the anti-EGFR monoclonal antibody Erbitux (cetuximab) on human tumor cells expressing both EGFR and HER2. Investigation of the effect of cetuximab on the activation of EGFR-EGFR, EGFR-HER2 and HER2-HER2 homodimers and heterodimers was conducted using the NCI-N87 human gastric carcinoma cell line. Treatment of NCI-N87 cells with cetuximab completely inhibited formation of EGFR-EGFR homodimers and EGFR-HER2 heterodimers. Activation of HER2-HER2 homodimers was not appreciably stimulated by exogenous ligand and was not inhibited by cetuximab treatment. Furthermore, cetuximab inhibited EGF-induced EGFR and HER2 phosphorylation in CAL27, NCI-H226 and NCI-N87 cells. The activation of downstream signaling molecules such as AKT, MAPK and STAT-3 were also inhibited by cetuximab in these cells. To examine the effect of cetuximab on the growth of tumors in vivo, athymic mice bearing established NCI-N87 or CAL27 xenografts were treated with cetuximab (1 mg, i.p., q3d). The growth of NCI-N87 and CAL27 tumors was significantly inhibited with cetuximab therapy compared to the control groups (p<0.0001 in both cases). In the CAL27 xenograft model, tumor growth inhibition by cetuximab treatment was similar to that by cetuximab and trastuzumab combination treatment. Immunohistological analysis of cetuximab-treated tumors showed a decrease in EGFR-HER2 signaling and reduced tumor cell proliferation. These results suggest that cetuximab may be useful in the treatment of carcinomas co-expressing EGFR and HER2. PMID:19082474

  19. H-ras Inhibits the Hippo Pathway by Promoting Mst1/Mst2 Heterodimerization.

    PubMed

    Rawat, Sonali J; Araiza-Olivera, Daniela; Arias-Romero, Luis E; Villamar-Cruz, Olga; Prudnikova, Tatiana Y; Roder, Heinrich; Chernoff, Jonathan

    2016-06-20

    The protein kinases Mst1 and Mst2 have tumor suppressor activity, but their mode of regulation is not well established. Mst1 and Mst2 are broadly expressed and may have certain overlapping functions in mammals, as deletions of both Mst1 and Mst2 together are required for tumorigenesis in mouse models [1-3]. These kinases act via a three-component signaling cascade comprising Mst1 and Mst2, the protein kinases Lats1 and Lats2, and the transcriptional coactivators Yap and Taz [4-6]. Mst1 and Mst2 contain C-terminal SARAH domains that mediate their homodimerization as well as heterodimerization with other SARAH domain-containing proteins, which may regulate Mst1/Mst2 activity. Here we show that, in addition to forming homodimers, Mst1 and Mst2 heterodimerize in cells, this interaction is mediated by their SARAH domains and is favored over homodimers, and these heterodimers have much-reduced protein kinase activity compared to Mst1 or Mst2 homodimers. Mst1/Mst2 heterodimerization is strongly promoted by oncogenic H-ras, and this effect requires activation of the Erk pathway. Cells lacking Mst1, in which Mst1/Mst2 heterodimers are not possible, are resistant to H-ras-mediated transformation and maintain active hippo pathway signaling compared to wild-type cells or cells lacking both Mst1 and Mst2. Our results suggest that H-ras, via an Erk-dependent mechanism, downregulates Mst1/Mst2 activity by inducing the formation of inactive Mst1/Mst2 heterodimers. PMID:27238285

  20. Mapping the Interaction of B Cell Leukemia 3 (BCL-3) and Nuclear Factor κB (NF-κB) p50 Identifies a BCL-3-mimetic Anti-inflammatory Peptide*

    PubMed Central

    Collins, Patricia E.; Grassia, Gianluca; Colleran, Amy; Kiely, Patrick A.; Ialenti, Armando; Maffia, Pasquale; Carmody, Ruaidhrí J.

    2015-01-01

    The NF-κB transcriptional response is tightly regulated by a number of processes including the phosphorylation, ubiquitination, and subsequent proteasomal degradation of NF-κB subunits. The IκB family protein BCL-3 stabilizes a NF-κB p50 homodimer·DNA complex through inhibition of p50 ubiquitination. This complex inhibits the binding of the transcriptionally active NF-κB subunits p65 and c-Rel on the promoters of NF-κB target genes and functions to suppress inflammatory gene expression. We have previously shown that the direct interaction between p50 and BCL-3 is required for BCL-3-mediated inhibition of pro-inflammatory gene expression. In this study we have used immobilized peptide array technology to define regions of BCl-3 that mediate interaction with p50 homodimers. Our data show that BCL-3 makes extensive contacts with p50 homodimers and in particular with ankyrin repeats (ANK) 1, 6, and 7, and the N-terminal region of Bcl-3. Using these data we have designed a BCL-3 mimetic peptide based on a region of the ANK1 of BCL-3 that interacts with p50 and shares low sequence similarity with other IκB proteins. When fused to a cargo carrying peptide sequence this BCL-3-derived peptide, but not a mutated peptide, inhibited Toll-like receptor-induced cytokine expression in vitro. The BCL-3 mimetic peptide was also effective in preventing inflammation in vivo in the carrageenan-induced paw edema mouse model. This study demonstrates that therapeutic strategies aimed at mimicking the functional activity of BCL-3 may be effective in the treatment of inflammatory disease. PMID:25922067

  1. Rational Design of Small-Molecule Stabilizers of Spermine Synthase Dimer by Virtual Screening and Free Energy-Based Approach

    PubMed Central

    Zhang, Zhe; Martiny, Virginie; Lagorce, David; Ikeguchi, Yoshihiko; Alexov, Emil; Miteva, Maria A.

    2014-01-01

    Snyder-Robinson Syndrome (SRS) is a rare mental retardation disorder which is caused by the malfunctioning of an enzyme, the spermine synthase (SMS), which functions as a homo-dimer. The malfunctioning of SMS in SRS patients is associated with several identified missense mutations that occur away from the active site. This investigation deals with a particular SRS-causing mutation, the G56S mutation, which was shown computationally and experimentally to destabilize the SMS homo-dimer and thus to abolish SMS enzymatic activity. As a proof-of-concept, we explore the possibility to restore the enzymatic activity of the malfunctioning SMS mutant G56S by stabilizing the dimer through small molecule binding at the mutant homo-dimer interface. For this purpose, we designed an in silico protocol that couples virtual screening and a free binding energy-based approach to identify potential small-molecule binders on the destabilized G56S dimer, with the goal to stabilize it and thus to increase SMS G56S mutant activity. The protocol resulted in extensive list of plausible stabilizers, among which we selected and tested 51 compounds experimentally for their capability to increase SMS G56S mutant enzymatic activity. In silico analysis of the experimentally identified stabilizers suggested five distinctive chemical scaffolds. This investigation suggests that druggable pockets exist in the vicinity of the mutation sites at protein-protein interfaces which can be used to alter the disease-causing effects by small molecule binding. The identified chemical scaffolds are drug-like and can serve as original starting points for development of lead molecules to further rescue the disease-causing effects of the Snyder-Robinson syndrome for which no efficient treatment exists up to now. PMID:25340632

  2. Assembly of the Bak Apoptotic Pore

    PubMed Central

    Ma, Stephen; Hockings, Colin; Anwari, Khatira; Kratina, Tobias; Fennell, Stephanie; Lazarou, Michael; Ryan, Michael T.; Kluck, Ruth M.; Dewson, Grant

    2013-01-01

    Bak and Bax are the essential effectors of the intrinsic pathway of apoptosis. Following an apoptotic stimulus, both undergo significant changes in conformation that facilitates their self-association to form pores in the mitochondrial outer membrane. However, the molecular structures of Bak and Bax oligomeric pores remain elusive. To characterize how Bak forms pores during apoptosis, we investigated its oligomerization under native conditions using blue native PAGE. We report that, in a healthy cell, inactive Bak is either monomeric or in a large complex involving VDAC2. Following an apoptotic stimulus, activated Bak forms BH3:groove homodimers that represent the basic stable oligomeric unit. These dimers multimerize to higher-order oligomers via a labile interface independent of both the BH3 domain and groove. Linkage of the α6:α6 interface is sufficient to stabilize higher-order Bak oligomers on native PAGE, suggesting an important role in the Bak oligomeric pore. Mutagenesis of the α6 helix disrupted apoptotic function because a chimera of Bak with the α6 derived from Bcl-2 could be activated by truncated Bid (tBid) and could form BH3:groove homodimers but could not form high molecular weight oligomers or mediate cell death. An α6 peptide could block Bak function but did so upstream of dimerization, potentially implicating α6 as a site for activation by BH3-only proteins. Our examination of native Bak oligomers indicates that the Bak apoptotic pore forms by the multimerization of BH3:groove homodimers and reveals that Bak α6 is not only important for Bak oligomerization and function but may also be involved in how Bak is activated by BH3-only proteins. PMID:23893415

  3. Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy.

    PubMed

    Peckys, Diana B; Korf, Ulrike; de Jonge, Niels

    2015-07-01

    The formation of HER2 homodimers plays an important role in breast cancer aggressiveness and progression; however, little is known about its localization. We have studied the intra- and intercellular variation of HER2 at the single-molecule level in intact SKBR3 breast cancer cells. Whole cells were visualized in hydrated state with correlative fluorescence microscopy and environmental scanning electron microscopy (ESEM). The locations of individual HER2 receptors were detected using an anti-HER2 affibody in combination with a quantum dot (QD), a fluorescent nanoparticle. Fluorescence microscopy revealed considerable differences of HER2 membrane expression between individual cells and between different membrane regions of the same cell (that is, membrane ruffles and flat areas). Subsequent ESEM of the corresponding cellular regions provided images of individually labeled HER2 receptors. The high spatial resolution of 3 nm and the close proximity between the QD and the receptor allowed quantifying the stoichiometry of HER2 complexes, distinguishing between monomers, dimers, and higher-order clusters. Downstream data analysis based on calculating the pair correlation function from receptor positions showed that cellular regions exhibiting membrane ruffles contained a substantial fraction of HER2 in homodimeric state. Larger-order clusters were also present. Membrane areas with homogeneous membrane topography, on the contrary, displayed HER2 in random distribution. Second, HER2 homodimers appeared to be absent from a small subpopulation of cells exhibiting a flat membrane topography, possibly resting cells. Local differences in homodimer presence may point toward functional differences with possible relevance for studying metastasis and drug response. PMID:26601217

  4. The ubiquitin-proteasome system and activation of NF-κB: involvement of the ubiquitin ligase KPC1 in p105 processing and tumor suppression

    PubMed Central

    Kravtsova-Ivantsiv, Yelena; Ciechanover, Aaron

    2015-01-01

    The p50 subunit of nuclear factor-kappa B (NF-κB) is generated from processing of the p105 precursor. We identified KIP1 ubiquitination-promoting complex 1 (KPC1) as the ubiquitin (Ub) ligase mediating this process. Overexpression of KPC1 results in tumor suppression, probably due to the generation of p50–p50 homodimers. It appears that high levels of KPC1 and nuclear p50 are important for maintaining the non-malignant state. PMID:27308511

  5. Dimerization and DNA-binding of ASR1, a small hydrophilic protein abundant in plant tissues suffering from water loss

    SciTech Connect

    Maskin, Laura; Frankel, Nicolas; Gudesblat, Gustavo; Demergasso, Maria J.; Pietrasanta, Lia I.; Iusem, Norberto D. . E-mail: norbius@fbmc.fcen.uba.ar

    2007-01-26

    The Asr gene family is present in Spermatophyta. Its members are generally activated under water stress. We present evidence that tomato ASR1, one of the proteins of the family, accumulates in seed during late stages of embryogenesis, a physiological process characterized by water loss. In vitro, electrophoretic assays show a homo-dimeric structure for ASR1 and highlight strong non-covalent interactions between monomers prone to self-assemble. Direct visualization of single molecules by atomic force microscopy (AFM) confirms that ASR1 forms homodimers and that uncovers both monomers and dimers bind double stranded DNA.

  6. Self-complementary quadruply hydrogen-bonded duplexes based on imide and urea units.

    PubMed

    Li, Xianghui; Fang, Yuyu; Deng, Pengchi; Hu, Jinchuan; Li, Tian; Feng, Wen; Yuan, Lihua

    2011-09-01

    The quadruply hydrogen-bonded duplexes based on an imide-urea structure preorganized by three-center hydrogen bonds were found to associate via bifurcated hydrogen bonds. (1)H NMR dilution experiments revealed the high stability of the homodimer in apolar solvent (K(dim) > 10(5) M(-1) in CDCl(3)) and enhancement of association ability due to electron-withdrawing substituent effects. The ready synthetic availability and adjustable association affinity via electronic effects may render these association units potentially applicable in constructing supramolecular architectures. PMID:21819056

  7. A Kirchhoff solution to plasmon hybridization

    NASA Astrophysics Data System (ADS)

    Willingham, Britain; Link, Stephan

    2013-12-01

    Using Ohm's law, a solution to plasmon hybridization via Kirchoff's equations results in a simple and intuitive picture of a metal nanoparticle dimer as a capacitively coupled circuit. Calculated absorption spectra and surface charge densities show that dimers of different metallic composition support different super- and sub-radiant plasmons compared to homodimers. Strong screening of Coulomb interactions between nanoparticles of different metallic background prohibits the excitation of anti-bonding plasmons, while changes to the free electron conductivity upon a collective response result in coupled plasmon lifetimes which shift as a function of interparticle distance. Smaller separations then result in the longest lived plasmons.

  8. De Novo Fragment Design for Drug Discovery and Chemical Biology.

    PubMed

    Rodrigues, Tiago; Reker, Daniel; Welin, Martin; Caldera, Michael; Brunner, Cyrill; Gabernet, Gisela; Schneider, Petra; Walse, Björn; Schneider, Gisbert

    2015-12-01

    Automated molecular de novo design led to the discovery of an innovative inhibitor of death-associated protein kinase 3 (DAPK3). An unprecedented crystal structure of the inactive DAPK3 homodimer shows the fragment-like hit bound to the ATP pocket. Target prediction software based on machine learning models correctly identified additional macromolecular targets of the computationally designed compound and the structurally related marketed drug azosemide. The study validates computational de novo design as a prime method for generating chemical probes and starting points for drug discovery. PMID:26486226

  9. Full-CI calculation of imaginary frequency-dependent dipole-quadrupole polarizabilities of ground state LiH and the C 7 dispersion coefficients of LiH-LiH

    NASA Astrophysics Data System (ADS)

    Luigi Bendazzoli, Gian; Magnasco, Valerio; Figari, Giuseppe; Rui, Marina

    2002-09-01

    Full-CI calculations of frequency-dependent dipole and dipole-quadrupole polarizabilities of ground state LiH have been performed in the imaginary frequency range 0-56 a.u. using a set of 58 Gaussian type orbitals (GTOs) giving a Full-CI dimension of about 700.000 determinants in each symmetry-adapted subspace. A 16-point Gauss-Legendre quadrature of the Casimir-Polder formula over imaginary frequencies allows calculation of the dipole-quadrupole dispersion constants for the LiH-LiH homodimer, from which C 7 dispersion coefficients are derived for the first time.

  10. Cellular reactive oxygen species inhibit MPYS induction of IFNβ.

    PubMed

    Jin, Lei; Lenz, Laurel L; Cambier, John C

    2010-01-01

    Many inflammatory diseases, as well as infections, are accompanied by elevation in cellular levels of Reactive Oxygen Species (ROS). Here we report that MPYS, a.k.a. STING, which was recently shown to mediate activation of IFNβ expression during infection, is a ROS sensor. ROS induce intermolecular disulfide bonds formation in MPYS homodimer and inhibit MPYS IFNβ stimulatory activity. Cys-64, -148, -292, -309 and the potential C₈₈xxC₉₁ redox motif in MPYS are indispensable for IFNβ stimulation and IRF3 activation. Thus, our results identify a novel mechanism for ROS regulation of IFNβ stimulation. PMID:21170271

  11. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders

    PubMed Central

    Conn, P. Jeffrey; Lindsley, Craig W.; Meiler, Jens; Niswender, Colleen M.

    2014-01-01

    Novel allosteric modulators of G protein-coupled receptors (GPCRs) are providing fundamental advances in the development of GPCR ligands with high subtype selectivity and novel modes of efficacy that have not been possible with traditional approaches. As new allosteric modulators are advancing as drug candidates, we are developing an increased understanding of the major advantages and broad range of activities that can be achieved with these agents through selective modulation of specific signalling pathways, differential effects on GPCR homodimers versus heterodimers, and other properties. This understanding creates exciting opportunities, as well as unique challenges, in the optimization of novel therapeutic agents for disorders of the central nervous system. PMID:25176435

  12. Crystal structure of L-sorbose dehydrogenase, a pyrroloquinoline quinone-dependent enzyme with homodimeric assembly, from Ketogulonicigenium vulgare.

    PubMed

    Han, Xiaodong; Xiong, Xianghua; Jiang, Dunquan; Chen, Sihan; Huang, Enyu; Zhang, Weicai; Liu, Xinqi

    2014-05-01

    The crystal structure of the L-sorbose dehydrogenase (SDH) from Ketogulonicigenium vulgare Y25 has been determined at 2.7 Å resolution using the molecular replacement method. The overall structure of SDH is similar to that of other quinoprotein dehydrogenases; consisting of an eight bladed β-propeller PQQ domain and protrusion loops. We identified a stable homodimer in crystal and demonstrated its existence in solution by sedimentation velocity measurement. By biochemical characterization of the SDH in vitro, using L-sorbose as substrate and cytochrome c551 as electron acceptor, we revealed cytochrome c551 acting as physiological primary electron acceptor for SDH. PMID:24557074

  13. Circadian clock parameter measurement: characterization of clock transcription factors using surface plasmon resonance.

    PubMed

    O'Neill, John S; van Ooijen, Gerben; Le Bihan, Thierry; Millar, Andrew J

    2011-04-01

    To refine mathematical models of the transcriptional/translational feedback loop in the clockwork of Arabidopsis thaliana, the investigators sought to determine the affinity of the transcription factors LHY, CCA1, and CHE for their cognate DNA target sequences in vitro. Steady-state dissociation constants were observed to lie in the low nanomolar range. Furthermore, the data suggest that the LHY/CCA1 heterodimer binds more tightly than either homodimer and that DNA binding of these complexes is temperature compensated. Finally, it was found that LHY binding to the evening element in vitro is enhanced by both molecular crowding effects and by casein kinase 2-mediated phosphorylation. PMID:21454289

  14. Subnuclear localization of the trans-activating protein of human T-cell leukemia virus type I

    SciTech Connect

    Slamon, D.J.; Keith, D.E.; Golde, D.W. ); Boyle, W.J. ); Press, M.F. ); Souza, L.M. )

    1988-03-01

    Human T-cell leukemia virus type I is associated with human lymphoid malignancies. The p40{sup xI} protein encoded by the x gene of this virus is believed to play some role in virally mediated transformation. This gene is known to encode a transcriptional trans activator which previous studies have shown to be a nuclear protein. Further characterization of the intracellular kinetics of this protein showed that it migrated into the nucleus very soon after synthesis. Within the nucleus, p40{sup xI} was distributed almost equally between the nucleoplasm and the nuclear matrix. Given the proposed role of the nuclear matrix in RNA transcription, the association of p40{sup xI} with the matrix places it in an appropriate cellular compartment to exercise an effect on transcription.

  15. Subnuclear localization of the trans-activating protein of human T-cell leukemia virus type I.

    PubMed Central

    Slamon, D J; Boyle, W J; Keith, D E; Press, M F; Golde, D W; Souza, L M

    1988-01-01

    Human T-cell leukemia virus type I is associated with human lymphoid malignancies. The p40xI protein encoded by the x gene of this virus is believed to play some role in virally mediated transformation. This gene is known to encode a transcriptional trans activator which previous studies have shown to be a nuclear protein. Further characterization of the intracellular kinetics of this protein showed that it migrated into the nucleus very soon after synthesis. Within the nucleus, p40xI was distributed almost equally between the nucleoplasm and the nuclear matrix. Given the proposed role of the nuclear matrix in RNA transcription, the association of p40xI with the matrix places it in an appropriate cellular compartment to exercise an effect on transcription. Images PMID:2828664

  16. Dynamic Analysis of GH Receptor Conformational Changes by Split Luciferase Complementation

    PubMed Central

    Liu, Ying; Berry, Philip A.; Zhang, Yue; Jiang, Jing; Lobie, Peter E.; Paulmurugan, Ramasamy; Langenheim, John F.; Chen, Wen Y.; Zinn, Kurt R.

    2014-01-01

    The transmembrane GH receptor (GHR) exists at least in part as a preformed homodimer on the cell surface. Structural and biochemical studies suggest that GH binds GHR in a 1:2 stoichiometry to effect acute GHR conformational changes that trigger the activation of the receptor-associated tyrosine kinase, Janus kinase 2 (JAK2), and downstream signaling. Despite information about GHR-GHR association derived from elegant fluorescence resonance energy transfer/bioluminescence resonance energy transfer studies, an assessment of the dynamics of GH-induced GHR conformational changes has been lacking. To this end, we used a split luciferase complementation assay that allowed detection in living cells of specific ligand-independent GHR-GHR interaction. Furthermore, GH treatment acutely augmented complementation of enzyme activity between GHRs fused, respectively, to N- and C-terminal fragments of firefly luciferase. Analysis of the temporal pattern of GH-induced complementation changes, pharmacological manipulation, genetic alteration of JAK2 levels, and truncation of the GHR intracellular domain (ICD) tail suggested that GH acutely enhances proximity of the GHR homodimer partners independent of the presence of JAK2, phosphorylation of GHR-luciferase chimeras, or an intact ICD. However, subsequent reduction of complementation requires JAK2 kinase activity and the ICD tail. This conclusion is in contrast to existing models of the GHR activation process. PMID:25188449

  17. Integrating ELF4 into the circadian system through combined structural and functional studies

    PubMed Central

    Kolmos, Elsebeth; Nowak, Monika; Werner, Maria; Fischer, Katrin; Schwarz, Guenter; Mathews, Sarah; Schoof, Heiko; Nagy, Ferenc; Bujnicki, Janusz M.; Davis, Seth J.

    2009-01-01

    The circadian clock is a timekeeping mechanism that enables anticipation of daily environmental changes. In the plant Arabidopsis thaliana, the circadian system is a multiloop series of interlocked transcription-translation feedbacks. Several genes have been arranged in these oscillation loops, but the position of the core-clock gene ELF4 in this network was previously undetermined. ELF4 lacks sequence similarity to known domains, and functional homologs have not yet been identified. Here we show that ELF4 is functionally conserved within a subclade of related sequences, and forms an alpha-helical homodimer with a likely electrostatic interface that could be structurally modeled. We support this hypothesis by expression analysis of new elf4 hypomorphic alleles. These weak mutants were found to have expression level phenotypes of both morning and evening clock genes, implicating multiple entry points of ELF4 within the multiloop network. This could be mathematically modeled. Furthermore, morning-expression defects were particular to some elf4 alleles, suggesting predominant ELF4 action just preceding dawn. We provide a new hypothesis about ELF4 in the oscillator—it acts as a homodimer to integrate two arms of the circadian clock. PMID:20357892

  18. In silico analysis of human Toll-like receptor 7 ligand binding domain.

    PubMed

    Gupta, Chhedi Lal; Akhtar, Salman; Sayyed, Uzma; Pathak, Neelam; Bajpai, Preeti

    2016-05-01

    Toll-like receptors recognizing pathogen-associated molecular patterns are preface actors for innate immunity. Among them TLR7 is a transmembrane protein playing very crucial role in the signaling pathways involved in innate immunity by recognizing viral ssRNA and specific small molecule agonists. The unavailability of experimental 3D structure of this receptor till date hampers the focused exploration of TLR7 interaction with its ligands. However, several proteins possessing high homology domain enabled us to construct a reliable 3D model of hTLR7 ECD, which was employed to generate the homodimer model using protein-protein docking strategy. Further molecular docking studies between developed homodimer model and ligands were performed to explore the most preferred site of hTLR7 ECD interacting with ligands. The comparative analysis of docking energies and protein-ligand interactions of all the ligands revealed resiquimod as the prominent agonist. Furthermore, molecular interactions between protein-ligand complexes suggested LRR15 and LRR16 region of hTLR7 ECD as the most preferential site for ligand binding. The Ser434 and Gly437 of LRR15 region of hTLR7 were found to be conserved with Drosophila Toll protein. The obtained complex model may lead to a better understanding of TLR7 functioning along with its inheritance from invertebrates to mammals. PMID:25817271

  19. The p66 Immature Precursor of HIV-1 Reverse Transcriptase

    PubMed Central

    Sharaf, Naima G.; Poliner, Eric; Slack, Ryan L.; Christen, Martin T.; Byeon, In-Ja L.; Parniak, Michael A.; Gronenborn, Angela M.; Ishima, Rieko

    2015-01-01

    In contrast to the wealth of structural data available for the mature p66/p51 heterodimeric human immunodeficiency virus type 1 reverse transcriptase (RT), the structure of the homodimeric p66 precursor remains unknown. In all X-ray structures of mature RT, free or complexed, the processing site in the p66 subunit, for generating the p51 subunit, is sequestered into a β-strand within the folded ribonuclease H (RNH) domain and is not readily accessible to proteolysis, rendering it difficult to propose a simple and straightforward mechanism of the maturation step. Here, we investigated, by solution NMR, the conformation of the RT p66 homodimer. Our data demonstrate that the RNH and Thumb domains in the p66 homodimer are folded and possess conformations very similar to those in mature RT. This finding suggests that maturation models which invoke a complete or predominantly unfolded RNH domain are unlikely. The present study lays the foundation for further in-depth mechanistic investigations at the atomic level. PMID:24771554

  20. Theoretical prediction of familial amyotrophic lateral sclerosis missense mutation effects on Cu/Zn superoxide dismutase structural stability

    SciTech Connect

    Potier, M.; Tu, Y.

    1994-09-01

    Cu/Zn superoxide dismutase (SOD) deficiency is associated with the progressive paralytic disorder familial amyotrophic lateral sclerosis (FALS). Fifteen missense mutations in the SOD gene were identified in several patients. These mutations may prevent correct promoter folding or hamper homodimer formation necessary for SOD activity. To understand the effect of the missense mutations on SOD structure and function, we used a theoretical analysis of structural effects based on two predictive methods using the modeled tertiary structure of human SOD. The first method uses the TORSO program which optimizes amino acid side-chains repacking in both wild-type and mutant SODs and calculates protein internal packing energy. The second method uses a hydrophobicity scale of the amino acid residues and considers both solvent accessibility and hydrophobic nature of residue substitutions to compute a stabilization energy change ({delta}E). These predictive methods have been tested in 187 single and multiple missense mutants of 8 proteins (T4 lysozyme, human carbonic anhydrase II, chymotrypsin inhibitor 2, f1 gene V protein, barnase, {lambda}-repressor, chicken and human lysozymes) with experimentally determined thermostability. The overall prediction accuracy with these proteins was 88%. Analysis of FALS missense mutations {delta}E predicts that 14 of 15 mutations destabilize the SOD structure. The other missense mutation is located at the homodimer interface and may hinder dimer formation. This approach is applicable to any protein with known tertiary structure to predict missense mutation effects on protein stability.

  1. T-cell receptor. gamma. chain-CD3 complex: implication in the cytotoxic activity of a CD3/sup +/ CD4/sup -/ CD8/sup -/ human natural killer clone

    SciTech Connect

    Alarcon, B.; De Vries, J.; Pettey, C.; Boylston, A.; Yssel, H.; Terhorst, C.; Spits, H.

    1987-06-01

    A subset of human T cells has recently been described. These cells express the CD3 complex but they do not carry the classical T-cell receptor (TCR)-..gamma../-..beta.. heterodimer on their surface (WT31/sup -/ CD3/sup +/). Instead, they express a TCR-..gamma.. chain associated with another type of polypeptide termed TCR-delta. The authors report here that a T-cell clone with natural killer (NK)-like activity, WM-14, had a disulfide bridged TCR-..gamma.. homodimer associated with CD3 on its surface. The TCR-..gamma.. chains of WM-14 cells were present in three different glycosylation forms of 43, 40, and 38 kDa, but they appeared to contain the same polypeptide backbone. Since cytotoxicity by WM-14 could be inhibited by anti-CD3 antibodies, they concluded that the TCR-..gamma..-CD3 complex was involved in the NK-like unrestricted killer activity. Although normal CD3-..gamma.., CD3-delta, and CD3-element of chains were present in this clone, the association with the TCR-..gamma.. homodimer may be the cause of a complete processing of the N-linked oligosaccharides attached to the CD3-delta chain.

  2. Phenotypic mixing between different hepadnavirus nucleocapsid proteins reveals C protein dimerization to be cis preferential.

    PubMed Central

    Chang, C; Zhou, S; Ganem, D; Standring, D N

    1994-01-01

    Hepadnaviruses encode a single core (C) protein which assembles into a nucleocapsid containing the polymerase (P) protein and pregenomic RNA during viral replication in hepatocytes. We examined the ability of heterologous hepadnavirus C proteins to cross-oligomerize. Using a two-hybrid assay in HepG2 cells, we observed cross-oligomerization among the core proteins from hepatitis B virus (HBV), woodchuck hepatitis virus, and ground squirrel hepatitis virus. When expressed in Xenopus oocytes, in which hepadnavirus C proteins form capsids, the C polypeptides from woodchuck hepatitis virus and ground squirrel hepatitis virus, but not duck hepatitis B virus, can efficiently coassemble with an epitope-tagged HBV core polypeptide to form mixed capsids. However, when two different core mRNAs are coexpressed in oocytes the core monomers show a strong preference for forming homodimers rather than heterodimers. This holds true even for coexpression of two HBV C proteins differing only by an epitope tag, suggesting that core monomers are not free to diffuse and associate with other monomers. Thus, mixed capsids result from aggregation of different species of homodimers. Images PMID:7518533

  3. Visualization and ligand-induced modulation of dopamine receptor dimerization at the single molecule level.

    PubMed

    Tabor, Alina; Weisenburger, Siegfried; Banerjee, Ashutosh; Purkayastha, Nirupam; Kaindl, Jonas M; Hübner, Harald; Wei, Luxi; Grömer, Teja W; Kornhuber, Johannes; Tschammer, Nuska; Birdsall, Nigel J M; Mashanov, Gregory I; Sandoghdar, Vahid; Gmeiner, Peter

    2016-01-01

    G protein-coupled receptors (GPCRs), including dopamine receptors, represent a group of important pharmacological targets. An increased formation of dopamine receptor D2 homodimers has been suggested to be associated with the pathophysiology of schizophrenia. Selective labeling and ligand-induced modulation of dimerization may therefore allow the investigation of the pathophysiological role of these dimers. Using TIRF microscopy at the single molecule level, transient formation of homodimers of dopamine receptors in the membrane of stably transfected CHO cells has been observed. The equilibrium between dimers and monomers was modulated by the binding of ligands; whereas antagonists showed a ratio that was identical to that of unliganded receptors, agonist-bound D2 receptor-ligand complexes resulted in an increase in dimerization. Addition of bivalent D2 receptor ligands also resulted in a large increase in D2 receptor dimers. A physical interaction between the protomers was confirmed using high resolution cryogenic localization microscopy, with ca. 9 nm between the centers of mass. PMID:27615810

  4. An unusual dimeric structure and assembly for TLR4 regulator RP105-MD-1

    SciTech Connect

    Yoon, Sung-il; Hong, Minsun; Wilson, Ian A

    2011-11-16

    RP105-MD-1 modulates the TLR4-MD-2-mediated, innate immune response against bacterial lipopolysaccharide (LPS). The crystal structure of the bovine 1:1 RP105-MD-1 complex bound to a putative endogenous lipid at 2.9 Å resolution shares a similar overall architecture to its homolog TLR4-MD-2 but assembles into an unusual 2:2 homodimer that differs from any other known TLR-ligand assembly. The homodimer is assembled in a head-to-head orientation that juxtaposes the N-terminal leucine-rich repeats (LRRs) of the two RP105 chains, rather than the usual tail-to-tail configuration of C-terminal LRRs in ligand-activated TLR dimers, such as TLR1-TRL2, TLR2-TLR6, TLR3-TLR3 and TLR4-TLR4. Another unusual interaction is mediated by an RP105-specific asparagine-linked glycan, which wedges MD-1 into the co-receptor binding concavity on RP105. This unique mode of assembly represents a new paradigm for TLR complexes and suggests a molecular mechanism for regulating LPS responses.

  5. Gas phase measurements of mono-fluoro-benzoic acids and the dimer of 3-fluoro-benzoic acid.

    PubMed

    Daly, Adam M; Carey, Spencer J; Pejlovas, Aaron M; Li, Kexin; Kang, Lu; Kukolich, Stephen G

    2015-04-14

    The microwave spectrum of the mono-fluoro-benzoic acids, 2-fluoro-, 3-fluoro-, and 4-fluoro-benzoic acid have been measured in the frequency range of 4-14 GHz using a pulsed beam Fourier transform microwave spectrometer. Measured rotational transition lines were assigned and fit using a rigid rotor Hamiltonian. Assignments were made for 3 conformers of 2-fluorobenzoic acid, 2 conformers of 3-fluorobenzoic acid, and 1 conformer of 4-fluorobenzoic acid. Additionally, the gas phase homodimer of 3-fluorobenzoic acid was detected, and the spectra showed evidence of proton tunneling. Experimental rotational constants are A(0(+)) = 1151.8(5), B(0(+)) = 100.3(5), C(0(+)) = 87.64(3) MHz and A(0(-)) = 1152.2(5), B(0(-)) = 100.7(5), C(0(-)) = 88.85(3) MHz for the two ground vibrational states split by the proton tunneling motion. The tunneling splitting (ΔE) is approximately 560 MHz. This homodimer appears to be the largest carboxylic acid dimer observed with F-T microwave spectroscopy. PMID:25877574

  6. The 1.9 A Structure of the Branched-Chain Amino-Acid Transaminase (IlvE) from Mycobacterium tuberculosis

    SciTech Connect

    Tremblay, L.; Blanchard, J

    2009-01-01

    Unlike mammals, bacteria encode enzymes that synthesize branched-chain amino acids. The pyridoxal 5'-phosphate-dependent transaminase performs the final biosynthetic step in these pathways, converting keto acid precursors into {alpha}-amino acids. The branched-chain amino-acid transaminase from Mycobacterium tuberculosis (MtIlvE) has been crystallized and its structure has been solved at 1.9 {angstrom} resolution. The MtIlvE monomer is composed of two domains that interact to form the active site. The biologically active form of IlvE is a homodimer in which each monomer contributes a substrate-specificity loop to the partner molecule. Additional substrate selectivity may be imparted by a conserved N-terminal Phe30 residue, which has previously been observed to shield the active site in the type IV fold homodimer. The active site of MtIlvE contains density corresponding to bound PMP, which is likely to be a consequence of the presence of tryptone in the crystallization medium. Additionally, two cysteine residues are positioned at the dimer interface for disulfide-bond formation under oxidative conditions. It is unknown whether they are involved in any regulatory activities analogous to those of the human mitochondrial branched-chain amino-acid transaminase.

  7. Early expression of the receptor for advanced glycation end products in a toxic model produced by 6-hydroxydopamine in the rat striatum.

    PubMed

    Serratos, Iris N; Castellanos, Pilar; Pastor, Nina; Millán-Pacheco, César; Colín-González, Ana Laura; Rembao, Daniel; Pérez-Montfort, Ruy; Cabrera, Nallely; Sánchez-García, Aurora; Gómez, Isabel; Rangel-López, Edgar; Santamaria, Abel

    2016-04-01

    The receptor for advanced glycation end products (RAGE) is commonly involved in different neurodegenerative and inflammatory disorders. The cellular signaling associated to RAGE activation may occur upon binding to different ligands. In this study we investigated whether the toxic model produced by 6-hydroxydopamine (6-OHDA) in rats comprises early noxious responses related to RAGE-mediated signaling cascades. In order to explore a possible interaction between 6-OHDA and RAGE, affinity parameters of RAGE with 6-OHDA were estimated by different means. The possible binding sites of 6-OHDA with the VC1 homodimer for both rat and human RAGE were also modeled. Our results show that the striatal infusion of 6-OHDA recruits RAGE upregulation, as evidenced by an early expression of the receptor. 6-OHDA was also found to bind the VC1 homodimer, although its affinity was moderate when compared to other ligands. This work contributes to the understanding of the role of RAGE activation for 6-OHDA-induced neurotoxicity. PMID:26902637

  8. Return of the glucoreceptor: Glucose activates the glucose-sensing receptor T1R3 and facilitates metabolism in pancreatic β-cells.

    PubMed

    Kojima, Itaru; Nakagawa, Yuko; Ohtsu, Yoshiaki; Hamano, Kunihisa; Medina, Johan; Nagasawa, Masahiro

    2015-05-01

    Subunits of the sweet taste receptor, namely T1R2 and T1R3, are expressed in mouse pancreatic islets. Quantitatively, the expression of messenger ribonucleic acid for T1R2 is much lower than that of T1R3, and immunoreactive T1R2 is in fact undetectable. Presumably, a homodimer of T1R3 could function as a signaling receptor. Activation of this receptor by adding an artificial sweetener, sucralose, leads to an increase in intracellular adenosine triphosphate ([ATP]c). This increase in [ATP]c is observed in the absence of ambient glucose. Sucralose also augments elevation of [ATP]c induced by methylsuccinate, a substrate for mitochondria. Consequently, activation of T1R3 promotes metabolism in mitochondria and increases [ATP]c. 3-O-Methylglucose, a non-metabolizable analog of glucose, also increases [ATP]c. Conversely, knockdown of T1R3 attenuates elevation of [ATP]c induced by glucose. Hence, glucose promotes its own metabolism by activating T1R3 and augmenting ATP production. Collectively, a homodimer of T1R3 functions as a cell surface glucose-sensing receptor and participates in the action of glucose on insulin secretion. The glucose-sensing receptor T1R3 might be the putative glucoreceptor proposed decades ago by Niki et al. The glucose-sensing receptor is involved in the action of glucose and modulates glucose metabolism in pancreatic β-cells. PMID:25969708

  9. Effects of Four Formulations of Prostaglandin Analogs on Eye Surface Cells. A Comparative Study

    PubMed Central

    Pérez-Roca, Fernando; Rodrigo-Morales, Esther; Garzón, Ingrid; Oliveira, Ana-Celeste; Martín-Piedra, Miguel-Ángel; Carriel, Víctor; Ortiz-Pérez, Ana-Isabel; Sánchez-Montesinos, Indalecio; Campos, Antonio; Alaminos, Miguel

    2015-01-01

    We evaluated the cytotoxic effects of four prostaglandin analogs (PGAs) used to treat glaucoma. First we established primary cultures of conjunctival stromal cells from healthy donors. Then cell cultures were incubated with different concentrations (0, 0.1, 1, 5, 25, 50 and 100%) of commercial formulations of bimatoprost, tafluprost, travoprost and latanoprost for increasing periods (5 and 30 min, 1 h, 6 h and 24 h) and cell survival was assessed with three different methods: WST-1, MTT and calcein/AM-ethidium homodimer-1 assays. Our results showed that all PGAs were associated with a certain level of cell damage, which correlated significantly with the concentration of PGA used, and to a lesser extent with culture time. Tafluprost tended to be less toxic than bimatoprost, travoprost and latanoprost after all culture periods. The results for WST-1, MTT and calcein/AM-ethidium homodimer-1 correlated closely. When the average lethal dose 50 was calculated, we found that the most cytotoxic drug was latanoprost, whereas tafluprost was the most sparing of the ocular surface in vitro. These results indicate the need to design novel PGAs with high effectiveness but free from the cytotoxic effects that we found, or at least to obtain drugs that are functional at low dosages. The fact that the commercial formulation of tafluprost used in this work was preservative-free may support the current tendency to eliminate preservatives from eye drops for clinical use. PMID:26067827

  10. Comparison of Quantum Mechanics and Molecular Mechanics Dimerization Energy Landscapes for Pairs of Ring-Containing Amino Acids in Proteins

    SciTech Connect

    Morozov, Alexandre V.; Misura M. S., Kira; Tsemekhman, Kiril; Baker, David

    2004-06-17

    A promising approach to developing improved potential functions for modeling macromolecular interactions consists of combining protein structural analysis, quantum mechanical calculations on small molecule models, and molecular mechanics potential decomposition. Here we apply this approach to the interactions of pairs of ring-containing amino acids in proteins. We find reasonable qualitative agreement between molecular mechanics and quantum chemistry calculations, both over one-dimensional projections of the binding free energy landscape for amino acid homodimers and over a set of homodimers and heterodimers from experimentally observed protein crystal structures. The molecular mechanics landscapes are a sum of charge-charge and Lennard-Jones contributions; short-range quantum mechanical effects such as charge transfer appear not to be significant in ring side chain interactions. We also find a reasonable degree of correlation between the molecular mechanics energy landscapes and the distributions of dimer geometries observed in protein structures, suggesting that the intrinsic dimer interaction energies do contribute to packing of side chains in proteins rather than being overwhelmed by the numerous interactions with other protein atoms and solvent. These results demonstrate that interactions involving aromatic residues and proline can be fairly well modeled using current molecular mechanics force fields, but there is still room for improvement, particularly for interactions involving proline and tyrosine.

  11. Visualization by BiFC of different C/EBP{beta} dimers and their interaction with HP1{alpha} reveals a differential subnuclear distribution of complexes in living cells

    SciTech Connect

    Susperreguy, Sebastian; Prendes, Luciana P.; Desbats, Maria A.; Charo, Nancy L.; Brown, Karen; MacDougald, Ormond A.; Kerppola, Tom; Schwartz, Jessica; Piwien-Pilipuk, Graciela

    2011-04-01

    How the co-ordinated events of gene activation and silencing during cellular differentiation are influenced by spatial organization of the cell nucleus is still poorly understood. Little is known about the molecular mechanisms controlling subnuclear distribution of transcription factors, and their interplay with nuclear proteins that shape chromatin structure. Here we show that C/EBP{beta} not only associates with pericentromeric heterochromatin but also interacts with the nucleoskeleton upon induction of adipocyte differentiation of 3T3-L1 cells. Different C/EBP{beta} dimers localize in different nuclear domains. Using BiFC in living cells, we show that LAP (Liver Activating Protein) homodimers localize in euchromatin and heterochromatin. In contrast, LIP (Liver Inhibitory Protein) homodimers localize exclusively in heterochromatin. Importantly, their differential subnuclear distribution mirrors the site for interaction with HP1{alpha}. HP1{alpha} inhibits LAP transcriptional capacity and occupies the promoter of the C/EBP{beta}-dependent gene c/ebp{alpha} in 3T3-L1 preadipocytes. When adipogenesis is induced, HP1{alpha} binding decreases from c/ebp{alpha} promoter, allowing transcription. Thus, the equilibrium among different pools of C/EBP{beta} associated with chromatin or nucleoskeleton, and dynamic changes in their interaction with HP1{alpha}, play key roles in the regulation of C/EBP target genes during adipogenesis.

  12. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis.

    PubMed

    Czabotar, Peter E; Westphal, Dana; Dewson, Grant; Ma, Stephen; Hockings, Colin; Fairlie, W Douglas; Lee, Erinna F; Yao, Shenggen; Robin, Adeline Y; Smith, Brian J; Huang, David C S; Kluck, Ruth M; Adams, Jerry M; Colman, Peter M

    2013-01-31

    In stressed cells, apoptosis ensues when Bcl-2 family members Bax or Bak oligomerize and permeabilize the mitochondrial outer membrane. Certain BH3-only relatives can directly activate them to mediate this pivotal, poorly understood step. To clarify the conformational changes that induce Bax oligomerization, we determined crystal structures of BaxΔC21 treated with detergents and BH3 peptides. The peptides bound the Bax canonical surface groove but, unlike their complexes with prosurvival relatives, dissociated Bax into two domains. The structures define the sequence signature of activator BH3 domains and reveal how they can activate Bax via its groove by favoring release of its BH3 domain. Furthermore, Bax helices α2-α5 alone adopted a symmetric homodimer structure, supporting the proposal that two Bax molecules insert their BH3 domain into each other's surface groove to nucleate oligomerization. A planar lipophilic surface on this homodimer may engage the membrane. Our results thus define critical Bax transitions toward apoptosis. PMID:23374347

  13. SERCA1 truncated proteins unable to pump calcium reduce the endoplasmic reticulum calcium concentration and induce apoptosis.

    PubMed

    Chami, M; Gozuacik, D; Lagorce, D; Brini, M; Falson, P; Peaucellier, G; Pinton, P; Lecoeur, H; Gougeon, M L; le Maire, M; Rizzuto, R; Bréchot, C; Paterlini-Bréchot, P

    2001-06-11

    By pumping calcium from the cytosol to the ER, sarco/endoplasmic reticulum calcium ATPases (SERCAs) play a major role in the control of calcium signaling. We describe two SERCA1 splice variants (S1Ts) characterized by exon 4 and/or exon 11 splicing, encoding COOH terminally truncated proteins, having only one of the seven calcium-binding residues, and thus unable to pump calcium. As shown by semiquantitative RT-PCR, S1T transcripts are differentially expressed in several adult and fetal human tissues, but not in skeletal muscle and heart. S1T proteins expression was detected by Western blot in nontransfected cell lines. In transiently transfected cells, S1T homodimers were revealed by Western blot using mildly denaturing conditions. S1T proteins were shown, by confocal scanning microscopy, to colocalize with endogenous SERCA2b into the ER membrane. Using ER-targeted aequorin (erAEQ), we have found that S1T proteins reduce ER calcium and reverse elevation of ER calcium loading induced by SERCA1 and SERCA2b. Our results also show that SERCA1 variants increase ER calcium leakage and are consistent with the hypothesis of a cation channel formed by S1T homodimers. Finally, when overexpressed in liver-derived cells, S1T proteins significantly induce apoptosis. These data reveal a further mechanism modulating Ca(2+) accumulation into the ER of nonmuscle cells and highlight the relevance of S1T proteins to the control of apoptosis. PMID:11402072

  14. Serca1 Truncated Proteins Unable to Pump Calcium Reduce the Endoplasmic Reticulum Calcium Concentration and Induce Apoptosis

    PubMed Central

    Chami, Mounia; Gozuacik, Devrim; Lagorce, David; Brini, Marisa; Falson, Pierre; Peaucellier, Gérard; Pinton, Paolo; Lecoeur, Hervé; Gougeon, Marie-Lyse; le Maire, Marc; Rizzuto, Rosario; Bréchot, Christian; Paterlini-Bréchot, Patrizia

    2001-01-01

    By pumping calcium from the cytosol to the ER, sarco/endoplasmic reticulum calcium ATPases (SERCAs) play a major role in the control of calcium signaling. We describe two SERCA1 splice variants (S1Ts) characterized by exon 4 and/or exon 11 splicing, encoding COOH terminally truncated proteins, having only one of the seven calcium-binding residues, and thus unable to pump calcium. As shown by semiquantitative RT-PCR, S1T transcripts are differentially expressed in several adult and fetal human tissues, but not in skeletal muscle and heart. S1T proteins expression was detected by Western blot in nontransfected cell lines. In transiently transfected cells, S1T homodimers were revealed by Western blot using mildly denaturing conditions. S1T proteins were shown, by confocal scanning microscopy, to colocalize with endogenous SERCA2b into the ER membrane. Using ER-targeted aequorin (erAEQ), we have found that S1T proteins reduce ER calcium and reverse elevation of ER calcium loading induced by SERCA1 and SERCA2b. Our results also show that SERCA1 variants increase ER calcium leakage and are consistent with the hypothesis of a cation channel formed by S1T homodimers. Finally, when overexpressed in liver-derived cells, S1T proteins significantly induce apoptosis. These data reveal a further mechanism modulating Ca2+ accumulation into the ER of nonmuscle cells and highlight the relevance of S1T proteins to the control of apoptosis. PMID:11402072

  15. Gas phase measurements of mono-fluoro-benzoic acids and the dimer of 3-fluoro-benzoic acid

    NASA Astrophysics Data System (ADS)

    Daly, Adam M.; Carey, Spencer J.; Pejlovas, Aaron M.; Li, Kexin; Kang, Lu; Kukolich, Stephen G.

    2015-04-01

    The microwave spectrum of the mono-fluoro-benzoic acids, 2-fluoro-, 3-fluoro-, and 4-fluoro-benzoic acid have been measured in the frequency range of 4-14 GHz using a pulsed beam Fourier transform microwave spectrometer. Measured rotational transition lines were assigned and fit using a rigid rotor Hamiltonian. Assignments were made for 3 conformers of 2-fluorobenzoic acid, 2 conformers of 3-fluorobenzoic acid, and 1 conformer of 4-fluorobenzoic acid. Additionally, the gas phase homodimer of 3-fluorobenzoic acid was detected, and the spectra showed evidence of proton tunneling. Experimental rotational constants are A(0+) = 1151.8(5), B(0+) = 100.3(5), C(0+) = 87.64(3) MHz and A(0-) = 1152.2(5), B(0-) = 100.7(5), C(0-) = 88.85(3) MHz for the two ground vibrational states split by the proton tunneling motion. The tunneling splitting (ΔE) is approximately 560 MHz. This homodimer appears to be the largest carboxylic acid dimer observed with F-T microwave spectroscopy.

  16. PGL germ granule assembly protein is a base-specific, single-stranded RNase.

    PubMed

    Aoki, Scott T; Kershner, Aaron M; Bingman, Craig A; Wickens, Marvin; Kimble, Judith

    2016-02-01

    Cellular RNA-protein (RNP) granules are ubiquitous and have fundamental roles in biology and RNA metabolism, but the molecular basis of their structure, assembly, and function is poorly understood. Using nematode "P-granules" as a paradigm, we focus on the PGL granule scaffold protein to gain molecular insights into RNP granule structure and assembly. We first identify a PGL dimerization domain (DD) and determine its crystal structure. PGL-1 DD has a novel 13 α-helix fold that creates a positively charged channel as a homodimer. We investigate its capacity to bind RNA and discover unexpectedly that PGL-1 DD is a guanosine-specific, single-stranded endonuclease. Discovery of the PGL homodimer, together with previous results, suggests a model in which the PGL DD dimer forms a fundamental building block for P-granule assembly. Discovery of the PGL RNase activity expands the role of RNP granule assembly proteins to include enzymatic activity in addition to their job as structural scaffolds. PMID:26787882

  17. The structural basis of chicken, swine and bovine CD8αα dimers provides insight into the co-evolution with MHC I in endotherm species.

    PubMed

    Liu, Yanjie; Li, Xin; Qi, Jianxun; Zhang, Nianzhi; Xia, Chun

    2016-01-01

    It is unclear how the pivotal molecules of the adaptive immune system (AIS) maintain their inherent characteristics and relationships with their co-receptors over the course of co-evolution. CD8α, a fundamental but simple AIS component with only one immunoglobulin variable (IgV) domain, is a good example with which to explore this question because it can fold correctly to form homodimers (CD8αα) and interact with peptide-MHC I (p/MHC I) with low sequence identities between different species. Hereby, we resolved the crystal structures of chicken, swine and bovine CD8αα. They are typical homodimers consisting of two symmetric IgV domains with distinct species specificities. The CD8αα structures indicated that a few highly conserved residues are important in CD8 dimerization and in interacting with p/MHC I. The dimerization of CD8αα mainly depends on the pivotal residues on the dimer interface; in particular, four aromatic residues provide many intermolecular forces and contact areas. Three residues on the surface of CD8α connecting cavities that formed most of the hydrogen bonds with p/MHC I were also completely conserved. Our data propose that a few key conserved residues are able to ensure the CD8α own structural characteristics despite the great sequence variation that occurs during evolution in endotherms. PMID:27122108

  18. Homodimerization and Heterodimerization of Minimal Zinc(II)-Binding Domain Peptides of T-cell Proteins CD4, CD8α, and Lck

    PubMed Central

    Davis, Alisa M.; Berg, Jeremy M.

    2009-01-01

    Metal-mediated protein oligomerization is an emerging mode of protein-protein interaction. The C-terminal cytosolic domains of T-cell coreceptors CD4 and CD8α form zinc-bridged heterodimers with the N-terminal region of the kinase Lck, with each protein contributing two cysteinate ligands to the complex. Using size exclusion chromatography, 1H NMR, and UV/visible absorption spectroscopy with cobalt(II) as a spectroscopic probe, we demonstrate that small peptides derived from these regions form metal-bridged heterodimers but also homodimers, in contrast to previous reports. The Lck-CD4 and Lck-CD8α cobalt(II)-bridged heterodimer complexes are more stable than the corresponding (Lck)2cobalt(II) complex by factors of 11 ± 4 and 22 ± 9, respectively. These studies were aided by the discovery that cobalt(II) complexes with a cobalt(II)(-Cys-X-X-Cys-)(-Cys-X-Cys-) chromophore show unusual optical spectra with one component of the visible d to d (4A2 to 4T1(P)) transition red-shifted and well separated from the other components. These results provide insights into the basis of specificity of metal-bridged complex formation and on the potential biological significance of metal-bridged homodimers in T-cells. PMID:19624124

  19. Asymmetric conformational maturation of HIV-1 reverse transcriptase

    PubMed Central

    Zheng, Xunhai; Perera, Lalith; Mueller, Geoffrey A; DeRose, Eugene F; London, Robert E

    2015-01-01

    HIV-1 reverse transcriptase utilizes a metamorphic polymerase domain that is able to adopt two alternate structures that fulfill catalytic and structural roles, thereby minimizing its coding requirements. This ambiguity introduces folding challenges that are met by a complex maturation process. We have investigated this conformational maturation using NMR studies of methyl-labeled RT for the slower processes in combination with molecular dynamics simulations for rapid processes. Starting from an inactive conformation, the p66 precursor undergoes a unimolecular isomerization to a structure similar to its active form, exposing a large hydrophobic surface that facilitates initial homodimer formation. The resulting p66/p66' homodimer exists as a conformational heterodimer, after which a series of conformational adjustments on different time scales can be observed. Formation of the inter-subunit RH:thumb' interface occurs at an early stage, while maturation of the connection' and unfolding of the RH' domains are linked and occur on a much slower time scale. DOI: http://dx.doi.org/10.7554/eLife.06359.001 PMID:26037594

  20. A Unique Phenylalanine in the Transmembrane Domain Strengthens Homodimerization of the Syndecan-2 Transmembrane Domain and Functionally Regulates Syndecan-2*

    PubMed Central

    Kwon, Mi-Jung; Choi, Youngsil; Yun, Ji-Hye; Lee, Weontae; Han, Inn-Oc; Oh, Eok-Soo

    2015-01-01

    The syndecans are a type of cell surface adhesion receptor that initiates intracellular signaling events through receptor clustering mediated by their highly conserved transmembrane domains (TMDs). However, the exact function of the syndecan TMD is not yet fully understood. Here, we investigated the specific regulatory role of the syndecan-2 TMD. We found that syndecan-2 mutants in which the TMD had been replaced with that of syndecan-4 were defective in syndecan-2-mediated functions, suggesting that the TMD of syndecan-2 plays one or more specific roles. Interestingly, syndecan-2 has a stronger tendency to form sodium dodecyl sulfate (SDS)-resistant homodimers than syndecan-4. Our structural studies showed that a unique phenylalanine residue (Phe167) enables an additional molecular interaction between the TMDs of the syndecan-2 homodimer. The presence of Phe167 was correlated with a higher tendency toward oligomerization, and its replacement with isoleucine significantly reduced the SDS-resistant dimer formation and cellular functions of syndecan-2 (e.g. cell migration). Conversely, replacement of isoleucine with phenylalanine at this position in the syndecan-4 TMD rescued the defects observed in a mutant syndecan-2 harboring the syndecan-4 TMD. Taken together, these data suggest that Phe167 in the TMD of syndecan-2 endows the protein with specific functions. Our work offers new insights into the signaling mediated by the TMD of syndecan family members. PMID:25572401